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Abstract 

The rapid development of wearable technology has provided opportunities to ergonomics 

research and practice with new ways for workload measurements, data analytics, risk 

assessment and intervention. This thesis aims at developing and evaluating methods using 

wearable technologies to assess physical risk factors at work, and further to give feedback to 

employees to improve their work techniques.  

One smartphone application (ErgoArmMeter) was developed for the assessment of upper 

arm postures and movements at work. The application uses integrated signals of the embedded 

accelerometer and gyroscope, and processes and presents the assessment results directly after 

a measurement. Laboratory validation with 10 participants was performed using an optical 

tracking system as standard measurement. The results showed that the application had similar 

accuracy compared to standard inclinometry for static postures and improved accuracy in 

dynamic conditions. With its convenience and low cost, the application may be used by 

researchers and practitioners in various scenarios for risk assessment. 

Three models for assessment of work metabolism (WM) using heart rate (HR) and 

accelerometers (ACCs) were evaluated during simulated work tasks with 12 participants 

against indirect calorimetry as standard measurement. The HR + arm-leg ACC model showed 

best accuracy in most work tasks. The HR-Flex model showed a small bias for the average of 

all tasks. For estimating WM in the field using wearable technologies, the HR-Flex model or 

the HR + arm-leg ACC model may be chosen depending on the need for accuracy level and 

resource availabilities. Further improvement of the classification algorithm in the HR + arm-

leg ACC model is needed in order to suit various types of work. 

Two smart workwear systems were developed and evaluated. Smart workwear system 1.0 

consisted of a sensorized vest, an inertial measurement unit (IMU) and an Android tablet 

application. It assessed risks of high physiological workload and prolonged occupational 

sitting/standing. The results were visualized by color-coded risk levels. The system was 

evaluated with 8 participants from four occupations in a field study. It was perceived as useful, 

comfortable and not disturbing by most participants. Further development is required for the 

system for automated risk assessment of various ergonomic risk factors in real work situations. 

Smart workwear system 2.0 consisted of an instrumented t-shirt with IMUs, vibration 

units and an Android smartphone application. It provided vibrotactile feedback to users’ upper 

arm and trunk when predefined angular thresholds were exceeded. The system was evaluated 

for work postures intervention in industrial order picking among 15 participants. It showed to 

be effective in improving the trunk and dominant upper arm postures. The system was 

perceived as comfortable and useful. The vibrotactile feedback was evaluated as supportive 

for learning regarding workplace and task design among the participants. 

In conclusion, the research in this thesis showed that wearable technologies can be used 

both in the laboratory and field for assessment of physical risk factors at work and intervention 

in work technique improvement. With further research and development, smart workwear 

systems may contribute to automated risk assessment, prevention of work-related ill health, 

and improvement of the design and overall quality of work. 
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Sammanfattning 

Den snabba utvecklingen av bärbar teknik har skapat möjligheter för ergonomisk forskning 

och tillämpning genom nya sätt att mäta arbetsbelastning, dataanalys, riskbedömning och 

intervention. Denna avhandling syftar till att utveckla och utvärdera metoder att använda 

bärbar teknik för att utvärdera fysiska riskfaktorer i arbetet samt ge feedback till anställda för 

att förbättra sin arbetsteknik.  

En smart mobilapplikation (ErgoArmMeter) utvecklades för att bedöma 

överarmställningar och -rörelser på jobbet. Applikationen använder integrerade signaler från 

den inbäddade accelerometern och gyroskopet, samt bearbetar och presenterar 

bedömningsresultaten direkt efter en mätning. En laboratorievalidering med 10 deltagare 

utfördes där ett optiskt spårningssystem användes som standardmätning. Resultaten visade att 

applikationen hade jämförbar noggrannhet med standard inklinometri för statiska 

arbetsställningar men bättre noggrannhet under dynamiska förhållanden. Applikationens 

enkelhet, bekvämlighet och låga kostnad gör att applikationen kan användas av forskare och 

praktiker i olika scenarier för ergonomisk riskbedömning. 

Tre modeller för bedömning av arbetsmetabolism med hjälp av hjärtfrekvens (HR) och 

accelerometrar (ACCs) utvärderades i simulerade arbetsuppgifter med 12 deltagare mot 

indirekt kalorimetri som standardmätning. “HR + arm-leg ACC modellen” visade bästa 

noggrannhet i de flesta arbetsuppgifter. “HR-Flex modellen” visade en liten avvikelse för 

genomsnittet av alla uppgifter. För att bedöma arbetsmetabolism i arbetslivet med användning 

av bärbar teknik kan “HR-Flex modellen” eller “HR + arm-leg ACC modellen” väljas 

beroende på behovet av noggrannhet och tillgängliga resurser. Ytterligare förbättring av 

klassificeringsalgoritmen i ”HR + arm-leg ACC modellen” behövs för att passa olika typer av 

arbete. 

Två system för smarta arbetskläder utvecklades och utvärderades. Smarta arbetskläder 1.0 

bestod av en sensoriserad väst, en IMU-sensor (Inertial Measurement Unit) och en applikation 

på en Android surfplatta. Systemet bedömde riskerna för hög fysisk arbetsbelastning och 

långvarigt sittande/stående på arbetet. Resultaten visualiserades med färgkodade risknivåer. 

Systemet utvärderades med 8 deltagare från fyra yrken i en fältstudie. Det upplevdes som 

användbart, bekvämt och inte störande av de flesta deltagare. Vidareutveckling av systemet 

krävs för automatiserad riskbedömning av olika ergonomiska riskfaktorer i arbetslivet.  

Smarta arbetskläder 2.0 bestod av en instrumenterad t-shirt med IMU-enheter, 

vibrationsenheter och en applikation på en Android smart mobil. Systemet gav vibrotaktil 

återkoppling till användarnas dominanta överarm och bål/rygg när fördefinierade 

vinkeltrösklar överskreds. Systemet utvärderades beträffande arbetsställningar i en 

intervention i industriell materialplockning med 15 deltagare. Det visade sig effektivt förbättra 

arbetsställningar av bålen/ryggen och överarmen. Systemet upplevdes som bekvämt och 

användbart. Den vibrotaktila återkopplingen befanns stödjande för inlärning av deltagarna när 

det gäller utformning av arbetsplats och arbetsuppgift. 

Sammanfattningsvis visar forskningen i denna avhandling att bärbar teknik kan användas 

både i laboratoriet och arbetslivet för att bedöma fysiska riskfaktorer i arbetet samt för 
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interventioner syftande till förbättring av arbetsteknik. Med ytterligare forskning och 

utveckling kan system för smarta arbetskläder bidra till automatiserad riskbedömning, 

förebygga arbetsrelaterad ohälsa och förbättra utformningen av arbetet och arbetsplatsen. 

 

Nyckelord 

Fysisk arbetsbelastning; Arbetsställningar; Energiförbrukning; Syreupptag; Riskbedömning; 

Mätmetoder; Arbetsrelaterade muskuloskeletala besvär; Arbetsrelaterad ohälsa; Bärbara 

sensorer; Bärbara system; Återkoppling; Ergonomisk intervention. 
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Preface  

Sitting by my desk and typing on my laptop, I started to feel the dull pain in my neck, shoulders 

and low back. It was hard for me to continue working with my best performance, even though 

I’d love to. The thought and worry arose, “will I live with this pain as long as I have the same 

type of work?” 

When I first learned about ergonomics during my master education at KTH, I became so 

excited. “To design work better in order to prevent musculoskeletal disorders and to achieve 

optimal human well-being and system performance, isn’t that exactly what I need?” I could 

possibly find the cure for myself, and even contribute to others who have the same trouble. 

After a while, with having my workplace in a new office building, I got my first sit-stand table 

and loved it. It was so nice to be able to stand and continue working. My low back pain 

diminished a lot! However, I was not aware of the risk of prolonged standing and hadn’t heard 

about taking microbreaks at work. Adjustment of the screen or keyboard when shifting 

postures from sitting to standing? – Not a clue. At the same time, I worked with high 

engagement, and perhaps sometimes a bit of stress before deadlines on my first study. One 

day, I suddenly felt tingling pain in my wrists, but they were pain-free before I started doing 

research! It was probably triggered by my repetitive hand movements while using the 

computer at work and the smartphone during leisure time. The pain lasted for some months. I 

got a valuable advice from my colleague to visit an experienced physical therapist. Then I 

learned about the importance of targeted muscle trainings, accepted individual differences and 

started to take care of my body in day-to-day work and life. Group trainings at work, short 

breaks with stretching, and ergonomics awareness of risks…With all these factors, gradually, 

the musculoskeletal pain which I had subsided to a large extent. Still, stories of other friends 

and family members who started to have the same trouble were mentioned from time to time. 

It’s never that easy to find the cure. 

It is lucky for me to have been in an occupation with quite a bit of freedom to arrange my 

activities and breaks during a working day. But there are still many occupations that have 

constrained tasks and schedules. And there are various risk factors such as repetitive 

movements on an assembly line, heavy workload in the construction industry, or awkward and 

static postures in an operating room. To evaluate work tasks, improve work design and reduce 

ergonomic risks are therefore of great significance. Nevertheless, organizational factors, 

ergonomics awareness and individual work techniques also play an important role. This 

doctoral thesis includes work on developing and applying wearable technologies to facilitate 

ergonomic risk assessment and intervention. This work may hopefully contribute to the 

improvement of work environments and the prevention of work-related ill health, including, 

but not limited to, musculoskeletal disorders. 

Liyun Yang 

Stockholm, October 2019
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Abbreviations and Concepts 

ACC: accelerometer 

ECG: electrocardiogram 

HR: heart rate 

IMU: inertial measurement unit 

LoA: limits of agreement 

MSD: musculoskeletal disorder 

OHS: occupational health and safety 

OTS: optical tracking system 

RAS: relative aerobic strain 

REE: resting energy expenditure 

RHR: resting heart rate  

RMSE: root mean square error 

RPE: rating of perceived exertion 

SD: standard deviation 

VO2: oxygen consumption 

VO2max: maximal oxygen consumption, also known as maximal aerobic capacity 

WM: work metabolism 

 

Smart workwear system: the concept of a wearable system designed to be suitable to wear  

at work, which collects data through wireless sensors, analyzes and evaluates the risks 

autonomously, and provides feedback and results to the targeted users. 
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1 Introduction 

Despite worldwide concern and effort for preventing work-related musculoskeletal disorders 

(MSDs), this progress is still slow and MSDs remain a substantial burden. Questions have 

been raised regarding the assessment of ergonomic exposure and the validity and reliability of 

different methods being used (Wells, 2009). Assessment methods with low validity, different 

definitions and classifications of ergonomic exposure may explain the lack of quantitative 

exposure-response relationship for MSDs (Winkel and Mathiassen, 1994; Punnett and 

Wegman, 2004), which further impedes the effectiveness of interventions. Moreover, it is 

important to consider the amplitude, frequency and duration of ergonomic exposure when 

assessing the risks (Mathiassen, 2006), which requires assessment methods that can provide 

detailed information. 

Demographic changes worldwide also lead to an aging workforce and a higher burden on 

welfare systems. People are expected to work longer in their life span, which calls for better 

design of work so that people at higher ages can continue working. The changes have brought 

new challenges to society that call for sustainable working conditions (Eurofound, 2012). In 

addition, with a shift into the information age, working life is becoming more physically 

inactive (Straker and Mathiassen, 2009). Today, the risk factors of work-related ill health 

include not only high physical load, but also static load and the lack of physical activity.  

In order to facilitate the ergonomic risk assessment and prevention of work-related ill health, 

there is a need for valid and reliable measurement methods, which are easy and efficient to 

use (Forsman, 2017). The recent development of wearable technology has made it possible to 

develop easy-to-use wearable measurement systems, which can be used without constraints of 

place or time (Iosa et al., 2016; Alberto et al., 2018). These wearable systems can also be used 

to train employees for better work technique with real-time feedback (Agruss, Williams and 

Fathallah, 2004; Vignais et al., 2013; Bazazan et al., 2018; Doss et al., 2018), and provide a 

basis for organizational risk management including risk assessment, design and redesign of 

work, as well as establishing new ergonomic guidelines. The strive to improve the work 

environment and reduce the risks for work-related ill health need to be facilitated for workers, 

occupational health and safety (OHS) services, safety engineers and researchers. Therefore, 

more research on developing and applying wearable technology as tools and methods for risk 

assessment and prevention is required.
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2 Theoretical framework and background 

2.1 Ergonomics 

Ergonomics, comes from the Greek roots ergon, meaning “work”, and nomos, meaning 

“natural law”, with its meaning literally translated as ‘the science of work’. The term 

Ergonomics and Human Factors are now used as synonymous. According to the International 

Ergonomics Association (2019), the definition of ergonomics is as a scientific discipline which 

is concerned with 

“…the understanding of interactions among humans and other elements of a system, and the 

profession that applies theory, principles, data and methods to design in order to optimize 

human well-being and overall system performance.” 

Therefore, ergonomics as an interdisciplinary knowledge field promotes a holistic view. It can 

be described as consisting of several domains, and the most common is the three main 

domains: the physical, cognitive and organizational ergonomics. This thesis has its focus in 

the physical ergonomics domain.  

