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ABSTRACT

Traumatic spinal cord injury (SCI) commonly results from falls, sport activities or traffic
accidents and most often results in lost sensory, motor and/or autonomic functions below the
level of injury. The cellular- and immune response following SCI is complex and has implications
for regeneration and recovery. The immune cell response, and the microglial response in
particular, has not yet been investigated at single-cell resolution. Furthermore, several questions
remain concerning the importance of histocompatibility of transplanted stem cells, their cellular
response and their contribution to functional recovery following SCI. This thesis investigated
stem cell transplantation as a therapeutic approach for SCI as well as disease-specific
transformations of immune cells, focusing on microglia, following SCI.

In the first project we investigated the causality between transplantation of neural
progenitor cells (NPCs) and recovery of hind limb locomotor function following SCI.
Ventricular-subventricular zone (V-SVZ) derived NPCs were transplanted into the injury
epicenter of rats subjected to severe contusion SCI. The NPCs were investigated in terms of
differentiation, transcriptional profile, effect on neuroinflammation and causal contribution to
recovery of hind limb locomotor function. We found that there is causality between
transplantation of NPCs and recovery of hind limb locomotor function and that this correlates
with their differentiation into oligodendrocytes, enhancement of myelination and suppression
of neuroinflammation. In the second project we investigated the importance of
histocompatibility of mesenchymal stem cells (MSCs) transplanted into SCI. Syngeneic- or
allogeneic mouse bone marrow derived MSCs were transplanted into the injury epicenter of mice
subjected to severe contusion SCI and the immune- and inflammatory response as well as the
contribution to functional recovery was investigated. We found that syngeneic MSCs activate
macrophages alternatively and enhance neuronal survival, which correlates with suppression of
inflammation and enhancement of hind limb function. Thus, the histocompatibility of
transplanted MSCs is of importance for their therapeutic potential in SCI. In the third project
we investigated the cellular response of MSCs transplanted into SCI. Mouse bone marrow
derived fluorescent MSCs were transplanted into the injury epicenter during the acute phase of
SCI in mice and isolated one week later. The global transcriptional profile, phenotype and fate
of the MSCs was investigated. We found that MSCs transplanted into SCI adopt immune-cell
like characteristics by up-regulating expression of genes and surface markers associated with
immune cells and immune system functions (phagocytosis/endocytosis, production of
cytokines/chemokines). In the fourth project we investigated disease-specific transformations of
immune cells in SCI at single cell resolution. SCI was induced in mice and CD45" immune cells
were isolated from the spinal cord at various time points and subjected to single-cell RNA
sequencing. The gene expression analysis was supplemented with histological evaluation as well
as a depletion model of microglia. We found that following degeneration, demyelination or
trauma to the CNS homeostatic microglia undergo a distinct temporal transformation resulting
in a disease-associated subtype of microglia, which persists in the chronic phase of the injury and
has a beneficial role for functional recovery.

In conclusion, stem cell therapy for SCI shows a great deal of potential but is, at
the moment, not sufficient or efficient enough to restore function to a near-normal level.
Moreover, following SCI microglia undergo disease-associated transformations, which persists

in the chronic phase of the injury, and contribute to functional recovery.
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INTRODUCTION

Spinal cord injury
The spinal cord relays information between the body and the brain

The spinal cord extends from the base of the brainstem along the vertebrae in a caudal direction
and is a part of the central nervous system (CNS). It is protected by the meninges, the
cerebrospinal fluid (CSF) located in the subarachnoid space, fibrous- and adipose tissue located
in the epidural space as well as by vertebrae. The CNS, including the spinal cord, is composed
out of gray- and white matter. The cell bodies and the dendrites of neurons as well as
interneurons and glial cells reside in the gray matter while the white matter is mainly made up
of myelinated axons. Ascending tracts (dorsal column, lateral- and ventral spinothalamic) in the
white matter contain afferent fibers which carry sensory information (crude- and fine touch,
pain, temperature, proprioception) entering the spinal cord through the dorsal root. The cell
bodies of the afferent axons are located in the dorsal root ganglion. Descending tracts (ventral-
and lateral corticospinal, reticulospinal, rubrospinal, vestibulospinal, tectospinal) in the white
matter contain efferent axons, which exit the spinal cord on the ventral side and mediate motor
function by innervation of muscles. The dorsal and ventral roots merge and form one common

spinal nerve in the periphery [1].
External forces are not the only cause of spinal cord injury

