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Abstract  103 

Air pollution has been associated with adverse health effects across the life-course. Although 104 

underlying mechanisms are unclear, several studies suggested pollutant-induced changes in 105 

transcriptomic profiles. In this meta-analysis of transcriptome-wide association studies of 656 106 

children and adolescents from three European cohorts participating in the MeDALL 107 

Consortium, we found two differentially expressed transcript clusters (FDR p<0.05) 108 

associated with exposure to particulate matter < 2.5 micrometers in diameter (PM2.5) at birth, 109 

one of them mapping to the MIR1296 gene. Further, by integrating gene expression with 110 

DNA methylation using Functional Epigenetic Modules algorithms, we identified 9 and 6 111 

modules in relation to PM2.5 exposure at birth and at current address, respectively (including 112 

NR1I2, MAPK6, TAF8 and SCARA3). In conclusion, PM2.5 exposure at birth was linked to 113 

differential gene expression in children and adolescents. Importantly, we identified several 114 

significant interactome hotspots of gene modules of relevance for complex diseases in relation 115 

to PM2.5 exposure.  116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 
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1. Introduction 128 

Air pollution exposure at birth has been associated with different types of health effects, such 129 

as adverse pregnancy outcomes (Pedersen et al. 2013), childhood airway disease (Gehring et 130 

al. 2015), and neurodevelopmental disorders (Sram et al. 2017). Although the precise 131 

mechanisms responsible for these health effects are unclear, several studies have suggested 132 

oxidative stress and systemic inflammation as potential intermediate biological responses to 133 

air pollutants (Kelly and Fussell 2015). Accumulating evidence suggests that these acute 134 

systemic effects of long-term exposure to air pollution can be detected by assessing genome-135 

wide gene expression profiles in peripheral blood cells (Mostafavi et al. 2017). 136 

Exposure to air pollutants has been shown to induce changes in gene expression in animal and 137 

in vitro experiments (Bhetraratana et al. 2019; Kim et al. 2019; Zhu et al. 2019), but evidence 138 

from human studies is scarce. Short-term inhalation studies reported changes in the expression 139 

of genes involved in inflammation, tissue growth and host defense against environmental 140 

insults, including IGF-1 signaling, insulin receptor signaling and NRF2-mediated oxidative 141 

stress response pathway in blood (Huang et al. 2010; Peretz et al. 2007), as well as genes 142 

associated with bronchial immune responses in bronchoalveolar lavages, protein degradation, 143 

and coagulation (e.g. PLAU, F2R, CBL, UBR1) (Pettit et al. 2012) in response to exposure to 144 

diesel exhaust. A genome-wide gene expression microarray analysis of 63 non-smoking 145 

employees at 10 trucking terminals in the northeastern US identified a set of genes implicated 146 

in ischemic heart disease, chronic obstructive pulmonary disease (COPD), lung cancer, and 147 

other pollution-related illnesses (Chu et al. 2016). Another study based on 550 healthy 148 

subjects participating in cohorts from Italy and Sweden has shown differential gene 149 

expression related to long-term exposure to nitrogen oxides (NOx) similar to tobacco induced 150 

changes in the transcriptome (Mostafavi et al. 2017). In a study of school age children 151 

inhabiting a severely polluted area from the Czech Republic, numerous genes were found to 152 
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have their expression in blood relatively increased when compared with children from a rural 153 

less polluted area (van Leeuwen et al. 2006). In other studies, gene-environment interactions 154 

with respect to air pollution exposure and expression levels have been reported (Fave et al. 155 

2018; Gref et al. 2017). 156 

To our knowledge, no study has evaluated expression levels across the genome in children 157 

and adolescents in relation to individual ambient air pollution exposure. Epigenomic changes 158 

related to air pollution are, on the other hand, relatively well studied (Gruzieva et al. 2017; 159 

Gruzieva et al. 2019). Although several differentially methylated CpGs and regions have been 160 

identified in relation to environmental factors, most studies found rather weak associations 161 

with ambient air pollution exposure (Gruzieva et al. 2017; Gruzieva et al. 2019; Lee et al. 162 

2019; Plusquin et al. 2017). Integrating different types of omics data may shed new light on 163 

gene modules or molecular pathways, which play key roles in cellular responses and 164 

subsequent disease (Jiao et al. 2014; Tian et al. 2017). In addition, it has been suggested that 165 

omics integration may enhance study power with increased likelihood to identify 166 

biologically relevant mechanisms and similarity patterns between groups of subjects (Li et 167 

al. 2018; Wang et al. 2014). For example, in a recent integrative study of methylome and 168 

transcriptome of human cardiomyocytes, multiple altered methylome and transcriptome 169 

signatures in the cardiac disease-specific genes, following exposure to particulate matter 170 

less than 2.5 micrometers in diameter (PM2.5), have been reported (Yang et al. 2018). 171 