Two approaches exist when ergonomics is of concern, as illustrated in Figure 1. One often 

preferred approach is ‘fitting the task to the person’, which focuses on improving work design 

to reduce ergonomic risks. It can refer to designing of workplaces and equipment to reduce 

physical load (Kroemer and Grandjean, 1997), and also to designing and reorganizing tasks 

and jobs, so that work activities and loads can be at a suitable level for sustained or improved 

health (Holtermann, Mathiassen and Straker, 2018). The other approach is ‘fitting the person 

to the task’. One way is to select workers, which was once used by employers for choosing 

workers with good physical capacities. For normal occupations, it is sometimes considered 

unethical. But for certain occupations, such as firefighters or fighter pilots, high physical and 

cognitive capacities can be a necessary requirement. Another way is to train the person to 

fulfill the job demands. One example is training that aims at improving work technique and 

workstyle (Kilbom and Persson, 1987; Feuerstein, 2007; McGill, 2009). Another example is 

tailored physical exercise training that aims at improving individual fitness and capacity 

(Sjøgaard et al., 2014). In practice, these two approaches are both of importance and should 

be considered as a two-way process to achieve optimized human well-being and task 

performance. 
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Figure 1. Illustration of two approaches in ergonomics. Based on Kroemer and Grandjean 
(1997), McGill (2009), Kilbom and Persson (1987) and Sjøgaard and colleagues (2014). 

 

2.2 Work-related ill health 

Musculoskeletal disorders (MSDs) are the most prevalent occupational diseases in the 

European Union, and a rising trend of MSDs can still be observed in many European countries 

(Schneider and Irastorza, 2010). They can lead to poor health, reduced work performance, sick 

leave and inability to carry out household and leisure-time activities, causing individual 

suffering and economic burdens to organizations as well as the society (Luime et al., 2004; 

van Rijn et al., 2010). They are the leading cause of years lived with disability in the United 

States (US Burden of Disease Collaborators, 2013). The cost of MSDs, however, can be hard 

to assess, since it consists of both direct costs, i.e. visible costs due to medical costs, insurance 

and compensation, and indirect costs, i.e. hidden costs due to e.g. staff turnover, reduced 

productivity and quality (Rose, Orrenius and Neumann, 2013). One study estimated that work-

related MSDs accounted for 13 billion US dollars in the United States in 1996 (Bernard, 1997). 

The fraction of MSDs attributable to work was estimated between 15% to 49% worldwide 

(Punnett et al., 2005; Niu, 2010). 

The relationship between physical work and its effect on health is modified by many factors 

(one model is shown in Figure 2). It is important to point out that there are also many other 

risk factors and their interactions that are not included in this model, such as the organizational 

and psychosocial factors. Work is defined by the tasks, workplace, equipment and schedules, 

which is referred to as the prescribed work (Guérin et al., 2007). All individuals are different 

and have different influences on how real work activities are performed. Personal 

characteristics, such as height, work technique and experience, as well as current personal state 

play an important role for the real work activity. An internal physiological response will take 

place, such as muscular activations and metabolic changes, depending on the activity 

performed and individual capacity. The response can further lead to fatigue and deteriorated 

health, or sustained and improved health, depending on the duration, frequency, and relative 

intensity level of the real work activity (Sjøgaard and Søgaard, 2015). Therefore, by measuring 

the real work activity, through e.g. assessing posture, force and energy demand, researchers 

and practitioners are able to evaluate the ergonomic risks and improve the work design. 
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Interventions aiming at reducing ergonomic risks can target the factors of prescribed work, the 

personal workstyle or physical capacity, which are described later in section 2.4. 

 

Figure 2. Model illustrating the relationships between physical work and its effects on 
health, with modifying factors. Model developed based on Guérin and colleagues (2007) 
and Sjøgaard and Søgaard (2015). 

 

Despite worldwide concern and effort for preventing work-related MSDs and ill health, they 

remain a substantial burden for individuals and society (Wells, 2009; James et al., 2018). 

Various assessment methods with insufficient validity and reliability, as well as different 

classifications of ergonomic exposure that have been used may point to the lack of quantitative 

exposure-response relationship (Winkel and Mathiassen, 1994; Punnett and Wegman, 2004). 

A lack of clearly identified risk factors and underlying mechanisms may further impede the 

design of effective ergonomic guidelines and interventions (van der Beek et al., 2017). 

Moreover, when assessing ergonomic exposure, it is important to consider the intensity, 

duration, and repetition (Winkel and Mathiassen, 1994; Mathiassen, 2006). This calls for 

better assessment methods which can provide accurate information with enough details to 

facilitate the prevention of work-related ill health. 
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2.3 Risk assessment  

2.3.1 Risk factors 

Work-related MSDs have multifactorial causes, including physical, psychosocial, 

organizational and individual factors. The major physical risk factors for developing work-

related MSDs include repetitive movements, forceful exertions, lifting or moving heavy loads, 

frequent non-neutral postures and vibration (Bernard, 1997; Punnett and Wegman, 2004; Da 

Costa and Vieira, 2010; Schneider and Irastorza, 2010). Specifically, work with elevated arms 

is shown to be a critical risk factor for shoulder and neck disorders (Viikari-Juntura et al., 

2001; Svendsen et al., 2004; van Rijn et al., 2010; Petit et al., 2014). Work with a bent or 

twisted trunk is shown to be a critical risk factor for low back pain (Punnett et al., 1991; 

Hoogendoorn et al., 2000; Jansen, Morgenstern and Burdorf, 2004; Van Nieuwenhuyse et al., 

2006; Coenen et al., 2016).  

A U-shape relationship is suggested between the physical workload and the risks of adverse 

health (Heneweer, Vanhees and Picavet, 2009; Sjøgaard and Søgaard, 2015). Both too high 

and too low exposures of physical workload are associated with adverse effects on health and 

performance. On the one hand, jobs with high metabolic demands can lead to physical and 

mental fatigue, increase in work injuries and decrease in work performance, higher risk for 

cardiovascular diseases, and early retirement (Karpansalo et al., 2002; Krause et al., 2007, 

2014; Wigaeus Tornqvist, 2011; Wultsch et al., 2012). On the other hand, prolonged sitting is 

related with cardiovascular diseases, musculoskeletal disorders, diabetes and cancer (Lis et 

al., 2007; Owen et al., 2010; van Uffelen et al., 2010; Carson et al., 2014). In addition to 

adverse health effects, sedentary behavior is also shown to be associated with lower cognitive 

performance (Falck, Davis and Liu-Ambrose, 2017). Moreover, prolonged standing can lead 

to pain in the back and lower limbs, cardiovascular problems, fatigue, and pregnancy issues 

(Leroux et al., 2005; Andersen, Haahr and Frost, 2007; Gallagher, Campbell and Callaghan, 

2014; Waters and Dick, 2015). These risk factors are, however, prevalent in today’s work 

force. About 44% of the European workers have reported working in tiring positions for more 

than one-quarter of the time (Eurofound, 2017). About 25% of men and 31% of women in the 

EU workforce have reported to be sitting for more than three-quarters of the time at work 

(Eurofound, 2017).  

2.3.2 Risk assessment methods 

There are mainly three types of risk assessment methods for ergonomic research and practice, 

namely self-reports, observational methods and direct measurement methods. Self-reports are 

inexpensive and easy to use, but the validity and reliability is usually low (Hansson et al., 

2001; Prince et al., 2008). Observational methods include on-site or videotaped direct 

observation, and computer assisted observation. They can cover multiple factors and provide 

risk evaluation in a systematic approach (Lind, 2017). However, some drawbacks of 

observational methods are the low inter- and intra-observer reliability, especially regarding 
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small body segments and quick movements (Takala et al., 2010). Different observational 

methods may give differing assessment results (Chiasson et al., 2012). Additionally, 

observations are usually performed for relatively short periods and limited population sizes 

due to that they are generally time consuming and expensive per unit of working time assessed 

(Rezagholi, Mathiassen and Liv, 2012; Trask et al., 2013). Direct measurements can provide 

results with relatively high validity and reliability. They are also able to assess the workload 

exposure regarding intensity, duration and frequency, which further can provide important 

information for risk assessment and prevention. However, traditional direct measurement 

systems have been considered as expensive to purchase, uncomfortable to wear and resource 

demanding for the data analyses and interpretation (David, 2005). On the contrary, Trask and 

colleagues (2014) showed that direct measurement methods, e.g. using accelerometers, were 

more cost-efficient comparing to observational methods for trunk and upper arm posture 

assessment when statistical performance was measured in terms of precision. 

Measurement with higher reliability and validity is crucial for obtaining the underlying 

exposure-response relationships on physical risk factors (Winkel and Mathiassen, 1994; 

Punnett and Wegman, 2004). Therefore, to facilitate the risk assessment at work and prevent 

work-related ill health, there is a need for measurement methods that are valid and reliable, as 

well as easy, feasible and efficient to use (Forsman, 2017; Holtermann et al., 2017). 

2.3.3 Risk assessment criteria 

Various criteria for defining acceptable workload and ergonomic exposures have been 

proposed. Some recent studies proposed threshold limit values based on direct measurement 

data and quantitative exposure-response relationships (Coenen et al., 2016; Balogh et al., 

2019). However, there is still a lack of consensus in exposure metrics and limits.  

Relative aerobic strain (RAS) is commonly used for defining acceptable workload. It is 

calculated as the ratio of oxygen consumption relative to individual’s maximal capacity. The 

International Labor Organization has used a limit of acceptable workload at 33% RAS in 

dynamic work tasks during an 8 hour working day (Smolander and Louhevaara, 2011), which 

is in agreement or close agreement with several studies (Jorgensen, 1985; Waters et al., 1993; 

Wu and Wang, 2002). However, regarding work involving muscle groups with smaller mass 

or static components, there is no consensus of RAS limit in the research communities. For 

example, as shown by Asfour and colleagues in a review (1988), the limits of an acceptable 

workload varied, e.g. at 18.5%, tested on lifting from table to shoulder height by students; at 

25%, tested on lifting from floor to shoulder height by students; or at 29%, tested on lifting 

tasks by female workers. 

Risks of prolonged sitting has been recognised as an emergent issue worldwide (Coenen et al., 

2017). However, the assessments were previously mainly based on self-reported data with low 

validity and reliability, which also lacked information regarding the temporal pattern of the 

behaviour (Owen, Bauman and Brown, 2008; van Uffelen et al., 2010). Thanks to the rapid 

development of technical measurement methods in recent years, researchers could start to 
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quantify the temporal patterns of those behaviors with higher accuracy levels (Atkin et al., 

2012; Callaghan et al., 2015; Holtermann et al., 2017). 

2.4 Intervention 

Interventions are intentional change strategies, which may operate at the individual, 

organizational, regional or other levels (Fraser et al., 2009). Interventions may consist of a 

single action or a group of actions. Ergonomic intervention was defined as a change process 

with the aim of promoting musculoskeletal health by Westgaard and Winkel (1997). It can be 

targeted at occupational mechanical exposures with a focus on the external exposure factors, 

e.g. through redesign of tasks, work stations and equipment, or on the individual workers, e.g. 

through training to improve workstyle or individual physical capacity (Westgaard and Winkel, 

1997; Feuerstein, 2007; McGill, 2009; Søgaard and Sjøgaard, 2017). It can also be targeted at 

organizational culture, psychosocial exposure or other factors. Multicomponent interventions 

usually have greater effect on risk reduction of MSDs compared to single action (Silverstein 

and Clark, 2004), while it may also be more difficult to evaluate the effectiveness of each 

single component. Training on work technique can be one of the strategies to prevent MSDs, 

especially for new employees (Kilbom and Persson, 1987). 

2.4.1 Intervention using feedback 

Feedback training systems have been used for various applications such as rehabilitation and 

sport. The feedback may be provided based on electromyogram, kinematic or kinetic 

information and in a form of auditory, visual or vibrotactile signals (van Dijk, Jannink and 

Hermens, 2005). Several studies have evaluated the effects of feedback based on 

electromyogram in the form of auditory and/or visual signals during computer work and 

showed reduced muscle activities (Madeleine et al., 2006; Vedsted et al., 2011). Based on 

kinematic signals, several studies have tested auditory or visual feedback training for 

improving work postures in lifting, manual handling or caregiving activities and showed 

reduced adverse postures in certain tasks (Agruss, Williams and Fathallah, 2004; Breen, Nisar 

and Ólaighin, 2009; Vignais et al., 2013; Doss et al., 2018). Another study showed that the 

intervention effects of training work postures with real-time feedback lasted after two weeks 

but the effects did not transfer to new tasks (Kamachi, Owlia and Dutta, 2020).  

Vibrotactile feedback applies vibrational stimuli to the skin and is often guided by the position 

of a body segment (Alahakone and Senanayake, 2009). It can be delivered with varying 

frequency, amplitude and duration. Instant or real-time vibrotactile feedback enables spatial 

proprioceptive information to be provided directly during the process instead of after task 

completion (Van Breda et al., 2017). One study applied vibrotactile feedback based on trunk 

angle among adults with neck pain during laboratory typing tasks (Kuo et al., 2019). It showed 

that adverse neck and low back angles were reduced with feedback, while self-reported pain 

was not. Another study applied audio and vibrotactile feedback based on trunk posture among 

control room operators in a plant for 12 weeks (Bazazan et al., 2018). It showed that 
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observation assessed neck and trunk postures were improved and self-reported MSDs and 

fatigue were reduced, with lasting effects observed at six- and twelve-month follow-up.  

2.5 Wearable technologies  

Wearable technologies have advanced rapidly in recent years. They have become smaller in 

size, cheaper in price and more capable in data storage and process. Wide applications of 

wearable technologies have been seen in sports, healthcare, and daily life (Papi, Koh and 

McGregor, 2017; Loncar-Turukalo et al., 2019; Simpson, Maharaj and Mobbs, 2019). A rise 

of ergonomics applications can also be observed from laboratory validation studies to field 

uses (Nath, Akhavian and Behzadan, 2017; Alberto et al., 2018; Khakurel, Melkas and Porras, 

2018; Lin, Kirlik and Xu, 2018). Some barriers to application of wearable sensors for 

workplace risk assessment include data confidentiality, sensor durability, cost-benefit ratios, 

distraction from work and sensor validity (Schall, Sesek and Cavuoto, 2018). To implement 

wearable technologies in the workplace, one study suggested that organizations should involve 

employees in the implementation process, focus on workplace safety, provide information on 

data use and support employees’ beliefs in the effectiveness of wearable systems (Jacobs et 

al., 2019). Another study showed that workers with physically demanding work were positive 

towards using wearable sensors that focus on work exposure measurement (Spook et al., 

2019). They also stated their preference for real-time feedback which is delivered in a positive 

way and helps them to be aware of negative work exposure. The quality, comfort and ease of 

use of the wearable sensors as well as data access and data privacy were identified as important 

aspects. The commitment of organizations and worksite regulations should also be considered 

before the implementation, e.g. in a tailored approach (Spook et al., 2019). 

