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ABSTRACT 
 

The overall aim of this thesis was to determine the changes in gene regulation taking place in 
immune cells during the course of Multiple Sclerosis. Over 200 MS-associated SNPs have been 
identified from GWAS studies. These regions were found to be primarily in the non-coding 
regions of the genome and point to the vast immune system as the leading cause of MS. 
Inferring their function therefore has been a challenge. In addition, a complex interaction of 
genetics and environment has been proposed. This leads to the unresolved question associated 
with specific changes in the immune system that can lead to disease.  

In order to resolve the role of the immune system in MS, we applied an array of high-throughput 
genomic and transcriptomic profiling techniques to identify specific changes in specific 
immune cells. MS being a complex immune mediated neurological disease, makes inference 
of regulation dependent changes in gene expression a challenge. By integrating different layers 
of evidence we are able to propose multiple interactions taking place within and across immune 
cells. We also find evidence that confirms previous findings in MS related to the increased 
activity of T and B cells. In addition, we identify multiple new genes, chromatin regions and 
DNA-methylated regions with differential activity primarily in T and B cells.   

Collectively the results from these studies highlight the multiple factors leading to the 
dysregulation of the immune system in MS and the specific cells associated with pathogenesis. 
These studies also provide a resource for hypothesis building, validation of other studies and 
application of newer integration methodologies in a complex immune disease such as MS.  
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 1 

1 INTRODUCTION 
1.1 MULTIPLE SCLEROSIS 

Multiple Sclerosis (MS) is a complex autoimmune-mediated neurodegenerative disease. 
Disseminated demyelination of nerve fibers of the brain and spinal cord are characteristic of 
the disease. Acute inflammatory injury of axons and glia leads to disability associated with 
movement and cognition (1). 2.3 million individuals are affected worldwide (2). Immune cells 
cross the blood-brain barrier and infiltrate brain tissue promoting inflammation, demyelination 
and gliosis which cause the formation of lesions (3). The early appearance of T cells in MS 
lesions along with the presence of myelin reactive T cells in the blood has led to them being 
considered strong drivers of the disease.  Sex and age of onset of the disease have been shown 
to be a determining factor in the risk of disease and progression  (4). The gender prevalence of 
MS is in a ratio of 3: 1 (female to male) with an average age of onset being 34.  In 85% of 
patients the onset of the disease is in the form of Relapse Remitting MS (RRMS). In RRMS 
there are episodes of active disease during which demyelinating lesions form in the central 
nervous system (CNS) followed by episodes of remission where remyelination and healing 
take place. The remaining 15% of patients directly present with gradually worsening disability 
without clear relapses known as primary progressive MS (PPMS). A disease course resembling 
PPMS affects approximately half of all untreated patient with RRMS after 10 years. 
Environmental factors such as Epstein-Barr Virus (EBV), low levels of vitamin D and smoking 
have also shown to increase susceptibility to MS (5,6). Genetic factors have also been 
implicated in susceptibility to this condition. The human leukocyte antigen (HLA)-
DRB1*15:01 and other HLA alleles) affect the risk of MS, along with over 200 single 
nucleotide polymorphisms (SNPs) (7).  Of these identified SNPs a large number have been 
found in the vicinity of immune-related genes. Current MS therapies provide only partial 
protection against relapses and primarily target the immune system but are ineffective against 
progressive symptoms.  

1.1.2 Multiple Sclerosis: Pathology and Progression 

Clinically Isolated Syndrome (CIS): CIS is recognized as the first clinical presentation of MS. 
CIS fulfils characteristics of inflammatory demyelination but not criteria for the dissemination 
of inflammatory lesions in time (8). The revised McDonald MS diagnosis criterion of 2010 (9) 
allowed for better diagnosis of MS from a single scan criterion for patients presenting with as 
little as 1 single clinical episode. However, in the latest update of McDonald MS diagnosis 
criteria 2019, CIS has been included as RRMS (10). 

Relapse Remitting Multiple Sclerosis (RRMS): Characterized by initial episodes of 
neurological dysfunction followed by periods of remission and recovery. Using magnetic 
resonance imaging (MRI) can visualize the characteristic lesions caused by inflammation and 
demyelination in the white matter. As the disease progresses the recovery from neurological 
damage decreases and disability increases. 
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Secondary Progressive Multiple Sclerosis (SPMS): Characterized by gradual worsening of 
symptoms from an initial relapsing disease course (RRMS), with or without acute relapses. 
Inflammatory lesions are less frequent and progressive neurological decline is accompanied by 
the decrease in brain volume or CNS atrophy. Addressing specific clinical, pathologic and 
immunological criteria is tough due to the slow nature of conversion from RRMS to SPMS, as 
a result, little progress has been made in the field of biomarkers and imaging.   

Primary Progressive Multiple Sclerosis (PPMS): Progressive decline in neurological function 
is characteristic of PPMS. Following a disease course similar to SPMS the pathogenesis is 
associated less with inflammation and more with increasing neurological decline from CNS 
atrophy. Though PPMS lacks a strong immunological component, clinical, imaging and 
genetic data suggest it is a part of the progressive spectrum of MS (11). Lesions or plaques 
show evidence of gradual expansion at the margin of the lesions.                                          

1.1.3 Susceptibility to Multiple Sclerosis 

MS is a multifactorial disease. Many factors such as genetic, immunological and environmental 
have been shown to contribute to its susceptibility. Genetic susceptibility to MS has been 
shown to account for about 30% of the overall risk to MS and the familial risk was estimated 
at about 60% (12,13). This leaves a substantial contribution to be explained by other factors 
such as immunological heterogeneity, and environmental interactions (14). Viral triggers such 
as EBV and CMV have been associated with molecular mimicry (15–18). Environmental 
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factors such as vitamin D deficiency have also been shown to increase the risk of MS (19). 
Finally, with increasing age, MS affected individuals show a gradual decline in muscular and 
cognitive abilities which is a direct consequence of the progression of the disease.  

