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“When someone is searching," said Siddhartha, "then it might 
easily happen that the only thing his eyes still see is that what he 

searches for, that he is unable to find anything, to let anything enter 
his mind, because he always thinks of nothing but the object of his 

search, because he has a goal, because he is obsessed by the goal. 
Searching means: having a goal.  

But finding means: being free, being open, having no goal.”  

From Siddhartha, by Herman Hesse, 1922 



 

 

POPULÄRVETENSKAPLIG SAMMANFATTNING 
(POPULAR SCIENCE SUMMARY IN SWEDISH) 
Varje år drabbas 15 miljoner människor av slaganfall (stroke) världen över, en tredjedel dör och en 
tredjedel får permanenta men i form av funktionsnedsättningar i större eller mindre grad. Stroke 
är en av de vanligaste dödsorsakerna i världen. 

Stroke definieras som en blödning eller infarkt (stopp i cirkulationen) i hjärnans kärl. Vid 
åderförkalkning av halspulsådern (karotisartären) kan en förträngning (stenos) uppstå och orsaka 
en stroke genom att delar eller partiklar av placket följer med blodflödet upp till hjärnan. Vid 
kranskärlssjukdom och hjärtinfarkt gäller samma mekanism. Det som avgör om detta sker är hur 
stabilt placket är. Åderförkalkningsplack kan vara mer eller mindre benägna att släppa partiklar, 
dvs mer eller mindre instabila. Man har visat att plack bestående av mycket fett, inflammatorisk 
vävnad med död kärna, ibland även med en blödning i placket, som täcks av en tunn 
bindvävskappa är mer instabila och kan orsaka stroke och hjärtinfarkt. Betydelsen av förkalkning 
i placket är mer omdebatterat. 

Idag saknas bra metoder att fastställa vilka plack som är instabila. Internationella riktlinjer säger att 
förekomst av symtom och hur tät stenosen är avgör hur patienten ska behandlas; antingen med 
optimal medicinsk behandling endast, eller med tillägg av kirurgi av karotisstenosen. Dessa 
riktlinjer är över lag bra men lämnar en hel del att önska i precision då studier har visat att många 
patienter blir opererade i onödan och skulle statistiskt sett aldrig ha drabbats av stroke. Dessutom 
förekommer det tyvärr även att mindre täta karotisstenoser orsakar stroke. Därför är mer exakta 
metoder för att identifiera det instabila placket högt eftersökta.  

Studierna i detta doktorandprojekt syftade således till att studera:  

1) Om karotisplackets form och uppbyggnad (morfologi) enligt skiktröntgen (datortomografi, 
CTA) kunde kopplas till pågående biologi (genuttryck och biologiska processer) i motsvarande 
plack och därmed ge information om plackets instabilitet.  

2) Om riskscores, använda i kliniken för att estimera strokerisk, gick att koppla ihop med plack-
morfologi och biologiska processer.  

3) Huruvida plackets genuttryck och biologiska processer gick att förutsäga utifrån CTA-bilderna 
på individ-nivå vilket skulle kunna innebära en metod att skräddarsy behandlingen för varje enskild 
persons biologi.  

De huvudsakliga resurser vi hade tillgängliga var pre-operativa CT-bilder med ett 
mjukvaruprogram utvecklat för att få ut mer information ur CT-bilderna, kliniska uppgifter om 
patienterna samt BiKE (Biobank of Karolinska Endarterectomies, BiKE) en biobank av 
karotisplack. 

Resultaten av studie I och II visade att plackmorfologin enligt pre-operativ CTA kunde kopplas 
ihop med aktiva biologiska processer i placket. Studie I visade att högförkalkade plack var 
förknippade med en biologisk profil av stabiliserande genuttryck och processer relaterade till glatta 



muskelceller och extra-cellulär matrix. Inflammatoriska processer var nedreglerade. Vi kunde 
vidare konstatera att PRG4 var den mest uppreglerade genen i högförkalkade plack, en gen ej 
tidigare känd i åderförkalkning.  

Studie II visade att lipid-rik nekrotisk (död) kärna hade ett signifikant samband till stroke-symtom 
och hade dessutom en klar inflammatorisk biologisk profil. Plack med blödning hade likaså 
inflammatorisk profil men visade även processer anknutna till nybildning av kärl. Plackbörda 
(proportionellt stor plackvolym) visade också på ett signifikant samband med förekomst av stroke 
eller ej samt en biologisk profil av främst inflammatoriska processer. I en kors-validerad 
matematisk prediktionsmodell för symtom presterade plackmorfologi signifikant bättre än 
stenosgrad som metod att värdera symtomgivande plack.  

Studie III kunde påvisa att hög riskscoring för stroke enligt kliniska patient-parametrar associerade 
med en biologisk profil relaterad till inflammatoriskt svar och koagulation där genen ABCB5 
noterades som en av de mest uppreglerade generna i båda riskscore-metoderna.  

Studie IV resulterade i 414 gener, gediget predicerade med maskininlärning utifrån CTA-bilderna. 
Dessa gener och biologiska processer stämde väl överens med typisk patofysiologi för 
åderförkalkning. De upptränade matematiska modellerna testades på fyra ’nya’ patienter där det 
predicerade genuttrycket stämde väl överens med det verkliga genuttrycket i karotisplacket. 

Sammanfattningsvis visade våra resultat att biologiska processer associerade till plackinstabilitet 
kunde kopplas till karotis-plackmorfologi enligt avancerad bildanalys av CTA. De patienter som 
uppskattades ha högre risk för stroke hade en plack-biologi typisk för instabilitet men även ett 
samband till plackmorfologi enligt CTA. Slutligen, kunde vi se att bildanalys av CTA kunde 
predicera det faktiska genuttrycket i placket genom maskininlärning och därmed skulle denna 
metod kunna utgöra en icke-invasiv metod att estimera plackbiologin på individ-nivå vilket är en 
förutsättning för att skräddarsy en behandling för varje patient. Med dessa metoder och resultat 
hoppas vi kunna introducera ett sätt att identifiera det instabila placket och därmed förbättra 
prediktion av stroke men även en metod att precisera behandling utefter patientens egen biologi.  

 

  



 

 

ABSTRACT 
Background: Unstable carotid atherosclerosis causes stroke, but methods to identify patients and 
lesions at risk are lacking. Currently, this risk estimation is based on measurements of stenosis and 
neurological symptoms, which determines the therapy of either medical treatment with or without 
carotid endarterectomy. The efficacy of this therapy is low and higher accuracy of diagnosis and 
therapy is warranted. Imaging of carotid plaque morphology using software for visualisation of 
plaque components may improve assessment of plaque phenotype and stroke risk. These studies 
aimed firstly to investigate if, and if yes, how, the carotid plaque morphology with image analysis of 
CTA associated with on-going biology in the corresponding specimen. Secondly, if risk 
stratification in clinical risk scores can be linked to the aforementioned associations. Finally, if the 
on-going biological processes can be specifically predicted out of the CTA imaging analysis. 
Methods: Plaque features were analysed in pre-operative CTA with dedicated software. In study 
I and II, the plaques were stratified according to quantified high and low of each feature, profiled 
with microarrays, followed by bioinformatic analyses. Immunohistochemistry was performed to 
evaluate the findings in plaques. In study III, patient phenotype, according to clinical stroke risk 
scores of CAR and ABCD2 stratified the cohorts of high vs low scores which were subsequently 
profiled with microarrays, followed by bioinformatic analyses and correlation analyses of plaque 
morphology in CTA. In study IV, the microarray transcriptomes were individually coupled to 
morphological data from the CTA analysis, developing models with machine intelligence to predict 
the gene expression from a CTA image. The models were then tested in unseen patients.  
Results: In study I, stabilising markers and processes related to SMCs and ECM organisation were 
associated with highly calcified plaques, while inflammatory and lipid related processes were 
repressed. PRG4, a novel marker for atherosclerosis, was identified as the most up-regulated gene 
in highly calcified plaques. Study II showed that carotid lesions with large lipid rich necrotic core, 
intraplaque haemorrhage or plaque burden were characterized by molecular signatures coupled 
with inflammation and extracellular matrix degradation, typically linked with instability. 
Symptomatology associated with large lipid rich necrotic core and plaque burden. Cross-validated 
prediction model for symptoms, showed that plaque morphology by CTA alone was superior to 
stenosis degree. Study III revealed that a high clinical risk score in CAR and ABCD2, reflect a 
plaque phenotype linked to immune response and coagulation, where the novel ABCB5, was one 
of the most up-regulated genes. The high risk scores correlated with the plaque components matrix 
and calcification but no positive association with stenosis degree.  Study IV resulted in 414 robustly 
predicted transcripts from the CTA image analysis, of which pathway analysis showed biological 
processes associated with typical pathophysiology of atherosclerosis and plaque instability. The 
model testing demonstrated a good correlation between predicted and observed transcript 
expression levels and pathway analysis revealed a unique dominant mechanism for each individual.  
Conclusions: Biological processes in carotid plaques associated to vulnerability, can be linked to 
plaque morphology analysed with CTA image analysis. Patient phenotype classified with clinical 
risk scores associates to plaque phenotype and morphology in CTA. The biological processes in 
the atherosclerotic plaque can be predicted with plaque morphology CTA analysis in this small 
pilot study, providing a possibility to precision medicine after validation in larger scale studies.  
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1 INTRODUCTION 
Fifteen million people suffers stroke each year globally, where one third dies and one third is 
permanently disabled1. Around 85% of all strokes are ischemic, out of approximately 60% is related 
to atherothrombotic disease in extracranial or cerebral vessels. Unstable carotid stenosis, due to 
atherosclerotic plaque causing thromboembolism, is a known cause of ischemic stroke and is 
appreciated causing approximately 10-20% of them2. The stability or instability of the carotid 
plaque is determined by the content of the plaque and the hemodynamics. However, accurate 
diagnostics of the plaque instability are lacking. Internationally practiced guidelines recommend 
stenosis degree and preceding neurological symptoms as determining factors in assessment of 
carotid atherosclerosis, which should be treated with either with best medical treatment (BMT) 
alone or BMT together with surgical carotid endarterectomy (CEA). These guidelines are based on 
the two large clinical carotid endarterectomy trials in Europe (European Carotid Surgery Trial; 
ESCT) and in North America (North American Symptomatic Carotid Endarterectomy Trial; 
NASCET) where operation of high grade stenosis (>50% of NASCET criteria) showed to be 
efficient to prevent future strokes in patients with preceding neurological symptoms, assuming the 
carotid plaque as the thromboembolic source3–5. However, numbers needed to treat (NNT) with 
surgery is certainly leaving room for improvements with NNT of 9-15 for symptomatic carotid 
stenosis3,4 and especially for asymptomatic patients where NNT has been suggested as high as 50 
to prevent one stroke6 Concerning asymptomatic patients, two large randomised trials examining 
advantages of CEA compared to BMT alone, ACST-1 and ACAS, showed moderate benefit of 
CEA in older patients with tighter stenosis. However, these studies were performed decades ago 
and medical treatment of atherosclerosis has improved significantly since then. Asymptomatic 
carotid stenosis is, in many centres around the world, not surgically treated at all7. This is a difficult 
clinical decision since the lack of symptoms up until the moment of assessment does not leave any 
guarantees that the plaque will not become symptomatic, atherosclerosis being a dynamic process. 
In addition, the factor of significant stenosis degree has limitations, since a non-significant (<50%) 
carotid stenosis still can cause stroke8–10. This also calls for better diagnostics and more precise 
recommendations for therapy. On the other hand, the periprocedural stroke risk, in addition to 
valuable health care resources utilised also needs to be considered from both a patient safety and 
a socio-economical perspective. Because of these dilemmas, together with the evolving technology 
of imaging modalities of MRI, ultrasound and CTA, the focus has emerged to shift from the 
stenosis degree of the lumen to the actual atherosclerotic plaque; the vessel wall and plaque 
morphology. In this PhD project, we have aimed to further explore the plaque morphology in 
relation to the on-going biological processes but also to the patient phenotype. The biology of the 
plaques has never been associated with plaque morphology in CTAs on this scale before, making 
this project unique. Associations of the patient phenotype and risk scoring for ischemic stroke with 
plaque phenotype and morphology are also new to the research field. As resources for our 
investigations, we have had access to the biobank of carotid endarterectomies at Karolinska (BiKE) 
where the pathophysiology of carotid plaques has been explored using global gene microarrays and 
linked to clinical-, laboratory, epidemiological and imaging data from patients undergoing CEA for 
asymptomatic and symptomatic carotid stenosis in our unit. By extending the results from these 
studies into larger scale prospective studies of patients with carotid disease, the connection 
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between plaque morphology assessed by image analysis of CTA and plaque phenotype may 
become implemented in the clinical praxis and improve identification and treatment of patients 
with vulnerable lesions before they suffer a stroke. 
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2 BACKGROUND 
Cardiovascular disease, epidemiology and risk factors 
Cardiovascular disease (CVD) is the number one killer globally causing close to 18 million deaths 
annually, which amounted to 31% of deaths in 2016. Myocardial infarction and stroke are 
responsible for 85% of these deaths11. Over 75% of the deaths due to CVD is occurring in low 
and middle income countries 11 where the most increasing incidents are due to population growth 
and increasing average life span12. CVD is defined as coronary heart disease causing myocardial 
infarction or heart failure, cerebrovascular disease causing stroke (infarction or haemorrhage), 
peripheral arterial disease causing ischemia in legs and arms. All, but cerebral haemorrhage, are 
caused by atherosclerotic disease obstructing the blood vessels. But also rheumatic heart disease, 
congenital heart disease and vein thrombosis and pulmonary embolism are included in this 
definition according to WHO13. 

Well established risk factors for developing coronary heart disease are known to be smoking, 
hypertension, hyperlipidaemia, obesity, diabetes, age 14,15 and can be well extrapolated to risk of 
cerebrovascular disease and peripheral disease16–19. 

Carotid disease and stroke 
The global incidence of stroke is 15 million/year and is the second most common cause of death 
globally18. In 2015, 3.3 million died from ischemic stroke and 3.4 million from haemorrhagic 
strokes20. Approximately 8-20% of all strokes are estimated to be caused by extracranial carotid 
artery disease2,21. For people 65 years and older, carotid artery disease with narrowing is prevalent 
in approximately 75% for men and 62% for women even though not all stenoses are 
symptomatic22. To avoid ischemic stroke caused by thromboembolism from a carotid stenosis, the 
patient is prescribed optimal medical treatment: smoking cessation (where applicable), change to 
healthier diet, exercise, controlled blood pressure, and proper blood glucose levels. In addition, 
antiplatelet therapy (acetylsalicylic acid or clopidogrel) and HMG-CoA reductase-inhibitors 
(statins) are prescribed.  In some cases, surgical intervention is indicated such as either carotid 
endarterectomy (CEA) where the plaque in the carotid artery is excised, or carotid artery stenting 
(CAS). 

