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"There is grandeur in this view of life, 
 with its several powers, having been originally breathed into a few forms or into one; and that, 

whilst this planet has gone cycling on according to the fixed law of gravity, 
 from so simple a beginning endless forms most beautiful and most wonderful have been, 

 and are being, evolved." 

 
Charles Darwin - On the Origin of Species by Means of Natural Selection, 1859





 

 

ABSTRACT 
The brain, one of the most complex organs in the body, where an immense diversity of cell 
states emerges from simple structure, where function arises from sets of regulatory principles 
and pattern persist where individual cells do not. Revealing the regulatory underpinnings of 
the brain, from unspecified cell states to diversity, is paramount for achieving a thorough 
understanding of the development process and generating insight into the disease states of the 
brain. This thesis is an exploration into how canonical regulatory factors and elements, such 
as transcription factors and genes, lock a regulatory system in a multi-outcome network with 
limited possible states.  
   
The work in this thesis focuses on the oligodendrocyte lineage, a glial cell known for it’s 
supportive role in the central nervous system, where it facilitates electrical transmission 
through the enscheathment of axons. Oligodendrocytes (OLs) lie at the heart of multiple 
sclerosis (MS), a disease where an immune response is mounted against myelin. As a 
response, oligodendrocyte precursor cells (OPCs) move towards lesions and remyelinate 
axons, however, this mechanism fails in later stages of the disease. Thus, an understanding to 
how OPCs develop is vital to amelioration of the altered oligodendrocyte population.  

In Paper I we reveal a previously underestimated heterogeneity within the oligodendrocyte 
lineage in mouse. We show that OL maturation is an ongoing process, albeit, decreasing in 
frequency with age. Furthermore, complex wheel training in mice revealed that the OLs 
respond to this challenge through an increase in differentiation.   
Paper II investigates the cellular response in the experimental autoimmune encephalo-
myelitis (EAE) disease mouse model of MS, where we find a tailored response by the 
resident OL population, changed from its normal transcriptional program, expressing a 
spectrum of genes related to survival, immunological stimulation, phagocytosis, and active 
differentiation. Furthermore, we provide evidence that OLs can elicit responses from T cells. 
In Paper III we explore the different waves of OPC generation in the developing mouse 
brain at embryonic day 13.5 and postnatal day 7. We show that recently Pdgfra expressing 
cells at the E13.5 time point exhibit a multitude of patterning genes, and we show the 
emergence of a possible OPC progenitor through the inclusion of a bridging E17.5 time point 
population. This pre-OPC population is biased towards expressing glial and OL lineage 
specifying genes such as Olig1, Olig2, Ptprz1, and Bcan. Furthermore, lineage tracing of 
OPC developmental waves, shows no transcriptional differences, leading us to conclude that 
OPCs are generally naïve to the time or region of specification.  
In Paper IV we show that we are able to detect OPC formation in the developing human 
forebrain. We detect OPCs at the earliest sampled time point post conception week 8. We 
attempt to recover the path of OPC formation, and investigate the regulatory dynamics in the 
specification of OPCs.  
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1 CELL TYPES AND THE EMERGENCE OF NEURAL 
STRUCTURES 

Understanding of the regulatory and developmental patterns underlying current neural 

structures is best sought through the lens of its evolutionary past, by which complicated 

transcription factor patterns can be observed in the context of their first emergence.  

 

The first known structures resembling a rudimentary nerve net can be traced back to a 

common ancestor probably shared by cnidarians; a group pertaining to jellyfish, corals, sea 

anemones, and other soft bodied polyps 1,2. Cell-type diversification events and the evolution 

of certain types of gene-modules can be combined to chart the emergence of neuronal cell-

types during evolution using comparative genomics approaches enabled by the emergence of 

ctenophore, placozoa, and cnidarian annotated genomes 3–6, allowing for molecular resolution 

phylogenetics.  

1.1 DEFINITION OF CELL TYPES 

The definition of cell-types according to Arendt, Musser, et al. 2016 is described as, "a set of 

cells in an organism that change in evolution together, partially independent of other cells, 

and are evolutionarily more closely related to each other than to other cells". Thus, cell-

types are seen as individual evolutionary units, which stem from ancient ancestor cell-types, 

in which the first core regulatory units evolved that enabled the first cell-types to gain 

specific functions, and subsequently a gain of diversification 7. The proper definition and 

elucidation of cell-types is ever more important with current efforts underway, generating 

mouse and human cell atlases, making use of novel techniques that make available molecular 

resolution data in individual cells 8.  

1.1.1 A brief primer on present day cell types in the CNS 

Early studies by Ramón y Cajal revealed a great diversity and morphological distinctions of 

cells in the central nervous system (CNS). The simplest distinction is made by grouping the 

cells in the category of nerve cells and supporting cells. Nerve cells communicate over large 

distances, through structures such as axons, which are long projections of cells enabling the 

neurons to form circuits throughout the brain. Hundreds of different neuronal cell types exist, 

with amazingly intricate morphologies. Some neurons stay in a layer in the brain, others 

project outward into other layers. Most neurons in the cortex project into others layers, 

generating intricate morphologies and cortical layer specific cell types. Aside from neurons, 

the supporting cells in the brain, glia, include oligodendrocytes, astrocytes, and microglia.  
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Microglia are immune-competent cells widely spread in the CNS, where they assist in 

maintainance, immune-surveilance and phagocytosis. However they do not originate from the 

brain during development, instead they migrate from the yolk-sac progenitors in a brief time-

window during development.  

Astrocytes are the most abundant glial cell in the CNS. Astrocytes have many responses to a 

plethora of signals in the brain, but the most prominent functions of the astrocytes are the 

maintenance of homeostasis of the environment, supportive participation in synapse 

chemistry, and blood brain barrier maintainance.  

Mature oligodendrocytes function as the myelinating cell in the CNS. Ensheathing axons and 

promoting fast salutatory signal propagation essential for proper function of the CNS. Many 

functions of oligodendrocytes remain to be discovered, from the presence of non-myelinating 

oligodendrocytes, to the nature of the oligodendrocyte precursor cell (OPC). OPC function, 

aside from generating oligodendrocyte lineage cells, is far from clear. Recent research 

suggests OPC involvement in direct communication with neurons, as well as a broader role in 

progenitor function. 

1.1.2 Cell types as a collection of gene modules 

 

 Gene-modules or core regulatory units, expressed in present day synapses are most likely 

originating from a common ancestor of choanoflagellates and metazoans which express 

certain proteins that are associated to synaptic function 9. Several studies 2,10–13 suggest that 

the post-synaptic module first evolved as a primitive chemosensory module that could 

perhaps be sensitive to amino acid detection like glutamate, which later evolved into a bigger 

signaling role such as in the post-synaptic function, and in a similar manner ionotropic 

glutamate receptor (GABA) families existed in the common metazoan ancestor, right before 

the emergence of neurons as a cell type through most likely diversification of chemosensory 

cells for which Neuroligin and Neurexin seem to have been a key event 1,2. Furthermore, 

sponges are known to release “neurotransmitters” from cells lining their channels including 

glutamate, coordinating contractions along muscle cells in the body wall, yet are lacking a 

clear cell type that could be considered a neuron 2. The fact that the neuronal lineage 

constitutes one of the most diversified cell-lineages of any organism 14, allows speculation 

that patterning factors must have evolved as a consequence of the diversification event in the 

neuronal lineage, right after the appearance of neurons in the last common ancestor of 

cnidarians, such as anemones and jellyfish, and this is indeed observed 15.  
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1.2 THE EVOLUTION OF THE NERVOUS SYSTEM 

Primitive nerve nets as those found in cnidarians seem to be developmentally subdivided into 

regions 16. Recent comparative analyses suggest a neurodevelopmental similarity in 

molecular and spatial arrangements between annelids (segmented worms) and vertebrates, 

interestingly recent molecular data also shows that this similarity extents to the cnidarian sea 

anemone, leading to the hypothesis that this regionalization already existed in a common 

ancestor of cnidarians, such as jellyfish, and bilaterians, such as the mammalia 17.    

  

The similarities of the ectodermal tissue (one of the three germinal layers), and more 

specifically the neuro-ectoderm (which gives rise to neurons), is proposed to stem from a 

common ancestor possessing a crude nerve net 3,17. The phylogenetic analysis indicates 

shared transcription factors that control the regionalization of the developing neural tissue 

which in the common ancestor gave rise to two specialized parts of the nervous system, one 

on the apical pole, and the other on the blastoporal developmental region as analysed and 

postulated by 15.  Comparisons between phyla in different developmental stages can then shed 

light on the early evolution of the nervous system.  The common ancestor of cnidarians and 

bilaterians must have had a gastrula-like basic organization, because it has been shown that 

cnidarian and bilaterian similarities include WNT-β-catenin signaling interacting and 

activating achaete-scute (ASCL) families, basic helix-loop-helix (bHLH) proneural genes, 

Notch signaling, as well as SOXB2 18,19 which has similarities with SOX2 in humans 20 

indicating homology to bilaterian neurogenic ectoderm.  

   

The before mentioned neuron diversification event in evolution has as a consequence that 

specific patterning factors must have evolved to support regionalization and specification of 

neurons. Cnidarians and bilaterians express homologous transcription factors, and 

morphogens conserved in evolution, Sine oculis 3 (SIX3), Forkhead box A (FOXA), Sonic 

Hedgehog (SHH), Brachyury, Forkhead box B (FOXB), NK2.2, and LIM homeobox (LMX), 

are restricted to the most-medial region, PAX is expressed more laterally, overlapping with 

NK6 and Msh homeobox (MSX).  The most peripheral or lateral region expresses Iroquois 

homeobox (IRX) and Distal-less homeobox (DLX), as mentioned and compared in Arendt et 

al., 2016 (Fig 1a-c), and related to mammalian dorso-ventral patterning. Additionally, Arendt 

et al., 2016 proposes homology between the cnidarian gastric pouches and bilaterian somites, 

which interestingly are both expressing genes homologous to the HOX family and GBX 

transcription factors (Fig 1d-f). Furthermore, conserved WNT signalling of genes such as 

WntA, Wnt1, Wnt7, and Wnt4, and their orthologes WNT1, WNT7, WNT4, and WNT2 in 
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combination with genes such as SHH, might provide a glimpse into what ancient neural 

celltypes might have been present in the common ancestor 15. Thus, it comes to no surprise 

that these conserved factors play a major role in the formation of the neural crest, which lies 

at the basis of vertebrate and mammalian central nervous system (CNS) development. 