1.1.4 Immune cells in Multiple Sclerosis 

 

 

Figure 2: Immune cells involved in peripheral immune dysregulation 

Reprinted by permission: Dendrou, C., Fugger, L. & Friese, M. Immunopathology of multiple sclerosis. Nat Rev 
Immunol 15, 545–558 (2015) doi:10.1038/nri3871 

Animal models such as Experimental Autoimmune encephalomyelitis (EAE) have 
significantly shaped our understanding of the inflammatory response in MS (20). Myelin 
proteins including myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein 
(MOG) are targets of CD4+ T cell dependent inflammatory demyelination in EAE (21–23). 
CD4+ T cells recognizing MOG and MBP have been detected in MS patients. T cells express 
chemokine receptors, adhesion molecules and integrins that allow them to cross the choroid 
plexus and menegial venules (24). T cells specific for myelin are activated in the periphery and 
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after gaining access to the CNS are reactivated by APCs including CD11c dendritic cells (DCs) 
that present self-antigens. Reactivation of T cells leads to the production of soluble mediators 
which recruit other immune cells like monocytes and naïve CD4+ T cell that can be activated 
through epitope spreading (25). However, activation of T cells in the periphery is still poorly 
understood. While MBP is found in lymphoid tissue, other myelin-specific protein are 
synthesized by CNS residing oligodendrocytes (26). These antigen recognizing CD4 T cells 
are also present in healthy individuals however regarding their frequency and avidity there is 
inconsistent evidence (27,28). Molecular mimicry has been proposed as a potential mechanism. 
In EAE, a subset of activated T cells express CCR6 (CC-chemokine receptor 6) known play a 
role in facilitating the entry of T cells into the CNS (29). CCR6 is a ligand of CCL20 which is 
constitutively expressed by epithelial cells of the choroid plexus in humans and mice adding to 
the idea T cells cross the blood-brain barrier. 

Pro-inflammatory Th1 and Th17 are the main CD4+ T cell subtypes implicated in MS. CD4+ 
T cells expressing CCR6 have increased expression of IFNg and IL17A, both of which are Th1 
and Th17 signature cytokines, while some lesions show an intermediate phenotype of these 
cells simultaneously expressing IFNg and IL17A (30). GM-CSF (granulocyte-macrophage 
colony-stimulating factor) producing Th17 cells contribute to chronic inflammation in EAE 
(31), while Th1 cells have been shown to be the primary producers of this cytokine in humans 
(32). As a result, the relative importance of these in MS is highly contended due to the 
predominance of one cell type over another either between phases of disease or in human vs 
the disease model EAE (33,34). Overall, since the implication of pro-inflammatory Th1 and 
Th17 cells in MS many therapeutic concepts have been to skew it towards the more anti-
inflammatory Th2 phenotype. This is the mode of treatment used in first-line therapies such as 
IFNb, glatiramer acetate and dimethyl fumarate (35–37) 

CD4+ Regulatory T cells or Tregs which are associated with suppression of inflammation, are 
thought to be defective in MS (38). Some reasons for this dysfunction of peripheral Tregs may 
be due to dysregulation of APCs (39) and variation in the BACH2 transcription factor as 
identified from non-HLA genetic associations which is essential to the development of Tregs 
and T cell identity (13,40,41). Along with reduced suppressive capacity, reduced expansion of 
the memory Treg cell populations has also been reported (42,43). Skewing of the Treg 
population towards Th1 cell-like phenotype in patients has been observed but reversible on 
IFNg therapy (44). Finally, a resistance to suppression by effector T cells has been proposed 
which is mediated by IL6 induced signal transducer and activator of transcription (STAT3)-
mediated signalling contributing to resistance (45,46).  

Higher frequency of CD8+T cells has been identified in MS lesions compared to CD4+T cells 
and show correlation with axonal damage (47). In EAE, CD8 T cells were also shown to be 
activated by epitope spreading aided by cross-presentation by monocyte-derived DCs in the 
CNS even though EAE is primarily a CD4+ T cell-driven model (48). In MS lesions, up to 
one-fourth of CD8+ T cells produce IL17 which leads to the belief that they may be Mucosa-
associated invariant T (MAIT) cells (49). CD8+ T cells require more detailed study when 
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considered as targets of therapy since broad-spectrum drugs such as natalizumab and 
alemtuzumab have an unclear role in targeting these cells. CD8+ Treg cells display less 
regulatory phenotype in MS while cytotoxic CD8+ Tregs show enhanced function following 
glatiramer acetate therapy (50).  

Our understanding of the role of B cells or CD19 cells is relatively new in the field of MS. 
Treatment depleting B cells such as anti-CD20 mediated depletion (rituximab and 
ocrelizumab) have proven to be effective in preventing relapses in MS. These treatments do 
not however deplete plasma B cells (51). Memory B cells were seen in higher proportion in 
CSF of MS patients. Proposed mechanisms for their activity has been as antigen-presenting to 
T cells since they possess MHC class II molecules like APCs. Reciprocal activation by 
activated T cells of B cells has also been studied (52). A hallmark of diagnostic findings in MS 
has been the presence of oligoclonal bands in CSF which also point to the presence of plasma 
B cells in MS (53). However, evidence suggests they are less likely to play a role in driving 
inflammation since antibody levels or OCBs do not change rapidly with disease relapses.             