2.5.1 Smart workwear system 

A smart device refers to a device that can perceive information through sensors, operate 

autonomously and some even interactively, and connect to other devices wire or wirelessly for 

data exchange (Silverio-Fernández, Renukappa and Suresh, 2018). The term smart workwear 

system was coined by the research group behind the publication by Lind and colleagues (2019). 

In this thesis, the concept of smart workwear system is defined as a wearable system, designed 

to be suitable to wear at work, which collects data through wireless sensors, analyzes and 

evaluates the risks autonomously, and provides feedback and results to the targeted users. 

2.5.2 System usability 

Usability can be defined as a measure of “the effectiveness, efficiency and satisfaction with 

which specified users achieve specified goals in a specified context of use” (ISO, 2018).   

Questionnaires and interviews can be used for assessing the system usability. For practical 

use, simple and quick scales are used to assess the overall level of system usability (Brooke, 

1996). 
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3 Aims 

The overall aim of this thesis was to develop and evaluate methods using wearable 

technologies to assess physical risk factors at work, and further to give feedback to employees 

to improve their work techniques. 

 

The sub-aims were: 

• To develop and validate a smartphone-based tool for assessment of upper arm postures 

and movements at work (study I) 

• To evaluate models using wearable sensors, i.e. heart rate monitor and accelerometers, 

for assessment of work metabolism (study II) 

• To develop and evaluate a smart workwear system (1.0) for ergonomic risk assessment 

of light and heavy physical work (study III) 

• To develop and evaluate a smart workwear system (2.0) for work postures intervention 

using real-time vibrotactile feedback in industrial order picking (study IV) 
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4 Methods 

This chapter describes the methods used in this thesis. A general overview of the four included 

studies in this thesis can be seen in Table 1.  

4.1 Participants 

Ethical approvals were obtained from the Regional Ethics Committee in Stockholm with Dnr 

2016/724-31/5 (study I, II and III) and with Dnr 2017/1586-31/4 (study IV). All participants 

considered themselves healthy and gave their written informed consents prior to joining the 

studies. An overview of the participants is shown in Table 2. 

In study I and II, ten and twelve participants were recruited through advertisements seeking 

volunteers from university students and staff. In study III, eight participants were recruited 

through personal networks as volunteers from four occupations, i.e. postal workers, 

construction workers, office workers and drivers. This choice was made in order to include a 

variety of work tasks with light to heavy physical workload. In study IV, fifteen participants 

were recruited through the help of a research collaborator who was employed by the vehicle 

factory, in which the study took place. Three of them were employees working with logistics 

applications in the factory and thirteen were employees working with industrial material 

handling or assembly where materials handling was included. For the measurement data, two 

participants (one working with logistics and one working with material handling) were 

excluded in the analyses due to system failure or incomplete data. For the questionnaire and 

interview analysis, all fifteen participants were included. 
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Table 1. Key features of the four studies included in this thesis. 

Study 

Feature 
Study I Study II Study III Study IV 

Research 

focus 

Development and 

validation of a 

smartphone-based 

tool for assessment 

of upper arm 

postures and 

movements 

Evaluation of 

models using heart 

rate and 

accelerometry for 

assessment of work 

metabolism 

Evaluation of a 

smart wearable 

system (1.0) for 

ergonomic risk 

assessment of light 

and heavy physical 

work 

Evaluation of a smart 

workwear system 

(2.0) for work 

postures 

intervention using 

real-time vibrotactile 

feedback in 

industrial order 

picking  

Type of 

study 
Laboratory study Laboratory study Field study 

Factory laboratory 

study 

Number of 

participants 
10 12 8 15 

Assessment 

methods 

Optical motion 

tracking analysis & 

iPhone embedded 

inertial 

measurement units  

Indirect 

calorimetry, heart 

rate monitoring & 

accelerometry 

Heart rate 

monitoring, 

accelerometry & 

questionnaires 

Inertial 

measurement units, 

video observation, 

questionnaires & 

semi-structured 

interviews 

Wearable 

sensors/ 

system 

A smartphone 

application 

(Ergoarmmeter) 

installed on iPhone 

5s & 6 

A heart rate 

monitor and 

accelerometers 

The smart workwear 

system (1.0) 

including a vest with 

textile electrodes, 

an IMU and an 

Android tablet 

application 

The smart workwear 

system (2.0) 

including three 

inertial 

measurement units, 

two vibration units 

and an Android 

smartphone 

application 

Key analysis Upper arm posture 

and movement 

Work metabolism, 

assessed by oxygen 

consumption 

Work metabolism & 

sitting/standing 

Work posture 

measured as trunk 

inclination and 

upper arm elevation 
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Table 2. Background information of the participants in the included studies. Values are 
provided in median (range). 

Participants Study I Study II Study III Study IV 

Occupation 

University 

students and 

staff 

University 

students and 

staff 

Postal workers, 

construction workers, 

office workers and 

drivers 

Employees from a 

vehicle manufacturing 

factory 

Age (years) 24.5 (23–52) 27 (21–65) 32 (27– 66) 43 (24–53) 

Weight (kg) 67.5 (56–76) 75.0 (51–89) 79.5 (52–112) 85 (58–140) 

Height (cm) 175 (158–190) 176.7 (164–199) 184 (158–191) 180 (160–197) 

Gender 
3 women and 

7 men 

3 women and 9 

men 
2 women and 6 men 3 women and 13 men 

 

4.2 Study design 

In study I, participants were instructed to perform three tests involving the dominant upper 

arm to validate the iPhone system under different conditions. The first test was static arm tests, 

when the participants held their arm straight at predefined elevation angles in the sagittal and 

frontal plane, starting from hanging by the body side, raising up to 45, 90 and 135 degrees. 

The second test was dynamic arm tests, when the participants kept their dominant arm straight 

and swung in the sagittal plane at three rates, i.e. 0.1 Hz, 0.4 Hz and 0.8 Hz, following the 

guidance from a metronome. The third test included two simulated work tasks, i.e. mail sorting 

and blow-drying hair, and the participants were instructed to use their dominant hand and 

perform the tasks similar to postal worker and hairdresser at their own pace. The iPhone 

system and optical tracking system (OTS) measured the upper arm angle simultaneously, and 

the OTS was used as the standard measurement. 

In study II, participants performed three test sessions in order to evaluate the modelling 

techniques for estimating WM during different occupational activities. The first session 

included resting in lying, sitting and standing positions, when the resting heart rate (RHR) and 

resting energy expenditure (REE) were measured. The second session included five simulated 

work tasks, including office work, painting, postal delivery, meat cutting and construction 

work, and each lasted 8 to 10 minutes (as shown in Figure 3 and Table 3). These tasks 

represented a variety of work, which involved arm or leg muscles and ranged from light to 

heavy work as well as static to dynamic work. For the weight lifted in simulated construction 

work, the Alba Biomekanik software with Snook lifting recommendation was used to calculate 

the safe weight limits (Eklund, Liew and Odenrick, 1994). The last session included three 

submaximal tests, i.e. a Chester step test (Sykes and Roberts, 2004), an arm ergometer test and 

a treadmill test (Strath et al., 2001). 
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Figure 3. The five simulated work tasks in study II, from left to right: office work, painting, 
postal delivery, meat cutting and construction work. 

 

Table 3. Description of the simulated work tasks performed in study II. 

Work 
activities 

Duration 
Type of 
work 

Description 

Office work 10 min 
Static, arm 
work 

The participants sit and type on a laptop. 

Painting work 10 min 
Dynamic, 
arm work 

The participants stand and mimic painting using a 
painting pole with 0.5-kg weight on the top. 

Postal 
delivery work 

10 min 
Dynamic, leg 
work 

The participants pedal on a cycle ergometer at a 
frequency of 60 rev/min with a resistance of 0.75 kg. 

Meat cutting 
work 

4 + 4 min 
Dynamic, 
arm work 

The participants pull a resistance band every 2 
seconds following a metronome, 4 minutes with the 
right arm and then 4 minutes with the left arm. 

Construction 
work 

4 + 1 + 4 
min 

Dynamic, 
mixed arm 
and leg work 

The participants lift and lower a box (6 kg or 4.5 kg) 
from floor to table every 6 s for 4 min, named as 
‘construction work – mix’. After 1-min break, they lift 
a box (9 kg or 6.5 kg) from side to side on a table 
every 5 s for 4 min, named as ‘construction work – 
arm’. 

 

In study III, participants performed their normal work tasks to test the functionality and 

usability of the smart workwear system 1.0. Before the measurement started, participants filled 

in a pre-study questionnaire, as described in section 4.3.4. Then they were instructed to 

perform a Chester step test to calibrate the system and estimate individual’s maximal aerobic 

capacity (VO2max). The system was started to record for two to three hours when they 
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performed their work of the day. After the measurement, participants filled in a post-study 

questionnaire, as described in section 4.3.4 and 4.3.5. 

In study IV, participants performed order picking tasks to evaluate the effect of the vibrotactile 

feedback using the smart workwear system 2.0 for improving work postures. The lab, located 

within a vehicle manufacturing company, resembles the existing order picking area of the 

company. Standard order picking tasks were designed for the study (see Figure 4), which 

included 10 items from 7 positions. One item was placed on 15 cm above floor level, and the 

others were placed in boxes at about waist or shoulder level. For each work cycle, participants 

were instructed to first pick and place all the items on a trolley and then return the items to 

their original places following the same sequence. They were also instructed to perform the 

tasks at their own pace with the dominant hand, except the one large item on floor level with 

both hands. 

 

 

Figure 4. Examples of one participant performing the order picking tasks while equipped 
with the system. 

 

The procedure of the test is shown in Figure 5, with the timeline going from the left to the 

right. The practice session consisted of at least three work cycles and the other sessions each 

consisted of three work cycles. To start with, participants were equipped with the system and 

asked to rate their body discomfort/pain using Borg CR-10 scale. The same scale was used for 

all participants before and after each session, to see if their body discomfort/pain changed. The 

practice session was performed so that they could familiarize themselves with the tasks. Then, 

a break was provided, during which a calibration procedure of the system was performed, 

which is described more in detail in section 4.3.1. Thereafter, the system was started to record 

when the participants performed three work cycles in the baseline session. Next, a short break 

was provided. They were informed that the vibrotactile feedback would be initiated in the 
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coming session, and they should try to reduce flexed trunk or raised upper arm as hinted by 

the feedback. Thereafter, the participants performed six work cycles with vibrotactile 

feedback, which was divided evenly into two sessions for the data analysis, named as 

intervention session 1 (INS-1) and intervention session 2 (INS-2). Next, a short break was 

provided and they were informed that the feedback would be stopped. Thereafter, the 

participants performed another three work cycles without vibrotactile feedback in the post- 

intervention session. Lastly, the participants were interviewed and filled in questionnaires 

regarding their experiences and perceived usability of the system (described more in detail in 

section 4.3.5). 

 

 

Figure 5. The session design of study IV for evaluating the intervention effects on improving 
work postures using the smart workwear system 2.0 with vibrotactile feedback. The 
feedback was provided during intervention sessions 1 & 2. The practice session consisted 
of at least three work cycles, and the other sessions consisted of three work cycles each. 

 

4.3 Assessment methods 

4.3.1 Postures and movements of body segments 

In study I, the upper arm elevation angle and angular velocity were measured by an iPhone 

application using the embedded accelerometer (ACC) and gyroscope. A sampling frequency 

of 20 Hz was used, which is considered adequate to capture upper arm motions and in 

agreement with Hansson and colleagues (2006). Two models, i.e. iPhone 5s and 6, were used 

in the study in different test scenarios. The iPhone 6 was fixed using a neoprene sport armband 

(Belkin, USA), and the iPhone 5s was fixed using an elastic nylon sport armband (Griffin, 

USA). The iPhones were placed on the dominant upper arm, with its upper edge at the insertion 

of deltoid and its long axis parallel to the humerus (see Figure 6a), which corresponds to other 

similar studies (Bernmark and Wiktorin, 2002; Dahlqvist, Hansson and Forsman, 2016). An 

optical tracking system (OTS) (Elite, version 2.8.4380, BTS, Milano, Italy) was used as the 

criterion measurement of the upper arm posture and movement. Three reflexive markers were 

placed on the same arm: on the humeral head, the lateral epicondyle (Bernmark and Wiktorin, 

2002) and the middle of wrist between the radial and ulnar styloid processes (see Figure 6a). 

A calibration procedure was performed by asking the participants to hold a 2-kg weight and 

lean to the side with the arm hanging straight (see Figure 6b). 
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In study IV, the upper arm elevation and trunk inclination were measured by three IMUs 

(LPMS-B2, LP Research, Tokyo, Japan) with a sampling frequency of 25 Hz. The IMUs were 

hosted in pockets of a functional t-shirt. The two IMUs on the upper arms were placed with 

the upper edge approximately at the insertion of the deltoid muscle, see Figure 6c. The IMU 

on the trunk was place approximately at the level of the T1–T2 vertebrae (Korshøj et al., 2014). 

Individual calibration was performed by asking the participant to stand straight and look 

forward with relaxed arms hanging down and palms facing the body (Robert-Lachaine et al., 

2017a). Deviation angle from the reference arm posture were calculated as arm elevation 

angle. Deviation angle from the reference trunk posture on the sagittal plane were calculated 

as forward (positive) and backward (negative) trunk inclination angle. 