Figure 1 Cnidarians and bilaterians express homologous transcription factors conserved in evolution. Adapted from 

Arendt et al., 2016 with permission. 

1.3 A BRIEF OVERVIEW OF DORSO-VENTRAL PATTERNING IN THE 
MAMMALIAN NEURAL CREST AND NEURAL TUBE, SPECIFYING 
OLIGODENDROCYTE PRECURSOR DOMAINS 

The neural crest, derived from neuro-ectoderm, is unique to vertebrate development. The 

formation of the neural crest hinges on the specification of a neural plate border during 

gastrulation. This process starts with neural specification regulated by an interplay of WNT 

inhibitors, FGFs, and BMP signals, forming a gradient in the neural plate 21. WNT and BMPs 

are expressed from lateral sides of the developing embryo, whereas inhibitors are expressed 

from medial regions such as the neural plate. These established morphogens are then 

responsible for the formation of a gradient containing a region or zone of intermediate WNT 

and BMP activity, from where the future neural plate border cells arise 22.    

  



 

 9 

The specification of the neural plate border brings about a new wave of expression and 

patterning factors, which is not completely homogenous throughout the neural plate border. 

These neural plate border-specifiers involve factors such as Tfap2, Msx1, Zic1, Gbx2, 

Pax3/7, Dlx5/6, Gata2/3, Foxi1/2, and Hes1/4 23–25, and are in crosstalk through feedback 

loops, ultimately leading to the establishment of a stable patterning across the neural plate 

border. The non-uniformity is a key factor in subsequent regionalization and roles in later 

specification. After neural plate border specification the neural crest specifiers start being 

established, factors such as FoxD3, Ets1, and Snai1/2, are responsible for the establishment of 

the premigratory neural crest 25. Further regionalization is established by the formation of 

ectodermal placodes on the lateral sides of the neural crest border, and give rise to sensory 

neurons and other cells of the peripheral nervous system. The ectodermal placodes are 

established by interactions of Dlx5/6, Gata2/3, Foxi1/3, from which key placodal regulators 

start to be expressed such as Six1, Eya1/2 and Irx1 26,27. The neural crest then undergoes 

epithelial to mesenchymal transitioning (EMT) regulated or initiated by Snai1/2, and WNT 

signaling, amongst others 28,29. Several Sox family factors, such as Sox8/9/10 and Sox5/6 are 

implicated in differentiation and initiation of the migratory neural crest into several fates such 

as chondrocytes, melanocytes, and neurons 25,30. The neural crest develops into many 

different cell-types of the PNS, completed through the process of neurulation, of which a key 

event is the generation of the neural tube 31.  

  

Neural tube formation is achieved through a complicated interplay of a tightly regulated 

network of dorso-ventral patterning genes that are both repressive and activating leading to 

sharply defined boundaries as well as fusion of the neural plate in a process called 

“neurulation”, in ways that are still poorly understood.  Compared to neural crest formation, 

far less is known about neural tube formation and the complicated process of closure and 

fusion of the neural tube at the dorsal side.  It is now known that dorso-ventral patterning is 

established through gradients of signaling molecules secreted from different structures during 

development, leading to the expression of a tight knit network of local patterning factors 

along the dorsal-ventral axis that produce neural progenitor domains through mutual 

repressive and activating activities. Many of these factors are homologous to cnidarian 

regionalization, such as expression of factors such as Lhx, Pax3/6, Ascl1 (Mash), Ngn1/2, 

Dbx1/2, Irx3, and Nkx6.1/2.2 15,32. Subsequently, it is possible to perturb domain formation 

by repressing expression of some of these factors resulting in expansion or ablation of certain 

progenitor domains. Neural tube formation is highly dependent on mesodermal structures 

starting with the notochord. This structure is located in the central midline of the embryo with 
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the developing neural tube more dorsally and the notochord more ventrally located 33. 

Additionally, mesoderm is also present on the lateral sides of the forming neural tube, which 

will segment into somites. The notochord induces floorplate formation, primarily by 

inhibition of proliferation producing a thin layer of cells that become the floorplate 34. 

Evidence exists that sonic hedgehog (Shh), expressed from the notochord can aid in 

inhibition of cell cycle kinases. Conversely, the lateral mesoderm segmenting into somites, 

produces an FGF gradient stimulating cell proliferation and thereby thickening the lateral 

sides of the neural tube 35. The combined gradients of Shh from the floorplate, FGF laterally, 

and Bmp4 from the roofplate provide a stratified regionalization on which further structure 

can be generated.   

1.4 ESTABLISHMENT OF RADIAL GLIA, AND THE GLIAL LINEAGE 

Around mouse embryonic day 9-10.5 the established neuro-epithelium of ectodermal origin 

begins to form a regionalized layer of cells with an emerging glial phenotype called the radial 

glial cells 36. These bi-polar cells retain contact with both pial and ventricular surfaces and are 

restricted to the ventricular zone, where they begin to express a set of unique markers such as 

GLAST (Slc1a3), TNC, and BLBP (Fabp7), as well as Nestin, Vimentin, and in some cases 

GFAP 36–38. This transformation of the neuro-epithelium to radial glial fate accompanies 

some structural changes such as the emergence of adherens junctions, necessary for 

maintaining the integrity and to bind the apical domains of the radial glial cells together 

forming the ventricular zone (VZ) 39–41.  

   

The VZ is a thin layer of cells lining the ventricular surface from which the radial glial cells 

produce progenitor cells through mainly asymmetrical divisions, producing all neuronal 

lineage cells in the brain. Similarly to the neural tube from which they stem, radial glial cells 

are subject to the patterning factors present in the regions from which they have emerged and 

generate distinct neural progenitors in specified regions of the neuro-epithelial sheet derived 

ventricular surface. Radial glia maintain apical-basal polarity similar to the neuroepithelium 

from which they are derived, project a pial process towards the cortical plate, and feature 

adherens junctions that maintain an organized basal organization on the apical side forming 

the cortical lamina which is important for maintaining VZ integrity. The evolutionary 

conserved genes Numb and Numbl have a role in maintaining the adherens junctions and are 

essential for maintaining cell polarity 42.   

 



 

 11 

 

  
Figure 2 Neurogenesis during cortical development. CP, cortical plate; IZ, intermediate zone; MZ, marginal zone; nIPC, 
neurogenic intermediate progenitor cell; oIPC, oligodendrocyte generating intermediate progenitor cell; RG, radial glia; 
SVZ, subventricular zone; VZ, ventricular zone. Adapted from Kriegstein, Alvarez-Buylla, 2009 with permission. 

 

Radial glial proliferation and progenitor differentiation occurs during cortical neurogenesis, 

where RG cells proliferate and differentiate in an asymmetrical manner maintaining their 

apico-basal polarity. Recently, studies have shown that RG cells produce daughter cells with 

restricted lineage potential called transit amplifying cells, however RG cells can also directly 

produce neurons, both are generated through asymmetric division events 43. During 

neurogenesis, the newly formed daughter cell does not inherit the pial process in most cases 

but migrates along the pial fiber of the RG cell towards the cortical plate and the upper layers, 

while the RG cell can divide again. The intermediate progenitors move from the VZ to the 

emerging sub-ventricular zone (SVZ) and have the potential to self renew and produce a 

specific sequence of neuronal subtypes, subtype progenitors or glial progenitor cells 

depending on the regional identity determined by the dorso-ventral patterning of the RG cell 

population, thus, a single RG cell population produces a sequence of restricted progenitors in 

a spatiotemporal dependent manner 43. A recent study found a remarkable similarity in the 

VZ and SVZ of different developmental regions, indicating similar maturation trajectories 

between different developing regions of the brain diversify post-mitotically 44.  
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1.5 TELENCEPHALON FORMATION AND DORSO-VENTRAL 
REGIONALIZATION  

Guided by patterning factors along the anterior and posterior axis, the anterior part of the 

neuro-epithelium is destined to become the brain, initiated by the formation of the 

telencephalon.  Similar to the neural tube formation, several cell extrinsic factors such as 

FGF, SHH, WNT and BMP families, play a role in the regionalization of the brain.  

However, the regionalization is further established by transcription factors, analogous to the 

formation of the neural tube, a tight-knit network of factors establish zones and transient 

structures during development through mutual repression and activation combinations 

establishing sharp boundaries of neural progenitor populations in the developing 

telencephalon.  This network of regionalization mainly consists of transcription factors, 

encoded by genes such as Foxg1, Gli3, Pax6, Lhx2, Gsx2, Nkx2.1, and Emx2 45–48. 

  

 Telencephalon formation is initiated by expression of the transcription factor Foxg1 45,46. 

Initiation of Foxg1 expression is established through mutual signaling of FGFs, Wnts, Shh, 

and BMPs in a complicated series of repression and activation events generating a niche that 

induces Foxg1 expression in the developing anterior end of the anterior neural ridge, 

followed by subdivisions into domains expressing Nkx2.1, Gsx2, Pax6, and Emx2 49. Before 

complete closure of the neural tube, a broad domain organization already exists dividing the 

developing neuroepithelium into a dorsal and a ventral domain, generating glutamatergic and 

GABAergic neurons respectively 50. Establishment of dorsal and ventral domains is achieved 

through patterning of Gli3 in combination with Shh, similarly to the spinal cord. Initially Gli3 

is expressed from all cells in the developing telencephalon, but is then restricted by Shh, 

expressed from the ventral domain of the closed neuroepithelium, and is needed for proper 

expression initiation of further patterning factors such as Dlx2, Gsx2, and Nkx2.1 51. 

Additionally, development of proper ventral progenitor domains also depends on expression 

of Foxg1 and FGF signalling, but also for dorsal development in addition to Gli3, where both 

are needed for the development of the dorsal domain 52.   

  

Consolidation of pattering in the early neural tube is defined by three regions of development, 

Pax6, Gsx2, and Nkx2.1 . Pax6 is upregulated in the neuro-epithelium similarly as in spinal 

cord development, and maintained by Wnt3a expression from the dorsal side of the early 

neural tube, where Pax6 expression is limited to the more dorsal part of the neural tube 53. 