Human studies of environmental exposures combining different -omics data are, however, 172 

scarce (Vargas et al. 2018). 173 

In the present study, we explored the association of gene expression profiles with PM 2.5 174 

exposure at birth and at the time of blood sampling (i.e. pre-school age or adolescence). 175 

Moreover, we performed an integrative analysis of gene expression and DNA methylation 176 

data to identify molecular pathways that are epigenetically and functionally affected by PM2.5 177 
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exposure. Within the framework of the European collaborative Mechanisms of the 178 

Development of ALLergy (MeDALL) project (Bousquet et al. 2011), we used harmonized 179 

data of three European birth cohort studies for which a standardized assessment of air 180 

pollution exposure for PM2.5 was available.  181 

 182 

2. Methods 183 

2.1 Study population 184 

Data from three European birth cohort studies from Sweden (BAMSE (Schultz et al. 2016)); 185 

Germany (GINIplus (Heinrich et al. 2017)); and Spain (INMA (Guxens et al. 2011)), 186 

participating in the MeDALL project (Bousquet et al. 2011) were included in the present 187 

analysis (n total = 656). All cohorts acquired ethics approval and informed consent from 188 

participants prior to data collection through local ethics committees. 189 

 190 

2.2 Air pollution exposure assessment 191 

In the MeDALL cohorts, annual average concentrations of PM2.5 were estimated at home 192 

addresses at birth and at the time of bio-sampling (i.e. pre-school age in INMA and 193 

adolescence in BAMSE and GINIplus) through land-use regression (LUR) models developed 194 

for each study area within the European Study of Cohorts for Air Pollution Effects (ESCAPE) 195 

project (Eeftens et al. 2012). Further details about exposure assessment are provided in the 196 

online supplement.   197 

 198 

2.3 Gene expression measurements 199 

Expression levels were measured in BAMSE (244 individuals of mean age 16.69 years), 200 

GINIplus Munich (247 individuals aged 15.2), and INMA (165 individuals aged 4.48) cohorts 201 

with the Affymetrix Human Transcriptome Array 2.0 (HTA) (Lemonnier et al. 2020). Whole 202 
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blood was collected from study subjects in PAXgene tubes, and RNA was extracted batch-203 

wise (QIAGEN, Courtaboeuf, France). RNA yield and quality were assessed with state-of-204 

the-art spectrophotometry and lab-on-a-chip microfluidic technologies, respectively. RNA of 205 

highest quality was selected for amplification, labelling, and hybridization on HTA with WT 206 

PLUS kit (Affymetrix Inc.) at the CNRS USR 3010 unit in Lyon. Gene expression levels were 207 

normalized with the Robust Multi-array Average (RMA) algorithm including quantile 208 

normalization (Irizarry et al. 2003), and version 36 of NetAffx annotation was used to 209 

annotate the 67,528 transcript clusters (probes covering a region of the genome reflecting all 210 

the exonic transcription evidence known for the region and corresponding to a known or 211 

putative gene, including coding and non-coding genes). The empirical Bayes method was 212 

applied for batch correction on the main three production phases using ComBat from the sva 213 

package in R (Johnson et al. 2007). More detailed information about the gene expression 214 

sample assessment can be found elsewhere (Lemonnier et al. 2020). The estimated cell type 215 

proportions were calculated from gene expression data using CIBERSORT 216 

(http://cibersort.stanford.edu/) (Newman et al. 2015).  217 

 218 

2.4 DNA methylation measurements 219 

Epigenome-wide DNA methylation was measured using DNA extracted from whole blood 220 

samples collected at the age of 16 years in the BAMSE (n=262) and at 4 years in the INMA 221 

(n=201) cohorts (Xu et al. 2018) processed with the Illumina Infinium HumanMethylation450 222 

BeadChip (Illumina Inc., San Diego, USA). More information is provided in the online 223 

supplement.  224 

 225 

2.5 Statistical analyses 226 

2.5.1 Genome-wide gene expression analyses 227 

https://www.affymetrix.com/support/help/exon_glossary/index.affx#psr
http://cibersort.stanford.edu/
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We examined the associations between exposure to air pollutants and gene expression levels 228 

across the genome by means of linear regression analysis using the limma package in R 229 