Symptomatic carotid stenosis 
Carotid stenosis can cause major or minor stroke, transitory ischemic attack (TIA), retinal emboli 
or amaurosis fugax (sudden reversible mono-ocular blindness or vision impairment) and is then 
called symptomatic stenosis.  
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To investigate which of the patients that should be treated more actively with surgical intervention 
two large multi-centre randomized controlled trials (RCT) European Carotid Surgery Trial 
(ECST)3, North American Symptomatic Carotid Endarterectomy Trial Collaborators (NASCET)4 
were performed in the 1990’s. Both studies aimed to investigate if CEA in symptomatic patients 
reduced risk for major stroke or death compared to medical treatment alone. Both studies showed 
that stenosis >80% in digital subtraction angiography exam benefitted from CEA compared to 
medical treatment alone. In NASCET the benefit of surgical intervention was seen already in less 
significant stenosis (50-69%) where risk reduction of 
stroke or death were 29% in 5 years, but those with 
<50% stenosis no benefit was seen. In stenosis >70% 
the risk reduction was so dramatic that study arm was 
ceased pre-maturely and those patients were referred 
for CEA. In ECST the stenosis degree favouring 
CEA was >80% (14.9% vs. 26.5%). However, the 
methodologies to define stenosis differ between the 
two studies, (figure 1), where ECST may have 
overestimated the stenosis degree23.  

These two studies from 1998 built a foundation on 
which international guidelines were formed both 
from SVS (Society for Vascular Surgery) and ESVS 
(European Society for Vascular Surgery), which 
clinicians at present use every day to evaluate symptomatic carotid stenosis. Even though these 
studies are of high quality the clinical practice remain diffuse; to avoid one stroke, 9 or 15 patients 
need to be operated (NNT=9 in stenosis 80-100%, ESCT; NNT=15 in stenosis 50-69%, 
NASCET). The stenosis degree according to ultrasound alone is therefore a blunt tool to select 
the right patient for prophylactic surgery. In addition, with a severe stenosis, called near-occlusion, 
(the lumen distally from the stenosis may or may not collapse) available data is limited, however 
this state has been considered having rather low risk of recurrent stroke and low benefit of CEA.  
But in a more recent study this consensus has been challenged, presenting a high risk of recurrent 
stroke with a near-occlusion with full collapse24, exemplifying the need of refining the diagnostics 
of the unstable stenosis.  

Asymptomatic carotid stenosis 

Not all carotid stenoses give rise to neurological symptoms and are often found by chance via 
clinical examination (neck bruit) or radiology (ultrasound, computed tomography (CT), magnetic 
resonance imaging (MRI)). These asymptomatic patients should also be treated medically as 
mentioned above since they are at an annual risk of 2% stroke or myocardial infarction25. However, 
whether surgical intervention of these asymptomatic patients is indicated or not is debated and in 
the 1990s two large multi-centre randomized trials were performed: ACAS and ACST-1. The 
ACST-1 showed a benefit of CEA in patients <75 year of age and with a stenosis of >60% with a 
reduced stroke risk in 10 years26. In ACAS, the result was similar in the same patient group, with a 
stroke risk reduction in 5 years, for patients who received immediate CEA27. After these studies 

Figure 1. Illustration of stenosis showing the differences 
NASCET and ECST methods of calculating percentage 
diameter stenosis. Oates et al, Eur J Vasc Endovasc Surg 
(2009) 37, 251e261 
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were performed, the medical treatment has been vastly improved and the results of the studies 
have also been questioned as medication was not standardised and not followed up to ensure 
adequate blood pressure and plasma-lipid levels. The efficacy was also poor and according to a 
meta-analysis the NNT for asymptomatic patients approached 50 to avoid one stroke within 3 
years6.  

Hence, the need of more accurate diagnostics than just symptomatology and degree of stenosis 
are highly called for in order to improve patient selection for intervention. More modern RCTs 
comparing CEA, CAS and optimal medical treatment in asymptomatic patients are ongoing such 
as ACST-2, CREST-2 and ESCT-2 where the results are eagerly awaited. But increasing attention 
is at the same time given to improve assessment of plaque phenotype, its’ composition and 
structural characteristics to replace the poor predictive power of stenosis grading with risk 
prediction actually based on the biology of the disease. The research field of plaque imaging for 
prediction of plaque vulnerability is currently exploding aiming towards future individualized 
patient-tailored therapy. 

Atherosclerosis  
Atherosclerosis is a systemic disease of large and medium-sized arteries featured by accumulation 
of lipids and fibrous elements together with contributing immune cells, smooth muscle cells (SMC) 
and endothelial cells, in the arterial wall, forming plaques and eventually sometimes stenosis in the 
arteries.  

The initiation of the process is not fully understood but is most likely the result of an interplay 
between several different processes such as plasma lipid-levels, blood flow mechanics (shear stress 
and turbulent flow) and genetic predispositions. The subsequent progression of the disease 
includes lipoprotein retention, recruitment of inflammatory cell, formation of foam cells, apoptosis 
and necrosis, migration of smooth muscle cells (SMCs) and their proliferation and secretion of 
extracellular matrix (ECM) components (such as collagen, elastin and proteoglycans), calcification, 
neovessel formation, arterial remodeling, rupture of the fibrous cap and thrombosis28–30. The Stary 
descriptions of the plaque types histology are some of the most extensive31 and lay as a basis for 
one of the standard classifications of American Heart Association (AHA types I-VIII). Virmani et 
al. has since suggested a classification linking the plaque morphology and clinical disease32, and 
further on, this overview will refer to this particular classification, (figure 3).  
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Pathophysiology of atherosclerosis 

Where and how the atherogenesis begins is most probably a combination of different factors, see 
(figure 2). The most inner layer of the arterial wall consists of a monolayer of endothelial cells. 
These cells control permeability and vascular tone. Normally the blood flows laminarly past these 
cells and creates so called shear stress on the vessel wall, which will prevent the blood cells to 
adhere. However, when the flow is turbulent or oscillatory the endothelial cells start to express 
adhesion molecules, for instance vascular cell adhesion molecule-1 (VCAM-1) and intercellular 
adhesion molecule-1 (ICAM-1). When studied in animals, low shear stress or oscillatory, disturbed 
flow induces atherosclerosis33. This is seen in bifurcations or inner curvatures, explaining why some 
parts of the vascular tree is affected and not others even though exposed for the same risk factors. 
Other factors that affect the endothelial function is nitric oxide 34 which inhibits VCAM expression, 
and subendothelial dendritic cells which seems to upregulate adhesion molecules 35. Monocytes 
attach to adhesion 
molecules and 
transmigrate 
through the 
endothelial layer 
into the intima, with 
help of 
chemoattractant 
cytokines, e.g. 
monocyte chemo-
attractant protein-1 
(MCP-1) or macro-
phage colony 
stimulating factor 
(MCSF-1) and 
subsequently diff-
erentiate into 
macrophages36.  

 

In parallel with endothelial dysfunction, Low Density Lipoprotein (LDL) particles circulating in 
the blood stream in a high concentration infiltrates the arterial wall and is modified by oxidation 
or by enzymes in the subendothelial layer37. Oxidized LDL particles (oxLDL) induce leukocyte 
adhesion on the endothelium38. The modified LDL particles are recognized by macrophages via 
scavenger receptors, and are engulfed. Lipid-filled macrophages are called foam cells39 and forms 
a precursor stage of an atherosclerotic plaque. When these macrophages are accumulating with 
intimal proteoglycans this process can be seen in histopathological analysis and is called fatty streak 
lesion or xanthomas28,31,40. The macrophages secrete pro-inflammatory cytokines and reactive 
oxygen species that promote retention of LDL and release of matrix metalloproteinases (MMPs) 

Figure 2. The process of atherogenesis with adhesion of leukocytes on the endothelium, invasion of the 
monocytes and T-lymphocytes into the intima where the inflammation of the atherosclerosis continues with 
oxLDL, chemokines, cholesterol crystals, apoptotic cells and bodies serves as pro-inflammatory stimuli, 
attracting SMC migrating into intima, creating fibrous cap with extensive collagen synthesis and 
proliferation. The lipid core is formed of oxLDL, debris, foam cells, cholesterol crystals, and is lacking 
structural collagen making it to a fragile plaque component especially if hidden under a thin fibrous cap 
which may rupture and expose its highly pro-thrombotic elements to the circulating blood in the lumen. 
Libby P et al. Nature vol 473, pages317–325 (19 May 2011) 
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and cathepsins, among others41. The migrated monocytes can moreover differentiate into dendritic 
cells operating as antigen-presenting cells, contributing to the inflammation in the plaque42.  

Lymphocytes, representing the adaptive immune system circulating in the blood, are also triggered 
by oxLDL, adhere to and roll on activated endothelial surface and transmigrate into the intima43. 
Besides oxLDL, other triggers are antigens in the atherosclerotic process as well as from the above-
mentioned dendritic cells and the intimal macrophages expressing CD68 and or CD36. The 

lymphocytes are mostly T helper 1 cells which accentuates inflammation by secreting interferon-g 

and tumour necrosis factor-a40. Regulatory T cells and also B cells are involved in amending the 
inflammation44.  

Subsequently, SMCs in the media migrates into the intima in response to growth factors, growing 
levels of oxLDL and different cytokines45. SMCs go through a phenotypic switch from the non-
proliferative contractile state typically expressing genes such as calponin 1 (CNN1), actin alpha 2 
(ACTA2), myocardin (MYOCD) to the non-contractile synthetic phenotype, which is 
characterised by proliferation and production of extracellular matrix such as collagens (e.g. 
COL2A1), elastin (ELN) and proteoglycans (e.g. ACAN or HSPG2), contributing to the fibrous 
component of the plaque as well as plaque growth46. In a recent study from our group, new 
sensitive markers such as PDLIM7 and LMOD for SMCs early phenotypic modulation were 
identified47. In addition, the SMC also can take up lipids in the atherosclerotic process48. There 
have also been studies showing that SMC may turn into a proinflammatory phenotype where 
cytokines like IL-8 and IL-6 are secreted and where cell adhesion molecules are expressed, which 
interacts with the monocyte and macrophage adhesion within the process of atherosclerosis49.  

The advanced atherosclerotic lesion 
In progression of the plaque the lipid accumulation increases together with macrophages, foam 
cells and T cells activities leading to accentuating the inflammation and also apoptosis of SMC and 
macrophages50 which eventually forms a necrotic core. It consists of acellular, lipid-rich material, 
cholesterol crystals, and the presence of it classifies the plaque as a fibroatheroma, (figure 3D). The 
apoptosis of SMC and macrophages and its’ debris in advanced lesions increases the formation of 
necrotic core and inflammation of the plaque51,52. In the lipid rich necrotic core (LRNC) the collagen is 
degraded by matrix metalloproteinases (MMPs).  

In the advanced atheroma, neovessels are formed from the adventitial vasa vasorum layer growing 
into the plaque. These vessels are fragile and leaky and can easily break causing intraplaque 
haemorrhage (IPH) which contributes further to the necrotic core and also to inflammation53. IPH 
contributes to enlargement of LRNC as well as plaque progression54, and has been linked to plaque 
vulnerability. IPH can also occur in the case of plaque rupture when the fibrous cap ruptures and 
the haemorrhage origins from the luminal side55. Calcification is a common feature of the 
atherosclerotic plaque. It is increasingly defined as either micro-(0.5 µm, <15 µm in diameter), or 
macro-calcification (>2mm in sheet-like formations) in the literature. Microcalcification (spotty or 
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granular) can be present already in the early lesion, (figure 3C), but also in the end-stage atheroma, 
(figure 3E), as a part of the lipid rich necrotic core56. The macro-calcification is a feature of the 
end-stage atheroma and is by some researchers believed to be the continuation of the lipid rich 
necrotic core that has calcified57. The mechanism of calcification in the human arterial intima shares 
many features of the skeletal ossification58, however the process is not fully understood. Many 
studies have shown that apoptosis of SMCs and macrophages with release of matrix vesicles seems 
to generate nidus for microcalcification in the presence of free calcium and phosphate56,59,60. Many 
of the SMCs also seem to transdifferentiate into an osteogenic state not very different from the 
osteoblast, also leading to calcification. The role of calcification will be further discussed below.  

Plaque vulnerability  

“The major clinical consequences of atherosclerosis such as myocardial infarction or stroke are not a function of 
gradual narrowing of the lumen, but rather due to thrombotic events associated with acute rupture or erosion of an 
unstable plaque”. (Bennett et al. 2016) 

In 2003 Naghavi and Libby with 56 colleagues proposed a definition of the vulnerable plaque as 
“thrombosis-prone plaques and plaques with a high probability of undergoing rapid 
progression”61. Furthermore, the vulnerable patient was also defined as “subject susceptible to an 
acute coronary syndrome or sudden cardiac death based on plaque, blood, or myocardial 
vulnerability” emphasising the systemically multifactorial complexity that leads to the clinical 
outcome. These definitions have since then been widely used.  

Figure 3 Classification an atherosclerosis progression according to Bentzon et al 2014. Stage A-C are most often asymptomatic while 
D and E can lead to plaque rupture or erosion and subsequently thrombosis. 
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In thromboembolic events such as myocardial infarction or stroke, lumen is obstructed or 
occluded by a thrombus generated on top of an atherosclerotic plaque. In histopathology studies 
from autopsies after coronary acute syndrome three different plaque pathologies are defined as 
underlying mechanism: plaque rupture, plaque erosion or calcified nodule62  protruding from the 
plaque into the lumen, where that latter are rare with only prevalence of 4-14% in carotid plaques63. 
Plaque rupture is the most common cause of thromboembolic event62 and is characterised by a 
thin fibrous cap poor in collagen, a large lipid core and many macrophages. Eroded plaques are 
rich in proteo- and glycosaminoglycans, little or no lipid core, neutrophils and plenty of SMC64. 