1.2 GENOMICS AND BIOINFORMATICS IN DISEASE 

Individual cell types have unique gene expression patterns that lead to characteristic properties. 
This unique gene expression is primarily determined by the regulation of the genome through 
modification either directly or indirectly of DNA. Direct modifications of DNA such as 
methylation of DNA at specific sites in the genome can lead to the silencing of these regions. 
Similarly proteins that bind DNA and help in the efficient folding to form chromatin can 
undergo various types of modification such as acetylation, methylation and phosphorylation 
leading to the unwinding of tightly packed heterochromatin allowing these regions to be 
transcribed or expressed. This unwound or “open” DNA can now undergo additional levels of 
regulation to expression through binding of either single transcription factors or protein 
complexes consisting multiple expression regulating proteins (54,55). 

Normal regulation of expression can be altered in disease through changes in DNA nucleotides 
in the form of single nucleotide polymorphisms (SNPs) or deletion/insertions or translocation 
of large fragments of DNA across the genome. High-throughput methods to study these states 
primarily in cancer have varied from DNA sequencing, genotyping, methylation, DNase 
hypersensitivity, ChIP seq and Hi-C. These are powerful methods in order to detect a majority 
of changes in a particular cell type in a single assay.  

In immune-mediated diseases such as multiple sclerosis, due to the heterogeneity of cells and 
signals involved, interpretation of data can be complex. CD4 and CD8 T cells consist of ~10 
suspected cell types which have been shown individually to contribute to the pathology of MS 
(56). Therefore, combining data types can be very informative since it increases the chance of 
detection of changes in regulation while adding more comprehensive evidence for that change.  

Analysis of this high-throughput data has been a considerable challenge. Detecting robust 
changes that are both significantly detected in the data and have biological relevance requires 
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a combination of expertise in experimental design, high-throughput data methodologies for 
data generation and data analysis.  

1.2.2 Genetic associations in Multiple Sclerosis 

HLA class I and class II molecules are essential for antigen recognition by CD8+ and CD4+ T 
lymphocytes, respectively. Using high-throughput genotyping arrays and traditional PCR 
based genotyping, class II alleles such as DRB1*15:01, DRB1*03:01, and DRB1*13:03 have 
been associated with increased risk of MS while HLA class I allele A2 is associated with a 
decreased risk to MS (57). Additionally, genome-wide association studies (GWAS) have 
identified more than 200 common genetic variants (single nucleotide polymorphism, SNPs) 
associated with multiple sclerosis. These were found primarily in gene loci related to the 
adaptive immune system (7,13). 

1.2.3 Gene expression studies in Multiple Sclerosis 

Whole transcriptome sequencing or RNA-Seq uses the poly A tail present on post-
translationally modified mature messenger RNA to fish out a majority of the coding RNA and 
couples it with high-throughput sequencing (58). This allows for the quantitative and 
qualitative analysis of all the expressed genes in a given sample. Very few studies have been 
carried out in MS using RNA-Seq however a few studies have been done on expression 
microarrays and mostly address PBMCs (59). Using cDNA microarrays, PBMCs from MS 
patients and healthy controls, subtle changes were detected in gene expression between groups 
with some of the detected genes that have previously associated with the disease (60).  

Similarly, one study was done in CD4+ and CD8+ T cells showed pronounced changes in 
multiple genes in CD8+T cells however CD4+ T cells showed fewer changes. These results 
confirmed differential expression in genes associated with MS pathogenesis (61). Other studies 
have been carried out with similar results primarily in RRMS (62–65). The heterogeneity of 
PBMCs and T cells can lead to the reduced signal from relevant genes and more specific cell 
types are required for expression studies. But, integration of complementary data such as 
methylation, transcription factor binding can help in increased significance and lead to the 
detection of more relevant targets. 

1.2.4 Chromatin binding and its implications in Multiple Sclerosis 

DNase 1 Hypersensitivity Assay which exploits the susceptibility of open DNA regions to 
DNase1 enzyme cleavage was combined with high throughput sequencing to develop DNase 
Seq. This assay allows the determination of open or accessible DNA across the whole genome 
in native bound chromatin (66,67). ATAC Seq, an assay that works on a similar principle to 
DNase seq was developed, which allowed the use of far fewer cells (50,000) as input compared 
to DNase Seq (5 Million) (68). Reducing the requirement for input material makes this protocol 
ideal for use in studying complex diseases such as Multiple Sclerosis where input material is 
limiting. Inferring transcription factor binding post DNase seq was made possible through the 
careful characterization of transcription factors and their binding sites which was done over 
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numerous chromatin immunoprecipitation assays. The curation of these results has enabled 
rich resources such as JASPAR and TRANSFAC for TF-binding in multiple cell types and 
species (69,70).  

A large number of disease-associated SNPs have been identified from genome-wide 
association studies (GWAS). A majority of these SNPs have been found to lie outside of gene 
coding regions with as much as 45% in intron regions and 43% in intergenic regions (71). 
Additionally, regulatory elements were shown to be associated with SNPs potentially 
determining chromatin states (72–74). MS-associated SNPs have been implicated in altered 
gene expression constituting expression quantitative traits (eQTLs) (75,76).  A majority of 
these genetic variants are present in the vicinity of immune-related genes (77). Additionally, it 
was shown that these MS-associated SNPs are present or associated with regulatory elements 
such as transcription factors specific to the cell subtypes of CD4+ and CD8+ T cells, namely 
Th1, Th17 and cytotoxic CD8+ T cells. However, these studies were done using data that was 
collected from healthy individuals. Application of chromatin binding assays to a complex 
immune disease such as MS would give us additional insights into the altered regulation that 
may lead to disease development and progression.  