(Ritchie et al. 2015). Air pollution concentrations were entered as continuous variables 230 

without transformation. All analyses were adjusted for sex, age (years), study region (where 231 

applicable), maternal education, maternal smoking during pregnancy, second-hand smoking, 232 

active smoking status (in adolescence), BMI (kg/m²), physical activity at the time of bio-233 

sampling, season of blood sampling and cell type. Cohort-specific results of the TWAS were 234 

subsequently included in a fixed-effect meta-analysis by combining study-specific weights 235 

based on the inverse of the variance. We adjusted for multiple testing using the Benjamini & 236 

Hochberg false discovery rate (FDR) correction (Benjamini and Hochberg 1995). The results 237 

below FDR P<0.05 threshold were labeled as statistically significant. The results are 238 

presented per 5 µg/m3 increase in PM2.5. A pearson correlation analysis was performed 239 

between PM2.5 at birth and at the time of biosampling for each cohort. All cohort-specific 240 

statistical analyses were performed using R (R Development Core Team 2019) and 241 

Bioconductor packages (Gentleman et al. 2004), and the meta-analysis was performed using 242 

METAL software (Willer et al. 2010). 243 

 244 

2.5.2 Integration of DNA methylation and gene expression results 245 

An integration analysis of genome-wide DNA methylation with matched gene expression data 246 

available in BAMSE and INMA was performed on 240 and 103 subjects, respectively. First, 247 

we combined cohort-specific associations of air pollution exposure with genome-wide DNA 248 

methylation in the BAMSE and INMA cohorts (no DNA methylation data were available in 249 

GINIplus) after adjustment for potential covariates and cell proportions, in a fixed-effect 250 

meta-analysis. In the case of Illumina 450k data, we assigned to a gene the average value of 251 

probes mapping to within 200bp of the TSS. If no probes mapped to within 200bp of the TSS, 252 
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we used the average of probes mapping to the 1st exon of the gene. If such probes were not 253 

present, we used the average of probes mapping to within 1500bp of the TSS. Transcript 254 

clusters were mapped to genes as described above. The integration of the genes identified in 255 

the TWAS and EWAS meta-analysis, along with protein–protein interaction (PPI) was 256 

performed using the Functional Epigenetic Module (FEM) algorithm in R package (Jiao et al. 257 

2014). The FEM algorithm first construct an integrated network with weights on the network 258 

edges from the associations between PM2.5 and both gene expression and DNA methylation, 259 

and then inference of the FEMs as heavy subgraphs on this weighted network (Jiao et al. 260 

2014). The integration of DNA methylation and gene expression profiling was performed 261 

after constructing the PPI network for hub gene identification from the High-quality 262 

INTeractomes (HINT) database (http://hint.yulab.org/) (Das and Yu 2012). HINT is a 263 

database of high-quality PPIs from 8 interactome resources (BioGRID, MINT, iRefWeb, DIP, 264 

IntAct, HPRD, MIPS and the PDB) consisting of two types of interactions: binary physical 265 

interactions and co-complex associations from different organisms. In total, 150,199 266 

interactions were obtained after removing duplicates and self-linked interactions. 267 

 268 

2.5.3 Functional analyses 269 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa et al. 2019) pathway 270 

enrichment analysis was performed using network-based pathway annotation tool BinoX 271 

(Ogris et al. 2017) in PathwAX II web server (http://pathwax.sbc.su.se/) (Ogris et al. 2016). 272 

The algorithm assesses the statistical significance of ‘pathway gene-set’ enrichment by 273 

evaluating the amount of interactions between genes within a genome wide functional 274 

association network. P-values for enrichment were adjusted for multiple testing using the 275 

FDR method. Pathways with an estimated FDR P-value below 0.05 were selected as 276 

significantly enriched. In addition, to understand the functional involvement of PM2.5 277 

http://hint.yulab.org/
https://kise-my.sharepoint.com/personal/simon_merid_ki_se/Documents/Dokument/Air_pollution/Air_pollution_gene_expression/Report/Manuscript%20version%201.docx
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exposure in gene expression we performed the KEGG pathway analyses by applying a less 278 

stringent cut off P-value < 0.05 and |logFC|> 0.15. 279 

 280 

2.5.4 Sensitivity analyses 281 

To address potential age-specific effects, we performed a sensitivity analysis limiting our 282 

transcriptome-wide meta-analysis to two adolescent cohorts. Further, to rule out residual 283 

confounding effects from active smoking, we performed a sensitivity analysis in the two 284 

adolescent cohorts excluding active smokers and compared those with the results based on the 285 

whole sample. 286 

 287 

3. Results 288 

In total, 656 pre-school children (INMA) and adolescents (GINIplus and BAMSE) were 289 

included in the meta-analysis of genome-wide gene expression in relation to birth and current 290 

PM2.5 exposures. The characteristics of the study subjects are presented in Table 1. 291 