Plaque inflammation, angiogenesis with IPH, activity of MMPs as well as endothelial denudation 
and platelet aggregation are activities in the plaque which make it prone to rupture. Plaques that 
have the same degree of stenosis might have very different content, i.e. an activated inflamed 
plaque with large LRNC thin fibrous cap can have the same stenosis degree as a completely fibrous 
or highly calcified plaque with little or no inflammation on-going, which therefore makes the 
simple stenosis degree into a rudimentary tool to diagnose the vulnerable plaque61,65.  

Morphological features  
Morphological characteristics of the vulnerable plaque are defined as thin fibrous cap, large lipid 
core size, high grade luminal stenosis, remodeling, lesser collagen content vs more lipid content 
(mechanical instability), large 
calcification burden and pattern 
(nodule vs scattered, superficial vs deep 
etc)61,62.  

Also traits like IPH, carotid plaque 
thickness, surface morphology and 
carotid plaque volume possible to 
image through modern imaging 
techniques are known to affect the 
vulnerability of the plaque29,65–67, 
(figure 4). 

Calcification 
The difference between micro- and macrocalcification seems to partially determine the fate of the 
plaque. Microcalcification is formed initially as calcium deposits within apoptotic bodies or matrix 
vesicles released from macrophages or SMCs as a response to inflammatory stimuli68. This 
promotes additional inflammatory response and calcium deposits, causing further damage and 
disturbed efforts of healing69. This leads into a vicious cycle that eventually leads to thinning of the 
fibrous cap and higher risk of plaque rupture70. Nevertheless, if an adaptive response succeeds with 
a shift of the T lymphocyte and the macrophages from Th1 to Th2 and from M1 to M2 
respectively, the inflammation is decreased60. Subsequently SMCs survive and generate fibrosis and 
stabilization of the plaque. If the pro-osteogenic conditions continue, SMCs transdifferentiate into 
osteoblast-like phenotype expressing markers like RUNX2, BMP2, OPN, ALP, Sox9 etc, creating 

Geometry

• Positive remodeling

• Plaque volume/burden

Morphology

• Thin FC

• Large LRNC

• IPH

• Neovascularization

• Small/Absent 
macrocalcification

Figure 4 Schematic image of an unstable plaque rich of LRNC, thin fibrous cap, 
presence of IPH, and small calcification, large plaque burden.  
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formations of macrocalcification which functions as a barrier against spreading the inflammation 
but also as a mechanical stabilisation69,  (figure 5).  

In a clinical setting, the presence of calcification is seemingly contradictory. When assessing 
coronary arteries, calcification is known to be strongly associated with high cardiovascular disease 
risk in the terms of coronary artery calcification (CAC). CAC score is a scoring system developed 
by Arthur Agatston weighing the density of the calcifications, providing a score of Agatston units, 
AU. In a large population-based study the risk of coronary event increased by factor 7.73 with 
CAC score 101-300 AU and by factor 9.67 with CAC >300AU71. Several studies have confirmed 
the predictive value of CAC score71,72, superseding other predictive scores such as Framingham 
risk score73, leading to recommendation in the guidelines of American College of Cardiology 
Foundation/American Heart Association of measuring CAC score in individuals at risk74. In other 
studies, high CAC score has showed a stronger association of chronic coronary heart disease such 
as stable angina pectoris with macrocalcification75,76.  

Interestingly, in a double blind randomised controlled trial, statin use was shown to decrease the 
systemic inflammation as well as the LDL- cholesterol levels in serum but not to halt the 

Figure 5 Relationship of calcification and inflammation suggested by Pugliese. The pro-inflammatory M1 and Th1 cells induces VSMC 
and macrophage (M1) apoptosis and matrix vesicle release which in presence of Ca2+ is forming microcalcification. In the stable plaque 
the anti-inflammatory cells Th2 and M2a are promoting the VSMC and Myeloid Calcifying Cells (MCC) into osteoblast-like cell and 
myofibroblast state which creates macrocalcification and fibrosis respectively. The regulatory Treg and Mreg cells might be ameliorating the 
processes of fibrosis and macrocalcification. The mechanism of transformation from inflamed to healed plaque is poorly understood. Pugliese 
et al. Atherosclerosis. 2015 Feb;238(2):220-30 
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progression of CAC-score77. The progression of calcification with statin use was confirmed in 
another longitudinal study on carotid lesions78. 

When mapping the pattern of calcification with IVUS (Intra Vascular UltraSound), the spotty 
pattern with a fibro-atheromatous lesion and positive remodeling associated with acute myocardial 
infarction, lesions with no calcification associated with negative remodeling and with unstable 
angina pectoris and stable angina pectoris were strongly associated with extensive calcification75. 
When examining lesions with IVUS in longitudinal studies, correlation between large plaque 
burden, less dense calcium and larger non-calcified plaque, associated with events79, (figure 6).  

In carotid lesions similar results were found, showing that large calcification and osteoid metaplasia 
associated with asymptomatic lesion80,81. In comparison, in non-calcified plaques it has been 
suggested that the fibrous cap contains higher degree of inflammatory processes contributing to 
vulnerability, and therefore indicating that calcification is associated with plaque stability82,83. This 
was confirmed in a systematic review of calcification of carotid lesions and symptomatology where 
both calcification value or weight as well as percentage showed to be a strong prognostic parameter 
for plaque stability, where the percentage was the strongest parameter84. So far, partial explanation 
to this was suggested as  plaques having a large calcification volume have a smaller LRNC making 
them more stable84.  

The location of the calcification seems to matter in assessing vulnerability, as stated by Virmani et 
al. showing rare cases of calcification nodules as cause of plaque rupture62.  Abedin et al. 
hypothesized that the interface in between hard calcification and softer components could lead to 
mechanical instability explaining why mild-moderate calcification degree associated with 
symptoms85. This was further studied in a simulator computational environment, showing plaques 
more prone to rupture when calcifications were situated close to a thin fibrous cap, while 
calcifications deeper in the plaque had no impact on plaque stress86. Another feature of calcification 
location in the plaque that has been studied increasingly is the peripheral calcification or the so 
called ‘adventitial calcification’ in line with radiology appearance, also called the ’rim sign’. The rim 
sign in combination with a large soft plaque has shown to have association with IPH and therefore 
plaque vulnerability87. 

Lipid rich necrotic core (LRNC) and fibrous cap 
The proportional size of LRNC is clearly correlated with plaque vulnerability53. A large LRNC, has 
been shown to be a strong predictor of both fibrous cap thickness and disruption88,89. Higher risk 
of plaque rupture has also been seen in plaques with percent of LRNC area exceeding 40% of the 
vessel wall area, as opposed to stenosis alone where no correlation could be seen with plaque 
rupture88. Furthermore, in a meta-analysis it has been shown that a large LRNC, thin fibrous cap 
and IPH, each are predictive of stroke90 but also in single centre studies following patients over 
time this association has been confirmed91,92.  

Intraplaque haemorrhage (IPH) 

IPH is considered one of the key features of vulnerable plaques93.  In single-centre studies, a clear 
implication with increased risk of ischemic stroke has been elucidated91,92,94. In histopathological 
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studies, IPH contained components like intraplaque iron and fibrin which co-existed with 
extravasated erythrocytes, as well as other blood components like platelets but also plasma 
components95. In a large longitudinal study, presence of IPH and neovessels associated with 
symptomatology individually, but also suggested that the grade of plaque neovessels and 
haemorrhage in one site may mirror the atherosclerotic status in other vascular beds96. 

Carotid plaque remodeling 

The remodeling can be either positive (outward expansion of the vessel wall) or negative (inward 
into the lumen) causing stenosis. Positive remodeling occurs initially as an attempt to maintain the 
luminal area for the bulky atheroma, but as the atherosclerosis progresses the negative remodeling 
interferes into the lumen97. The hemodynamic effects surrounding a negatively remodelled plaque 
are altered, which has been correlated with increased risk of stroke98. The positive remodeling has 
been indicated as associated with risk of stroke99 and is synonymous with following section of 
plaque volume, thickness and burden. This was further confirmed in studies based on CT 
assessment where positive remodeling was significantly larger in symptomatic patients than in 
asymptomatic patients100,101 

Carotid plaque volume / thickness / burden 

Plaque volume has been studied and its role in vulnerability has been discussed extensively. Several 
studies have conferred plaque volume being involved in determining plaque vulnerability and risk 
for cardiovascular events99,102,103. It has been shown to be associated with plaque vulnerability and 
stroke78. Progression of total plaque volume is a significant predictor of cardiovascular events or 
cardiovascular risk factors104, confirmed in a prospective study as predictor individually and also 
together with IPH and fibrous cap rupture105. However, another study has exposed no clear 
correlation of plaque volume with symptomatology, though a negative correlation between 
proportion of calcification and symptoms could be stated106. Some researchers claim the idea that 
the volume of the plaque could be a superior marker of the severity of the systemic atherosclerotic 
disease than the stenosis degree only88. Carotid plaque burden has been demonstrated to be closely 
associated with CAC score107 and is currently investigated to be clinically utilised as a predictor of 
future cardiovascular events in the large prospective BioImage study (ongoing)108. 

Imaging modalities 
Historically, selection of proper treatment for carotid stenosis was based on stenosis degree, 
decided by either invasive, intra-arterial angiography or by ultrasound. With modern imaging, the 
focus has shifted from the lumen’s diameter to the wall’s morphology where plaque vulnerability 
can be predicted via imaging biomarkers, looking beyond the stenosis degree65. Here follows a 
brief summary of modalities that are implemented in imaging of the carotid artery. 

Angiography 

Conventional angiography was for many years considered the gold standard of assessment of 
carotid stenosis. The constitutive studies ECST, NASCET and ACAS were all based on this 
method. However, this invasive method shows the lumen and excludes the wall, focusing on the 
stenosis degree. As other modalities developed and as both clinical and research focus has shifted 
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towards the plaque morphology, in addition to its’ invasiveness, angiography has now essentially 
become reserved for endovascular intervention.  

Ultrasound (US) 
Ultrasound is often used as the first line diagnostics of carotid stenosis degree and has become the 
new gold standard diagnosing carotid disease with its low-cost and availability with low-risk. The 
technique has also vastly improved in characterising the plaque, and has shown satisfactory results 
in identifying high-risk plaques109. The method has additionally improved with the use of 
microbubble contrast which can visualize and identify important plaque characteristics, such as 
neovessel formation or the absence of it110,111. Additionally, the novel techniques of volume 
rendering are adding preciseness to the assessment112. In addition to the well-known constraint of 
operator variability, US has its’ limitations of difficulties visualising the carotid bifurcation and wall 
in some cases, such as muscular short necks, obese patients or patient with previous radiation 
therapy against neck113. To detect an eventual tandem lesion can also be omitted since the distal 
proportion of the internal carotid artery is hard to reach underneath the mandibular bone. The 
morphology characteristics best visualised by US are plaque ulceration114, and according to some 
studies neo-vascularisation110,111 but the reproducibility has been hard to prove. The high 
echodensity of calcification is causing shadows which makes that component difficult to visualize. 
Studies diagnosing IPH and fibrous cap with US have shown suboptimal results115,116. The invasive 
type of ultrasound, 
intravascular 
ultrasound, (IVUS), has 
added the advantage of 
increasing spatial 
resolution and can 
visualise the plaque well, 
but due to its’ 
invasiveness and risk of 
embolization only rare 
carotid cases with 
stenting have been 
studied. Vazques-Figueroa et al followed patients prospectively after assessing their coronary 
arteries with IVUS, identifying plaque burden, fibrofatty volume and proportion associated 
positively and calcium negatively with Major Adverse Cardiovascular Events (MACE)79, (figure 6). 

Figure 6 Prospective assessment of coronary plaques with IVUS of 60 patients during 12 months, 
the plaque characteristics association with Major Adverse Cardiovascular Event (MACE) 
Vazques-Figueroa et al 2013 
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Magnetic resonance imaging (MRI) 

Magnetic resonance imaging (MRI) has shown great potential in atherosclerotic imaging with its 
ability to detect soft-tissue, great resolution and high reproducibility. The soft tissue features like 
LRNC, fibrous tissue and IPH can be detected with high accuracy without administration of 
contrast agents, though detection of neovessels requires contrast, (figure 7), 117,118. Detection of 
calcification with MR is more debated but a few studies have shown decent results119,120. 

Disadvantages with MRI 
are low availability, long 
procedure time, 
sensitivity to patients’ 
movement in addition to 
that the required scanner 
(≥3 Tesla) for detecting 
the above-mentioned 
components is rarely 
accessible for the daily 
work in the clinic116.  

 
Computed Tomography (CT) 

Computed Tomography (CT) is a form of x-ray where many measurements of the x-rays are made 
from different angles and produce cross-sectional images, “slices” of the body. The CT can be 
performed with contrast enhancement (Computed Tomography Angiography, CTA) often used 
when visualizing blood vessels. The images are computer processed into a three-dimensional image 
and render reconstructions greatly useful in the clinical praxis.  

The fundamental principle of CT is based on the difference of the x-rays emitted by the energy 
source that is absorbed by the body and that is transmitted through the body. This is called 
attenuation, which is determined by the density of the specific tissue. For example, high density 
tissue (such as cortical bone) absorbs much of the radiation and less x-rays are reached by the 
detector, leading to high attenuation. On the opposite side of the scale there is low density tissue 
(such as lungs filled with air) where more x-rays reach the detector, rendering low attenuation.  

The CT image consists of a number of picture elements called pixels. When the pixels are 
combined with the slice thickness into a volume unit, this is called a voxel. Each pixel or voxel has 
a mean of attenuation of the tissue in radiodensity. This can be represented by a number called 

IPH 

Figure 7 Intraplaque haemorrhage (IPH) visualized in a patient with asymptomatic carotid 
stenosis by 3T MRI(left), in the endarterectomy specimen (middle) and in histological staining 
(right)  
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Hounsfield1 Units (HU). HU can range from +1000- (e.g. 
cortical bone) to -1000 (e.g. air) on the Hounsfield scale where 
water has attenuation of 0, (table 1). 