1.2.5 Single cell genomics and its potential in Multiple Sclerosis 

Understanding the heterogeneity of immune cells in MS has been challenging in the 
development and progression. Using a pool of cells as done in bulk RNA Seq gives rise to an 
expression signal which is the average gene expression of many cell types in different states of 
regulation and expression. Single cell genomics allows for comprehensive yet specific 
determination of expression patterns per cell type. Frequency and strength of transcriptional 
bursts in gene expression (78–80),  paternal and maternal allelic expression which may play a 
role in disease development (78,80,81) and gene regulatory interactions and networks (82,83) 
can be inferred. The role of CD4+ and CD8+ myelin-specific T cells has been studied in blood 
and CSF in MS patients (27,28). Understanding the clonal expansion of these specific T cells 
and linking them to their functional phenotypes can be extremely important in our 
understanding of MS pathogenesis. Methods in single cell transcriptomic analysis also allow 
for reconstruction of the expressed T and B cell repertoire (84). Two studies have been 
performed which give us a better understanding of the role of immune cells in MS (85,86). 
Adding to these would give us a larger sample size to assess more stable change and infer 
additional cell-cell interactions. 

1.2.6 DNA methylation studies in Multiple Sclerosis 

DNA Methylation involves the addition of a methyl group to the carbon in the 5’position of 
cytosine residues in CpG dinucleotides. DNA methyltransferases (DNMTs) such as DNMT1 
(maintains methylation during replication), DNMT2, DNMT3A and DNMT3B (denovo-
methylation) are responsible for DNA methylation (87). In the mammalian genome, 
approximately half of all genes are associated with CpG islands, which are regions of high 
content of CpG dinucleotides. In these genes, DNA hypomethylation is associated with gene 
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activation while hypermethylation is associated with gene inactivation. The second type of 
methylation modification, Hydroxymethylation of DNA, where a hydroxymethyl group is 
added to the 5’ position of cytosine by TET proteins was first described in 2009 (88,89). 
Hydroxymethylation is thought to be a signal for chromatin factors. Methylation and 
Hydroxymethylation of DNA are thought to be an efficient mechanism of deregulation since it 
can result in the lower binding affinity of regulatory proteins to DNA, resulting in altered gene 
expression. Stress, environmental factors and individual habits can induce altered methylation 
of DNA which can, in turn, contribute to the establishment and maintenance of autoimmune 
diseases (90).  

Methylation studies carried out in blood are very few and have ranged from addressing 
peripheral blood mononuclear cells to T cells. These studies have shown that many changes 
occur in MS that are associated with immune dysregulation. (91–94). 

1.2.7 Data integration 

Given the heterogeneous nature of MS, the development of stable markers of disease prognosis 
or therapeutic response are very clinically significant. With multiple applications of omics 
technologies now being available that measure DNA, gene expression, regulation and proteins, 
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2 THESIS AIMS  
 

The overall aim of this thesis was to determine the changes in gene regulation taking place in 
immune cells during the course of Multiple Sclerosis.  

 

Study 1: To characterize the dysregulated T cells in RRMS and SPMS. 

 

Study 2: To characterize chromatin accessibility associated with inflammation in newly 
diagnosed RRMS patients. 

 

Study 3: To characterize immune cell populations at the single cell level in newly diagnosed 
patients sampled after first relapse. 

 

Study 4: To characterize the epigenetic changes in immune cells in RRMS and SPMS. 
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3 METHODOLOGICAL CONSIDERATIONS 
For detailed description of methodologies, the materials and methods sections from 
individual manuscripts can be referred.  

3.1 COHORT INFORMATION AND SAMPLE COLLECTION 

Study participants gave their written consent for inclusion in each study. All studies were 
approved by the Regional Ethical Review Board, Stockholm, Sweden. 

Three cohorts were used in the 4 studies. Cohort 1, used in Study 1 and Study 4 included a 
total of 17 HC, 12 RRMS and 12 SPMS samples. The patients included in this study were 
primarily (85%) newly diagnosed with MS while the rest were on a medication wash-out 
period of up to 6 months. All patients were recruited at the Neurology clinic at Karolinska 
University Hospital in Stockholm. In Study 2 (cohort 2) and Study 3 (cohort 3), all patients 
were RRMS and newly diagnosed with MS, with no medication being administered prior to 
sampling. HCs for all 4 studies were age-matched within 5 years of patients and were under 
no medication prior to sampling. In Study 3, HCs were additionally genotyped and only HLA 
DRB1*15 positive individuals were included.   

Study 1, 2 and 4 consisted of PBMCs isolated from blood that was freshly drawn from study 
participants. Study 3 consisted of PBMCs and CSF cells freshly drawn from study 
participants.  