 

 

Figure 6. Illustration of the (a) placement of the iPhone and three reflexive markers on the 
arm, (b) calibration procedure of the upper arm in study I, and (c) placement of the IMUs 
in the pockets of a functional t-shirt on the upper arms and vibration units fixed with straps 
in study IV. 

 

4.3.2 Work metabolism 

Energy expenditure at work is also referred to as work metabolism, which can be accurately 

assessed by oxygen consumption (VO2) (Dubé et al., 2015). HR monitoring has been used for 

estimating VO2 in field studies based on that there is a strong positive relationship between 

HR and VO2 (Shephard and Aoyagi, 2012). However, using HR alone to assess VO2 in practice 

has some difficulties: (i) The relationship between HR and VO2 varies between persons 

depending on their endurance capacity, which can be tackled by performing individual 

calibrations; (ii) The slope of the relationship changes depending on how and what muscle 

groups are utilized, e.g. arm or leg muscle groups, and static or dynamic motion; and (iii) HR 
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is also affected by other factors, such as stress, food intake and environmental conditions 

(Haskell et al., 1993; Faria and Faria, 1998; Åstrand et al., 2003; Leonard, 2003). 

In study II, three models using HR alone, or in combination with ACCs were evaluated against 

the criterion measurement using a computerised metabolic system (Jaeger Oxycon Pro, 

Hoechberg, Germany). The model structures are illustrated in Figure 7. The HR-Flex model 

was based on HR alone. It applied an individually calibrated linear HR–VO2 relationship when 

the HR was above flex-HR point, and the REE value when the HR was below flex-HR (Spurr 

et al., 1988). The branched equation model was based on HR and one hip-worn ACC (Brage 

et al., 2004). It used a quadratic HR–VO2 and a bi-linear ACC–VO2 equation obtained during 

individual calibrations. These two equations could be applied by different weightings, and the 

weightings used in this study were the same as the a priori parameters in the original study 

(Brage et al., 2004). The HR + arm-leg ACC model was based on HR and two ACCs, with 

one placed on the wrist and the other on the thigh (Strath et al., 2001). It used two linear HR–

VO2 equations obtained during an arm ergometer test and a treadmill test, named as ‘linear 

HR equation – arm’ and ‘linear HR equation – leg’ accordingly. Briefly, a threshold a of the 

ACC output was set to differentiate periods of inactivity, which used REE, and activity with 

arm or leg, which used the linear HR–VO2 equations accordingly. When both wrist and leg 

ACC outputs exceeded the threshold, a ratio between the wrist and leg ACC was used to decide 

if the arm or the leg activity was dominant, and then the model used the HR–VO2 equation 

from arm or leg accordingly.  

In study III, due to the limited resources and availability for performing calibration procedures, 

the HR-Flex model calibrated by the Chester step test was used to estimate the VO2 at work. 

The REE was calculated from the Oxford equation using the individual’s age, gender, weight 

and height (Henry, 2005). The individual’s maximal aerobic capacity (VO2max) was estimated 

by the Chester step test with the age-predicted maximal heart rate using HRmax = 208 – 0.7×age 

(Tanaka, Monahan and Seals, 2001). The relative aerobic strain (RAS) level was calculated as 

the ratio of VO2 at work and the individual’s VO2max. 
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Figure 7. Structure illustrations of the three models for estimating work metabolism based 
on accelerometry (ACC) and heart rate (HR). The flow goes to the dashed branch if the 
decision condition is not met. (a) The HR-Flex model (Spurr et al., 1988). (b) The HR 
branched equation model (Brage et al., 2004): the parameter x was set at 0.027g, and the 
flex-HR and transition-HR were individual calibrated. (c) The HR+ arm-leg ACC model 
(Strath et al., 2001): the parameter a and ratio were set at 0.013g and 1.5. The parameters 
were adapted to our study. The HR and ACC equations were obtained from individual 
calibration tests. HR: heart rate; REE: resting energy expenditure; ACCbody: output from the 
accelerometer worn at the body part accordingly.  

 

4.3.3 Sitting and standing 

One inertial measurement unit (IMU) (LPMS-B2, LP Research, Tokyo, Japan) was attached 

on the mid-thigh using an elastic strap and used for assessing the sitting and standing activities 

(study III). The algorithm from Skotte and colleagues (2014) was applied for the classification 

of sitting, standing and other activities, with the same sampling frequency of 30 Hz. The 

standard deviation of acceleration in the vertical axis was used to classify sitting and standing 

from other activities. Then, sitting and standing were classified with a threshold of 45 degrees 

in the inclination. 



 

 

 

22 

4.3.4 Subjective rating of tiredness and exertion 

In study III, the subjective ratings were used to assess the perceptions of the work 

characteristics of the work period which were measured by the wearable system. Self-rated 

physical tiredness level (10-degree scale from 0 “not tired at all” to 9 “totally exhausted”), 

from Engkvist and colleagues (2010), and the Borg’s ratings of perceived exertion (RPE 15-

degree scale, from 6 “No exertion at all” to 20 “Maximal exertion”) (Borg, 1990) were used. 

The physical tiredness scale was filled in both before and after the work task. The Borg’s RPE 

scale was filled in after performing the work tasks. 

In study IV, assessment of body part discomfort/pain was obtained using the Borg CR-10 scale 

(Borg, 1990) before and after each session through the whole tests. 

4.3.5 Assessment of system usability   

In study III, a modified questionnaire consisting of seven items on the system usefulness and 

wearability (7-point Likert scale, from 1 “totally disagree” to 7 “totally agree”) was used. The 

items were adapted from Aaltonen and Laarni (2017) to suit our system. The participants filled 

in the questionnaire after performing their work tasks for two to three hours wearing the 

system. 

In study IV, two standardized questionnaires, i.e. the Comfort Rating Scale and the System 

Usability Scale were used (Brooke, 1996; Knight and Baber, 2005). The participants filled in 

these two scales after performing the whole test sessions. In addition, semi-structured 

interviews were conducted with each participant for about ten minutes. The interviews coverer 

items on the participant experiences of the wearable system, their learnings from using the 

vibrotactile feedback regarding their work technique and how they reflected on redesigning 

and improving the work. 

 

4.4 Risk assessment criteria of the physical workload 

Ergonomic risk assessment criteria of the work were defined based on literature research and 

consensus discussion between project members. The literature was identified by snowball 

method and personal knowledge of the group (Greenhalgh and Peacock, 2005). Two aspects 

of the physical work were included in the smart workwear system 1.0, i.e. too high workload 

assessed by energy demand, and too low workload assessed by the pattern of sitting and 

standing activities. Color-coded risk levels were used to show the evaluation results: green 

representing no or low risk, yellow representing potential risk which requires further 

inspection, and red representing high risk.  
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4.5 Statistical analyses 

In study I, data from the iPhone system and the OTS (the criterion) were compared by 

calculating the Pearson correlation coefficient and the root-mean-square errors (RMSEs). 

Bland-Altman plots were used to assess the bias and limits of agreement (LoA) between the 

systems. Mean absolute differences and standard deviations of the angular velocity measured 

by the two systems were calculated, and data from the sensor fusion signal and solely 

accelerometer were compared. 

In study II, three models for estimating WM were compared against the criterion measurement 

by calculating the bias and RMSEs for all participants of each work task. Bland-Altman plots 

were used to show the bias and LoA between the criterion and the estimation from the three 

models by two calibration procedures. 

In study III, the risk assessment results obtained from the smart workwear system 1.0 were 

presented for all participants in a summative form. Questionnaire data on the perceived 

workload and the system usability were analyzed and presented by descriptive statistics. 

In study IV, the postures of the dominant upper arm and trunk recorded by the smart workwear 

system 2.0 were compared within each participant across the four test sessions, i.e. the 

baseline, the intervention sessions 1 & 2, and the post intervention session. Since the data were 

not normally distributed, the Wilcoxon Signed Rank test was used to test the pairwise 

differences. The ratings from two standardized questionnaires were calculated according to 

the respective manual, and analyzed using descriptive analysis. The semi-structured interviews 

were analyzed by extracting meaningful entities from each participant and each question, as a 

basis of a descriptive analysis. 
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5 Results 

This chapter summarizes the results of the included studies. A newly developed tool for upper 

arm postures and movements measurement (study I) and three existing models for estimating 

work metabolism (study II) were evaluated against the respective standard measurement. 

Newly developed wearable systems were evaluated in a field study for ergonomic risk 

assessment (study III) and in a factory lab for work posture intervention (study IV). 

5.1 Study I 

5.1.1 The ErgoArmMeter 

An iPhone application (ErgoArmMeter) was developed using the development tool Xcode 

(version 6.2, Apple Inc., USA). The application uses the built-in accelerometers and 

gyroscopes of the iPhone with a sampling frequency of 20 Hz. The arm elevation angle is 

calculated directly after a measurement session and results are shown in the application 

interface. Recommended action limits expressed in the 50th and 90th angular percentiles, time 

percentage above 30°, 60° and 90°, as well as the 50th and 90th percentiles of generalized 

angular velocities, based on Hansson et al. (2016), are presented for risk evaluation. An 

illustration of how the application is used is shown in Figure 8. 

5.1.2 The validation of the application 

The iPhone application was validated against the OTS in three conditions: static postures, 

dynamic swings and simulated work tasks. Both iPhone models 5s and 6 had similar levels of 

accuracy in the validation experiment. Results using iPhone 6 are presented in the thesis. 

For the static arm postures in the sagittal and frontal plane, the limits of agreement (mean ± 

1.96 SD) between the iPhone system and the criterion measurement OTS were −4.6° and 4.8°, 

with a mean difference of 0.095° (Figure 9). For the dynamic arm swings in the sagittal plane, 

the mean sample-to-sample RMSEs of nine participants between the iPhone and OTS across 

arm swings ranged from 4.0° to 6.0°. Slightly larger mean RMSEs were observed as the swing 

speed level increased from slow to fast, and the maximum RMSEs doubled comparing the 

slow swing (5.2°) to fast swing (10.4°). For the simulated work tasks of postal sorting and 

blow-drying hair, the mean RMSEs were 5.5° and 4.8°, respectively (Table 4).  
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Figure 8. User interfaces of the iPhone application (ErgoArmMeter) for: (a) creating a trial; 
(b) performing a measurement after calibration, with current angle and time shown on the 
screen, and (c) the measurement results with suggested action limits in red brackets for 
risk evaluation. 

 

 

 

 

Figure 9. Validation of the iPhone application system against optical tracking system for 
measuring upper arm elevation in static posture test. (a) Linear correlation scatter plots. 
(b) Bland-Altman plot. Results from 67 data points from nine participants (other data were 
missing due to missing markers in the OTS). 
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Table 4. Mean and maximum sample-to-sample root-mean-square errors (RMSEs) and the 
mean and minimum correlation coefficients of upper arm elevation between the optical 
tracking system (OTS) and the iPhone application system, in dynamic arm swings and 
simulated work tasks. Fewer than 10 participants were included in this table due to missing 
markers in OTS. 

  Arm swings (N = 9)   Simulated work tasks 

  
Slow 

(0.1 Hz) 
Medium 
(0.4 Hz) 

Fast 
(0.8 Hz)  

Mail sorting 
(N = 6) 

Blow-drying hair 
(N = 7) 

RMSE (°)  

Mean 4.0 5.1 6.0  5.5 4.8 

Max 5.2 8.0 10.4  8.2 6.2 

Correlation coefficient (r)  

Mean 0.996 0.991 0.987  0.986 0.986 

Min 0.988 0.975 0.951  0.978 0.966 

 

5.1.3 The improvement on accuracy using sensor fusion 

As the iPhone application utilizes both built-in accelerometer and gyroscope for the angular 

measurement, a comparison of the measurement accuracy was made between the sensor fusion 

signal, i.e. the accelerometer and gyroscope integrated signal, and the accelerometer signal, 

which is used in standard inclinometry. The results of the upper arm elevation velocity (at the 

50th and 90th percentiles) from the sensor fusion signal and the accelerometer signal were 

compared against the standard measurement using OTS (Table 5). Large improvement on the 

measurement accuracy was observed, especially in medium to fast arm swings and simulated 

work tasks. An illustration of the arm elevation of one participant performing the arm swings 

at three speed levels measured by these two signals compared against the OTS is shown 

(Figure 10). Distinctive improvement can be observed in median and fast movement. 

Table 5. Mean absolute differences (mean ± SD) of the upper arm elevation velocity (°/s) 
between the iPhone system and the optical tracking system (OTS) in arm swings and 
simulated work tasks. Data from the gyroscope and accelerometer integrated signal and 
accelerometer signal were presented. The values from the OTS are given in brackets. Fewer 
than 10 participants were included in this table due to missing markers in the OTS. 

Velo-
city 
(°/s) 

Arm Swings (N = 9)  Simulated work task 

Slow Medium Fast  
Mail sorting  

(N = 6) 

Blow-drying hair 

 (N = 7) 

Gyroscope and accelerometer integrated signal 

50th 1.2 ± 0.6 (34.3) 5.2 ± 4.3 (135.7) 13.1 ± 7.8 (262.1)  2.2 ± 2.1 (39.7) 1.7 ± 1.2 (34.2) 

90th 1.4 ± 0.9 (51.0) 11.1 ± 6.3 (208.7) 24.6 ± 11.5 (424.5)  24.3 ± 10.7 (152.7) 3.9 ± 2.8 (82.7) 

Accelerometer signal 

50th 3.3 ± 1.0 (34.3) 6.3 ± 4.1 (135.7) 43.5 ± 37.7 (262.1)  40.1 ± 22.2 (39.7) 9.5 ± 7.6 (34.2) 

90th 14.6 ± 5.7 (51.0) 48.5 ±32.4 (208.7) 451.5 ±179.3 (424.5)  32.0 ±38.4 (152.7) 14.1 ± 11.6 (82.7) 
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Figure 10. Illustration of the upper arm elevation angle measurements by the optical 
tracking system, the signal integrating the accelerometer and gyroscope, and the 
accelerometer only, during arm swings at three speed levels: (a) slow pace at 0.1 Hz, i.e. 6 
swings per minute, (b) medium pace at 0.4 Hz, i.e. 24 swings per minute, and (c) fast pace 
at 0.8 Hz, i.e. 48 swings per minute. 