Simultaneously, Nkx2.1 is expressed on the ventral side of the neural tube, establishing a 

dorsal Pax6 and ventral Nkx2.1 expression gradient. Cells at the border between Pax6 and 
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Nkx2.1 start expressing the transcription factor Gsx2, where an expression gradient arises 

with Nkx2.1 expressing ventrally, Gsx2 at the boundary between ventral and in the dorsal 

region, and Pax6 expressing dorsally 54. The dorsal expression of Gli3 is needed to initiate 

expression of Emx2, with expression occurring in the dorsal posterior part of the 

telencephalon, while Pax6 expression is restricted more anteriorly 55.  This initial pattering 

reflects the transient domains that will form the medial ganglionic eminence (MGE), marked 

by expression of Nkx2.1, the lateral ganglionic eminence (LGE) marked by expression of 

Gsx2, and the caudal ganglionic eminence (CGE) marked by expression of Emx1/2. 

1.6 GLIOGENESIS AND THE FORMATION OF OLIGODENDROCYTES 

Oligodendrogenesis occurs at several timepoints and in different structures in the brain and 

spinal cord. In mouse brain development three distinct waves of oligodendrocyte formation 

can be distinguished, generated from three separate brain structures mentioned before, the 

MGE (Nkx2.1) at E12.5, the LGE (Gbx2) at E15.5, and CGE (Emx1) postnatally, whereas in 

the spinal cord only the first two waves are distinguished 56. This indicates a genetic 

regulatory diversity, which could potentially generate genetically and perhaps functionally 

distinct oligodendrocyte (OL) subtypes. Spatio-temporal differences, and a varying signaling 

environment provide discriminatory circumstances on which oligodendrocyte sub-type 

evolution could capitulate, however, recent studies indicate that oligodendrocyte progenitor 

cells (OPCs) from different progenitor sites in the brain seem similar 56, however the exact 

degree of difference remains unclear.  

  

OPCs are generated from radial glial cells in the differentiated neuro-epithelium, from the 

VZ, and recent studies indicate that the SVZ also contains progenitors with OPC generating 

capacity 57. Studies in the spinal cord and early neural tube have provided in-depth 

knowledge into the generation of spinal cord OPCs from the progenitor of motor neuron 

(pMN) domain in the patterned neural tube, the first occurrence of OL generation. The pMN 

domain is flanked by the p2 domain at the dorsal side and the p3 domain at the ventral side of 

the neural tube, and is characterized by the expression of the bHLH transcription factor 

Olig2, Pax6, and Nkx6.2, giving rise to the motor neuron lineage generating RG cells 58. 

However, after motor neuron production, the RG cells in the pMN domain switch to produce 

glial cells instead. Olig2 is essential in the pMN domain and its expression is maintained in 

the OL lineage where it is necessary to initiate OL fate and OL maturation 59. Olig2 is then 

not only necessary for motor neuron production but also for initiation and maintenance of OL 

fate, reflecting the complicated structure of the initiation of the OL transcriptional program. 
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Olig2 expression is restricted to the pMN domain through repressive interactions with Irx3 

expressed more dorsally, and Nkx2.2 expressed more ventrally.  Olig2, Nkx6.2, and Nkx2.2 

expression is activated and maintained by the Shh gradient from the ventral side of the neural 

tube, while Irx3 is repressed by Shh, generating the distinctive pattern giving rise to the pMN 

domain 58.  

  

OL specification involves a combination of expression patterns allowing precise control of 

OL generation. Olig2 and in a lesser degree Olig1 are required for the proper specification of 

OLs. Olig2 is also necessary for the proper specification of motor neurons from the pMN 

domain, thus Olig2 is required for both motor neuron specification and OL specification in 

the pMN domain. Moreover, Ascl1 is necessary for OL specification, downregulating 

expression of Dlx1 and Dlx2. Thus, Dlx1/2 expression is incompatible with OL specification 
60. Additionally, the pMN domain, and other domains within the patterning regions of the 

developing brain have both neural and glial potential. In the pMN domain, and in other 

regions as well, neural or glial fate is governed by proneural factors such as neurogenins, 

amongst others. Neurogenins, like neurogenin1 or neurogenin2 suppress glial fate in the pMN 

domain and are required for the formation of motorneurons 61.   

  

The neuroglial switch entails processes involving several sets of proteins of which the precise 

actions are still unclear. Aside from downregulating the inhibitory actions of Dlx1/2 on glial 

fate, additional groups of transcription factors are necessary to initiate a gliogenic state in 

radial glial cells. Nuclear factor I A (NFIA) is a progliogenic protein promoting both 

astrocyte and oligodendrocyte fates while inhibiting neurogenesis. The duration of NFIA is 

important in specification of oligodendrogenesis, as the expression has to be transient; 

astrocyte fate is associated with continuous expression of NFIA. Furthermore, Notch 

signaling and expression of Sox9 is also associated with gliogenic fate, together with the less 

specific Sox8 transcription factor presumably setting in motion epigenetic changes involving 

the histone deacetylases HDAC1, and HDAC2, among others 50.   

  

Oligodendrocyte fate is not solely determined by Olig2 evidenced by the fact that this 

transcription factor is also expressed in the specification of neurons in the pMN domain, as 

well as maturation of certain types of astrocytes. Although Olig2 interacts in a cross-

repressive fashion with patterning factors such as Irx3 and Nkx2.2, recent studies indicate 

that Olig2 directly activates pro-oligodendrocyte factors such as Sox10. Sox 8, 9, and 10 

(SoxE) are transiently co-expressed but only Sox10 will remain activated 62–65. Sox10 and 
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Sox9 are activators of Pdgf receptor α (Pdgfra), vital for the mitotic, migratory, and survival 

properties displayed by the oligodendrocyte precursor cell (OPC) state, a stable proliferative 

adult stem cell at the root of the OL lineage 66. Nkx2.2 is also upregulated, although in a 

slightly delayed fashion compared to Sox10, and maintained in the lineage, forming a feed-

forward loop with Olig2 and Sox10 67. Current studies conclude that the differentiation of 

OPCs towards OL-lineage cells is postmitotic once committed to differentiation, and thus 

OPCs are migratory cells that proliferate during development and adulthood to populate the 

brain, primed for differentiation.  

1.7 PROGENITOR MAINTENANCE AND THE OLIGODENDROCYTE 
MATURATION   

OPC maintenance involves an interplay of negative regulators of differentiation and pro-

differentiation factors. Notch signaling is found to be essential, in combination with 

expression of Hes5, a repressive bHLH protein able to render Sox10 inert through binding 

and subsequent formation of inert complexes 68. Furthermore, Hes5 is able to recruit histone 

deacetylases to repress certain sites in the genome. Another mechanism of repression of the 

myelinating program is through the interaction of Sox5 and Sox 6. Competition of Sox5/6 

with Sox10 for specific pro-differentiation binding sites indicates a repressive function for 

these factors in maintaining the progenitor state. Indeed, studies have found that Sox5/6 

initiate the positioning of repressive complexes to myelin genes, repressing expression even 

in the event of Sox10 binding to its targets 69,70. Bmp signaling might also be implicated in 

the maintenance of the progenitor state through the highly expressed Id2 and Id4 proteins. Id 

proteins lack a DNA binding domain but can dimerize and therefore are able to sequester 

targets such as Olig1/2 and Ascl1 71. Furthermore, studies have shown that canonical Wnt 

signaling can inhibit OL differentiation, which might explain the strong upregulation of the 

Wnt inhibitor APC, and the upregulation of the Wnt effector Tcf7l2, however, activation or 

repression through Wnt is context dependent and can vary in different differentiation stages 
72.  

  

Terminal OL differentiation involves a multitude of factors working in concert to establish 

the myelinogenic program. Although OPCs will spontaneously differentiate in vitro, 

maturation of OLs can be slowed or stopped in vitro and in vivo by targeting specific factors. 

One of the factors involved in OL differentiation initiation is Nkx2.2, although this factor is 

rapidly downregulated during maturation, studies indicate that Nkx2.2 might work as a 

repressor of factors that negatively regulate OL differentiation, thereby enabling the OL cell 
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to establish the myelinogenic program 73,74. Differentiation of OLs requires HDAC1 and 

HDAC2 and several other epigenetic modulators, however HDACs can also act to inhibit 

differentation. HDAC1 and HDAC2 are believed to act in concert with the zinc finger 

transcription factor YY1, aside from direct activation of myelin genes by the zinc finger 

transcription factor 75. Other factors are the thyroid hormone receptor (TR), and retinoic acid 

receptors (RAR), both strongly expressed in OLs 72,76.   

 

Figure 3 Overview of known oligodendrocyte subtypes in the brain. 

The major role of Sox10 in OL maturation is evident in the binding pattern involving many 

myelin genes, as well as involving many binding sites facilitating the binding of multiple 

molecules of Sox10. Regulation of OL maturation by Sox10 requires high levels of Sox10 to 

be present in the cell, and additionally requires cooperation of factors such as Olig proteins 

and Nkx2.2, interestingly, the role of Olig1 in OL maturation is bigger whereas Olig2 has a 

specification dominated role 58,65. Additional factors important for OL differentiation include 

a range of zinc finger transcription factors, such as Zfp488, and Zfp191 77.  

Recent single-cell sequencing approaches indicate expression of additional zinc finger protein 

families which might play a role in OL maturation. The myelin gene regulatory factor 

(Mrf/Myrf) is also expressed during OL differentiation, and recent studies have shown that 

this factor is crucial for proper OL differentiation and establishment of the myelinogenic 

program 78. The exact gene regulatory program involving OL differentiation is not precisely 

known, novel studies will elucidate additional factors and interplay between them, including 

epigenetic regulators that serve as actors. 



 

 17 

 



 

18 



 

 19 

2 OLIGODENDROCYTES IN DISEASE: MULTIPLE 
SCLEROSIS 

Multiple sclerosis (MS) is a chronic inflammatory multi-causal condition that has genetic as 

well as environmental aspects. It is presumed that MS is caused by an autoimmune response, 

and this insight has led to many disease-modifying drugs that act on parts of the immune 

system, as well as processes governing cell trafficking 79. The ultimate result of the disease is 

demyelination of the brain and spinal cord, causing neurological damage and dysfunction. 

The disease has three main stages, the first is the pre-clinical stage, the stage in which the 

disease is triggered in an presumed multi-causal trigger involving genetics and environment. 

