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ABSTRACT 
Alzheimer disease (AD) is a multifactorial and complex neurodegenerative disorder. To date, 

different mechanisms, such as impairment of synaptic, mitochondrial and autophagic 

function, neuroinflammation and many more, are found to disrupt cellular homeostasis in AD 

brains. Despite the increased knowledge, it is still difficult to pinpoint which of these 

mechanisms is the main culprit driving the pathologic cascade, especially in the form of late-

onset, sporadic AD, accounting for more than 95% of all patients.  

In this thesis, we used human-based or translational approaches to investigate which 

pathological alterations indeed occur in AD brains. In Paper I, we investigated an amyloid 

precursor protein (APP)-derived band with a molecular weight of 20 kDa, most likely 

corresponding to the APP C-terminal fragment (CTF) called CTF-η, and showed that it is 

expressed at low levels in the human brain. However, we also noted that several antibodies 

directed to APP or other proteins also detects a presumably non-specific band of a similar 

size. 

In Paper II, IV and V, we explored changes in the proteome of postmortem AD brains and 

CSF of AD patients and App knock-in mice. In Paper II, our aim was to identify proteins and 

pathways that could underlie synaptic dysfunction, a pathogenic event that happens early in 

disease progression. We thus explored the proteome of the outer molecular layer (OML) of 

the dentate gyrus using mass spectrometry (MS). This region is relatively cell-free and highly 

enriched in synaptic connections, and more importantly receives the main input of the 

hippocampus called the perforant path, which is highly affected in AD pathogenesis. Our 

comprehensive data analysis indicates that the OML indeed exhibits presynaptic changes, 

which is in line with previously published reports, whereas postsynaptic density proteins were 

not altered. To follow-up on the hypothesis of presynaptic impairment in AD OML, using 

immunofluorescence, we measured the staining densities of five presynaptic proteins in sub-

regions of the hippocampus in Paper III. Similarly, we found decreased staining densities of 

complexin-1, syntaxin-1a, synaptotagmin-1 and synaptogyrin-1 in AD OML. However, the 

analysis of other hippocampal sub-regions showed no significant alterations in these 

presynaptic proteins, except syntaxin-1a, which showed increased staining densities in AD. 

Although other molecular layers of hippocampus also receive the perforant path input (as 

well as other important inputs), it was intriguing to find that presynaptic impairment was 

restricted to the OML. Together, Paper II and III point out to presynaptic failure in AD 

hippocampus.  



To further compare our proteomic findings with the published ones, in which proteome of 

AD-affected brain regions (e.g. temporal and frontal cortices) was analyzed, and to identify 

commonalities and discrepancies between the studies, in Paper IV, we performed a meta-

analysis of labeled (11753 proteins and 168 cases) and label-free (4292 proteins and 632 

cases) data. We found approximately 500 significantly altered proteins that were associated 

with pathways such as synaptic signaling, neuron and axon development, neurogenesis, 

cellular respiration and catabolic process, some of which are previously reported to be 

involved in AD pathogenesis. Additionally, seven novel proteins were found to be 

consistently altered in AD. 

In Paper V, we studied the CSF proteome of App knock-in mice and identified alterations in 

several blood-brain barrier and extracellular matrix proteins, for example decorin. 

Furthermore, in order to explore translational changes between mouse and human CSF, we 

compared our findings from Paper V with the CSF proteome of human patients, reflecting 

different stages in AD continuum (i.e normal cognition, mild cognitive impairment and AD 

dementia), from a recently published study. Interestingly, decorin was significantly 

upregulated both in the AppNL-F/NL-F mice and in the subjects with normal cognition and Aβ-

positive and tau-negative CSF levels. Additionally, this study revealed alterations in proteins 

that were shared in all groups and extensively associated with pathways such as cell adhesion, 

neurogenesis, cholesterol and lipid metabolism and acute inflammatory response. 

In summary, this thesis has contributed with new knowledge on potential presynaptic failure 

in AD hippocampus and expanded our understanding of altered pathways that could be 

involved in AD pathogenesis. Future studies on this work may facilitate the development of 

new CSF biomarkers and therapeutic strategies for AD. 

 

 

  



 

 

TURKISH ABSTRACT 

Alzheimer hastalığı (AH) demansa sebep olan nörodejeneratif hastalıklardan biridir. 

Günümüzde, Alzheimer hastalarının beyinlerinde farklı mekanizmaların etkilendiği ve 

hücresel dengenin bozulduğu ortaya konmuştur. AH ilk olarak 100 yıl önce tanımlanmıştır. 

Ancak artan bilgi birikimine rağmen, özellikle hastaların yaklaşık olarak %95’den fazlasını 

kapsayan ve sıklıkla 65 yaş üzerinde görülen geç başlangıçlı AH’nda hangi hücresel 

mekanizmaların ana rol oynadığı ve patolojik süreci nasıl tetiklediği hala tam olarak 

aydınlatılamamıştır. 

Bu doktora tezinde, AH’nda oluşan patolojik değişimleri araştırmak için AH olgularının ve 

demans hastalığı olmayan kontrol olgularının beyin dokuları ve ayrıca deneysel olarak AH 

oluşturulmuş farelerden elde ettiğimiz beyin-omurilik sıvıları kullanılmıştır. Bu tez 

çalışmasında farklı biyokimyasal metotların yanı sıra, proteomik yöntemi kullanılmıştır. Bu 

yöntem bir hastalığın oluşmasında rol oynayan binlerce proteinin, o hastalığın etkilediği 

biyolojik materyallerde (beyin dokusu, beyin-omurilik sıvısı vs.) aynı anda tespit edilmesini 

sağlamaktadır. 

Makale I’de, amiloid prekürsör proteininin (APP) farklı fragmanlarını incelenmiştir. Bu 

proteinin bir fragmanı olan amiloid-β Alzheimer hastalarının beyinlerinde birikmektedir. 

Ayrıca yapılan yeni çalışmalar, beyinde bu birikimin hastalığın klinik bulgularının 

görülmesinden yaklaşık on ila yirmi yıl önce başladığını göstermektedir. Buna rağmen 

APP’nin AH gelişimindeki rolü hala tam olarak bilinmemektedir. APP’nin bazı 

fragmanlarının AH gelişimi açısından daha büyük önem taşıdığı tartışılmaktadır. Bu sebeple 

Makale I’de APP’nin yeni keşfedilen bir fragmanının düzeyi araştırılmıştır. Bu fragmanın 

insan beyninde düşük düzeyde ifade edildiği ve ifade düzeyinin de AH’nda farklılık 

göstermediği saptanmıştır.  

Makale II, IV ve V’te ise, hangi proteinlerin ve mekanizmaların AH’nda etkilendiğini 

araştırmak amacıyla proteomik analize yoğunlaşılmıştır. Yapılan araştırmalar bu 

mekanizmalardan birinin sinapslardaki bozulmalar olduğunu ve bunun AH’nın erken 

evrelerinde ortaya çıktığını göstermiştir. Sinapslar iki nöronun birbirine çok yakın bulunduğu 

alanlardır ve nöronlar arasındaki iletişimi sağlarlar. İletiyi getiren nörondan (pre-sinaps) 

nörotransmitter denilen kimyasal maddeler salınır ve böylece iletiyi alan nöron (post-sinaps) 

uyarılmış olur. Nöronlar arasında uyarı beyinde sıklıkla gerçekleşir ve sinapslar hafızanın 

oluşumunda çok önemli bir role sahiptir. Makale II ve III’te, hafıza oluşumundan sorumlu bir 



beyin bölgesinde (hipokampüs) yaptığımız çalışmalar, özellikle pre-sinapstaki proteinlerin 

seviyelerinde değişiklikler olduğuna işaret etmektedir. Makale IV ve V’te yapılan proteomik 

incelemeler yine sinaps proteinlerinin seviyelerinin AH olgularının beyinlerinde değiştiğini 

göstermiş ve buna ek olarak farklı hücresel işlevlerde (örneğin nöron gelişimi, hücre enerji 

mekanizması, kan-beyin-bariyeri işlevi gibi) rol oynayan proteinlerin seviyelerinde de önemli 

değişimler tespit edilmiştir. 

Sonuç olarak, bu tezin literatüre en büyük katkılarından biri, AH olgularındaki sinaps 

değişimlerinin başlıca hipokampüsteki pre-sinapslarda gerçekleştiğinin gösterilmesidir. İleriki 

çalışmalarda bu değişimlerin neden pre-sinapslarda yoğunlaştığının araştırılması sinaps 

bozulmalarının AH’nda nasıl gerçekleştiğini aydınlatabilecektir. Ayrıca bu tez hangi hücresel 

mekanizmaların AH’nda etkilendiğine dair var olan bilgiye katkı sağlamıştır. Özellikle 

spesifik hücresel mekanizmalar üzerine yapılacak olan ileriki çalışmalar farklı tedavi 

yöntemlerinin geliştirilmesinde ve hastalığın teşhisinde veya seyrinde kullanılabilecek 

biyobelirteçlerin geliştirilmesine yardımcı olabilecektir.  
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1 INTRODUCTION 
1.1 DEMENTIA AND ALZHEIMER DISEASE  

Dementia is a clinical syndrome that is mainly characterized by progressive memory loss and 

cognitive impairment. These symptoms are often accompanied by behavioural changes and 

depression. As the disease progresses, the ability to independently perform everyday 

activities diminishes, which ultimately reduces life quality. Dementia is caused by 

neurodegeneration and observed in a variety of neurodegenerative disorders such as 

Alzheimer disease (AD), Lewy body dementia and vascular dementia. The main risk factor of 

dementia is old age, and due to increased life expectancy worldwide the prevalence of 

dementia is rapidly increasing. A recent report from Alzheimer’s Disease International has 

shown that approximately 50 million people worldwide are living with dementia, of which 

approximately 60% are living in low- and middle-income countries (Prince et al. 2015). Due 

to the impact of dementia on society, World Health Organization has considered dementia as 

a public health priority and implemented the global action plan aiming to 1) increase 

dementia awareness and policies, 2) reduce risk of dementia, 3) improve diagnosis, treatment 

and care, and 4) support research and dementia care givers (https://www.who.int/news-

room/fact-sheets/detail/dementia). 

AD is a progressive neurodegenerative disorder and the most prevalent cause of dementia. In 

the most common form, i.e. sporadic AD, individuals usually develop late-onset AD that is 

seen after the age of 65. On the other hand, in familial AD, mutations in the amyloid 

precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2) genes cause early-

onset AD and a more rapid disease progression (St George-Hyslop et al. 1987; Schellenberg 

et al. 1992; Levy-Lahad et al. 1995). To date, more than 350 mutations have been identified 

in these genes (https://www.alzforum.org/mutations). For example, these mutations alter APP 

processing by increasing the production of the amyloid β-peptide (Aβ), especially the 42 

amino acid long fragment (Aβ42), which has a greater propensity to aggregate and is more 

toxic compared to the Aβ40. Both sporadic and familial AD patients are clinically 

characterized by cognitive deficits affecting episodic memory, followed by executive 

dysfunction such as impaired decision-making, planning, recognition, and verbal fluency. As 

the disease progresses, a variety of other symptoms can emerge such as seizures, mood 

swings, confusion, behavioural changes, which diminish the ability to independently perform 

everyday activities, increasing the burden of responsibilities on caregivers (Winblad et al. 

2016). 

https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.alzforum.org/mutations9
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1.2 PATHOPHYSIOLOGY OF ALZHEIMER DISEASE  

Systematic neuropathological evaluation of postmortem AD brains has shown the presence of 

abnormal proteinaceous deposits, i.e. amyloid plaques and neurofibrillary tangles (NFT). 

Amyloid plaques are composed of insoluble fibrillar form of Aβ, mainly Aβ42 (Figure 1A), 

and found in the extracellular space. Amyloid plaque pathology begins in the frontal and 

temporal cortices (phase 1), followed by neocortex (phase 2-3), lower brainstem and 

cerebellum (phase 4-5) (Thal et al. 2002) (Figure 1B). A subset of amyloid plaques that is 

well documented in AD brains is the neuritic plaques (Figure 1A). They display 

characteristic morphological differences compared to the amyloid plaques, i.e. the dense Aβ 

core is usually surrounded by dystrophic neurites containing abnormal phosphorylated tau 

aggregates, synaptic proteins, ubiquitin, lysosomal proteins and swollen glial processes. 

Hence, neuritic plaques cause more local synapse loss and glial activation (Serrano-Pozo et 

al. 2011). Emerging evidence points out that the intracellular accumulation of Aβ occurs 

before the presence of extracellular amyloid plaques and could be an important process in 

disease pathogenesis (Gouras et al. 2010). 

NFTs are intraneuronal aggregates and mainly composed of microtubule-associated protein 

tau that forms paired helical filaments (Duyckaerts, Delatour, and Potier 2009) (Figure 1C). 

In contrast to the spread of amyloid pathology (from neocortical to subcortical regions), NFT 

pathology starts to develop in the transentorhinal cortex and in a few brainstem nuclei such as 

locus coeruleus (stage I-II) (Braak and Braak 1991; Braak and Del Tredici 2012) (Figure 

1D). From the transentorhinal cortex, NFTs progressively spread to the hippocampal 

formation and some parts of the neocortex (stage III-IV), and eventually to the entire 

neocortex (stage V-VI). Misfolded tau aggregates seem to spread between the regions of 

close connectivity, such as from the entorhinal cortex (EC) to the hippocampus, indicating 

that tau spread likely occurs through synapses (Lace et al. 2009; de Calignon et al. 2012; 

Kaufman et al. 2018). Interestingly, the burden of neocortical NFT, but not amyloid plaques, 

has been found to correlate well with cognitive decline in AD (Nelson et al. 2012). 
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Figure 1: The AD-related neuropathological changes and their pathological stereotypical pattern. (A) 
Amyloid (top) and neuritic (bottom) plaques. (B) Thal phases showing the progression of the amyloid 
plaque pathology. (C) NFT pathology and (D) its propagation indicated by the Braak stages. 
Microscopic images in A and C are adapted from (Montine et al. 2012). The schematic diagrams 
showing the progress of AD-related pathology in B and D are taken from (Goedert 2015).  