Noteworthy, in the subset of children with gene expression measurements in the INMA 292 

cohort, the proportion of children exposed to tobacco smoke prenatally, as well as at the time 293 

of blood sampling, was higher compared to the other cohorts. Exposure levels, illustrated by 294 

box plots in Fig.1, were on average lowest for BAMSE (mean PM2.5 exposure at birth and at 295 

current address: 7.6 and 7.3 μg/m3, respectively), and highest for INMA (14.6 and 14.0 μg/m3, 296 

respectively). The correlation between birth and current exposure levels was r=0.45 (p=8.46E-297 

14), r=0.32 (p=9.08E-08), r=0.46 (p=2.01E-10) in BAMSE, GINIplus and INMA, 298 

respectively. 299 

 300 

 301 

 302 
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Table 1. Characteristics of the study participants from the included cohorts. 303 

Characteristics BAMSE (n=244) 
GINIplus 

(n=247) 
INMA (n=165) 

Males, N (%) 136 (55.7%) 120 (48.6%) 87 (52.7%) 

Age at the follow-up, yrs 

mean (SD) 
16.7 (0.3) 15.2 (0.2) 4.5 (0.2) 

Study region, N (%): 

Stockholm      56 (22.9%) Munich (100%) Gipuzkoa   57 (34.5%) 

Järfälla           92 (37.7%)  Sabadell    108 (65.6%) 

Solna              63 (25.8%) 
  

Sundbyberg    33 (13.5%) 
  

Maternal education,a N 

(%): 
   

Low 79 (32.4%) 14 (5.7%) 39 (23.6%) 

Medium 73 (29.9%) 87 (35.2%) 61 (36.9%) 

High 92 (37.7%) 146 (59.1%) 65 (39.4%) 

Season of blood 

sampling, N (%):  
   

Winter 48 (19.7%) 32 (12.7%) 28 (17.0%) 

Spring 86 (35.3%) 55 (22.3%) 61 (37.0%) 

Summer 42 (17.2%) 79 (32.0%) 38 (23.0%) 

Autumn 68 (27.9%) 81 (33.0%) 38 (23.0%) 

Physical activity, N (%):    

< 5 hours per week 120 (49.2%) 137 (55.5%) 74 (44.85%) 

≥ 5 hours per week 124 (50.8%) 110 (44.5%) 91 (55.15%) 

Maternal smoking during 

pregnancy, N (%) 
24 (9.8%) 23 (9.3%) 46 (27.9%) 

Second-hand smoking at 

the time of blood 

sampling, N (%) 

31 (12.7%) 26 (10.5%) 84 (50.9%) 

Active smoking, N (%) 25 (10.2%) 20 (8.1%) N/A 

N/A=Not applicable 304 

a Low (Elementary school or 2-year high school), Medium (3-year High school) and High 305 
(University).   306 
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 307 

Fig. 1. Exposure for particulate matter (PM2.5) at the birth and at the current address at 308 

the time of blood sampling, μg/m3. There are two symmetrical density plots for each box 309 

plot. This is an overlay of a violin plot and a box plot. 310 

 311 

We found genome-wide significant association (FDR p<0.05) between PM2.5 exposure at birth 312 

and gene expression for two transcript clusters, namely TC10001332.hg.1 annotated to 313 

MIR1296 gene, and TC14001976.hg.1 that is a long non-coding RNA located near FOXA1-2 314 

(chr14:38066368-38067552) (Table 2 and forest plot in Fig. S1 and the meta-analysis for all 315 

transcript clusters are presented in Supplementary Table 1). No association between current 316 

PM2.5 exposures and differentially expressed genes (DEGs) at FDR p<0.05 significance level 317 

was found (top ten significant transcript clusters are presented in Supplementary Table 2). 318 

However, we found that 18 transcript clusters among the top 100 significant DEGs related to 319 

birth PM2.5 exposure, including KRBA2, NRG1, SCAND1 and ZNF605 genes, were also 320 

significantly associated, at the nominal level (p<0.05) and with the same direction, with 321 

current PM2.5 exposure (Supplementary Table 3). The results of sensitivity analyses limited to 322 

two adolescent cohorts demonstrated good agreement with those based on all three cohorts 323 
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(genome-wide correlation of beta coefficients = 0.69  and 0.77 in the analysis with PM2.5 324 

exposure at birth and at the time of biosampling, respectively (Supplementary Fig. S2). 325 

Further, we found high consistency in the results of analyses including and excluding active 326 

smokers, with a very high correlation of beta coefficients, namely 93% and 84% for PM2.5 327 

exposure at birth and at the time of biosampling, respectively (Supplementary Fig. S3). 328 

Table 2. FDR-significant DEGs from the meta-analysis of the association between PM2.5 329 

exposure at birth and gene expression in children and adolescents (n=656 from the 330 