5.2 Study II 

5.2.1 Evaluation of three models for work metabolism estimation 

Three modeling techniques using heart rate (HR) monitor and accelerometers (ACCs) for 

estimation of oxygen consumption (VO2) at work were compared against the criterion 

measurement during five simulated work tasks (Table 6). All three models performed well 

during the office work, with a mean RMSE ranging from 0.7 to 1.0 mL/min/kg compared to 

criterion measurement. The HR + arm-leg ACC model showed the best accuracy in most work 

tasks, except in office work and painting. The HR-Flex model showed a small bias for the 

average of all tasks, and the best accuracy in painting. The HR branched equation model 

showed large underestimations in most tasks, with a bias ranging from -2.7 to -3.5 mL/min/kg, 

except in office work. 
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In addition, individual differences were observed regarding the effect of different types of 

work on HR–VO2 relationships (illustrated in Figure 11). A clear distinction between the work 

tasks using mainly arm, leg or mixed muscle groups can be observed for some participants, as 

illustrated in Figure 11a. The tasks using mainly arm (i.e. painting, meat cutting and 

construction work with arm) followed the arm calibrated HR–VO2 relationship, and the other 

tasks using leg or mix muscle groups (i.e. postal delivery and construction work with mix) 

followed the leg calibrated relationship. However, the difference of cardiovascular responses 

between the tasks was not so distinct for some participants, as illustrated in Figure 11b. The 

observed differences pointed to that the individual cardiovascular responses during work tasks 

determined by arm or leg motion might not follow the arm or leg HR–VO2 relationship 

obtained during submaximal tests. 

 

 

Figure 11. The HR–VO2 relationships during different simulated work tasks, with two 
individual calibration lines performed by treadmill (leg calibration) and arm ergometer 
(arm calibration): (a) example of one participant showing a clear distinction between work 
tasks with mainly arm or leg muscles on the HR–VO2 relationship, and (b) example of one 
participant showing a vague distinction between work tasks. Each data point represents 1-
min average value. 

 



 

 

 

 

 

Table 6. Estimates of oxygen consumption (mL/min/kg) during five simulated work tasks using three models compared to the criterion 
measurement using indirect calorimetry. Results with best performance (smallest bias and/or RMSE) are marked in bold. 

Estimation 
models 

Office work  Painting  Postal delivery  Meat cutting  Construction work  
Average for all work 

tasks 

Mean±SD Bias RMSE  Mean±SD Bias RMSE  Mean±SD Bias RMSE  Mean±SD Bias RMSE  Mean±SD Bias RMSE  Mean±SD Bias RMSE 

Criterion 4.0 ± 0.8  – – d 8.3 ± 1.1 – – D 14.0 ± 2.0 – – D 7.5 ± 1.7 – – D 12.4 ± 2.5 – – d 9.1 ± 1.2 – – 

HR-Flex 3.5 ± 0.9 -0.4 0.7 
 

8.0 ± 2.5 -0.3 2.1 
 

11.8 ± 3.5 -2.2 3.2 
 

9.8 ± 3.9 2.3 3.7 
 

13.8 ± 3.5 1.5 2.4 
 

8.9 ± 2.4 -0.2 1.5 

HR 
branched 
equation 

3.7 ± 0.4 -0.2 0.8 
 

5.2 ± 1.2 -3.2 3.5 
 

10.5 ± 1.6 -3.5 4.0 
 

4.8 ± 1.0 -2.7 3.2 
 

9.0 ± 2.3 -3.4 4.1 
 

6.6 ± 1.1 -2.5 2.8 

HR + arm-
leg ACC 

3.8 ± 1.2 -0.2 1.0 
 

6.3 ± 1.4 -2.0 2.2 
 

12.3 ± 2.9 -1.7 2.2 
 

7.5 ± 1.5 0.0 0.9 
 

11.5 ± 2.6 -0.9 2.1 
 

8.0 ± 1.2 -1.1 1.2 

RMSE: Root mean square error.  

HR-Flex: Heart rate flex model.  

HR branched equation: Model combining HR and one accelerometer placed on the hip. 

HR + arm-leg ACC: Model combining heart rate and accelerometer data from two accelerometers placed on the wrist and thigh. 
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5.2.2 Comparison of two calibration procedures 

Two calibration procedures, i.e. a Chester step test and a submaximal treadmill test, were 

compared when used for calibrating the three aforementioned models for estimating WM 

(Figure 12). For the HR + arm-leg ACC model, an additional submaximal arm ergometer test 

was performed in order to obtain the arm calibration used in the model.  

Overall, the treadmill test showed smaller limits of agreement (LoA) for calibrating the three 

models compared to the Chester step test. When looking at the model performance with 

specific calibration procedure, the HR + arm-leg ACC model calibrated with the treadmill test 

showed the smallest limits of agreement of −3.94 to 2.00 mL/min/kg. The HR-Flex model 

calibrated with the Chester step test showed the smallest bias (−0.03 mL/min/kg) while quite 

large LoA of −5.81 to 5.74 mL/min/kg. The HR branched equation had a large underestimation 

both when calibrated with Chester step test (−2.64 mL/min/kg) and treadmill test (−2.59 

mL/min/kg). Thus, the HR + arm-leg ACC model calibrated by a submaximal treadmill test 

and arm ergometer test had best performance in WM estimation. However, it also required 

most resources for individual calibration. 
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Figure 12. Bland-Altman plots of the oxygen consumption (VO2) estimated by three models 
with two different calibration procedures, marked by five simulated work tasks. The two 
calibration procedures were: Chester step test (to the left in each model row), and a 
submaximal treadmill test (to the right in each model row); the three estimation models 
were, from top to bottom row, the HR flex model, the HR branched equation model and 
the HR + arm-leg ACC model. 
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5.3 Study III 

5.3.1 The Smart workwear system (1.0) 

The smart workwear system 1.0 was developed in the project team and it comprised a 

hardware and a software sub-system. The hardware sub-system consisted of a vest with textile 

electrodes, a wireless compact recorder (ECGZ2, Z-Health Technologies AB, Borås, Sweden), 

which recorded and transmitted the electrocardiogram (ECG) and thoracic electrical bio-

impedance signals, a wireless IMU (LPMS-B2, LP Research, Tokyo, Japan), and an Android 

6.0 tablet (SM-T713, Samsung, Seoul, South Korea) (Figure 13). 

The software sub-system consisted of an Android application. It communicated with the 

aforementioned wireless sensors via Bluetooth and stores the data. At the same time, it also 

processed the signals and computes two workload parameters, i.e. the relative aerobic strain 

(RAS) based on the heart rate calculated from ECG and the sitting/standing behaviors based 

on the acceleration signal from the IMU. Risk assessment was performed in the software, 

following the criteria as described in section 5.3.2. The assessment results were available both 

during the measurement, which could be used for analyzing risks and providing feedback in 

real time, and after completing the measurement, which enabled post-analysis with more 

details.  

 

Figure 13. The smart workwear system 1.0, illustrated by its hardware components. 

 

5.3.2 The risk assessment criteria 

Ergonomic risk assessment criteria used in the system were defined based on literature 

research and a consensus discussion between project members. Two aspects of the physical 

workload were included, i.e. too high workload assessed by WM in the form of RAS, and too 
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low workload assessed by sitting and standing behaviors. Color-coded risk levels were used 

to show the evaluation results: a green light representing no or low risk, a yellow light 

representing potential risk which requires further inspection, and a red light representing high 

risk. For the work metabolism, a RAS limit of 33 % was chosen as the red level, and 25 % as 

the yellow level (Legg and Myles, 1981; Asfour et al., 1988; Smolander and Louhevaara, 

2011). For the occupational sitting and standing, two tentative criteria were used. One was 

based on prolonged duration, whether it exceeds 55 min in 1-hour episodes, and the other was 

based on accumulated time, whether it exceeds 50 % of the total time (Toomingas et al., 2012; 

Callaghan et al., 2015). If both criteria were met, the sitting/standing behavior was considered 

at the red level. If only one criterion was met, the sitting/standing behavior was considered at 

the yellow level. The limits were proposed for an 8-hour working day. Consideration should 

be taken when measuring a shorter period of the work, and the risk levels can apply given that 

this period represents a normal whole working day. 

5.3.3 Illustration of the risk assessment results 

The results were made from the 2–3 hours’ measurement data and extrapolated to an 8-hour 

working day, based on the assumption that the measurement period represented a normal 

working day. However, with the aim to demonstrate the use of the system, the obtained risk 

levels of the participants should not be applied for the occupation. The mean RAS and the risk 

assessment are presented for each participant (see Table 7). Here, participant 4 was assessed 

as red, suggesting that if this level of physical workload continued for a whole working day, 

the risk of adverse health effects in the long term was high. Participant 3 and 8 were assessed 

as yellow, suggesting that further analyses were needed. 

Table 7. Illustration of the summative risk assessment results regarding work metabolism 
(WM), with the risk level as red if relative aerobic strain (RAS) exceeding 33 % and as yellow 
if exceeding 25 %. The RAS was calculated as the ratio between the WM and individual’s 
maximal capacity. 

Participant Occupation Relative aerobic strain (%) Risk level 

1 Driver 8.6 Green 

2 Driver 11.6 Green 

3 Postal worker 31.1 Yellow 

4 Postal worker 40.5 Red 

5 Office worker 8.5 Green 

6 Office worker 12.6 Green 

7 Construction worker 16.4 Green 

8 Construction worker 25.1 Yellow 

 



 

 

 

35 

The assessment on occupational sitting and standing behavior and the risk levels are shown in 

Table 8. Two drivers and one office worker (participants 1, 2 and 5) were assessed as red 

regarding their sitting behavior. The other office worker (participants 6) was assessed as 

yellow due to that the sitting duration exceeded 50% of the total time with no prolonged 

episodes. One construction worker (participant 8) was assessed as yellow due to that the 

standing duration was 62.9% of the total time without prolonged standing episode. 

Table 8. Illustration of the summative risk assessment results regarding occupational sitting 
or standing behaviors, with the risk level based on two criteria: whether the percentage of 
time exceeds 50 % of the total time and whether there are prolonged episodes exceeding 
55 minutes in 1-hour episodes. 

Participant 
 Occupational sitting  Occupational standing 

 Time (%) Prolonged episodes Risk level  Time (%) Prolonged Risk level 

1  99.9 Yes Red  0.0 No Green 

2  97.1 Yes Red  0.3 No Green 

3  18.6 No Green  18.1 No Green 

4  5.1 No Green  27.7 No Green 

5  76.3 Yes Red  8.8 No Green 

6  57.2 No Yellow  25.0 No Green 

7  8.4 No Green  49.3 No Green 

8  6.9 No Green  62.9 No Yellow 

 

In addition, self-reported physical tiredness level before and after the measurement, as well as 

the Borg’s RPE scale of the tasks are shown in Table 9. For the two postal workers, self-

reported physical tiredness level (0–9 scale) increased from 3 to 5, and 2 to 6, respectively. 

They also rated the Borg’s RPE (6–20 scale) of 13 and 14, as somewhat hard to hard. The 

construction workers rated their work as extremely light, i.e. 7 of Borg’s RPE scale, with no 

change in their physical tiredness level. This was due to that they had really light work during 

the day when the measurement was performed. For the office workers and drivers, the ratings 

on the Borg’s RPE scale were low, ranging from 6 to 7, with a slight change of physical 

tiredness level ranging from -1 to 1. 
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Table 9. Subjective ratings of physical tiredness level (0-9) before and after the 
measurement, as well as the ratings of perceived exertion (Borg’s 6-20 RPE) of the work 
tasks. 

Participant Occupation 
Physical fatigue level 

Borg RPE Scale 
Before After 

1 Driver 2 2 6 

2 Driver 1 1 7 

3 Postal worker 3 5 13 

4 Postal worker 2 6 14 

5 Office worker 0 1 6 

6 Office worker 2 1 7 

7 Construction worker 0 0 7 

8 Construction worker 1 1 7 

 

5.3.4 Usability evaluation 

Usability evaluation results are shown in Figure 14. Most of the participants (N=6) agreed that 

the system was usable for assessing risks at work, easy to put on and take off, comfortable to 

wear at work, and easy to interpret. The majority also agreed (N=7) that the system did not 

distract or cause any disturbance to them during their work. All participants agreed (of which 

50% strongly agreed) that the system was not unpleasant. 

 

Figure 14. The usability evaluation (7-degree Likert scale) of the smart workwear system 
1.0 on seven items from all participants (N=8). Answers on the plot from left, to middle, 
and to right: strongly disagree, neutral and strongly agree. 
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5.4 Study IV 

5.4.1 The Smart workwear system (2.0) 

The smart workwear system 2.0 was further developed in the project team, with a focus on 

assessment of upper arm and trunk postures and an additional function of offering vibrotactile 

feedback. The hardware sub-system consisted of three wireless IMUs (LPMS-B2, LP 

Research, Tokyo, Japan), a functional t-shirt with embedded pockets hosting the IMUs, two 

in-house built wireless vibration units, and an Android 8.0 smartphone (Galaxy A5 2017, 

Samsung, Seoul, South Korea), as shown in Figure 15. The software sub-system consisted of 

an Android application which communicates with the IMUs and vibration units via Bluetooth. 