The definitive diagnosis of AD is characterized by the postmortem neuropathological 

examination based on the ABC scoring system (Hyman et al. 2012): (i) amyloid plaque score, 

modified from Thal et al. (Thal et al. 2002), (ii) NFT score, modified from Braak et al. 

(Braak and Braak 1991), and (iii) CERAD neuritic plaque score (Mirra et al. 1991). Other 

neuropathological changes can also be observed in AD brains including synaptic and 

neuronal loss, atrophy, gliosis, white matter changes, cerebral amyloid angiopathy (CAA) 

and concomitant protein aggregates as Lewy bodies (Hyman et al. 2012).  

It should also be noted that amyloid plaques and NFTs are seen in elderly individuals with no 

sign of dementia (Maarouf et al. 2011; Corrada, Berlau, and Kawas 2012; Perez-Nievas et al. 

2013), but the extent of pathology is not as severe as in subjects with AD. Progressive loss of 

neurons and reduced cortical thickness are the main pathological changes that distinguish AD 

from normal aging (Perez-Nievas et al. 2013). 

Compelling evidence from clinical and pathological findings suggests that AD 

pathophysiology starts many years or decades before the onset of clinical symptoms (Figure 

2). Based on the evaluation of current biomarkers, which will be discussed in section 1.6 

(Biomarkers and treatment strategies), the pathophysiological sequence of AD is divided into 

three stages: preclinical or subjective cognitive impairment, mild cognitive impairment (MCI) 

and AD dementia (Sperling et al. 2011) (Figure 2). In the preclinical stage, individuals are 

cognitively healthy but pathological abnormalities can be detected either in the cerebrospinal 
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fluid (CSF) or in the brain (Sperling et al. 2011). In MCI, the early signs of cognitive 

impairment, particularly problems in episodic memory, become more evident (Albert et al. 

2011). In the AD stage, individuals show substantial cognitive and functional decline 

(McKhann et al. 2011). The degree of cognitive and functional decline varies from patient to 

patient and not every individual will progress to AD. Therefore, understanding the disease 

continuum is crucial, as it could provide a window of opportunity for potential disease-

modifying therapy especially at the preclinical stage of AD while individuals are still 

cognitively healthy. 

 

Figure 2: This hypothetical model distinguishes the pathophysiological stages of AD based on 
currently available diagnostic and prognostic biomarkers. This figure is taken from (Sperling, Aisen et 
al. 2011). 
 

1.2.1 APP processing and Aβ 

APP is a 695-770 amino acid long, type-I transmembrane protein that is expressed in a 

variety of tissues including brain. APP is thought to be important for neuronal function, as 

evidence suggests that APP is implicated in numerous cellular processes including cell 

adhesion, neurite outgrowth, neurogenesis, axonal transport (Nicolas and Hassan 2014). 

However, the exact physiological role of APP and its cleavage products still remains to be 

established.  

The processing of APP is divided into amyloidogenic and non-amyloidogenic pathways and 

mediated by α-secretase, β-secretase and the γ-secretase complex, consisting of PSEN1 or 

PSEN2, nicastrin, anterior pharynx defective-1 (APH-1) and presenilin enhancer 2 (PEN-2) 

(Haass et al. 2012) (Figure 3).  
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Figure 3:  APP processing summarized by the two main pathways: amyloidogenic (β-secretase) and 
non-amyloidogenic (α-secretase) pathways. The sequential cleavage of APP by β- and γ-secretases 
gives arise to Aβ, which is released to the extracellular or intraluminal space. Alternatively, full-
length APP is first cleaved by α-secretase within the sequence of Aβ, and thereby precluding the 
production of Aβ. In the recently identified η-secretase pathway, full-length APP is first cleaved by η-
secretase, producing the soluble APP-η and the CTF-η fragments. The CTF-η is then cleaved by β- or 
α-secretase, giving arise to soluble Aη-β or Aη-α fragments, respectively. 

In the amyloidogenic pathway (Figure 3, left), APP is sequentially cleaved by β-secretases, 

executed mainly by the β-site APP cleaving enzyme 1 (BACE1), and the γ-secretase 

complex. BACE1 cleavage generates a soluble APP-β fragment that is released into the 

extracellular or intraluminal space and a membrane-bound C-terminal fragment (CTF) of 

APP called CTF-β or C99 (Vassar et al. 1999). CTF-β is further cleaved by γ-secretase, 

generating Aβ and the APP intracellular domain (AICD). While Aβ is released into the 

extracellular space or into the lumen of vesicles such as endosomes, AICD is released into the 

cytosol. Depending on where exactly the γ-secretase cleavage takes place, both Aβ and AICD 

can vary in length. The most abundant form of Aβ is 40 amino acid long, which is followed 

by the longer form Aβ42. Interestingly, Aβ42 is more prone to polymerize into soluble 

oligomers, then to insoluble fibrils that eventually deposit into amyloid plaques. Compelling 

evidence points out that Aβ oligomers are the main toxic species and amyloid plaques might 

serve as deposits of the toxic oligomers (Mucke and Selkoe 2012). Aβ toxicity has been well 

documented especially at the synapses, which will be discussed in section 1.4.1 (Aβ and Tau 

at the synapses).  

In the non-amyloidogenic pathway (Figure 3, middle), APP is first cleaved within the Aβ 

region by α-secretases, e.g. a disintegrin and metalloproteinase 10 (ADAM10) (Allinson et al. 

2003). This cleavage generates a soluble APP-α fragment that is secreted into the 

extracellular space and a membrane-bound truncated CTF-α (C83), lacking the amino-
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terminus of the Aβ region and thereby precluding formation of Aβ (Postina et al. 2004). CTF-

α is further cleaved by the γ-secretase complex, producing a short non-toxic peptide called p3 

and AICD (Haass et al. 1993).  

APP processing is complex, since APP has been also found to be cleaved by a number of 

other proteases, e.g. asparagine endopeptidase (δ-secretase) (Zhang et al. 2015), caspases 

(Galvan et al. 2002), and the recently identified η-secretase (Figure 3, right) (Wang et al. 

2015; Willem et al. 2015). Moreover, in addition to the toxic role of Aβ, both CTF-β and Aη-

α are shown to be neurotoxic (McPhie et al. 1997; Lauritzen et al. 2012; Willem et al. 2015). 

It is thus likely that other APP fragments might also be involved in AD pathophysiology. 

1.2.1.1 Subcellular location of APP processing 

Another important aspect of APP processing is the exact cellular location where the 

proteolytic cleavage of APP takes place. Evidence suggests that APP is synthesized in the 

endoplasmic reticulum, transported to the trans-Golgi network and then to the plasma 

membrane (Haass et al. 2012). At the plasma membrane, APP is cleaved by ADAM10 

(Sisodia 1992) or alternatively the full-length APP is internalized and delivered to 

endosomes, where it can undergo BACE1-mediated processing, thereby liberating Aβ 

(Vassar et al. 1999). Alternatively, the internalized full-length APP can be further recycled 

and transported to the trans-Golgi network. BACE1 is also detected in other subcellular 

compartments including the trans-Golgi network (Choy, Cheng, and Schekman 2012), 

lysosomes (Buggia-Prevot et al. 2014), synapses (Del Prete et al. 2014; Lundgren et al. 2015; 

Lundgren et al. 2020). Similarly, the active form of the γ-secretase complex is reported at 

different subcellular sites; plasma membrane (Chyung, Raper, and Selkoe 2005), 

endosomal/lysosomal system (Pasternak et al. 2003), autophagosomes (Yu et al. 2005), 

synaptic compartments (Frykman et al. 2010; Schedin-Weiss et al. 2016), and mitochondria 

(Hansson et al. 2004). These studies suggest that Aβ production could take place in different 

subcellular compartments. Moreover, recent studies suggest that exosomes (Rajendran et al. 

2006) and autophagosomes (Nilsson et al. 2013) are involved in Aβ secretion, indicating 

further how complex the APP processing is. However, it should be noted that many of these 

studies have been performed in cell lines and thus do not truly reflect the situation in neurons. 

Moreover, resolution obtained by traditional confocal microscopy, used for assessing co-

localization, is not sufficient to truly resolve the organelles from each other.  
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1.2.1.2 Aβ clearance 

Several mechanisms are identified to play a role in degradation of intracellular or 

extracellular Aβ. For example, Aβ is shown to be degraded by proteases such as neprilysin 

and insulin-degrading enzyme in the lysosomes, endosomes or endoplasmic reticulum/Golgi 

(Saido and Leissring 2012). Additionally, secreted Aβ can be taken up by microglia and 

astrocytes or released into the blood or the CSF via transporting Aβ across the blood-brain 

barrier (BBB) or the brain-CSF barrier (BCSFB) (Tarasoff-Conway et al. 2015). 

As previously mentioned in section 1.1, mutations in the APP, PSEN1 or PSEN2 genes 

trigger more Aβ production or aggregation, thus pointing out a causal relationship between 

Aβ and AD pathophysiology in familial AD. However, the underlying cause of excessive Aβ 

accumulation remains to be elucidated in sporadic AD. APP is continuously metabolized in 

the central nervous system where Aβ is rapidly produced and cleared (Bateman et al. 2006). 

Therefore, increased Aβ production and reduced Aβ clearance over a long period of time 

likely contribute to the formation of Aβ deposits in the brain of sporadic AD patients 

(Mawuenyega et al. 2010).  

1.2.2 Tau  

Tau is a soluble, unfolded microtubule-associated protein that is mainly found in axons 

(Trinczek et al. 1995) and, at lower levels, in the dendrites (Ittner et al. 2010). In the human 

brain, there are six tau isoforms, encoded by microtubule-associated protein tau (MAPT) 

gene, which all contain microtubule-binding repeat domain (Goedert et al. 1989). While its 

physiological role is not entirely known, tau is thought to regulate microtubule stabilization 

and axonal transport (Trinczek et al. 1995). Under pathological conditions as in AD, tau 

becomes abnormally hyperphosphorylated, which causes tau to self-assemble in the 

somatodendritic compartment of neurons and later to aggregate into NFTs (Bancher et al. 

1989). The hyperphosphorylation of tau further disrupts its interaction with microtubules, 

kinesin and dynein motor protein function and axonal transport, which is incompatible with 

neuronal function and ultimately results in neuronal death. Increased activities of kinases (e.g. 

glycogen synthase kinase-3 (GSK3), mitogen-activated protein kinase) and decreased 

activities of phosphatases (e.g.  protein phosphatases PP2A and PP2B) are detected in AD 

brain and this imbalance causes hyperphosphorylation of tau (Iqbal et al. 2005). Additionally, 

different alterations including glycosylation, ubiquitylation and truncation are detected in tau 

(Avila et al. 2004). As with the presence of Aβ oligomers, small tau oligomers are also 

detected in AD brains and thought be toxic (Maeda et al. 2006; Patterson et al. 2011; Ward et 
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al. 2012). Tau is degraded intracellularly by different mechanisms, e.g. the autophagy-

lysosomal pathway, the ubiquitin-proteasome pathway or caspases (Avila et al. 2004).  

As Aβ and tau constitute the main pathological hallmarks of AD, much attention has been 

devoted to elucidating the mechanistic link between Aβ and tau. Based on the genetics of the 

familial AD, it is well established that Aβ triggers tau pathology, since mutations in APP 

gene, but not MAPT gene, cause familial AD of which patients develop both Aβ and tau 

pathologies. Although no such direct relationship has been discovered in the sporadic AD, a 

large body of literature suggests that Aβ and tau could have synergistic effects and therefore 

exert their toxic roles, or that tau could mediate Aβ toxicity - which will be discussed in 

section 1.4.1 (Aβ and Tau at the synapse).  

1.2.3 Other pathogenic mechanisms  

1.2.3.1 Mitochondrial dysfunction 

Mitochondria are the bioenergetic center of the cells and thus essential for neuronal function 

that requires high amount of energy such as neurotransmission. In addition to ATP 

production, mitochondria are involved in numerous reactions such as calcium homeostasis, 

apoptosis and cell signaling. Mitochondrial dysfunction is well documented in AD 

(Ankarcrona, Mangialasche, and Winblad 2010). For example, studies have reported a 

decreased number of mitochondria (Hirai et al. 2001), reduced glucose metabolism (Mosconi 

2005), diminished enzymatic activity of cytochrome c oxidase, which is a component of the 

electron transport chain (Kish et al. 1992), reduced activity of tricarboxylic acid cycle 

enzymes (Bubber et al. 2005), alterations in mitochondrial proteins related to oxidative 

phosphorylation system (Rhein et al. 2009), imbalanced fusion/fission events (Wang et al. 

2009), and increased production of reactive oxygen species, triggering oxidative stress 

(Eckert, Schmitt, and Götz 2011). Additionally, Aβ accumulations are found in mitochondria 

in AD brain as well as in the brain of transgenic mouse models of AD (Fernández-Vizarra et 

al. 2004; Caspersen et al. 2005; Manczak et al. 2006). Moreover, in these studies, Aβ 

accumulation and alterations of the mitochondrial enzymes were observed before the 

formation of amyloid plaques, suggesting that mitochondrial dysfunction is an early 

pathogenic event in AD.   

Interestingly, the components of the γ-secretase complex are found in mitochondria (Hansson 

et al. 2004). Studies in mouse brain show that PSEN1 and PSEN2 as well as APP are 
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enriched at mitochondria-endoplasmic reticulum contact sites (Area-Gomez et al. 2009) and 

Aβ is produced at these specific sites (Schreiner et al. 2015).  