The second stage is the relapsing-remitting (RRMS) stage, in which symptoms of 

neurological dysfunction arise in detectible inflammatory lesions in the brain and spinal cord, 

the symptoms eventually resolve but patients often relapse. This stage can then worsen into a 

progressive clinical stage, in which the symptoms do not resolve but progressively worsen 

into secondary progressive MS (SPMS) or a primary progressive MS (PPMS) if the patient 

never enters the RRMS stage 80.   

  

It is assumed that MS is a multicausal disease, even though this is not known. Additionally, it 

has been discovered that MS has genetic as well as environmental risk factors associated with 

it, and women are more affected than men 81. A major driver of the disease seems to be the 

immune system, with the major cause being an autoimmune reaction mounted against cells of 

the oligodendrocyte lineage. Genome wide association studies have found several risk loci 

associated with MS, of which a certain haplotype of the HLA DRB1 gene (haplotype 1501) 

seems to be the most significant, however, over 200 risk factors have been found, 

highlighting the complexity of the disease. Aside from genetic risk, there is an increased risk 

associated with latitude and temperate climates.   

  

Disease progression within MS is characterized by the occurrence of lesions in the CNS 

manifested by an interplay between oligodendroglial cells, and immune cells such as T-cells 

and B-cells, ultimately leading to axonal loss and an increase in MS symptoms in the patient. 

Animal models such as the encephalo-myelitis (EAE) mice model, in which an immune-

response is mounted against a MOG-peptide fragment leading to autoimmune responses 

against mature oligodendrocytes, mimicking the “outside in” hypothesis model of multiple 

sclerosis, have been used to attempt to reproduce MS disease progression in mice, and have 

revealed an considerable role for the adaptive immune system. However, treatments that 

work on the EAE model, do not always work in MS, indicating an incomplete model 82. 
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Helper and cytotoxic T-cells are present in MS lesions, and limiting T-cells from accessing 

the CNS lessens the formation of new lesions considerably. Additionally, B-cells are also 

implicated in MS, and although known for the production of antibodies, targeted depletion of 

B-cells in MS seems to produce beneficial results before immunoglobulin depletion occurs, 

hence perhaps that other B-cell functions are of importance. Infiltration of macrophages and 

microglia in lesions is abundant and frequent, where phagocytic debris removal and cytokine 

depletion is common, however activated macrophages and microglia are also present and 

have implications in both lesion development and myelin regeneration 83–89.    

  

OPCs are present during both development and adulthood, and are capable of differentiating 

into mature oligodendrocytes, restoring function to a great degree. However, at some point 

during MS progression OPCs are blocked from maturing into oligodendrocytes. Failing to 

remyelinate, MS lesions are not repaired and the disease quickly progresses to advanced MS 

stages such as progressive MS 90. Efforts are underway to find ways of promoting OPC 

differentiation, without increasing inflammation, to restore remyelination capacity, and 

partially regain function.  

2.1 BRAIN LESIONS IN MULTIPLE SCLEROSIS 

Multiple sclerosis manifests itself in the brain resulting in lesions. MS lesions are insults to 

the brain characterized by a dysregulation of the blood brain barrier through effects such as 

local pro-inflammatory cytokines and chemokines such as interferon-γ (IFNγ), tumor necrosis 

factor-α	 (TNFα),	 and	 Interleukin-Iβ	 (IL1β).	 This	 exposure	 of	 the	 endothelium	 to	 pro-

inflammatory	 cytokines	 disrupts	 the	 integrity	 of	 the	 blood	 brain	 barrier,	 and	 in	 turn	

enhances	 the	 adhesion	 of	 leukocytes,	 macropages,	 T-cells	 and	 B-cells	 to	 the	

endothelium	 and	 in	 turn	 enhances	 the	 occurrence	 of	 trans-endothelial	 migration,	

leading	 to	 an	 up	 regulation	 of	 major	 histocompatibility	 complex	 II	 (MHC	 II,	

oligodendrocyte	loss,	and	neuronal	degradation	91.		 	

	

Lesions are characterized into a subset of regionally, histologically, and morphologically 

determined types, showing various differences in cell type composition, inflammatory 

activity, and demyelination. Here, the grey and white matter are distinct in how lesions 

present, but for both characterization generally entails describing the inner and outer borders 

of the lesion, where most lesion types have varying degrees of infiltration of immune cells, 

presence of reactive astrocytes, demyelination, myelin debris, and neuronal degeneration. The 
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earliest types of lesions to appear are white matter lesions characterized by active 

demyelination. At the lesion edge, the white matter lesion is crowded with debris clearing 

microglia and macrophages, and the lesion is infiltrated with lymphocytes, such as CD8+ T 

cells and CD20+ B cells, and to a lesser extent CD4+ T cells 92,93.  In primary and secondary 

progressive MS inflammation is less frequent, leading to a different type of lesion 

composition termed inactive lesion. This type of lesion is characterized by clear borders with 

a low density of cells and axons, well defined demyelination, reactive astrocyte gliosis, and 

variable microglial activation but mainly at the outside of the lesion 92–94.  Other lesions 

include chronic active plaques and slow expanding lesion showing varying degrees of 

activity, but mainly at the lesion border. Chronic active lesions are more common in patients 

with longer disease duration or in secondary progressive MS, and are characterized by 

macrophages in both the lesion edge and the center, however most macrophages are found at 

the lesion edge. Slow expanding regions contain inactive centers, activated microglia at the 

lesion edge, and few macrophages where some myelin debris is detected, indicating a slow 

rate of demyelination 88,95. Additionally, normal appearing white matter lesions are lof a 

diffuse nature, where axonal damage and demyelination occurs. These lesions are infiltrated 

with macrophages, acitivated microglia, as well as lymphocytes 94.  

  

Grey matter lesions present differently to white matter lesions, and are usually demyelinated 

to a greater extent compared to white matter lesions. Grey matter lesions in the spinal cord 

and cortex might be exposed to different immunological stimuli compared to white matter. In 

fact, grey matter sites are predominantly found in sulci and are close to the meninges, 

exposing the tissue to insults originating from inflammatory infiltrates from the meninges. 

Conversely, although the extent of demyelination occurring in the grey matter extensive 

compared to the white matter, remyelination occurs at a faster rate 96.  Lesions in the grey 

matter are categorized in different parts, based on location. First off all, type III lesions are 

the most common grey matter lesions, located in subpial areas and frequent due to commonly 

occuring meningeal inflammatory infiltrates. Other grey matter lesion types are type I, at the 

cortico-subcortical border; type II lesions, which are perivenous lesions; and type IV lesions 

comprise the width of the cortex without reaching into the white matter 94. 

 

2.2 GENETIC FACTORS AND THE INVOLVEMENT OF THE IMMUNE SYSTEM 

Genetic factors play a role in MS, and genome wide association studies (GWAS) have 

identified more than 200 risk factors individually contributing to disease pathogenesis 97,98.  
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These factors are thought to have only minor individual contributions to the disease, however, 

familial studies reveal a heritable component.  The age-adjusted risk is higher for siblings 

(3%) and parents (2%), and children (2%) than for second- and third-degree relatives. The 

risk for half-siblings is lower than for full siblings, and the risk for monozygotic twins is 35% 
99.  The majority of risk factors found through genome wide association studies are related to 

the immune system. Such as several polymorphisms on the HLA genes, as well as 

TNFRSF1A a tumor necrosis factor receptor, several interferon regulatory factor (IRF) 

family genes.  Several genes involved in the activation of proliferation of T cells are major 

polymorphisms involved in the disease. How these polymorphisms interact and contribute to 

the disease is lesser known. The work in paper II in this thesis details the expression of some 

of these genes near or on the loci in relation to the cell types found in both disease and 

healthy animals 98,100,101.  

2.2.1 T cells 

During maturation in the thymus, T cells are specified through recombination of gene 

segments in a somatic form of gene recombination involving a set of gene segments called 

variable (V) diversity (D) and (J) joining genes, generating a huge variety of T cell receptor 

specificities. While maturing, T cells start to express both CD4 and CD8 MHC co-receptors 

while being subjected to either negative or positive selection pressures, resembling a micro-

evolutionary principle. Positive selection follows after MHC recognition of the TCR resulting 

in T cells that are positive for either CD4 or CD8 recognizing either MHCII or MHCI 

respectively. Strong self-MHC recognizing T cells are removed through negative pressures, 

and the autoreactive T-cells are released to the periphery, completing the process called 

thymic education. To prevent T cells that have developed an affinity for recognizing “self”, 

meaning autoreactive T cells capable of generating autoimmune attacks, regulatory T cells 

(Tregs) positive for forkhead box protein 3 (FoxP3) are selected in the thymus. CD4+ FoxP3+ 

Tregs are selected for their strong recognition of self, however, these T cells are capable of 

suppressing other immune cells and thereby inducing immune homeostasis 102,103. Before 

recognizing their cognate antigen, a T cell is referred to as naïve. However, the T cell quickly 

differentiates when it does recognize its antigen, through a cascade of signaling events 

leading to the differentiation and subsequent generation of both effector T cells, mediating 

and interacting with the environment as well as and antigen presenting cells, but at the same 

time generating memory T cells that remain and are reactivated when its antigen is 

encountered. T cells can polarize into different types of effector T cells depending on the co-

stimulatory molecules in the environment as well as different kinds of cytokines. As stated 
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before CD4 and CD8 T cells recognize MHCII and I respectively, leading to a more 

mediating role for CD4 T cells such as releasing cytokines, and a direct killing role for CD8 

T cells, although there exist exceptions to this grouping 104.   

T cell involvement in MS is commonly thought to stem from the interplay of Tregs with 

CD4+ and CD8+ T cells, either wrongly activated or insufficiently regulated by Tregs. The 

common belief is that auto reactive T cells are activated and find their way into the 

parenchyma, crossing the blood brain barrier where they are reactivated by resident antigen 

presenting cells, leading to the establishment of an inflammatory milieu, recruiting additional 

T cells and macrophages resulting in a lesion. T cells have been found in early lesion, and 

several therapies rely on blocking this immune activation successfully thereby preventing the 

formation of new lesions, however, neurodegeneration is not prevented over the longer term 
105,106.   