3.2 IMMUNE CELL ISOLATION FROM BLOOD AND CEREBROSPINAL FLUID 

In all 4 studies, PBMCs were isolated using the ficol method (102). In Study 1 and Study 4, 
CD14 was isolated using MACS microbeads (Miltenyi Biotec). CD4, CD8 and CD19 were 
isolated using flow cytometry by binding each cell with CD3 and CD4 or CD8 for T cells and 
CD19 for B cells followed by high speed sorting on the MoFlo cell sorter (Beckman Coulter 
Inc.).  In Study 2, each cell-type was isolated using MACS microbeads (negative selection). 
In Study 3, CSF cells were isolated by centrifuging freshly isolated CSF at 300rcf for 10 min. 
The supernatant was removed, and cells resuspended in 2ml of PBS and centrifuged again at 
300rcf for 10 min and used immediately.   

3.3 RNA AND DNA EXTRACTION 

In Study 1, total RNA was extracted using the miRNeasy Mini Kit (Qiagen) and Study 2 it 
was extracted using the RNeasy mini kit (Qiagen) as per the manufacturer’s protocol. The 
integrity of RNA was measured using the Bioanalyzer (Agilent Inc.) RNA with an RNA 
integrity number (RIN) above 9 was used. In Study 4, genomic DNA was extracted using the 
MinElute Mammalian Genomic DNA miniprep kit (Qiagen). Quantity and purity of DNA 
and RNA was measured using the NanoDrop ND-1000 (Nanodrop Technologies Inc.). 
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3.4 TRANSCRIPTOMIC LIBRARY PREPARATION AND ANALYSIS 

In Study 1 and Study 2, transcriptomic (RNA-Seq) libraries were prepared using the Illumina 
TruSeq mRNA stranded library preparation kit (Cat.No. RS-122-1203) according to the 
manufacturers protocol. To reduce the effect of protocol and batch related confounders, 
samples for library preparation and sequencing were arranged non-sequentially separating cell 
type, sample group and gender. Quantity and quality of the libraries were measured using the 
Qubit (Invitrogen Inc.) and Bioanalyzer (Agilent Inc.). Molarity for sequencing was 
calculated using the Kapa library quantification kit (Cat. No. KK4827, Roche) as per the 
manufacturer’s protocol. Sequencing was performed on the Illumina HiSeq 2500 as per the 
manufacturer’s protocol with paired-end reads of length 75bp.  

Data quality was assessed using FastQC. Low quality reads and adapter trimming was carried 
out using Cutadapt v 1.9.1. Alignment of reads was done using TopHat2 v2.1.1 with GRCh37 
as reference (103). Read count per gene was done using Ht-seq . Only genes with a count per 
million (cpm) over 1 were used for downstream analysis. Normalization was done using CQN 
correcting for biases associated with gene length, library size and GC content (104). 
COMBAT was used to correct library and sequencing related batch effect (105). LIMMA was 
used for differential expression with linear models including disease or experimental group, 
age and gender as explanative variables (106).  

3.5 CHROMATIN ACCESSIBILITY (ATAC-SEQ) LIBRARY PREPARATION 
AND ANALYSIS 

In Study 2, ATAC-Seq libraries were prepared from 50,000 cells as per the protocol 
developed by Buenostro et.al. (68). Libraries were sequenced using the Illumina HiSeq 2500 
as per the manufacturer’s protocol generating 42bp single-end reads.  

Data quality was assessed using FastQC and Cutadapt v1.9.1 was used for adapter trimming. 
Using GRCh38 as the genome reference, reads were aligned using Bowtie2 v2.2.6 (107). 
Open chromatin regions were identified using HOMER (108). Narrow and broad 
regions/peaks were identified separately and merged if they were within a distance of 100bp. 
Only regions present in more than 3 samples per cell type were chosen in order to obtain a set 
of consensus regions for downstream analysis. Regions with uncharacteristic high enrichment 
known as ‘blacklist’ regions as defined by ENCODE were discarded along with mitochondrial 
genes. After read count normalization per sample, only regions with a CPM greater than 1 
were retained. Subsequent analysis was carried out using CQN, and COMBAT followed by 
differential binding using LIMMA as described in the transcriptomic analysis. 

3.6 CHROMATIN FOOT-PRINTING 

In Study 2, to determine the chromatin footprint associated with DNA binding protein we 
used Wellington (settings: -fp 10, 26, 2 -sh 11,36,1, FDR 0.01) on ATAC-Seq reads shifted 
by +4bp and -5bp on the positive and negative strand respectively (109). Identified regions 
with an FDR of <0.2 were used for motif scanning (FIMO) and annotation of motifs using 
TRANSFAC (69,110) to determine the transcription factors (TFs) bound at that respective 
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region. The identified TFs were filtered using the paired RNA-Seq data retaining only the TFs 
expressed on the gene level.  

3.7 SINGLE CELL TRANSCRIPTOMIC LIBRARY PREPARATION AND 
ANALYSIS 

In Study 3, freshly isolated CSF cells and PBMCs were loaded onto the Chromium Single 
Cell Controller using the Chromium Single Cell 5’ library and gel bead kit (Cat.No. PN-
1000006 and PN-1000014). Single cell library and TCR and BCR amplification was carried 
out using the Chromium Single Cell 5’ Library Construction Kit, (Cat. No. PN-1000020), 
Chromium Single Cell V(D)J Enrichment Kit for Human T Cell, (Cat. No. PN-1000005), 
Chromium Single Cell V(D)J Enrichment Kit for Human B Cell, (Cat. No. PN-1000016) and 
Chromium i7 Multiplex Kit (Cat. No. PN-120262) as per the manufacturers protocol. 
Sequencing was carried out on the Illumina Next Seq and Miseq platforms. Read length was 
as per the 10X genomics protocol for single cell, TCR and BCR libraries. 