BAMSE, GINIplus, and INMA cohorts). 331 

Probe.Set.ID Gene Log2FC SE P-value FDR Direction* Het. P-

value 

TC10001332.hg.1 MIR1296 -0.19 0.04 1.74E-07 0.01 --- 0.196 

TC14001976.hg.1 
 

0.42 0.09 1.02E-06 0.03 +++ 0.844 

Log2FC = The logarithm fold change (one unit of the logFC translates to a two-fold change in 332 

expression), SE = standard error, FDR = false discovery rate and Het.P-value = Heterogeneity P-value 333 

based on Cochran's Q-test for heterogeneity. Results are presented per 5 μg/m3 increase in PM2.5.  334 

* Order of included cohorts in the meta-analysis: BAMSE, GINIplus and INMA 335 

 336 

As many as 364 transcript clusters mapping to 102 genes were selected from the analyses of 337 

gene expression and PM2.5 exposure at birth cut off P-value < 0.05 and |logFC|> 0.15. The 338 

KEGG pathways analyses based on this selection identified a few enriched pathways related 339 

to olfactory transduction, ribosome, compliment and coagulation cascades and systemic lupus 340 

erythematosus (Supplementary Table 4). From the results of analyses based on PM2.5 341 

exposure at the time of biosampling, we identified 66 transcripts annotated to 13 genes 342 

involved in the ribosome-related pathway (Supplementary Table 5). Thus, the ribosome 343 

pathways were common in both PM2.5 exposure at birth and at the time of biosampling.  344 

Next, we used two different omics datasets (from BAMSE and INMA) to perform an 345 

integration of the genes in the transcriptome-wide analyses (TWAS) and Epigenome-Wide 346 

Association Study (EWAS) meta-analysis, along with protein–protein interaction predictions 347 
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from the High-quality INTeractomes (HINT) database (http://hint.yulab.org/) using the 348 

Functional Epigenetic Module algorithms (FEMs). In these analyses we were able to identify 349 

9 and 6 FEMs in relation to PM2.5 exposure both at birth and at the current address, 350 

respectively, passing the FDR significance threshold of 0.05 (Table 3).  351 

 352 

  353 

http://hint.yulab.org/
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Table 3. Summary of the output of the Functional Epigenetics Modules (FEM) 354 

algorithm listing 9 and 6 significant hotspots of differential methylation and expression 355 

in relation to birth and current PM2.5 exposure. 356 

Exposure to PM2.5 Seed Size (number 

of genes) 

Modularity FDR * 

 
NR1I2 11 2.12 0.001 

 
SH3GL2 26 2.00 0.005 

 
TENT5A 24 1.94 0.006 

 
MAPK6 64 1.95 0.010 

Birth UBE2W 61 1.35 0.012 
 

KCTD15 10 1.86 0.014 
 

MLST8 10 2.11 0.018 
 

RPP40 12 1.61 0.024 
 

GGA1 14 1.59 0.025 
 

TAF8 20 2.17 <0.0001 
 

TAF5 20 2.17 0.001 

Current GNAI3 31 2.07 0.002 
 

ISLR 22 2.05 0.024 
 

TRIM69 10 1.84 0.032 
 

SCARA3 19 1.84 0.040 

Columns label the seed gene symbol, the size of the FEM, its modularity (defined as the 357 

average of the edge-weights), the associated P-value. *Significant FDR p-value < 0.05. 358 

 359 

The size of the significant modules ranged between 10 to 64 and 10 to 31 genes in the 360 

analyses with PM2.5 exposure at birth and current address, respectively (Supplementary 361 

Tables 6 and 7). For the top significant gene module centered around Nuclear Receptor 362 

Subfamily 1 Group I Member 2 (NR1I2) related to PM2.5 exposure at birth, we observed 363 

simultaneous hypomethylation and overexpression (Fig. 2). The KEGG pathways involving 364 

the 11 genes in NR1I2 gene module were related to fluid shear stress and atherosclerosis, 365 
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protein processing in endoplasmic reticulum, adherens junction and cancer (Supplementary 366 

Table 8).  367 

 368 

Fig. 2. Top statistically significant functional epigenetic module around seed gene NR1I2 369 

related to PM2.5 exposure at birth address.  370 

The color of node represents the DNA methylation status. Blue represents hypermethylation, whereas 371 

yellow represents hypomethylation. The different color of border refers to the expression patterns. The 372 

red color of border represents that the genes were upregulated, whereas the green color of border 373 

represents that the genes were downregulated. Edge widths are proportional to the average statistic of 374 

the gene-gene interaction network. 375 

 376 
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Another module associated with PM2.5 exposure at birth, mitogen-activated protein kinase 6 377 