1.2.3.2 Impaired autophagy 

Autophagy is responsible for intracellular degradation and recycling of cellular components 

and therefore maintains cellular homeostasis (Nixon 2013). This process is initiated from a 

double membrane structure called phagophore, which is then elongated around a selected 

substrate such as misfolded/aggregated proteins or damaged organelles. Subsequently, the 

closure of the phagophore edges results in the formation of the autophagosome and its fusion 

with a lysosome forms a single membrane autolysosome. In the autolysosome, the autophagic 

content is degraded by lysosomal proteases and resulting metabolites are then released into 

the cytoplasm for new synthesis or as sources for energy (Nixon 2013). Several proteins are 

involved in this process including mTORC1, LC3B, p62 (also known as sequestosome 1), 

autophagy-related proteins such as Atg5, Atg7, Atg12.  

A large body of literature suggests that autophagy is impaired in AD. The ultrastructural 

analysis of postmortem AD brain found that autophagosomes accumulate within dystrophic 

neurites, suggesting that the formation of mature autolysosomes is impaired in AD (Nixon et 

al. 2005). Similarly, this pathologic phenomenon was also observed in the brains of 

transgenic AD mouse (Yu et al. 2005). 

1.2.3.3 Neuroinflammation  

Neuroinflammation is an immune response that is characterized by the activation of immune 

cells such as microglia and astrocytes in the central nervous system. These cells are essential 

for the maintenance of brain homeostasis, as they provide neurotrophic factors and metabolic 

support to neurons, and play important roles in the formation of synapses and synaptic 

plasticity (Arranz and De Strooper 2019). Under normal conditions, soluble Aβ oligomers 

can be taken up by microglia or astrocytes and then degraded by proteases such as neprilysin 

and insulin degrading enzyme. However, in pathological conditions such as AD, excessive 

Aβ accumulation causes persistent activation of glial cells which release inflammatory 

mediators such as pro-inflammatory cytokines and chemokines, causing neuroinflammation 

(Heneka et al. 2015). 

Until the last decade, neuroinflammation was thought to be a bystander to AD-related 

pathogenic changes in the brain. However, mounting evidence points towards the active 

involvement of neuroinflammation in AD pathogenesis, which can also be supported by the 
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fact that several genes, related to the innate immune system, are identified as genetic risk 

factors for AD by genome-wide association studies (GWAS) - which will be discussed in the 

next section.  

1.2.4 Risk factors of Alzheimer disease  

Although old age is the main risk factor for AD, over the years many other risk factors that 

can influence the onset and the progression of AD have been found, indicating how complex 

the aetiology of AD is. These factors can be categorized into two groups: non-modifiable 

factors, such as age and genetic risk factors, or modifiable risk factors as lifestyle choices. To 

date, apolipoprotein E (APOE) ε4 allele has been identified as the strongest and the best 

established genetic risk factor for sporadic AD (Corder et al. 1993). It has been shown that 

APOE ε4 allele increases AD susceptibility (Frisoni et al. 1995) in a way that one ε4 allele 

results in three-fold increase in risk of developing AD, while two alleles cause a 12-fold 

increase in risk (Farrer et al. 1997). In recent years, GWAS have led to identification of 

several genes that can significantly modify the risk for developing AD, such as clusterin, 

complement receptor 1, triggering receptor expressed on myeloid cells 2, the endocytic genes 

called phosphatidylinositol binding clathrin assembly protein and bridging integrator 1, 

sortilin-related receptor 1, and the ATP-binding cassette transporter (Lambert et al. 2009; Naj 

et al. 2011; Lambert et al. 2013; Guerreiro et al. 2013). These genes are involved in lipid 

metabolism, immune system response and endocytosis, revealing insights into the 

multifactorial nature of AD pathophysiology. The fact that these genes are expressed by glial 

cells highlights the involvement of non-neuronal cells in AD pathogenesis. However, it 

should also be noted that these genetic variants identified from GWAS have a small effect on 

AD risk.  

A number of modifiable risk factors that especially affect late-life in elderly, e.g. obesity, 

diabetes, hypertension, depression, physical inactivity, smoking and low educational 

attainment, have also been identified (Deckers et al. 2015; Ngandu et al. 2015).  

1.3 THE HIPPOCAMPUS AND THE PERFORANT PATH 

The hippocampal formation plays a crucial role in episodic memory and consists of the cornu 

ammonis (CA) regions of the hippocampus, the dentate gyrus and the subiculum (Ohm 

2007). The main excitatory input of the hippocampus is provided by the crucial perforant 

path, originating at the superficial layers of the EC, i.e. layer II and layer III (Figure 4). The 

neurons located in the EC layer II project to the outer two-thirds of the molecular layer (in 
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this thesis, hereafter referred as to outer molecular layer, OML) of the dentate gyrus and to 

the CA3 of the hippocampus, while layer III entorhinal neurons project to the CA1 of the 

hippocampus. The direct perforant path fibers, arriving to CA3 and CA1, terminate at the 

stratum lacunosum-moleculare (LM), which is the most superficial molecular layer of each 

region. In the trisynaptic circuit, the dentate granule cells are innervated at the OML by the 

perforant path and forward the information to CA3 through mossy fibers, whose synapses are 

located at the stratum lucidum (LUC). The CA3 pyramidal neurons then give rise to Schaffer 

collaterals which in turn innervates the dendrites of CA1 pyramidal neurons located at the 

stratum radiatum (RAD) and stratum oriens, which is located right over the CA1 pyramidal 

layer. Finally, CA1 pyramidal neurons send their projections to the deep layers of the EC e.g. 

layer V through subiculum.  

Figure 4: A schematic diagram showing 
the perforant path and the main 
hippocampal connections that are part of 
the trisynaptic circuit. The dentate gyrus 
has three molecular layers (inner, middle 
and outer) and extends from the dentate 
granule cell layer (GCL) to the 
hippocampal fissure, which divides the 
dentate gyrus and the CA1-3 regions. The 
molecular layers of CA3 contain LUC 
(right under the CA3 pyramidal layer), 
RAD and LM (the most superficial 

molecular layer). The molecular layers of CA3 (RAD and LM) further extend to the CA1 region. The 
perforant path, originating from EC layer II (red), terminates at the dendrites of the dentate granule 
cells that are located at the outer two-thirds of the molecular layer along the entire dentate gyrus. 

It is important to note that the perforant path is not the only input of the hippocampus. While 

the dendrites of the dentate granule cells located at the OML are innervated by the perforant 

path fibers, the proximal dendrites of dentate granule cells, which are in the IML, receive 

input from the associational/commissural fibers, CA3 collaterals and other brain regions. 

Moreover, it is reported that the fibers from the medial septum, thalamus, locus coeruleus and 

amygdaloid complex also send their projections to the different sub-regions of the 

hippocampus, such as the molecular layers of CA3 and CA1 (Cappaert, Van Strien, and 

Witter 2015).  
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1.3.1 The perforant path and Alzheimer disease 

The perforant path is crucial for memory consolidation and proposed to be vulnerable in AD 

pathophysiology due to:  

• The presence of amyloid or neuritic plaques and NFTs both in the EC where the 

perforant path originates (Arnold et al. 1991; Braak and Braak 1992; Thal et al. 2000) 

and in the OML where the perforant path terminates (Hyman et al. 1986; Crain and 

Burger 1988; Thal et al. 2000);  

• Drastic loss of EC neurons, particularly of layer II, reported in AD cases (Gómez-Isla 

et al. 1996; Kordower et al. 2001; Price et al. 2001); 

• Substantial synaptic loss observed in the OML of AD and MCI cases (Scheff, Sparks, 

and Price 1996; Scheff et al. 2006).  

Taken together, the widely acknowledged concept proposes that the loss of afferent fibers 

from the EC could degenerate the perforant path by triggering axonal degeneration as well as 

synaptic dysfunction in the dentate terminal zone of the perforant path, and thus contributes 

to cognitive impairment in AD. On the other hand, an alternative hypothesis, which has 

received insufficient attention within the field of AD research, suggests that synaptic 

dysfunction could precede neuronal death - a phenomenon called retrograde degeneration 

(Terry et al. 1991; Terry 2000), which will be discussed in section 4.3 (Paper III).  

1.4 SYNAPTIC FUNCTION AND DYSFUNCTION  

Synapses can be defined as the communication points between neurons and are composed of 

pre- and postsynaptic terminals (Figure 5). At the presynaptic terminal (axon), upon 

depolarization synaptic vesicles that are filled with neurotransmitters fuse with the plasma 

membrane and release their content. At the postsynaptic terminal (dendrite), released 

neurotransmitters then bind to the receptors located at the postsynaptic density, which triggers 

signalling cascades. The neurotransmitters are then cleared from the synapse and postsynapse 

becomes ready for a new synaptic event. Synaptic exocytosis is tightly regulated by a highly 

organized machinery (Südhof 2013), involving the below-mentioned proteins that are crucial 

for synaptic vesicle-membrane fusion: 

(i) Soluble NSF-attachment protein receptor (SNARE) proteins including vesicle-

associated membrane protein-2 (VAMP2, also known as synaptobrevin-2), 

syntaxin-1a (STX1A) and synaptosomal-associated protein 25 (SNAP25),  
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(ii) Munc18-1 or known as syntaxin-binding protein 1,  

(iii) Calcium sensor protein synaptotagmins (SYT1) and calcium ion regulator 

complexins (e.g. CPLX1), 

(iv) Active zone proteins such as Munc13, RIM proteins that interact with Rab3 and 

RIM-binding proteins.  

After synaptic exocytosis, the SNARE complex is rapidly disassembled by N-ethylmaleimide 

sensitive factor (NSF) and soluble NSF-attachment proteins (SNAPs), and SNARE proteins 

become available for new membrane fusion events.  

 

 

Figure 5: A schematic overview 
of synaptic exocytosis showing 
some of the important proteins 
of pre- and postsynaptic 
terminals. Upon exocytosis, 
neurotransmitters are released 
into the synaptic cleft and 
bound to the receptors on the 
postsynaptic terminal. This 
figure is taken from (Bereczki et 
al. 2018). 

 

 

Synapses are plastic and synapse formation is dynamic and can be regulated. In fact cellular 

mechanisms of learning and formation of memories involve long-lasting changes in synaptic 

strength known as long-term potentiation (LTP) and long-term depression (LTD) (Cooke and 

Bliss 2006). To date, different cellular and molecular mechanisms are shown to induce LTP 

and LTD (Nabavi et al. 2014; Collingridge et al. 2010). Although these events are observed 

in different brain regions, they are mainly characterized at the glutamatergic synapses of the 

hippocampal formation, such as the synapses of CA1. Upon neurotransmitter release, 

glutamate binds to the postsynaptic glutamatergic receptors such as the α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and the N-Methyl-D-aspartic acid 

receptors (NMDARs). For example, in CA1 synapses, high frequency stimuli directly 
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activate NMDARs, triggering increased activation of the AMPARs and thereby causing more 

depolarization of the postsynaptic cell. This can further lead to more AMPARs to be inserted 

in the postsynaptic terminal and consequently strengthening the synapses for further 

stimulation - a phenomenon known as LTP. Conversely, weaker depolarization of the 

postsynaptic cell causes LTD, in which AMPARs are internalized and synaptic strength is 

weakened. 

1.4.1 Aβ and Tau at the synapses  

APP has been detected both in the presynaptic active zone and in the postsynaptic density 

(Pliassova et al. 2016) and it could have a physiological role in enhancing the function of the 

glutamate receptor, NMDAR (Hoe et al. 2009). Additionally, both Aβ and secretases 

regulating APP processing are found at the synapses (Lundgren et al. 2020; Lundgren et al. 

2015; Schedin-Weiss et al. 2016; Yu et al. 2018; Marcello et al. 2007). These studies indicate 

that APP processing may take place at the pre- or postsynaptic terminal, and therefore, it is 

very likely that Aβ, to a certain extent, may be produced at the synapse. Hence Aβ is thought 

to play a physiological role at the synapses. In this regards, several studies have shown that 

increased neuronal activity increases production and secretion of Aβ into the extracellular 

space (Cirrito et al. 2008; Cirrito et al. 2005; Kamenetz et al. 2003). However, more secreted 

Aβ has been reported to induce LTD by endocytosis of AMPARs, thereby causing decreased 

neuronal activity (Kamenetz et al. 2003; Hsieh et al. 2006). The synaptotoxic effects of Aβ, 

especially soluble oligomers, has been well reported. For example, Aβ oligomers have been 

found to accumulate at synapses (Tai et al. 2012; Pickett et al. 2016). Walsh and colleagues 

have shown that Aβ oligomers, but not monomers or amyloid fibrils, inhibit LTP (Walsh et 

al. 2002). Similarly, it has also been shown that solubilized amyloid plaques, which are 

known to be reservoirs of Aβ, inhibit LTP, enhance LTD and cause dendritic spine loss in rat 

hippocampus (Shankar et al. 2008). Additionally, Wei et al. has noted that overproduction of 

dendritic or axonal Aβ affects neighboring neurons and reduces spine density and plasticity 

(Wei et al. 2010). Taken together, it is plausible that over a long period of time, secreted Aβ, 

in response to synaptic activity, could lead to presence of oligomers and amyloid plaques in 

the extracellular space, while triggering synaptic dysfunction. 