The IMUs were set at a sampling frequency of 25 Hz. The application down-sampled the IMU 

output into 1 Hz and computed the upper arm and trunk angles in real time. At the same time, 

it compared the angles with two levels of thresholds to decide if the vibrotactile feedback 

should be initiated. The first level of vibration was intermittent and lower in power and the 

second level had continuous vibration with higher power. 

 

Figure 15. The smart workwear system 2.0, illustrated by its hardware components.  

 

Various studies have used different exposure thresholds for assessing risk factors, including 

work postures, when analyzing the exposure-response relationships with no consensus reached 

in the research area (Punnett and Wegman, 2004). The choices of the two levels of feedback 

thresholds in the system were set at 20° and 45° for the trunk inclination (Punnett et al., 1991; 

Jansen, Morgenstern and Burdorf, 2004), and at 30° and 60° for the arm elevation (Hanvold 

et al., 2015; Hansson, Arvidsson and Nordander, 2016; Wahlström et al., 2016). Additional 



 

 

 

38 

exposure thresholds, i.e. trunk flexion over 30° (Hoogendoorn et al., 2002; Lötters et al., 2003) 

and upper arm elevation over 45° (Silverstein et al., 2008; van Rijn et al., 2010), and the 

angular percentiles at 50th, 90th, and 99th of both upper arm and trunk (Hansson et al., 2010; 

Balogh et al., 2019) were also presented when evaluating the intervention effects in reducing 

adverse postures. 

5.4.2 Intervention effect on work postures 

Trunk posture 

The trunk inclination angle of the four sessions are presented as the time over 20, 30 and 

45 (Figure 16a) and the percentile at 50th, 90th and 99th (Figure 16b). During the vibrotactile 

feedback was provided, statistically significant median decreases were observed in all 

parameters comparing intervention sessions 1 & 2 to baseline (p < 0.01). The group median 

time of trunk inclination over 20° and 30° from baseline (medians of 56 s and 26 s) decreased 

slightly more than half. The group median time over 45° decreased substantially from baseline 

(a median of 12 s) to intervention sessions 1 & 2 (medians of 3 s and 1 s). Shortly after 

feedback withdrawal, statistically significant median decreases were still observed in all 

parameters comparing post-intervention session to baseline (p < 0.01), with a slightly smaller 

reduction. 

In addition, statistically significant median increases in the session duration were observed 

comparing intervention sessions 1 & 2 (medians of 389 s and 360 s) to baseline (medians of 

326 s) (p < 0.01). However, when comparing post-intervention session (medians of 335 s) to 

baseline, the difference in the session duration was no significant (Figure 16c). 
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Figure 16. Comparison between the four test sessions of: (a) time in trunk inclination 

exceeding 20, 30 and 45, (b) the 50th, 90th and 99th percentiles of trunk inclination, and 
(c) the duration of each session. *p<0.05, **p<0.01. 

(°
) 

Trunk inclination angle 

Percentiles 
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Arm posture 

The upper arm elevation angle of the four sessions are presented as the time over 30, 45 and 

60 (Figure 17a) and the percentile at 50th, 90th and 99th (Figure 17b). Statistically significant 

median decreases were observed in the time in arm elevations over 30 and 45 from baseline 

(medians of 92 s and 36 s) to intervention session 2 (medians of 64 s and 32 s) (p < 0.05). 

After feedback withdrawal, statistically significant median decrease was only observed in the 

time in upper arm elevation over 30 comparing post-intervention session to baseline (p < 

0.05). 

 

 

Figure 17. Comparison between the four test sessions of: (a) time in arm elevation 

exceeding 30, 45 and 60, and (b) the 50th, 90th and 99th percentiles of arm elevation. 
*p<0.05, **p<0.01. 
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For the percentiles of upper arm elevation, statistically significant median decreases were 

observed in the 50th and 90th percentile of the upper arm elevation from baseline (medians of 

20° and 46°) to intervention session 2 (medians of 18° and 39°) (p < 0.01). Statistically 

significant median decreases were also observed from baseline to post-intervention session in 

the 50th (a median of 18°, p < 0.05) and 90th (a median of 41°, p < 0.01) percentile of the upper 

arm elevation. No significant decrease in the 99th percentile was observed across sessions. 

Test on repetition effect 

In order to test whether the adverse work postures were reduced due to performing the order 

picking tasks repetitively over time, additional tests comparing the first three work cycles in 

the baseline were run for both trunk and upper arm postures. Only one statistically significant 

median difference was observed in the time of trunk exceeding 30, which had a small median 

increase from the first work cycle (a median of 8 s) to the second work cycle (9 s). There was 

no significant difference in the other parameters during the work cycles in the baseline. 

5.4.3 System comfort and usability evaluation 

The participants were almost free from discomfort or pain in the body through the whole tests. 

Their ratings on Borgs CR10 scale had a mean (SD) value of 0.5 (0.8) before starting the 

baseline, and a maximum of 0.9 (0.9) through the whole tests. The participants had low ratings 

on the Comfort Rating Scale (0 to 20 scale) suggesting that the system was comfortable to 

wear. The mean (SD) ratings on the sub-dimensions were: emotion 2.8 (3.9), harm 0.8 (1.1), 

perceived change 1.5 (2.1), and anxiety 1.5 (4.1). The participants had high ratings on the 

system usability scale (total score 0 to 100), with a mean (SD) score of 81 (16), which suggests 

that the system had good overall usability (Bangor et al., 2009). In particular, the participants 

felt confident about how to use the system, and rated that it was easy to use and easy to learn, 

with a mean rating ranging from 4.3 to 4.7 (items on a 5-point scale). 

Results from the interview showed that the participants considered the vibrotactile feedback 

positively contributed to better postures of the trunk (N=14, out of 15) and the arm (N=12). A 

majority of the participants stated that the vibrotactile feedback reminded them to adopt better 

postures (N=10). Most of them also stated that they learned better work techniques (N=13). 

The participants gave examples of how they changed their work technique because of the 

vibrotactile feedback: e.g. to load and unload from the long side of the cart, have a more 

upright trunk posture, walk closer to the racks, and place the items in the cart closer to the 

body. Moreover, the participants reflected on the design of the work. A majority of them 

proposed improvements to the design of the racks, boxes and placement of the items (N=14). 

Further, several of them mentioned that the vibrotactile feedback was of more importance for 

them when learning which situations were unsuitable, than the body discomfort
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6 Discussion 

This chapter first discusses the methodological aspects of this thesis, including material and 

measurement methods used. Then the main results of the four included studies are discussed, 

regarding the accuracy of the tool and models (study I & II), the functionality and usability of 

the workwear systems (study III & IV), and the intervention and learning effect of using the 

system (study IV). 

6.1 Material 

In this thesis, a range of participants from various occupations were included. In study I, 10 

university students and staff were involved in order to validate an iPhone-based tool for for 

assessment of upper arm postures and movements at work. The number of participants 

involved was in agreement with other studies with similar aims. Korshoj and colleagues 

validated a sensor for arm and upper body measurement with 8 participants (Korshøj et al., 

2014), and Schall and colleagues validated an IMU system with 6 participants (Schall et al., 

2016).  

In study II, 12 university students and staff were involved to evaluate models using heart rate 

and accelerometry for estimating work metabolism. The number of participants was similar to 

the original studies that developed these models (Brage et al., 2004; Strath, Brage and 

Ekelund, 2005). Compared to those studies, the participants in study II had a wider spread in 

age and fitness level. However, with a limited number of female participants (N=3), the sex 

difference in the model estimations cannot be investigated. 

In study III, a field test with 8 participants from four occupations were performed in order to 

demonstrate and evaluate a newly developed smart workwear system (1.0) for ergonomic risk 

assessment. The choice of four occupations was made to include work tasks with light to heavy 

workload and including static as well as dynamic tasks. However, the two construction 

workers had really light work tasks during the measurement day. Still, for the aim of testing 

and evaluating the system, results from the measurements and subjective ratings provided 

useful information. For studies that aim to assess the occupational exposure, measurement for 

longer periods with a larger group of participants should be performed, to provide a better 

picture of the workload (Wahlström et al., 2010). 
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In study IV, 15 employees in a vehicle factory were involved to evaluate a smart workwear 

system (2.0) for work postures intervention using real-time vibrotactile feedback. Among 

them, there were two employees working with logistic applications who had less experience 

in order picking tasks compared to the others. Therefore, the influence of experience level in 

the intervention effect was not investigated, which should be looked into in future studies. 

Still, the number of participants was in agreement with similar studies (Agruss, Williams and 

Fathallah, 2004; Vignais et al., 2013; Doss et al., 2018), and was sufficient to show an 

intervention effect in the measured outcomes. To sum up, although rather small numbers of 

participants were involved in the studies, the results of the involved participants were found 

valid and relevant. 

6.2 Measurement methods 

6.2.1 Postures and movements of upper arm and trunk 

Calibration 

Technical measurement methods were used for assessing the upper arm elevation and trunk 

inclination in studies I and IV. The calibration procedures of the upper arm vary between 

studies and research groups, which can affect the absolute assessment results and impede the 

possibility for between-study comparison. In study I, a calibration procedure in agreement 

with Bernmark and Wiktorin was used, by asking the participant to hold a 2-kg weight and 

lean to the side with the arm hanging vertically (2002). This posture was taken as the reference 

posture for both the new tool and the criterion measurement. The same calibration procedure 

has been adopted in a few studies in both laboratory and field measurements (Hansson et al., 

2006; Wahlström et al., 2010; Jackson, Mathiassen, Wahlstrom, et al., 2015). 

In study IV, another single-pose calibration procedure was used to calibrate both upper arms 

and the trunk, which is considered fast and simple and has been adopted by a few studies (Cutti 

et al., 2008; Schall et al., 2016; Robert-Lachaine et al., 2017a). The procedure was done by 

asking the participant to stand straight with relaxed arms and palms facing the body. However, 

this calibration can have lower accuracy in estimating the upper arm elevation angles (Robert-

Lachaine et al., 2017a), since its angular measurement is affected by the individual differences 

in body shape. For example, individuals with a leaner body will have a smaller upper arm 

angle relative to gravity in this calibration posture (defined as 0 degree after calibration) 

compared to individuals with a larger or muscular upper body. In study IV, with the aim to 

evaluate the intervention effect using vibrotactile feedback in posture training in a within-

subjects design, the calibration procedure was chosen due to that the need for convenience 

outweighed the need for accuracy. The absolute upper arm elevation for each individual might 

be underestimated, while the intra-individual change of arm elevation across the scenarios 

could still be captured. 
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Sensor placement 

In addition to the choice of calibration procedure, the placement of sensors is another factor 

that influences the measurement outcome. The placement also varies between studies and 

research groups. For upper arms measured by common inclinometry systems, one placement 

with smaller distance to the shoulder joint over medial deltoid has been used (Trask et al., 

2014), which could reduce the errors introduced by dynamic accelerations from upper arm 

movements (Hansson et al., 2001). However, by placing the sensor over the deltoid, the 

bulging of the deltoid muscle during arm movement will affect the sensor alinement with the 

humerus. To reduce the error from soft tissue artifacts, another placement with sensor’s upper 

edge distal to the insertion of deltoid muscle has been used (Bernmark and Wiktorin, 2002; 

Hansson et al., 2010; Wahlström et al., 2010). Jackson and colleagues reported measurement 

bias of using ACCs attached at both placements on the upper arm, with mean bias around 10° 

(Jackson et al., 2015). The measurement bias was discussed that it might be caused by the 

differences in reference postures as well as the size of the attached surface (Hansson, 2015; 

Jackson et al., 2015). In study I, the iPhone was fixed on the upper arm at the insertion of the 

deltoid muscle. In addition, with its built-in sensor fusion using the accelerometer and 

gyroscope, the errors from dynamic arm movements can also be reduced to a large extent (as 

shown in Figure 10). By placing the iPhone to reduce soft tissue artifacts and using the sensor 

fusion signals, the performance of the iPhone application in assessing upper arm movements 

was improved and better than the common inclinometry using solely accelerometer.  

For the trunk inclination, different placement protocols have been used, which vary from on 

the sternum at the front side of trunk (Van Driel et al., 2013; Schall et al., 2015), or on the 

back at levels of T1-T2 vertebrae (Korshøj et al., 2014; Labaj et al., 2016), to between scapulae 

at T6 (Wahlström et al., 2016). In study IV, the IMU sensors were placed in small elastic 

pockets of a functional workwear t-shirt. The designed placements were, for the upper arms, 

at the insertion of deltoid muscle, and for the trunk, at the level of T1-T2 vertebrae. The choice 

for placing the IMU at T1-T2 level was due to practical concern. The other two placements 

may not follow the trunk so well, due to varied body shape if placed on the sternum/chest or 

during shoulder extension movement if placed between two shoulder blades. The exact sensor 

placements, when worn by individuals, would have some variations due to different body 

shapes, even with four different sizes of t-shirt to choose from. In this study, with the within-

subject design to compare changes across the scenarios, the influence is less critical. As shown 

by the results (Figure 16), the intervention effect on trunk postures could be captured. 

Criterion measure and definitions 

Although OTS was regarded as the criterion measure for upper arm assessments in study I, it 

was not obvious how to find the best line representing the underlying humerus. The reflexive 

markers attached to the skin could be affected by soft tissue artifacts, especially during arm 

elevation and rotation. Two reflexive markers on the humeral head and the lateral epicondyle, 

following the protocol of Bernmank and Wiktorin (2002), were used in most test scenarios. 

The marker on the wrist was used together with the one on the humeral head for assessing 
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upper arm elevation during static arm abduction tests. This was used to counteract the errors 

from soft tissue artifacts when the arm was elevated and supinated (with the palm facing up). 

In future studies, an increased number of markers in combination with the anatomic joint 

coordinate systems recommended by the International Society of Biomechanics (Wu et al., 

2005) may provide a better estimation of the humerus elevation during arm rotations. 