(MAPK6), had the largest size of subnetwork genes (n=64) with modularity of 1.95 (Fig. 3). 378 

Subsequent KEGG pathway analysis showed that MAPK6 module subnetwork genes are 379 

implicated in complement and coagulation cascades, as well as fatty acid degradation, 380 

oxidative phosphorylation, Huntington, Alzheimer and Parkinson disease (Supplementary 381 

Table 9).  382 

 383 

Fig. 3. Top statistically significant functional epigenetic module around seed gene 384 

MAPK6 related to PM2.5 exposure at current address.  385 

The color of node represents the DNA methylation status. Blue represents hypermethylation, 386 

whereas yellow represents hypomethylation. The different color of border refers to the expression 387 

patterns. The red color of border represents that the genes were upregulated, whereas the green color 388 

of border represents that the genes were downregulated. Edge widths are proportional to the average 389 

statistic of the gene-gene interaction network. 390 
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Six FEMs were identified in association with current PM2.5 exposure, all distinct from those 391 

found with PM2.5 exposure at birth. Interestingly, two highly significant gene hubs, TATA-392 

Box Binding Protein Associated Factor 8 (TAF8) and TATA-Box Binding Protein Associated 393 

Factor 5 (TAF5) identified in relation to current PM2.5 exposure, contain the same 20 genes in 394 

their hubs. The TAF8 module is shown in Fig. 4. Functional enrichment analyses of the TAF5 395 

and TAF8 module subnetwork genes showed that these genes are mainly involved in basal 396 

transcription factor, cell cycle, thyroid hormones signaling pathway and notch signaling 397 

KEGG pathways (Supplementary Table 10). 398 

 399 

Fig. 4. Top statistically significant functional epigenetic module around seed gene TAF8 400 

related to PM2.5 exposure at current address.  401 

The color of node represents the DNA methylation status. Blue represents hypermethylation, whereas 402 

yellow represents hypomethylation. The different color of border refers to the expression patterns. The 403 

red color of border represents that the genes were upregulated, whereas the green color of border 404 
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represents that the genes were downregulated. Edge widths are proportional to the average statistic of 405 

the gene-gene interaction network. 406 

 407 

The largest gene module size in relation to current PM2.5 exposure was found for GNAI3 408 

module containing 31 genes with modularity of 2.07 in the subnetwork that appeared to be 409 

involved in cancer, prion diseases, rheumatoid arthritis, tight junction, MAPK and other 410 

signaling and metabolism KEGG pathways (Supplementary Table 11). Another identified 411 

gene module hub associated to the current PM2.5 exposure, Scavenger Receptor Class A 412 

Member 3 (SCARA3), demonstrated hypomethylation and overexpression (Fig. 5).  413 

 414 

Fig. 5. Statistically significant functional epigenetic module centred around seed gene 415 

SCARA3 related to current PM2.5 exposure.  416 

The color of node represents the DNA methylation status. Blue represents hypermethylation, whereas 417 

yellow represents hypomethylation. The different color of border refers to the expression patterns. The 418 

red color of border represents that the genes were upregulated, whereas the green color of border 419 

represents that the genes were downregulated. Edge widths are proportional to the average statistic of 420 

the gene-gene interaction network.  421 
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4. Discussion 422 

This study represents a large-scale transcriptome-wide meta-analysis evaluating the 423 

association between birth and current air pollution exposure and gene expression in children 424 

and adolescents. Our meta-analysis results show associations of PM2.5 exposure at birth with 425 

differential expression of two transcript clusters, TC10001332.hg.1, annotated to MIR1296 426 

gene and TC14001976.hg.1, long non-coding RNA located close to FOXA1-2 gene. However, 427 

for current PM2.5 exposure no FDR significant DEG was found. Further, by integrating gene 428 

expression and DNA methylation data into a putative protein interaction network we 429 

identified several hubs linked to birth and current PM2.5 exposures (e.g. NR1I2, MAPK6, 430 

TAF8 and SCARA3).   431 

To date, little is known about air pollution associated transcriptomic signatures in children. 432 

Two earlier studies have investigated differential gene expression in the blood of children 433 

living in areas of the Czech Republic with differing levels of air pollution. Van Leeuwen and 434 

co-authors found increased blood expression of numerous genes among children inhabiting a 435 

severely polluted area compared to those residing in a less polluted region (van Leeuwen et al. 436 