Tau also plays a role in synaptic function, since it regulates microtubule stabilization and 

axonal transport (Trinczek et al. 1995). By isolating synaptic terminals from postmortem 

human brain tissue, tau as well as hyperphosphorylated-tau were detected both at the pre- and 

the postsynaptic terminals (Tai et al. 2012). Additionally, under normal conditions, tau was 
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also detected in the dendritic spines, where it interacts with postsynaptic density protein the 

Fyn kinase, which phosphorylates one of the subunits of the NMDAR to facilitate NMDAR-

PSD95 interaction (Ittner et al. 2010). Moreover, the reduced interaction between tau and the 

Fyn kinase caused to reduce Aβ toxicity, suggesting that tau mediates Aβ toxicity in the 

dendritic spines. Interestingly, a mechanistic link between neuronal activity and extracellular 

tau was reported in which increased neuronal activity leads to an increase in the levels of 

extracellular tau. These findings support the notion that spread of tau pathology occurs via 

trans-synaptic connections and is regulated by synaptic activity  (Pooler et al. 2013; Yamada 

et al. 2014). 

1.4.2 Synaptic changes in Alzheimer disease 

A large body of literature, using electron microscopy or densitometrical analysis of synaptic 

protein-immunoreactivity (IR), has noted that synaptic dysfunction occurs in AD brain and 

correlates strongly with the cognitive deficits. Synaptic loss are detected in different regions 

of AD brains including the OML (Scheff, Sparks, and Price 1996; Scheff et al. 2006), the 

IML (Scheff and Price 1998), the CA1-RAD (Scheff et al. 2007), the inferior temporal gyrus 

(Scheff et al. 2011), the frontal cortex (DeKosky and Scheff 1990), and the cingulate gyrus 

(Scheff et al. 2015). In fact, in these studies, synaptic loss was reported to be the best 

correlate of cognitive decline in AD.  

Decreased protein or mRNA expression of synaptic markers, e.g., SNAP25, synaptophysin, 

VAMP2, SYTs, Rab3a, PSD95 and GAP43 (known as neuromodulin), are also reported in 

AD brains (Masliah et al. 2001; Reddy et al. 2005; Counts et al. 2014; Scheff et al. 2015; 

Bereczki et al. 2016). Similarly, decreased levels of synaptic markers are found to be 

correlated well with cognitive decline. Recently, a meta-analysis was performed to analyse 

the overall changes in the levels of 57 synaptic proteins, which were originally measured in 

postmortem human brain by immunodetection methods (de Wilde et al. 2016). Using 

random-effects-modeling, the standard mean difference between AD and control groups was 

found to be much larger for presynaptic proteins, and thus the authors conclude that 

presynaptic proteins are affected more than postsynaptic proteins (de Wilde et al. 2016). 

However, it has been previously reported that not all presynaptic proteins are equally affected 

in AD (Honer 2003). 
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1.5 THE ANALYSIS OF THE PROTEOME IN ALZHEIMER DISEASE 

Mass spectrometry (MS)-based proteomics is a powerful technique that allows a 

simultaneous identification and quantification of proteins in biological samples such as brain 

tissue. There is a growing interest in applying this technique in the field of AD for a better 

understanding of disease pathogenesis and to identify potential biomarkers reflecting 

different stages of the disease.  

A bottom-up approach, in other words from peptide to protein, is commonly used for 

generating MS data. In this approach, proteins are first digested to small peptides, which are 

then analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), 

and finally, the generated mass spectra of the peptides are used as a fingerprint to depict the 

relevant protein by comparing the generated spectra against the theoretical one from the 

databases. Earlier studies used two-dimensional gel electrophoresis in combination with LC-

MS/MS to explore AD-related changes especially in plasma and blood samples (Hye et al. 

2006; Liao et al. 2007). Recent advances in the proteomics field provides a high mass 

accuracy, thereby resulting in a more reliable quantification of the proteins, and increases 

proteome coverage by detection and quantification of even low abundant proteins. Two main 

approaches of MS analysis are commonly used; label-free (Zhu, Smith, and Huang 2010) or 

stable isotope labelling. In the label-free MS, each biological sample is individually analyzed 

by LC-MS/MS and the chromatographic peak of the precursor ion (MS1) is used for relative 

quantification. Labelled MS can be done by e.g. tandem mass tags (TMTs) or by isobaric tags 

for relative and absolute quantification (iTRAQ) (Thompson et al. 2003; Wiese et al. 2007). 

A key advantage of isobaric labeling is that it allows for multiplexing so that different 

biological samples are simultaneously analysed by LC-MS/MS, thus reducing the inter-run 

variability. A given peptide, independent of which isobaric tag it is labeled with, has the same 

mass due to the chemical structure of tags. Therefore, the same peptides (labeled with 

different tags) elute from the column at the same time and thus have the same retention time. 

Following fragmentation, the reporter ions are released and spectra from the second MS 

(MS2) are then used for relative quantification. Both approaches are extensively used for the 

proteomic analysis of CSF and brain tissue from AD cases and controls (Andreev et al. 2012; 

Donovan et al. 2012; Musunuri et al. 2014; Seyfried et al. 2017; Bereczki et al. 2018; 

Johnson et al. 2018; Mendonça et al. 2019; Xu et al. 2019; Wang, Dey, et al. 2020) as well as 

AD mouse models (Schedin-Weiss et al. 2020; Wang, Dey, et al. 2020; Sebastian Monasor et 

al. 2020).  
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Thanks to increased sensitivity of LC-MS systems and novel dissection techniques, it is 

possible to perform remarkably detailed studies on specific regions and even on selected 

neurons or structures. For example, as hippocampus plays an important role in memory and is 

heavily affected by AD-related changes, the proteome of specific hippocampal sub-regions 

has been carried out in AD compared to control: CA1 pyramidal neurons (Hashimoto et al. 

2012), CA4 (Ho Kim et al. 2015), and CA1 and subiculum (Hondius et al. 2016). Protein 

content within amyloid or neuritic plaques have also been analyzed in AD brain tissue using 

LC-MS/MS. While the amyloid plaque core only contain Aβ (Söderberg et al. 2006), many 

other synaptic, cytoskeletal, chaperone proteins are also detected within the plaques (Liao et 

al. 2004; Nijholt, Stingl, and Luider 2015; Drummond et al. 2017).  

Another MS-based approach used for biomarker validation or studying posttranslational 

modifications is called targeted proteomic analysis, applied by parallel reaction monitoring 

(PRM)-MS (Rauniyar 2015). The main difference between this and the above-mentioned MS 

approaches is that a peptide standard (e.g. synthetic peptide) of known concentration is 

injected to the LC-MS for absolute protein quantification. In the field of AD, PRM-MS is 

often used to quantify the levels of disease-relevant proteins in order to search for potential 

CSF biomarkers (Brinkmalm et al. 2018; Duits et al. 2018; Andersson et al. 2019; Sjödin et 

al. 2019; Sathe et al. 2019). 

1.6 BIOMARKERS FOR DIAGNOSIS AND PROGRESSION 

As mentioned earlier, dementia is observed in different neurological disorders. Converging 

evidence from clinical, pathological and genetic findings suggests that there is some overlap 

between different dementia disorders, which makes it difficult to accurately diagnose 

individuals at an early stage of the disease. Hence, the development of better diagnostic and 

prognostic biomarkers will enable screening for early detection and monitoring of disease 

progression. In this regard, the recent ATN criteria, which stands for Aβ deposition, abnormal 

tau and neurodegeneration (Jack et al. 2018), allows to clinically diagnose AD patients using 

in vivo biomarkers. Current Aβ and tau biomarkers include CSF measures of Aβ42 and 

phosphorylated-tau (p-tau) (Blennow et al. 2010), as well as detection of amyloid and tau 

pathologies in the brains of AD patients using positron emission tomography (PET) 

(Nordberg et al. 2013; Palmqvist et al. 2014; Mattsson et al. 2015; Marquie et al. 2015; 

Mattsson et al. 2017). The levels of Aβ42 are decreased in the CSF while the amyloid burden 

is increased in the brains of AD patients, reflecting the deposition of Aβ in the brain (Fagan et 

al. 2006). On the other hand, both the levels of p- and total-tau are increased in the CSF of 
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patients. Biomarkers of neurodegeneration include CSF measure of total-tau (Blennow et al. 

2010), glucose hypometabolism detected by fluorodeoxyglucose PET imaging (Landau et al. 

2011) and brain atrophy detected by structural magnetic resonance imaging (MRI) in the 

brains of AD patients (Frisoni et al. 2010). It should be noted that measures of 

neurodegeneration are most likely not specific for AD but rather non-specific indicators of 

neuronal damage that could result from different causes.  

To diagnose AD patients more accurately, the development of new biomarkers is of utmost 

importance and has taken increasing attention in the field of AD research. Several studies 

have shown increased levels of synaptic proteins in AD CSF, for example the neuronal 

calcium sensor protein called visinin-like protein 1 (Lee et al. 2008; Tarawneh et al. 2011), 

the postsynaptic protein neurogranin, the presynaptic proteins SNAP25 and SYT1, and the 

pre-/postsynaptic protein GAP43 (Thorsell et al. 2010; Kvartsberg et al. 2015; Öhrfelt et al. 

2016; Tible et al. 2020). Notably, Tible and colleagues have shown that the change in the 

CSF levels of GAP43, neurogranin, SNAP25 and SYT1 were able to distinguish AD and 

MCI due to AD groups from other MCI and non-AD dementia groups, whose CSF levels 

were very similar to the control group (Tible et al. 2020). Moreover, GAP43, which is 

associated with nerve growth, was the only synaptic protein that showed significant increase 

in AD compared to the MCI due to AD group. These studies suggest that the alterations in the 

CSF levels of synaptic proteins could be used for monitoring the rate of synaptic dysfunction, 

neuronal injury as well as disease progression. Additionally, ongoing research attempting to 

identify CSF biomarkers that could reflect neuroinflammation has shown increased levels of 

YKL-40 (also known as chitinase 3-like 1) protein in AD patients (Wang, Gao, et al. 2020; 

Nordengen et al. 2019) as well as in subjects with amnestic MCI (Alcolea et al. 2015). 

It seems that a combined analysis of at least two biomarkers would allow to more accurately 

diagnose AD patients. Although the above-mentioned biomarkers, especially CSF Aβ and tau 

levels and PET imaging, are nowadays used in research for patient stratification, it will be 

challenging to utilize them in the memory clinics, due to expensive cost and logistical 

problems such as accessibility to the instruments. Alternatively, using less invasive and cost-

effective approaches would be beneficial for screening purposes, hence there is a growing 

interest in identifying blood-based biomarkers (Hampel et al. 2018). Recently, Janelidze and 

colleagues reported increased plasma p-tau181 levels in individuals with preclinical (normal 

cognition, NC), MCI and AD dementia compared to the healthy controls (Janelidze et al. 

2020). Moreover, plasma p-tau levels were not increased in individuals with non-AD 

dementia such as Parkinson disease with dementia or dementia with Lewy bodies, indicating 
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that p-tau181 could hold a great potential as an AD-specific plasma biomarker (Janelidze et 

al. 2020).  

1.7 TREATMENT STRATEGIES 

Despite the extensive research and increased knowledge on AD, there is still no treatment 

available that could halt disease progression. The current treatment strategies are able to delay 

the cognitive decline in AD patients and include acetylcholinesterase inhibitors (donepezil, 

galantamine and rivastigmine) and the NMDAR antagonist (memantine) (Winblad et al. 

2016). The acetylcholinesterase inhibitors are often used in patients with mild-to-moderate 

AD and inhibit acetylcholinesterase, which catalyse the breakdown of acetylcholine, and 

thereby increasing the level and the duration of action of acetylcholine in the nervous system. 

In turn, memantine is available for patients with moderate-to-severe AD and blocks the 

prolonged calcium ion influx into the postsynaptic terminal, which is the main basis of 

neuronal excitotoxicity. In addition to the approved drugs available in the market, there is an 

ongoing research targeting Aβ and tau in order to reduce production of Aβ (by inhibiting 

BACE1), increase clearance of Aβ (by active or passive immunotherapy), reduce the 

abnormal hyperphosphorylation of tau (by inhibiting GSK3) or its fibrillation/deposition into 

NFTs (by active or passive immunotherapy) (Winblad et al. 2016).  

It is important to keep in mind that AD is a complex multifactorial neurodegenerative 

disorder. To date, many clinical trials against single targets have failed and therefore multi-

target therapies, addressing different pathogenic aspects of AD (Zagórska and Jaromin 2020), 

will be the key in future therapeutic approaches. Better understanding of AD continuum and 

implications of different sets of biomarkers could enable determining the window of 

opportunity for potential disease-modifying treatments as well as identifying subsets of 

patients that could potentially receive different treatment strategies. 
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2 AIMS OF THE THESIS 
The main aim of this thesis was to investigate proteins that could be involved in AD 

pathophysiology. We investigated a recently identified fragment of APP as well as focused 

on identifying novel proteins by performing unbiased proteomics using postmortem human 

brain tissue and mouse CSF.  

More specific aims were:  

• To investigate whether the abundantly expressed 20 kDa band, detected in human 

brain tissue by western blotting, is indeed an APP-CTF and could be of importance in 

AD pathogenesis (Paper I). 

• To study the proteome of a vulnerable, synapse-rich region of the hippocampus, 

which receives the crucial perforant path input, in order to identify proteins and 

pathways that could be involved in synaptic impairment in AD (Paper II). 

• To assess the detailed hippocampal expression pattern of five presynaptic protein hits, 

which were identified in Paper II, in AD brain (Paper III). 

• To get insights into the proteins and pathways that could be crucial for AD 

pathophysiology by performing a meta-analysis of the proteomic studies (Paper IV). 

• To explore the translational changes in the CSF proteome of App knock-in mice 

versus human subjects with NC, MCI and AD dementia stages (Paper V). 
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3 METHODOLOGY 
3.1 ETHICAL CONSIDERATIONS  

In this thesis, we conducted research using postmortem human brain tissue (Paper I-III, Paper 

V) as well as brain tissue and CSF from laboratory animals (Paper I and V). In Paper IV, we 

used published MS data or unpublished work from our research group (manuscript in 

preparation) for the purpose of performing a meta-analysis (2015/1803-31/2 including 

amendment 2020‐01322). The use of human brain material in this thesis was conformed to 

the Declaration of Helsinki and approved by the regional ethical review board of Stockholm 

(2015/18/03-31/2, 2007/1477-3 and 2013/1301-31/2) and obtained Institutional Review 

Board approvals by the VU Medical Center, Amsterdam, the Netherlands and the Medical 

University of South Carolina, USA. All donors or their next-of-kin gave informed consent. 