In general, work postures including trunk and upper arm angles can be defined in two ways, 

i.e. the segment angle, which is relative to the gravity, and the joint angle, which is relative to 

the another body segment (van Dieën and Nussbaum, 2004). Both definitions assume body 

segments to be rigid links as a simplification of the reality in ergonomic practice. Upper arm 

elevation angle is defined as the angle of the upper arm relative to gravity, which was used in 

studies I and IV as well as in common inclinometry systems. The measurement did not 

differentiate between arm flexion and abduction. This was due to limitations of the current 

sensor technology including the noise in the gyroscopes. With IMU systems incorporated with 

magnetometers, orientation in three dimensions can be estimated, but magnetic disturbances 

still limit the use of magnetometers in many work situations (Robert-Lachaine et al., 2017b). 

In some other studies, the joint angle of upper arm, also called the shoulder angle, has been 

used, which is defined as the relative angle between upper arm and trunk and calculated 

following an Euler angle sequence in three dimensions (Oyama et al., 2017; Robert-Lachaine 

et al., 2017a). Similarly, the trunk segment angle, which is also referred to as trunk inclination, 

is defined as trunk orientation relative to gravity. This definition has been used in study IV, in 

common inclinometry systems (Korshøj et al., 2014) as well as in IMU systems (Oyama et 

al., 2017). The trunk joint angle can be referred to as trunk bending and twisting angles, and 

is defined as trunk orientation relative to the pelvis (van Dieën and Nussbaum, 2004). This 

definition has mainly be used in IMU systems and calculated by Euler angle (Robert-Lachaine 

et al., 2017a). However, these two definitions might be used implicitly when assessing trunk 

motions (Schall et al., 2015). Therefore, it is important to be aware of which definition of 

postural angles is used before comparing data to previous studies or validating methods to a 

criterion measure. 

6.2.2 Work metabolism estimation 

Calibration 

To estimate work metabolism using HR (with or without ACC), an individual calibration 

procedure is needed to build the HR and VO2 relationship. Calibration procedures should 

resemble the tasks to be performed, in order to get a better estimation (Åstrand et al., 2003). 

In study II, three submaximal tests were used for the individual calibration. Chester step test 

is a simpler and more convenient test to carry out. It also has a look-up table and can be used 

in the field without a need for measuring VO2. The submaximal treadmill and arm ergometer 

tests require more resources and need VO2 measurement to carry out. The Chester step test 

and submaximal treadmill test are both designed to calibrate the condition involving mainly 
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leg muscles, while the submaximal arm ergometer test is designed to calibrate the condition 

involving mainly arm muscles. 

When comparing the calibration procedures for the three models’ performance in estimating 

work metabolism, the calibration using a treadmill with measured VO2 had smaller limits of 

agreement (LoA) compared to Chester step test without measured VO2 in all models. This also 

reflects the trade-off between method convenience and performance when choosing different 

assessment methods. 

When performing the submaximal arm ergometer test, it is also worth noticing that it might 

be difficult to get an accurate individual calibration. The reasons for this include that some 

participants may not be used to perform such arm exercise up to a submaximal level, and 

different individuals may utilize different muscles in order to perform the test. 

Technical properties of the sensors  

The specifications of the accelerometers, and therefore the thresholds used in the models in 

study II, differed from previous studies (Strath et al., 2002; Brage et al., 2005). One reason 

was that in previous studies, the accelerometer outputs were device-dependent and calculated 

in the form of ‘counts’. This calculation used built-in algorithms and differed between 

manufacturers, which were difficult to compare across studies. Therefore, in order to evaluate 

and compare the three existing models from different studies, the raw acceleration signals of 

the accelerometers (in the unit of m/s2 or g) were used, and the thresholds in the original 

models were adapted to ours. The choices of the thresholds may need to be modified when 

applying these models to sensors from other manufacturers. 

Other influencing factors 

HR can be influenced by several non-physical factors, such as heat, stress, and food or caffeine 

intake. Therefore, the performance of estimation models for VO2 based on HR would also be 

affected by non-physical factors, which are common in real life scenarios. Study II was 

performed in a laboratory setting where the non-physical factors were controlled. However, in 

real life scenarios, those factors cannot be avoided and will influence the estimation of VO2 

based on HR. The estimation models using both HR and ACC might have a buffering effect 

against the influence from non-physical factors, as the ACC-VO2 relationship will not be 

affected. 

6.2.3 Sitting and standing 

In study III, sitting and standing were classified using the thigh-worn IMU, following the 

algorithm and sampling frequency of 30 Hz as used and validated by Skotte and colleagues 

(2014). Only accelerometer signals of the IMU were used. Still, some misclassifications were 

observed, such as kneeling might be classified as standing. The algorithm used in the system 

should be improved when validation studies with better algorithms are available. 
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6.2.4 Subjective assessments 

Rating of tiredness and exertion 

Subjective ratings can be used to supplement physiological measurements and assess 

subjective responses, such as perceived exertion, fatigue and pain intensities (Borg, 1998). 

Although they might be influenced by other factors, e.g. individual motivation and 

experiences, they still provide valuable information. In study III, perceived physical tiredness 

(0-9 scale) and Borg’s RPE scale were used to show participants’ perception of workload. 

Perceived physical and mental tiredness was used by Engkvist and colleagues in assessing the 

work of several occupations, including nurses and recycling center workers (Engkvist, 2006; 

Engkvist et al., 2010). As this study focused mainly on physical workload, only the physical 

tiredness scale was included for a subjective assessment. Borg’s RPE scale is commonly used 

for estimating work task demand. It provided a subjective assessment of the work demand in 

addition to the workload assessed by the smart workwear system. 

Borg’s CR10 scale is a commonly used scale to estimate pain intensities (Borg, 1998). In study 

IV, it was used to assess what the level of body discomfort or pain was and if it increased for 

the participants wearing the system with vibrotactile feedback through the tests. 

Questionnaires on system usability 

When evaluating the usability of the smart workwear systems, different questionnaires were 

used in study III and IV. A modified questionnaire focused on the system wearability and 

usefulness was applied in study III. The modified questionnaire covered the items that were 

most relevant to the wearable system evaluated. The disadvantage was that it could not be 

compared with other studies. Two standardized questionnaires, i.e. the Comfort Rating Scale 

and the System Usability Scale, were used in study IV. These questionnaires were validated 

by previous researches and offered a score that can be used for comparison (Brooke, 1996; 

Knight and Baber, 2005). However, they may include items that were not relevant for the 

wearable system evaluated, or missing some items that were of interest. Still, for study III and 

IV, the used questionnaires provided a general assessment of the system usability.  

Semi-structured interviews 

In study IV, semi-structured interviews were conducted for about 10 minutes with each 

participant. One limitation was that, due to its semi-structured design, not every participant 

got the same follow-up questions depending on their responses. One the other hand, the 

interviews gave opportunities for participants to express their thoughts and reflections on 

certain aspects of their use of the wearable system, and researchers were able to ask follow-up 

questions to gain deeper understanding of their responses. 
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6.3 Result discussion 

6.3.1 Criterion validity of the ErgoArmMeter 

The developed iPhone application (ErgoArmMeter) showed to be accurate for measuring 

upper arm elevation under static and dynamic conditions. Its accuracy was similar to results 

reported by Korshoj and colleagues (2014) with an accelerometer in static arm elevations and 

slow velocity movements, and better than that in fast movements. In simulated work tasks of 

mail sorting and blow-drying hair, the RMSE was similar to results reported by Schall and 

colleagues (2015) with an IMU system during simulated dairy parlor work. 

Signals only using accelerometer showed an overestimation on the measured angular velocity 

in medium to fast movements (see Table 5 and Figure 10). The improved accuracy by 

integrating gyroscope and accelerometer signals was distinctive in movements with medium 

or fast velocities (see Table 5). This improvement in the accuracy level is of practical 

importance for assessing occupational exposures, as an overestimation of the exposure could 

lead to an underestimated exposure-response relationship. 

A similar study was conducted by Chen and colleagues (2018) showing that the upper arm 

angular assessment errors can be reduced by up to 87% depending on the work rate and sensor 

fusion of gyroscope and accelerometer signals compared to solely accelerometer signals. One 

difference worth noticing is that due to a different method used for signal processing and 

calculation of the arm elevation angle, i.e. calculated from quaternion to Euler angles, their 

results showed that signals only using accelerometer underestimated angular velocities in 

medium to fast movements. 

6.3.2 Model performances for work metabolism estimation 

Three models, i.e. the HR-Flex model, the HR branched model, and the HR + arm-leg ACC 

model, were evaluated for estimating work metabolism in five work tasks using mainly arm 

or leg muscles with a dynamic or static component. The HR + arm-leg ACC model performed 

best in simulated postal delivery, meat cutting and construction work. The HR-Flex model 

performed best in simulated painting. The HR branched model had large underestimations in 

four out of five work activities, except in office work. Therefore, the HR branched model may 

not be suitable for estimating work tasks which have a dynamic component. This was 

contradictory to the results reported by Brage and colleagues, showing that the HR branched 

model had a more accurate estimation than the HR-Flex model in daily activities (2015). In 

their study, the overall activity intensity was low — as stated about 62% of time the HR was 

below flex-HR point, which might be the reason for the different findings. However, in 

occupational activities with a need for estimating work metabolism, the intensity level would 

usually be higher than their tested scenarios and more similar to our findings. A study from 

Edwards and colleagues also reported that the performance of the HR branched model might 

be limited by the heterogeneity in daily activities (2010). 
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Individual differences of the cardiovascular responses on different tasks, shown by the HR–

VO2 relationships, were observed between participants (see Figure 11). Reasons for the 

observed differences could be that participants performed the tasks with different work 

techniques, e.g. in how they used the muscles and how much force they exerted. In addition, 

the work tasks had different workload levels on participants with different fitness levels. When 

comparing the participants with higher fitness levels than the median value against the 

participants with lower fitness levels than the median value, slightly larger bias and RMSEs 

were observed. Still, due to the limited number of participants in the half group, no clear 

conclusion can be drawn on the factor of fitness level. 

Although the HR + arm-leg ACC model had good performance in most tasks, errors were 

observed during simulated painting. This work task was classified as an arm-mainly activity 

since the wrist-worn ACC had much higher output than the thigh-worn ACC. However, the 

VO2 was actually closer to the estimation based on the leg calibration rather than the arm 

calibration. One reason could be that participants used their trunk muscles, which have larger 

muscle mass than arm muscles. Another error was observed for the simulated construction 

work with mixed muscle groups, i.e. lifting tasks from floor to table. This work task was 

misclassified for eleven out of twelve participants as an arm-mainly activity since the thigh 

motion was relatively small and the arm/leg acceleration ratio exceeded the preset threshold. 

Further improvement of the classification algorithm in the model is still needed to suit various 

types of work. 

The simulated work tasks included were chosen to represent a variety of work involving 

different muscle groups and dynamic or static components. However, the number and duration 

of the tasks were still limited, and the tasks were more constrained compared to those in real 

life. Therefore, the models’ external validity regarding occupational activities in real life still 

needs to be evaluated in field studies. 

6.3.3 Functionality and usability of smart workwear system 1.0 

The smart workwear system 1.0 was developed as a demonstrator for automated risk 

assessment using wearable systems. The risks of too high workload and too much prolonged 

occupational sitting/standing were considered in the system. Risk criteria for too high 

workload were based on the relative aerobic strain (RAS), and the limits, i.e. 33% and 25%, 

were set based on literature research and a consensus discussion between project members. 

The literature mainly consists of psychophysical experimental studies and reviews on 

acceptable workload. The limit of the red level at 33% has been adopted by the International 

Labor Organization (Smolander and Louhevaara, 2011), which are in agreement or close 

agreement with several studies (Jorgensen, 1985; Waters et al., 1993; Wu and Wang, 2002). 

However, regarding work involving muscle groups with smaller mass or work with static 

components, the limit values vary from 18.5% to 29%, from studies with various subject 

populations, tasks and task durations. Therefore, a tentative limit of the yellow level was 

proposed at 25%, and further inspection of the work is required if the RAS is at yellow level. 
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The risk criteria of prolonged occupational sitting/standing were proposed based on both the 

duration proportion and prolonged behavior episodes with a focus on adverse health effects. 

Still, there is no clear evidence on how often and how long a break can be counted as effective, 

nor on what activities are most recommended to take as a break. Bergouignan and colleagues 

(2016) showed that introducing 5-minute breaks each hour can improve mood and vigor as 

well as reduce fatigue levels and food cravings. For the criteria proposed in the system, 

accumulated breaks of 5 minutes within a one-hour episode was counted as a way to deal with 

the lack of evidence. Better and more accurate exposure-outcome relationships, including time 

patterns of these behaviors, may emerge as research moves forward. Therefore, these tentative 

criteria used in the system can and will be updated as soon as better evidence underpinned by 

research is available.  

As a study to demonstrate the use of wearable systems for automated risk assessment, limited 

duration and number of days for the measurements were performed. Four occupations were 

included to represent a variety of work, from being inactive to having a high workload. 

However, the construction workers didn’t perform heavy tasks during the measurement 

period, which were revealed by their subjective ratings of physical tiredness and exertion level 

and the risk assessment results on RAS. 

The wearability and comfort of the system was found to be acceptable for most of the users 

(Figure 14). Although two levels of feedback were designed in the system, the feedback 

function was not tested on the users in this study. The risk assessment results were not 

explained to them directly after the measurement. These could contribute to the lower ratings 

on ‘usable’ and ‘easy to interpret’ in the questionnaire results. The limited range of sizes of 

the vest and lack of sufficient adjustability meant that two of the participants had to wear a 

very tight vest, which did not give optimal comfort. Still, participants reported that the 

wearable system did not distract nor disturb them during their work, and that the system was 

not unpleasant to use. 