2006). In contrast, no clear effect of exposure to air pollutants was found in a study of 437 

newborns from the same geographical area (Honkova et al. 2018). These studies did not 438 

assess exposure to air pollution at the individual address level, which may have resulted in 439 

low statistical power. In the ENVIRONAGE birth cohort, genome-wide gene expression 440 

analysis in cord blood identified fifteen transcriptomic pathways altered by prenatal PM2.5 441 

exposure (Winckelmans et al. 2017), including “protein processing in endoplasmic reticulum” 442 

that was also observed in the present study. 443 

Our transcriptome-wide meta-analysis revealed two DEGs in relation to PM2.5 exposure at 444 

birth, representing novel associations in the context of air pollution exposure. One of them 445 

MiR-1296, coding for miRNA that has previously been found to be linked to different types of 446 
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cancer, e.g. breast, hepatocellular, colorectal, prostate and lung cancer (Deng et al. 2020; 447 

Majid et al. 2010; Phan et al. 2016; Tao et al. 2018; Xu et al. 2017). Also, it has been 448 

proposed as a putative circulating prognostic marker of heart failure (Cakmak et al. 2015). 449 

FOXA1/2 (forkhead box a1/2) plays a key role in lung alveolar and respiratory endoderm 450 

morphogenesis and differentiation, including α-cells in the endocrine pancreas, liver and 451 

prostate luminal ductal epithelia (Friedman and Kaestner 2006; Lee et al. 2005; Wan et al. 452 

2005; Wan et al. 2004). When comparing birth with current PM2.5 exposure, we found 18 453 

significant DEGs related to birth PM2.5 exposure that were also significant at the nominal level 454 

with the same direction of effect in the analysis with current PM2.5 exposure that includes 455 

KRBA2, NRG1, SCAND1 and  ZNF605 genes. Molecular lesions of neuregulin 1 (NRG1) gene 456 

have been proposed as a new molecular signature of invasive mucinous adenocarcinoma of 457 

the lung (Trombetta et al. 2017). It has also been repeatedly shown that PM2.5 exposure is 458 

linked to lung cancer, particularly adenocarcinoma subtype (Raaschou-Nielsen et al. 2013). 459 

Another gene, SCAN-domain-containing protein 1 (SCAND1) has been suggested to be 460 

involved in regulation of lipid metabolism (Babb and Bowen 2003). It has also been shown 461 

that the anti-oxidant and anti-inflammatory capacity of high-density lipoproteins can be 462 

effected by PM2.5 exposures (Ramanathan et al. 2016).  463 

Exploring the functional molecular patterns is critical for understanding the mechanisms of 464 

biological responses to air pollution exposure. In this study, we have utilized simultaneously 465 

comprehensive multi-omics profiling of biological samples, including genome-wide gene 466 

expression and DNA methylation. By integrating gene expression and DNA methylation into 467 

a protein interaction network we found 9 significant functional epigenetically deregulated 468 

modules associated with PM2.5 exposure at birth. The top significant one was centered around 469 

seed gene NR1I2, also known as steroid and xenobiotic receptor, a transcriptional regulator of 470 

a number of important drug metabolizing enzymes and transporters, recently reported among 471 
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potential targets for asthma therapy (Wang et al. 2020). The MAPK6 module associated with 472 

PM2.5 exposure at birth in the present study, has previously been implicated in air pollution 473 

response. In vivo, a short-term exposure to black carbon was highly associated with epigenetic 474 

changes in the promoter areas of 84 MAPK pathway genes, including MAPK6 gene (Carmona 475 

et al. 2014). Further, in a recent controlled crossover study comparing the whole blood 476 

transcriptome profiles from healthy volunteers, obtained pre and post short-term exposure, to 477 

high and low levels of air pollution, the authors found that activation of MAPK6 was strongly 478 

related air pollution exposure (Vargas et al. 2018).  479 

Among other identified modules, we found genes also known to be associated with diseases 480 

previously linked to air pollution exposure including obesity and type 2 diabetes (i.e., 481 

KCTD15 (Lv et al. 2015; Ng et al. 2010), MLST8 (Li et al. 2016)), as well as cardio-vascular 482 

diseases (TRIM69 (Andersson et al. 2019)). Recently, an integrative study of DNA 483 

methylation and gene expression reported SH3GL2 as one of the key genes in pathogenesis of 484 

lung adenocarcinoma with hypermethylation and under expression (Jin et al. 2016) opposite 485 

to our finding of PM2.5 exposure effect of hypomethylation and overexpression. In other 486 

studies, hypomethylation in certain genes, e.g. AHRR and F2RL3, has been reported as a 487 

hallmark of cancer development (Fasanelli et al. 2015).  488 

Concurrent exposure to PM2.5 at the time of blood sampling was associated with six hotspots 489 

of differential expression and methylation in the present study. None of these appeared to 490 

overlap with those identified in relation to PM2.5 exposure at birth, which may at least partly 491 