The laboratory animals used in this study were handled according to the Karolinska Institutet 

guidelines, Swedish national guidelines and current European Law (Directive 2010/63/EU). 

The breeding and the collection of CSF and tissue from laboratory animals were approved by 

different ethical committees in Sweden (rat brain (S21-14), mouse brain (ID 156) and App 

knock-in mice CSF (ID 407)). Additionally, commercially available brain lysates from 

guinea pig and macaque was purchased from Novus Biologicals who ensure that the animals 

have been handled according to the ethical legislation in the United States. All research 

performed abroad were performed in alignment with the ethical legislation of their respective 

countries. 

3.2 POSTMORTEM HUMAN BRAIN TISSUES 

Postmortem tissue is an end-stage material, but it could still provide valuable information on 

relevant changes occurring in the brain during disease pathogenesis. However, it is important 

to have a well characterized cohort in order to minimize the variability between the cases. In 

this thesis, while selecting AD and control cases, we tried to control this variability as much 

as possible by considering age, gender, postmortem interval (PMI) and AD-related pathology 

which are mainly assessed by Braak stages and Thal/CERAD stages. Despite including 

samples from different brain banks (Table 1), we made sure that all AD cases were clinically 

and pathologically diagnosed, and all control cases showed little or no pathological 

alterations beyond normal age-appropriate changes including a few plaques and tangles.  
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Studies Sample size Brain region Material Brain Bank 

Paper  
I  
  
 

10 AD cases (Braak IV-VI)  
10 control  

Prefrontal 
cortex 

Frozen Brains for Dementia 
Research, London, UK 

1 control  Mixed cortex Frozen Brain Bank at the 
Karolinska Institutet, 
Stockholm, Sweden 

4 human fetuses, post- 
conception age 7–11 weeks 

Cortex Frozen Developmental Tissue 
Bank at Karolinska 
Institutet, Sweden 

Paper 
II 

5 AD cases (Braak IV)  
5 controls 

Hippocampus Frozen Netherlands Brain 
Bank, Amsterdam, the 

Netherlands 
5 AD cases (Braak IV-VI) 
7 controls 

Hippocampus Formalin-
fixed 

paraffin-
embedded 

(FFPE) 

Carroll A. Campbell 
Jr. Neuropathology 

Laboratory Brain Bank 
at the Medical 

University of South 
Carolina, USA 

Paper 
III 

8 AD cases (Braak V-VI)  
7 controls 

Hippocampus FFPE Netherlands Brain 
Bank, Amsterdam, the 

Netherlands 
Paper 
V 

3 AD cases (Braak VI) 
3 controls 

Hippocampus, 
Temporal 

cortex 

FFPE Brain Bank at the 
Karolinska Institutet, 
Stockholm, Sweden 

Table 1: The details of the postmortem human brain tissues included in this thesis.  

3.3 LABORATORY ANIMALS 

In Paper I, we used brain tissue from rat, mouse, guinea pig and macaque for comparison 

between the species. Brain tissues were collected from the male Wistar rats (Charles River) 

and female C57BL/6 mice, while brain lysates from guinea pig and macaque was purchased 

from Novus Biologicals. In Paper V, we collected both CSF and brain tissue from wild-type, 

AppNL-F and AppNL-G-F mice (n = 4 per group). The details of the knock-in mouse models of 

AD will be explained in the next section. Additionally, embryos were collected from wild-

type C57BL/6 mice E16-E18 in order to prepare primary cultures of hippocampus and cortex.  

3.3.1 Mouse models of Alzheimer disease 

To date, different animal modes of AD have been generated in order to study different 

aspects of AD pathophysiology (Sasaguri et al. 2017). The identification of mutations e.g. 

APP and PSEN1 genes in familial AD or MAPT gene in frontotemporal dementia, have led to 

generation of transgenic models of AD. Recently, two new models called AppNL-F and AppNL-

G-F were generated using a knock-in strategy in which APP is manipulated in a way that 
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humanized Aβ sequence, containing mutations of familial AD, is inserted (Saito et al. 2014). 

In AppNL-F mice, the Swedish (KM670/671NL) and the Beyreuther/Iberian (I716F) mutations 

were incorporated into Aβ sequence, while a third mutation, the Arctic, was introduced in 

AppNL-G-F mice. In contrast to the APP transgenic mice models, both AppNL-F and AppNL-G-F 

mice express APP at endogenous levels while exhibiting profound Aβ pathology. The 

pathology occurs as a result of increased Aβ production and Aβ42:Aβ40 ratio as well as 

increased oligomerization of Aβ, due to the presence of familial mutations. Although the Aβ 

pathology is similar between these models, AppNL-F mice display milder Aβ pathology 

starting at nine months of age, whereas in the more aggressive model AppNL-G-F, the Aβ 

pathology starts already at two months of age. Indications of inflammation including 

astrocytosis and gliosis as well as synaptic alterations are observed in these mice. In addition, 

AppNL-F and AppNL-G-F mice start to exhibit cognitive impairments at 18 and 6 months of age 

respectively. 

3.4 IMMUNODETECTION TECHNIQUES 

3.4.1 Western Blotting 

In Paper I and V, western blotting was carried out using the LI-COR system in order to 

investigate APP and its fragments (Paper I) and markers of autophagy (Paper V). Western 

blot is commonly used to detect and quantify proteins from a biological sample. Briefly, the 

denatured proteins were separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) based on their molecular weight and transferred to 

nitrocellulose or PVDF membranes, which were blocked and then incubated with primary 

antibodies. Subsequently, membranes were washed and incubated with fluorescently labeled 

secondary antibodies (LI-COR). Digital fluorescent visualization of signals was detected 

using the Odyssey CLx Imaging System (LI-COR). Additionally, in some experiments of 

Paper I, such as the comparison between AD and control cases, membranes were stained with 

total protein stain using REVERTTM Total Protein Stain (LI-COR) and the signal was 

immediately detected at the 700 nm channel. Quantitation of protein of interests was done 

using Image Studio Lite v5.2 (LI-COR). 

3.4.2 Immunoprecipitation 

In Paper I, we performed immunoprecipitation experiments to concentrate a protein of 

interest from a complex biological sample using an antibody. Briefly, brain lysates were first 

precleared using magnetic beads in order to remove any potential non-specific binding. 

Subsequently, direct (antibody-bead complex) or indirect (antibody-antigen complex) 
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immunoprecipitation was performed. The input (lysate before and after pre-absorption steps), 

the unbound sample and the immunoprecipitated sample were collected and subjected to 

western blotting as described above.  

3.4.3 Immunohistochemistry/Immunofluorescence  

In this thesis, we also did immunostaining in order to investigate staining densities of 

presynaptic proteins in postmortem human brain (Paper II and III), to visualize the presence 

of the autophagic markers both in postmortem human brain and in mouse brain as well as to 

detect decorin and its colocalization with the markers of interneurons in mouse brain (Paper 

V). Briefly, using immunohistochemistry (Paper II and V), paraffin-embedded sections were 

deparaffinized, rehydrated, and following the antigen retrieval step, sections were blocked 

and incubated with primary antibodies. Subsequently, sections were washed, incubated with 

secondary antibodies and after DAB staining, sections were coverslipped. Images were 

acquired by the Nikon Eclipse E800 light microscope using NIS Elements software. 

Alternatively, in Paper III and V, we used immunofluorescence method, which was similar to 

the above-described immunohistochemistry. In Paper III following incubation with primary 

antibodies, the sections were incubated with TrueBlack Lipofuscin Autofluorescence 

Quencher to reduce autofluorescence. Afterwards, the sections were incubated with IgG 

conjugated secondary antibodies, followed by DAPI staining. Slides were scanned using the 

semi-automated Nanozoomer 2.0HT slide scanner (Hamamatsu) and images were acquired 

using the NDP.view2 software (Hamamatsu). Both in Paper II and III, semi-quantitative 

densitometrical analysis was done by measuring the mean pixel intensities of region of 

interest on ImageJ Fiji. In Paper V, to detect decorin, following rehydration steps, the sections 

were incubated with chondroitinase ABC, which digests O-linked chondroitin sulfate-like 

glycosaminoglycan (Snow et al. 1992). While the remaining steps were followed accordingly, 

the signals were amplified with TSA Fluorescein System. Images were acquired by the Nikon 

fluorescence microscope and quantified by ImageJ Fiji. 

3.5 LASER MICRODISSECTION 

Under microscopic visualization, LMD is used to isolate specific cells, regions or structures 

from a complex tissue, thereby providing a more homogenous sample for molecular analyses. 

In Paper II, LMD was employed to specifically microdissect the OML in order to study the 

changes in the proteome (Figure 6). Consecutive frozen hippocampal sections (20 μm thick) 

were cut in the cryostat and mounted on polyethylene naphthalate membrane coated slides, 

which facilitates the laser cutting during LMD. Using toluidine blue staining, the nuclei of all 
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cell types are stained enabling us to identify the molecular layer of the dentate gyrus that is 

located right underneath the granule cell layer (GCL). Approximately 0.6 mm3 of 

microdissected OML was collected per case. 

 

Figure 6: The process of LMD. A 20 µm thick hippocampal section form a control brain was stained 
with toluidine blue. The entire molecular layer (ML), which is located between the granule cell layer 
(GCL) and the hippocampal fissure, is seen (left). The OML is successfully microdissected (middle) 
and the microdissected tissues are collected inside a tube cap (right). 

3.6 MASS SPECTROMETRY-BASED PROTEOMICS 

MS is a sensitive analytical method that measures mass-to-charge ratio of charged molecules 

and is commonly used for identification and quantification of proteins in a complex 

biological sample. The bottom-up approach is often used where peptides are identified 

through pattern matching between the generated MS spectra and the theoretical MS spectra, 

coming from the protein database. Briefly, proteins are extracted from a lysate and reduced, 

alkylated and digested by trypsin, which cleaves after lysine and arginine residues, to 

generate peptides with properties suitable for analysis. Following sample clean-up steps (e.g. 

removal of salts), the resulting peptides are then injected to the LC-MS. As it stands from the 

name, in the LC, the peptides are separated on a column based on their hydrophobicity. Once 

the peptides are eluted from the column, they are ionized by the electrospray. The precursor 

ions are detected at the first MS (MS1). Following fragmentation for example by collision 

induced dissociation, peptide bonds are broken and smaller fragment ions are generated. At 

the second MS (MS2), the spectra of fragment ions are detected, providing a more resolved 

sequence of peptide fragments.  

In this thesis, MS-based proteomic approaches were applied for different purposes. While in 

Paper I, our aim was to investigate whether the 20 kDa APP band (detected by APP 

antibodies using SDS-PAGE) is a true APP fragment, in Paper II and V, relative 



 

28 

quantification was performed. More specifically, in Paper II, peptides from each case were 

labeled with a different TMT (TMT10plex 126–131Da) and pooled together for LC-MS/MS 

analysis (Figure 7). To increase the proteome coverage, the pooled sample was pre-

fractionated into 72 fractions using high resolution iso-electric focusing (HiRIEF) (Branca et 

al. 2014). Finally, each fraction was analyzed by the LC-MS/MS.  

 

Figure 7: The microdissected tissues were dissolved and digested by trypsin. The resulting peptides 
from 10 cases were labeled by different TMTs and pooled. The peptide mix was then pre-fractionated 
into 72 fractions by HiRIEF and each fraction was analysed by LC-MS/MS.  

In Paper V, since small volume of CSF (~ 10 µl) is collected from living mice, we instead 

used label-free MS approach in order to explore the CSF proteome from App knock-in mice 

and wild-type mice. 

3.7 DATA ANALYSIS 

In this thesis, demographic characteristics (i.e. age, gender, PMI, brain pH, Braak and 

amyloid stages) and biochemical data were analyzed in GraphPad PRISM 7.0. Depending on 

whether the data follows a normal distribution or not, which was checked by Kolmogorov-

Smirnov test, either two-tailed Student’s t-test or Mann-Whitney test was used for assessing 

the statistical significance. Only in Paper V, we had more than two groups, and therefore, 

one-way ANOVA followed by Dunnett’s multiple comparisons test was performed for the 

analysis of the biochemical data, if not stated otherwise in the manuscript. 



 

 29 

For the analysis of the MS data, in Paper II, differential expression analysis of quantitative 

mass spectrometry data (DEqMS) package in R was used to detect the significant alterations 

in average protein expression between AD and control groups. Briefly, DEqMS works on top 

of limma package and considers the number of peptide spectra matches per peptide, detected 

by LC-MS/MS analysis, while calculating t-statistics (Zhu et al. 2020). Benjamini-Hochberg 

method was then used for multiple hypothesis testing (Benjamini and Hochberg 2000) and a 

cut-off level of 10% false discovery rate (FDR) was applied. In Paper IV, random-effects-

model was used to perform meta-analysis of MS data which will be explained in section 3.7. 

Proteins with FDR < 20% were considered as statistically significant. In Paper V, a two-tailed 

Student’s t-test was performed to identify proteins that were significantly altered in App 

knock-in mice compared to wild-type mice using Qlucore. A p-value < 0.05 was considered 

as statistically significant. The human CSF data that was used in Paper V was recently 

published (Tijms et al. 2020). Multivariate data analysis was performed to find the biggest 

variation in our data using an unsupervised principal component analysis (PCA) in SIMCA or 

Qlucore. Volcano plots of all proteins were generated in R or GraphPad Prism 8. Heatmaps 

of differentially expressed proteins were generated using Morpheus (Broad Institute, 

https://software.broad institute.org/morpheus). Venn diagrams were generated by the 

Interactive Venn tool (Heberle et al. 2015) or Venny 2.1 (Oliveros 2007-2015). 

