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To everyone  

— who shall experience aging in one way or another  



 

 



 

 

ABSTRACT 

Population aging is a global trend and requires better evidence-based guidance. This thesis 

studied population aging from a molecular epidemiological angle. The overall work is 

centered on the “biological age (BA)”, which, in a broad sense, is a quantification of any 

aging-related changes in the cellular, organ-, system-, and/or organismal features. Ideally, BA 

provides additional information in the assessment and prediction of aging risks independent 

of chronological age.  

The first and second studies explored the correlations between BAs and mortality 

associations. 

Study 1 examined a frailty measure, the frailty index (FI), with all-cause and cause-specific 

mortality in 42,953 twins. Increased FI was associated with higher risks of death due to all-

cause, cardiovascular diseases, and respiratory-related causes. Particularly, the effect was 

independent of familiar factors and declined with growing age. 

Study 2 focused on a list of established BAs, including telomere length (TL), DNA 

methylation-based age estimators (DNAmAges), a multiple biomarker-derived BA score, and 

functional BA measures in 846 adults. Correlations were generally stronger between BAs of 

the same type, with TL showing the weakest correlations to other BAs, and the remaining 

demonstrating moderate to high correlations across BAs. Individually, all BAs except for TL 

were associated with mortality risk; jointly, two DNAmAges and the FI were predictive of 

mortality risk independent of the other BAs.  

The third and fourth studies incorporated genetic information to disentangle relationships 

between genetic factors, clinical biomarkers, and aging phenotypes.  

Study 3 investigated a set of clinical biomarkers in relation to healthspan, i.e., disease-free 

lifespan, and used genetically predicted biomarkers as instrumental variables in 12,098 

participants. Glycemic, lipid-, and inflammatory biomarkers were associated with altered 

risks of healthspan. In addition, genetic predisposition to elevated fasting blood glucose was 

associated with a higher risk of encountering an end of healthspan during the follow-up.  

Study 4 interrogated rare and functional genetic determinants of C-reactive protein (CRP) 

and the clinical relevance of the discovered genetic mutations in 161,430 adults. Carrying a 

protein-altering or loss-of-function mutation in the CRP gene was significantly associated 

with decreased serum CRP concentration. Mutation carriers were less affected by obese 

status in terms of the magnitude of increased CRP level. 

In conclusion, BAs can capture distinct aspects of aging-related information. Making use of a 

set of multi-dimensional BAs could provide complementary evidence for risk assessment and 

intervention/treatment effect evaluation in research as well as in clinical practices. 

Measurements of BA together with genetic assessments would facilitate the delivery of 

precision medicine.  
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1 INTRODUCTION 

Population aging is a global trend. According to the World Population Prospects 2019 

reported by the World Health Organization (WHO), the average life expectancy at birth has 

been growing worldwide, rising from 64.2 years in 1990 up to 72.6 years in 2019 and a 

projected number of 77.1 years in 2050. (1) 

This longevity achievement is reached unevenly across genders and geographical regions, 

with women (75.0 versus 70.2 years in men) and Australia/New Zealand region (83.2 versus 

65.2 years in the least developed countries) showing a longer life expectancy in 2019. 

Moreover, population age structures accelerate the burden of population aging at varying 

speeds. On a global scale, individuals aged 65 years or over are estimated to make up 9.1% 

and 15.9% of the total population in 2019 and 2050, respectively. Region-wise, the Sub-

Saharan Africa region shows the lowest 65+ proportion (3.0% in 2019 and 4.5% in 2050) 

while the Europe and Northern America region presents the highest (18.0% in 2019 and 

26.1% in 2050). (1) 

A growing number of the older population would lead to a remarkable change in social, 

economic, and medical systems that requires better evidence-based guidance. In the 

meantime, more and more people reaching advanced age and the advent of the big-data era 

make large-scale data of human aging available and accessible. Together, the situation 

provides researchers valuable opportunities to study the heterogeneity of aging-related 

phenotypes and to elucidate the reasons underneath the phenomenon that some people could 

experience aging “successfully” while others could not.  

Towards these ends, this thesis studied population aging from a molecular epidemiological 

angle. The overall work is centered on the concept of “biological age (BA)”, which, in a 

broad sense, is a quantification of any aging-related changes in the cellular, organ-, system-, 

and/or organismal features. Ideally, BA provides additional information in the assessment and 

prediction of aging risks independent of chronological age (CA).  

Of all BA candidates, the present thesis focused on several established ones, namely telomere 

length (TL), DNA methylation-based age estimators (DNAmAges), several clinical 

biomarkers, a multiple biomarker-derived BA score (multi-biomarker BA), physical and 

cognitive function, as well as the frailty index (FI). Specifically, research interests went to 1) 

the correlations between different types of BA, 2) the associations of one and a set of BAs 

with mortality, 3) a set of clinical biomarkers in association with the end of healthspan, and 4) 

the genetic determinants of one inflammatory biomarker, C-reactive protein (CRP), and their 

clinical relevance in relation to health outcomes.  
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2 BACKGROUND 

2.1 BIOLOGICAL AGING  

Aging, the age-related senescence, is ubiquitous in nature, although some organisms, such as 

hydra, (2) do manifest biological immortality. Evolutionary theories, including antagonistic 

pleiotropy hypothesis and mutation accumulation theory, proposed that aging results from the 

accumulation of detrimental mutation because the force of natural selection against late-

acting alleles is not as efficient as against early-onset mutation, especially during the post-

reproductive period. (3-7) In empirical observations, human biological aging is often viewed 

as multifaceted changes occurring with increasing age, manifested as physiological 

deteriorations, functional impairments, and increased susceptibilities to adverse outcomes. (8-

12) Depending on the biological scales and domains being inspected, researchers depicted 

aging differently (Figure 2.1.1).  

 

Figure 2.1.1 Biological aging scales. Biological aging changes can be projected to different scales. 

Common quantifications include molecular hallmarks, functional declines, and vulnerability to 

disability and diseases, of which molecular changes could occur throughout lifespan while organ- and 

organismal dysfunction are often observable from the middle age onwards.  

Molecular and cellular hallmarks 

A network of biological mechanisms underlies the aging process. In 2013, Lopez-Otın et al. 

put forward an integrative scheme consisting of nine interrelated molecular and cellular 

hallmarks of aging. Broadly, the hallmarks fall into three categories, 1) primary causes of 

cellular damage (genomic instability, telomere attrition, epigenetic alterations, and loss of 

proteostasis), 2) responses to damage (deregulated nutrient sensing, mitochondrial 

dysfunction, and cellular senescence), and 3) integrative phenotypes (stem cell exhaustion, 

and altered intercellular communication). (13) Later on, other reviews continued to propose 

similar molecular and cellular frameworks, such as seven pillars of aging and cellular aging 

defects, to summarize the mechanisms shared by aging and age-related diseases. (14-16) 

Unlike functional declines of organ systems which are often observable in adulthood, 

molecular and cellular changes occur and accumulate throughout the lifespan. (13) 

Functional declines 
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Aging-related physiological changes accumulate with age and affect organ-, system-, and 

organismal functions. Khan et al. summarized the age-related characteristics of a range of 

organ systems, including neurological, pulmonary, cardiovascular, renal, gastrointestinal, 

endocrine, reproductive, and musculoskeletal systems, and observed that relative rates of 

functional decline vary greatly. (8) The most rapid decline is seen for female reproductive 

function, with female fertility peaking in the early twenties and exhausted at the age of 

menopause. (17, 18) On the contrary, gastrointestinal function only undergoes mild 

deterioration from middle-age and onwards and liver chemistries were mostly age-

independent. (8, 19) At the organismal level, function declines, like physical dysfunction and 

cognitive aging, are often observable across multiple organs and systems at advanced ages. 

(20-22) 

Increased susceptibility to diseases and death 

As age is a major risk factor for most chronic diseases and some mechanisms are shared 

between aging and disease pathologies, a spectrum of diseases are commonly referred to as 

age-related diseases or conditions. (12, 14, 23) Among those, Alzheimer’s disease, 

Parkinson’s disease, some cancers, cardiovascular disease (CVD), chronic obstructive 

pulmonary disease (COPD), maculopathy, periodontitis, sarcopenia, osteoarthritis, and 

osteoporosis are extensively studied. (23) Previous evidence found the risk of developing a 

list of chronic diseases in the population grows exponentially from 30 to 70 years. (24, 25) 

However, the speed of disease burden seems to slow down among the oldest old, as evidence 

suggested around a quarter of centenarians could escape clinical symptoms of diseases 

successfully and the prevalent dementia risks leveled off at around the age of 95. (26, 27) 

Another obvious feature of human aging is the increased risk of death, the ultimate endpoint 

of life. Population statistics from the United States showed that the mortality rate almost 

doubled across every 10-year age group from 15–24 years to 75–84 years. (28, 29) 

2.2 BIOLOGICAL AGE 

Biological aging encompasses complex features and thus measuring the aging process in 

populations has long been a challenge. A well-known metric of aging is CA, the calendar 

periods that have passed by since the time of birth. With an easy-to-measure and easy-to-

access definition, CA serves as a convenient metric of aging in most medical research. 

However, people of the same CA manifest diverse aging-related phenotypes and the 

magnitude of this heterogeneity often enlarges with growing age. Gerontologists and medical 

researchers need new indexes to keep track of the physiological and functional changes 

beyond measuring CA alone. Therefore, the concept of BA has been discussed.  

BA concept 

The American Federation for Aging Research has suggested that a ‘biomarker of aging’, 

often used synonymously as ‘BA’, should meet the following requirement (30, 31):  



 

 5 

1. It must predict the rate of aging. In other words, it would tell exactly where a person 

is in their total lifespan. It must be a better predictor of life span than chronological 

age. 

2. It must monitor a basic process that underlies the aging process, not the effects of 

disease. 

3. It must be able to be tested repeatedly without harming the person. For example, a 

blood test or an imaging technique. 

4. It must be something that works in humans and in laboratory animals, such as mice. 

This is so that it can be tested in lab animals before being validated in humans. 

Despite years of efforts in the pursuit of qualified BAs, no such measure fulfilling all of the 

above criteria has been found. Some even believe that a single BA index is impossible to find 

for measuring a process as complex as biological aging. (32) 

In this thesis, the definition of BA is relaxed from the above criteria. In a broad sense, a BA 

can be an indicator that changes in parallel with one or more aging aspects, including any 

cellular, organ-, system-, and/or organismal features. That is, identifying BA could be 

achieved by either pinpointing the causes of aging, such as the cellular hallmarks of aging, or 

measuring proxy indicators, which are correlated with aging-related phenotypes but do not 

necessarily play a causal role in the process of aging, for instance, aging-induced functional 

declines.  

Utility of BA 

Ideally, BA provides additional information in the assessment and prediction of aging risks 

independent of CA. Therefore, the CA-independent part of BA is of particular interest to 

researchers and often termed as BA residual, age acceleration, or delta age in the literature. 

Despite a lack of consensus, delta age is often calculated from a naïve subtraction between 

BA and CA; whereas BA residual and age acceleration refer to the difference between the 

observed BA and the expected BA among the people of the same CA, derived from a 

regression model (Figure 2.2.1).  

 

Figure 2.2.1 A simplified illustration of CA, BA, and BA residual. The expected BA-CA relationship 

in a population (dashed line) is fitted using the individual-level observations (dots). A BA residual 
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refers to the difference between the observed BA and the expected BA among the people of the same 

CA, of which the red curly bracket denotes an example. 

Successful development of BA comes with opportunities to improve clinical practice and to 

facilitate academic research. First, by assessing aging-related health risks in the population, 

people at higher risks can be identified and delivered with personalized medical service. 

Second, by monitoring the aging changes repeatedly through BA measures, medical research 

could evaluate the efficacy of interventions and treatments to delay population aging.  

BA candidates 

A variety of measures depicting one or a combination of measures of physiological and/or 

functional deterioration can be seen as potential BAs. It could be a metric that is initially used 

to measure molecular and cellular changes, for instance, genetic instability, (33) telomere 

attrition, (34) and epigenetic alteration, (35) as well as comprehensive organismal-level 

functions like cognition, (36) physical functioning, (37) and frailty. (38) Indexes measuring 

the risk of death or developing aging-related conditions could also be treated as a type of BA, 

because increased vulnerability to morbidities and mortality occurs with aging. (39) 

Furthermore, BA can be a mixed measure of several aging mechanisms and aging 

manifestations to integrate their complex nature. (40, 41) So far, several review papers (42-

53) have been devoted to discussing the multiple choices of BAs and some commonly-used 

BA measures are summarized in Table 2.2.1. 
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Table 2.2.1 Aging mechanisms, aging manifestations and potential BA measures 

Underlying aging mechanisms -------------- Organismal aging manifestations 

Molecular and cellular mechanisms Physiological and functional declines measured at 

organ-, system-, and organism-level 

Disease and death risks 

Hallmarks BA measures (50) Declines BA measures (8) Conditions BA measures (presence of 

the diseases) (23) 

Genomic instability Aneuploidy  Cardiovascular  Blood pressure  Premature aging 

disorders 

Progeria, Werner syndrome 

Telomere attrition Leukocyte telomere length Pulmonary  Forced vital capacity Neurodegenerative 

disorders 

Alzheimer’s Disease,  

Parkinson’s Disease 

Epigenetic alterations Methylation patterns  Renal Serum creatinine Cancer Prostate cancer 

Loss of proteostasis Glycans (54) Immune system Bone marrow mass Cardiovascular 

diseases 

Hypertension, 

atherosclerosis 

Mitochondrial dysfunction Reactive oxygen species 

(55) 

Neurologic function Cerebral tissue atrophy Pulmonary 

diseases 

Chronic obstructive 

pulmonary disease 

Cellular senescence Senescence-associated beta-

galactosidase (56) 

Musculoskeletal Muscle mass Musculoskeletal 

disorders 

Sarcopenia, osteoporosis  

Deregulated nutrient 

sensing 

Insulin-like growth factor 1 

(57) 

Sensory  Sensory cell loss Inflammatory 

diseases 

Rheumatoid arthritis 

Comprehensive measures 

Epigenetics Epigenetic clocks (58) Cardiorespiratory 

fitness 

Cardiorespiratory fitness (59) Morbidity Comorbidity (60), multi-

morbidity (61), healthy 

lifespan (62) 

Transcriptomics Transcriptomic age (63) Cognitive function General cognitive ability (36) Mortality All-cause mortality risk 

Proteomics Proteomic signature of age 

(64) 

Physical function Global physical functioning 

scale (37) 

  

Metabolomics Metabolic Age Score (65) Frailty Frailty phenotype (66), frailty 

index (38) 

  

Transcripts, proteins, 

metabolites, cytokines, 

microbes and clinical 

laboratory values 

Ageotype (41) Metabolic, cardiac, 

lung, kidney, liver, 

immune function 

PhenoAge (40, 67)   
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BAs studied in this thesis 

Of all the potential BAs aforementioned, details will be given for four types of BA, namely 

TL, DNAmAges, multi-biomarker BA, and the FI, in the following section and Table 2.2.2, 

as they were extensively studied in this thesis.  

Telomere length 

The telomere is a sequence of repetitive nucleotide sequences located at the end of each 

chromosome. The telomere protects the chromosome’s end from fusion and its length 

shortens during cell division. When TL shortening reaches a critical length, cells will no 

longer get replicated. Therefore, TL is seen as a cell mitotic clock and a measure of cellular 

aging. (68, 69) 

Epidemiological evidence showed leukocyte TL attrition occurs with increasing age in both 

cross-sectional and longitudinal studies, of which Marioni et al reported an average loss of 

48–67 base pairs/year in an older population. (70-72) Most studies modeled the TL declines 

in a linear trend, (70) i.e., a constantly changing rate, while some suggested the rate of TL-

decline slightly accelerates after the age of 69. (73)  

DNAmAges 

Epigenetic changes can alter gene activities without changing the DNA sequence. (74) 

Methylation is a common type of epigenetic modification, by which a methyl group is added 

to the DNA molecule and often the consequence is the repression of gene transcription. The 

methylation levels at many cytosine-phosphate-guanine (CpG) dinucleotide sites change with 

age, showing a pattern of global hypomethylation and regional hypermethylation. (75, 76) 

Therefore, by aggregating methylation information of aging-related CpG sites through 

(penalized) regression models, a combined BA estimator, often referred to as DNAmAge or 

epigenetic clock, could be generated.  

According to the nature of training targets, there are two groups of DNAmAges broadly. The 

first type is the CA estimator. Both Horvath and Hannum clocks are CA predictors, of which 

Horvath trained multiple tissues while Hannum used blood samples only. (58, 77) The second 

type of DNAmAges took a step closer to the BA estimators as they used aging-related 

phenotypes as training targets. For instance, DNAmPhenoAge and DNAmGrimAge utilized a 

biomarker-derived PhenoAge and biomarkers plus mortality risk in the training process, 

respectively. (67, 78) By construction, epigenetic clocks are CA-calibrated and, thus, increase 

with CA in a linear fashion in training populations. This positive BA-CA correlation has been 

supported repeatedly in different studies. (79, 80)  

Multi-biomarker BA 

Some biomarkers that are routinely assessed at clinics as well as in population surveys, 

including serum assays, urine biomarkers, and anthropometric markers, demonstrate age-
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dependent patterns. Given a single biomarker only reflects organ or system function to a 

narrow extent, aggregating many biomarkers as a composite score could potentially 

maximize the aging-related biological information. Both unsupervised methods, such as 

principal component analysis (PCA), and supervised models, like a simple linear regression 

and a multi-step regression method proposed by Klemera and Doubal (KDM), can perform 

the aggregation task. (40, 81)  

The biological relevance of a multi-biomarker BA largely depends on the component 

biomarkers and the training target in the BA development. Several biomarker-based BAs 

were developed in different populations using KDM and showed positive relationships 

between multi-biomarker BA and CA. (81-84) 

FI 

The frailty describes the gradual decline in “physiological reserve”, leading to impaired 

robustness and resilience and characterized by the increased vulnerability to adverse 

outcomes. (22, 85-87) Two instruments are commonly used to assess frailty in population 

studies. The first one is proposed by Fried, the frailty phenotype (FP), and measures physical 

frailty through five clinical syndromes: unintentional weight loss, exhaustion, muscle 

weakness, walking speed in the lowest 20%, and low level of activity. (66) Another popular 

instrument is the FI, which considers aging as a process of deficit accumulation. The FI is 

calculated as the ratio of the number of deficits presented in a given individual to the total 

number of deficits, usually varying between 30 and 60, that have been taken into 

consideration. (38) Health deficits could be abnormal symptoms, signs, laboratory tests, 

disabilities, and diseases. Previous studies observed the frailty among different population 

settings and found that the FI gradually develops with increased CA within different age 

groups. (88) 

Table 2.2.2 Four types of BA included in this thesis 

 Data 

Biological 

relevance  Measurement unit  

BA-CA 

relationship 

TL Leukocyte TL Cell mitotic aging Base pair or  

a relative length  

Negative  

DNAmAges Leukocyte DNA 

Methylation levels 

Aging-related DNA 

methylation  

Year Positive  

Multi-biomarker BA Biomarkers such as 

blood and urine assays 

Aging-related 

biomarker change 

Year  Positive  

FI Health deficits like 

symptoms/signs, 

comorbidities, 

functions, lab values 

Physiological 

reserve at 

organismal level 

Ratio of the number 

of deficit presented 

to the total number 

of deficit considered 

Positive  
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This thesis attempted to address BA-related research questions mainly from four aspects. In 

the following section, epidemiological evidence will be summarized.  