A disruption in the spinal cords ability to relay information between the cerebrum and the body
is an injured spinal cord. This functional deficit stems from injury to the sophisticated and fragile
system and network of cells, supportive tissue and axons. The initial disruption, which is termed
the primary injury, can be classified as traumatic or non-traumatic. Traumatic spinal cord injury
(SCI) is defined as an injury occurring from external forces resulting in a horizontal dislocation
of vertebrae causing mechanical damage to neuronal- and glial cells, axons and blood vessels. The
most common sources of external forces are traffic accidents, falls and sport activities. Non-
traumatic SCI stems from disease processes including neurodegeneration, vascular lesions,
tumors and infections [2, 3].

Young men have the highest risk for spinal cord injury

With reliable data available from only a few countries the incidence- and prevalence of SCI has
proven difficult to measure and to generalize across geographical regions. The incidence in
countries such as Sweden, Finland, France, Ireland, Fiji, Turkey, Spain and Australia varies
between 10-20 cases per million individuals. On the contrary, countries such as Romania, Spain
and Greenland have an incidence rate of 20-30 cases per million individuals [4] with USA,
Portugal and New Zeeland taking the lead with around 40-50 cases per million individuals [4,
5]. Highest prevalence of SCI is found in the USA at about 900 individuals per million and
lowest in France and Finland at about 250 individuals per million [4]. Eight out of ten patients
with a SCI is a male [6] between 15-30 years of age [7]. About half of the SCIs involve the
cervical spinal cord while only about one third of the SClIs affect the thoracic spinal cord [2, 6].
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The secondary injury is the culprit

Following the primary injury of SCI, the injury continues to develop and is termed the secondary
injury. The secondary injury is further divided into the acute phase (0-2d), subacute phase (3-
14d), intermediate phase (15d-6m) and the chronic phase (>6m). Pro-inflammatory cytokines
such as IL-1B and TNF-a are secreted during the acute phase of SCI, which contributes to
inflammation but also to formation of edema. The newly formed edema increases the intra-
parenchymal pressure, adds to, and extends the primary injury by inducing a mechanical pressure
on the tissue [2, 8]. During the acute phase of SCI the blood vessels are disrupted by thrombosis,
bleeding and/or vasospasm which results in insufficient supply of oxygen and nutrients (i.c.
ischemia) to the spinal cord [9]. Moreover, the blood-spinal cord barrier is compromised
resulting in infiltration of inflammatory cells (granulocytes, T/B-cells and macrophages) from
the periphery which in combination with the negative impact of the ischemia eventually causes
cells to undergo necrosis [8, 10, 11]. Due to the hostile conditions during the subacute phase
neurons and glial cells experience disruption in their balance of Na*, K* and Ca** ions. Elevated
levels of intracellular Ca?* in neurons can result in necrosis or mitochondrial dysfunction, thus
further developing the SCI [12, 13]. Neurons undergoing necrosis release glutamate into the
parenchyma [14]. The glutamate activates kainite, AMPA- and NMDA-receptors on other
neurons which in combination with their reduced ability to regulate their sodium levels due to
dysfunction of ATP-dependent sodium pumps results in them undergoing necrosis [2, 15-17].
Neural cells undergoing necrosis release large amounts of ATP, potassium and DNA, which
activates microglia. The activated microglia in combination with other immune cells phagocytose
neurons and oligodendrocytes undergoing apoptosis as well as myelin debris [18]. Infiltrating
macrophages and lymphocytes contribute to apoptosis of neurons while glial cells accelerate the
inflammatory response [2, 18]. The phagocytizing cells release free radicals which contribute to
the necrosis of neural cells by mediating damage to DNA and oxidation of proteins and lipids
[19]. Thus, apoptosis of glial- and immune cells as well as neural cells in a SCI environment
result in a loss of neurons and demyelination of axons [20]. Hence, the death of neural cells as
well as the lack of proper blood supply during the acute- and subacute phase adds significantly
to the primary injury, and the secondary injury thereby probably exceeds the extent of the
primary injury.