6.3.4 Work posture intervention effects using smart workwear system 2.0 

The smart workwear system 2.0 was developed for improving work postures using its 

vibrotactile feedback function. It was tested in industrial order picking. Two levels of feedback 

were designed with the aim to reduce users’ adverse postures of upper arm and trunk. 

For the trunk, substantial significant reductions in the time in adverse forward trunk inclination 

over 20°, 30° and 45° and the 50th, 90th and 99th percentile were observed in all sessions 

compared to the baseline. The 99th percentile of trunk inclination decreased significantly from 

baseline (median of 64°) to post intervention session (median of 42°), see Figure 16b. This 

could be compared to and even better than that reported by Doss and colleagues in training 

nursing students with real-time audible feedback and verbal coaching, where a reduction in 

peak trunk flexion was 7.6 during a patient transfer task (2018). In addition, for trunk 

inclination over 20°, a tendency of increased time during the post-intervention session was 
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observed compared to the intervention sessions-2 (see Figure 16a). This was expected, as the 

intervention effect might weaken after the feedback withdrawal. Still, part of the effect 

remained and the improvement was significant compared to the baseline. Long-term effects 

still need to be tested with different strategies of giving feedback to strengthen the learning. 

Some studies have shown that intervention programs with the use of direct feedback has the 

potential to achieve sustained effects in work posture improvement at 1-week or 12-month 

follow-up (Agruss, Williams and Fathallah, 2004; Bazazan et al., 2018). 

For the upper arm, relative smaller proportional reductions were observed in the time in 

adverse arm elevations over 30 and 45 compared to the baseline. The time in arm elevation 

over 60° remained similar. This was due to that participants were more constrained in their 

upper arm movements due to the work design of the order picking tasks. Still, they were able 

to adjust some of their work technique to reduce the arm elevation, which was also confirmed 

and exemplified in the interviews. Therefore, in order to reduce the exposure and related risks 

to a large extent, work technique training should be combined with other risk-reduction 

strategies, e.g. redesign of work stations or organizational change. 

As each participant served as their own control, a test was run within the baseline to examine 

the potential repetition effect, i.e. whether participants improved their postures by performing 

the tasks repetitively over time. No significant decrease of the time in adverse trunk or arm 

postures was observed within the baseline. Therefore, with the observed significant reduction 

in adverse trunk and upper arm postures after providing vibrotactile feedback, it can be drawn 

that this improvement was mainly attributed to the intervention. Wilcoxon signed rank test 

was used in order to show the pairwise difference between sessions and the p-values were 

presented without a Bonferroni correction. This was chosen since the tests on each pair of four 

sessions were not independent from each other and the Bonferroni correction would be too 

conservative in this situation (a higher rate of false negative errors). Still, with an adjusted p-

value of 0.01 (which is close to a Bonferroni correction), all of the significant reductions in 

adverse trunk postures and a small part of the adverse arm postures remained significant 

(Figure 16a&b). 

The session duration increased significantly during the intervention sessions compared to the 

baseline (Figure 16c). This was expected as the participants need to learn from the feedback 

and try to change their work technique while performing the work tasks, as also reported by 

Vignais and colleagues (2013). Still, after a period of learning and practicing, the duration 

decreased. In the post intervention session, the duration was no longer significantly longer 

compared to the baseline. Due to the different lengths of session durations, i.e. longer duration 

after the feedback started, the data of adverse postures were presented and compared by the 

time, as in seconds, instead of time proportions. Slightly more significant changes could be 

observed when comparing the time proportions in adverse postures. However, since the 

participants chose their own work pace during the order picking tasks, the effect of time 
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constraint, which was reported by Vedsted and colleagues (2011) as one influencing factor, 

was not investigated.  

The usability and comfort of the system were rated high among the participants. However, two 

participants experienced some discomfort from the pressure over the chest due to the lack of 

size adjustability of the current workwear system. Two participants stated that the feedback 

was given too frequently. The workwear system can be improved by introducing more size 

choices and using self-adaptive feedback algorithms for future applications. As the system can 

be applied for both risk assessment and intervention of work postures, it has a potential to 

contribute to improve work technique and work design, and reduce MSD risks in manual jobs. 
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7 Conclusions 

In this thesis, methods using wearable technologies for ergonomic risk assessment and 

intervention were developed and studied. Revisiting the aims of the thesis, the following 

conclusions can be drawn accordingly: 

- To develop and validate a smartphone-based tool for assessment of upper arm postures and 

movements at work 

• The developed iPhone application (ErgoArmMeter) showed similar accuracy in static 

conditions and improved accuracy in dynamic conditions compared to the standard 

inclinometry used in field assessments. This improvement was achieved by integrating 

accelerometer and gyroscope signals. 

• The ErgoArmMeter can be used by practitioners and researchers in various scenarios 

for risk assessment, with convenience and low cost. 

- To evaluate methods using wearable sensors, i.e. heart rate (HR) monitor and 

accelerometers (ACCs), for assessment of work metabolism (WM) 

• When evaluating methods for assessment of WM, the HR + arm-leg ACC model 

showed best accuracy in most work tasks, except in office work and painting. The HR-

Flex model showed a small bias for the average of all tasks, and best accuracy in 

painting. The HR branched equation model showed large underestimations in most 

tasks, except in office work.  

• For estimating WM in the field using wearable technologies, the HR + arm-leg ACC 

model calibrated by a submaximal treadmill test and arm ergometer may be used when 

the need for accuracy level is high and resources are available. The HR-Flex model 

calibrated with Chester step test may be used when the resource and possibilities for 

individual calibration are limited. Still, further improvement of the classification 

algorithm in HR + arm-leg ACC model is needed in order to suit various types of work. 

- To develop and evaluate a smart workwear system (1.0) for ergonomic risk assessment of 

light and heavy physical work 

• A smart workwear system using a sensorized vest, an inertial measurement unit and 

smartphone application was able to detect risks of high physiological workload and 
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prolonged occupational sitting/standing behaviors. The assessment results were 

presented in three color-coded risk levels. 

• The system was evaluated as usable, comfortable and not disturbing to the work by 

most participants. Further development of the system is required for automated risk 

assessment including various aspects of ergonomic risk factors in real work life. 

- To develop and evaluate a smart workwear system (2.0) for work postures intervention using 

real-time vibrotactile feedback in industrial order picking 

• A smart workwear system using an instrumented t-shirt, inertial measurement units 

and vibration units which provided real-time vibrotactile feedback showed to be 

effective in improving work postures of the trunk and dominant upper arm in industrial 

order picking tasks, during and shortly after feedback withdrawal. 

• Larger effects were observed for trunk postures than for upper arm postures. Extreme 

upper arm elevation was not reduced since high picks were demanded by the tasks. 

The intervention needs to be combined with other strategies, e.g. improvement in 

workplace design, to further decrease the adverse postures. 

• The system was evaluated as comfortable and useful. The feedback from the system 

also triggered individual learning and reflection on the work design. The system has 

potential to be used for work posture training and work design improvement. 

 

Overall, the research in this thesis showed that wearable technologies can be used both in the 

laboratory and for field applications. The systems can collect postural and physiological data 

with information on temporal patterns. Ergonomic risks can be assessed and visualized. The 

developed smart workwear systems were perceived having good comfort and usability. In 

addition, feedback can be provided through the systems for preventive actions, e.g. training 

work techniques and supporting learning. Therefore, wearable technologies and the smart 

workwear systems as tools for risk assessment and intervention have a potential to contribute 

to improved work design, better work techniques, and reduced MSD risks in working life. 
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8 Practical implications and future work 

In this thesis, tools and methods using wearable technologies have been developed, evaluated 

and applied for ergonomic risk assessment and intervention, both in laboratory and field 

studies. They range from a single smartphone with its embedded sensors to smart workwear 

systems consisting of mobile applications and work clothes that house wireless sensors and 

vibrotactile feedback units. The application scenarios range from light to heavy work, static to 

dynamic work, and various tasks such as mail sorting and order picking. 

The smartphone application (ErgoArmMeter) is now being used by ergonomists in industry 

jobs and university researchers for educational purposes. In fact, it is free to download as an 

iPhone application (with about 4400 installed units till now). With smartphones being widely 

used by most people in daily life and the convenience of installing and using the application 

free of charge, ErgoArmMeter has the potential to be used in short-term risk assessments, e.g. 

for comparing present and prototype workstations or before and after workplace interventions. 

When long-term risk measurements for multiple full working days are needed, the smart 

workwear systems or other wearable sensors of smaller sizes can be used.  

The HR + arm-leg ACC model had best performance in most tasks, except in office work and 

painting. However, errors were still observed during simulated painting and lifting from floor 

to table. Further improvement of the classification algorithm in the model is needed in order 

to suit various types of jobs in real life. Another approach is to develop new models using 

neural networks for WM estimation. One method combining HR, ACC and respiratory signals 

using a neural network to estimate the WM was investigated in another study from our research 

group (Lu et al., 2018). Still, in future research, the model needs to be trained and validated in 

various occupational settings before they can be used in practice. 

Two smart workwear systems were evaluated for risk assessment of workload and intervention 

for improving work techniques. The systems showed good usability and wearability. 

Visualized results can be presented with color-coded risk levels, based on the pre-programmed 

risk criteria. Feedback can be provided based on pre-defined thresholds with different 

vibrotactile modes. The current risk criteria for work postures of trunk and upper arms are 

based on time percentage of adverse postures, percentiles of angular distribution and angular 

velocities. Some future improvements can be made regarding the criteria. One aspect is to 
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assess and present the variation of work postures and loads, which is shown to be an important 

parameter for the risk assessment and prevention (Mathiassen, 2006; Wells et al., 2007). The 

temporal pattern of occupational sitting and standing was included and assessed based on 

accumulated break time in the smart workwear system 1.0. This was made as an attempt to 

deal with the lack of evidence in the temporal pattern of sitting and standing for the exposure-

response relationships. These risk assessment criteria applied in the systems should be updated 

as soon as better evidence underpinned by high quality researches is available. 

The real-time vibrotactile feedback provided by smart workwear system 2.0 showed to be 

effective in improving work techniques and creating learning in a factory lab. Two levels of 

feedback were provided based on predefined thresholds. The effects of how and when to give 

feedback, e.g. the strategies of fading or increasing feedback (Goodman and Wood, 2009), 

individualized feedback, as well as using various vibrational modes of frequency and 

amplitude, need to be evaluated in future studies. In addition, the tests were performed during 

order picking tasks without fixed cycle time. Future research needs to examine whether the 

effects can last in the long term, transfer into other work scenarios with new tasks and in 

conditions with fixed cycle time, which are common in production lines. 

Still, further development is needed to apply the systems in real work life. If textile electrodes 

are to be used, it is crucial to keep the moisture and skin-electrode contact and reduce 

movement artifacts to ensure reliable signals. The wireless connection of current systems is 

achieved via Bluetooth, which may be limited in the number of units connected, the distance 

between the unit and data receiver as well as the amount and speed of data transfer. Other 

wireless communications such as WiFi, fourth generation (4G) or the emerging fifth 

generation (5G) cellular network may be adopted in future versions of smart workwear system 

to ensure larger numbers of devices to be connected and larger amount of data to be transferred 

with high speed in real time. Higher computing capabilities and comprehensive databases for 

collection, analyses and storage of the data over time may also be developed using cloud 

platforms or local servers (Vega-Barbas et al., 2019). Such databases can be used for risk 

assessment of occurring tasks, generating new ergonomic guidelines, and developing 

interventions targeted at each individual (Romero et al., 2018). 

In order to implement and achieve optimal use adherence and outcomes of wearable 

technologies at workplaces, it is important to fulfill employees’ needs, improve acceptance 

and generate motivation for long-term usage, as discussed earlier in Chapter 2.5. Future 

research may involve employees, OHS organizations and industrial partners in the 

development and implementation of smart workwear systems in a participatory approach. 

How to ensure data privacy, ownership and access as well as share and comparison of data 

across groups or organizations are also important aspects for future development of wearable 

systems. These specifications may evolve along with the generation of governmental 

standards, industry regulations and consensus in the research field. Additionally, the economic 

challenges may affect the implementation of wearable systems in the workplaces (Khakurel, 
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Melkas and Porras, 2018). Thus, to quantify the return on investment or cost-benefit ratios 

may be a strong incentive for both OHS and industrial organizations to apply the systems, 

which need to be looked into in future research. 

In the foreseeable future, smart workwear systems can provide opportunities for automated 

assessment of risks at work, with sufficiently good accuracy and resource efficiency regarding 

time, competence demands and equipment costs. Real-time feedback can be provided based 

on adverse work techniques, accumulated workload, fatigue or other work exposures, which 

can be used for alerting of risks or training. The assessment results can be provided to different 

levels of user groups, from individual employees, first-line managers to top management 

teams. Results on an individual level can be used by employees to evaluate the work exposure 

impact, consult with OHS experts and get training or instructions to prevent work-related 

injury and illness. Results on a group or organizational level can be used for organizational 

risk management including risk assessment and treatment, design and redesign of work, as 

well as establishing new ergonomic guidelines. 

Therefore, with further research and development, smart workwear systems have the potential 

to contribute to the risk assessment and intervention, the prevention of work-related ill health, 

and the improvement on the design and overall quality of work. 
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Appendix A: Interview guide used in study IV 

 

• How did you experience the task of order picking here compared to ordinary order 

picking? 

• Did you feel discomfort in any body parts? 

• How did the discomfort affect your way of working? 

• How did you experience the vibrotactile feedback? 

• How did the vibrotactile feedback affect your way of working? 

• What did you learn from working with vibrotactile feedback? 

• How would you like to change the order picking task, the racks and the placement of 

the items? 

• Is there something you would like to change that cannot be changed? 
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