CT machines are built with an energy source which sends out 
the x-rays through the patient to a detector in the scanning 
gantry. The early models of CT scanners used one energy 
source and one detector, where a single axial image was taken 
at a time while the patient was asked to hold the breath, leading 
to long acquisition times and risk of missing small pathologies as the patient could not hold the 
breath in the same way each time. Current scanners are built as a spiral where the patient is moved 
continuously through the scanning gantry while holding one breath, while the energy source and 
detector rotates around the patient.  Further development of the machines has expanded the 
number of energy sources and also detectors, increasing both the temporal and the spatial 
resolution. These techniques are named multienergy CT or Dual-Source Computed Tomography 
(DSCT) and multidetector CT (MDCT). DSCT is using two different x-ray sources, permitting 
different x-ray energies (80 and 120 kV) which renders different HU in the tissue. This improves 
the resolution and has shown promising results of plaque imaging in complex vasculature, 
including both coronary and carotid arteries121,122. The introduction of MDCT (modern scanners 
with up to 32 and 64 detectors) with has led to an enormous increase in imaging acquisition speed, 
more coverage of the patient and high spatial resolution123. 

CTA is a widely used diagnostic tool with high availability, and may provide a rapid high-resolution 
imaging of the carotid wall and lumen. CTA is outstanding in diagnosing calcification of the plaque 
using the density, measured in HU of the pixels in the image, where thresholds have been proposed 
and set with validation to histology124,125. These thresholds were proposed as lipid rich plaque 
<60HU, mixed attenuation values 60-130HU, and calcification >130HU and have been tested in 
association with clinical symptoms showing that the calcified plaque was 21 times less likely to be 
symptomatic106 while fatty plaques were associated with high risk of rupture126. Luminal 
morphology and ulceration are well depicted, better than in US127 even though small ulceration can 
be omitted by halo edge blur. Visualising the fibrous cap is at present challenging and it is debated 
whether IPH can be detected in comparison to MRI128,129.  

The main disadvantages of CTA consist of the radiation dose for the patient, especially in 
longitudinal studies. Secondly, the necessary intravenous iodine contrast which may lead to 
contrast-induced nephropathy or anaphylactic reaction. And finally, high-density areas such as 
calcifications are overestimated in volume, i.e. the “blooming effect”. This is an effect of the point 
spread function which is a phenomenon that can be defined as “diffraction of light, which 
determines the image system’s resolution limit, blurs out any point-like object to a certain minimal 
size and shape”, Zeiss microscopy, bitesizebio.com. Additional published data of reliability of the 

 

1 Sir Godfrey N. Hounsfield was an electrical engineer who won the Nobel Prize 1979 for development of the CT in 
the 1960s. Up until 1967 he had no experience in medical field but had only worked with developing computers and 
radar in the EMI (Electric and Musical Industries). 

Substance
Hounsfield 
Units (HU)

Air -1000
Fat -100
Water 0
Muscle/soft tissue +40
Contrast +130
Bone +1000

Table 1 Typical HU for different tissues 
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advanced, constantly developing, CT techniques and its plaque feature assessment associated with 
stroke risk is highly warranted. 

The CT technique has evolved immensely with the multi-energy technology, together with 
developing detectors and advances in high spatial resolution, contributing to making CTA a rapid, 
trustworthy method to characterise plaque morphology, visualising location and extent of the 
plaque is also highly important before surgery. Another important factor in improving the 
reliability of CTA detection is the advances in software development, reconstructing and analysing 
the CT image, rendering new possibilities for analysing plaque structural characteristics and 
components.  

Miscellaneous imaging methods 

18-Fluorodeoxyglucose ([18F] FDG) positron emission tomography (PET) is a functional imaging 
method that traces the macrophages uptake of glucose analogue FDG. Activated macrophages 
have increased glycolysis, representing inflammation. The FDG is competing with glucose in the 
uptake but instead of getting metabolised, it is accumulating in the activated macrophages130. 
Several studies have presented the potential of [18F] FDG PET to detect plaque inflammation131,132 
and neovascularisation133. In a clinical setting it has been shown that an increased uptake of FDG 
associates with early recurrent stroke independent of stenosis degree134 and that echo-rich plaques 
in US associates with decreased uptake135. This method is however unlikely to become a routinely 
practised imaging modality due to its limited accessibility and cost, but is nevertheless of high 
interest to evaluate other imaging modalities mentioned above136.  

Optimal Coherence Tomography (OCT) is an invasive optical technique using similar imaging 
performance as a microscope combined with principle of ultrasound but with near-infrared light 
which is reflected, though with a significantly higher spatial resolution than any ultrasound 
technique137. OCT imaging of plaque components has shown good correlation to histology in 
coronary plaques, especially with thin-cap fibroatheroma138, but also fibrous, lipid rich and 
fibrocalcific plaques139,140. The related method of near-infrared spectroscopy (NIRS), results have 
been promising in carotid plaque vulnerability assessment141. However, the invasiveness of these 
imaging modality is limiting its application on carotid arteries, though attempts on performing 
OCT externally on the carotid artery has been done, where the results of the technique were not 
satisfactory in the current form142.    

Image analysis software 
TeraRecon 

TeraRecon (Aquarius, iNtuition, TeraRecon, Foster City, CA, USA) is one of the largest providers 
of advanced visualisation and interpretations software which can be used in a wide range of parts 
of the body as implementation of oncology and perfusion. Clinical applications contain advanced 
image processing and 3-D visualisation for CT, MRI and PET. The function plaque analysis in CT, 
renders the area and volume of the plaque, defined by thresholds of HU set according to individual 
preferences. This function was earlier available for carotid artery analysis, but is today applied in 
coronary artery plaque assessment. 



 

 17 

vascuCAP 

vascuCAP software analysis (Elucid Bioimaging, Boston, MA, USA) is a histology-validated tool 
for computer-aided phenotyping of vasculopathy143–148. Measures made only on Hounsfield 
densities may be influenced by errors like blurring caused by the imaging system point spread 
function (PSF), when comparing with histology. For example, calcification can be overestimated 
and in some cases adjacent necrotic core can be underestimated caused by a “blooming” 
calcification125. vascuCAP creates 3-dimensional segmentations of lumen, wall, and each tissue type 
at an effective resolution with improved soft tissue plaque component differentiation relative to 
manual inspection143. Algorithms included in the software decrease blur caused by image formation 
in the scanner, where the determination of the patient-specific PSF is addressed so that image 
intensities are restored to more closely represent the original materials imaged. This mitigates 
artefacts such as calcium blooming and enables discrimination of less prominent tissue types. By 
mimic expert annotation at microscopy, the software makes mathematical judgements to interpret 
the HU of adjacent voxels, simultaneously mitigating variation between scanners, reconstruction 
kernels, and contrast levels. In this way, subjectivity inherent to other analysis methods is 
fundamentally addressed. 

Different components of the plaque can be defined: calcium (CALC), lipid rich necrotic core 
(LRNC), intraplaque haemorrhage (IPH) and matrix (MATX, tissue not defined as any other 
tissue) as well as different structural characteristics like stenosis, plaque burden, minimum cap 
thickness and remodeling. 

Risk scores for stroke, ABCD2 and CAR 
Clinical risk scores are popular, easily accessible methods to acquire a prediction of a preventable 
medical incident. One the of most established clinical risk scores is the Framingham risk score 
which estimates the risk of cardiovascular disease within ten years and is intended for patients in 
primary health care15. More specifically for stroke risk, the ABCD2 and CAR score have been 
suggested as complement to the clinical patient management. The ABCD2 (Age, Blood pressure, 
Clinical Features, Duration of TIA, and presence or absence of Diabetes) is developed as 
estimating the risk of stroke within 2, 7 and 90 days after a TIA.149. The factors that are included 
in the risk scoring in ABCD2 is age, blood pressure, duration and clinical features of the TIA, 
history of diabetes, where the points range from 0 to 7. The resulting points are stratified into low 
(0-3 points), intermediate (4-5 points) or high risk (6-7 points).  Neither presence of carotid stenosis 
nor atrial fibrillation are considered in this score. ABCD2 was developed as a guide for clinicians’ 
decision of work-up urgency for patients with TIA being evaluated in the primary health care 
centre or in the emergency room. However, the applicability of the ABCD2 score has been 
questioned, especially after that Wardlaw et al, concluded in a large meta-analysis that high and low 
score of ABCD2 cannot discriminate the early risk of stroke, but in dichotomising the score ≥4 
the score had a reasonable high sensitivity (87%) but low specificity (35%) in the stroke risk within 
7 days150. ABCD2 score has been further developed to ABCD2-I including the factor of cerebral 
infarction in CT/MRI and additionally in ABCD3, (max score of 9) including factors of dual TIA, 
carotid stenosis (50-99%) approaching the CAR score described below. In studies evaluating 
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ABCD2 and ABCD3, the latter performed better in predicting stroke151, a score of ≥4 could aid 
triaging patients with TIA in a clinical setting to acute carotid imaging152. 

Carotid Artery Risk (CAR) score estimates the risk of ipsilateral ischemic stroke within 5 years for 
symptomatic patients with carotid stenosis of >50%, treated with best medical treatment. The 
CAR score takes into account following parameters: sex, age, degree of carotid stenosis according 
to NASCET, near occlusion or not (defined as severe stenosis with distal collapse of the artery), 
number of days from event to CEA, most severe ipsilateral event, diabetes, myocardial infarction, 
peripheral vascular disease, hypertension, presence of plaque ulceration or not. The CAR score 
results from the ECST-I, the algorithm is based on the carotid stenosis risk prediction tool153,154. 
The CAR score is awaiting its validation through the on-going study of ECST-II 3,155. 

Transcriptome profiling by microarray 
Microarray profiling is a well-established large-scale technique to 
globally determine which genes are actively expressed in one tissue 
compared to another tissue. mRNA extracted from a tissue, after 
controlling quality, is converted to complementary DNA (cDNA) 
and then marked with a fluorescence probe. The cDNA is placed on 
a chip with a large number of probes, where several probes are 
representing one gene in order to gain specificity and quantity of 
detection. The cDNA under investigation bounds to the matching 
probes if they exist in the specimen, (figure 8). In this way a large 
number of activated genes can be detected and also relatively 
quantified in terms of fold changes and significance in upregulation 
vs downregulation. 

Bioinformatics 
The large data set of genes that is obtained from the microarray analysis is processed in 
bioinformatic analysis. One approach is to compare two groups of microarray data with statistical 
tests (e.g. ANOVA or Student’s t-test) which render both fold change and significance (p-value) 
One inherent problem with such large data sets (approximately 25-50 000 genes) is the possibility 
of reaching significant p-value of <0.05 without it being truly significant. To address this problem, 
the Bonferroni correction for multiple comparisons can be applied. Another solution to address 
the multiple genes comparison problem is the false discovery rate (FDR) calculation to adjust p-
values in proportion to the number of parallel tests involved. One risk with these adjustments is 
that they may reduce the number of significant genes to zero although there is in fact a differential 
expression.  

An alternative analysis method to the above-mentioned statistics, is the Transcriptomic Analysis 
Console (TAC) for Affymetrix Microarrays, provided by Thermo Fisher scientific. In the TAC 
program the array data is analysed with the LIMMA Bioconductor package which provides Linear 
Model-based analysis of the MicroArray data. LIMMA is one of the most commonly used, 
statistically rigorous methods of analysis for differential expression and is well validated156. The 
default method in LIMMA uses an empirical Bayes estimate to "moderate" the standard deviation 

Figure 8 Schematic figure of the process 
for Affymetrix microarray  
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in the t-test denominator using the distribution of all the standard deviations, which is especially 
valuable in small number samples. It is especially well fit for studies with complex experimental 
design such as comparing across multiple attributes. The TAC program visualises the data in a 
variant of graphical forms, such as PCA-plots, scatter and volcano plots, hierarchial clustering and 
is rendering ranked list of genes, sorted on optional value, e.g. fold change or p-value. 

GSEA 

Gene Set Enrichment Analysis (GSEA) is a computational method that evaluates microarray data 
at the level of gene sets instead of individual genes. The gene sets are defined based on biological 
knowledge through published information about expression patterns across tissues, biochemical 
pathways, interacting networks or co-expression in previous experiments and is grouped together 
by their involvement in the same biological pathway or by location. It was developed by Broad 
Institute, MIT, MA, USA157. In addition to the above-mentioned problem with the adjustment for 
multiple comparisons of single gene expression analysis, the single-gene analysis may miss 
important effect on pathways, since sets of genes often act conjointly to affect cellular processes. 
For example, 10% up-regulation of a whole set of genes involved in a cellular process is likely more 
important than a 10-fold up-regulation of a single gene. The GSEA determines whether a set of 
genes is randomly distributed throughout a list of differentially expressed genes or is 
overrepresented at the top or bottom of the list, rendering an enrichment score (ES) and a 
normalised ES (NES) with an estimate of statistical significance of the ES including adjustment 
for multiple hypothesis testing.  In this way results of significantly up- and down-regulated gene 
sets associated with specified biological processes, can be defined in comparison of the two 
different phenotypes. The collection of annotated gene sets are accessible via various public 
databases, e.g. at the Molecular Signatures Data Base (MSigDB)158. 

Machine learning 
Machine learning can be defined as “the computer science that gives computers the ability to learn 
without being explicitly programmed”. One of the pioneers to coin and define the machine 
learning concept was Arthur Samuel in 1959 in IBM Journal of Research and Development in an example 
of machine learning applied in a game of checkers “to verify the fact that a computer can be 
programmed so that it will learn to play a better game of checkers than can be played by the person 
who wrote the program”159. The concept of self-learning is the main feature of machine learning 
and refers to the application of statistical modeling to detect patterns and improve performance 
based on data and empirical information, but without direct programming commands. One could 
say that machine learning uses data as input, not a command, to build a decision model. The basic 
idea is to divide the input data into a training data set on which the models are initially developed. 
The models (for example Support Vector Machines, Artificial Neural Networks or Decision Trees) 
are then tuned and adjusted, re-run, re-adjusted, iteratively. When the models are at a satisfactory 
prediction performance level, they are tested on the remaining data, the test data set. If or when 
the model’s performance is of satisfaction, it is ready to use.  

Machine learning can be divided into three main categories: 1) supervised learning when both the 
input and output data is known; 2) unsupervised learning when only the input data is known, 
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analysing inputs to generate an output; and 3) reinforcement learning where only output data is 
known and a large number of variables are randomly trialed. In this thesis (in study IV) supervised 
and unsupervised learning were applied. 
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3 RESEARCH AIMS 
Our research group has previously examined how the patient phenotype correlates with plaque 
phenotype by comparing plaques from symptomatic patients to those from asymptomatic ones160. 
An outstanding clinical need in identifying the vulnerable plaque is the association of plaque 
phenotype to patient imaging, which has the potential to considerably improve the diagnostic 
accuracy, and as a result lowering the NNT for carotid surgery which was one of the main aims of 
this thesis. The second main aim was to explore the possibility to predict the plaque biology from 
CTA data and through this creating an individual plaque biology profile possible to treat patient 
specifically. 