2.3 CORRELATIONS OF BA 

Almost every few months, a novel BA is described in the literature. With an overwhelming 

number of BA measures becoming available in the field, correlations could help us 

understand their connections. 

Population studies showed leukocyte TL was only weakly correlated (absolute correlation 

coefficient <=0.2) with DNAmAge and DNAmAge acceleration, with inconsistent directions 

being reported. (72, 82, 89-91) Analysis of 6731 individuals in the United States found 

leukocyte TL was not correlated with a multi-biomarker BA, (92) which was further 

supported by another study conducted among 964 middle-aged participants in the Dunedin 

Study. (82) As for the frailty syndrome, Carvalho et al. meta-analyzed nine separate studies 

and found a weak but significant negative association of TL with frailty, assessed by both the 

FP and the FI. (93)  

DNAmAges of different types generally presented moderate to high correlations. (78, 82, 94, 

95) Grodstein et al estimated the correlations between four DNAmAges (Horvath, Hannum, 

PhenoAge, and Cortical) and found in blood samples pair-wise correlation coefficients 

ranged from 0.58 to 0.80. (95)  DNAmAge accelerations were moderately correlated, with 

correlation coefficients between 0.17 and 0.45 reported. (78) With regard to associations with 

multi-biomarker BAs, DNAmAges, especially Hannum clock, showed a weak and positive 

correlation. (82) Further, the development of frailty, measured by both the FP and the FI, was 

associated with increased epigenetic age and age acceleration in old populations. (96, 97) 

In the Singapore Longitudinal Aging Study, researchers built up a multi-biomarker BA from 

eight measures of kidney, lung, cognitive, and physical functions, and found that higher BA 

levels were predictive of the FP. (83) Chan et al. developed a 72 biomarkers-based BA in the 

UK Biobank (UKB) and observed an increased risk of hospital admissions (a subset of 

hospital frailty risk score) among biologically older individuals. (84) However, correlations 

between different multi-biomarker BAs are less studied in BA comparison studies. 

Despite the rationale and implementation behind the FP and the FI not being quite the same, 

moderate correlations were found in different populations. (98-101)  

In summary, previous studies found low to moderate correlations between different types of 

BA, including TL, DNAmAges, multi-biomarker BAs, and frailty measures. Between 

different BA types, TL was in a weak or null correlation with the others, while the remaining 

BAs presented positive correlations with varying magnitudes. Among DNAmAges, positive 

and moderate correlations were observed. A majority of the previous studies only took into 

account two BA types. Studies analyzing a range of BAs in the same population could gain 

an integrated view of BA correlations yet are largely lacking. 
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2.4 MORTALITY ASSOCIATIONS OF BA 

Mortality is the ultimate endpoint of the aging process and estimating mortality associations 

with BAs could help interpret the utility of BAs.  

The relationship between leukocyte TL at baseline and the risk of death during the follow-up 

were investigated among different populations and inconsistent results were found. (102-104) 

A meta-analysis pooled the data from 21 studies together and observed shorter LTL predicted 

a higher risk of all-cause mortality in the general population, and the effect size was weaker 

among people aged 80 years and over. (105) In addition, testing methods affected the 

precision of telomere measurements and seem to explain in part the inconsistent findings.  

The ability of mortality prediction has been tested extensively during the development of the 

DNAmAges as a means of validation. (35, 79, 80, 106, 107) Despite being trained to be CA 

estimators, Horvath and Hannum clocks presented the ability to predict mortality risk 

independently of CA. Some recent clocks are explicitly trained to capture mortality-related 

methylation information. (78, 108) Indeed, mortality-oriented epigenetic clocks, as expected, 

outperformed other types of epigenetic clocks in the mortality prediction with respect to the 

magnitude of the effect size. 

Using different biomarker panels, significant associations between higher multi-biomarker 

BAs and increased death risks were found in Asian, American, and European populations. 

(40, 83, 84, 109-111) Since the definitions of multi-biomarker BA are study-specific, a 

comparison across BAs would be informative but remains lacking.  

The FI was a robust predictor of mortality risk across a number of populations. Despite the 

number and nature of health deficits considered by studies were slightly different, increased 

FI was robustly related to the increased risk of death, and the effect was independent of age, 

sex, and other lifestyle factors. (112) However, previous studies mostly focused on the 

general population and the old population. Thus, it remains understudied whether the FI 

effect on mortality would be modified by age and familial background.  

Besides exploring a single BA, some studies aimed to gain a more global picture by 

investigating multiple BAs in the same population. Belsky et al. evaluated eleven aging 

quantifications using data from the Dunedin Study and found Hannum DNAmAge was 

consistently associated with aging-related outcomes, including physical functioning, 

cognitive decline, and subjective signs of aging. (82) However, mortality risk was not studied 

due to a lack of data availability. Recently, a few studies compared the BA-mortality 

association across several BA types. (91, 97, 113-115) Consistent findings are that different 

types of BAs tended to show low correlations, and the FI and mortality-oriented DNAmAges 

outperformed others in mortality prediction. 

In summary, short TL showed inconsistent mortality association in individual studies and was 

related to slightly higher death risk in a meta-analysis, while the remaining BAs were robust 

predictors of mortality risk and showed negative associations. Given the well-recognized 
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correlations between distinct BAs, it is of interest and importance to know how BAs could 

work together to inform health risks in the population. However, evidence in this regard is 

limited. 

2.5 CLINICAL BIOMARKERS AND HEALTHSPAN 

Mortality risk is extensively studied in population studies. Improving longevity does not 

always go in parallel with the extension of good health. (62) The WHO reported an increase 

of 6.6 and 5.4 years from 2000 to 2019 in life expectancy and health-adjusted life expectancy 

(HALE) at birth, respectively, suggesting a healthy lifespan and lifespan might feature 

differently. (116) However, conceptualizing healthspan in the population is no easy task. At a 

population level, WHO uses HALE as a summary measure to quantify population health by 

accounting for disability rate and disability weights in each region. (117) However, at an 

individual level, the controversy of measuring healthspan lies in defining the threshold 

between healthy and unhealthy states. (118-120) Recently, a morbidity-defined healthspan 

measure came into use in a large-scale population study, in which healthspan is the age at the 

first occurrence of any diagnosis across seven chronic diseases. (25, 121) However, this 

morbidity-based measure could overlook other aging aspects such as functional changes, and 

could be heavily driven by early-onset diseases rather than late-onset conditions. Besides, this 

healthspan is, in essence, dichotomizing the health level; a two-level health framework is, at 

best, an over-simplification of the real health scale. Despite its limitation, this is a practical 

way to quantify healthspan in population studies and this healthspan definition will be the 

focus of this thesis.  

At clinics, some biomarkers, such as fasting glucose and lipids, are routinely monitored by 

medical specialists. These disease-specific biomarkers have the potential to inform healthspan 

for two reasons. First, the aging process and disease pathology have shared mechanisms. 

Second, morbidity-defined healthspan is ended by disease onset. Therefore, associating 

clinical biomarkers with healthspan could potentially identify aging risk factors that are 

shared by a range of chronic diseases. Two previous studies have tested this hypothesis by 

estimating associations of the clinical biomarkers analyzed in this thesis. Using data from the 

Framingham Heart Study, Terry et al. assessed total cholesterol and glucose measured at age 

40-50 in association with morbidity-free survival at age 85 years among 2,531 participants. 

(122) They found people with a lower level of total cholesterol and an absence of glucose 

intolerance had higher odds of survival. Similarly, among 2,008 individuals from the 

Rotterdam Study, Newson et al. observed a higher probability to be free from major diseases, 

including cardiovascular diseases, stroke, cancer, and dementia, among participants with a 

lower concentration of serum CRP at baseline. (123) 

In summary, healthspan refers to the lifetime spent in good health condition and, practically, 

researchers treated the onset of chronic diseases as the endpoint of the healthspan. Total 

cholesterol, glucose tolerance, and CRP were found to be associated with the probability of 

morbidity-free survival at the age of 85 years. However, evidence for the other serum 
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biomarkers and the genetically proxied clinical biomarkers in relation to healthspan remains 

unknown.  

2.6 GENETIC VARIANTS OF CRP 

Serum CRP is a sensitive inflammatory marker. In the inflection/injury-induced acute 

inflammatory phase, serum CRP concentration could go up drastically by >1000 folds; while 

chronic inflammation is often denoted by a constant and low-grade increase in CRP level. 

(124, 125) CRP is also a non-specific biomarker. In other words, an increase in CRP indicates 

inflammation, but often gives no information on the affected organ or system. In clinical 

practice, CRP change needs to be accompanied by more specific biomarkers and 

symptoms/signs in order to make a meaningful inference. (126)  

The serum concentration of CRP is found to be moderately heritable, with a twin-based 

heritability ranging from 0.1 to 0.65. (127-132) Genome-wide association studies (GWAS) 

and fine-mapping studies further scanned the common and low-frequency genetic variants in 

the relation to serum CRP. (133-145) The latest meta-GWAS identified 58 genetic loci that 

reached GWAS significance and GWAS signals were seen across almost all autosomal 

chromosomes. (143) The distinct variants at all identified loci and at the CRP locus explained 

11.0% and 4.3% of the serum CRP variance, respectively. In addition, body mass index 

(BMI)-adjusted analyses suggested BMI-related pathways only explain the gene-CRP 

associations to a minimal extent. Recently, another research group performed a 

comprehensive GWAS analysis for common biomarkers using data from the UKB. (146) The 

fine-mapping analysis identified 99 distinct variants, which together explained 6.1% of the 

residual variance. Particularly, a low to moderate level of polygenicity was observed as the 

top 1% and 5% most heritable linkage disequilibrium (LD) blocks explained 27.8% and 

39.5% of all heritability.  

Limited by statistical power, standard GWAS could only interrogate genetic variants that are 

common or of low-frequency (minor allele frequency [MAF] >0.1%) even in the UKB, 

where genotypes were available for nearly half a million participants. (146) Rare variants are 

characterized by a lower LD with flanking variants, from which inferring causal loci is more 

straightforward than from a complex LD structure. (147) Additionally, the maximal 

magnitude of rare variant effect is, in theory, greater than that of common variants due to the 

force of natural selection, making rare variants ideal instruments to identify biological 

mechanisms and prioritize therapeutic targets. (148) Therefore, to complement our current 

understanding of the genetic influence on CRP, examining rare genetic variants is warranted.  

Because of the low frequency, rare genetic variants are often grouped together by a functional 

unit and are subsequently associated with the trait of interest. (149, 150) A common 

collapsing approach of this type is the gene-based burden test. Schick et al. did an exome-

wide burden test among 6,050 European Americans and 3,109 African Americans and did not 

identify any significant signal, likely due to the small sample size. (151) Recently, Cirulli and 

colleagues associated gene-based mutation burden with CRP among 46,765 UKB participants 
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and identified only one significant signal in the CRP gene region. (152) Of the 37,867 

individuals with European ancestry, 66 (0.17%) were carriers of rare functional mutation and 

showed a significantly lower serum CRP level. Overall, the current search on CRP and rare 

genetic variants is limited in terms of sample sizes.  

In summary, CRP is a systemic inflammatory biomarker, with the potential to inform aging 

due to “inflammaging”, i.e., the chronic and low-grade inflammation during aging. (153) 

GWASs have made major achievements in understanding the CRP-related mechanisms that 

are regulated by common and low-frequency genetic variants. Rare genetic variants in 

relation to serum CRP could further reveal mechanistic insights and drugable targets, yet are 

so far understudied. In addition, evidence to interpret the potential clinical relevance of rare 

variants, including gene-environment (G*E) interaction as well as association with diseases 

and aging-related phenotypes, is lacking.  
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3 RESEARCH AIMS 

The overarching aim of this thesis is to understand correlation patterns, genetic determinants, 

and associations with health outcomes of multiple BAs (including composite scores and 

biomarkers that reflect aging-related changes). Towards this end, four individual studies were 

conducted with the following aims (Figure 3.1.1): 

Aim 1 To estimate the associations of the FI with all-cause and cause-specific mortality, 

taking into account familial factors, and to test whether the associations are time-dependent. 

Aim 2 To analyze correlations of nine BAs (TL, DNAmAges, multi-biomarker BA, 

functional BAs) and their associations with all-cause mortality. 

Aim 3 To explore the associations of ten clinical biomarkers (glycemic, lipid-, inflammatory, 

and hematological markers) with healthspan, i.e., disease-free lifespan, and lifespan, and to 

identify putative causal relationships by leveraging genetic instruments. 

Aim 4 To examine rare functional genetic variants in association with serum CRP at the 

whole exome-wide scale, to test a potential interaction effect between rare mutation and BMI, 

and to elucidate the clinical relevance of the identified gene by estimating the relative risks 

for a set of health outcomes, including diseases, frailty, and death. 

 

Figure 3.1.1 Overview of the research aims and the study designs 
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4 MATERIALS AND METHODS 

4.1 STUDY POPULATION 

All study populations came from two large-scale population resources, the Swedish Twin 

Registry (STR) and the UKB.  

The STR was established in the late 1950s. Initially, the purpose was to investigate the effects 

of smoking and alcohol consumption on the risk of cancer and cardiovascular diseases while 

controlling for genetic background. (154, 155) To date, the STR has developed into a 

comprehensive infrastructure that facilitates research with broad interests through the data 

collection of genetic information, molecular biomarkers, lifestyle behaviors, and disease 

diagnoses. (156, 157) The latest updates in 2019 reported that 216,258 twins born between 

1886 and 2015 were enrolled in the STR. (158) The STR comprises a number of sub-cohorts, 

and each of them comes with distinct measurements and study designs. Three sub-cohorts 

were analyzed in the first three studies of this thesis, respectively. 

4.1.1 Screening Across the Lifespan Twin Study (SALT)  

SALT is a telephone-based screening among all STR twins who were born in 1958 and 

earlier. A full-scale telephone survey started in 1998 and was completed in 2002. The 

telephone survey was structured to collect information about illnesses, health, prescription 

and nonprescription medication use, occupation, education, and lifestyle behaviors. A total of 

44,919 twin individuals completed the interview. (154-157) 

SALT participants were included in Study 1 if they 1) had less than 20% missing data across 

the 44 frailty items of interest, and 2) had valid follow-up information on all-cause and cause-

specific mortality. Eventually, 42,953 twin individuals aged from 41 to 95 years were 

included in Study 1. The study population was further categorized into three overlapping 

subgroups within each sex: 1) 32,794 single responders, i.e., unrelated individuals, including 

twins whose partner did not respond, twins from opposite-sex twin pairs and one randomly 

selected member of each same-sex twin pair, 2) 11,812 DZ twin individuals from complete 

same-sex dizygotic (DZ) pairs, 3) 8,506 monozygotic (MZ) twin individuals from complete 

MZ pairs. 

4.1.2 Swedish Adoption/Twin Study of Aging (SATSA)  

SATSA is a longitudinal study consisting of twin pairs who were reared apart in early 

childhood and matched twin pairs who were reared together. (154, 155, 159) A subset of 

study individuals who were older than 50 years of age were invited to in-person testings 

(IPTs), which include questionnaire survey, cognitive assessment, and blood sampling. Nine 

complete IPT waves have been conducted from 1986 through 2014 (IPT1 to IPT10, except 

for IPT 4, where only telephone interviews were performed). The number of individuals 

participating in each IPT wave ranged from 645 in IPT1 to 269 in IPT10. In total, 859 

individuals participated in at least one IPT wave in SATSA. 
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SATSA participants were included in Study 2 if they 1) had any BA measure, including TL, 

four DNAmAges (Horvath, Hannum, PhenoAge, and GrimAge), multi-biomarker BA, and 

three functional BAs (cognitive function, functional aging index [FAI], and the FI), assessed 

once across IPT waves, and 2) had known all-cause mortality information. Eventually, 846 

individuals were included in Study 2.  

4.1.3 TwinGene  

Between 2004 and 2008, SALT participants were invited to join the TwinGene project. (157, 

158) Individuals who responded to the invitation underwent a series of examinations, 

including self-reported questionnaire queries focused on chronic diseases and medicine use, a 

simple health check-up, and blood sample collection. Blood samples were later used for 

biochemistry assessments and array genotyping. A total of 12,646 individuals participated in 

TwinGene.  

TwinGene participants were included in Study 3 if they 1) had at least one biomarker value 

across ten clinical biomarkers (fasting blood glucose [FBG], glycated hemoglobin [HbA1c], 

total cholesterol [TC], high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein 

cholesterol [LDL-C], Apolipoprotein A1 [ApoA1], Apolipoprotein B [ApoB], triglyceride 

[TG], CRP, and hemoglobin [Hb]), 2) had non-missing values across educational attainment, 

BMI, and smoking status, and 3) had known information on disease diagnosis and vital 

status. Eventually, 12,098 individuals were included in Study 3.   

4.1.4 UKB  

The UKB is a large-scale prospective cohort and recruited >500,000 participants aged 40–69 

years from across the United Kingdom in 2006–2010. (160-162) Participants are extensively 

phenotyped and genotyped through multiple assessments, including questionnaires, physical 

measures, bio-sample assays, genome-wide array genotyping, and whole-exome sequencing 

(WES). In addition, diagnosis and death for all participants are followed up through hospital 

inpatient data and mortality data. 

In Study 4, we included UKB participants who had 1) non-missing CRP measurement at 

baseline, i.e., the initial assessment visit, 2) European ancestry, 3) contributed a sample that 

passed quality control (QC) for WES genotypes and arrayed genotypes. This resulted in an 

eligible sample set with 177,242 individuals. Next, we retained one of the members randomly 

among sets of people with third-degree or higher relatedness, so that all the study participants 

in the analysis are approximately unrelated. Furthermore, we separated participants randomly 

into two groups, containing 75% and 25% of the independent participants, which was used as 

discovery and replication set, respectively. The combination of discovery and replication 

yielded a total of 161,430 participants and will be referred to as “meta-analysis set” hereafter. 