During the chronic phase of SCI lost neurons and oligodendrocytes are replaced
by a cystic cavity formed by macrophages, extracellular fluid and connective tissue [21]. Reactive
astrocytes in combination with extracellullar matrix (ECM) proteins (proteoglycans, tenascin,
NG2) form a glial scar, which surrounds the cystic cavity [22, 23]. Stromal cells formed from
pericytes and fibroblasts can add to the glial scar. The cystic cavity in combination with the glial
scar surrounding it forms a mechanical- and biochemical barrier for axons to regenerate from the
cranial to the caudal side of the SCI [2, 22, 24, 25]. However, the role of the glial scar is mainly
to encapsulate the injury area, the inflammatory cells and the injury-associated molecules and
thereby reduce their effect on the surrounding tissue [26, 27]. During this phase axons undergo
Wallerian degeneration. Moreover, myelin-associated molecules (Nogo-A, MAG, proteoglycans)
which are debris and bi-products from myelin degradation, and substances released from dying
oligodendrocytes can inhibit neurite outgrowth and axonal regeneration [28]. Nogo-A is
expressed mainly by oligodendrocytes and inhibits neurite outgrowth when it attaches to its
receptor on the membrane of the neuron [29]. MAG is present in myelin and is originally
produced by oligodendrocytes [30]. Proteoglycans are closely related to the formation of the glial

scar and are expressed by oligodendrocyte precursors, astrocytes and meningeal cells [31].
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Moreover, myelin debris present in the injury epicenter prevents the joint action of macrophages,
lymphocytes and astrocytes required for re-myelination of axons. The glial scar itself also has a
detrimental effect on the myelination through secretion of inhibitory factors [28, 32]. Hence,
there is a mechanical barrier formed by the cystic cavity and the glial scar, which inhibits neurite-
and axonal outgrowth. The glial scar and secreted substances also form a biochemical barrier by
limiting the myelination of axons. The lack of functional axons result in a lack of functional

recovery, be it motor, sensory or autonomic functions.
The spinal cord, and brain, undergo modifications due to the plasticity of the CNS

Attempts at endogenous regeneration is mediated by neural precursors found in the central canal
of the spinal cord as well as by oligodendrocyte progenitors which differentiate into neurons and
astrocytes/oligodendrocytes respectively [33, 34]. Moreover, the spinal cord has an endogenous
plasticity which can be enhanced by physical activity [35]. This plasticity also extends to collateral
sprouting of long-tract axons and interneurons [36, 37]. Plasticity following SCI can also have
negative consequences and result in spasticity, autonomic dysreflexia and pain [38, 39]. Pain is
most likely a consequence of abnormal sprouting of calcitonin gene-related peptide fibers in
combination with hyper-excitability of neurons in the dorsal horn [40]. Additionally, the cerebral
cortex responds to SCI and is reorganized. Regions that innervate limbs and body parts, which
have lost their innervation due to the SCI, are taken over by regions that are innervating regions
that are not affected by the SCI [41-43]. The enhanced plasticity in the spinal cord following
SCI is mediated by lower levels of GABA-mediated inhibition [44] which might also explain the
cortical plasticity observed in patients with SCI and may result in an inability to perform
voluntary movements previously possible [45].

Spinal cord injuries are classified using imaging and international guidelines

The level of the SCI is reported with regards to the spinal cord levels, and not the vertebrae,
affected. A computed tomography scan is usually implemented to visualize fractures in the
vertebral column while magnetic resonance imaging is used for characterization of injuries to the
spinal cord, nerve roots, ligaments and other surrounding soft tissue structures [46, 47]. A SCI
in the clinical setting is evaluated using the International Standards for Neurological
Classification of Spinal Cord Injury [48] which is comprised of three parts: I) American Spinal
Injury Association (ASIA) motor score, II) ASIA sensory score and IIT) ASIA Impairment Scale
grade. The scoring can and should be used as a measure of development during treatment in
relation to the condition at admission. The SCI is further classified into complete- and
incomplete injuries. Incomplete injuries can be subdivided into central cord syndrome (bladder
dysfunction, motor dysfunction in upper but not lower limbs and sensory loss) [49], Brown-
Séquard syndrome (loss of fine touch, proprioception and vibration on the same side as the injury
and loss of sensation for pain- and temperature on the opposite side) and anterior- and posterior
syndrome [50].
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The spinal column, respiration and circulation have to stabilized