3.7.1 Bioinformatic analyses  

Thanks to advances in the field of LC-MS, it has become possible to identify and quantify 

thousands of proteins in a complex biological sample. Therefore, knowing that a given 

protein is up- or downregulated is not very insightful when many proteins together influence 

a pathway. This is the main reason why there is a growing interest in performing functional 

enrichment analyses which allows us to put single protein alterations in a biological context. 

For this purpose, we used the following tools: Gene set enrichment analysis (GSEA, Broad 

Institute) (Subramanian et al. 2005), GOrilla tool (Eden et al. 2009), DAVID Bioinformatics 

Resources (Huang da, Sherman, and Lempicki 2009), and Gene ontology enrichment analysis 

by Panther (Ashburner et al. 2000; Mi et al. 2019). 

Although the display of results is different between these analyses, they all are based on the 

molecular signature database that contains gene sets derived from gene ontology (GO) 

annotations. Therefore, the same pathways are expected to be overrepresented for certain set 

of proteins, independent of which tool is used. The input is a list of proteins with valid protein 

identifiers and proteins are often unranked, meaning that they are not sorted by e.g. fold 
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change prior to the analysis, except in GSEA. However, to identify which processes are truly 

altered and to minimize false interpretations, it is preferable to upload the list of significantly 

altered proteins. Moreover, up- and downregulated proteins are often analyzed separately to 

get a better understanding of the biological changes. While statistical methods to compute p-

value are different between different tools, the main outcome of enrichment analyses is the 

same and include: enriched GO biological process, enrichment score, number of 

genes/proteins that are associated with a given GO term from the uploaded data and the GO 

database, p-value and FDR-value. In all tools, Benjamini-Hochberg method is used for 

multiple hypothesis testing (Benjamini and Hochberg 2000) and biological processes with 

FDR < 5% are considered as statistically significant.  

In summary, functional enrichment analyses can tell us which processes are affected in a 

pathological condition. Moreover, by visualizing whether the affected processes are linked to 

each other, it can allow us to select candidate processes and proteins for further studies.  

GSEA uses a running-sum statistic method, therefore all identified proteins are ranked from 

the most upregulated to the most downregulated, regardless of their p-values (Figure 8).  

 

 

Figure 8: An example of a 
biological process called 
cellular respiration. All 7322 
identified proteins were 
subjected to GSEA software. 
Proteins related to this process 
are indicated as lines, shown at 
the middle part of the graph. 
Upregulated proteins are shown 
to the left and downregulated 
proteins to the right. As most 
proteins are downregulated, this 
pathway is found to be 
negatively enriched.  
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In GOrilla tool, either a single list of proteins or two lists of proteins (target and background 

lists) can be uploaded. For example, in the latter approach, a target list consists of 

differentially expressed proteins (with a preferred cut-off for p-value or FDR-value) while a 

background list contains all protein identifications (Figure 9). The main difference, when 

subjecting two unranked lists, is that the enrichment score takes into account the number of 

all protein identifications, which is provided as the background list. 

 
Figure 9: GOrilla makes a summary chart where all identified biological processes, which appeared 
to be affected by the uploaded proteins, are shown. Additionally, this chart visualizes the hierarchy of 
a given GO term and whether different processes are linked to each other. The enrichment score is 
defined by (b/n) / (B/N). N is the total number of all identified proteins in the data; B is the total 
number of proteins associated with a given GO term; n is the total number of proteins from the target 
list (with a determined cut-off); and b is the number of proteins in the target list that are associated 
with a given GO term. This figure is modified from (Eden et al. 2009). 

Alternatively, DAVID or Panther can be used for functional enrichment analysis. The results 

are displayed in a table format in both tools and GO terms can be sorted by the statistical 

significance or the hierarchy (Table 2). 
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GO Term Count % P-value Genes Fold 
Enrichment FDR-value 

GO:0006099  
Tricarboxylic acid cycle* 13 3.9 8.11E-14 P31040… 23.2 1.45E-10 

GO:0006120  
Mitochondrial electron 
transport, NADH to 
ubiquinone* 

14 4.2 5.47E-12 P19404... 14.8 4.88E-09 

GO:0044281          
Small molecule metabolic 
process 

126 37.8 6.58E-37 P78417... 3.3 3.04E-33 

GO:0044710       
Single-organism metabolic 
process 

165 49.5 1.39E-25 A0A0A… 2.1 2.14E-22 

 

Table 2: Example of functional enrichment analysis performed by DAVID. Count column is the 
number of proteins that are associated with a given GO term, and individual proteins are listed under 
the column genes. By clicking on the GO term, more information about a given pathway can be 
obtained. *DAVID summarizes the list of processes that are at the very bottom in a hierarchy under 
“Direct” category. 

Additionally, Ingenuity Pathway Analysis (IPA) can be used for biological interpretation of 

the data. While a valid protein identifier is sufficient to perform the above-mentioned 

analyses, here in IPA, log2 fold change is also provided. Common analysis types in IPA 

include biological functions and upstream regulators (Table 3, Figure 10).  

Diseases and 
Functions 

Predicted 
activation 

state 

Activation 
z-score 

p-value Molecules # Molecules 

Transport of metal 
ion (GO:0030001)     Decreased      -2.619     4.44E-04 

          

        AKT3...  27 

Secretory pathway      Decreased      -2.570     2.44E-11 

         

        ANXA1... 
        CADPS2… 29 

Upstream regulator  
Predicted 
activation 

state  

Activation  
z-score  

p-value of 
overlap 

Target 
molecules in 

dataset  
# Molecules 

Nuclear factor 
erythroid 2-related     
factor 2 (NFE2L2) 

    Inhibited      -2.525       0.0045 
          

        GFAP… 
        CHGB… 

11 

Vascular endothelial 
growth factor A 
(VEGFA) 

    Activated       2.186       0.0163          ICAM1… 5 

 

Table 3: Examples of diseases and functions analysis (top) and upstream regulator analysis (bottom). 
The column called ‘molecules’ or ‘target molecules in dataset’ contain the proteins that are 
associated with a given pathway or upstream regulator. Based on the log2 fold change of proteins 
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from the data, downregulated proteins are indicated in green while upregulated ones are shown in 
red. IPA makes a prediction about the activation state of a function or upstream regulator by 
calculating a z-score, which are considered significant if z-score >2 or z-score <-2. 

 
Figure 10: Examples of diseases and functions analysis (left) and upstream regulator analysis (right). 
IPA can also predict the relationship between individual proteins and associated functions or 
upstream regulators, based on the literature findings (IPA knowledgebase). In a function (transport of 
metal ion) or in an upstream regulator (NFE2L2), blue arrows indicate an inhibition, red arrows 
indicate an activation, yellow is contradictory findings between the data and literature, and grey 
indicates that the effect is not predicted.  

3.8 META-ANALYSIS BY RANDOM-EFFECTS-MODEL 

A meta-analysis of proteomic studies could verify proteins that are previously known to be 

altered during disease pathogenesis as well as result in differences in the nature of proteome 

by identifying novel proteins that could be important for disease pathogenesis. Additionally, 

it could allow us to detect discrepancies between the datasets. We used random-effects-

modeling (Harrer, Cuijpers, and Ebert 2019) that assumes a distribution of effect sizes, i.e. 

mean differences between disease and control groups, under the influence of different biasing 

effects. In Paper IV, we followed the guideline called “Doing Meta-analysis in R” and 

performed meta-analysis through the package meta (version 4.13). The metacont function 

included the following parameters:  

meta-analysis.results = metacont( 

final_dataset, input MS dataset 

N_AD, number of cases in AD group  
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Mean_AD, mean values in AD group per proteins  

SD_AD, standard deviation in AD group per proteins  

N_C, Mean_C, SD_C, for control groups 

studlab = paste(reference), reference 

comb.fixed = FALSE, whether to use a fixed-effects-model 

comb.random = TRUE, whether to use a random-effects-model 

method.tau = “SJ”, the selected estimator for between-study variance 

hakn = TRUE, whether to use the Hartung-Knapp method 

prediction = TRUE, whether to print a prediction interval  

sm = “MD” the summary measure which is the mean difference 

) 

The random-effects-modeling approach gives an overall mean difference for each protein by 

taking into account the mean and standard deviation within each group (e.g. AD and control) 

as well as the sample size per group, thus accounting for group differences even for proteins 

that were not initially quantified in all datasets or for those showing opposite directional 

changes between datasets. 
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4 RESULTS AND DISCUSSION 
4.1 PAPER I. NON-SPECIFIC DETECTION OF A MAJOR WESTERN 

BLOTTING BAND IN HUMAN BRAIN HOMOGENATES BY A MULTITUDE 
OF AMYLOID PRECURSOR PROTEIN ANTIBODIES 

It has been shown that fragments of APP, not just Aβ, can exert neurotoxic effects (McPhie et 

al. 1997; Lauritzen et al. 2012; Willem et al. 2015). Therefore, investigation of APP and its 

fragments is crucial in order to better understand the role of APP in AD pathogenesis.  

Using six different APP antibodies, which are directed against the C-terminal part of APP 

sequence (Y188, C1/6.1, A8717), the Aβ sequence (6E10, 7N22), and the N-terminal part of 

the CTF-η sequence (9478), we consistently detected a band migrating around 20 kDa in 

human brain (Figure 11). Notably, the signal intensity of 20 kDa band was considerably 

different between the studied APP antibodies. Besides, the 20 kDa band, detected by APP 

antibodies, was overlapped very well with a major band that became visible by total protein 

staining. In addition to the human brain, we found that the 20 kDa band was present in brain 

homogenates from guinea pig and macaque, but not in mouse or rat brain homogenates.  

 
Figure 11: The APP antibodies, Y188 and C1/6.1, showing the presence of 20 kDa band in human 
brain homogenate. Using 16% SDS-PAGE gel, the 20 kDa band appeared as a double band. 
Especially using the C1/6.1 antibody, several APP-CTFs including CTF-α and -β were detected both 
in human and rat brain homogenates.  

An APP-CTF called CTF-η, migrating around 25 kDa on an SDS-PAGE gel, was recently 

discovered (Wang et al. 2015; Willem et al. 2015). Although we do not have any conclusive 

evidence, the 20 kDa band corresponds to the expected weight of the APP CTF-η (Willem et 

al. 2015). Furthermore, when using 16% SDS-PAGE gels, we observed that the 20 kDa band 

appeared to be a double band, in agreement with two previous reports in which an APP-band 

of similar size (~25 kDa) was detected in human cell-lines (Wang et al. 2015) and in human 
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CSF (García-Ayllón et al. 2017). Increased levels of the CTF-η and its fragment Aη are 

detected in the CSF of AD subjects and in the brain of AD transgenic mice (Willem et al. 

2015; García-Ayllón et al. 2017) but we did not observe any change in the levels of the 20 

kDa band in AD brain compared to control, using both the Y188 and the C1/6.1 antibodies. 

Additionally, we noticed that the levels of the 20 kDa band varied considerably between 

cases and showed a correlation with the intensity of the major band detected by total protein 

stain. 

Based on these observations, we questioned whether the studied antibodies could cross-react 

or bind non-specifically to constituents of this total protein band other than APP. Thus, 

different APP fragments were separated on SDS-PAGE and two gel pieces, corresponding to 

the size of the 20 kDa band and the full-length APP (~100 kDa), were cut out and in-gel 

digestion was done for the LC-MS/MS analysis. Several APP-derived peptides were detected 

in the gel preparation from the full-length APP, while only one APP-derived peptide was 

found in the 20 kDa band. It is probable that the same peptide was detected in both 

preparations, since the APP-derived peptide in the 20 kDa showed a similar spectrum and the 

same retention time as one of the peptides identified in the full-length APP band. This could 

further suggest that the 20 kDa band derive from APP but it is probably expressed at low 

levels. We next tried to immunoprecipitate this band using the Y188 and the A8717 

antibodies. While the full-length APP and the lower molecular weight CTFs were efficiently 

immunoprecipitated, the attempts to immunoprecipitate the 20 kDa band was not successful. 

This is in agreement with the MS analysis and suggests that the true levels of the 20 kDa APP 

band is quite low in human brain. Alternatively, the immunoprecipitation experiments might 

not have worked because (i) conformation of the 20 kDa band might be different than the 

other APP CTFs and therefore the epitope for antibody binding site might be hidden, (ii) the 

tissue was homogenized using a mild lysis buffer which could result in a detection of low 

signal intensity, and (iii) we used a total brain lysate instead of using soluble and insoluble 

fractions, which could have improved the detection of this band since it contains the 

transmembrane site of the APP sequence. 

The LC-MS/MS analysis of the 20 kDa band identified myelin basic protein (MBP) with the 

highest score, indicating that the peptide fingerprint of MBP (detected MS spectra with 

respect to the theoretical spectra) had the best coverage among all detected proteins. Since 

MBP is an abundant protein in the brain and the prepared brain homogenates contain white 

matter as we did not dissect the tissue beforehand, we further investigated whether the APP 

antibodies might potentially react to MBP. Using western blotting, we found several MBP 
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isoforms between 14–21 kDa, of which one perfectly overlapped with the 20 kDa APP band 

detected by the C1/6.1 antibody in AD brain. As this overlap does not indicate that the APP 

antibodies could interact with the MBP, we did immunodepletion experiments. While the 15 

kDa MBP band was efficiently immunoprecipitated in the human brain homogenate and the 

levels of MBP staining was depleted depending on the concentration of the MBP antibody, 

the 20 kDa band was not specifically immunodepleted or immunoprecipitated using both the 

MBP and APP antibodies. This could indicate that the detection of 20 kDa band by MBP 

antibody could also be non-specific. Additionally, we observed that several other antibodies 

detected a band migrating at 20 kDa in human brain homogenates, suggesting that this band 

is to some extent is unspecific.   