An overview of assessment timeline is displayed in Figure 4.1.1. 
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Figure 4.1.1 Timeline of assessments 

4.2 MEASUREMENTS 

4.2.1 Biological ages 

FI in SALT 

The FI was constructed from self-reported data. We considered forty-four symptoms, signs, 

disabilities, and diseases covering a wide range of biological systems and associated with 

health status. The deficit items and scoring are presented in Table 4.2.1. An FI value for each 

individual was calculated as the number of deficits present divided by the total number of 

deficits (n=44). For example, an individual reporting 5 deficits has an FI value of 5/44=0.11. 

The FI value was scaled to a unit of 10% in the associational analysis.  

Table 4.2.1 44 frailty items and the coding rules 

No. Questions Coding 

1 How do you estimate your general health? Excellent=0, 

Good=0.25, 

Average=0.5, Not so 

good=0.75, Bad=1 

2 Do you think your health status prevents you from doing things 

you want to do? 

Not at all=0, To some 

extent=0.5, A great 

deal=0  

3 How many times a year do you get serious infections (other than 

respiratory)? 

0-1 times=0, 2-4 

times=0.5, 5 times or 

more =1 

4 Do you have buzzing in the ears? Both ears or one ear=1, 

No=0 

5 Do you have or have you had angina pectoris No=0, Yes=1 

6 Do you have or have you had heart attack No=0, Yes=1 

7 Do you have or have you had heart failure No=0, Yes=1 

8 Do you have or have you had high blood pressure No=0, Yes=1 

9 Do you have or have you had lipid disorder, for example high 

cholesterol or high triglycerides 

No=0, Yes=1 

10 Do you have or have you had vascular spasm in the legs 

(intermittent claudication) 

No=0, Yes=1 

11 Do you have or have you had clot in the leg (venous thrombosis) No=0, Yes=1 

12 Do you have or have you had cerebral hemorrhage or clot in the 

brain (stroke) 

No=0, Yes=1 
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No. Questions Coding 

13 Do you have or have you had TIA attacks (temporary weakness or 

paralysis or reduction of sensibility) 

No=0, Yes=1 

14 Do you have or have you had irregular cardiac rhythm/atrial 

fibrillation 

No=0, Yes=1 

15 Do you have or have you had chronic lung disease (including 

chronic bronchitis and emphysema) 

No=0, Yes=1 

16 Do you have or have you had dizziness No=0, Yes=1 

17 Do you have or have you had rheumatoid arthritis No=0, Yes=1 

18 Do you have or have you had knee joint problem No=0, Yes=1 

19 Do you have or have you had sciatica No=0, Yes=1 

20 Do you have or have you had osteoporosis No=0, Yes=1 

21 Do you have or have you had hip joint problem No=0, Yes=1 

22 Do you have or have you had back pain No=0, Yes=1 

23 Do you have or have you had neck pain No=0, Yes=1 

24 Do you have or have you had diabetes (including old age diabetes, 

and excluding pregnancy diabetes) 

No=0, Yes=1 

25 Do you have or have you had goiter No=0, Yes=1 

26 Do you have or have you had glandular diseases (excluding goiter) No=0, Yes=1 

27 Do you have or have you had gall bladder problem No=0, Yes=1 

28 Do you have or have you had liver disease (for example, cirrhosis) No=0, Yes=1 

29 Do you have or have you had gout No=0, Yes=1 

30 Do you have or have you had kidney disease No=0, Yes=1 

31 Do you have or have you had stomach or intestine problems No=0, Yes=1 

32 Do you have or have you had recurring urinary tract problems No=0, Yes=1 

33 Do you have or have you had cancer, tumor disease or leukemia No=0, Yes=1 

34 Do you have or have you had migraine No=0, Yes=1 

35 Do you have or have you had asthma No=0, Yes=1 

36 Do you have or have you had allergy No=0, Yes=1 

37 Do you have recurrent periods of coughing? No=0, Yes=1 

38 You felt depressed during the past week? Never or almost 

never=0, Seldom=0.5, 

Often, always or almost 

always=1 

39 You were happy during the past week? 

40 You felt lonely during the past week? 

41 Do you have or have you had any physical handicap No=0, Yes=1 

42 Do you have or have you had Crohn's disease or Ulcerative colitis No=0, Yes=1 

43 How is your vision? Good=0, Reduced=0.5, 

Highly reduced or 

blind=1 

44 How is your hearing? Good=0, Reduced=0.5, 

Highly reduced=1 

 

Multiple BAs in SATSA 

Telomere length 

Leukocyte TL was measured by quantitative polymerase chain reaction (qPCR)-based 

technique. (73) The measurement is the relative length (T/S ratio) calculated as the ratio of 

the individual telomeric DNA (T) to a piece of reference DNA containing a single copy gene 

(S). The TL values were corrected for batch effect, and TL outliers (exceeding 

Mean±4*standard deviation [SD]) were omitted in the analyses. 
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DNAmAges  

Genome-wide methylation levels in leukocytes were measured by Illumina’s Infinium 

HumanMethylation 450K BeadChip and quantified as beta-values. (63, 163) DNAmAges are 

weighted sums of methylation levels across specific CpG sites, of which the feature selection 

and aggregation algorithms were developed elsewhere. (58, 67, 77, 78) In summary, we 

utilized four types of DNAmAges (Horvath, Hannum, PhenoAge, and GrimAge), which 

incorporated methylation levels of 353 age-related, 71 age-related, 513 phenotypic age-

related, and 1,030 mortality risk-related CpG sites, respectively. DNAmAges is calibrated 

against the CA scale and presented in the year unit. That means a DNAmAge value of 50 

years corresponds to the expected BA level among the people with a CA of 50 years in the 

training population. DNAmAges were calculated with the help of an online DNA 

Methylation Age Calculator. (164) 

Physiological age (multi-biomarker BA)  

Physiological age is a type of multi-biomarker BA. A set of serum biomarkers and clinical 

markers were taken into account in the BA development, including serum hemoglobin, 

glucose, cholesterol, Apolipoprotein B, triglyceride, BMI, waist-hip ratio, weight, waist 

circumference, hip circumference, systolic BP, and diastolic BP. We used PCA and KDM to 

combine CA and biomarkers into a single physiological age value in men and women 

separately. Similar to the DNAmAges, physiological age is calibrated against the CA scale 

and presented in the year unit.  

Cognitive function  

We used a general cognitive ability score to measure cognitive function. Four cognitive 

domains were taken into account, including crystallized, fluid, memory, and perceptual speed 

abilities assessed through in-person cognitive testing. (36) PCA and a T-score scaling were 

applied in the score development. The values of resulting cognitive function were distributed 

with a mean value of around 50 and a SD of around 10. 

Functional aging index (FAI)  

We used FAI to measure functional ability, with a focus on the physical aspects. (165) Four 

functional measurements were taken into consideration: 1) vision and hearing were combined 

to create a measure of self-reported sensory ability, 2) muscle strength, 3) walking speed 

time, and 4) lung function. The four indicators were standardized and then summed to create 

a composite score. The values of FAI were distributed with a mean value of around 50 and a 

SD of around 10. 

FI  

Similar to the FI in SALT, the FI in SATSA was constructed from 42 self-reported health 

deficits. Details of FI items are described elsewhere. (166) 
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BA residuals 

BA residuals were constructed to represent the deviation between the observed BA and the 

expected BA among those with the same CA. This is done by regressing out the CA-related 

part from the respective BA using a generalized linear model. Natural splines of CA were 

used in the model to accommodate both linear and non-linear relationships between BA and 

CA.  

All BAs and BA residuals were scaled to the SD unit in the associational analyses.  

4.2.2 Clinical biomarkers 

Multiple clinical biomarkers in TwinGene 

We investigated circulating concentrations of clinical biomarkers that reflect glycemic 

control (FBG, HbA1c), lipid metabolism (TC, HDL-C, LDL-C, ApoA1, ApoB, TG), 

inflammation (CRP), and hematological function (Hb). HbA1c was assessed by ion exchange 

chromatography and the other clinical biomarkers were measured by a semi-automated 

biochemistry analyzer (Beckman Coulter, CA). Biomarkers that appeared strongly right-

skewed (FBG, HbA1c, TG, and CRP) were firstly log-transformed; all biomarkers were then 

standardized to SD units. 

CRP in UKB 

High sensitivity CRP was measured by Beckman Coulter AU5800 at baseline from 2006 to 

2010. The original value of CRP (unit: mg/L) presented a skewed distribution and the natural 

logarithm of CRP was computed and used in the associational analyses. 

4.2.3 Genetic variants 

Polygenetic risk score (PRS) in TwinGene 

Genotypes were assessed on Illumina OmniExpress BeadChips. Arrayed genetic data were 

then imputed against the reference panels in the 1000 Genomes Project phase 1 version 3.    

To calculate polygenic risk scores for each clinical biomarker, we used the summary statistics 

from previous GWASs (167) and the genotypes in TwinGene. A detailed procedure can be 

found elsewhere. (168) Briefly, we calculated the PRSs as a weighted sum of the biomarker-

elevating alleles that were both GWAS significant (P<5E-8) and LD independent (r2 <0.1). In 

summary, PRSs were derived from a different number of SNPs (from 63 for FBG to 590 for 

HDL-C), and were standardized to SD units.  

Genotypes in UKB 

Of the genetic variants released by the WES interim 200k release, we selected PA variants 

that are 1) quality controlled, 2) in the coding sequence (CDS) regions, 3) rare, namely 

MAF<0.1%, 4) single nucleotide variants (SNVs) or indels that lead to any of the following 

functional consequences: splice acceptor variant, splice donor variant, stop gained, 
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frameshift, stop lost, start lost, inframe insertion, inframe deletion, missense variant, and 

protein altering variant based on the annotation results from the Ensembl Variant Effect 

Predictor (VEP 103.1), (169) and 5) not benign missense mutation (Sorting Intolerant From 

Tolerant [SIFT]>0.05 and Polymorphism Phenotyping [PolyPhen]<0.15). (170, 171) Of all 

PA variants, a subset with high-impact consequences, including splice acceptor variant, splice 

donor variant, stop gained, frameshift, stop lost, and start lost, are classified as LOF variants. 

As a result, 1,776,249 PA and 266,226 LOF variants were included in the present analysis. 

In the exome-wide burden test, we subsequently collapsed the PA variants according to 

mapped genes. That is, for each gene, participants were assigned to value 1 if carrying any 

PA mutation in the corresponding gene region and to value 0 otherwise (Figure 4.2.1). 

Similarly, LOF variants were collapsed using mapped genes. Eventually, 21,270 and 20,047 

genes were analyzed in the PA and LOF burden test, respectively. 

 

Figure 4.2.1 An illustration of gene burden calculation. The existence of any PA/LOF allele (in red 

letters) in one gene region leads to a value of 1, otherwise to a value of 0.  

4.2.4 Health outcomes 

Health outcomes in STR 

All-cause and cause–specific mortality 

All-cause mortality, including vital status and dates of death, were obtained from the Swedish 

Population Register. The all-cause mortality information was updated through 2017-

December-31, 2018-August-16, and 2020-April-1 in Study 1-3, respectively. 

Cause-specific mortality data were obtained from the Cause of Death Register. In study 1, 

three specific causes of death, including CVDs (including stroke), respiratory-related causes, 

and cancer, were analyzed, with the latest update on December 31, 2014. 

The end of healthspan 

In Study 3, we defined the end of the healthspan as the age at the first occurrence of any 

following conditions (referred to as “any chronic disease” hereafter): cancer, diabetes, CVDs 

(coronary heart failure [CHF], myocardial infarction [MI], stroke), COPD, dementia, and 

death. Disease diagnosis was ascertained through linkages to the Swedish National Patient 

Register. For each disease, we treated the earliest admission date (inpatient record) or record 
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date (outpatient care) as the onset date. Healthspan information was followed up through 

December 31st 2016.  

ICD codes of diseases were described elsewhere. (168, 172) 

Health outcomes in UKB 

Frailty 

Frailty at baseline was measured through two instruments, the FP and the FI, at baseline. 

(173, 174)  The FP measures five domains, including weight loss, exhaustion, slowness, low 

physical activity, and weakness, of which weakness was assessed through grip strength and 

the other measures were self-reported. People who meet 1-2 and 3-5 criteria are defined as 

pre-frail and frail, respectively. The FI takes into account 49 self-reported frailty items. As 

the FI shows a skewed distribution in the population, we first log-transformed and then 

rescaled the FI to the SD unit. The transformed FI was used in the associational analysis. 

Disease diagnosis 

A list of CRP-associated diseases were examined in the present analysis, (175) including 

autoimmune and inflammatory (Celiac disease, inflammatory bowel disease [IBD, all types], 

Crohn’s disease, Ulcerative colitis, Psoriatic arthritis, Rheumatoid arthritis, Type 1 diabetes, 

Knee osteoarthritis), cardiovascular (coronary artery disease [CAD], Ischemic stroke), 

metabolic (Type 2 diabetes, Chronic kidney disease), neurodegenerative (Alzheimer disease, 

Parkinson disease), and psychiatric diseases (Bipolar disorder, Major depressive disorder). 

The first occurrence of a diagnosis was ascertained through self-reported health conditions at 

baseline, hospital inpatient data as well as causes of death from registers. Inpatient data and 

death information were updated in June 2021. 

All-cause mortality 

All UKB participants were linked to the death register and were followed up until June 2021. 

4.3 STATISTICAL ANALYSIS 

4.3.1 Generalized survival models  

In the first study, we used a generalized survival model (GSM) to estimate the association 

between baseline FI and mortality risk during the follow-up. (176) The event of interest was 

defined as the occurrence of death due to all causes or the corresponding causes of death in 

all-cause and cause-specific mortality models, respectively. All models controlled the effect 

of age implicitly through underlying time scale, sex, education years, smoking, and BMI.  

First, we assumed that hazard ratios (HRs) were time-constant, i.e., proportional hazard. The 

survival models were fitted separately for single responders (i.e., unrelated participants), 

same-sex DZ pairs, and MZ pairs. Specifically, for twin-pair models, a between-within 

decomposition along with a random effect were introduced to the GSM. (177, 178) In this 
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manner, shared familial effects both due to shared patterns of exposure and measured 

confounders included in the model, as well as general unmeasured similarity in survival 

patterns within twin pairs were adjusted for. In other words, the HRs of interest represent the 

within-population, within-DZ pairs, and within-MZ pairs effects, respectively.  

Second, we fitted analogous models for all three groups where the HRs were allowed to vary 

with time, i.e., time-varying HRs.  

4.3.2 Correlations and mortality associations of multiple BAs  

In the second study, as BAs were assessed in multiple SATSA waves, repeated measurements 

were used in the estimation of the correlation coefficients across nine BAs. We selected 

complete measurements where all BAs were assessed for the same individuals and performed 

a repeated measures correlation analysis to control the relatedness between repeated 

measurements. (179) The same correlation analyses were replicated for nine BA residuals to 

quantify the BA correlations that cannot be explained by CA. To further cluster BAs, we 

transformed correlation coefficients between BAs to distances and performed hierarchical 

cluster analysis on BAs and BA residuals using Ward’s method. 

In the survival analysis, we only used baseline measurements, i.e., the first available 

measurement when repeated measurements were available for the same person, and fitted the 

Cox regression model to estimate the association between baseline BAs or BA residuals and 

the risk of all-cause mortality during the follow-up. All models adjusted for age implicitly 

through underlying time scale, sex, education, BMI, and smoking status and accounted for 

the left truncation and right censoring. To adjust for relatedness within twin pairs and 

subjects, robust standard errors were introduced. First, all models took only one BA/BA 

residual into account (one-BA models). Second, all nine BAs entered into the same survival 

model altogether (multi-BA models) to estimate the BA-independent effect. To minimize 

collinearity between BAs due to their CA-related feature, only BA residuals were analyzed in 

the multi-BA model. 

4.3.3 Cox regression models of clinical biomarkers and PRSs 

In the third study, we applied Cox regression models to estimate the association between 

serum biomarkers at baseline and the hazard of outcomes (any chronic disease and death) 

during follow-up among all participants, men, and women, respectively. Each participant was 

followed up until the age of any chronic disease, death, or the end of follow-up. All models 

were adjusted for age implicitly through underlying time scale, sex, birth year category in 

decades, educational attainment, BMI, smoking status, and statin usage. We also used robust 

standard errors to account for relatedness within twin pairs and Benjamini-Hochberg false 

discovery rate (FDR) to correct multiple testing. Serum biomarkers were analyzed 

individually.   

To estimate the associations between the genetic propensity of clinical biomarkers and the 

outcomes of interest, we adopted a similar Cox regression approach as above. All survival 
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models were adjusted for age implicitly through underlying time scale, sex, birth year 

category, and the first ten genomic principal components (PCs) to account for population 

stratification. Once significant PRS results were found, further analyses were conducted to 

explore the potential pathways that underlie the association (Figure 4.3.1). Taking FBG PRS 

and healthspan for instance, two additional models were estimated with further adjustment for 

1) BMI and serum TG, LDL-C, HDL-C, CRP, Hb, and 2) serum FBG.  

 

Figure 4.3.1 An illustration of the relationship between PRSs, clinical biomarkers, confounders, 

potential mediators, and outcomes. The relationship of interest is between the FBG PRS and the risk 

of any chronic event, i.e., healthspan, mediated through serum FBG. Common confounders 

influencing serum FBG-healthspan association, such as social-economic status, will no longer distort 

the FBG PRS-healthspan relationship because genes regulating FBG are determined at conception and 

are likely independent of factors exposed in childhood and adulthood. FBG PRS may affect 

healthspan through mediators other than serum FBG, such as by regulating serum lipid levels.  

4.3.4 Gene-based burden test 

We performed a whole exome-wide burden test by associating gene burden, i.e., the existence 

of any PA/LOF mutation in the gene region, with serum CRP concentration. The beta 

coefficients measure the effect of the gene burden on log-transformed CRP level, with a >0 

value indicating CRP-increasing effect and <0 value denoting CRP-decreasing effect. We 

performed the CMC burden test (180) twice in two independent samples, both the discovery 

set and the replication set, meta-analyzed the effect estimates, and eventually report the 

results for the meta-analysis set. All models controlled the effects of age at baseline, sex, 

WES release, and 20 genomic PCs and were fitted in Rvtests (version: 20190205). (181) 

Once candidate genes from the above burden tests were identified, the single variant-CRP 

association at the candidate loci would be examined.  