Unfortunately, at the moment, there is no curative treatment for SCI. In addition, patients
suffering from a SCI also have to worry about short- and long term adverse effects of their injury.
In the acute phase of SCI, a patient may encounter either spinal- or neurogenic shock. Spinal
chock is a complete lack of motor, sensory and autonomic function below the injury level and is
characterized by hypo-reflexia early on and hyper-reflexia later on. However, the end of spinal
chock is not always easy to determine [2, 51]. Neurogenic shock is caused by a loss of sympathetic
innervation, which results in reduced vascular tone leading to hypotension and bradycardia.
Patients suffering from high thoracic- or cervical injuries are especially at risk since the
sympathetic nerves cannot be reached [52]. Management includes avoidance of hypotension in
order to ensure adequate perfusion of the spinal cord. The oxygen saturation in the blood is to
be maintained high and formation of deep venous thrombosis should be actively counteracted
[53]. The usage of methylprednisolone sodium succinate (corticosteroid) has been actively
debated but is a potential option in the individualized treatment of the patient [2]. The drug acts
by maintaining blood flow, keeping the blood-spinal cord barrier intact, inhibits lipid
peroxidation and reduces inflammation [54]. Decompressive surgery results in realignment of
the vertebrae and thereby reduces the pressure on and ischemia in the spinal cord [55]. Surgical
decompression enhance functional recovery and reduce the extent of the secondary injury in
both animal models as well as in humans [55, 56]. Moreover, early decompressive surgery seems
to be beneficial in relation to delayed surgery [57]. Hence, in the acute phase of SCI the cranio-
spinal axis should be immobilized in order to limit the extent of the injury and the respiratory,
cardiac and haemodynamic functions should be closely monitored and managed in order to limit
the extent of the secondary injury and to enhance recovery [58].

A large variety of treatment approaches are being investigated

Several types of approaches for treatment and management of SCI are currently being evaluated
in basic- and clinical research. One such approach is administration of neuroprotective agents.
These therapies aim to reduce the extent of the secondary injury by reducing inflammation,
enhancing growth and by blocking signals inhibiting regeneration. Agents such as IL-10,
minocycline, non-steroidal anti-inflammatory drugs (NSAID) and atorvastatin are undergoing
evaluation. IL-10 is an anti-inflammatory cytokine with the ability to reduce production and
release of TNF-a from astrocytes in the CNS [59]. Minocycline is an agent that can inhibit
microglial activation, reduce pro-inflammation and apoptosis of oligodendrocytes [60, 61].
NSAID:s such as indomethacin and ibuprofen have been evaluated with the intent to reduce the
secondary injury [1]. Administration of atorvastatin (cholesterol reducing drug) has resulted in
reduced inflammation and suppression of astrocyte- and microglial activation. Sodium channel
blockers such as Riluzole or NMDA antagonists (magnesium) have been evaluated in order to
counteract the excitotoxicity by reducing activation of sodium-channels in neurons [1, 62].
Erythropoietin, which enhances proliferation- and differentiation of erythrocytes, can enhance
regeneration and differentiation of cholinergic neurons following traumatic brain injury and is
currently evaluated for SCI [63]. Trials with anti-Nogo-A antibodies are aiming at enhancing
axonal regeneration and have proven potential for regeneration and myelination of axons [64,
65]. Chondroitin sulfate proteoglycans (CSPGs) have a significant inhibitory effect on the
regeneration of axons [66]. Administration of chondroitinase ABC that have the potential to
degrade CSPGs can enhance axonal regeneration [67]. Neurotrophic factors (NGF, NT-3,
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BDNF and GDNF) which mediate survival, growth, guidance and plasticity in the CNS have
been administrated in various ways following SCI to promote axonal regeneration and axonal
sprouting [68, 69]. bFGF has also been successfully administrated and been able to reduce
excitotoxicity but can also contribute to angiogenesis in the spinal cord [70]. Previously, agents
such as thyrotropin-releasing hormone, monosialotetrahexosylganglioside and naloxone have
been evaluated without any convincing results [1].