The periphery and CNS of MS patients has been found to have increased numbers of CD4+ 

IL-17 expressing T cells (T helper 17 cells or TH 17) as well as CD8+ T cells. Other types of 

T cell effector cells found in the CNS implicated in MS are INFγ secreting CD4+ T cells (TH 1 

cells) and granulocyte macrophage colony-stimulating factor (GM-CSF). It is possible that 

these T effector cells are aberrantly activated in MS, however spontaneous differentiation of  

TH 1 and TH 17 does not readily occur. However, due to the presence of antigen presenting 

cells such as B cells and myeloid cells initiating pro-inflammatory interactions and releasing 

cytokines such as IL-12, IL-6, IL-23, IL-1β,	and	TNF, a pro-inflammatory milieu is created 

that might be permissive for aberrant activation of TH 1 and TH 17 cells 107–109. 

As antibody levels in healthy individuals is generally low, MS patients often exhibit 

contrasting levels of antibody levels within the CNS. B-cells from MS patients have  an 

elevated level of pro-inflammatory cytokine productions, with a deficiency in regulatory 

cytokines such as IL-10. The difference in B-cell activity between MS patients and healthy 

individuals might indicate that B-cells are capable of aberrant T cell activation. B cells 

expressing CD20 have become a target for anti-CD20 therapies, although antibody levels do 

not lower it is though that treatment contributes to a lowering of the possibility of aberrant 

activation 94,105. 
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SINGLE-CELL TRANSCRIPTOMICS  

The advent of massively parallel next generation sequencing (NGS) technologies, pushed the 

envelope on the resolution of which biological phenomena could be studied. Recently, a new 

revolution in RNA-sequencing is pushing the resolution even further towards the unit of 

biology, the single cell. Single-cell transcriptomics techniques allow measurement of the 

transcriptomes of thousands of single cells using massively parallel sequencing techniques in 

combination with sophisticated barcoding techniques. Over time, many different approaches 

emerged that implement some form of barcoding techniques measuring 5’-end, 3’-end, or 

full-length RNA counts 110–116.   

  

The analysis of tens of thousands of genes in thousands of cells requires compatible 

computation methods. A common approach would be to perform a linear dimensional 

reduction method such as PCA, followed by non-linear visualization methods such as t-SNE 

or UMAP 117,118. After these dimensional reduction methods, data is clustered to generate 

groups of transcriptomically similar cells in the reduced space, or to generate a 

developmental or lineage ordering of cells along an imputed trajectory called “pseudo time” 
119.   

2.3 A BRIEF HISTORY OF A YOUNG FIELD: EMERGING TECHNIQUES 

 The field of single cell genomics has been a continuation of the trend to evolve sequencing 

workflows that retain more of the RNA sequences in massively parallel RNA sequencing 

approaches. However, as making incremental advances in sensitivity approached the unit of 

the cell, the nature of the resulting data fundamentally changed due to the leap forward in 

resolving power.  Suddenly, tissues could be dissected into individual components, and new 

patterns emerged to be discovered through a plethora of analysis techniques. Since its advent 

in 2009 single-cell sequencing technologies have increased the throughput several 

magnitudes from tens of cells to a million cells using later drop-seq and micro-well 

technologies 110–112,114,115,120,121. The first experiments by Tang et. al. relied on cell isolation 

using mouth-micropipette, enabling researches to isolate single cells through careful 

mechanical labor. The individual cells were lysed in separate tubes containing a detergent, 

where further step were made, generating single cell resolved transcriptomes compatible with 

massively parallel RNA sequencing. Subsequent advances have built on this technique 

through refining the protocol developed in the Surani lab 121.   
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Notable improvements to the single-cell workflow were added by a multitude of labs, CEL-

seq and STRT-seq improved the technique by optimizing reagents and the implementation of 

cell barcodes 110,122, but later also introduced the concept of unique molecular identifiers 

(UMIs) 114. UMIs are random sequences added to the pre-amplification cDNA construct, 

allowing molecular labeling of transcripts. UMIs are effective to remove noise generated by 

the amplification steps in the protocol. A drawback of the approach is the loss of full 

transcript length information, as only the 5’ end of the mRNA is sequenced. However, these 

improvements allowed multiplexing to be performed early on in the workflow, pooling cells 

and thereby reducing the labor and reagents required to generate a library, since no additional 

reagents are needed in the individual lysis buffer. Aside from STRT- and CEL-Seq, SMART-

seq and SMART-seq II do not use UMIs, instead optimizations were added to the single cell 

workflow while retaining full-length transcript reads. In spite of the added noise from the lack 

of UMIs in the workflow, SMART-seq II became the benchmark for sensitive single-cell 

sequencing 111,112. At the same time microfluidics chip approaches such as the commercial 

fluidigm C1 chip, allowed cell capture and lysis on chip where small precise volumes could 

be delivered to reaction chambers on chip, dramatically reducing complexity of library set up, 

as most of the workflow was automated in a proprietary device 123,124. 

 One year later two different studies published a technique using microfluidics based on 

nano-sized aqueous droplets suspended in oil 115,125. This technique could be set up in a lab 

using pumps and syringes and was relatively affordable compared to previous methods. 

Additionally, using droplet-based techniques, it was now possible to up to the range of 

thousands of cells per experiment 120.  The company 10x genomics have commercialized the 

droplet technique into their chromium platform, which has quickly become the standard 

method for generating single-cell sequencing libraries 126. More recently, split-pool barcoding 

enables researchers to generate single-cell sequencing libraries of cells in the range of 

millions of individual transcriptomes. Split-pool ligation-based transcriptome sequencing 

(SPLiT-seq) relies on combinatorial barcoding, achieved through the pooled ligation-based 

RNA labeling, followed by a remixing of cells to one pool from which the second pooling 

will be performed, leading to rounds of labeling followed by recombination of pools of cells, 

ad infinitum. This technique can be performed using basic laboratory equipment (pipette, 

PCR machine) and can theoretically scale to the whole organ, or even organism level. The 

drawback of the technique (at the present) is that the technique is generally less sensitive 

compared to other high-throughput methods such as droplet-based techniques 127.   
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2.4 STRT-SEQ, SMART-SEQ II, AND CHROMIUM BASED CHEMISTRIES 

The main difference between single-cell chemistries is the choice of full length or UMI based 

data generation. These protocols vary in the way adapter and primers are designed, dictating 

the information measured. Here the focus lies on the chemistries used in the papers in this 

thesis, in Paper I STRT-seq has been used; Paper II features Smart-seq2 data; Paper III 

features STRT-seq data; and finally in Paper IV, 10x genomics chromium V2 and V3 

chemistries have been used. The STRT-seq method performs first strand synthesis of the 

RNA-template using a barcoded oligodT primer, but including a template-switching event. 

The template switching is achieved through the use of a specific reverse transcriptase, that, 

when finalizing the first strand synthesis will add a sequence of three cytosine nucleotides. 

The primer containing the UMI sequence is introduced, tagging the individual transcript, and 

as a result individual molecular counts can be detected. The UMI primer anneals to the 

previously generated 3’ end (the 5’ end of the RNA molecule) and facilitates elongation of 

the second strand. Amplification occurs through the use of a single primer located at both end 

of the cDNA amplicon. A cell barcode is then introduced though tagmentation with Tn5 

transposase, and only the fragment is only sequenced from one end 114,128.  

The Smart-seq2 protocol is comparable to the STRT-seq protocol, but generates full-length 

libraries. The main difference is found in the template switching where in contrast to STRT-

seq, no UMI barcode is added in Smart-seq2. The library amplification steps are similar and 

both STRT-seq and Smart-seq2 generate libraries of full-length cDNA, however Smart-seq2 

features both the P1 and P2 primers in the amplicon, additionally the tagmentation process is 

symmetrical in Smart-seq2, adding a barcode at both ends of the tagmented fragments 

making it possible to read the fragmented full-length transcript using next generation 

sequencing approaches. While Smart-seq2 theoretically retains the intron-exon structure, 

although with imperfect information, STRT-seq omitted this information, and only retains 

information about the 5’ end of the transcript 111,112.  

The first steps of the chromium library generation occur in a nano-liter volume, where the 

cell is suspended in oil captured in an aqueous bubble kept intact by hydrostatic forces. A 

hydrogel bead containing immobilized polydT primers carrying the UMI and cell-barcodes in 

one single sequence on its surface accompanies the cell, and lysis is initiated inside the 

droplet freeing RNA transcripts, causing them to bind to the hydrogel surface through 

annealing with the polydT primers on its surface. First strand synthesis occurs including 

template switching similar to STRT-seq and Smart-seq2 protocols. At this point the droplets 

surface tension it broken, mechanically, and the synthesized barcoded cDNA molecules are 
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pooled for subsequent full-length amplification. Here, the amplicon is cut enzymatically and 

the second read sequence is added through end-repair, A-tailing, and ligation steps, followed 

by PCR based addition of illumina compatible bridge amplification primers with a sample 

index added (see fig x) 126.   

2.5 ANALYSIS OF SINGLE-CELL RNA SEQUENCING DATA 

As a field, single cell resolved data analysis has only recently emerged, therefore 

standardization is hard and the growing number of analytic tools tailored to single cell data, in 

combination to the changing number of techniques and features to analyse (RNA-seq, 

ATAC-seq, Cut and Tag, bi-sulphite sequencing, gene dynamics inference such as velocity, 

gene regulatory network inference, lineage inference, and more) all require different 

approaches and tools, complicating standardization. Several initiatives started in recent years 

to bring standardized approaches or platforms in the hands of researchers. Platforms such as 

Seurat, and later Scanpy contributed to forming a platform of joint and standardized 

approaches in the programming languages R and Python respectively, Seurat added adoption 

of a multitude of tools over the years, including batch correction, negative binomial 

regression based normalization, integration of distinct datatypes, as well as many optimized 

versions of existing algorithms to facilitate data analysis with ever increasing numbers of 

cells 129–132.  

2.5.1 Raw data and quality control 

Raw data is normally processed through automated pipelines that align the raw RNA reads on 

a reference genome, and assign cell barcodes to cells in a process termed demultiplexing. 