Further, to interpret the clinical relevance of the identified rare mutation, we did two 

additional analyses. First, we tested a possible interaction effect of rare gene*BMI on the 

level of serum CRP. Second, we estimated the associations between PA mutation burden in 

candidate genes and the risks of a series of diagnoses, frailty (pre-frail and frail defined by the 

FP and the FI), and all-cause mortality. Linear regression and logistic regression models were 

fitted to estimate beta coefficients and odds ratios (OR) when continuous values (serum CRP 

and the FI) and dichotomized values (diagnoses, pre-frail and frail, and mortality) were the 

outcomes of interest, respectively. All models were adjusted for age at baseline, sex, birth 

year in 10-year categories, WES release, and the first 20 genomic PCs.  
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5 RESULTS 

5.1 STUDY 1 

5.1.1 Population characteristics 

Of 42,953 participants, 19,924 (46.4%) were men and 31,866 (74.2%) were comprised of 

complete twin pairs (19.8% MZ pairs, 27.5% same-sex DZ pairs, and 26.9% opposite-sex 

pairs). At baseline, the median levels of FI were 0.108, 0.097, and 0.119 in all, men, and 

women, respectively (Table 5.1.1). Specifically, the FI has a right-skewed distribution 

(Figure 5.1.1).  

Table 5.1.1 Baseline characteristics of the study population in SALT 
 

All Men Women 

Number of participants 42953 19924 23029 

Age at baseline, mean (SD) 58.8 (10.7) 58.4 (10.4) 59.2 (11.0) 

BMI (kg/m2), mean (SD) 25.0 (3.5) 25.5 (3.1) 24.5 (3.7) 

Education (year), mean (SD) 10.4 (3.2) 10.5 (3.2) 10.4 (3.2) 

Tobacco products use, N (%) 25048 (58.3%) 12677 (63.6%) 12371 (53.7%) 

FI, median (IQR) 0.108 (0.114) 0.097 (0.097) 0.119 (0.125) 

History of diseases at baseline, N (%) 

      CVD 15487 (36.1%) 6981 (35.0%) 8506 (36.9%) 

      Respiratory disease 4580 (10.7%) 1891 (9.5%) 2689 (11.7%) 

      Cancer 3022 (7.0%) 932 (4.7%) 2090 (9.1%) 

IQR, interquartile range.  

 

 

Figure 5.1.1 The distribution of the FI in all participants. The plot illustrated the number of individuals 

(y scale) against the level of FI (x scale) among all participants. 
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5.1.2 Time-constant FI-mortality associations  

During the up to 20 years of follow-up, 12,222 (28.5%) deaths were documented, of which 

3,270 (7.6%), 1,051 (2.4%), and 3,302 (7.7%) deaths were caused by CVDs, respiratory-

related causes, and cancer, respectively.  

An increase in FI was significantly associated with higher risks of deaths due to all causes, 

CVD, and respiratory-related causes (Table 5.1.2). No significant associations were observed 

for cancer mortality. Specifically, the within-pair associations were significant among both 

DZ and MZ twin pairs, suggesting the effects were independent of shared familial factors. 

Table 5.1.2 Time-constant associations between 10% increase in the FI and mortality 

 Single responders DZ twins MZ twins 

Men(N=19924)    

    All causes 1.28(1.24,1.32) 1.40(1.27,1.55) 1.34(1.13,1.58) 

    CVD  1.31(1.23,1.40) 1.35(1.11,1.66) 1.37(0.97,1.92) 

    Respiratory-related 1.23(1.11,1.38) 1.44(1.01,2.05) 2.03(1.14,3.60) 

    Cancer 1.06(1.00,1.14) 1.15(0.95,1.40) 0.99(0.73,1.34) 

Women(N=23029)    

    All causes 1.21(1.18,1.25) 1.25(1.15,1.35) 1.30(1.14,1.49) 

    CVD  1.27(1.15,1.34) 1.45(1.21,1.73) 1.83(1.35,2.49) 

    Respiratory-related 1.26(1.15,1.39) 1.28(0.97,1.69) 1.62(1.02,2.58) 

    Cancer 1.05(0.99,1.11) 0.96(0.81,1.13) 1.19(0.92,1.55) 

The table is reproduced from Li et al. BMC Medicine 2019. (172) 

5.1.3 Time-dependent FI-mortality associations  

We next estimated the FI-mortality associations in an age-dependent manner and found 

evidence supporting a time-dependent effect (P for time effect <0.003 for all models). A 

relatively greater HR was associated with the FI at middle age, and effect sizes decreased 

gently with increasing age at FI assessment (Figure 5.1.2). 
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Figure 5.1.2 Time-dependent effects of 10% increase in the FI on mortality risk in single responders. 

The plot illustrated the estimated HRs (y scale) related to a 10% increase in the FI in association with 

three outcomes according to the age at FI assessment (x scale). The figure is reproduced from Li et al. 

BMC Medicine 2019. (172) 

 

5.2 STUDY 2 

5.2.1 Population characteristics 

Of 845 participants, 342 (40.5%) were men and 800 (94.7%) were comprised of complete 

twin pairs (37.9% MZ pairs and 56.6% DZ pairs; Table 5.2.1). On average, each individual 

was assessed 4.7 times longitudinally. BA measures were available in a different number of 

individuals, ranging from 387 (for DNAmAges) to 829 (for cognitive function). The TL and 

cognitive function showed a negative relationship with CA, while the remaining BAs 

increased with growing CA (Figure 5.2.1). 

Table 5.2.1 Baseline characteristics of the study population in SATSA 
 

All  Men Women 

N 845 342 503 

Age at baseline, mean (SD) 63.6 (8.6) 62.7 (8.0) 64.3 (8.9) 

BMI (kg/m2), mean (SD) 25.6 (3.9) 25.8 (3.4) 25.5 (4.2) 

Above primary education, N (%) 329 (40.3%) 143 (42.6%) 186 (38.7%) 

Current and ex-smokers, N (%) 211 (25.0%) 117 (34.2%) 94 (18.7%) 
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Figure 5.2.1 Longitudinal trajectories of BAs in 845 individuals (3973 measurements) with 

information on at least one BA. The plot illustrated the relationships between BAs (y scale) and CA (x 

scale). In each panel, individual-level data were denoted in orange and repeated measurements 

assessed among the same individuals were connected by broken lines. Blue and pink smooth lines 

represent the population average level among men and women, respectively. This figure is reproduced 

from Li et al eLife 2020. (182) 

5.2.2 BA correlations and clustering 

Telomere length showed low correlations with both CA and the other BAs (r ≤0.16), while 

the remaining BAs were correlated to moderate and high degrees (0.24 ≤ |r| ≤ 0.87). 

Correlations between BA residuals, which represent the CA-independent information, were 

attenuated compared to BA correlations. Moderate correlations remained between 

DNAmAges (Horvath and Hannum) and between functional BAs (cognitive function and 

FAI, and FAI and FI; Table 5.2.2). In the hierarchical cluster analysis, the same types of BAs, 

i.e., DNAmAges and functional BAs, tended to be more closely related. Within DNAmAges 

residuals, GrimAge and PhenoAge were separated from the other two DNAmAges (Figure 

5.2.2). 
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Table 5.2.2 Correlation coefficients of BAs in 288 individuals 

 CA TL DNAmAge Physiol Functional BA 

 Hor Han Pheno Grim Cog FAI FI 

Correlations of BAs         

CA 1.00                   

TL -0.11 1.00                 

Hor 0.53 -0.09 1.00               

Han 0.64 -0.16 0.56 1.00             

Pheno 0.53 -0.07 0.27 0.41 1.00           

Grim 0.85 -0.09 0.44 0.59 0.49 1.00         

Physiol 0.87 -0.07 0.48 0.58 0.47 0.74 1.00       

Cog -0.45 -0.10 -0.25 -0.24 -0.30 -0.42 -0.42 1.00     

FAI 0.54 -0.06 0.32 0.31 0.28 0.43 0.49 -0.50 1.00   

FI 0.45 -0.06 0.25 0.26 0.24 0.36 0.39 -0.29 0.48 1 

Correlations of BA residuals                

CA 1.00                   

TL <0.01 1.00                 

Hor -0.02 -0.04 1.00               

Han -0.04 -0.12 0.35 1.00             

Pheno 0.00 -0.01 -0.02 0.11 1.00           

Grim 0.07 -0.01 0.00 0.13 0.09 1.00         

Physiol -0.10 0.04 0.06 0.05 0.02 0.03 1.00       

Cog 0.03 -0.17 -0.04 0.02 -0.06 -0.07 -0.12 1.00     

FAI 0.01 0.00 0.07 -0.04 -0.02 -0.08 0.07 -0.32 1.00   

FI -0.07 -0.03 0.05 -0.01 -0.02 -0.04 0.02 -0.10 0.31 1 

Hor Horvath DNAmAges, Han Hannum DNAmAges, Pheno DNAmPhenoAge, Grim 

DNAmGrimAge, Physiol Physiological age, Cog Cognitive function. This table is reproduced from Li 

et al eLife 2020. (182) 

 

 

Figure 5.2.2 Hierarchical clustering of BAs in 288 individuals using 612 complete measurements. The 

dendrograms illustrated the hierarchical clustering according to the Euclidean distances derived from 

correlation coefficients. DNAmAges and functional BAs were marked in red and blue, respectively. 

This figure is reproduced from Li et al eLife 2020. (182) 
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5.2.3 BA-mortality associations 

During a median follow-up time of more than 15 years, we documented 583 (69.2%) death 

cases among the total study population. We first analyzed the BA-mortality associations for 

each BA separately and found all BA, except for TL, were associated with mortality risk, 

although Hannum DNAmAge and physiological age showed insignificant results. An 

increase in cognitive function showed a protective effect, while an increase in the remaining 

BAs was associated with a higher death risk. Next, we took all BA residuals into 

consideration in the same model and observed the effects of three BAs (Horvath DNAmAge, 

DNAmGrimAge, and the FI) were independent of the other BAs (Table 5.2.3).  

Table 5.2.3 HRs (95% CI) of a SD increase in baseline BAs with the risk of all-cause mortality 

BAs One-BA model Nine-BA residual model 

Telomere length 1.01 (0.92, 1.11) 1.03 (0.89, 1.19) 

DNAmAge (Horvath) 1.17 (1.01, 1.36) 1.31 (1.08, 1.58) 

DNAmAge (Hannum) 1.17 (0.98, 1.40) 1.03 (0.83, 1.28) 

DNAmPhenoAge 1.26 (1.08, 1.47) 1.13 (0.91, 1.40) 

DNAmGrimAge 1.39 (1.11, 1.75) 1.43 (1.11, 1.84) 

Physiological age 1.13 (0.97, 1.31) 1.01 (0.87, 1.18) 

Cognitive function 0.85 (0.76, 0.94) 1.01 (0.85, 1.20) 

FAI 1.27 (1.10, 1.47) 1.04 (0.86, 1.27) 

FI 1.32 (1.18, 1.48) 1.58 (1.32, 1.89) 

This table is reproduced from Li et al eLife 2020. (182) 

 

5.3 STUDY 3 

5.3.1 Population characteristics 

Of 12,098 participants, 5,469 (45.2%) were men and 9,300 (76.9%) were comprised of 

complete twin pairs (21.6% MZ pairs, 29.2% same-sex DZ pairs, and 26.0% opposite-sex DZ 

pairs). A total of 2,560 individuals had any prevalent chronic diseases of interest at baseline 

and therefore the remaining 9,538 participants were included in the healthspan analysis 

(Table 5.3.1). The most common causes leading to an end of healthspan were cancer (43.9%), 

diabetes (12.5%), and MI (11.5%; Table 5.3.2). 

Table 5.3.1 Baseline characteristics in SATSA 
 

All Men Women 

N 12098 5469 6629 

Age (year) 64.9 (8.1) 65.3 (8.0) 64.6 (8.2) 

Educational attainment (year) 10.8 (3.2) 10.7 (3.3) 10.8 (3.2) 

BMI (kg/m2) 25.9 (3.9) 26.2 (3.4) 25.6 (4.2) 

Ever-smokers (N [%]) 6776 (56.0%) 3311 (60.5%) 3465 (52.3%) 

Prevalent diseases at baseline (N [%]) 

    Cancer 1221 (10.1%) 536 (9.8%) 685 (10.3%) 

    Diabetes 482 (4.0%) 293 (5.4%) 189 (2.9%) 

    MI 686 (5.7%) 502 (9.2%) 184 (2.8%) 

    CHF 219 (1.8%) 133 (2.4%) 86 (1.3%) 
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All Men Women 

    Stroke 348 (2.9%) 192 (3.5%) 156 (2.4%) 

    COPD 192 (1.6%) 86 (1.6%) 106 (1.6%) 

    Dementia 21 (0.2%) 15 (0.3%) 6 (0.1%) 

    Any prevalent chronic disease 2560 (21.2%) 1359 (24.8%) 1201 (18.1%) 

Serum biomarkers at baseline (Mean [SD] or Median [IQR]) 

    FBG (mmol/L; median) 5.6 (1.2) 5.7 (1.3) 5.4 (1.0) 

    HbA1c (%; median) 4.80 (0.65) 4.84 (0.72) 4.78 (0.59) 

    TG (mmol/L; median) 1.2 (0.8) 1.2 (0.8) 1.1 (0.7) 

    TC (mmol/L) 5.8 (1.1) 5.5 (1.1) 6.0 (1.1) 

    HDL-C (mmol/L) 1.4 (0.4) 1.2 (0.3) 1.6 (0.4) 

    LDL-C (mmol/L) 3.8 (1.0) 3.7 (1.0) 3.9 (1.0) 

    ApoA1 (g/L) 1.6 (0.3) 1.5 (0.3) 1.7 (0.3) 

    ApoB (g/L) 1.08 (0.24) 1.06 (0.24) 1.09 (0.24) 

    CRP (mg/L; median) 1.7 (2.7) 1.6 (2.7) 1.7 (2.8) 

    Hb (g/L) 142.3 (11.9) 148.6 (11.0) 137.0 (9.9) 

This table is reproduced from Li et al EBiomedicine 2021. (168) 

Table 5.3.2 Number of events leading to an end of healthspan 
 

All Men Women 

Cancer 1684 (43.9%) 836 (43.0%) 848 (44.9%) 

Diabetes 479 (12.5%) 245 (12.6%) 234 (12.4%) 

MI 442 (11.5%) 284 (14.6%) 158 (8.4%) 

Stroke 364 (9.5%) 197 (10.1%) 167 (8.8%) 

CHF 249 (6.5%) 125 (6.4%) 147 (7.8%) 

COPD 231 (6.0%) 107 (5.5%) 124 (6.6%) 

Dementia 230 (6.0%) 83 (4.3%) 124 (6.6%) 

Death up to 2016-12-31 153 (4.0%) 65 (3.3%) 88 (4.7%) 

This table is reproduced from Li et al EBiomedicine 2021. (168) 

5.3.2 Serum biomarkers and healthspan 

During a median follow-up time of 9.5 and 13.0 years, 3,681 any chronic event and 2,671 

deaths were documented (Table 5.3.3). We found that an elevated level of serum glycemic 

markers (HbA1c and FBG), inflammatory marker (CRP), and TG were indicative of higher 

risks of both any chronic disease and all-cause death; in contrast, some lipid markers (HDL-

C, ApoA1, TC, and LDL-C) were associated with lower risks for both outcomes. 

Specifically, increased Hb and ApoB were predictive of lower death risks, but were not 

associated with the end of the healthspan (Table 5.3.4).  
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Table 5.3.3 Outcomes documented during follow-up 

  Participants in 

healthspan analysis 

Participants in 

lifespan analysis 

Number of individuals  9538 12098 

Follow-up information (N [%] or Median [IQR])  

    Follow-up time (year)  9.5 (3.4) 13.0 (1.5) 

    Number of incident cases  3681 (38.6%) 2674 (22.1%) 

    Onset age of incident cases / age at death  72.3 (11.8) 81.7 (12.1) 

 

Table 5.3.4 Associations of serum biomarkers with healthspan and lifespan in all participants 

Biomarker  

(SD units) 

Any chronic event (end of healthspan) 
 

Death (end of lifespan) 

HR (95%CI) FDR-corrected P 
 

HR (95%CI) FDR-corrected P 

FBG 1.28 (1.23, 1.33) 5.15e-33   1.18 (1.13, 1.22) 5.45e-17 

HbA1c 1.29 (1.24, 1.34) 9.07e-37 
 

1.22 (1.17, 1.26) 6.42e-28 

CRP 1.11 (1.08, 1.15) 2.21e-09 
 

1.15 (1.10, 1.20) 8.17e-11 

TG 1.07 (1.03, 1.11) 0.001 
 

1.12 (1.07, 1.17) 1.76e-06 

Hb 0.99 (0.95, 1.03) 0.791   0.89 (0.85, 0.93) 6.40e-07 

ApoB 1.00 (0.96, 1.03) 0.833 
 

0.95 (0.91, 0.99) 0.016 

LDL-C 0.96 (0.93, 1.00) 0.060 
 

0.89 (0.85, 0.93) 2.14e-07 

TC 0.96 (0.92, 0.99) 0.022 
 

0.90 (0.86, 0.94) 1.76e-06 

ApoA1 0.93 (0.89, 0.96) 2.12e-04 
 

0.91 (0.87, 0.96) 1.72e-04 

HDL-C 0.92 (0.89, 0.96) 1.51e-04 
 

0.91 (0.86, 0.96) 2.74e-04 

This table is reproduced from Li et al EBiomedicine 2021. (168) 

5.3.3 Biomarker PRSs and healthspan 

Using PRSs, we found genetic propensity to higher serum FBG and CRP were associated 

with a higher risk of any chronic disease and a lower risk of death, respectively (Table 5.3.5). 

Particularly, the FBG PRS association was largely mediated by serum FBG level; however, 

the serum CRP could not explain the PRS effect, suggesting genetically determined CRP and 

inflammation-induced serum CRP likely represent different health conditions (Table 5.3.6). 