Another approach is cellular transplantation which aims at replacing lost tissue and
modulating the preserved tissue [71]. Several types of stem cells have been investigated: olfactory
ensheathing cells (OECs), embryonic stem cells (ESCs), oligodendrocyte precursor cells,
Schwann cells, neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Several beneficial
modulations have been observed such as improved locomotor and hind limb recovery as well as
axonal regeneration and re-myelination [71]. NSCs have mainly been used for replacing lost
tissue but also to mediate trophic support to the injured- and regenerating spinal cord. MSCs
have been established from adipose tissue, bone marrow, umbilical cord and evaluated for
treatment of SCI due to their abundance and the fact that they are easy to access, harvest and
culture and could potentially be used in autologous transplantation, even in humans. OECs are
thought to be able to enhance axonal regeneration in the injured spinal cord considering that
they constantly replace olfactory axons. The OECs can easily be harvested by biopsy from the
nasal cavity, which could also enable autologous transplantation in humans. Schwann cells are
transplanted with the intention of aiding the axonal regeneration and myelination. Activating
intrinsic macrophages using pro-inflammatory agents or depleting them completely have also
been evaluated repeatedly as a method for aiding regeneration and functional recovery. ESCs
have mainly been transplanted following in wvitro differentiation into neurons or
oligodendrocytes. More tempting are the induced pluripotent stem cells (iPSCs) which in
addition to being pluripotent enables autologous transplantation of neural- and glial cells [1].

Other approaches are focusing on exoskeletons, electrical stimulation, temperature
and/or tissue engineering to enhance recovery following SCI [72, 73]. Hypothermia slows down
the basic enzymatic activity resulting in reduced energy consumption and maintained ATP levels
intracellularly with potentially neuroprotective effects. Systemic hypothermia (30-34°C) have
therefore been evaluated as a treatment for SCI [74]. Tissue engineering in the form of three-
dimensional devices composed of hydrogels, sponges or other synthetic materials shaped as
guidance tubes for nerves and axons are also being evaluated [75]. The main idea of such guiding
devices is that the devices can serve as a vehicle for cells or substances and/or to bridge gaps or
replace damaged tissue in the spinal cord [1]. Numerous studies are also investigating the
synergistic effects between various therapies mentioned above.

Partial recovery is often observed following injury, but so are complications

The severity and the level of the injury mainly determine recovery following SCI. Most of the
recovery is experienced during the first 6 months following SCI, although recovery have been
observed several years following the primary injury [76, 77]. Unfortunately, there are several
complications which can occur in patients with SCI. Syringomyelia is an uncommon
complication which can best be described as an extended cystic cavity filled with CSF and/or
interstitial fluid. These patients might need surgery in which the fluid is shunted away [78].
Charcot arthropathy is a complication characterized by pain below the level of the SCI in
combination with deformity of the vertebrae. Complex cases might be treated using surgery [79].