Demultiplexing of data, initial data quality and alignment were carried out using the Cell 
Ranger pipeline v 3.1.0 (10X Genomics) according to the manufacturer’s instruction. The 
alignment of data was done to the GRCh38  human genome reference. Read filtering, 
normalization, feature selection, scaling, data integration, anchoring, dimensionality and 
clustering of data were performed using Seurat 3 (111). 

3.8 T AND B CELL RECEPTOR ANALYSIS 

In Study 3, Demultiplexing, alignment, and initial quality control were performed using the 
cell ranger pipeline (10X Genomics). Rearrange clonetypes were annotated using VDJ tools 
with the VDJdb as reference (112,113). 

3.9 DNA METHYLATION ARRAYS AND ANALYSIS 

In Study 4, DNA methylation data was generated using the Infinium Human Methylation 
450K bead chip arrays as per the manufacturer’s protocol (Illumina). The analysis was carried 
out using the MinFi and ChaMP packages (114,115). BMIQ was used for normalization 
between type 1 and type 2 array probes. Probes with known SNPs, X and Y chromosome and 
not passing a detection p-value of 0.01 were excluded for downstream analysis. Differential 
methylation was carried out using LIMMA as described in the transcriptomic analysis  above.  

3.10 NON-PARAMETRIC COMBINATION ANALYSIS 

In Study 1 and Study 4, in order to combine data across celltypes, we implemented the 
‘omicsNPC’ R function which is part of the STATegra R package (116).  

3.11 SIRNA BASED GENE SILENCING OF T CELLS 

In Study 1, to elucidate the function of SH3YL1, we performed an siRNA mediated silencing 
of it. PBMCs were isolated as described in section 3.2. from buffy coats. The negative 
selection of CD4 cells was performed (Miltenyi Biotec). 12M CD4+CD25- T cells from 
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individual donors were resuspended in 100ul of Nucleofection buffer solution form human 
primary T cells 12 Mio CD4+ CD25− T cells from individual donors were resuspended in 
100 µl of Nucleofection® buffer solution for human primary T cells (Nucleofector™ Kits for 
Human T Cells, Lonza) containing 2 µM of ON-TARGETplus SH3YL1 siRNA pool or ON-
TARGETplus non-targeting control pool (Dharmacon, GE). The cells were transfected using 
program U-014 of the Nucleofector™ 2b device using manufacturer’s recommendations. 
After this the cells were transferred to pre-warmed X-VIVO 15 medium (Lonza) and 
incubated for 4.5 days. Post incubation for 5 hours, medium was changed. The cells were 
equally distributed for 3 time points; resting (0 hours), 6 hours and 24 hours. The cells for the 
6 and 24 hour time points were stimulated with antibodies against CD3 (0.2 µg/ml, clone 
OKT3; Biolegend, LEAF grade; Cat. No. 317315) and CD28 (2 µg/ml, clone 15E8, Miltenyi 
Biotec, functional grade, Cat. No. 130-093-375) with goat anti-mouse Ig antibody as a cross-
linker (2 µg/ml, Southern Biotech, cat no. 1010-01) mimicking TCR and co-stimulation at 
incubated at 37 °C and 5% CO2. 
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4 RESULTS AND DISCUSSION 
The studies presented in this thesis cover genome and transcriptome-wide profiling techniques 
and analysis applied to immune cells known to play a role in Multiple Sclerosis. This section 
provides a brief summary of the results and discussion from each of the studies included in 
this thesis. Detailed results and discussion section can be found in the individual manuscripts.   

4.1 STUDY 1 

In this study, we explored the transcriptome-wide changes in gene expression using the 
Illumina platform. Using CD4 and CD8 T cells in 3 groups of samples, namely HC, RRMS 
and SPMS, we determined the changes in gene expression between HC and RRMS and, 
RRMS and SPMS to determine MS progression related changes. Due to a small sample size 
we detected few changes across these groups. To mitigate this, we adapted a methodology for 
non-parametric combination (NPC) of data, ie: we integrated the differential analysis output 
from each cell type to determine shared changes in the progression of MS. A strong 
justification for this integration came from both biological and data-driven reasons. NPC 
identified 149 differentially expressed genes. A majority of these genes fell into four groups 
depending on their expression pattern in progression, either being upregulated or 
downregulated from RRMS to SPMS or increasing or decreasing in expression from RRMS 
to SPMS. Overlapping these 149 genes with differentially methylated sites from the same 
samples and the same type of analysis, we obtain 24 and 18 pairs in CD4 and CD8 within a 
distance of 1Mb. Of these pairs, 1 overlapped between CD4 and CD8 and was associated with 
the gene SH3YL1, with the methylated region residing in the promoter of the same gene. The 
expression-methylation pattern suggested a downregulation of this gene from RRMS to 
SPMS. To determine the role of SH3YL1 in  CD4 T cells, the gene was silenced and the cells 
were activated and harvested at 0, 6 and 24 hours. Using qPCR, IL2 and IFNG gene expression 
were found to be upregulated post silencing between 0 and 6 hours. Transcriptome sequencing 
was performed on all the three time points from 4 donors using the same Illumina platform. 
DE analysis and gene-set enrichment analysis suggested SH3YL1 promotes activation and is 
a novel regulator of TCR-induced cytokine expression.    

This profile determined by the biological processes, genes and coordinated epigenetic changes 
shows an evident dysregulation of T cells in MS. The genes detected in this analysis are both 
novel and confirmatory in nature. Importantly, within this work we show that the integration 
of multiple data-types can be a powerful method to determine novel changes in disease 
contexts which are complex and where sample numbers are limiting.  