Table 5.3.5 Associations of biomarker PRSs with healthspan and lifespan in all participants 

PRS  

(SD units) 

Any chronic event (end of healthspan) 
 

Death (end of lifespan) 

HR (95%CI) FDR-corrected P  HR (95%CI) FDR-corrected P 

FBG 1.05 (1.02, 1.09) 0.050  1.00 (0.96, 1.05) 0.867 

HbA1c 1.04 (1.00, 1.08) 0.255  1.01 (0.96, 1.05) 0.867 

CRP 0.99 (0.96, 1.03) 0.922  0.91 (0.87, 0.95) 1.54e-04 

TG 1.01 (0.98, 1.05) 0.706  1.03 (0.99, 1.08) 0.251 

Hb 0.99 (0.96, 1.03) 0.922  0.98 (0.94, 1.02) 0.643 

ApoB 1.02 (0.98, 1.05) 0.706  1.05 (1.01, 1.09) 0.066 

LDL-C 1.02 (0.99, 1.06) 0.630  1.05 (1.01, 1.10) 0.064 

TC 1.02 (0.99, 1.06) 0.630  1.05 (1.01, 1.10) 0.064 
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PRS  

(SD units) 

Any chronic event (end of healthspan) 
 

Death (end of lifespan) 

HR (95%CI) FDR-corrected P  HR (95%CI) FDR-corrected P 

ApoA1 1.00 (0.96, 1.03) 0.922  0.98 (0.94, 1.03) 0.643 

HDL-C 1.00 (0.96, 1.03) 0.948  0.99 (0.94, 1.03) 0.643 

This table is reproduced from Li et al EBiomedicine 2021. (168) 

Table 5.3.6 Associations of a SD-increase in FBG PRS and CRP PRS with additional adjustment 

  Additional Model 1 1  Additional Model 2 2 

  HR (95%CI) P  HR (95%CI) P 

FBG PRS and healthspan  1.05 (1.01, 1.09) 0.008  1.01 (0.98, 1.05) 0.526 

CRP PRS and death  0.90 (0.86, 0.94) 2.5e-6  0.86 (0.82, 0.90) 3.7e-10 

1 FBG PRS: Original model + adjustment for BMI and serum TG, LDL-C, HDL-C, CRP, Hb; CRP 

PRS: Original model + adjustment for BMI and serum TG, LDL-C, HDL-C, FBG, Hb. 2 FBG PRS: 

Original model + adjustment for serum FBG; CRP PRS: Original model + adjustment for serum CRP. 

This table is reproduced from Li et al EBiomedicine 2021. (168) 

 

5.4 STUDY 4 

5.4.1 Population characteristics 

At baseline, 161,430 participants, of whom 45.1% were men, had an average age of 56.7 

years, an average BMI of 27.3 kg/m2, and a median serum CRP of 1.30 mg/L. The baseline 

characteristics of the discovery set were not appreciably different from the replication set 

(Table 5.4.1). 

Table 5.4.1 Baseline characteristics of study population in UKB 
 

Meta-analysis 

set 

Discovery set Replication set P1 

Number of participants 161430 121072 40358  

Men (N, proportion) 72765 (45.1%) 54583 (45.1%) 18182 (45.1%) 0.92 

Age (year, mean, SD) 56.7 (8.0) 56.7 (8.0) 56.6 (8.0) 0.22 

High education (N, proportion) 54041 (33.8%) 40512 (33.7%) 13529 (33.8%) 0.86 

High physical activity (N, %) 78072 (48.5%) 58672 (48.6%) 19400 (48.3%) 0.18 

Ever-smoker (N, proportion) 99188 (61.7%) 74363 (61.6%) 24825 (61.7%) 0.72 

BMI (kg/m2, mean, SD) 27.3 (4.7) 27.3 (4.7) 27.3 (4.7) 0.88 

In first 50k release (N, proportion) 39249 (24.3%) 29398 (24.3%) 9851 (24.4%) 0.61 

Serum CRP  
  

 

  CRP (mg/L, median, IQR) 1.30 (2.03) 1.30 (2.03) 1.30 (2.05) 0.86 

  Natural logarithm (mean, SD) 0.31 (1.06) 0.31 (1.05) 0.31 (1.06) 0.72 
1 P for group difference between discovery set and replication set, estimated by Fisher's exact test, t-

test, and non-parametric median test whenever appropriate.  

5.4.2 Rare functional genetic variants and CRP 

Using the CMC burden test and a whole exome-wide significant level (P< 2.35E-

06[=0.05/21,270]), we found that PA burden in the CRP gene (chromosome 1: 159712289-



 

36 

159714589 on GRCh38 assembly) was significantly associated with the serum CRP 

concentration. Genes, other than the CRP gene, did not show significant effects (Figure 

5.4.1). Carrying any PA allele in the CRP gene decreased natural log-transformed CRP by 

0.676 (equivalent to a change of 0.64 SD), with a P value of 2.63E-30 estimated in the meta-

analysis set. The burden test for the LOF mutation demonstrated a similar result as with PA 

burden; the CRP locus was again the only significant signal across the autosomal exome 

(beta=-0.723, P value=6.58E-11).  

Of the 52 PA variants found in the CRP gene region, a majority (n=43) exhibited CRP-

decreasing effects. Seven PA variants were associated with serum CRP at an FDR-corrected 

significance level, and all of them showed decreasing effect (Figure 5.4.2). 

 

Figure 5.4.1 Associations between gene-based PA burden and serum CRP in the meta-analysis set. 

The Manhattan plot showed the associations between gene-based PA burden and serum CRP (natural-

log transformed), estimated by the burden test in the meta-analysis set. Each dot represents a gene, of 

which the location is determined by the chromosomal position (x scale) and the statistic value of –

log10(P) (y scale). The red horizontal line denotes the whole exome-wide significant level, i.e., -

log10(2.35E-06). Annotations, including name, chromosome, and location, of the significant gene 

were displayed in text.  
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Figure 5.4.2 PA variants in the coding sequence of the CRP gene and the associations with serum 

CRP in the meta-analysis set. The Lolliplot shows the location of PA variants in the CDS region of the 

CRP gene (x scale) and the –log10(P) of the single variant-serum CRP association (y scale). LOF 

variants were displayed in triangles, while the remaining PA variants were displayed in circles, on top 

of which are the number of mutation carriers. Consequence types were denoted by different colors. 

Variant IDs of FDR-significant variants were displayed in text. 

5.4.3 Gene-BMI interaction effect on CRP 

Of the 161,430 participants, 335 individuals (134 men and 201 women) are heterozygous 

carriers of any PA allele in CRP locus, showing a decreased serum CRP level (median 

[IQR]=0.7[1.1]mg/L) compared to the non-carriers (median [IQR]=1.3[2.0]mg/L). 

The serum CRP concentrations at baseline were significantly different across strata of the PA 

burden in the CRP gene, a previously reported common genetic variant in the CRP gene 

(rs1205), and a well-established environmental factor, BMI (Table 5.4.2). In particular, we 

observed a significant interaction effect between PA burden and obesity, with the CRP-

raising effect of obesity being smaller in the PA mutation carriers (beta=0.717) than in non-

carriers (beta=1.119; P for PA*obese interaction term =0.004).  

Table 5.4.2 Effect of PA burden and BMI category on serum CRP (natural log transformed) 
 

Beta (SE) P value 1 

Individual effect model   

Non-carriers of PA allele in CRP (reference)   

    PA carriers -0.668(0.057) 1.47e-31 

rs1205 - TT (reference)     

    TC 0.187(0.009) <1e-100 

    CC 0.355(0.009) <1e-100 

Normal BMI (reference)     

    Overweight 0.519(0.006) <1e-100 

    Obese 1.118(0.006) <1e-100 

Interaction models (PA burden*BMI category) 

Non-PA carriers (normal BMI as reference)     

    Overweight 0.519(0.006) <1e-100 

    Obese 1.119(0.006) <1e-100 
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Beta (SE) P value 1 

PA carriers (normal BMI as reference)     

    Overweight 0.477(0.146) 1.17e-03 

    Obese 0.717(0.163) 1.49e-05 
1 P-value for testing the hypothesis that the corresponding Beta parameter is zero/null. 

5.4.4 CRP-associated rare mutations in relation to diseases and aging 
phenotypes 

Among the 334 PA mutation carriers, we documented a varying number of disease cases, 

ranging from one (Celiac disease) to 36 (Major depressive disorder) across all conditions. At 

a nominal significance level, carriers of PA mutation in the CRP gene had a higher risk of 

Crohn’s disease (OR[95%CI]=3.15[1.40,7.08]) and Bipolar disorder 

(OR[95%CI]=3.36[1.38,8.16]) compared to non-carriers (Table 5.4.3). However, only six and 

five cases were observed for the two diseases among the carriers and the results were no 

longer considered significant after FDR corrections. Next, we tested the PA burden in 

association with aging-related phenotypes, including the FI, pre-frail and frail defined by the 

FP, and the mortality risk, and did not observe robust evidence to support a relationship.  

Table 5.4.3 Associations between PA burden in CRP gene and health outcomes 

Outcome Cases among  

mutation carriers 

Odds ratio 

(95%CI) 

P 

value 

FDR-

corrected P 

Autoimmune/inflammatory 
    

    Celiac disease 1(0.3%) 0.45(0.06,3.22) 0.428 0.904 

    IBD (all types) 20(6%) 0.96(0.61,1.52) 0.877 0.994 

    Crohn’s disease 6(1.8%) 3.15(1.40,7.08) 0.006 0.066 

    Ulcerative colitis 6(1.8%) 1.56(0.69,3.49) 0.285 0.890 

    Psoriatic arthritis 1(0.3%) 0.99(0.14,7.08) 0.994 0.994 

    Rheumatoid arthritis 2(0.6%) 0.25(0.06,1.01) 0.051 0.323 

    Type 1 diabetes 2(0.6%) 0.70(0.18,2.83) 0.621 0.983 

    Knee osteoarthritis 26(7.8%) 1.05(0.70,1.57) 0.819 0.994 

Cardiovascular 
    

    Coronary artery disease 29(8.7%) 1.00(0.67,1.48) 0.988 0.994 

    Ischemic stroke (all type) 3(0.9%) 0.57(0.18,1.77) 0.328 0.890 

Metabolic 
    

    Type 2 diabetes 23(6.9%) 1.02(0.66,1.57) 0.928 0.994 

    Chronic kidney disease 16(4.8%) 1.41(0.85,2.35) 0.187 0.888 

Neurodegenerative 
    

    Alzheimer disease 2(0.6%) 1.06(0.26,4.30) 0.932 0.994 

    Parkinson disease 3(0.9%) 1.39(0.44,4.36) 0.573 0.983 

Psychiatric 
    

    Bipolar disorder 5(1.5%) 3.36(1.38,8.16) 0.007 0.066 

    Major depressive disorder 36(10.7%) 1.16(0.82,1.65) 0.391 0.904 

Aging-related phenotype 
    

    FI (unit: SD) 1 2.25(1.00) -0.05(-0.16,0.05) 0.313 0.890 

    Pre-frail and frail 140(42.9%) 1.08(0.87,1.35) 0.496 0.942 

    All-cause death 20(6%) 0.94(0.59,1.49) 0.784 0.994 
1 Estimates for FI (unit: SD): mean (SD) and beta (95%CI) 
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6 DISCUSSION 

6.1 BA CORRELATIONS AND BA-MORTALITY ASSOCIATIONS 

Aging-related changes are intricate as they take place at multiple layers, from molecular- and 

cellular- levels scaling up to organ-, system-, and organism- levels. Making BA measuring 

even more challenging is the multi-domain feature of aging-related changes. However, in 

practice, a BA is often claimed when changes in some age-related layers and/or domains are 

quantified. As a consequence, the field is somewhat overwhelmed by the number of proposed 

BA measures, leading to an urgent quest for understanding their connection and utility. The 

first and second studies in the present thesis provide evidence in this regard from two aspects, 

1) BA-BA correlations and 2) BA-mortality association. 

BA correlations 

First, we observed weak correlations of TL with the other types of BAs, which is in line with 

previous findings. (72, 82-84, 89, 90, 92, 183, 184) This weak correlation suggests that the 

biological process captured by TL, mitotic aging, is largely independent of the other included 

BAs. Second, a clear attenuation of the correlations between different types of BA was 

observed after we controlled CA-related change among BA residuals. In other words, among 

individuals of the same CA, BAs of different types are only weakly associated and have the 

potential to provide complementary aging-related information. This finding indicates using 

different types of BA has the potential to maximize aging-related information compared to 

using different BAs of the same type.  

Therefore, given that the aging process is multi-faceted and one BA is only capable of 

providing limited information, to gain a global picture of the aging level, several BAs 

assessed at different layers and domains are suggested, rather than only relying on a single 

BA measure. In research, multiple lines of BA evidence are needed to evaluate the efficacy of 

interventions on aging; in clinical settings, multi-dimensional BA assessments would 

facilitate the delivery of precision medicine.   

BA-mortality associations 

Our first observation is related to the BA individually. As with previous findings, (40, 67, 84, 

108, 112, 185, 186) we observed that all BAs, except for TL, were predictive of mortality risk 

individually. We did not observe evidence to support a TL-related mortality risk, while a 

previous meta-analysis found higher TL indicated lower mortality risk after pooling 

inconsistent evidence together. (105) Taken together, these results suggest DNAmAges, 

multi-biomarker BA, and the functional BAs could robustly identify people with higher death 

risks across population settings, while leukocyte TL is less robust.  

Specifically, DNAmGrimAge exhibited the largest effect on mortality risk related to one SD 

change in BA. DNAmGrimAge is a second-generation DNAmAge and its calculation 

algorithm was trained explicitly on mortality risk in the US population. On the one hand, a 
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strong mortality association of DNAmGrimAge is expected by construction. On the other 

hand, the result that DNAmGrimAge showed a stronger association with death than FI, an 

extremely robust mortality predictor, is encouraging. That means using DNA methylation 

information and a proper training method could create valid predictors of complex 

phenotype, demonstrating a great potential of using the epigenome to assess other complex 

aging-related phenotypes. Therefore, researchers could continue to optimize the predictive 

utility of the genome-wide methylation data in relation to a wide range of aging-related 

phenotypes to help translate DNAmAges to more practical uses. 

The second observation came from the joint effects of different BAs on mortality risk, where 

significant and independent associations of Horvath DNAmAge, DNAmGrimAge, and FI 

were found. The results suggest these BAs captured complementary information in terms of 

mortality prediction. It is interesting to find, among the functional BA cluster, FI is the only 

measure remaining significant and the effects of FAI and cognitive function attenuated 

almost entirely. This is likely explained by the multi-domain nature of the FI in that the FI 

development has to some extent taken the physical and cognitive function quantified by the 

FAI and cognitive ability into account already.  

Therefore, given a strong individual effect of DNAmGrimAge and the FI, we suggest 

prioritizing DNAmGrimAge and the FI as the individual BA measure to identify subgroups 

with higher mortality risks among the population. Furthermore, the independent joint effect 

of Horvath DNAmAge, DNAmGrimAge, and the FI indicated future clinical practices and 

medical research could narrow down the number of BA in the risk assessment while 

maximizing the relevant information. 

FI-mortality association  

Particularly, a whole study in this thesis is devoted to the investigation of FI-mortality 

associations. Similar to previous evidence, (112, 187) we found a higher FI at mid-life is 

significantly associated with elevated risks of death due to all causes, cardiovascular diseases, 

and respiratory-related causes.  

Notably, we found the FI effect was independent of shared familial factors. Factors shared by 

twins, such as genetic and childhood environmental factors, could influence both the FI level 

and the mortality risk. Unlike previous studies which were conducted among unrelated 

individuals, our study used a within-twin pair design and found that the FI effects remained 

after controlling for twin-constant factors. It suggests that the FI captures aspects of aging 

that are related to the individual’s lifestyle and environmental exposures on top of the shared 

genetics and familial factors. Therefore, the FI could serve as a valid morality risk indicator 

even among people with the same family background.  

Second, we observed the relative risk due to FI increase was declining gradually with age. 

Frailty is hypothesized to be a result of the reduced physiological reserve. (22, 85-87, 188) If 

younger adults, who are expected to have better resilience, show the same amount of FI 
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increase as older adults, then these younger adults are likely exposed to stronger stress events 

and could therefore face a higher chance of death. Consequently, not only the old population, 

but also middle-aged adults could potentially gain benefits from enrollment to frailty 

screening. 

6.2 CLINICAL BIOMARKERS AND HEALTHSPAN 

We found that cancer, diabetes, and MI are the most frequent causes leading to the end of 

healthspan, while COPD, dementia, and death are the least common reasons, which was 

largely reflective of the order of the average onset ages across different diseases. Therefore, 

late-onset diseases are likely to be under-represented among relatively young adults and over-

represented among old adults. Future analysis could further inspect the age-dependent feature 

of the healthspan phenotype among large-scale populations.  

We observed that seven out of ten serum clinical biomarkers are significantly associated with 

healthspan. Overall, the directions of the associations mostly agree with the biomarker-

disease understanding, where elevated levels of glycemic markers, CRP, and triglyceride 

indicated higher risks of any chronic diseases, while high HDL-related markers conveyed 

beneficial effects. (189-195) In contrast, the protective effect of increased TC and LDL-C on 

any chronic diseases disagrees with some, but not all previous evidence. (195-201) The 

inconsistent results might be explained by the difference in population characteristics as the 

relationships between lipids and mortality were suggested to be age-dependent and in a dose-

response manner. (202) However, the present study is limited by the statistical power to 

detect those patterns. Nevertheless, this suggests that beneficial effects could be indicated 

through higher levels of TC and LDL-C when it comes to the overall healthspan in some 

populations like TwinGene. Therefore, we suggest taking a range of health outcomes into 

consideration when making public health recommendations as the biomarker effect on a 

single disease might be conflicted with the evidence for the overall health outcomes. 

Interestingly, we found a significant positive relationship between genetic predisposition to 

higher serum glucose and an increased risk of any chronic diseases, largely mediated through 

serum glucose level. This is putative causal evidence to link higher glucose to shorter 

healthspan. From an intervention perspective, glucose-lowing behaviors, including caloric 

restriction and exercising, as well as pharmaceutical treatment, such as glucose-lowering 

drugs, could be effective to maintain healthspan. It is worth noting that this relationship 

largely attenuated after we exclude diabetes cases in the sensitivity analysis. On the one hand, 

the attenuation suggested diabetes is the primary driver underlying the glucose-healthspan 

association. On the other hand, diabetic and pre-diabetic conditions are relatively early-onset 

among general populations, observed in both TwinGene and the UKB, (25) and, targeting 

glucose would nevertheless lead to health benefits from a population’s perspective.   

6.3 RARE FUNCTIONAL GENETIC VARIANTS AND SERUM CRP 

We observed that all signals, except for the CRP gene, identified in the GWAS flattened to a 

statistically insignificant level across the exome-wide PA mutations, suggesting rare genetic 
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determinants were less polygenic relative to common variants. Another possible explanation 

is that the effects of genes other than the CRP were too small to be identified in the current 

analysis. Previously, a study used the UKB WES data from the first 50k release (informative 

sample size: 40,468) and observed that the CRP gene was the only significant signal in the 

burden test. (152) Even though the present analysis increased the sample size by four-fold 

(informative sample size: 161,430), we did not find additional signals on top of the previous 

test. Taken together, this observation supports a strong effect of PA burden in the CRP gene 

on serum CRP levels, and provides no evidence for a polygenetic architecture across the rare 

functional variants.   

Further, we found a G*E interaction between rare variants and a well-established CRP-

associated factor, BMI. The effect of obesity in elevating serum CRP was smaller in the rare 

mutation carriers than among the non-carriers. A similar G*E interaction feature was 

demonstrated for common genetic variants of CRP in a previous study, (137) albeit not in 

ours. Together, these observations suggest that both genetic and environmental factors need 

to be considered when interpreting serum CRP levels in clinical settings, especially among 

rare mutation carriers. Given the per-allele effect of PA variants were 4-7 times larger than 

the common variants in the CRP gene and the existence of G*E interaction, translating the 

knowledge to clinical uses would facilitate the delivery of precision medicine.  