Spasticity is a common complication caused by injury to upper motor neurons resulting in a
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velocity-induced increase in muscular tone. Spasticity can have significant negative impact on
the mobility and reduce ventilation. Spasticity can be treated using physiotherapy, botulinum
toxin injections, surgery or GABA-ergic drugs [80]. Loss of sympathetic innervation below the
injury can result in orthostatic hypotension. This is observed in more than half of the patients.
Common approaches for treatment of lost sympathetic innervation include compression socks,
vasoconstrictive drugs or augmentation of volume [81, 82]. Autonomic dysreflexia is defined by
acute and dangerous hypertension caused by stimulus below the injury level (bladder, bowel)
mediating overstimulation of spinal sympathetic neurons [83]. The condition is best treated by
resolving the cause for the stimulus and in more severe cases using drugs. Autonomic dysreflexia
is a potential danger even for patients with chronic SCI and these patients should avoid and
counteract all types of such stimuli [2]. Reduced or lost innervation to abdominal- or intercostal
muscles can result in reduced ventilation and inefficient cough leading to atelectasis and
pneumonia [84]. Lower quality of ventilation can have significant negative impact on the
rehabilitation efforts and is a leading cause of mortality among patients with SCI [85, 86].
Immune paralysis is a phenomenon in which the immune cells become dysfunctional due to lost
sympathetic innervation in combination with splenic atrophy. This might increase the rate of
various infections (pneumonia, urinary tract infections) [87]. Depending on the level of the
injury the detrusor and sphincter muscles might become dysfunctional [88]. The urinary
dysfunction can however be managed by frequent catheterization or pharmacological therapies
[89]. Patients might also suffer from various sexual dysfunctions such as reduced reflexive arousal
depending on the injury type [90]. Obstipation as a result of reduced parasympathetic
innervation of the intestine in combination with reduced control of the anal sphincter can
significantly reduce the quality of life for individuals with SCI [91]. Pressure scores are common
on the lower limbs if preventive measures are not taken [92]. Neurogenic heterotopic ossification
is the formation of bone in the large joints of the lower- and upper limbs and is an ectopic
formation of bone from connective tissue adjacent to the joints. The condition usually presents
clinically with increased spasticity and signs of inflammation [93]. These bone formations can
be managed using drugs, physical therapy, surgery or radiation [94]. Neuropathic pain is present
in almost half of the patients and is thought to be a consequence of lost inhibitory signals in
combination with enhanced pain reception. The pain can be managed using pharmacology
(opioids) or using surgery [95]. Rehabilitation efforts in general consist of a multidisciplinary
team aiming at regaining function and preventing complications. The rehabilitation can be
aimed at enhancing regeneration using weight-supported locomotor training or functional

electrical stimulation in skeletal muscles [2].
Mortality is increased and life expectancy is reduced

A SCI implies increased mortality for the troubled individual. During the first year following the
injury about 4 % of the patients perish [96]. In particular, life expectancy is greatly reduced and
the mortality increased for patients suffering a cervical SCI. The mortality increases with high
age, presence of comorbidities and/or additional injuries acquired in relation to the SCI [97].
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Traumatic spinal cord injury is commonly simulated and studied in rodents

A suitable model of SCI is one that can generate results that can be translated to or be interpreted
in the context of clinical therapy for humans. Thus, the animal model should have significant
similarities to humans in terms of anatomy and pathophysiology. Reproducibility and
consistency of results is also a key feature of a useful animal model of SCI [2]. Importantly, the
animal type, location and type of SCI should be adapted to the hypothesis stated [98]. Although
the path from rodent research to human therapy is long and translation is difficult, rodent models
of SCI (rat, mouse) are commonly used. Rats constitute the most common type of research
animal used in SCI (72 %) followed by mice (16 %) [99]. These models are preferable since the
tissue response is similar to that in humans and the accessibility, in comparison to primate
models, is high [100]. Mice, in comparison to rats, have become increasingly popular due to the
availability of transgenic animals which allow for detailed analysis of selected genes and/or
pathways [1]. Other much less common models include rabbit, dog, cat, pig, non-human
primate and guinea pig [99]. However, promising results detected in one animal type should be
evaluated in several animal types, including primates, prior to translation into clinical research
as a measure of safety [2].