The specific aims were:  

I. To relate calcification grade via CT imaging to the overall gene expression profiles in 
carotid plaques. 
 

II. To relate various components and structural features of the carotid plaque via CT 
imaging to the overall gene expression profiles and patient clinical parameters. 
 

III. To relate clinical stroke risk scoring of patients with plaque components via CT 
imaging, gene expression profiling in plaques and periperal blood. 
 

IV. To decode the atherosclerotic plaque molecular phenotype non-invasively via CT 
imaging, by generating a novel predictive model for gene expression, refered to as 
virtual transcriptomics.  
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4 MATERIALS AND METHODS 
 

Overview of material and methods used in studies I-IV: 

 

Study I: Comparison of global transcriptome of high vs low calcified carotid plaques in pre-
operative CTA of both symptomatic and asymptomatic patients. Transcriptomic microarray data 
was analysed for differentially expressed genes and gene ontologies with gene set enrichments. 
Validations with histochemistry, immunohistochemistry staining and qPCR were performed. 
Furthermore, bioinformatic subgroup analysis of only symptomatic patients with high vs low 
calcification was performed. The top up-regulated gene in highly calcified lesions, PRG4, not 
previously described in atherosclerosis, was validated with more detailed studies by targeted 
bioinformatic analyses, immunohistochemistry and immunofluorescence with cell specific 
markers.  

Study II: Comparison of carotid plaque microarray transcriptome of high vs low volume of 
different components such as lipid rich necrotic core, intraplaque haemorrhage, matrix, plaque 
burden and calcification, and their association to symptomatology in univariate and multivariable 
analysis. Transcriptomes were evaluated for differentially expressed genes and gene set 
enrichments. CTA morphology parameters were compared with clinical data and stenosis degree, 
and were also tested as predictors for symptomatology in a holdout set of patients in a prediction 
modeling approach. 

Study III: 101 symptomatic patients were scored according to clinical risk scores for stroke ABCD2 
and CAR, and subsequently stratified into groups of low, intermediate and high risk patients. The 
high vs low risk groups were compared in regards to clinical features, microarray transcriptomes 
from carotid plaques but also from peripheral blood monocytes (PBMCs) and imaging data from 
CTAs. Transcriptomes were evaluated for differentially expressed genes and gene set enrichment. 
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The top gene ABCB5 in high risk patients was further evaluated with immunohistochemistry in 
vascular tissues and targeted bioinformatic analyses. 

Study IV: Using machine intelligence approaches, prediction models were created based on the 
microarray transcriptomics from the cohort of 40 plaques paired with the data from CTAs. These 
trained models were then validated on additional four sequestered unseen patients, testing the 
models for comparing the predicted transcript expression with the true expression.  

Patients and the Biobank (BiKE) 

All studies are based on patients undergoing carotid endarterectomy for high degree carotid 
stenosis who were enrolled to the BiKE biobank after informed consent.  

The Biobank of Karolinska Endarterectomy (BiKE) was established 2002 for prospective 
collection of atherosclerotic plaque tissue and blood from patients. The biobank currently consists 
of plaques and blood samples from >1500 patients, with a database of clinical parameters including 
risk factors, medication, symptoms, time of surgery, preoperative imaging and laboratory 
measurements. Transcriptomic and genomic profiles have been generated by microarray and 
genotyping chips, enabling multivariate analysis of gene expression patterns in relation to clinical 
parameters and patient phenotype. Neurological symptoms from cerebral embolism originating 
from the carotid stenosis were defined as transitory ischemic attack (TIA), minor stroke and 
amaurosis fugax (retinal TIA) Asymptomatic patients were defined as free from neurological 
symptoms 3 months prior to surgery, where indication for CEA was based on same criteria from 
the Asymptomatic Carotid Surgery Trial (ACST)26.  

Plaques were just after collection at surgery, divided transversally at the most stenotic part, the 
proximal half was used for RNA preparation and microarray and the distal half was fixed in 
formaldehyde for histology.  

Study I, II and IV were based on one cohort selected out of either presence or absence of 
macrocalcification, n=40, 20 highly calcified and 20 with low calcification grade, undergoing 
surgery from 2008-2013. In study II additional consecutive 58 patients, undergoing surgery from 
2006-2015, were included in image analysis; however, 5 patients were excluded due to poor image 
quality, rendering n=93 in total. In study IV an additional four patients, undergoing surgery from 
2006-2007, was included as a test cohort to validate the prediction models developed in the starting 
cohort. See table 2. 

In study III, 101 symptomatic patients from BiKE were included based on microarray data 
available, undergoing surgery from 2002-2011, out of these, 50 patients had also undergone CTA 
of the neck vessels. Gene expression in peripheral blood mononuclear cells (PBMCs) were also 
analysed with microarrays. Finally, the BiKE data base was merged with the Swedish Hospital 
Discharge Register and Swedish Cause of Death Register for follow-up of major adverse cardio- 
and cerebrovascular events for study III. See table 2. 

In study I, the atherosclerotic calcified plaques were compared with a cohort with another type of 
calcification, the Mönckeberg calcification, which occurs systemically in the media layer of the 
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arteries in patients with for example advanced chronic kidney disease, diabetes mellitus, systemic 
lupus erythematosus, or other chronic inflammatory conditions. This cohort of Mönckeberg 
calcification, called Kärl TX, consists of biopsies of the epigastric artery in patients undergoing 
kidney transplant surgery at the Karolinska Hospital, in addition to patient clinical data. 

 I II III IV 

n 40* † 40* † + 53* 101‡ (81†
↔ 53*) 40* † + 4* † 

Years 2008-2015 2008-2015 + 
2006-2015 

2002-2011 ↔ 
2006-2015 

2008-2015 + 
2006-2007 

 
Table 2. Basic overview of the cohorts for the studies  
*  = undergone pre-operative CTA of the neck vessels 
† = undergone transcriptional profiling of carotid plaque 
‡ = undergone scoring in CAR and ABCD2 
↔ = overlapping cohort 
 

Computed Tomography Angiography (CTA) 

The CTA exams of the neck vessels included in all studies were performed as part of the routine 
pre-operative health care from 2005 to 2015. The CTA exams were performed all with 100 or 120 
kVp at the admitting hospital in the great Stockholm area. Contrast was injected intravenously and 
the scanning was performed in a caudo-cranial direction from the aortic arch to vertex, 
reconstructing axial images with a thickness of ≤1 mm, mainly 0.625 mm. For further background 
of the CTA method, please see under Computed Tomography in Background.   

CT analysis software 
Vessel segmentation 

The series of axial image reconstructions of 0.625 mm were obtained and transferred into a digital 
workstation for vascular CT-scan image. For both imaging software analysis, the initial process 
was the same: a centreline of the vessel was semi-automatically placed from the common to the 
internal carotid artery. The area of the atherosclerotic plaque was manually selected using the 
common carotid bifurcation as a reference point, marking the lesion going from normal vessel wall 
proximally to normal vessel wall distally from the lesion. The outer and inner borders of the artery 
wall were automatically defined, adjusted manually, the lumen was excluded from the analysis (in 
TeraRecon analysis, but included in some of the vascuCAP analyses, see below) and artery wall 
volumes automatically calculated.  

TeraRecon 

In study I the software of TeraRecon (iNtuition, TeraRecon, Foster City, CA, USA, 2015) was 
utilised for plaque morphology analysis. TeraRecon is an imaging program with many applications, 
one specifically developed for plaque analysis. Levels of Hounsfield Units (HU) can be set to the 
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examiner’s own discretion, using these thresholds for quantifying areas of different attenuation. In 
study I, where calcification was the object of study, the threshold was set to >400 HU to mark this 
component. In this way the volume of calcification (Vcalc) was acquired and a ratio of this and the 
total volume of the vessel wall (Vtot) in the same region was calculated to obtain the calcification 
degree: Vcalc/Vtot=calcification degree. The marked lesion was restricted to the most proximal 
half of the plaque in order to correlate the CTA measurements to the corresponding part of the 
plaque used in the microarray analysis, (figure 9). 

 

 

Figure 9 Examples of high calcified plaque (left) and low calcified plaque (right) analysed with TeraRecon iNuition, cases from study I. 

vascuCAP 

In the software vascuCAP many other measurands of the plaque can be obtained, both 
componential and structural characteristics. After the initial segmentation and manual adjustment, 
the plaque tissue composition analysis was performed which included additional components 
definition beyond calcification (CALC), namely lipid rich necrotic core (LRNC), intraplaque 
haemorrhage (IPH) and tissue not defined as any of the other, matrix (MATX), their volume and 
volume proportion. Furthermore, structural measurands such as plaque burden volume (ratio of 
the plaque volume of the total vessel volume), and minimum cap thickness (the shortest distance 
from LRNC to the lumen in the lesion) were obtained, (figure 10). When comparing the 
components with the gene expression in the matching plaque, the marked lesion was restricted to 
the most proximal half of the plaque in order to correlate the CTA measurements to the 
corresponding part of the plaque used in the microarray analysis. The correlation analysis between 
plaque morphology and clinical parameters such as diabetes, smoking, sex and laboratory results, 

High calc Low calc
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was done with the whole lesion included for calculations, considering the general/systemic nature 
of the clinical data.  

One major difference between the two software is that TeraRecon holds a level of subjectivity due 
to only one evaluator, while in the histology validation of vascuCAP’s plaque component analysis 
implicates a more objective analysis, even if the evaluator was the same.  

Risk scoring of patients 
In study III, evaluation of clinical risk scores was performed for each patient with a smartphone 
applications CAR and MDCalc (ABCD2). Neurological symptoms were classified as mentioned 
above. Both types of risk scores were stratified into low, intermediate and high risk. For ABCD2 
this was 0-3 points low, 4-5 points intermediate and 6-7 points high risk. For CAR 5-10% low, 11-
13% intermediate, 14-36% were considered as high risk of stroke.  

Microarray profiling 

The proximal half of the carotid plaque was sent for microarray profiling. RNA extracted from the 
tissue, was first controlled for suitable quality with respect to purity and integrity before it was sent 
to the core facility of Karolinska Institutet, BEA (Bioinformatics and Expression Analysis core 
facility), where the microarray profiling was performed, using the Thermo Fisher/Affymetrix, 
Human Transcriptome Array (HTA) 2.0 chip. 

Bioinformatics and Statistical analysis 

In order to investigate the transcriptome of the different plaque components in studies I and II, 
the quantification of each components was first performed and stratified into top and bottom. 

Figure 10 Examples of carotid plaque components measured with vascuCAP. One plaque with a large LRNC (yellow) and IPH (red) 
(A). One plaque with large calcifications (turquoise)(B). Same plaques in plain CTA in the recessed images. 

 

A B



 

28 

With this approach, top vs bottom (10 vs 10 or 
5 vs 5) patients whose plaques contained 
certain components were compared to each 
other.  

In study I multiple two-sided unpaired 
Student’s t-tests using the statistical software 
GraphPad Prism v.6 with correction for 
multiple comparisons according to 
Bonferroni rendered fold change and 
significance for each of the genes. The most 
differentially expressed genes were ranked in 
sorted lists according to fold change and the 
most up- and down-regulated genes were 
noted. Thereafter, the lists with differentially 
expressed genes were entered sequentially in a 
web based online tool (EnrichR), which 
assigned gene ontologies to each of the 
differentially expressed genes, and finally 
sorted them into enriched biological 

processes and pathways according to the lowest p-value. Overlapping ontologies and processes 
with p-value >0.05 were excluded using postprocessing in the Revigo public software. The 
bioinformatic analysis of study III was performed based on the same principle as in study I, 
comparing the microarray transcriptome of the high risk patients with the low risk patients of both 
ABCD2 and CAR. Workflow is depicted in (figure 11). 

In study II the number of components were 
extended to LRNC, MATX, IPH in addition to 
CALC which was used in study I. Structural 
characteristics were also included such as Plaque 
Burden volume. In the same manner as described 
above the top ten were compared to the bottom 
ten of the quantification of each component. The 
array data of these two different phenotypes for 
comparison was fed into the Transcriptomics 
Analysis Console (Thermo Fischer Scientific) 
program rendering a list of genes that was filtered 
only to coding mRNA, excluding the X and Y 
chromosome bound genes since the groups were 
not matched for sex. The filtered genes were 
ordered in a ranked list, according to their 
differential expression between the phenotypes. 
This list was exported to the web-based analysis 
program Gene Set Enrichment Analysis (GSEA). 

Statistical test with 
correction for 

multiple comparisons

Fold change + adj p-value

Down-regulated genes

Gene set enrichment 
analysis with EnrichR

Study I & III

Significant up-regulated 
biological processes

Low
gene expression

High
gene expression

Significant down-regulated 
biological processes

Up-regulated genes

Significant
genes

Figure 11 Bioinformatic and statistic workflow for study I & III. 

TAC analyses

Dysregulated genes, 
filtered gene list with 
p-value <0.05, ranked 

on fold change 

Gene set enrichment 
analysis with GSEA

Study II

Low
gene expression

High
gene expression

Significant up & down-
regulated 

biological processes

Figure 12 Bioinformatic and statistical workflow for study II. 
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GSEA rendered an enrichment score (ES) and a normalised ES (NES) with an estimate of 
statistical significance of the ES including adjustment for multiple hypothesis testing.  In this way 
results of significantly up- and down-regulated gene sets associated with specified biological 
processes, were defined in comparison of the two different phenotypes.  

To visualise the data comprehensively the lists of enriched gene sets were exported to the program 
Cytoscape with the plug-in application Enrichment Map (EM). EM allows visualisation of the 
results in clusters where the interacting biological processes are visualised in nodes and edges 
(lines). Nodes representing a pathway or biological process and edges the overlapping genes 
between the pathways. The size of the nodes correlates with the number of genes in that pathway, 
i.e. a larger gene set results in a larger node in the image. The thickness of edges (lines) associates 
with the number of overlapping genes. The cut-off FDR q-value for the nodes was set to <0.005.  
The Cytoscape function AutoAnnotate with WordCloud labelled the clusters in standardised way, 
using algorithms to use the most common words in the involved nodes, though often necessary 
to edit manually into a more comprehensive context. This method of GSEA analysis with 
subsequent Cytoscape visualisation is described in detail in Nature Protocols by Reimand el al 161. 
Workflow of study II is depicted in (figure 12). 