We saw suggestive evidence for increased risks of Crohn’s disease and Bipolar disorder 

among PA mutation carriers. Crohn’s disease is an inflammatory bowel disease and, in line 

with our finding, a nominal association has been reported before using polygenic risk scores 

of CRP as genetic instruments. (175, 193) Bipolar disorder is a psychiatric disease and 

previous MR studies have found an association in the opposite direction to our results. (143, 

175) It is worth noting that we used self-reported information, hospital inpatient data, and 

death record to capture diagnoses. Therefore, the out-patient diagnosis could be missed and 

the psychiatric diagnosis captured in hospitals are more likely to be of the severe type. In 

addition, the number of cases among the mutation carriers is relatively small, and therefore 

sampling variability is a major concern. Examining the clinical relevance of rare coding 

mutations could reveal therapeutic insights for disease treatment and provide evidence for 

personalized medicine. Future investigations with a larger number of mutation carriers and 

longer follow-up times are warranted.  

6.4 METHODOLOGICAL CONSIDERATIONS 

This thesis is composed of four epidemiological studies. From a methodological point of 

view, three types of considerations are discussed below.  

Selection bias  

All analysis data in this thesis came from established population cohorts. As with many 

cohorts, the participants in SALT, SATSA, TwinGene, and UKB are volunteer-based, who 

were often more health-conscious and, therefore, not as representative of the general 

population. Previous studies have shown that the UKB participants were better off in terms of 



 

 43 

socioeconomic deprivation, lifestyle behavior, and most disease conditions, compared to 

general UK individuals. (203, 204) Therefore, the generalizability of the absolute risks in this 

thesis is limited, and measures such as the prevalence of frailty, the level of BAs, the 

incidence of the end of healthspan, and the frequency of the mutation carriers, may not be 

interpreted as a representative estimate among the general population. However, the relative 

risks, namely the “exposure-outcome associations”, would be influenced by the volunteer 

effects to only a limited degree, if we assume the true effects are similar among volunteers 

and non-volunteers. Recently, the generalizability of risk factor-mortality associations in 

UKB has been supported. (205) 

Noteworthy is another type of selection bias introduced by survival conditioning in the 

exploration of genetic factors associated with serum CRP in the fourth study. As all 

participants joined the UKB in their adulthoods, the genetic variants that are associated with 

serum CRP yet are not compatible with middle-age survival would be neglected.  

Misclassification  

Measurements of exposure and outcomes in this thesis were ascertained through multiple 

lines of sources, including self-reported information, physical check-ups, sampling and 

arraying of bio-samples, statistical computations, and data acquisition from the health 

registers. Any type of measurement error would lead to misclassification of either “exposure” 

or “outcome”.  

Misclassification of the exposure can occur non-differentially or differentially. The former 

type means misclassification occurs randomly across groups of interest and will bias the 

relative risk toward the null; while the latter one denotes the probability of being 

misclassified depends on the factors of interest and will induce bias with varying directions 

and magnitudes. (206, 207) In this thesis, non-differential misclassification is likely to exist 

and should not change the main conclusion.  

The outcome assessment influences the result interpretation. The health outcome 

ascertainment in this thesis heavily relies on register-based data. Particularly in the fourth 

study, out-patient data are not available. Diagnoses captured by the in-patient data would 

largely reflect the severe types. Minor conditions that only require out-patient medical 

services in the UKB are missed. Therefore, the interpretation of our results should be 

restricted to the severer types of diagnosis.  

Confounding  

Confounding is central to epidemiological research when causal inference is the goal. The 

first and second studies in this thesis emphasize the predictive ability of the BAs instead of 

causal relationships, because BAs by definition are indicators/proxies of aging-related 

changes and are not necessarily the causes of aging. Therefore, the research focus is given to 

the predictive value of BA independent of the traditional aging factors, such as age, sex, and 

BMI, instead of controlling confounders. Further, the third and fourth studies touched upon 



 

44 

the aim of causal inference. The third study used genetic predisposition as an instrumental 

variable to minimize confounding bias based on the assumption that genetic factors are 

determined at birth and are not associated with common confounders. (208, 209) Even 

though we did not observe associations between PRSs and common confounders, residual 

confounding might exist through a factor that is not measured in the study. The fourth study 

aimed to discover rare functional genetic variants that causally regulate serum CRP 

concentration. The nature of the rare functional genetic variants could reduce the possibility 

of confounding effects, since PA mutations have direct functions on amino acids based on 

biological knowledge. Population stratification could be a potential confounder in the genetic 

analysis and is adjusted for via genomic PCs. Albeit unlikely, we cannot preclude the 

possibility of assortative mating, meaning the serum biomarker concentrations have an 

influence on mate-selection, being a possible residual confounder. (210) 

6.5 ETHICAL CONSIDERATIONS  

The primary goal of scientific research is to generate and test hypotheses. This thesis aims to 

advance the knowledge of biological aging in populations. To do so, observational data 

collected from large-scale populations are analyzed. Multiple research steps, including data 

collection, data analyzing, and data publishing, could potentially give rise to risks and 

therefore the benefit-risk balances are worth reflecting.  

First, individual data in both STR and UKB were obtained from self-reported, physical, 

cognitive, and bio-sample tests as well as health registers. Researchers need to inform 

participants of the purposes, procedures, and potential consequences of data collection and 

obtain participants’ consents or equivalent permits before conducting the study. The analyses 

in this thesis were approved by the Regional Ethics Board in Stockholm (Dnr 2016/1888-

31/1) and informed consent were obtained from all participants during the cohort 

establishment.  

Second, sensitive personal data should be treated with caution in the analysis. Using 

sufficient data to answer the research question and protecting the participants’ privacy are 

equally important. This thesis analyzed different types of sensitive data, such as genetic 

information, biomarkers, and diseases. To protect participants’ privacy, the data which I 

could get access to is pseudonymized and unidentifiable.  

Third, epidemiological researchers often put a lot of effort into data analysis and should not 

manipulate data in any way. With various statistical methods at our disposal, the analysis plan 

should be chosen based on solid scientific justifications instead of chasing small P values.  

Fourth, publishing scientific articles is an essential way for researchers to share new 

knowledge with the field and for peer researchers to judge and/or criticize the study quality. 

Since epidemiologists’ work usually ends up with a huge amount of analysis results, we 

should try to publish our findings in an unbiased manner instead of selecting results 

subjectively.   
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7 CONCLUSIONS 

I. The FI was predictive of mortality risk in related individuals and middle-aged adults. 

Public health screenings could consider the FI as a valid morality risk indicator 

among family members and the middle-aged.  

II. BAs of different types captured distinct aspects of mortality-related information. 

Making use of a set of multi-dimensional BAs could provide complementary 

evidence for risk assessment and intervention/treatment effect evaluation in research 

as well as in clinical practices.  

III. Levels in circulating glycemic, lipid-, and inflammatory biomarkers were associated 

with the morbidity-defined healthspan. Glucose control was a putative causal 

mechanism and a potential intervention target for healthspan maintenance.   

IV. Rare functional genetic mutations were strongly associated with serum CRP 

concentrations and showed no evidence for a polygenetic architecture. The 

observation of gene-environment interactions underscores the need to consider both 

genetic and environmental factors when making inferences and offering personalized 

medical service in clinics.  

 

 





 

 47 

8 FUTURE PERSPECTIVE 

Research on BA has accumulated at an unprecedented speed in the era of omics and big data. 

So far, a majority of the efforts were given to proving the validity of BAs by examining the 

BA-health outcome associations. Besides risk prediction, another essential utility of BAs lies 

in the evaluation of intervention/treatment effects, which however remains less well studied. 

BAs could proxy the aging process from distinct perspectives and provide continuous scales 

of health, compared to traditional dichotomized endpoints like disease diagnosis and death. 

Therefore, interrogating BAs in relation to aging-related intervention/treatment/exposure are 

essential topics for future studies. Two aspects are especially worth noting. First, as shown in 

this thesis, BAs of different types are complementary in capturing aging changes. Therefore a 

set of more or less independent BA rather than a single BA is suggested to assess the effect. 

Second, contrary to CA, BAs hold the potential to be reversible markers. To assess the 

reactions to intervention, large-scale longitudinal studies are needed.  

In addition, the clinical use of BA could go beyond geriatric care, as recently demonstrated in 

COVID-related research. (211) The BA measurements in combination with domain-specific 

markers could allow medical specialists to provide individuals with more personalized 

services such as tailored suggestions on intervention and treatment. Therefore, the application 

of BA measures in a clinical setting is, without doubt, an important translational task for 

researchers to accomplish in the future.  

Third, from a public health point of view, describing the changes of BAs in a representative 

population could keep track of the overall aging level among the population and evaluate the 

effectiveness of health policies. Currently, prevalence estimation and population-wide 

screening are mostly conducted in a disease-oriented manner, BA measures could make good 

candidates as a part of routinely assessed population statistics in the future.  

Fourth, an assessment of genetic background could guide personalized medicine service for 

rare mutation carriers due to several reasons. First, biomarker variation patterns observed 

among the general population are no longer applicable to rare mutation carriers. Second, the 

existence of gene-environment interaction could interfere with the treatment/intervention 

effect. Third, elevated risks of health conditions could be monitored. Therefore, future 

investigations on rare genetic variants with larger sample sizes and in association with other 

clinical biomarkers are warranted to improve the delivery of precision medicine. 

 

 





 

 49 

9 ACKNOWLEDGEMENTS 

The past four years have turned out to be a journey beyond my wildest imagination, even not 

to mention COVID-19. I have gained so much, both research-wise and non-research-wise, 

and the credit goes to many brilliant people and organizations.  

Primary thank goes to my main supervisor, Sara Hägg, for being an excellent researcher, 

educator, and a truly good person. This PhD program was built initially upon Sara’s research 

interest around the “biological age” and her ability to acquire essential resources to support 

the work. I learned great lessons from her about not only conducting research but also 

communicating research as Sara is an extraordinary communicator on both academic and 

non-academic occasions. It is truly an honor for me to work with Sara during this PhD 

journey and I sincerely appreciate the time and the effort she has devoted to my education. 

Equally important thanks are given to my co-supervisors. Juulia Jylhävä led the work of my 

first study and taught me a lot of “research 101” knowledge. I can’t thank her enough for 

walking me through a solid and pleasant start. Patrik Magnusson, who always adds a 

cheerful flavor to my serious supervisory meetings, has given essential support to my STR 

studies and vividly demonstrated how to enjoy science in daily work. Alexander Ploner 

provided vital education and support to almost every part of my work, from computation 

coding, statistical inferencing, result interpreting, manuscript drafting, to revision rebutting. I 

will say no more about his intelligence; I do however want to thank him for always holding 

massive curiosity during every meeting we had, which is an incredible quality and has 

inspired me profoundly.  

All co-authors played important roles in my studies. Nancy Pedersen has generously shared 

her invaluable insights gained through decades of research experience with almost all of my 

studies and I thank her sincerely. I had countless talks with Yunzhang Wang, Yiqiang 

Zhan, and Xingrong Liu to discuss the very details of my research and I truly appreciate 

their time and inputs. Ida Karlsson, Chandra Reynolds, Deborah Finkel, Jonathan Mak, 

and Lu Yi contributed to the formation and publication of my research; I could not thank 

their time and comments enough. I pay grateful respect to all participants and staff in the 

Swedish Twin Registry and the UK Biobank. My entire work is built on their efforts. 

Special thanks are given to Fang Fang for being an outstanding and warm-hearted 

researcher, whose behaviors encourage me a lot. A special thank also goes to Kristina 

Johnell for agreeing to be the chairperson for my public defence and for providing solid 

leadership for MEB during the pandemic. Ci Song has been a fiendlike mentor to me and I 

have enjoyed all the talks and meals we had together. 

Every colleague in the “Aging epidemiology @MEB” group is vital to keeping a vigorous 

scientific environment. I appreciated all the group meetings hosted by Sara Hägg, Juulia 

Jylhävä, Nancy Pedersen, Yunzhang Wang, Yiqiang Zhan, Ida Karlsson, Jonathan 

Mak, Kristina Johnell, Ge Bai, KK, Karolina Kauppi, Xueying Qin, Máté Szilcz, Jonas 



 

50 

Wastesson, Chenxi Qin, Laura Kananen, Adil Supiyev, Bowen Tang, Le Zhang, Peggy 

Ler, Malin Ericsson, Miriam Mosing, Kelli Lehto, Bojing Liu, Yasutake Tomata, Dylan 

Williams, Qi Wang, Xu Chen, Johanna Sieurin, Emma Raymond, Lucas Morin, and 

Kathleen Bokenberger. Barbro Sandin and Camilla Palm from the Swedish Twin 

Registry have provided trustful support to my STR studies. And how could I forget MEB?! 

All MEBers together have created such a synergetic system to make MEB an enjoyable 

place to work. 

Friends give me spiritual support more than my words. I owe Ji Zhang, whom I have known 

and trusted for more than a decade, huge thanks for keeping me great company during the up 

and down moments in this foreign environment. Tian Xie, who holds the most optimistic 

attitude towards everything and everyone, always cheers me up and helps me see the 

directions when I lose my sight. Many friends from Sweden and China have made my life 

joyful and I am thankful to all the memories we shared together.  

Despite all the joys, the past four years are not always easy and my family helps me make it 

toward the end. My parents give me unconditional love and have shaped my personality 

deeply. I cherish every moment I have spent and will spend with them. Qifei He has been 

bringing joy to my life over the years. Our communications have advanced my understanding 

of the philosophy of life and I can’t wait to experience more of our life adventures.  

Last but not least I sincerely appreciate are the funding bodies. China Scholarship Council 

provides the major financial support to my study and the funding granted to Sara Hägg and to 

the Swedish Twin Registry, including the Strategic Research Program in Epidemiology 

and the Foundation for Geriatric Diseases from KI, the Swedish Research Council, the 

Swedish Research Council for Health, Working Life and Welfare, National Institutes of 

Health, and MacArthur Foundation, all contribute to my research. The Swedish National 

Graduate School for Competitive Science on Ageing and Health (SWEAH) funded by 

the Swedish Research Council offers an annual allowance to my study activity and vastly 

increases my communication with PhD students outside of MEB and KI.  

Chances are my relationships with the people aforementioned would not stop here. Look 

forward to the next adventure.  

 

 



 

 51 

10 REFERENCES 

1. United Nations, Department of Economic and Social Affairs, Population 

Division. World Population Prospects 2019: Highlights. 2019. 

2. Galliot B. Hydra, a fruitful model system for 270 years. Int J Dev Biol. 

2012;56(6-8):411-23. 

3. Williams GC. Pleiotropy, Natural-Selection, and the Evolution of Senescence. 

Evolution. 1957;11(4):398-411. 

4. Medawar PB. An unsolved problem of biology. London,: Published for the 

college by H. K. Lewis; 1952. 24 p. p. 

5. Zella S. Handbook of Theories of Ageing (Third Edited Edition). J Popul 

Ageing. 2017;10(3):311-4. 

6. Gladyshev VN. Aging: progressive decline in fitness due to the rising 

deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell. 

2016;15(4):594-602. 

7. Kirkwood TB. Evolution of ageing. Nature. 1977;270(5635):301-4. 

8. Khan SS, Singer BD, Vaughan DE. Molecular and physiological 

manifestations and measurement of aging in humans. Aging Cell. 2017;16(4):624-33. 

9. Hayflick L. Handbook of the biology of aging, 5th edition. Gerontologist. 

2002;42(3):416-21. 

10. Kirkwood TB. Understanding the odd science of aging. Cell. 

2005;120(4):437-47. 

11. Pincus Z. Ageing: A stretch in time. Nature. 2016;530(7588):37-8. 

12. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 

2012;22(17):R741-52. 

13. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The 

hallmarks of aging. Cell. 2013;153(6):1194-217. 

14. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. 

Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709-13. 

15. Sierra F. The Emergence of Geroscience as an Interdisciplinary Approach to 

the Enhancement of Health Span and Life Span. Cold Spring Harb Perspect Med. 

2016;6(4):a025163. 

16. Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature 

ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18(10):595-609. 

17. Menken J, Trussell J, Larsen U. Age and infertility. Science. 

1986;233(4771):1389-94. 

18. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum 

Reprod Update. 2002;8(2):141-54. 

19. Rahmioglu N, Andrew T, Cherkas L, Surdulescu G, Swaminathan R, Spector 

T, et al. Epidemiology and genetic epidemiology of the liver function test proteins. PLoS 

One. 2009;4(2):e4435. 

20. Spirduso WW. Physical dimensions of aging. Champaign, IL: Human 

Kinetics; 1995. xiii, 432 p. p. 

21. Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin 

Geriatr Med. 2013;29(4):737-52. 

22. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly 

people. Lancet. 2013;381(9868):752-62. 

23. Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, et 

al. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but 

Different Rates. Front Med (Lausanne). 2018;5:61. 



 

52 

24. Atella V, Piano Mortari A, Kopinska J, Belotti F, Lapi F, Cricelli C, et al. 

Trends in age-related disease burden and healthcare utilization. Aging Cell. 

2019;18(1):e12861. 

25. Zenin A, Tsepilov Y, Sharapov S, Getmantsev E, Menshikov LI, Fedichev 

PO, et al. Identification of 12 genetic loci associated with human healthspan. Commun 

Biol. 2019;2:41. 

26. Ritchie K, Kildea D. Is Senile Dementia Age-Related or Aging-Related - 

Evidence from Metaanalysis of Dementia Prevalence in the Oldest-Old. Lancet. 

1995;346(8980):931-4. 

27. Ailshire JA, Beltran-Sanchez H, Crimmins EM. Becoming Centenarians: 

Disease and Functioning Trajectories of Older US Adults as They Survive to 100. J 

Gerontol a-Biol. 2015;70(2):193-201. 

28. Kochanek KD, Xu J, Arias E. Mortality in the United States, 2019. NCHS 

Data Brief. 2020(395):1-8. 

29. Xu J, Murphy SL, Kockanek KD, Arias E. Mortality in the United States, 

2018. NCHS Data Brief. 2020(355):1-8. 

30. Butler RN, Sprott R, Warner H, Bland J, Feuers R, Forster M, et al. 

Biomarkers of aging: from primitive organisms to humans. J Gerontol A Biol Sci Med Sci. 

2004;59(6):B560-7. 

31. Johnson TE. Recent results: biomarkers of aging. Exp Gerontol. 

2006;41(12):1243-6. 

32. Anstey KJ, Lord SR, Smith GA. Measuring human functional age: a review of 

empirical findings. Exp Aging Res. 1996;22(3):245-66. 