4.2 STUDY 2 

In this study we profiled the paired chromatin accessibility (ATAC-Seq) and transcriptome 
(RNA-Seq) of CD4, CD8, CD14 and CD19 in patients newly diagnosed with MS and HCs. 
Differential chromatin accessibility analysis revealed 106, 30, 13 and 203 differentially bound 
(DB) regions in CD4, CD8, CD14 and CD19 respectively. Due to the small sample number 
there was limited statistical power to identify differences in chromatin accessibility. To 
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confirm the relevance of these regions in comparison to previously reported regions, we 
overlapped them with i) MS-associated SNPs and the corresponding SNPs in linkage 
disequilibrium with them, and ii) MS-specific DNA methylation data from the same immune 
cell types. MS-associated SNPs were enriched in regions associated with CD4 and CD8 T 
cells, while in MS-specific DNA methylation data CD4 and CD19 associated regions were 
enriched. The enrichment in these regions from previously published data confirmed the 
relevance of the DB regions identified in MS. Finally, the genes 1Mb upstream and 
downstream of each DBRs were identified per cell type. DE of these genes revealed 42, 2, 0, 
1 DEGs in CD4, CD8, CD14 and CD19 respectively. Of the identified DBRs and DEGs in 
CD4, 25 genes were found to correlate between the two data types within a region of 1Mb 
suggesting regulation-dependent changes between the two.  

Overall, the open-chromatin and transcriptomic profiles identify regions and genes that are 
MS-specific, some of these have been previously reported in MS and others are novel. 
Interestingly, the most chromatin and expression activity is observed in CD4 cells. B cells, on 
the other hand, have higher chromatin activity but little detectable activity on the gene 
expression level in this data. Specifically, we identify SERTAD1 and CCDC114 being 
differentially regulated in MS in CD4 and both had transcription factor binding sites 
recognized by EGR1. This study advances our knowledge of the factors that lead to the 
dysregulation of the immune system in MS. 

4.3 STUDY 3 

In this study, we profiled the immune cells in patients newly diagnosed with MS after relapse 
from blood and CSF. HCs were used for comparison, with all HCs being HLA-DRB*15:01. 
The CSF cells and PBMCs were profiled using 5’ single cell transcriptomics (SCT). In 
addition, this was paired with T and B cell receptor profiling of the same cells. Using SCT, we 
define distinct transcriptomic cell clusters in CSF and PBMCs. Some of these clusters were 
found to vary in proportion between HC and MS. Most strikingly, plasma B cells were seen to 
increase in both compartments while memory B cells were seen to increase in CSF in MS. A 
few T cell clusters were also seen to increase in both CSF and PBMCs in MS. These cells are 
known to play a significant role in the pathogenesis of MS. Next, we performed differential 
expression analysis on each cluster between MS and HC. We identified some clusters having 
DE genes while others did not, indicating specific cell types play an important role in the 
pathogenesis of MS. Analysis of the paired T and B cell receptor identified an increased 
diversity of T and B cell receptors in the CSF in MS. These TCRs were found to recognize 
primarily CMV, EBV and H Sapiens antigens. All three of these have been studied extensively 
in the context of MS and are known to influence the pathogenesis of MS. Finally, leveraging 
the paired transcriptome and receptor data, we identified a specific subset of TCRs with more 
than 2 receptor chains and are elevated in a specific subset of immune cells in MS. Antigens 
binding these TCRs were found to be enriched for the IE gene of CMV and EBNA4 gene of 
EBV.  
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The results of this study demonstrate the power of unbiased techniques such as SCT in 
identifying cell types expanded in a complex disease such as MS where multiple immune cells 
play a role in pathogenesis. Profiling immune cells from CSF and blood demonstrates clear 
differences in activity and populations of certain immune cells in MS. In addition, using paired 
TCR and BCR data we can identify specific cells populations that are enriched for a specific 
receptor and the epitope they recognize. The results of this study are both of a confirmatory 
nature and novel. 

4.4 STUDY 4 

In this study we profiled the DNA-methylation status of immune cells (CD4, CD8, CD14, 
CD19) in HC, RRMS and SPMS. RRMS patients were primarily newly diagnosed with a few 
being on a drug wash-out period of up to 6 months. Differential methylation analysis detected 
1511, 666 and 30 regions in CD19, CD14 and CD8 between RRMS, SPMS and HC. To 
increase the statistical power and use the multiple cell types as evidence, we integrated the 
output of the differential methylation test with a permutation-based non-parametric 
combination methodology. This analysis revealed 1976 DM probes (DMP) in all four cell 
types, 1273 DMPs in lymphocytes (CD4, CD8, CD19), 423 DMPs from T cells and 2782 
DMPs in cells with antigen presentation capabilities. Some of these regions have been reported 
in MS previously while others were novel. To determine the relevance of these regions in MS, 
we overlapped them with previously published MS-associated SNP loci and found a 
significant enrichment in lymphocytes, T cells and CD14+ cells. Also, of 1976 regions 
differentially methylated regions in all four cell types, 13.2% of regions showed meQTL effect 
suggesting genetic roles for their presence. 