Several pipelines exist and tools for this crucial step are expanding, some more popular 

pipelines are Cellranger, inDrops, emptyDrops, and Kallisto BUS tools 133–136.  Ultimately, 

data will be converted into a count or read matrix, depending on the use of UMIs or full-

length sequencing technique. The matrix has the format of features (number of detected 

counts/reads per gene) and cells (barcodes). During the read alignment and cell detection, 

read counts have to be accurately added to cells. Complications in this process can arise from 

ambient RNA present in the whole sample or adhering to cells, but also from the accidental 

capturing of two or more cells in the same droplet or well. A complication with barcode reads 

can arise when barcodes are mutated during amplification steps or when read errors occur. To 

combat this, most barcodes are designed to be at least 2 or more Hamming distances away 

from other barcode sequences, so that when a registered barcode is not on the curated list, an 

algorithm can calculate the probability of the barcode origin through incorporating read 
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statistics such as base quality scores, after which a barcode can be reassigned to a valid 

barcode given it exceeds a certain probability threshold 126.  

Filtering of the count matrix occurs through removing cells (barcodes) that show hallmarks of 

low quality transcriptomes. This is achieved by assessing the amount of counts a cell is 

assigned (count depth) as well as the amount of genes in which a count is detected (expressed 

genes), and the fraction of counts assigned to mitochondrial genes. Cells that underwent 

apoptosis during the experiment and preparation stages generally tend to exhibit low count 

numbers, as well as a low amount of genes expressed, the caveat being that small cells or 

quiescent cells might exhibit similar characteristics. In general, a dataset that captured many 

different cell types will also feature a large variation in cell sizes, whereby the total RNA 

content of the cells will fluctuate depending on the total cell volume, as so, care should be 

taken when setting thresholds for these values. The range at which cells are expected to lie in 

terms of number of genes expressed, is estimated to be around 500-5000 depending on the 

cell type, and thus size, but also the technology used. In the papers in this thesis, the number 

of genes was found to approximately be within this range. The third metric, fraction of 

mitochondrial counts can help differentiate better between high or low quality cells and is 

believed to measure cell stress, where cells that have a high proportion of mitochondrial 

counts tend to be in the process of apoptosis, or have a damaged membrane causing 

cytoplasm and cytoplasmic RNA to leak out while retaining the mitochondria, thus increasing 

the fraction of mitochondrial counts. However, this needs to be taken with care as a high 

fraction of mitochondrial counts might indicate respiratory processes, or in the case of 

oligodendrocytes, high numbers of mitochondria are expected to facilitate support for 

neurons.  

2.5.2  Normalization and dimensional reduction 

Normalization in single cell data requires different approaches compared to bulk-RNA seq 

data due to the intrinsically zero-inflated nature of the data. Next to normalization by total 

cell counts where one simply takes the size factor of the cell to be the sum of all the counts in 

the cell, after which the genes in the cell will be scaled proportional to the total library size of 

the cell. Other more specialized approaches have been developed, such as a method that uses 

a deconvolution approach, where cells are pooled by summing the expression of a group of 

cells together leading to fewer zeros, after which a size factor estimate is obtained through 

regression and recombination of cells in different pools 137. Non-linear normalization 

techniques such as SCtransform developed by the Satija lab fit a non-negative binomial 
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model to the data where the residuals of the model are considered as the normalized gene 

expression data 130. Common steps involving non-linear or linear models to normalize data 

include the correction of technical as well as biological effects, for example the linear model 

ComBat, originally developed for batch correction in microarray data, but adapted to single 

cell sequencing data, can perform both normalization and batch correction removing effects 

such as cell cycle or other biological or technical factors 138. One caveat is unwanted variation 

in the data can be confounded with favored patterns, thus leading to the removal of 

potentially important variation. 

After data normalization, variable features are selected and the dimensionality of the data is 

reduced. Standard feature selection methods include binning the features by mean expression 

magnitude and extracting the highly variable genes through extracting a threshold number of 

variable features per bin. The biological structure captured through single-cell sequencing is 

thought to be well approximated in a low dimensional space 139 which is commonly reduced 

through principal component analysis (PCA) 140. PCA attempts to capture the variance in 

components, where each component describes the most variance not captured by previous 

components, leading to a ranking of components where the first component describes the 

most variance in the dataset diminishing with every subsequent dimension.  

Non-linear dimensional reduction methods are mainly used for visualization, unlike PCA, the 

lower dimensional space is transformed in a way that does not conserve a uniform 

meaningful distance between data points, one of the great benefits of PCA reduced 

dimensional spaces. However, non-linear dimensional reduction techniques are excellent 

visualization tools, allowing the user to project the data into a 2 or 3 dimensional space, while 

retaining much of the complexity of the data, unlike PCA, which quickly loses complexity in 

the first two principal components when reducing the dimensions of a complex dataset 117,118. 

2.5.3 Clustering 

Grouping cells into biologically meaningful states is a problem that ultimately has many valid 

solutions, all producing differing results. The first clustering algorithms to be used for single 

cell data were adapted from classical machine learning approaches, algorithms such as k-

means clustering attempt to partition the cells in a reduced space such that a user given k 

number of centroids are created, cells are the iteratively assigned to the nearest cluster 

centroid, after which centroids are updated, and cells are reassigned to the updated centroid 

positions 141.  Another classical method is hierarchical clustering, where cells are split 

according to certain criteria, such as single-, complete-, or average-linkage, and Wards 
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metric. In effect, any set of divisive rules can be used in the algorithm, additionally the 

splitting can be initiated from the top down (divisive) as well as bottom up (agglomerative), 

producing a dendrogram depicting the hierarchy of the data as a result 142.  

K-Nearest neighbor graphs (KNN-graphs) are widespread in use in the single cell genomics 

field, due to their scalability and belief that KNN-graphs approximate the topology of the 

underlying data well. To create a KNN-graph, one has to assign a k number nearest neighbors 

to all data points most similar in the dataset, generating a network of data points.  KNN-

graphs lie at the basis of community detection algorithms, the most popular method for 

clustering single-cell data at present. The Louvain clustering algorithm is geared towards 

optimizing the amount of expected connections between cells based on the total connections 

of the cells, called modularity optimization, and hence does not need a set k 143. The Louvain 

algorithm is efficient and scales well to large numbers of cells. Additionally, the optimized 

modularity function contains a resolution parameter, allowing more fine tuned control over 

the clustering. Moreover, a similar and faster community detection modularity optimizing 

algorithm called Leiden is increasing in popularity 144. 

2.5.4 Batch correction 

Single cell resolution data is now more accessible, and large atlas projects as well as vast 

collections of smaller experiment based datasets are publically available. This is not only a 

great contribution to data democratization, as well as a boon to hypothesis generation by 

combining originally disparate data into one, possibly revealing new biology. However, data 

generation through differing means results in unwanted variation in the data. In fact, even 

within a set of experiments, day-to-day variations in conditions and batches of cell 

preparation bring unwanted variation. In the medical fields, patient-to-patient variation adds 

in an unwanted manner, where cell types might exhibit different responses in disease 

conditions, age, background, lifestyle, or even simply differing circadian rhythms all 

contribute to making data comparison challenging. Batch correction is essential to facilitate 

researchers in making use of interesting patterns in data.   

A variety of tools have been developed to correct batch effects in data. Traditional methods, 

adapted from micro-array analysis have been used, such as ComBat 138 are useful tools in 

removing batch effects, however, do not work in situations where complex batch correction is 

necessary, as these tools are inherently unable to address the zero inflated nature of single cell 

data. Currently the most popular and accessible tool by far is the correction method 

implemented in Seurat 3 132. This method is the merger of the pioneering mutual nearest 
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neighbor correction technique (MNN) 145 where correction vectors between matching cells in 

the different batches are found and corrected, and the previous implementation of Seurat 2 

batch correction 131, where the canonical correlation analysis (CCA) implementation of 

finding a shared feature space between datasets is implemented to greatly facilitate the 

matching cells to subsequently calculate a set of correction vectors, effectively aligning the 

datasets to perform downstream analysis on. CCA batch effect correction can effectively find 

shared feature spaces between greatly varying datasets including the alignment of data from 

different organisms to study the evolution and conservation of cell types.  

A caveat with neighbor finding tools is that similar yet distinct cell populations are at risk of 

being merged into one hybrid cell type. Recently, harmony 146 was developed, an algorithm 

that iteratively attempts to correct data in a lower dimensional space by using an adapted k-

means algorithm with a soft-thresholded clustering that favors clusters with cells from 

multiple datasets and penalized several factors at once, user specified. Correction vectors are 

then iteratively applied until convergence, while exhausting relatively few computational 

resources. Making it a favorable algorithm to integrate over large datasets of millions of cells.  

Several other integration methods have been developed, increasingly using deep neural 

networks. In sum, all techniques have unique weaknesses, and it is up to the user to choose 

the right approach fitting their data 147. In paper IV I have adapted the Seurat 3 approach and 

extended it to integrate cells using hybrid additive distance matrices, aligning several samples 

and batches in one alignment event using PCA projection or combined with CCA, as well as 

to integrate different expression representations of the data. 

2.5.5 Trajectory inference strategies and considerations 

Grouping cell states together is informative to find specific gene expression profiles or 

markers associated to cell populations, even in the context of development, grouping cells 

into clusters can help reveal populations with certain characteristics such as stem cells, 

intermediate states and mature cell states. However, especially in developing tissues 

continuous processes are dominant, complicating the meaning of discrete cluster 

representational view of cells. As such, several techniques have been developed to identify 

continuous processes such as cell lineages from single cell data, attempting to capture cell 

states, including the possible origins and destinations along the cell landscape. Single cell 

RNA sequencing data is generally a snapshot capturing of dynamical processes in the context 

of development. In order to reconstruct dynamics of a developmental landscape from 

snapshot data several assumptions have to be made.  
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The first attempt to reconstruct developmental progressions from snapshot data is Monocle 
148 introducing the concept of a reconstructed pseudotemporal ordering of cells termed 

pseudotime. To generate the pseudotemporal ordering in monocle, cells were analysed in a 

reduced dimensional space through independent component analysis, where a weighted graph 

is computed with cells as vertexes and edges represent distance in ICA space. To assign cells 

to the weighted graph a minimal spanning tree is computed and cells are assigned to the tree 

by proximity to their neighbors, minimizing transcriptional noise during the embedding 

process. Later iterations used a method termed reversed graph embedding as implemented in 

monocle 2 149.  Another early method for trajectory inference is wanderlust, embedding cells 

in a KNN network and traversing the network through graph walks guided by waypoint cells 

designed to reflect the topology of the underlying developmental process. The walks along 

the graph are translated into pseudo-orderings and pseudotime 150.  Another notable early 

lineage inference method, diffusion pseudotime, adapts the use of diffusion maps, KNN 

graphs and random walk derived topology, to assess potential paths through the transcription 

based manifold, to derive a diffusion map. Distances in the diffusion map, together with 

diffusion components potentially inform about possible trajectories in the data, where the 

diffusion components themselves should reflect major axis of linear or non-linear transitions 

along a lineage if presented with developmental data 151.  