Taken together, our findings suggest that the 20 kDa band is a true APP fragment, since the 

same fragment was detected by six different APP antibodies and an APP-derived peptide was 

identified by the LC-MS/MS analysis. However, this fragment is most likely expressed at low 

levels in human brain.   

4.2 PAPER II. THE PROTEOME OF THE DENTATE TERMINAL ZONE OF THE 
PERFORANT PATH INDICATES PRESYNAPTIC IMPAIRMENT IN 
ALZHEIMER DISEASE 

As explained in section 1.3, compelling evidence suggests that the perforant path, which 

provides the main input of the hippocampus, is vulnerable to AD-related changes. Since 

synaptic changes are early pathogenic features of AD and observed at the OML, where the 

perforant path fibers terminate, in this study, we investigated the proteome of this vulnerable, 

synapse-rich region in order to identify proteins and pathways that could be involved in 

synaptic dysfunction in AD. 

The OML was specifically cut out from postmortem human brain tissue using LMD. By 

employing HiRIEF (Branca et al. 2014), the proteome coverage was greatly increased and 

7322 proteins were quantified in the microdissected OML in all 10 cases with no missing 

values. Using DEqMS algorithm (Zhu et al. 2020), 724 proteins were found to be 

significantly altered in AD (p < 0.01 and FDR < 10%), consisting of 382 downregulated and 

342 upregulated proteins. To interpret our findings in biological context, we performed 

functional enrichment analyses on all proteins by GSEA and on differentially expressed ones 

by GOrilla tools. Biological processes including cellular respiration, oxidative 

phosphorylation and electron transport chain were negatively enriched in AD OML. As we 

included all proteins regardless of their p-values in the GSEA, it is important to note that 
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many of those mitochondrial proteins were not significantly altered, but they could still have 

an impact on mitochondrial function. Given that synaptic signalling requires high amount of 

energy, altered mitochondrial bioenergetics could impair synaptic homeostasis in AD 

(Devine and Kittler 2018). The analysis of the significantly decreased proteins, done by 

GOrilla, revealed the involvement of biological processes related to neurotransmission in AD 

OML (Figure 12A). In turn, upregulated proteins were associated with processes related to 

gene expression such as RNA processing and ribonucleoprotein complex biogenesis in AD 

OML. Furthermore, 724 differentially expressed proteins were subjected to IPA. Using 

diseases and functions tool, the exocytosis pathway was predicted to be significantly 

decreased in AD (Figure 12B). Several proteins such as STX1A and SNAP25 (indicated by 

blue arrows in Figure 12B) were found to be associated with decreased exocytosis.  

 

Figure 12: (A) Functional enrichment analysis of significantly downregulated proteins (n = 382), 
using GOrilla tool, showed that biological processes related to neurotransmission were significantly 
altered in AD OML. (B) Similarly, exocytosis was predicted to be significantly decreased in AD OML 
by IPA of differentially expressed proteins (n = 724). Blue arrows indicate that proteins lead to an 
inhibition of the pathway. Yellow arrows indicate that the association with proteins and pathway is 
inconsistent with the literature findings, and grey arrows suggest that the effect is not predicted even 
though proteins are involved in this pathway.  

Based on the fold change between AD and control, biological function and availability of 

commercial antibodies, we selected three presynaptic proteins that have not been previously 

studied in AD, i.e. synaptogyrin-1 (SYNGR1), CPLX1 and complexin-2 (CPLX2), for 

immunohistochemical assessment. Using a different group of AD and control cases, we 

confirmed that the staining densities of all selected proteins were reduced in AD OML.  
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Our proteomics findings are in line with the literature and indicate that the OML indeed 

exhibits synaptic changes during AD pathogenesis. More importantly, presynaptic proteins 

were found to be significantly altered in AD OML while the postsynaptic density proteins 

(e.g. AMPARs, NMDARs, drebrin and PSD95) were not. This supports the notion that 

presynaptic changes could be more important than the postsynaptic changes in this region 

during disease pathogenesis.  

4.3 PAPER III. SPECIFIC PRESYNAPTIC LOSS IN THE OUTER MOLECULAR 
OF THE DENTATE GYRUS IN ALZHEIMER DISEASE 

To follow-up on our proteomics findings from Paper II and further explore the synaptic 

impairment within the hippocampal formation, we investigated the expression of five 

presynaptic proteins using immunofluorescence. The selected presynaptic proteins play 

important roles in neurotransmission and were: the cytosolic protein CPLX1, the cell surface 

SNARE protein STX1A, the synaptic vesicle proteins SYNGR1 and SYT1, and the vesicular 

SNARE protein called VAMP2. The presynaptic protein IR was measured in the following 

regions: (i) molecular layers of the dentate gyrus: OML and IML; (ii) molecular layers of the 

CA3: LUC, RAD and LM; (iii) molecular layers of the CA1: RAD and LM; and neuronal 

layers: CA4, CA3 and CA1.  

The staining densities of CPLX1, STX1A, SYNGR1 and SYT1 were significantly decreased 

in AD OML, supporting our proteomic findings (Haytural et al. 2020). However, VAMP2 

showed a non-significant decreased tendency in AD OML. In the adjacent molecular layer, 

IML, the densities of CPLX1, STX1A, SYNGR1 and SYT1 were not altered in AD, while 

VAMP2 showed a non-significant decreased tendency. Several studies have reported reduced 

staining densities of synaptic proteins in AD OML (Hamos, DeGennaro, and Drachman 

1989; Masliah et al. 1994; Robinson et al. 2014). Although the semi-quantitative 

densitometric analysis of synaptic proteins was not reported specifically for IML in these 

studies, the change in synaptic protein-IR was reported as a ratio of OML/IML, suggesting 

that the levels were not altered in AD IML. As previously explained in the section 1.3, these 

two regions receive distinct excitatory inputs, thus it is not surprising that the extent of 

synaptic changes might be different between these regions.  

We furthermore explored presynaptic protein-IR in other molecular and neuronal layers of 

the hippocampus and surprisingly observed no profound alterations in the staining of CPLX1, 

SYT1, SYNGR1 and VAMP2 in AD. Interestingly, we detected a significant increase in the 

STX1A staining in CA4 neuronal layer and a non-significant trend towards increased levels 
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in CA3 neuronal layer, CA3-LUC, CA3-RAD, CA1 neuronal layer and CA1-RAD in AD 

compared to control. The STX1A staining could be increased in these regions, possibly via 

increased branching or sprouting, in order to compensate for the reduced input that dentate 

granule cells receive. Taken together, our findings indicate that the reduction in the staining 

of these presynaptic proteins, assessed by semi-quantitative densitometric analyses, were 

highly specific to the OML in AD, despite that AD cases had severe pathology (Braak stages 

V-VI). Moreover, the fact that other terminal zones of the perforant path, i.e. CA3-LM and 

CA1-LM, were unaffected in AD could emphasize the importance of the perforant path 

terminating at the OML.  

In the hypothesis of synaptic loss, both pre- and postsynaptic sites are expected to be affected. 

However, no alterations in the staining densities of postsynaptic density protein SHANK2 

and the dendritic marker MAP2 was detected in AD OML, supporting our previous 

proteomic findings (Haytural et al. 2020). Moreover, the density of granule cells, whose 

dendrites are in the OML, showed no difference between AD and control. These observations 

suggest that postsynaptic compartment is intact in the OML and the deficit specifically arise 

from the presynaptic compartment, for example as a result of the loss of EC layer II neurons, 

which has been well documented in the field of AD research (Gómez-Isla et al. 1996; 

Kordower et al. 2001). Although we were not able to investigate this cause-consequence 

relationship, since the brain sections in our cohorts were too posterior, we could investigate 

whether there was an axonal degeneration in AD OML. We showed that the staining densities 

of MBP (for myelinated axons), SMI-312 (for phosphorylated neurofilaments M and H) and 

tau were not altered in AD OML. This supports the notion that the presynaptic impairment 

observed in the OML does not directly result from loss of projecting EC fibers. Alternatively, 

a retrograde degeneration could be involved in AD pathogenesis (Terry 2000). In this theory, 

synaptic dysfunction and degeneration precede axonal degeneration and neuronal death, 

which has been supported by the fact that synaptic loss correlates well with cognitive decline, 

in fact much better than the neuronal loss (Terry et al. 1991). Importantly, this hypothesis 

could also explain why all presynaptic proteins were not altered to the same degree in AD 

brain compared to control (Haytural et al. 2020). 

Increasing evidence suggests that Aβ and tau play a role in synaptic dysfunction, explained in 

section 1.4.1. Since both amyloid plaques and NFTs are present in AD OML (Hyman et al. 

1986; Crain and Burger 1988; Thal et al. 2000), it is plausible that these pathological changes 

could also cause synaptic impairment in this region. Therefore, lastly, we investigated 

whether the burden of amyloid plaque and NFT pathology, could have an effect on this 
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specific presynaptic impairment. We found no correlation between the amyloid load, detected 

by Aβ antibody, and the reduced staining densities of the studied proteins in OML. Similarly, 

there was no difference in terms of the area covered by neurites, detected by p-tau antibody 

AT8, between the OML and the other molecular layers of the hippocampus, suggesting that 

the observed presynaptic alterations did not result from the burden of the p-tau positive 

neurites. 

In summary, using a different group of AD and control cases, we showed that the OML 

exhibits presynaptic changes while the postsynaptic compartment seems to be rather intact, 

which corroborates our findings from Paper II. Furthermore, investigation of other molecular 

layers of the hippocampus strongly suggests that this presynaptic failure specifically affects 

the perforant path extending from EC layer II to the OML. 

4.4 PAPER IV. INSIGHTS INTO THE CHANGES IN THE PROTEOME OF 
ALZHEIMER DISEASE ELUCIDATED BY A META-ANALYSIS 

There has been a growing interest for carrying out proteomic studies in order to shed light on 

the pathogenic processes that are involved in AD. In this study, we performed a meta-analysis 

using the random-effects-model, which was previously described in section 3.8.  

After literature search done in PubMed, we selected 20 datasets from nine published studies 

(and one unpublished work from our research group) based on the following inclusion 

criteria: (i) sample size of at least five cases per group, (ii) minimum number of 1000 

quantified proteins, (iii) studies in which quantified protein intensities were reported for each 

individual biological sample, and (iv) studies in which the proteomic analysis was carried out 

using frontal and/or temporal cortices or cingulate gyrus. The selected datasets were further 

grouped into different categories: brain region (frontal = 10 datasets, temporal = 8 datasets, 

and cingulate gyrus = 2 datasets), and MS approaches (labeled = 12 datasets, and label-free = 

8 datasets). In each dataset, the relative protein intensities were log2 transformed, median-

centered and scaled (i.e. median = 0 and standard deviation = 1) so that they would be 

comparable for further statistical analyses. To visualize the largest variability between 

samples and to determine whether there were any systematic patterns depending on MS 

techniques or brain regions, PCA was performed using the log2 protein intensities from the 

concatenated data consisting of 512 proteins that were quantified in all 895 samples (566 AD 

and 329 control cases) in all datasets. We detected no clear separation between the two 

groups (AD versus control), the brain regions (cingulate gyrus, frontal and temporal cortices) 

or the datasets. However, two main clusters, corresponding to labeled and label-free MS 
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approaches, were observed (Figure 13) and therefore we decided to perform the meta-

analysis of labeled and label-free datasets separately.  

 

Figure 13: PCA of 512 proteins that were quantified in all 895 samples and in all 20 datasets showed 
a clear separation between the labeled and the label-free data. Ellipses indicate the 95% confidence 
interval of samples in each of the groups.  

The labeled data contained 11753 unique proteins and was considerably larger than the label-

free data, which consisted of 4292 unique proteins. The increased proteome coverage that is 

observed in the labeled data can be explained by the employment of the extensive pre-

fractionation methods prior to LC-MS/MS analysis. Using the random-effects-model, the 

mean difference between AD and control groups were computed for each protein. In the 

meta-analysis of the labeled data, comprising 88 AD and 80 control cases, 509 proteins (232 

down- and 277 upregulated) were significantly altered in AD after adjusting for multiple 

hypothesis testing (FDR < 20%). In turn, in the meta-analysis of the label-free data, 

consisting of 424 AD and 208 control cases, 505 proteins (259 down- and 246 upregulated) 

were significantly altered in AD (FDR < 20%). While 3604 unique proteins were found to be 

shared between the two meta-analyses, corresponding to 30% of proteins in the labeled data 

and 84% of the proteins detected in the label-free data, only 12 proteins were significantly 

altered in AD in both meta-analyses - indicating that there was a considerable difference 

between these analyses (Figure 14). Among those 12 proteins, cytosolic arginine sensor for 

mTORC1 subunit 2 (CASTOR2), integrin alpha-6 (ITGA6), plectin (PLEC), ribosomal 

protein S6 kinase alpha-2 (RPS6KA2), sodium- and chloride-dependent GABA transporter 3 

(SLC6A11), structural maintenance of chromosomes protein 3 (SMC3) and synaptotagmin-11 

(SYT11) showed consistent direction of changes across the datasets. 
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Figure 14: Heatmap of 12 significantly altered proteins, which were identified in both meta-analyses. 