33. Li WG, Vijg J. Measuring Genome Instability in Aging - A Mini-Review. 

Gerontology. 2012;58(2):129-38. 

34. Montpetit AJ, Alhareeri AA, Montpetit M, Starkweather AR, Elmore LW, 

Filler K, et al. Telomere length: a review of methods for measurement. Nurs Res. 

2014;63(4):289-99. 

35. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic 

clock theory of ageing. Nat Rev Genet. 2018;19(6):371-84. 

36. Reynolds CA, Finkel D, McArdle JJ, Gatz M, Berg S, Pedersen NL. 

Quantitative genetic analysis of latent growth curve models of cognitive abilities in 

adulthood. Dev Psychol. 2005;41(1):3-16. 

37. Sorlie T, Sexton HC, Busund R, Sorlie D. A global measure of physical 

functioning: psychometric properties. Health Serv Res. 2001;36(6 Pt 1):1109-24. 

38. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard 

procedure for creating a frailty index. BMC Geriatr. 2008;8:24. 

39. Harrison C, Fortin M, van den Akker M, Mair F, Calderon-Larranaga A, 

Boland F, et al. Comorbidity versus multimorbidity: Why it matters. J Comorb. 

2021;11:2633556521993993. 

40. Levine ME. Modeling the rate of senescence: can estimated biological age 

predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci. 

2013;68(6):667-74. 

41. Ahadi S, Zhou W, Schussler-Fiorenza Rose SM, Sailani MR, Contrepois K, 

Avina M, et al. Personal aging markers and ageotypes revealed by deep longitudinal 

profiling. Nat Med. 2020;26(1):83-90. 

42. Jylhava J, Pedersen NL, Hagg S. Biological Age Predictors. EBioMedicine. 

2017;21:29-36. 

43. Solovev I, Shaposhnikov M, Moskalev A. Multi-omics approaches to human 

biological age estimation. Mech Ageing Dev. 2020;185:111192. 

44. Wagner KH, Cameron-Smith D, Wessner B, Franzke B. Biomarkers of 

Aging: From Function to Molecular Biology. Nutrients. 2016;8(6). 



 

 53 

45. Xia X, Chen W, McDermott J, Han JJ. Molecular and phenotypic biomarkers 

of aging. F1000Res. 2017;6:860. 

46. Ferrucci L, Gonzalez-Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, 

et al. Measuring biological aging in humans: A quest. Aging Cell. 2019:e13080. 

47. Jia L, Zhang W, Chen X. Common methods of biological age estimation. Clin 

Interv Aging. 2017;12:759-72. 

48. Ferrucci L, Levine ME, Kuo PL, Simonsick EM. Time and the Metrics of 

Aging. Circ Res. 2018;123(7):740-4. 

49. Mamoshina P, Kochetov K, Putin E, Cortese F, Aliper A, Lee WS, et al. 

Population specific biomarkers of human aging: a big data study using South Korean, 

Canadian and Eastern European patient populations. J Gerontol A Biol Sci Med Sci. 2018. 

50. Guerville F, De Souto Barreto P, Ader I, Andrieu S, Casteilla L, Dray C, et al. 

Revisiting the Hallmarks of Aging to Identify Markers of Biological Age. J Prev 

Alzheimers Dis. 2020;7(1):56-64. 

51. Kudryashova KS, Burka K, Kulaga AY, Vorobyeva NS, Kennedy BK. Aging 

Biomarkers: From Functional Tests to Multi-Omics Approaches. Proteomics. 2020;20(5-

6):e1900408. 

52. Kuo PL, Schrack JA, Shardell MD, Levine M, Moore AZ, An Y, et al. A 

roadmap to build a phenotypic metric of ageing: insights from the Baltimore Longitudinal 

Study of Aging. J Intern Med. 2020;287(4):373-94. 

53. Xia X, Wang Y, Yu Z, Chen J, Han JJ. Assessing the rate of aging to monitor 

aging itself. Ageing Res Rev. 2021;69:101350. 

54. Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, et al. Glycans 

are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci. 

2014;69(7):779-89. 

55. Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, et 

al. Reconsidering the Role of Mitochondria in Aging. J Gerontol A Biol Sci Med Sci. 

2015;70(11):1334-42. 

56. Noren Hooten N, Evans MK. Techniques to Induce and Quantify Cellular 

Senescence. J Vis Exp. 2017(123). 

57. Bartke A, Chandrashekar V, Dominici F, Turyn D, Kinney B, Steger R, et al. 

Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. 

Biogerontology. 2003;4(1):1-8. 

58. Horvath S. DNA methylation age of human tissues and cell types. Genome 

Biol. 2013;14(10):R115. 

59. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. 

Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness 

as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. 

Circulation. 2016;134(24):e653-e99. 

60. Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining 

Comorbidity: Implications for Understanding Health and Health Services. Ann Fam Med. 

2009;7(4):357-63. 

61. Johnston MC, Crilly M, Black C, Prescott GJ, Mercer SW. Defining and 

measuring multimorbidity: a systematic review of systematic reviews. Eur J Public Health. 

2019;29(1):182-9. 

62. Olshansky SJ. From Lifespan to Healthspan. JAMA. 2018;320(13):1323-4. 

63. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, et 

al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 

2015;6:8570. 

64. Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, 

et al. Plasma proteomic signature of age in healthy humans. Aging Cell. 

2018;17(5):e12799. 



 

54 

65. Hertel J, Friedrich N, Wittfeld K, Pietzner M, Budde K, Van der Auwera S, et 

al. Measuring Biological Age via Metabonomics: The Metabolic Age Score. J Proteome 

Res. 2016;15(2):400-10. 

66. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. 

Frailty in older adults: Evidence for a phenotype. J Gerontol a-Biol. 2001;56(3):M146-

M56. 

67. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An 

epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 

2018;10(4):573-91. 

68. Greider CW. Telomeres and senescence: the history, the experiment, the 

future. Curr Biol. 1998;8(5):R178-81. 

69. Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008;88(2):557-

79. 

70. Muezzinler A, Zaineddin AK, Brenner H. A systematic review of leukocyte 

telomere length and age in adults. Ageing Res Rev. 2013;12(2):509-19. 

71. Chen W, Kimura M, Kim S, Cao X, Srinivasan SR, Berenson GS, et al. 

Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: 

age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 

2011;66(3):312-9. 

72. Marioni RE, Harris SE, Shah S, McRae AF, von Zglinicki T, Martin-Ruiz C, 

et al. The epigenetic clock and telomere length are independently associated with 

chronological age and mortality. Int J Epidemiol. 2018;45(2):424-32. 

73. Berglund K, Reynolds CA, Ploner A, Gerritsen L, Hovatta I, Pedersen NL, et 

al. Longitudinal decline of leukocyte telomere length in old age and the association with 

sex and genetic risk. Aging-Us. 2016;8(7):1398-415. 

74. Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and 

clinical perspective. Semin Reprod Med. 2009;27(5):351-7. 

75. Xiao FH, Kong QP, Perry B, He YH. Progress on the role of DNA 

methylation in aging and longevity. Brief Funct Genomics. 2016;15(6):454-9. 

76. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, et al. 

Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin 

domains. Genome Res. 2010;20(4):434-9. 

77. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-

wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 

2013;49(2):359-67. 

78. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA 

methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 

2019;11(2):303-27. 

79. Noroozi R, Ghafouri-Fard S, Pisarek A, Rudnicka J, Spolnicka M, Branicki 

W, et al. DNA methylation-based age clocks: From age prediction to age reversion. Ageing 

Res Rev. 2021;68:101314. 

80. Simpson DJ, Chandra T. Epigenetic age prediction. Aging Cell. 2021:e13452. 

81. Klemera P, Doubal S. A new approach to the concept and computation of 

biological age. Mech Ageing Dev. 2006;127(3):240-8. 

82. Belsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, et 

al. Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of 

Biological Aging: Do They Measure the Same Thing? Am J Epidemiol. 2018;187(6):1220-

30. 

83. Zhong X, Lu Y, Gao Q, Nyunt MSZ, Fulop T, Monterola CP, et al. 

Estimating Biological Age in the Singapore Longitudinal Aging Study. J Gerontol A Biol 

Sci Med Sci. 2020;75(10):1913-20. 



 

 55 

84. Chan MS, Arnold M, Offer A, Hammami I, Mafham M, Armitage J, et al. A 

Biomarker-based Biological Age in UK Biobank: Composition and Prediction of Mortality 

and Hospital Admissions. J Gerontol A Biol Sci Med Sci. 2021;76(7):1295-302. 

85. Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J 

Gerontol A Biol Sci Med Sci. 2007;62(7):722-7. 

86. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a 

proxy measure of aging. ScientificWorldJournal. 2001;1:323-36. 

87. Rockwood K, Mitnitski A. Frailty defined by deficit accumulation and 

geriatric medicine defined by frailty. Clin Geriatr Med. 2011;27(1):17-26. 

88. Welstead M, Jenkins ND, Russ T, Luciano M, Muniz-Terrera G. A 

Systematic Review of Frailty Trajectories: Their Shape And Influencing Factors. 

Gerontologist. 2020. 

89. Chen BH, Carty CL, Kimura M, Kark JD, Chen W, Li S, et al. Leukocyte 

telomere length, T cell composition and DNA methylation age. Aging (Albany NY). 

2017;9(9):1983-95. 

90. Banszerus VL, Vetter VM, Salewsky B, Konig M, Demuth I. Exploring the 

Relationship of Relative Telomere Length and the Epigenetic Clock in the LipidCardio 

Cohort. International Journal of Molecular Sciences. 2019;20(12). 

91. Vetter VM, Meyer A, Karbasiyan M, Steinhagen-Thiessen E, Hopfenmuller 

W, Demuth I. Epigenetic clock and relative telomere length represent largely different 

aspects of aging in the Berlin Aging Study II (BASE-II). J Gerontol A Biol Sci Med Sci. 

2018. 

92. Hastings WJ, Shalev I, Belsky DW. Comparability of biological aging 

measures in the National Health and Nutrition Examination Study, 1999-2002. 

Psychoneuroendocrinology. 2019;106:171-8. 

93. Araujo Carvalho AC, Tavares Mendes ML, da Silva Reis MC, Santos VS, 

Tanajura DM, Martins-Filho PRS. Telomere length and frailty in older adults-A systematic 

review and meta-analysis. Ageing Res Rev. 2019;54:100914. 

94. Marioni RE, Suderman M, Chen BH, Horvath S, Bandinelli S, Morris T, et al. 

Tracking the Epigenetic Clock Across the Human Life Course: A Meta-analysis of 

Longitudinal Cohort Data. J Gerontol A Biol Sci Med Sci. 2019;74(1):57-61. 

95. Grodstein F, Lemos B, Yu L, Iatrou A, De Jager PL, Bennett DA. 

Characteristics of Epigenetic Clocks Across Blood and Brain Tissue in Older Women and 

Men. Front Neurosci. 2020;14:555307. 

96. Breitling LP, Saum KU, Perna L, Schottker B, Holleczek B, Brenner H. 

Frailty is associated with the epigenetic clock but not with telomere length in a German 

cohort. Clinical Epigenetics. 2016;8. 

97. Gale CR, Marioni RE, Harris SE, Starr JM, Deary IJ. DNA methylation and 

the epigenetic clock in relation to physical frailty in older people: the Lothian Birth Cohort 

1936. Clin Epigenetics. 2018;10(1):101. 

98. Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to 

measuring frailty in elderly people. J Gerontol A Biol Sci Med Sci. 2007;62(7):738-43. 

99. Cesari M, Gambassi G, van Kan GA, Vellas B. The frailty phenotype and the 

frailty index: different instruments for different purposes. Age Ageing. 2014;43(1):10-2. 

100. Blodgett J, Theou O, Kirkland S, Andreou P, Rockwood K. Frailty in 

NHANES: Comparing the frailty index and phenotype. Arch Gerontol Geriatr. 

2015;60(3):464-70. 

101. Thompson MQ, Theou O, Yu S, Adams RJ, Tucker GR, Visvanathan R. 

Frailty prevalence and factors associated with the Frailty Phenotype and Frailty Index: 

Findings from the North West Adelaide Health Study. Australas J Ageing. 2018;37(2):120-

6. 



 

56 

102. Houben JM, Giltay EJ, Rius-Ottenheim N, Hageman GJ, Kromhout D. 

Telomere length and mortality in elderly men: the Zutphen Elderly Study. J Gerontol A 

Biol Sci Med Sci. 2011;66(1):38-44. 

103. Honig LS, Kang MS, Schupf N, Lee JH, Mayeux R. Association of shorter 

leukocyte telomere repeat length with dementia and mortality. Arch Neurol. 

2012;69(10):1332-9. 

104. Glei DA, Goldman N, Weinstein M, Risques RA. Shorter Ends, Faster End? 

Leukocyte Telomere Length and Mortality Among Older Taiwanese. J Gerontol A Biol Sci 

Med Sci. 2015;70(12):1490-8. 

105. Wang Q, Zhan Y, Pedersen NL, Fang F, Hagg S. Telomere Length and All-

Cause Mortality: A Meta-analysis. Ageing Res Rev. 2018;48:11-20. 

106. Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. DNA 

Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol Cell. 

2018;71(6):882-95. 

107. McCartney DL, Hillary RF, Stevenson AJ, Ritchie SJ, Walker RM, Zhang Q, 

et al. Epigenetic prediction of complex traits and death. Genome Biol. 2018;19(1):136. 

108. Zhang Y, Wilson R, Heiss J, Breitling LP, Saum KU, Schottker B, et al. DNA 

methylation signatures in peripheral blood strongly predict all-cause mortality. Nat 

Commun. 2017;8:14617. 

109. Mitnitski A, Howlett SE, Rockwood K. Heterogeneity of Human Aging and 

Its Assessment. J Gerontol a-Biol. 2017;72(7):877-84. 

110. Yoo J, Kim Y, Cho ER, Jee SH. Biological age as a useful index to predict 

seventeen-year survival and mortality in Koreans. Bmc Geriatrics. 2017;17. 

111. Liu Z, Kuo PL, Horvath S, Crimmins E, Ferrucci L, Levine M. A new aging 

measure captures morbidity and mortality risk across diverse subpopulations from 

NHANES IV: A cohort study. PLoS Med. 2018;15(12):e1002718. 

112. Kojima G, Iliffe S, Walters K. Frailty index as a predictor of mortality: a 

systematic review and meta-analysis. Age Ageing. 2017:1-8. 

113. Kim S, Myers L, Wyckoff J, Cherry KE, Jazwinski SM. The frailty index 

outperforms DNA methylation age and its derivatives as an indicator of biological age. 

Geroscience. 2017;39(1):83-92. 

114. Murabito JM, Zhao Q, Larson MG, Rong J, Lin H, Benjamin EJ, et al. 

Measures of Biologic Age in a Community Sample Predict Mortality and Age-Related 

Disease: The Framingham Offspring Study. J Gerontol A Biol Sci Med Sci. 

2018;73(6):757-62. 

115. Zhang Y, Saum KU, Schottker B, Holleczek B, Brenner H. Methylomic 

survival predictors, frailty, and mortality. Aging (Albany NY). 2018. 

116. Organization WH. Healthy life expectancy (HALE) at birth (years) 2021 

[Available from: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-

ghe-hale-healthy-life-expectancy-at-birth. 

117. World Health Organization, Department of Information, Evidence and 

Research. WHO methods and data sources for life tables 1990-2016. 2018. 

118. Crimmins EM. Lifespan and Healthspan: Past, Present, and Promise. 

Gerontologist. 2015;55(6):901-11. 

119. Kaeberlein M. How healthy is the healthspan concept? Geroscience. 

2018;40(4):361-4. 

120. Fuellen G, Jansen L, Cohen AA, Luyten W, Gogol M, Simm A, et al. Health 

and Aging: Unifying Concepts, Scores, Biomarkers and Pathways. Aging Dis. 

2019;10(4):883-900. 

121. Timmers P, Wilson JF, Joshi PK, Deelen J. Multivariate genomic scan 

implicates novel loci and haem metabolism in human ageing. Nat Commun. 

2020;11(1):3570. 

https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-ghe-hale-healthy-life-expectancy-at-birth
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-ghe-hale-healthy-life-expectancy-at-birth


 

 57 

122. Terry DF, Pencina MJ, Vasan RS, Murabito JM, Wolf PA, Hayes MK, et al. 

Cardiovascular risk factors predictive for survival and morbidity-free survival in the oldest-

old Framingham Heart Study participants. J Am Geriatr Soc. 2005;53(11):1944-50. 

123. Newson RS, Witteman JCM, Franco OH, Stricker BHC, Breteler MMB, 

Hofman A, et al. Predicting survival and morbidity-free survival to very old age. Age. 

2010;32(4):521-34. 

124. Kluft C, de Maat MP. Genetics of C-reactive protein: new possibilities and 

complications. Arterioscler Thromb Vasc Biol. 2003;23(11):1956-9. 

125. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin 

Invest. 2003;111(12):1805-12. 

126. Knight ML. The Application of High-Sensitivity C-Reactive Protein in 

Clinical Practice A 2015 Update. Us Pharm. 2015;40(2):50-3. 

127. Sas AA, Vaez A, Jamshidi Y, Nolte IM, Kamali Z, T DS, et al. Genetic and 

environmental influences on stability and change in baseline levels of C-reactive protein: A 

longitudinal twin study. Atherosclerosis. 2017;265:172-8. 

128. Pankow JS, Folsom AR, Cushman M, Borecki IB, Hopkins PN, Eckfeldt JH, 

et al. Familial and genetic determinants of systemic markers of inflammation: the NHLBI 

family heart study. Atherosclerosis. 2001;154(3):681-9. 

129. Vickers MA, Green FR, Terry C, Mayosi BM, Julier C, Lathrop M, et al. 

Genotype at a promoter polymorphism of the interleukin-6 gene is associated with baseline 

levels of plasma C-reactive protein. Cardiovascular Research. 2002;53(4):1029-34. 

130. Austin MA, Zhang C, Humphries SE, Chandler WL, Talmud PJ, Edwards 

KL, et al. Heritability of C-reactive protein and association with apolipoprotein E 

genotypes in Japanese Americans. Ann Hum Genet. 2004;68(Pt 3):179-88. 

131. Fox ER, Benjamin EJ, Sarpong DF, Rotimi CN, Wilson JG, Steffes MW, et 

al. Epidemiology, heritability, and genetic linkage of C-reactive protein in African 

Americans (from the Jackson Heart Study). American Journal of Cardiology. 

2008;102(7):835-41. 

132. Schnabel RB, Lunetta KL, Larson MG, Dupuis J, Lipinska I, Rong J, et al. 

The Relation of Genetic and Environmental Factors to Systemic Inflammatory Biomarker 

Concentrations. Circ-Cardiovasc Gene. 2009;2(3):229-U102. 