Lineage branching points or other unconventional structures in the manifold such as cyclic 

trajectories due to the cell cycle or convergent paths taken in development are hard to extract. 

Strategies involve the modeling of complex iteratively updating tree based graphs such as the 

stream package 152, or monocle 149, or KNN based algorithms using pseudotime to direct 

edges in a asymmetric way such as palantir 153.   

In order to accurately reconstruct dynamic processes it is vital to sample all states of the 

system. Dynamic processes might be transient and thus likely to be missed when low cell 

numbers are present, failing to capture these relatively rare cell states. Violations in 

assumptions can lead to differing results in the inference of trajectories, where Weinreb et. al. 

demonstrates through simulations of putative biological processes what might be limits in the 

KNN sampling derived method for inferring trajectories and cell dynamics from snapshot 

data 154,155.     

In an effort to extract more information from snapshot data, La Manno et. al. exploited the 

process of splicing of RNAs in order to get an approximation of recent versus older RNA 

from a single cell. The assumption being that RNA reads carrying in them intronal sequences 

are less likely to have been spliced due to time constraints imposed by the transcription 
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machinery, therefore these unspliced transcripts likely reflect a later state of the cell, not yet 

manifested fully in the spliced transcriptome. Modeling the gene dynamics of single cells 

through the estimation of the degradation rate and the amount of spliced and unspliced reads, 

leads to the approximation of a steady state model of individual gene dynamics where RNA 

levels in a cell can be regarded as maintained when the cell produces exactly the amount of 

transcripts needed to overcome the degradation rate of older transcripts, being induced by the 

overcoming of the degradation rate, or down regulated by under-producing RNA, thereby 

lowering the pool of RNAs in the cell 156.  Recent frameworks such as scVelo developed by 

Bergen et. al. in the Theis lab have built on this concept to extend the model to a generalized 

kinetic model of transcriptional dynamics 157. The RNA velocity principle allows for the 

inclusion of cell displacement estimation, which when applied to the KNN approach can 

generate asymmetric transition probability graphs likely to follow markovchain dynamics. In 

paper IV I have implemented this approach to estimate the direction of dynamic processes 

and used this in both lineage estimation efforts and gene regulatory network inference.
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3 RESULTS 

3.1 PAPER I 

Using single cell RNA sequencing we revealed that the oligodendrocyte population, 

previously considered to be a functionally homogeneous population in the central nervous 

system (CNS), show distinct cell states in the adult and juvenile adult mouse brain.  

Data obtained from 5072 cells of the oligodendrocyte lineage in the CNS sampled from 10 

regions of the mouse juvenile, and adult were subjected to clustering using a custom 

clustering approach BackSPIN, reveal thirteen distinct populations of which 12 represent a 

continuous trajectory from OPC towards mature oligodendrocytes (mOLs). We could identify 

a narrow differentiation path from OPCs towards mOLs through pseudo-temporal analysis 

and t-Distributed stochastic neighbor embedding (t-SNE).  

OPCs revealed themselves as being distinct from other OL cells, while still retaining 

expression of genes such as Fabp7 and Hes1 traditionally associated with radial glial cells, 

possibly indicating a short developmental window from the radial glia into OPCs. We found 

that differentiation committed oligodendrocyte precursor cells (COP) that lost the expression 

of OPC markers such as Pdgfra and Cspg4, as well as expressed Bmp4 and Gpr17, among 

others. We found specific markers for all intermediate states towards the mOLs, termed 

newly formed 1 and 2, myelin-forming oligodendrocytes 1 and 2. mOLs exhibited 6 states, of 

which 3 presented with unique markers. Additionally, we identified a population of pericyte 

like cells, which we termed vascular and lepto-meningeal cells were transcriptomically 

distinct from OPCs except for the expression of Pdgfra and Cspg4. Lineage tracing of the 

immature OL marker Itpr2 confirmed that they are generated by OPCs. Furthermore, we 

confirmed that complex wheel running of mice leads to a 50% increase of Itpr2 and Sox10 

expressing oligodendrocytes compared to non-runners.  

We found that among the juvenile and adult taken samples, OPCs and COPs were present in 

all regions indicating a common developmental trajectory. Furthermore, the proportion of 

cycling cells differed between the juvenile (30%) and adult (3%), additionally, we could find 

that regions differed in the proportion of oligodendrocyte subtypes, as well as regions in the 

brain of juvenile mice still populated by immature oligodendrocytes. Indicating different rates 

of maturation in the various brain regions. 

Overall our results reveal an unknown heterogeneity underlies the oligodendrocyte lineage, 

with a strong implication for diseases related to oligodendrocyte such as multiple sclerosis 
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and other demyelinating lineages. Diving deeper into the data, I could reveal that 

oligodendrocytes express various non-coding RNAs along the pseudotime trajectory, 

indicating a somewhat strong regulatory control, especially since most of the non-coding 

RNAs seems to be conserved between mouse and human (Figure 4). 

 

 

Figure 4. tSNE plots of the top differentially expressed ncRNAs along the pseudotime axis. Unpublished data 

 

This study shows the transcriptional landscape of the oligodendrocyte lineage for the first 

time, and as such provides an coherent detailing of the differentiation path of the 

oligodendrocyte 
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3.2 PAPER II 

The use of single-cell resolved transcriptomics techniques in combination with the 

experimental autoimmune encephalo-myelitis (EAE) mice model reveals that 

oligodendrocytes (OLs) are not passive in a disease context, but instead respond actively by 

antigen presentation, among other responses. 

The EAE mouse model aims to mimic several aspects of multiple sclerosis (MS), in which an 

immune-response is mounted against a MOG-peptide fragment leading to autoimmune 

responses against mature oligodendrocytes, mimicking the “outside in” hypothesis model of 

multiple sclerosis, with the aim to elucidate any differences between control mice and EAE 

mice, so that we could investigate possible disease mechanisms in more detail.  

To effectively resolve disease states and health states we developed an approach that 

leveraged a spatial auto-correlation metric, the Moran’s I, using distances obtained from the 

diffusion map. This allowed spatial correlation of genes based on the manifold as 

approximated by the diffusion algorithm, to select the highest correlating genes on the 

manifold to generate a new diffusion map. We applied this filtering algorithm to significantly 

reduce the number of genes and improve the features of the manifold. We obtained an KNN 

network and Louvain clustering revealed oligodendrocyte precursor cells (OPCs), mature 

oligodendrocytes (MOLs), microglial cells, and VLMCs. Clustering within each level1 

cluster revealed a total of fourteen distinct OL lineage populations, including 4 different OPC 

clusters, one committed OPC (COP) cluster, one newly formed OL (NFOL) cluster, and 8 

MOL clusters. We found that 2 OPC populations were nearly exclusively enriched in the 

EAE model, as well as 5 of the MOL clusters, revealing disease specific cell states in the OL 

lineage. 

We observed a marked difference between the EAE condition versus the control condition. 

Not only could we discern differences in mature oligodendrocytes, including a completely 

unique Plin4 expressing cluster with no obvious counterpart in the control condition, but clear 

differences also appeared in the OPC clusters. We found expression of immunoprotective and 

adaptive immunity genes in the disease specific oligodendrocytes.  

To uncover disease factors, we performed non-negative matrix factorization. The number of 

factors (rank) we reduced by calculating the mutual information remaining between factors, 

rank estimation was performed using the “elbow” to estimate the best rank with the least 

average mutual information. The factor analysis revealed a number of factors relating to 

genes involved in the OL differentiation, progenitor state, and includes factors specific for 
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several clusters found during differentiation, such as COP and NFOLs, and several MOL 

clusters. Additionally, we discerned three factors associated with the disease model, these 

factors involve, an factor explaining MHC-I involved expression, as well as a factor specific 

for the Plin4 population uniquely identified in the disease condition, and lastly we found a 

factor describing expression of interferon response genes, Serpin family gene expression 

involved in immunoprotection, and highly surprisingly, MHC-II expression. 

We investigated the possible expression of MHC-II genes in both OPCs and mature 

oligodendrocytes using RNA-scope and immune-histocytochemistry, in which we were able 

to validate the Plin4 population, as well as increased Serpina3n, and MHC-I expression in the 

EAE model, and in addition we could validate MHC-II expression in OL lineage cells, 

including human oligodendrocyte lineage cells expressing OLIG2 and the MHC-II complex. 

Probing further using a published protocol to induce immune responses in OPCs, we could 

determine that OPCs can be induced into the MHC-II expressing state and that they 

subsequently exhibit phagocytic capabilities. Additionally, we performed co-culture 

experiments with T cells of 2D2 mice, which possesses a population of T cells specific for 

MOG 35-55 peptide, and could demonstrate a marked increase in proliferation of 2D2 

memory T cells co-cultured in the presence of immune activated OPCs treated with 

interferon-γ and the MOG 35-55 peptide.  

The phagocytic nature of the immunocompetent OPC and the strong evidence of MHC-II 

mediated antigen presentation suggests that the OPC exhibits a feedback mechanism with the 

T cell, eliciting a response, possibly indicating that the “inside out” hypothesis regarding the 

emergence of multiple sclerosis might be true, perhaps shifting the oligodendrocyte 

population back into view as a possible immunological player in this disease.  
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3.3 PAPER III 

Bulk-RNA sequencing of cells from the brain and spinal cord, of time points E13.5, and 

postnatal day (P) 7 of the Pdgfra-H2B-GFP mouse model revealed great transcriptional 

differences between the E13.5 and P7 timepoints of the Pdgfra+ samples. The bulk data 

analysis revealed an increased expression of myelination associated genes in the P7 obtained 

sample, and conversely, the E13.5 time point was enriched for pattering genes, early 

neuroblast genes, and neuronal progenitor genes. Single-cell sequencing of Pdgfra-GFP+ 

E13.5, E17.5, and postnatal day (P) 7 cells using Smart-seq2 (1514 post-QC) from Pdgfra-

H2B-GFP and Pdgfra-CreERT-RCE (LoxP-GFP) mice uncovered a multitude of populations 

explaining the great transcriptional differences observed between the timepoints in the bulk 

RNA-seq experiment.  