Prediction modeling 
In study IV, principally, the transcriptomics from the BiKE subcohort of 40 plaques were paired 
with the vascuCAP-data from CTAs as ‘ground truth’ for which prediction models were created, 
via machine intelligence. These trained models were then validated on additional four sequestered 
unseen patients, for the purpose of testing the models for comparing the predicted transcript 
expression with true expression.  

From study I, 3387 differentially expressed genes associated with calcification, were selected 
together with additional 91 genes selected from previous studies162,163 related to plaque instability 
and to atherosclerosis in general. All models were built with three levels of variation: (1) differing 
sets of morphological measurements according to hypothesized physiological rationale, meaning 
considering predictors for which a transcript may be reasonably related to avoid coincidental 
spurious associations(on all 3478 transcripts); (2) automated optimization using 10-fold cross 
validation while simultaneously varying tuning parameter values (on all 3478 transcripts); and (3) 
data was partitioned such that a training set on which the cross-validation was performed was 
strictly separated from a sequestered validation data set to test performance using locked-down 
models. Both supervised and unsupervised methods were used. Initially supervised models were 
created as mentioned above for each transcript where the model quality (MQ) was computed using 
concordance correlation coefficient and regression slope of predicted vs observed continuous value 
estimation, and for dichotomised categoric prediction models the MQ was computed as the 
product of the area under the receiver characteristic curve times Kappa.  The cut-off for robustly 
predicted transcripts were set to MQ >0.15 (e.g. AUC 0.75 and Kappa 0.2). The AUC states how 
much the model is capable of distinguishing between classes, but leaves out information of well it 
predicts for different types of outcomes. The Kappa value picks up on that and leaves information 
of how well the majority and minority class agreement is, where a high Kappa value excludes 
skewness (i.e. the ability to predict both outcomes with same exactness even of one of them has a 
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scarcer outcome). Those transcripts that exceeded 0.4 were classified as particularly robustly 
predicted and were further analysed with GSEA via EnrichR for gene ontology biological 
processes with adjusted p<0.05. Subsequently, unsupervised models of clustering were created to 
get a grasp of the associations between plaque morphology and expression levels of the transcripts, 
creating heatmaps including genes with highest and lowest expression.  The models were then 
locked down and tested on four previous unseen patients, to validate the performance. Finally, the 
transcripts robustly predicted from the CTA-analysis in the test cohort were analysed with GSEA 
to reach a patient-specific profile of the on-going biological processes in the carotid plaque at the 
time of the CEA.  

Immunohistochemistry and histology 
In studies I and IV immunohistochemistry on carotid plaques was performed as to validate and 
locate the novel genes discovered in the context of atherosclerosis, PRG4 and ABCB5. Antibodies 
for these two genes were used in respective studies together with well-established markers for, e.g. 
smooth muscle cells (SMA, PDLIM7, LMOD1), macrophages/inflammation (CD68, tryptase), 
osteoclasts (TRAP), endothelial cells (vWF), in addition to other histological stainings for elastin 
(Weigert), collagen (Masson Trichrome) and proteoglycan/collagen (Movat pentachrome) in order 
to map the co-localisation.  

In study II, histological stainings were performed to exemplify the typical type of plaque, e.g. 
calcified, lipid rich and containing haemorrhage, which were identified with Alizarin Red, Oil-Red-
O and Perl’s respectively to mark their specific traits.  

Ethical considerations 

Informed consent regarding all material and data was collected from all patients, organ donors or 
their guardians included in the BiKE biobank. The material and data from the patients were 
anonymised, were assigned an ID-number where the key for the personal information was securely 
stored, locked with password, only accessible by a couple of persons in our group. All studies were 
approved by the Research Ethics Committee at the Karolinska Institutet, Stockholm, Sweden.  

Studies are performed with the following ethical permit numbers: BiKE EPN DNr: 95-277, 95-
276, 01-199, 02-146, 02-147, 2009/295-31/2, 2011/950-32, 2013/2137-32, 2017/508-32, 
2018/954-32, 2020-00274. Kärl TX: 2008/1748-31/2. Permit for Prospective Tissue collection 
Karolinska (PPK): 2009/512-31/2.  

Tissue and blood sampling are conducted as part of the ordinary medical and surgical procedures 
and do not put the patients at unnecessary risk. 
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5 RESULTS AND DISCUSSION 
Atherosclerotic cardiovascular disease, i.e. stroke and myocardial infarction, is increasing and is 
causing major morbidity and mortality worldwide. Carotid stenosis is a common and preventable 
cause of ischemic stroke, where the paucity of diagnostic methods of identifying the unstable 
atherosclerotic plaque is a desirable gap to fill. Only taking stenosis degree and symptom into 
consideration in assessment of patients with carotid stenosis have been partially successful, but the 
imaging technology accessible today can improve the accuracy considerably not the least for 
patients without symptoms or with non-significant stenosis where the recommendations from the 
large ECST and NASCET studies do not apply. In this PhD project we aimed to improve the 
accuracy of diagnosing the vulnerable atherosclerotic plaque through shifting focus from luminal 
stenosis degree to the on-going biology in plaque, correlating this to the CTA images, i.e. plaque 
morphology. In study I and II, CTA imaging data were correlated to the transcriptomes of the 
carotid plaques (the plaque phenotype). In study III the patient clinical history i.e. patient 
phenotype, was correlated to the transcriptomes and to CTA imaging data. In study IV, prediction 
models were created with machine learning which can link the transcriptome with the plaque 
morphology in order to predict the on-going biological processes on a patient specific level from 
the CTA analysis. 

Plaque morphology 

In both study I and II, our starting point was the plaque morphology as assessed by analysis of 
pre-operative CTA, linked with the transcriptome of the corresponding CEA specimen; first with 
calcification in focus and subsequently how the other plaque components and structural traits of 
the plaque associated with the plaque phenotype.  

Calcification – a plaque stabilising factor 

As a first step we wanted to investigate what calcification in atherosclerotic plaques assessed on 
pre-operative CTAs represent as for the phenotype of the plaque. In study I, in global gene 
expression analysis comparing high vs low calcified plaques we found a large number of 
differentially expressed genes. The up-regulated genes were interestingly clearly dominated by 
genes typical for smooth muscle cell contractility such as CNN1 (calponin1), ACTA2 (Actin Alpha 
2) and MYOCD (myocardin) together with genes typical for extracellular matrix such as ELN 
(elastin), collagen, integrins and proteoglycans, where PRG4 was the top upregulated gene in the 
most calcified plaques. The most down-regulated genes were dominantly macrophages markers 
such as CD68, CD36, markers for lipid metabolism e.g. LPL, APOC1, PLIN1, degradation of 
extracellular matrix e.g. MMPs (no 7, 8, 9, 12) and chemokines such as CXCR4, IL8 (figure 13). 
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Both MMP 8, 9 and has in previous studies shown association with plaque vulnerability164 as well 
as CXCR4 and IL8165 

 

Figure 13 Up-regulated (A) and down-regulated genes (B) in highly calcified plaques compared to low. 

Moving on the biological processes same patterns was seen with upregulated processes of smooth 
muscle cell contraction, Ca-signaling and calcification, osteoblasts and chondrocytes, (figure 14). 
As opposed to the repressed biological pathways which consisted of inflammation, ECM 
degradation, cholesterol metabolism and cytokines response where the most repressed processes 
were response to TNF, IL1, IFNg, phagocytosis and chemokine-mediated signaling.  

In a clinical setting, elastin content of 
the carotid plaque has been proven to 
be important where a decreased level of 
elastin was associated with ipsilateral 
stroke and consequently plaque 
instability166, same relation of decreased 
elastin content was seen when 
comparing symptomatic patients vs 
asymptomatic167. The repressed 
inflammatory profile of the calcified 
plaque also suggested a stabile 
phenotype.  

Overall, the calcified plaque emerged as 
a strong phenotype where high and low 
calcification could be 100% separated 
by a panel of only 20 genes in a 
prediction model. As a context, our research group had previously shown that a panel of 30 genes 
could separate symptomatic from asymptomatic with 78% precision160. This could conclude that 
the presence of macro-calcification on CTA could improve the prediction of stroke risk in patients 
with carotid stenosis84. Microcalcification, which is according to previous studies associated with 
unstable atherosclerosis60,76, is not studied within this research project. Another carotid plaque trait 
that has gained attention recent years is the adventitial calcification with internal soft plaque, or the 
‘rim sign’. It has shown close association with IPH and therefore plaque instability87. Furthermore, 
several studies have shown that small calcifications, especially close to the lumen, could increase 
circumferential stress and contribute to plaque rupture86,168,169 The location of calcification was not 
objectively and systemically registered in study I and II, partly because of the challenges of 
stratifying it in a standardised repeatable approach. However, the localisation of the calcification 

Figure 14 Biological up-regulated processes in high calcified carotid plaques 
compared to low calcified, size of the piece of the pie indicates the enrichment 
score. 
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in the plaque would certainly be of high interest as an extension for future projects, especially if it 
could be internalised in the semiautomated segmentation and analysis of the software. 

When applying the same analyses onto the subgroup of only symptomatic patients a more 
heterogenous profile was revealed with signs of upregulation of both intraplaque haemorrhage and 
enrichment of ECM organisation and elastic fibre formation. However, inflammation was 
repressed in the same plaques confirming the stabilising phenotype that calcification most probably 
infer. These are intriguing findings, with processes associated with both stabilisation and 
destabilisation. One reasonable answer could be the fact how the cohort was selected, with the 
high calcification grade in focus with both symptomatic and asymptomatic patients not embodying 
a representative sample of the population, a typical atherosclerotic plaque is likely to be 
compounded with a large diversity of components170. In addition, this subcohort of high 
calcification was small, comparing 7 symptomatic vs 7 asymptomatic patients, most probably 
contributing to the somewhat incongruous results.  

To evaluate the association of calcification and smooth muscle cell differentiation, we investigated 
the association between of ACTA2 and calcification which was positive, ACTA2 being an 
established marker for smooth muscle cells in the contractility phase. SMCs have in previous 
reports shown to transit from a contractile phase expressing the typical markers of ACTA2, 
MYH11 or CNN1 to other lineages of cells such as chondrocytes and osteoblast-like and 
adipocyte-like cells in atherosclerotic disease, resulting in production of calcification, matrix 
proteins or lipid accumulation losing the differentiated function of a contractile SMCs171. In our 
study, we could confirm that SMCs in a contractile state co-existed with macro-calcification, 
suggesting a transit back to the differentiated phase expressing not only ACTA2 but also the more 
sensitive markers of differentiated SMCs: PDLIM7 and LMOD147, (figure 14). In addition, we 
found a strong association between the genes ELN (elastin), COL1A1 (collagen) with ACTA2 
(actin alpha 2, smooth muscle) also suggesting a contractile state of SMC and therefore also 
stability. This relationship was validated in tissue micro arrays where a positive association was 
shown between collagen and calcification as well as between elastin, collagen and SMA content. 
Furthermore, the same association was confirmed in medial calcification in biopsies from the 
epigastric artery from chronic kidney disease patients suffering from the Mönckebergs sclerosis. 
These findings could also be confirmed in histology stainings (see figure 15). To the best of my 
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knowledge, this is the first study to show that SMCs can return to or exist in a differentiated state 
in advanced atherosclerotic calcified lesions in humans. 

 

 

Figure 15 Histological stainings showed abundant signal for SMC sensitive markers (PDLIM7, LMOD1) in high calcified plaques. 
Calcification (red) elastin (dark purple), collagen (blue), proteoglycan + collagen (green). 

Proteoglycan 4 (PRG4) was discovered in study I as the most up-regulated gene in the highly 
calcified plaques. This gene has not earlier been demonstrated in atherosclerotic disease. The gene 
PRG4 is coding for a glycoprotein produced by chondrocytes and synovial fibroblasts primarily in 
joint surfaces and functioning as a lubricant. It has also been shown to inhibit inflammation172–174, 
fibrosis175 and possibly a positive factor in patency of venous grafts via inhibiting migration of 
venous SMCs in the media layer of the vessel176. In study I, we found that PRG4 co-localised in 
the ECM with osteopontin (an ECM-protein in bone produced by osteoblasts), and osteocalcin, 
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(a marker for bone formation and osteoblasts).  In immunohistochemistry stainings we saw PRG4 
localised with CD68(macrophage marker)+ and TRAP(osteoclast marker)+ cells surrounding 
calcification nodules in the intimal calcification suggesting it being a part of the calcification process 
not unlike bone formation. Subsequently, we studied how PRG4 co-existed with SOX9 and 
RUNX2 (both markers for chondrocytes) and found a positive correlation suggesting a connection 
with chondrocytes producing proteoglycan-rich collagenous matrix, these chondrocyte-like cells 
most likely originated from SMCs undergone transdifferentiation171.  However, PRG4 could not 
be seen in medial calcification.  

Calcification of carotid plaques and its transcriptome was also studied in study II where the 
quantification was performed with another method, the result was similar in regards to gene 
expression profile association to stabilisation processes.  

LRNC, IPH & Plaque Burden –an orchestration in plaque destabilisation 

After mapping the transcriptome of calcification of atherosclerotic plaques, our curiosity of how 
other components’ transcript could be mapped was awakened. With the software vascuCAP, other 
constituents of the plaques could be investigated. In study II, we stratified a cohort of 93 patients 
into subcohorts of either high (n=10 or 5) or low (n=10 or 5) content of other components, i.e. 
Lipid Rich Necrotic Core (LRNC), Intra Plaque Haemorrhage (IPH), calcification (CALC) matrix 
(MATX), and the structural feature Plaque Burden volume ratio as well as minimum Cap 
Thickness, (figure 16).  

Univariate correlation 
analyses of the components 
with clinical variables such as 
risk factors e.g. male sex, 
smoking, hypertension, use 
of statins, previous 
myocardial infarction, BMI, 
CRP or serum-creatinine did 
not show any relevant 
significant associations with 
the exception of that 
calcification volume and 
proportional volume 
significantly correlated 
positively with diabetes. This 
finding is in line with what is 
previously known; that 
patients with diabetes are 
predisposed to develop 
vascular calcification, most 
often medial calcification but 

*
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Figure 16 Examples of images from vascuCAP analysis, rows from top to bottom: LRNC, 
CALC, IPH. Columns from left to right plain CT, 3D images vascuCAP, axial views 
vascuCAP, corresponding histology slides. 
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also as a part of a late stage atherosclerosis177,178. 