133. Hage FG, Szalai AJ. C-reactive protein gene polymorphisms, C-reactive 

protein blood levels, and cardiovascular disease risk. J Am Coll Cardiol. 2007;50(12):1115-

22. 

134. Melzer D, Perry JR, Hernandez D, Corsi AM, Stevens K, Rafferty I, et al. A 

genome-wide association study identifies protein quantitative trait loci (pQTLs). Plos 

Genet. 2008;4(5):e1000072. 

135. Reiner AP, Barber MJ, Guan Y, Ridker PM, Lange LA, Chasman DI, et al. 

Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are 

associated with C-reactive protein. American Journal of Human Genetics. 2008;82(5):1193-

201. 

136. Ridker PM, Pare G, Parker A, Zee RY, Danik JS, Buring JE, et al. Loci 

related to metabolic-syndrome pathways including LEPR,HNF1A, IL6R, and GCKR 

associate with plasma C-reactive protein: the Women's Genome Health Study. Am J Hum 

Genet. 2008;82(5):1185-92. 

137. Dehghan A, Dupuis J, Barbalic M, Bis JC, Eiriksdottir G, Lu C, et al. Meta-

Analysis of Genome-Wide Association Studies in > 80 000 Subjects Identifies Multiple 

Loci for C-Reactive Protein Levels. Circulation. 2011;123(7):731-U151. 

138. Okada Y, Takahashi A, Ohmiya H, Kumasaka N, Kamatani Y, Hosono N, et 

al. Genome-wide association study for C-reactive protein levels identified pleiotropic 

associations in the IL6 locus. Hum Mol Genet. 2011;20(6):1224-31. 



 

58 

139. Reiner AP, Beleza S, Franceschini N, Auer PL, Robinson JG, Kooperberg C, 

et al. Genome-wide association and population genetic analysis of C-reactive protein in 

African American and Hispanic American women. Am J Hum Genet. 2012;91(3):502-12. 

140. Wu Y, McDade TW, Kuzawa CW, Borja J, Li Y, Adair LS, et al. Genome-

wide Association with C-Reactive Protein Levels in CLHNS: Evidence for the CRP and 

HNF1A Loci and their Interaction with Exposure to a Pathogenic Environment. 

Inflammation. 2012;35(2):574-83. 

141. Williams SR, Hsu FC, Keene KL, Chen WM, Nelson S, Southerland AM, et 

al. Shared genetic susceptibility of vascular-related biomarkers with ischemic and recurrent 

stroke. Neurology. 2016;86(4):351-9. 

142. Kocarnik JM, Richard M, Graff M, Haessler J, Bien S, Carlson C, et al. 

Discovery, fine-mapping, and conditional analyses of genetic variants associated with C-

reactive protein in multiethnic populations using the Metabochip in the Population 

Architecture using Genomics and Epidemiology (PAGE) study. Human Molecular 

Genetics. 2018;27(16):2940-53. 

143. Ligthart S, Vaez A, Vosa U, Stathopoulou MG, de Vries PS, Prins BP, et al. 

Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and 

Highlight Pathways that Link Inflammation and Complex Disorders. Am J Hum Genet. 

2018;103(5):691-706. 

144. Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, et al. 

Genetic analyses of diverse populations improves discovery for complex traits. Nature. 

2019;570(7762):514-8. 

145. Raffield LM, Iyengar AK, Wang BQ, Gaynor SM, Spracklen CN, Zhong X, 

et al. Allelic Heterogeneity at the CRP Locus Identified by Whole-Genome Sequencing in 

Multi-ancestry Cohorts. American Journal of Human Genetics. 2020;106(1):112-20. 

146. Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars N, Benner C, Aguirre M, 

et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat Genet. 

2021;53(2):185-94. 

147. Momozawa Y, Mizukami K. Unique roles of rare variants in the genetics of 

complex diseases in humans. J Hum Genet. 2021;66(1):11-23. 

148. O'Connor LJ, Schoech AP, Hormozdiari F, Gazal S, Patterson N, Price AL. 

Extreme Polygenicity of Complex Traits Is Explained by Negative Selection. American 

Journal of Human Genetics. 2019;105(3):456-76. 

149. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: 

study designs and statistical tests. Am J Hum Genet. 2014;95(1):5-23. 

150. Povysil G, Petrovski S, Hostyk J, Aggarwal V, Allen AS, Goldstein DB. 

Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat Rev 

Genet. 2019;20(12):747-59. 

151. Schick UM, Auer PL, Bis JC, Lin H, Wei P, Pankratz N, et al. Association of 

exome sequences with plasma C-reactive protein levels in >9000 participants. Hum Mol 

Genet. 2015;24(2):559-71. 

152. Cirulli ET, White S, Read RW, Elhanan G, Metcalf WJ, Tanudjaja F, et al. 

Genome-wide rare variant analysis for thousands of phenotypes in over 70,000 exomes 

from two cohorts. Nat Commun. 2020;11(1):542. 

153. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a 

new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018. 

154. Lichtenstein P, De Faire U, Floderus B, Svartengren M, Svedberg P, Pedersen 

NL. The Swedish Twin Registry: a unique resource for clinical, epidemiological and 

genetic studies. J Intern Med. 2002;252(3):184-205. 

155. Pedersen NL, Lichtenstein P, Svedberg P. The Swedish Twin Registry in the 

third millennium. Twin Res. 2002;5(5):427-32. 



 

 59 

156. Lichtenstein P, Sullivan PF, Cnattingius S, Gatz M, Johansson S, Carlstrom E, 

et al. The Swedish Twin Registry in the third millennium: an update. Twin Res Hum Genet. 

2006;9(6):875-82. 

157. Magnusson PK, Almqvist C, Rahman I, Ganna A, Viktorin A, Walum H, et 

al. The Swedish Twin Registry: establishment of a biobank and other recent developments. 

Twin Res Hum Genet. 2013;16(1):317-29. 

158. Zagai U, Lichtenstein P, Pedersen NL, Magnusson PKE. The Swedish Twin 

Registry: Content and Management as a Research Infrastructure. Twin Research and 

Human Genetics. 2019;22(6):672-80. 

159. Finkel D, Pedersen NL. Processing speed and longitudinal trajectories of 

change for cognitive abilities: The Swedish Adoption/Twin Study of Aging. Aging 

Neuropsychol C. 2004;11(2-3):325-45. 

160. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK 

biobank: an open access resource for identifying the causes of a wide range of complex 

diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. 

161. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK 

Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9. 

162. Van Hout CV, Tachmazidou I, Backman JD, Hoffman JD, Liu D, Pandey 

AK, et al. Exome sequencing and characterization of 49,960 individuals in the UK 

Biobank. Nature. 2020. 

163. Wang Y, Karlsson R, Lampa E, Zhang Q, Hedman AK, Almgren M, et al. 

Epigenetic influences on aging: a longitudinal genome-wide methylation study in old 

Swedish twins. Epigenetics. 2018;13(9):975-87. 

164. Horvath S. DNA Methylation Age Calculator 2021 [Available from: 

http://dnamage.genetics.ucla.edu/. 

165. Finkel D, Sternang O, Jylhava J, Bai G, Pedersen NL. Functional Aging Index 

Complements Frailty in Prediction of Entry into Care and Mortality. J Gerontol A Biol Sci 

Med Sci. 2019. 

166. Jiang M, Foebel AD, Kuja-Halkola R, Karlsson I, Pedersen NL, Hagg S, et al. 

Frailty index as a predictor of all-cause and cause-specific mortality in a Swedish 

population-based cohort. Aging (Albany NY). 2017;9(12):2629-46. 

167. Neale Lab. UK Biobank GWAS results 2018 [Available from: 

http://www.nealelab.is/uk-biobank. 

168. Li X, Ploner A, Wang Y, Zhan Y, Pedersen NL, Magnusson PK, et al. 

Clinical biomarkers and associations with healthspan and lifespan: Evidence from 

observational and genetic data. EBioMedicine. 2021;66:103318. 

169. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The 

Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. 

170. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein 

function. Nucleic Acids Research. 2003;31(13):3812-4. 

171. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, 

et al. A method and server for predicting damaging missense mutations. Nature Methods. 

2010;7(4):248-9. 

172. Li X, Ploner A, Karlsson IK, Liu X, Magnusson PKE, Pedersen NL, et al. The 

frailty index is a predictor of cause-specific mortality independent of familial effects from 

midlife onwards: a large cohort study. BMC Medicine. 2019;17(1):94. 

173. Mak JKL, Kuja-Halkola R, Wang YZ, Hagg S, Jylhava J. Frailty and 

comorbidity in predicting community COVID-19 mortality in the UK Biobank: The effect 

of sampling. Journal of the American Geriatrics Society. 2021;69(5):1128-39. 

174. Williams DM, Jylhava J, Pedersen NL, Hagg S. A frailty index for UK 

Biobank participants. 2017. 

http://dnamage.genetics.ucla.edu/
http://www.nealelab.is/uk-biobank


 

60 

175. Prins BP, Abbasi A, Wong A, Vaez A, Nolte I, Franceschini N, et al. 

Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and 

Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. 

PLoS Med. 2016;13(6):e1001976. 

176. Liu XR, Pawitan Y, Clements MS. Generalized survival models for correlated 

time-to-event data. Stat Med. 2017;36(29):4743-62. 

177. Sjolander A, Lichtenstein P, Larsson H, Pawitan Y. Between-within models 

for survival analysis. Stat Med. 2013;32(18):3067-76. 

178. Zhan Y, Liu XR, Reynolds CA, Pedersen NL, Hagg S, Clements MS. 

Leukocyte Telomere Length and All-Cause Mortality: A Between-Within Twin Study With 

Time Dependent Effects Using Generalized Survival Models. Am J Epidemiol. 2018. 

179. Bakdash JZ, Marusich LR. Repeated Measures Correlation. Front Psychol. 

2017;8. 

180. Li B, Leal SM. Methods for detecting associations with rare variants for 

common diseases: application to analysis of sequence data. Am J Hum Genet. 

2008;83(3):311-21. 

181. Zhan XW, Hu YN, Li BS, Abecasis GR, Liu DJJ. RVTESTS: an efficient and 

comprehensive tool for rare variant association analysis using sequence data. 

Bioinformatics. 2016;32(9):1423-6. 

182. Li X, Ploner A, Wang Y, Magnusson PK, Reynolds C, Finkel D, et al. 

Longitudinal trajectories, correlations and mortality associations of nine biological ages 

across 20-years follow-up. Elife. 2020;9. 

183. Vetter VM, Meyer A, Karbasiyan M, Steinhagen-Thiessen E, Hopfenmuller 

W, Demuth I. Epigenetic Clock and Relative Telomere Length Represent Largely Different 

Aspects of Aging in the Berlin Aging Study II (BASE-II). J Gerontol a-Biol. 

2019;74(1):27-32. 

184. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, et al. 

Quantification of biological aging in young adults. Proc Natl Acad Sci U S A. 

2015;112(30):E4104-10. 

185. An J, Li H, Tang Z, Zheng D, Guo J, Liu Y, et al. Cognitive Impairment and 

Risk of All-Cause and Cardiovascular Disease Mortality Over 20-Year Follow-up: Results 

From the BLSA. J Am Heart Assoc. 2018;7(15):e008252. 

186. Ezzatvar Y, Ramirez-Velez R, Saez de Asteasu ML, Martinez-Velilla N, 

Zambom-Ferraresi F, Izquierdo M, et al. Physical Function and All-Cause Mortality in 

Older Adults Diagnosed With Cancer: A Systematic Review and Meta-Analysis. J Gerontol 

A Biol Sci Med Sci. 2021;76(8):1447-53. 

187. Fan J, Yu C, Guo Y, Bian Z, Sun Z, Yang L, et al. Frailty index and all-cause 

and cause-specific mortality in Chinese adults: a prospective cohort study. Lancet Public 

Health. 2020;5(12):e650-e60. 

188. Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K. Frailty, fitness and 

late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002;2:1. 

189. Crimmins E, Vasunilashorn S, Kim JK, Alley D. Biomarkers related to aging 

in human populations. Adv Clin Chem. 2008;46:161-216. 

190. Deelen J, van den Akker EB, Trompet S, van Heemst D, Mooijaart SP, 

Slagboom PE, et al. Employing biomarkers of healthy ageing for leveraging genetic studies 

into human longevity. Experimental Gerontology. 2016;82:166-74. 

191. Sakaue S, Kanai M, Karjalainen J, Akiyama M, Kurki M, Matoba N, et al. 

Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic 

risk scores of complex traits with human lifespan. Nat Med. 2020;26(4):542-8. 

192. Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge 

S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: 

a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215-22. 



 

 61 

193. Markozannes G, Koutsioumpa C, Cividini S, Monori G, Tsilidis KK, 

Kretsavos N, et al. Global assessment of C-reactive protein and health-related outcomes: an 

umbrella review of evidence from observational studies and Mendelian randomization 

studies. Eur J Epidemiol. 2020. 

194. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on 

triglycerides. Eur Heart J. 2020;41(1):99-109c. 

195. Riaz H, Khan SU, Rahman H, Shah NP, Kaluski E, Lincoff AM, et al. Effects 

of high-density lipoprotein targeting treatments on cardiovascular outcomes: A systematic 

review and meta-analysis. Eur J Prev Cardiol. 2019;26(5):533-43. 

196. Wang YJ, Lammi-Keefe CJ, Hou LF, Hu G. Impact of low-density 

lipoprotein cholesterol on cardiovascular outcomes in people with type 2 diabetes: A meta-

analysis of prospective cohort studies. Diabetes Res Clin Pr. 2013;102(1):65-75. 

197. Hamazaki T, Okuyama H, Ogushi Y, Hama R. Towards a Paradigm Shift in 

Cholesterol Treatment. A Re-examination of the Cholesterol Issue in Japan. Ann Nutr 

Metab. 2015;66 Suppl 4:1-116. 

198. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. 

Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 

2016;388(10059):2532-61. 

199. Ravnskov U, Diamond DM, Hama R, Hamazaki T, Hammarskjold B, Hynes 

N, et al. Lack of an association or an inverse association between low-density-lipoprotein 

cholesterol and mortality in the elderly: a systematic review. Bmj Open. 2016;6(6). 

200. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. 

Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from 

genetic, epidemiologic, and clinical studies. A consensus statement from the European 

Atherosclerosis Society Consensus Panel. European Heart Journal. 2017;38(32):2459-72. 

201. Sung KC, Huh JH, Ryu S, Lee JY, Scorletti E, Byrne CD, et al. Low Levels 

of Low-Density Lipoprotein Cholesterol and Mortality Outcomes in Non-Statin Users. J 

Clin Med. 2019;8(10). 

202. Yi SW, Yi JJ, Ohrr H. Total cholesterol and all-cause mortality by sex and 

age: a prospective cohort study among 12.8 million adults. Sci Rep-Uk. 2019;9. 

203. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. 

Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank 

Participants With Those of the General Population. American Journal of Epidemiology. 

2017;186(9):1026-34. 

204. Swanson JM. The UK Biobank and selection bias. Lancet. 

2012;380(9837):110-. 

205. Batty GD, Gale CR, Kivimaki M, Deary IJ, Bell S. Comparison of risk factor 

associations in UK Biobank against representative, general population based studies with 

conventional response rates: prospective cohort study and individual participant meta-

analysis. BMJ. 2020;368:m131. 

206. Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and 

regression dilution bias. BMJ. 2010;340:c2289. 

207. Tripepi G, Jager KJ, Dekker FW, Zoccali C. Selection bias and information 

bias in clinical research. Nephron Clin Pract. 2010;115(2):c94-9. 

208. Burgess S, Thompson SG. Use of allele scores as instrumental variables for 

Mendelian randomization. International Journal of Epidemiology. 2013;42(4):1134-44. 

209. Davies NM, Holmes MV, Smith GD. Reading Mendelian randomisation 

studies: a guide, glossary, and checklist for clinicians. Bmj-Brit Med J. 2018;362. 

210. Brumpton B, Sanderson E, Heilbron K, Hartwig FP, Harrison S, Vie GA, et 

al. Avoiding dynastic, assortative mating, and population stratification biases in Mendelian 

randomization through within-family analyses. Nature Communications. 2020;11(1). 



 

62 

211. Hussien H, Nastasa A, Apetrii M, Nistor I, Petrovic M, Covic A. Different 

aspects of frailty and COVID-19: points to consider in the current pandemic and future 

ones. BMC Geriatr. 2021;21(1):389. 

 


	1 INTRODUCTION
	2 BACKGROUND
	2.1 Biological aging
	Molecular and cellular hallmarks
	Functional declines
	Increased susceptibility to diseases and death

	2.2 Biological age
	BA concept
	Utility of BA
	BA candidates
	BAs studied in this thesis

	2.3 Correlations of BA
	2.4 Mortality associations of BA
	2.5 Clinical biomarkers and healthspan
	2.6 Genetic variants of CRP

	3 RESEARCH AIMS
	4 MATERIALS AND METHODS
	4.1 Study population
	4.1.1 Screening Across the Lifespan Twin Study (SALT)
	4.1.2 Swedish Adoption/Twin Study of Aging (SATSA)
	4.1.3 TwinGene
	4.1.4 UKB

	4.2 Measurements
	4.2.1 Biological ages
	4.2.2 Clinical biomarkers
	4.2.3 Genetic variants
	4.2.4 Health outcomes

	4.3 Statistical analysis
	4.3.1 Generalized survival models
	4.3.2 Correlations and mortality associations of multiple BAs
	4.3.3 Cox regression models of clinical biomarkers and PRSs
	4.3.4 Gene-based burden test


	5 RESULTS
	5.1 Study 1
	5.1.1 Population characteristics
	5.1.2 Time-constant FI-mortality associations
	5.1.3 Time-dependent FI-mortality associations

	5.2 Study 2
	5.2.1 Population characteristics
	5.2.2 BA correlations and clustering
	5.2.3 BA-mortality associations

	5.3 Study 3
	5.3.1 Population characteristics
	5.3.2 Serum biomarkers and healthspan
	5.3.3 Biomarker PRSs and healthspan

	5.4 Study 4
	5.4.1 Population characteristics
	5.4.2 Rare functional genetic variants and CRP
	5.4.3 Gene-BMI interaction effect on CRP
	5.4.4 CRP-associated rare mutations in relation to diseases and aging phenotypes


	6 DISCUSSION
	6.1 BA correlations and BA-mortality associations
	6.2 Clinical biomarkers and healthspan
	6.3 Rare functional genetic variants and serum CRP
	6.4 Methodological considerations
	6.5 Ethical considerations

	7 CONCLUSIONS
	8 FUTURE PERSPECTIVE
	9 ACKNOWLEDGEMENTS
	10 REFERENCES