The E13.5 time point revealed several groups of cells expressing Pdgfra in development. 

Detailed analysis of the genes expressed in these groups revealed populations of radial-glial 

like cells, pericyte-like cells, vascular and leptomenigeal-like cells (VLMCs), several 

populations of neuroblasts (NPs), and early choroid plexus-like cells. The majority of 

pattering genes found in the E13.5 bulk RNA sample could be deconvolved in the single-cell 

sequencing sample, where most of the genes could be attributed to the found populations, 

such as Otx1/2 for cluster NP1a/b, Lhx6 for NP3, Lhx1, Ebf1-3, Neurod2/6, for NP2, 

eVLMC/PLC/Radial-Glia (Meox2, Wwtr1, Hes1). Additionally, great differences between 

spinal-cord and brain derived cells became apparent, as cells from the spinal-cord expressed 

many head/tail axis-associated genes from the Hox gene-cluster. 

The P7 time point consisted almost entirely of cell clusters of OPCs, OL-lineage cells, and 

VLMC cells. The OPC cluster could be split in two clusters, and, although the clusters are 

very similar, we could find some differentially expressed genes such as Resp18, Fos and 

Egr1. However, it is not clear if these differences are due to stress related responses or true 

biological variation. We also found committed oligodendrocyte precursor cells (COPs) and 

newly formed oligodendrocytes (NFOLs), forming a gradually transitioning trajectory 

towards maturing OLs.  

To elucidate probable relationships between the cells, we created an approach to generate a k-

nearest-neighbor (KNN)-network of cells, single-cell nearest neighbor network embedding 

(SCN3E), by leveraging the diffusion mapping algorithm, a non-linear dimensional reduction 

technique, robust to the high dimensionality problem and dropouts. A diffusion map is in fact 
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a transition matrix approximating the relative similarities between cells, while at the same 

time it can be considered a markov-chain. Connectivity between two points, or, the transition 

probability, is defined as the probability of landing on that neighboring point in a one-step 

random walk.  

To approximate the manifold better we clustered the data into 100 clusters, for each of which 

a pseudotime was calculated using the R-package DPT-destiny, turning each cluster into a 

beacon in the manifold from which a pseudotime “signal” would emerge. For each cluster we 

chose a cell that was spatially the most distant from the previous “beacon”, ultimately 

resulting in 100 pseudotimes with locations and relative orderings for each cell. I then 

performed principle component analysis (PCA) on the pseudotime matrix, effectively 

extracting the main features of the manifold through exploiting the fact that dissimilar 

manifold in regards to pseudotime flow would be emphasized in components of variation. 

To make the KNN-algorithm robust we attempted to scale the number of nearest neighbours 

depending on the topology of the manifold by limiting the number of nearest neighbours to 

only allow the neighbours corresponding to the 1% closest distance values. Pearson 

correlation between the neighbours, further dictates the weights of the edges in the final 

network. We then performed Louvain clustering on the KNN graph. 

Using these approaches, we could detect a sub-cluster of a neural progenitor population 

expressing Olig1/2, Ptprz1, Bcan, Rfx4, and Nes, directly adjacent to the identified OPC 

population in the KNN network, as well as the radial glial like population, possibly 

constituting pre-OPCs (Figure 5). Further inspection in previously published data of the 

embryonic midbrain including several timepoints during development (La Manno, et. al. 

2016) using the algorithms described above revealed a similar population within the radial 

glial populations, expressing all markers above, thus indicating a cell state of committed glia 

precursor cells.  

We then delineated different waves of OPCs a using Pdgfra-CreERT-RCE (LoxP-GFP) 

mouse. Injection of tamoxifen at E12.5 resulted in GFP expressing cells depending on the 

expression of Pdfra, allowing us to isolate the first wave OPCs from later wave OPCs. Cells 

were collected at P7-8 and analysed. We found that not only did the E13.5 timepoint give rise 

to OPCs we also found VLMC/pericytes like cells generated from the same cell 

subpopulations expressing Pdgfra at these early timepoints. However, no significant 

differences between the different developmental waves of OPC generation could be found 

from a transciptomic perspective using MAST, a hurdle-model based differential expression 
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package. OPCs from spinal cord and brain did not exhibit many significant differences, 

except Hoxc8 and Plp1 genes, we did see other genes differentially expressed although not 

significantly. Thus, we concluded that regardless of the origin of OPCs, be it spinal cord or 

brain, as well as different waves of OPC generation during development, convergence 

towards a transcriptionally homogeneous state occurs upon attainment of the OPC identity.  

Figure 5 | Pseudotime trajectory reveals progenitors of the OL lineage in the E13.5 timepoint. a, Density plot showing 
differences in Spinal Cord and Brain derived cells along pseudotime trajectory. The black line depicts the density of all 
cells. b, Number of genes at least 2 fold differentially expressed between Spinal Cord and Brain. Cells are pseudotime 
binned according to density peaks along pseudotime.  c, Density plot showing the distribution of the three different 
timepoints. d,  Violin plot illustrating the distribution of the cell clusters along pseudotime. e-f, Pseudotime plot depicting 
expression along pseudotime (e) Scatterplot showing the expression patterns along pseudotime for essential 
oligodendrocyte lineage genes. (f). Scatter plot along pseudotime. Unpublished   
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3.4 PAPER IV 

We dissociated human fetal brain tissue from week 7-10 post conception after which we 

performed single-cell RNA sequencing on the 10x genomics platform. We obtained 

approximately 25 000 cells from an unbiased dissociation.  

Analysis reveals several clusters of radial glial cells, as well as, endothelial cells, several 

kinds of neuroblasts such as excitatory neurons, inhibitory neurons, motor neurons and, 

additionally, several clusters of glial cells, such as glial progenitor cells, SPARCL1 

expressing early astrocytes or transit amplifying cells, and surprisingly, OPCs expressing 

PDGFRA, SOX10, OLIG1, and OLIG2. Interestingly, the pre-OPC population identified in 

the mouse data of Paper II was present in the human data and seems to be the precursor 

population for glial cells including OPCs, according to the manifold approximation and 

KNN-network embedding. We calculated a RNA velocity inspired diffusion map on which 

we attempt to trace the preceding populations possibly generating OPCs. We stratified the 

obtained collection of progenitors along a pseudotime into 4 bins, after which we defined the 

conditional mutual information (CDI) of transcription factors between spliced and unspliced 

counts, we then generated a network of CDI measured weights across all progenitors. 

Furthermore, we scored the top regulated genes and their putative regulator in individual 

pseudotime bins by defining the RNA velocity associated gene shifts for the cluster, retaining 

only the genes that show velocity shifts. This resulted in a list of transcription factors and 

possible targets associated to each population. Revealing the transcriptional actors in the 

different populations allowed insight into the possible key transitions in regulatory repertoire 

needed to undergo cell state transition into ultimately OPCs. 
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4 CONCLUSIONS AND POINTS OF PERSPECTIVE 
The work presented in this thesis represents the accumulated work of several years in the 

field of neuroscience, where we have attempted to dive deeper into the complexities of brain 

development, disease, and brain composition. Paper I contributed greatly to the field of 

oligodendrocyte biology and neurodevelopment, where we revealed the oligodendrocytes in 

unprecedented detail for the first time.  The work in Paper II revealed that the 

oligodendrocyte lineage seems to communicate and interact with the immune system rather 

than be subject to it. In Paper III we show that OPCs are a seemingly homogeneous 

population of cells, regardless of their origins. Additionally we show that OPCs as well as 

VLMCs are generated from the E13.5 lineage expressing Pdgfra, and continue to show what 

precursor cells are most likely to be precursors to the OPC cell state. In Paper IV we attempt 

to disentangle the complicated structures of the developing human forebrain glial lineage. We 

sequence post conception week 8 – 10 in the human forebrain, which is to our knowledge the 

first time that this time window has been captured in the resolution we provide. Furthermore, 

for the first time, we detect OPCs at week 8 in development where we continue to dissect the 

possible origin of these early human OPCs. 

The understanding of developmental processes in the brain and throughout the organism 

necessitates the reconstruction of the evolutionary process that formed it. Cell and 

developmental biology is increasingly becoming an exact science, reaching the point where 

the modeling of a single cell might become possible in the near future.  

The recent emergence of multimodal single cell data is necessary to capture all facets of cell 

dynamics, the regulation of which depends on a multitude of factors, such as the 3d 

conformation of the genome in the cell. The spatial context in which the chromosomes 

operate dictates how genes, promoters, enhancers, and non-regulatory elements interact 

together. Recent advances have transformed previously bulk techniques such as ATAC-seq, 

chromatin conformation capture techniques such as Hi-C, as well as Cut and Tag which 

allows researchers to probe the chromatin of a single cell. The field of microscopy is making 

similar strides and is currently the most promising way to study dynamical biological 

phenomena at the single-cell level.  

The digitization of biology moves the field slowly but surely into a position to merge with 

more exact sciences, leading to more and more research being conducted as computation. The 

complexity of multimodal data will need more advanced algorithms to find patterns, and 

make accurate predictions. Recent advances in machine learning have not yet made serious 
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impact in the way biological research is conducted today. Initiatives such as the human cell 

atlas help spearhead accessible and open data, broadening the so far narrow cracked opening 

of the door to all researchers in the biological fields. Medicine can benefit greatly from 

evolving models of the cell. On can envision applications brought about by the dynamic 

information from tools such as RNA velocity and metabolic labeling. When completed by 

lineage tracing such as the sophisticated techniques that CRISPR can bring, a new paradigm 

can enter the stage. As far as my work will go into the future, it seems straightforward that the 

learning algorithms developed in the past five years can have both input and output in terms 

of RNA velocity data, when these algorithms attempt to converge on the unspliced 

transcriptomic state or any other simultaneously measured modalities of the same cell, we 

could asses if these predictions are generalizable and perhaps predictive of perturbations. 

Such a system could in theory allow in silico perturbations to increasingly be a viable 

alternative to experiment, and thus capable of aiding in the generation of scientific 

hypotheses.  
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