Global gene expression analysis was performed on forty of the patients.  The transcriptomes of 
plaques rich of LRNC showed up-regulation of genes related to inflammation such as T-cells 
markers (CLECL1, CD28, TRGV5, 4 and 3), complement activation (C3), macrophages (CXADR, 
CLDN1) and pro-inflammatory mediators (S100A11), (figure 17). In line with other studies several 
of these genes have been related to inflammation in atheromatous plaques; C3179, CXADR180, 
S100A11181 and T-cell associated genes182. Also, in the GSEA-analysis the enriched biological 
processes in the LRNC plaques were dominated with inflammation, cholesterol metabolism, ECM 
disassembly and resorption of bone, all of which contributing to destabilise the tissue more prone 
to rupture or erode with thromboembolus as a consequence. The most down-regulated processes 
were associated to calcification and cell proliferation. This finding could partly be explained by the 
inverse correlation between LRNC and CALC we saw. Nevertheless, it strengthens our findings 
from study I claiming macro-calcification as a stabilising phenotype, possibly due to inversely less 
volume LRNC.  Moreover, these findings were strengthened by the outcome in univariate 
correlation analysis where LRNC volume associated significantly with neurological symptoms 
studying the whole cohort of 93 patients. In addition, volume of LRNC was one of the main 
predictors in the model of multivariables predicting neurological symptomatology.  LRNC has 
previously been debated whether it can be detected in CTA147,183 in the same way it has been 
validated in MRI90 or as echolucency in ultrasound184,185 and associated with increased stroke risk. 
In this study, LRNC detected on CTA analysed with histology validated software, was clearly 
connected with a genetic profile associated with inflammation and ECM degradation suggesting 
that CTA can be used in plaque vulnerability assessment.  
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Figure 17 Gene Set Enrichment Analysis of gene ontologies and pathways of carotid plaques differences of high vs low LRNC (A) and 
CALC (B). Red nodes representing up-regulated and blue nodes down-regulated ontologies or pathways. 
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Another interesting component that has an important clinical interest is IPH. It is a well-known 
feature of plaque instability in clinical studies of relationship between plaque histology and 
symptoms95,186 but has previously been difficult to identify on CTA due to overlapping HU with 
lipids and fibrous tissue. In our study we found that plaques analysed with high IPH proportional 
volume and volume also had a high presence of processes of inflammation, angiogenesis with 
genes related to platelets, immunoglobins, endothelial cells together with repression of ECM 
organisation and SMC migration and contraction. One interesting difference between the plaques 
with high LRNC compared with high IPH was Selectin E (SELE) which was one of the top up-
regulated genes in the group of high IPH but one of the most down-regulated genes in the plaques 
with highest LRNC. SELE is a marker for endothelial cells, more specifically an adhesion molecule 
involved in the interaction of leukocytes and endothelium, known in atherosclerosis. One possible 
reason for this distinct difference between the two components could be the presence of 
endothelium in neo-angiogenesis, a factor that has been suggested a contributor to intraplaque 
haemorrhage187,188. LRNC however, consisting of necrotic debris from inflammation and apoptosis 
with no active endothelial cells had according to our findings a clear down-regulation of SELE. 
IPH had in this small study no significant correlation with symptomatology in the univariate 
analysis, but was together with LRNC and MATX one of the heaviest weighted predictors in the 
multivariate predictor modeling for symptomatology.  

In addition to LRNC and IPH, plaque burden was another centrally interesting trait of the carotid 
plaque. Plaque burden and its volume has increasingly been discussed as a biomarker for plaque 
vulnerability103,189,190. It is important to understand that the degree of luminal stenosis not 
necessarily correlates to the plaque volume191,192, explained with the positive remodeling the artery 
often undergo in the atherosclerotic transformation of the vessel wall. Plaque disruption followed 
by healing has been shown as a mechanism of increasing plaque burden in coronary arteries in 
clinical and histological studies193–195.  In a clinical setting, in a prospective longitudinal study, 
progress of plaques volume independently associated with ipsilateral ischemic stroke196. But the 
biology behind this association is to our knowledge previously unknown. In study II, we found a 
slight correlation of plaque burden and calcification suggesting that calcified plaques often are 
bulky and represent a relatively large plaque burden. However, our results also showed that the 
gene expression profile of large plaque burden was mainly characterised by a clearly inflammatory 
with upregulation of MMPs, lipid and haemoglobin metabolism. The gene heme oxygenase 1 
(HMOX1) was greatly up-regulated in the plaques with large burden with a fold change of nine. 
HMOX1 is coding for the protein heme oxygenase which is centrally involved in heme catabolism 
resulting in biliverdin as a metabolic product. A recent study from our group showed a link 
between HMOX1 and Biliverdin Reductase B (BLVRB) where it was identified as a biomarker of 
plaque instability. This was further validated in population samples with increased risk of future 
cardiovascular events 162. Furthermore, processes related to SMCs and ossification were down-
regulated in plaques with large burden. This genetic profile was similar to the plaques with most 
LRNC and distinctly different from the highly calcified, suggesting that plaque volume alone is not 
sufficient for assessment of vulnerability, but seems to require additional details of plaque 
components. Additionally, confirming plaque burden’s central role of plaque vulnerability 
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assessment, we found a significant association between a large plaque burden with 
symptomatology in univariate correlation analysis.  

When using plaque morphology data from CTAs in creating a prediction model for 
symptomatology, these data alone performed better than involving clinical variables and 
significantly better than stenosis degree alone. The model was also tested on thirty unseen patients 
where it performed reasonably well with AUROC 0.68 and Cohen’s Kappa 0.37, which further 
reinforce the central position of plaque morphology itself in stroke risk assessment rather than 
simply focusing on the luminal stenosis. 

Patient phenotype 
How do clinical risk scores compare in plaque vulnerability assessment? 

After mapping plaque phenotype in relation to plaque morphology, next step was to explore how 
clinical tools already existing in the clinical work today i.e. patient phenotype, associate with the 
plaque phenotype and its morphology 
in CTAs. The clinical risk scores 
ABCD2 respective CAR both gives 
an estimate of stroke risk within days 
to months respective 5 years. In study 
III, we correlated the scores to the 
on-going biology in the plaques but 
also in circulating PBMCs, as well as 
to the CTA images. 101 symptomatic 
patients were scored for both scoring 
systems, where the highest scored 
patients were compared with the 
lowest scored, resulting in 29 (5-10%) 
vs 29 (14-36%) for CAR score and 15 
(0-3 points) vs 15 (6-7 points) for 
ABCD2 score, intermediate scored 
patients were excluded from the 
bioinformatic analysis, (figure 18). 

The two scoring systems correlated reasonably well with each other with Pearson’s r coefficient of 
0.52, p <0.0001. This is quite surprising since the ABCD2 is developed for an outpatient clinic 
non-emergent situation predicting the stroke risk for patients’ with TIAs with only five factors 
input, not specific for carotid stenosis. CAR on the other hand is more specific for predicting 
stroke risk for patients with carotid stenosis in a more emergent situation, using eleven factors 
input including the important factor of plaque ulceration. This correlation speaks in favour for the 
traditional idea of how important patient phenotype is in assessing stroke risk.  

In global gene expression analysis with microarray comparing the high vs low risk score in CAR, 
the upregulated genes in the high scored plaques consisted of ABCB5 ion transporter as the top 
up-regulated gene but also genes coding for cytokines such as IL-8, scavenger receptor CD36 and 

Figure 18 Work flow chart of study III. As indicated, the yellow boxes represent 
evaluations of the basic results of the study 
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matrix metalloproteases MMP7 and MMP8 were among the most up-regulate genes. As examples, 
IL-8 is a proinflammatory protein which is known to be involved in cardiovascular disease and 
endothelial dysfunction together with angiogenesis, IL-8 being a potent angiogenic factor197,198. 
MMP8 in CEA specimens have been shown to have associations to vulnerability in plaques and 
cardiovascular outcome164,199. Among the downregulated genes we found actin cytoskeleton and 
SMC associated markers such as PDLIM7 known from our previous studies47. In the GSEA 
analysis, the up-regulated biological processes consisted of inflammation, foam cell differentiation 
and lipid transport, SMC and endothelial cell migration, all of which are known processes in more 
or less advanced atherosclerosis in general. Additionally, angiogenesis and coagulation, iron 
homeostasis and wound healing were up-regulated which represent processes associated with 
neovessel formation and IPH in particular188. The repressed biological processes were for example 
ECM organisation and progenitor cell differentiation. This kind of phenotype was recognisable 
from study II where plaques high of LRNC and IPH contained similar biological processes. When 
performing GSEA analyses of the CAR cohort on the PBMCs the induced processes were 
represented by inflammatory responses, cytokine mediated signaling, platelet activation, 
aggregation and degranulation. The gene expression profile of the PBMCs which seemed to reflect 
the biology of the plaques could be a hopeful indication that a serum biomarker for plaque 
vulnerability could become within reach.  

In the same manner, analyses were performed on the ABCD2 cohort, where ABCB5 ion 
transporter interestingly again was among the top up-regulated genes together with bone matrix 
protein, leukocyte activating proteins, lipid metabolism associated genes. And down-regulated 
genes were associated with SMC; such as MYOCD, MYH10, and SOST where the latter is 
involved in inhibition of calcification. In the ABCD2 group, the top upregulated pathways in the 
GSEA analysis were neutrophil mediated immunity, foam cell differentiation, cholesterol transport 
and coagulation. The repressed processes consisted of ossification, chondrocyte differentiation, 
SMC migration and ECM organisation. In the PBMCs the pattern of increased inflammatory 
processes was consistent except that IL-6 and VEGF signaling were repressed. To summarise, the 
findings of the associations between an unstable plaque and blood phenotype and high risk 
scores/unstable patient phenotype are new to the field, but also confirms the results from study I 
and II.  

The gene of ATP binding cassette subfamily B member 5 (ABCB5) was one of the top up-
regulated genes in both scoring systems. It has never been associated previously with 
atherosclerosis or cardiovascular disease, but with melanoma, the protein product is involved in 
transport of e.g. glucose, bile salts, metal ions over the cell membrane. In study III, ABCB5 was 
further evaluated in extended cohorts comparing the expression within different phenotypes, 
where it was significantly upregulated in plaques compared to normal arterial wall as well as in 
symptomatic compared to asymptomatic patients. It also correlated positively with markers 
previously related to IPH, such as BLVRB and HMOX which previously has been studied in our 
research group162. In immunohistochemistry, the protein product of ABCB5 was localised in the 
necrotic core of the plaque, especially close to IPH areas and in neovessels stained with Perl’s blue 
stain, co-localised to CD68+ macrophages. Since ABCB5 was one of the top genes in both of the 
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risk scoring groups, it is an interesting candidate gene to explore further as a biomarker for unstable 
atherosclerotic disease.  

Comparing the risk scores to the plaque morphology in the CTA images analysed with vascuCAP 
we found a positive correlation between the component MATX and high risk score of both CAR 
and ABCD2. Consistently with this, the component of MATX showed a quite inflammatory 
profile with leukocyte activation and lipid metabolism and a repression of SMC proliferation and 
muscle contraction, in the bioinformatic analysis done in study II. Furthermore, we saw also a 
slight negative correlation with the proportional volume of calcification and CAR and with 
ABCD2 implicating the low risk patients had higher calcifications degree, which supports the 
findings in study I and II inferring macro calcification as a stabilising trait of the plaque. 

 

Figure 19 Scatter plots with correlations of plaque characteristics (components and structure) with CAR and ABCB2. 

No significant correlations were seen between LRNC and neither of the risk scores, (figure 19). 
One reason to this quite surprising finding could be that this cohort consisted of only symptomatic 
patients with presumably unstable LRNC-containing plaques, in which the presence or absence of 
stabilising macrocalcification is crucial in defining the score; e.g. the more calcification the lower 
risk score confirming our hypothesis of macrocalcification being a stabilising factor. The stenosis 
degree, which is the main parameter used as per today in the daily clinical praxis, correlated to CAR 
but surprisingly in a negative fashion. Plaque burden did not correlate to any of the risk scores, 
even though it has been shown to have associations to stroke risk79,103 as previously mentioned in 
study II. Three of the high risk plaque were studied in histology slides, contained no calcification 
or lipid content, but neovessels and iron deposits were plentiful confirming both the imaging and 
the bioinformatic findings. 

Even if this study showed that symptomatic patients scored with high stroke risk correlated to 
plaque biology signifying more unstable lesions, and also associated with clinical features indicating 
increased risk, the clinical applicability of these findings are questionable. Given our results in study 
I, II and IV at our hands and the questioned utility of scoring systems for stroke such as 
ABCD2150,200, imaging to assess plaque morphology seems far more relevant for vascular surgery 
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practise. Nevertheless, these risk scores still aid in stratification of symptomatic patients and are 
clearly useful in research, as demonstrated in our study for the identification of novel molecular 
targets such as ABCB5.  

Personalised medicine 
Machine learning for predicting plaque phenotype – the clinical tool we need in the future? 

After exploring plaque and patient phenotypes in relation to plaque morphology we moved on to 
the quest of exploring whether the biological profile of the plaque can be predicted. The idea was 
to pair data from CTAs with the transcriptomes of the corresponding specimens and via help from 
machine learning create prediction models which extendedly could be used as a clinical tool to 
assess the plaque biology on a more patient-specific level. This was executed with help from 
previous studies (partly study I)162,163 where 3478 genes related to calcification, plaque instability or 
atherosclerosis in general were selected as a base for the analysis. First, models were created from 
CTA data with output of each one of these transcripts. The models were considered robustly 
predicted when the model quality exceeded >0.4. This requirement was met for 414 transcripts, 
using both continuous and dichotomized inputs. In some cases, morphology alone generated the 
highest value in model quality and in some models adding the clinical features increased the 
performance. For instance, two transcripts were especially highly rated for model quality using 
morphology and clinical variables: interleukin-1 receptor 1 (IL1R1) associating with LRNC and 
transforming growth factor-β receptor type 2 (TGFBR2) linked with calcified lesions. These 
findings were validated in immunohistochemistry stainings of CEA specimens, (figure 20). 