Mechanical injuries are more commonly studied as compared to non-mechanical
injuries. Even though cervical injuries are more common than thoracic injuries in humans [2]
thoracic injuries are more commonly studied in animals (~80 %) as compared to cervical injuries
(~12 %) [99]. Mechanical traumatic SCI can be induced using a contusion (rapid one-hit injury),
compression (prolonged exposure to force) or transection model (partial- or complete cut) [2].
The most common model of mechanical SCI in animals is the contusion injury model (-43 %)
followed by transection (34 %) and compression injury (20 %) [99]. The contusion model is the
most realistic model and can be induced using a pneumatic impactor or by weight drop. The
New York University impactor [101] or the commercially available Infinite Horizon Impactor
allows for induction of a precise and reproducible contusion SCI [1]. The weight drop model is
the most common approach (38 %) followed by the New York University Impactor (27 %) and
the Infinite Horizon Impactor (21 %) [99]. The impactors also record the exact force and
displacement as well as the dynamics of the injury [1]. Compression injury involves applying a
specific amount of force for a specific amount of time using an aneurysm clip, a balloon or similar
device [102]. For compression type SCI an aneurysm clip is most commonly used followed by
balloon compression [99]. The compression model is particularly suitable for investigation of the
effects of treatment in relation to the injury severity [103]. Transection injury involves cutting
the spinal cord using a sharp instrument. The cut can be total or aim for specific parts/tracts of
the spinal cord. Approximately the same number of hemi/partial and complete transection
injuries are conducted [99]. The transection model is best suited for the study of axonal
regeneration and/or implantation of devices. The transection model however does not properly
represent the SCIs observed in the clinical setting [1]. Although non-mechanical injuries are not
within the scope of this thesis it is worth mentioning that the most common type of non-
mechanical injury is ischemic injury [99].

The evaluation post SCI should naturally be adapted to the hypothesis. Motor
function can be evaluated using the Basso, Beattie and Bresnahan (BBB) score in rats, the Basso
Mouse Scale (BMS) in mice, runway walking and recording of dynamical and static aspects of
movement, ladder- or grid test for evaluation of coordination. The BBB score is one of the most
commonly used evaluations and was designed for thoracic SCI and is considered by many to be
reproducible, reliable and produces a clinically relevant measure [104]. The development of gait
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analysis using video recordings has allowed for more accurate measurement of locomotion (e.g.
stride width, stride length, stepping pattern, velocity) [105, 106]. This type of analysis allows for
a detailed measurement of locomotor function and collection of data for several evaluations at
the same time. However, data collection and analysis is time consuming and interpretation of
the measurements is far from easy. Therefore, in recent years efforts have been made to automate
the translation of video recordings to data sets [107]. The horizontal ladder walking test assesses
the animals ability to place its limbs on irregularly placed bars but it requires training and cannot
be used in animals with paraplegia [108]. The strength in the hind limbs can be measured using
an inclined plane test. Sensory outcome is equally important. Temperature sensation can be
evaluated using the tail-flick test, allodynia can be evaluated using the von Frey Filament test,
Hargreaves test or the hot plate test. The hot plate test evaluates the NMDA-receptors by
evaluating sensitivity to temperature [109]. The von Frey Filament test involves stimulating the
plantar surface of the paws using a filament and observing the retraction of the limb due to
allodynia. However, sensory evaluations are difficult to interpret since all of them require a motor
reaction, which can itself be compromised due to the SCI [1]. Evaluation of the tissue and cells
is commonly performed using immunohistochemistry. Anterograde (biotinylated dextran amine,
cholera toxin B subunit) or retrograde (Fluoro-Gold, Fast Blue) tracing can be used for studying
axonal regeneration [1]. Repair and regeneration of the corticospinal tract can also be measured
using motor-evoked potentials (MEPs) by stimulating the sensorimotor cortex and conducting
electromyography in hind limb muscles below the injury level. Somatosensory-evoked potentials
(SEPs) are measured by stimulating peripheral nerves (tibia nerve, sciatic nerve) and recording
the activity in the sensory cortex. SEPs measure the conductance along the dorsal column [110].
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The immune system

The immune system is composed of a structural barrier as well as cell-mediated and antibody-
mediated immune response. The structural barrier is a mechanical barrier but also a biochemical
barrier inhibiting foreign and potentially harmful bacteria, viruses and microbes to enter.
Immune cells and chemical processes make up the cell- and antibody mediated response. The
innate immune system responds first and do so without memory or antibodies. The adaptive
immune system is activated afterwards and acts using antibodies directed towards certain and
specific antigens [111, 112].