Overall, using the adapted methodology we were able to identify disease-relevant methylated 
regions shared by 4 cell immune cell types in MS. This gives us evidence for the presence of 
shared regulation dependent changes in MS.  In addition, this methodology allows us to 
leverage small sample cohorts to infer additional information.  
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5 CONCLUSIONS AND FUTURE PERSPECTIVES 
The underlying theme of this thesis was to identify changes in the immune system that are 
consistent and reproducible in MS. The primary purpose was to better understand the 
mechanisms that are active in the development and progression of MS. This could, in turn, be 
used to provide better biomarkers for diagnosis and treatment of MS. The world health 
organization (WHO) defines biomarkers in its broadest sense as “any measurement reflecting 
an interaction between a biological system and a potential hazard, which may be chemical, 
physical, or biological. The measured response may be functional and physiological, 
biochemical at the cellular level, or a molecular interaction” (117). We used measurements at 
the DNA and RNA level since they are easy to extract and are quite stable for relatively long 
periods of time under easily accessible storage conditions. In addition, we primarily looked 
for these changes in blood since it is easily accessible from patients. Using blood we could 
identify disease-relevant changes since MS is thought to be triggered in the periphery. In 
addition, we could use it as a proxy for what is happening in the central nervous system where 
we know there is demyelination of neurons caused by immune cells which in turn leads to 
neurodegeneration. With each study, we then refined the sample selection process with the 
intention of increasing reproducibility or excluding some factors of variation in sampling such 
as time of sampling, age of patients and healthy controls, disease stage and medication prior 
to sampling.  

Using high-throughput methodologies for profiling nucleic acids, we could then obtain 
genome and transcriptome-wide snap-shots of the state of immune cells in MS. This allowed 
us to identify changes that take place at multiple loci from a single assay. These changes could 
again be identified on multiple levels since any change in the activity of immune cells would 
require a complex interaction of multiple factors. For example, DNA methylation changes 
could alter transcription factor binding which would, in turn, alter gene expression or the 
presence of a certain SNP could affect the binding affinity of DNA binding proteins such as 
enhancers which again could lead to changes in gene expression. These resulting changes in 
gene expression could then carry forward to the protein level and affect protein activity. In 
order to adequately answer these question, we performed profiling methods that covered some 
aspects of gene regulation such as chromatin accessibility assays, DNA methylation status 
and gene expression. By pairing these data such as chromatin accessibility and transcriptomics 
and DNA-methylation and transcriptomics we were able to identify certain changes that 
appear to function in a coordinated fashion in the same sample. Such as in Study 1 and Study 
2 we identify among many others, SH3YL1, SERTAD1 and CCDC114.   

Adequately combining multiple levels of data is a challenge since we see different changes 
from different cohorts. This can be a result of the variation seen in the disease itself and 
sampling. Overlapping the finding from these studies with previous studies, we were able to 
get a better understanding of why results do not obviously overlap. Gene regulation is a 
complex process with multiple factors affecting multiple targets. For example, a given 
enhancer can affect multiple genes but for the enhancer to function it needs to be within a 
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specific distance (1Mb) from the target genes or DNA methylation in open chromatin regions 
can prevent or enhance chromatin binding thus leaving certain genes in its vicinity more 
capable of being transcribed or silenced. To identify these regions of overlap in multiple 
factors we performed a co-localization analysis and find that there is an enrichment of loci 
obtained from different data types in close proximity to each other as seen in Study 2 and 
Study 4.  

MS involves multiple immune cells interacting, it was therefore only logical to study multiple 
immune cells in the same patients. MS is thought to be triggered in CD4 cells which 
subsequently recruit other immune cells which amplify the immune reaction and lead to 
demyelination. This would lead to changes in multiple immune cell types. Integrating the 
same data type across different cell types, we found that there were common loci across 
different immune cell types changing in MS. These shared loci give us insights into the 
susceptibility of the immune system to changes in MS as seen in Study 1 and Study 4. A 
common finding across all the studies and all the cell types is the increased level of 
transcription related loci which confirms the increased activity of the immune system in MS.   

The complexity of the interactions between immune cells is hard to adequately understand. 
As a first step towards this, we profiled immune cells in MS from PBMCs and CSF in Study 
3 at the single cell level. This profile primarily allowed us to answer the question of what cells 
were present in MS in an unbiased manner. In addition, we were able to connect the TCR and 
BCR to the immune cell subtype allowing us to identify potential triggering mechanisms and 
the subtypes of cells triggered. The specific mechanisms of the interaction of these cells, 
however, remain to be determined. Interestingly, from Study 1 and Study 3, we see the 
presence of B cell related genes in T cells. Suggesting a closer yet unexplained interaction.  

Having gathered this rich array of data primarily in newly diagnosed patients, we firstly 
understand sample size is a big limitation in identifying strong reproducible changes. 
Overcoming this with multiple layers of data requires further work. Secondly, changes in MS 
as a disease have to have an underlying commonality in mechanisms and a chain of events 
associated with them, which we presently miss between different cohorts associated with 
different studies. Thirdly, in spite of sampling newly diagnosed patients, we cannot take into 
consideration genetic and environmental factors since they are far too complex to decipher 
from a small sample size. Fourth, being newly diagnosed patients doesn’t necessarily mean it 
is their first bout of disease but as a result we should have a small continuum of samples 
(Figure 1). To identify the changes associated with this continuum requires further work. 
Finally, since all regulation dependent changes would be connected, profiling at any level 
would allow inference of another level. Thereby leveraging these different levels of data 
towards a common set of mechanisms. All of this requires the application of existing and 
development of new methods of data analysis that are unsupervised and allow multiple 
combination possibilities. Together, this would give us an opportunity to understand the 
system better and work towards the development of robust biomarkers for diagnosis and 
therapy. Hopefully, now we are a little closer.  
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