To get a better understanding of the pathways that are involved in AD, we performed 

functional enrichment analyses and uploaded the lists of significantly down- and upregulated 

proteins (FDR < 20%) to DAVID. The downregulated proteins from the labeled data were 

mainly associated with biological processes related to neuron and axon development, 

neurogenesis and synaptic signaling, while the upregulated ones were associated with generic 

processes such as localization and transport. In turn, the downregulated proteins from the 

label-free data revealed processes involved in mitochondria and energy metabolism, and the 

upregulated proteins were associated with pathways such as small molecule metabolic 

process and catabolic process. The functional enrichment analyses revealed that 19 pathways 

were commonly enriched in both meta-analyses and were, to a large degree, associated with 

neuron and axon development as well as synaptic signaling. Notably, when investigating 

individual proteins belonging to the synaptic signaling ontology, only a few proteins were 

commonly detected in both meta-analyses and these were: brain-specific angiogenesis 

inhibitor 1-associated protein 2, serine/threonine-protein phosphatase 2B catalytic subunit 

beta isoform, SNAP25 and septin-5. This points out that even though the precise proteins 

affected were different in the two meta-analyses, common biological processes could still be 

altered, and such processes could play crucial roles in AD pathophysiology.  

In conclusion, we found proteins that were dysregulated in the same direction between the 

studies. However, depending on whether the labeled or label-free MS approaches were used, 
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different proteins appeared to be altered and only seven were commonly and consistently 

altered in both MS approaches. This could suggest that proteomic studies should be treated 

with care. Additionally, as reported here, the same biological processes may be detected, 

despite that individual proteins may differ between the studies.  

4.5 PAPER V. EXTRACELLULAR MATRIX PROTEIN DECORIN IS INCREASED 
IN CSF OF APP KNOCK IN MICE AND EARLY STAGE OF ALZHEIMER’S 
DISEASE 

Examination of postmortem human brain shows that autophagy is impaired in AD (Nixon et 

al. 2005) and investigation of autophagy status in the App knock-in mice is of great interest. 

In this study, we found increased levels of p62 and LC3-II, markers of autophagy, in AppNL-G-

F mice brain but not in AppNL-F mice brain. As explained in section 3.3.1, AppNL-G-F mice is a 

more aggressive model due to the presence of the Arctic mutation, and therefore, it is not 

surprising that the markers of autophagy were only altered in AppNL-G-F mice. To explore the 

CSF proteome of App knock-in mice models as well as to investigate whether any proteins 

related to autophagy could be altered in CSF, we performed label-free MS. We quantified 

246 proteins in all samples without any missing values. Compared to the wild-type mice, 38 

proteins were significantly altered in AppNL-F mice while 36 were significantly altered in 

AppNL-G-F mice (p-value < 0.05). Among those proteins, only 13 were commonly altered in 

both App knock-in models. Notably, we detected six autophagy-related proteins including the 

extracellular matrix (ECM) proteins decorin and lumican, cathepsin B, cathepsin D, cathepsin 

S and alpha-mannosidase, which were significantly altered in either AppNL-F or AppNL-G-F 

mice.  

We further investigated the translational changes in the CSF proteome between the App 

knock-in mice and human subjects across AD continuum (Tijms et al. 2020). Briefly, the 

human cohort consisted of three AD stages: preclinical AD (NC), prodromal AD (MCI) and 

mild to moderate AD-type dementia, based on the cognitive performance tests. Additionally, 

the cohort was also categorized into two groups based on the presence of markers of AD-

related pathology: subjects with abnormal CSF Aβ42 and t-tau (a+t+) and subjects with 

abnormal CSF Aβ42 and normal CSF t-tau (a+t-). In NC, MCI and AD groups, 1777, 1845 

and 1690 proteins were quantified respectively. Since relatively a smaller number of proteins 

were quantified in the mice CSF proteome compared to the human proteome, to be able to 

have a better overview of potential changes in the CSF, we did two different comparisons in 

which either all quantified proteins or only significant changes (p-value < 0.05) were 
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included in the analyses. Moreover, as App knock-in models do not show tau pathology and 

more common changes were detected between the mouse and human (a+t-) CSF proteome 

comparisons, we stratified to focus on the human cohorts with a+t- status. We divided the MS 

data into up- and downregulated proteins in order to get better insights into the protein 

changes. The comparisons done by Venn diagrams showed that 33 proteins were commonly 

upregulated and 76 were downregulated both in NC and AppNL-F mice. In MCI and AppNL-F 

mice, 46 proteins were commonly upregulated and 84 were downregulated. In AD and AppNL-

F mice 33 proteins were commonly upregulated and 76 were downregulated. When only 

significant alterations (p-value < 0.05) were considered, interestingly, the ECM protein 

decorin was found to be significantly upregulated both in AppNL-F mice and NC subjects. In 

turn, comparing the CSF proteome of AppNL-G-F mice with the human cohorts revealed that 38 

proteins were commonly upregulated and 84 were downregulated both in NC and AppNL-G-F 

mice. In MCI and AppNL-G-F mice, 50 proteins were commonly upregulated and 90 were 

downregulated. In AD and AppNL-G-F mice 37 proteins were commonly upregulated and 86 

were downregulated. While decorin was again commonly upregulated across all 

comparisons, it was not significantly altered in AppNL-G-F mice. In the comparisons between 

App knock-in mice and human cohorts, we found several other significantly and commonly 

altered proteins, including contactin-1, dickkopf-3, fibronectin 1, neurotrimin, SPARC-like 

protein 1, ECM protein 1, limbic system-associated membrane protein and C-type natriuretic 

peptide, which are associated with the BBB. Interestingly, the dysfunction of BBB and 

BCSFB is reported in aging and AD (Montagne et al. 2015; Lendahl, Nilsson, and Betsholtz 

2019). Hence, the detection of BBB-related proteins in the CSF could indicate that there 

might be changes in the BBB composition in both AD models as well as in human patients 

with a+t- status. 

As similar number of proteins were commonly up- and downregulated between App knock-in 

mice and human cohorts, we further assessed how many of those changes could be observed 

across all groups. This comparison allowed us to detect changes that occur throughout the 

course of AD both in human and mouse as well as pinpoint specific alterations in one of the 

App knock-in mouse models, thereby enabling us to further explore the differences between 

the two mouse models. Among those changes, 12 were commonly upregulated in all groups 

while 54 were commonly downregulated. Furthermore, functional enrichment analyses of 

upregulated proteins identified processes such as acute inflammatory response, cholesterol 

and lipid metabolism, while downregulated proteins were associated with processes including 

cell adhesion, neurogenesis and positive regulation of amyloid fibril formation. 
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Among the above-mentioned protein hits, we selected decorin for further biochemical 

characterization, since it has previously been shown to activate autophagy in endothelial cells. 

Decorin is an ECM proteoglycan, therefore using a modified immunohistochemistry method, 

we show that decorin was expressed both in somata and neurites of CA2 pyramidal neurons 

and the parvalbumin-positive interneurons of the hippocampus. While the distribution of 

decorin-positive neurons did not show any difference between the App knock-in versus wild-

type mice, we found that decorin-positive neurite length of parvalbumin-positive interneurons 

was significantly decreased in AppNL-G-F mice. Using western blotting, no difference in the 

levels of decorin was detected in the membrane fraction of hippocampus between the groups. 

However, since the entire hippocampus was used for this biochemical analysis, it might not 

truly reflect to the decorin levels of the parvalbumin-positive interneurons and CA2 

pyramidal neurons. These findings suggest that the localization of decorin might be altered in 

the hippocampus of especially AppNL-G-F mice. Decorin has previously been shown to activate 

autophagy (Neill, Sharpe et al. 2017). Using primary neuronal cultures derived from wild-

type mice that were treated with decorin, we investigated the effect of decorin on autophagy 

and found a significant reduction in LC3-II levels. Moreover, when bafilomycin A1, inhibitor 

of lysosomal proteolysis, was introduced, decorin treatment did not result in any change in 

the levels of LC3-II, suggesting that decorin most likely increases the autophagosomal-

lysosomal degradation. 
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5 CONCLUSIONS AND FUTURE PERSPECTIVES 

This thesis provides insights into different mechanisms that are affected in AD 

pathophysiology, by investigating the recently identified fragment of APP (Paper I) as well as 

exploring alterations in the proteome of postmortem AD brain and CSF of App knock-in 

mouse (Paper II, IV and V). 

In Paper I, we raise a precaution about a non-specific detection of the 20 kDa band, most 

likely corresponding to the recently identified APP-fragment called CTF-η. Our findings 

suggest that this fragment derives from APP, evident by the LC-MS/MS analysis, but 

probably expressed at low levels in human brain. 

Another focus of this thesis was to investigate synaptic dysfunction in AD brain in an 

unbiased manner. We therefore studied a synapse-rich, vulnerable region of the hippocampus, 

i.e. the OML, that receives the crucial perforant path input. In Paper II, we showed that the 

combination of LMD with MS (especially with the usage of pre-fractionation prior to LC-

MS/MS analysis) is a powerful technique to investigate the proteome of a specific region, as 

7322 proteins were quantified in all samples. Our findings suggest that this region indeed 

exhibited a presynaptic impairment in AD, since many presynaptic proteins, but not 

postsynaptic proteins, were significantly altered. Five presynaptic proteins (CPLX1, STX1A, 

SYT1, SYNGR1 and VAMP2) were then selected for immunostaining reported in Paper III. 

We found that the staining densities of CPLX1, STX1A, SYT1 and SYNGR1 were 

significantly reduced in AD OML, supporting our proteomics results. The detailed 

immunohistochemical investigation of hippocampal sub-regions (six other molecular layers) 

indicates a specific presynaptic impairment of the OML, thereby highlighting the importance 

of the perforant path (from EC layer II to dentate gyrus) in AD pathogenesis. Since synaptic 

dysfunction is an early pathogenic event in disease pathogenesis and the maintenance of 

functional synapses is important for memory and learning, it is plausible that therapeutic 

approaches aiming to prevent synaptic dysfunction could slow or halt cognitive deficits. 

Moreover, cascades involved in synapse dysfunction can hold the key to the onset of AD, 

being the earliest events known to the disease. Together, Paper II and III highlight the 

importance of a presynaptic failure in AD and suggest that future interventional strategies 

should be targeted to presynaptic proteins. However, our findings point towards the notion 

that not all presynaptic proteins were altered to the same degree, suggesting that specific 

presynaptic pathways could be more vulnerable than others.  
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To systematically identify proteins and pathways that are commonly altered in AD brain, in 

Paper IV, we performed a meta-analysis of the MS data, which were generated by either 

labeled (including our own data from Paper II) or label-free MS approaches. Interestingly, 

most of the alterations in the proteome (proteins and associated pathways) appeared to be 

different between the two meta-analyses. For example, functional enrichment analyses found 

that pathways such as neuron development, neurogenesis were enriched in the labeled data, 

while pathways related to mitochondria and energy metabolism were enriched in the label-

free data. Mounting evidence points towards the involvement of these pathways in AD 

pathogenesis. Hence, our future plans include a systematic investigation of the proteins that 

were associated with these pathways. Although we found substantial differences between the 

two meta-analyses, several pathways such as synaptic signalling were commonly enriched in 

both. In Paper II, in order to identify proteins related to synaptic signalling that could be 

altered in AD, our focus was on a highly specific, cell-free region, which is enriched in 

synapses and nerve fibers. Not surprisingly, we detected substantial alterations in synaptic 

signalling pathways in the OML of the hippocampus. However, the fact that synaptic 

signalling pathway was commonly altered in both meta-analyses regardless of the studied 

brain region (frontal and temporal cortices or cingulate gyrus) emphasizes the importance and 

involvement of synaptic impairment in AD brain. We are currently investigating the proteins 

belonging to the synaptic signalling pathway. Despite all methodological differences between 

the selected studies in Paper IV, seven novel proteins were significantly altered in both meta-

analyses and more importantly showed consistent fold changes across the proteomic studies. 

Future studies should focus on better understanding their role in AD. 

The investigation of CSF proteome of App knock-in mice, in Paper V, revealed alterations in 

several BBB-associated proteins such as decorin, suggesting that BBB composition might be 

affected in App knock-in mice, which needs to be clarified. This could further illuminate how 

well the AD models can mimic the other components of AD pathology, for example CAA, 

which is often observed in AD brains. In this study, we also explored the translational 

changes in the CSF proteomes between App knock-in mice and human subjects (i.e. NC, MCI 

and AD stages) and reported commonly up/downregulated proteins. Importantly decorin was 

significantly upregulated both in AppNL-F mice and NC subjects. Additional biochemical 

analysis showed that decorin is exclusively expressed in different neuronal subgroups within 

the hippocampus, with a role to be discovered in App knock-in mice.  

The comparison of CSF proteomes between human and mouse also allowed us to detect 

proteins that are altered throughout the entire course of AD, in other words from NC to MCI 
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and to AD stages as well as from the milder mice model AppNL-F to the more aggressive 

model AppNL-G-F. The functional enrichment analyses show the involvement of pathways such 

as cholesterol and lipid metabolism, acute inflammatory response, cell adhesion and 

neurogenesis. The detection of translational changes between mouse and human CSF 

proteome is indeed exciting and promising, as it illustrates that the App knock-in mice indeed 

recapitulates some aspects of the AD pathogenesis. It is interesting that neurogenesis pathway 

was altered in the CSF proteomics and complements our findings from the meta-analysis. An 

immediate perspective to the present work would be to compare the results of Paper IV and V 

in order to explore which of the proteomic changes in AD brain are reflected in AD CSF and 

how they could translate to the CSF of AD mouse model.  

In summary, this thesis adds substantial new knowledge on proteins and pathways involved 

in AD pathogenesis from a boarder (analysis of bulk tissue and CSF) to specific (EC-dentate 

gyrus connection) perspective. Future studies of the reported pathways could elucidate the 

involvement of specific proteins in AD. In order to better understand the presynaptic failure 

that is restricted to the OML in AD, several questions need to be addressed. Why are certain 

presynaptic proteins more affected than others? Which mechanisms might be driving the 

presynaptic impairment? Is the downregulation of specific presynaptic proteins the cause or 

the consequence of synaptic impairment? Could the EC neuronal loss be the direct cause of 

the observed presynaptic failure?  
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