be attributed to differences in exposure levels as indicated by a moderate correlation between 492 

birth and current exposure (0.32-0.46). It is also conceivable that exposure during different 493 

time (age) periods of a growing child - from birth to adolescence will result in different 494 

molecular responses. Among the six interactome hotspots we also found genes of importance 495 

for lung adenocarcinoma, i.e. G protein subunit alpha i3 (GNAI3) (Ye et al. 2019), as well as 496 
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prostate cancer, i.e. TAF8 (Alvarez and Woolf 2011). The finding of epigenetically 497 

deregulated hotspot centred around the Scavenger receptor class A member 3 (SCARA3) gene 498 

is of interest, in light of previous reports showing altered expression of this gene induced by 499 

oxidative stress (Brown et al. 2013), one of the suggested key mechanisms involved in the 500 

adverse health effects of air pollution. Further, differential methylation of this gene has been 501 

linked to progression of type 2 diabetes mellitus (Karachanak-Yankova et al. 2016). Another 502 

hotspot gene module, Tripartite motif containing 69 (TRIM69), has earlier been linked to the 503 

incidence of heart failure (Karachanak-Yankova et al. 2016). It remains to be investigated 504 

whether FEMs identified in this study can mediate the phenotypic health effects of air 505 

pollution exposure on children’s and young adults.   506 

The present study is one of the first large-scale studies assessing the association of air 507 

pollution exposure, represented by PM2.5, during different periods of life on the children´s 508 

blood transcriptome. Coordinated gene expression measurements, quality control, 509 

normalization procedures, as well as air pollution exposure assessment in all included studies 510 

was performed according to a harmonized protocol. Further, integration of genome-wide 511 

DNA methylation and gene expression data constitute another major strength of our study. All 512 

cohort-specific analyses were conducted according to the same analytical protocol.  513 

This study has some weaknesses. PM2.5 exposure assessment was based on the participants’ 514 

residential address, without taking into consideration time-activity patterns and exposures at 515 

nonresidential addresses (e.g. school). Further, the modeled concentrations account only for 516 

outdoor air pollution and therefore may not be equivalent to the full range of personal 517 

exposures. Another potential limitation is that we utilized purely spatial air pollution models 518 

that were based on measurement campaigns carried out between 2008 - 2010 and applied 519 

those to the home addresses of study participants over a period beginning from mid-1990s. 520 

However, previous validation studies from Europe have demonstrated stability of spatial 521 
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contrast in levels of air pollution over time (Eeftens et al. 2011; Gulliver et al. 2011). Further, 522 

we have explored this aspect in detail in our earlier investigations based on the same data by 523 

performing sensitivity analyses using back-extrapolated modeled concentrations of considered 524 

pollutants, and this had no impact on the results (Gehring et al. 2015; Gruzieva et al. 2014; 525 

Molter et al. 2015).Although misclassification of air pollution exposure might have affected 526 

our results, assessments of both exposure and gene expression levels were done independently 527 

from each other, making such potential bias likely non-differential. It should also be noted 528 

that we considered PM2.5 exposure at the birth address that may also be a proxy for prenatal 529 

exposure. We, therefore, cannot rule out that at least part of the observed associations with 530 

exposure at birth may be attributable to prenatal exposure. Furthermore, the study participants 531 

were of European ancestry. Therefore, it is not sure if our findings can be generalized to other 532 

ethnic groups. We should also acknowledge age differences between the cohorts included in 533 

the present analyses and that our study was not designed to specifically evaluate potential age-534 

related effects in gene expression profiles. In addition, although we adjusted our analyses for 535 

a number of potential confounders, still, the possibility of residual confounding cannot be 536 

ruled out. Moreover, we used estimated cell counts to account for a potential cell type effect 537 

in our analyses, as measured cell counts were not available in all cohorts. Finally, the omics 538 

integration analysis assumes interaction at the protein level, whereas the networks probably 539 

link to each other at the regulation level. Adding miRNA data in the integration analysis 540 

would likely give more power, however the data is not available in the participating cohorts.  541 

In conclusion, this study provides suggestive evidence for associations of PM2.5 exposure at 542 

birth with differential gene expression in children and adolescents. Importantly, by integrating 543 

gene expression and methylation data we could identify several significant interactome 544 

hotspots of epigenetic deregulation gene modules in relation to PM2.5 exposure both at the 545 

birth and at the current address. Our study shows the added value of integrating environmental 546 
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exposure data with multi-omics information to improve understanding of biologic responses 547 

to exposure. Further studies are warranted to get deeper insight into the molecular 548 

mechanisms for the harmful health effect of PM2.5. 549 

  550 
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