The gene IL1R1 is coding for the cytokine interleukin-1 receptor IL1R1 and is an essential 
mediator of many immune and inflammatory cytokine-driven responses. Inhibiting interleukin-1B 
has been coupled to anti-inflammatory effect in atherosclerotic vascular disease201 and has in animal 
studies shown a decrease in plaque progression202. Inhibiting IL-1B with antibodies (canakinumab) 

Figure 20 Immunohistochemistry of a LRNC rich plaque with TGFBR2 (A) and IL1R1 (B) and a plaque rich of calcification 
(CALC) with TGFBR2 (C) and IL1R1 (D) 
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has been subject of both preclinical and clinical trials investigating it as therapeutic strategy in 
patients different inflammatory disorders203,204. One large clinical randomised trial (CANTOS) of 
more than 10 000 high-risk patients with prior myocardial infarction and persistent inflammation 
were randomised to one of three doses of canakinumab or placebo. A dose of 150 mg 
canakinumab every 3rd months during two years resulted in a reduction of cardiovascular events 
without reduction of serum-lipids proving the inflammatory pathogenesis of atherosclerosis205. 
However, in a subsequent randomised trial of methotrexate vs placebo did not show any impact 
of methotrexate on levels of IL-1B, IL-6 or hs-CRP nor did it differ in the end points being 
nonfatal MI, stroke or cardiovascular death206. 

The TGFBR2 gene is coding for the receptor of TGFB which is an important mediator in cell 
proliferation, wound healing, cell cycle arrest and immunosuppression. It plays a significant role in 
cell integrity in the vessel wall and mutations in this gene associates with Marfan’s syndrome, 
Loeys-Dietz syndrome 2 (both related to aortic aneurysm) and various tumour diseases. TGFB is 
considered as one of the most central regulators of ECM, with diminished fibrosis as a result of 
blocking it207. These functions of TGFB are well in line with our findings of the stabilising 
processes in the high calcified plaques from study I 
and II, rendering suggesting TGFB and its receptors 
as stabilising markers possible to robustly predict with 
CTA.   

Out of the 414 robustly predicted transcripts, 237 
were categorised as particularly robustly predicted 
transcripts and were further analysed with GSEA to 
clarify the ongoing biological processes. This analysis 
showed several fundamental biological processes 
related to atherosclerosis, such as collagen 
degradation, SMC proliferation, ECM organisation, 
apoptosis, phospholipid and cholesterol efflux and 
neutrophil mediated immune response. More 
specifically, for example LRNC was coupled to 
biological processes associated with inflammation and 
ECM degradation, confirming the results in study II.   

Subsequently, unsupervised clustering of CTA 
measures and these 414 transcripts was performed to 
get an understanding of the relationship between the 
morphology and expression levels, creating heatmaps 
for each type of the components, (figure 21). In this 
analysis, the proportional and absolute volume of 
different components were coupled to the 414 
transcripts where the association between high CALC 
and PRG4 again was confirmed as from study I and II, high LRNC was related to MMP12 and 
IPH was coupled to BLVRB (Biliverdin reductase B)  previously studied by our group as a 

Figure 21 Example of the unsupervised clustering analysis here 
showing the 20 of the most up-(green) and down(red)-regulated 
(black indicates intermediate) genes of the component LRNC, 
volume, maximum area, proportional volume and area of the 
component LRNC are depicted in purple. 
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biomarker for IPH162 (as discussed above under plaque morphology). MATX was not as clear in 
the associations with a specific profile, but more nuanced possibly depending on a more 
heterogenic tissue type.  

The predictive ability of for example LRNC and IPH as morphological biomarkers to predict 
transcripts known to have associations to plaque vulnerability such as MMP12208,209, MMP8199, 
IL1B201 and BLVRB162 is of high interest both in diagnostics of the vulnerable plaque but also in 
drug development. 

Finally, the predictive models were tested on four previously unseen patients where the level of 
transcripts of the predictive models were compared to the true expression, where the most 
significantly dysregulated transcripts were analysed with GSEA and showed a unique biological 
profile. In figure 22, one example of predicted transcript made from the plaque morphology is 
shown. This plaque was high in LRNC, low MATX and intermediate levels of CALC and IPH, 
resulting in gene profile of seven significant processes: e.g. degradation of collagen and ECM, 
phospholipid efflux and HDL-mediated lipid transport. These kinds of results, when validated in 
larger studies, can contribute developing precision medicine with patient-tailored therapy which 
infers a great improvement in comparison to therapies of today where indications of treatments 
are based on principles of large groups taking little or no notice of the individual patient and plaque 
phenotype. Prediction models that can link the transcriptome with the plaque morphology in order 
to predict the on-going biological processes on a patient specific level from the CTA analysis, could 
have the capacity of tailoring the best therapy for an individual patient e.g. surgery, ASA, statins, 
PCSK9 inhibitors and/or canakinumab.  

 

 

 

Figure 22 Performance using locked-down models on (unseen) test patient, here exemplified by test patient T2. Heatmaps for the test patient 
representing: morphology (the most important morphology variables) in purple, the predicted gene expression of the 20 most significant genes 
according to the best performing prediction models and the true gene expression according to the microarray results. To the right is the GSEA 
analysis of the predicted expressions making the results more accessible and possible to adapt the treatment in a patient specific approach.  
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6 CONCLUSIONS 
The results of the studies in this PhD project show that biological processes in carotid plaques 
associated to vulnerability, can be linked to plaque morphology analysed with CTA image analysis. 
Patient phenotype classified with clinical risk scores associates to plaque phenotype and 
morphology in CTA. The biological processes in the atherosclerotic plaque can even be predicted 
with plaque morphology CTA analysis in this small pilot study, providing a possibility to precision 
medicine after validation in larger scale studies. Clinical implementation of these methods and 
results could lead to improving the diagnostic accuracy of the vulnerable carotid plaque, 
consequently decreasing NNT for carotid surgery and also improving medical therapy for the 
individual patient.   

I. Calcification in carotid plaques associates with a lesion-stabilizing transcriptome and 
smooth muscle cell function.  

II. Plaque morphology in CTA can help assess plaque molecular phenotype and reflect 
e.g. inflammatory, cholesterol and tissue degradation processes but also smooth 
muscle cell function.  

III. Assessment of plaque morphology by CTA is suggested as superior in prediction of 
stroke risk compared to other clinically accepted parameters (e.g. stenosis degree).  

IV. High clinical risk scores are related to molecular processes previously associated with 
plaque vulnerability. 

V. High clinical risk scores are associated with certain components of the plaque assessed 
with CTA.  

VI. Genes, not previously known associated with atherosclerosis were identified having a 
association with atherosclerosis; PRG4 and  ABCB5. 

VII. Phenotyping atherosclerotic plaques by CTA imaging can clarify the molecular 
signature of atherosclerotic lesions in a multi-scale setting, which could serve as a base 
for optimized personalised therapy in the prevention of myocardial infarction and 
ischemic stroke. 
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7 POINTS OF PERSPECTIVE 
Modern management of carotid stenosis 
Routinely, imaging of carotid disease in Sweden is currently consisting mainly of US and CTA. In 
most centres the indication for CEA is still depending on a stenosis degree above 50-70% 
(NASCET) and the occurrence of neurological symptoms, but assessing the plaque morphology 
has increased in interest, especially after recommendations in the ESVS guidelines 2017 which 
brings up certain imaging features associated with an increased risk of stroke: large plaque area, 
large juxta-luminal black area in US, plaque echolucency in US, IPH in MRI210. The guidelines also 
recommend that patients with <50% stenosis could possibly be considered for re-vascularisation 
if a plaque is causing iterative strokes, is visualised with a large LRNC (US, MR, possibly CTA), 
have ulceration (US, CTA, MRI) or intraplaque haemorrhage (MRI) as practiced in some centres.  

However, in order to accommodate guidelines with respect to these plaque features, associations 
to future risk of stroke or myocardial infarction has to be established and large prospective studies 
are ongoing to examine the predictive value of these features: PARISK (Plaque At Risk), ARIC 
(Atherosclerosis Risk in Communities), CARE-II (Chinese Atherosclerosis Risk Evaluation-Phase 
II), CAPIAS (Carotid Plaque Imaging in Acute Stroke) and CAIN (Canadian Atherosclerosis 
Imaging Network)211–215. The outcome of these studies will most probably change the management 
of carotid disease and lead to inclusion of assessment of plaque morphology in clinical practise.  

Meanwhile, it is important to further explore and validate the potential of the diagnostic tools 

we have available today. The development of multi-energy CT, which is increasingly accessible, 

is generating large amount of data possible to use in analytical software using algorithms and 

machine learning capabilities after semi-automated segmentation of the vessel. The methodology 

explored in this PhD project, rendered interesting results, is promptly applicable in the clinical 

praxis as a guiding tool as of today. However, validation of the methodology in a clinical setting 
where its predictive power can be established in large, prospective clinical studies is highly 
warranted. 

Strengths and weaknesses 
The studies of this PhD project are methodologically unique in correlating the CTA plaque 
morphology to the global gene expression signatures of the ongoing biology in the plaque. Several 
studies have connected plaque morphology to stroke risk in the recent years, but linking plaque 
morphology to the global gene expression profile and the ongoing biological processes has never 
been done before, and throughout this thesis, add support for the ability of detailed plaque 
morphology to capture biological processes relevant for assessment of plaque (in)stability. The 
findings of these studies could readily be applied to atherosclerosis in other vascular beds such as 
the coronary arteries, where actual plaque specimens are not available as coronary plaques rarely 
get excised, but instead are stented or by-passed. In this way, the carotid disease has a special value 
since it provides opportunities to link imaging to the disease on a molecular and cellular level. 

However, our studies have limitations. First of all, the transcriptomic cohort was selected from a 
calcification perspective, selecting the high and the low calcified plaques from patients undergoing 
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CEA at our unit, primarily selected for study I. This could skew the findings as the cohort was 
more representative of calcified plaques than other components, and fewer plaques were left to 
study the other components rendering a rather small sample size. This size was probably the reason 
for the lack of significantly differentially expressed single genes in study II for components of 
LRNC, MATX, IPH, but rendered a substantial number of significantly differentially expressed 
genes studying calcification. We believe that calcification is a relatively strong phenotype, when 
comparing it with, for instance, a group of plaques from of symptomatic vs asymptomatic patients. 
However, the sample size was larger when studying the correlation between clinical variables and 
morphology in study II, for instance the univariate correlation to symptomatology. In study III a 
rather large cohort was scored (n=101) but only the high and low risk patients were selected for 
further analysis, also losing power in significant correlations.  

Another limitation is that there was only one reader of the CTAs and vessel segmentations in all 
of the studies without traditional intra- or interobserver validation. Conversely, both of the analysis 
software are semi-automated programs made for, and validated for, different users, where 
vascuCAP is histology-validated, expectantly mitigating the possible subjectivity. In the preparation 
of the analysis with vascuCAP, a quality assurance protocol was followed to set standard quality of 
the analyses, excluding the cases that did not meet the quality criteria, e.g. movement- and dental 
artefacts etc.  

An additional weakness is how we limited the marked lesion of interest in the CTA analysis 
program to its proximal half, in order to match measurements to the corresponding tissue used in 
the microarray data analysis. This issue was dealt with in a standardised way, always starting the 
analyses proximally by the border between healthy and diseased vessel, going up until the culprit 
point of the plaque or stenosis. The whole lesion (from healthy to healthy vessel wall) was used in 
analysis of clinical variables and plaque morphology. Also, only CTA with contrast administration 
and no native series was performed, which in theory could interfere with calcification in the plaque. 
The border between these two similar attenuations could however be visualised by changing the 
windows width and level and edited manually.  

In study III, only fifty of the scored patients had a CTA done, presumably mitigating possible 
correlations between risk scores and plaque morphology, probably requiring more power to detect 
significance in trends. 

Future applications 
Up until now, most patients with carotid stenosis are assessed by simply measuring the degree of 
luminal stenosis and symptomatology. But a paradigm shift is emerging with a focus towards the 
actual underlying disease, the unstable lesion and applying quickly developing imaging technology 
together with known features of plaque instability. In this PhD project, all results point to the fact 
that the degree of stenosis is blunt and unprecise for risk prediction and inferior to assessment of 
plaque morphology and biology, but also to risk scoring. The gene expression profile of the tightest 
stenosis did not show any convincing association to enrichment of uniform biological processes 
in study II. In addition, the stenosis degree was actually negatively correlated to high risk score 
(CAR). Finally, in study IV, the created prediction models performed better when using the input 
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from plaque morphology data sometimes together with the clinical variables but always superior 
to stenosis degree alone.  

In order to launch the method of plaque morphology analysis as a part of diagnosing the vulnerable 
plaque in a clinical setting, a larger scale longitudinal study is necessary where asymptomatic 
patients not undergoing surgery would be assessed by CTA plaque analysis and subsequently 
followed prospectively in regards to end-points such as ischemic ipsilateral ischemic stroke, and at 
the same time compared with other risk predictors such as the degree of stenosis.  

Another development of the method would be to evaluate how the position of macro calcification 
in the plaque influence vulnerability and risk, both in regards to adventitial calcification (the ‘rim 
sign’) or calcification in proximity to the lumen which both could implicate plaque vulnerability. 
CTA is undoubtedly superior to ultrasound in this regard, rendering spatial information (location 
and extent) of the plaque and its’ calcifications.  

In an ideal future, I foresee that patients 
with a vulnerable plaque will be detected 
before they become symptomatic, and 
suffer either a stroke or a myocardial 
infarction. I envision that this could be 
achieved as outlined in (figure 23). A 
patient with cardiovascular risk factors 
will get a work-up done with blood 
samples for detection of serum 
biomarkers capable of determining 
plaque vulnerability, together with a CT 
scan of neck vessels or coronaries, which, 
in case atherosclerotic plaque are found, 
go through plaque analysis with machine learning. Biomarkers and virtual transcriptomics from 
plaque imaging, can be used for a qualified estimation of the plaque biology and its’ vulnerability. 
This estimation would be an advanced guide for the clinician in deciding what is the most adequate 
type of treatment for this particular patient, i.e., patient-specific medication(s) with or without 
surgery. Through this improvement of stroke risk prediction and individualised treatment of 
patients with carotid atherosclerosis the two main aims of this thesis would be reached, explicitly: 
1) lowering the NNT of carotid surgery closer to one; 2) adapting the required medications to that 
patients’ particular biology.  

 

Figure 23 Idea of how future assessment of carotid atherosclerosis can develop, 
improving accuracy of both diagnostics and treatment 
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