The innate immune system is fast but has no memory

Innate immunity is a non-specific no-memory rapid action defense mechanism composed of four
parts: anatomical- and mechanical defense (skin, mucosa), physiological response (temperature,
pH), phagocytosis and inflammation. The innate immune system relies on pattern recognition
receptors (PRR). These receptors are present on immune cells and detect pathogen associated
molecular patterns (PAMPs, e.g. LPS in bacteria or RNA in viruses). Following detection of
pathogens the innate immune system responds by releasing cytokines and chemokines (e.g.
TNEF-a, IL-1, IL-6) which recruits immune cells and mediates inflammation in the affected
tissue. The cytokines and the immune cells alter the pain sensitivity and vascular permeability in
the tissue. The innate immune system is also capable of identifying and labelling pathogens or
cells for phagocytosis, thereby clearing cells, debris and antibody-complexes that might be
present in the tissue, blood or the lymphatic system. The innate immune response involve cell
types such as dendritic cells (DCs), macrophages, granulocytes (neutrophils, eosinophils,
basophils), mast cells, natural killer cells (NK-cells), monocytes and innate lymphoid cells (ILCs).
Dendritic cells (DCs) bind peptide fragments of antigens by means of major histocompatibility
complex receptors (MHC). Thereafter, the cells migrate to regional lymph nodes in which they
present the peptide fragments to naive T-cells. Consequently, the naive T-cells undergo
proliferation and differentiation into helper T-cells and cytotoxic T-cells [111-113]. Both
macrophages and neutrophils have the ability to phagocytose debris, dead cells or pathogens.
The macrophages but also the DCs can recruit T-cells by acting as antigen presenting cells
(APCs). Fibroblasts and B-cells can also act as APCs. Macrophages are found in many forms and
are termed microglia if resident in the CNS. Mast cells are present in tissues surrounding blood
vessels and initiate an acute inflammatory response by secretion of cytokines. Eosinophils
mediate the destruction of pathogens, which are too large to be phagocytized. NK-cells are
important for destruction of cells infected with viruses as well as for rejection of tumor cells.
These cells also release perforins and granzymes, which induces apoptosis in target cells.
Moreover, NK-cells are important for the activation of APCs and do so by releasing IFN-y. The
ILCs produce cytokines adapted to the pathogen that is to be eliminated or acted against.
Inflammation is defined as the process during which immune cells release pro-inflammatory
cytokines and chemokines (e.g. TNF-a, IL-1, IL-6) which recruits inflammatory cells
(neutrophils, monocytes) [111-113].
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The adaptive immune system acts by direct targeting and antibodies

The adaptive immune system consists of T- and B-cells. T-cells arise from the bone marrow,
mature in the thymus and carry T-cells receptors (TCRs). Each T-cell carry only one type of
TCR. APCs are required to activate the T-cells and express major histocompatibility complex
(MHC) proteins on their cell surface. MHC-I is expressed by all nucleated cells in the body while
MHC-II is expressed only by B-cells, DCs and macrophages. MHC-I presents molecules from
within cells affected by pathogens or cells that have been phagocytized. MHC-II presents
molecules not originating from the APC itself. T-cells are circulating in the blood and lymph.
The APCs and T-cells aggregate in lymph nodes in which the APCs present antigens to T-cells
and thereby activates the T-cells. Upon ligation between the MHC-complex of the APC and the
T-cell, the T-cells secrete cytokines and differentiate into CD8* (cytotoxic) or CD4" (helper) T-
cells. The CD8" T-cells mediate their action by interaction between their TCR and the MHC-I
of target cells and can for example induce apoptosis in the target cells. The majority of the effector
cells are phagocytized when they have mediated their desired effect, but a few remain as memory
T-cells. These memory T-cells can rapidly differentiate into effector cells given that the same
antigen is presented once again. The helper T-cells are activated when their TCR binds to MHC-
IT which carries antigen. Helper T-cells mediate their action by releasing cytokines into the
surrounding tissue, which activate B-cells, macrophages and promotes inflammation. The most
common types of helper T-cells are Th1, Th2 and Th17 although many other types exist. The
Thl cells release IFN-y, which mainly activates macrophages and results in elimination of
intracellular pathogens. The Th1 cells also enhance the differentiation of B-cells into plasma cells
and thereby contribute to antibody production and efficient phagocytosis. The helper T-cells
perish following the acute immune response and leave a small amount of helper T-cells that
develop into memory helper T-cells. T-regulatory cells are a subtype of CD4* T-cells and aid in
the suppression of the immune response and especially immune response to self-antigens.
B-cells originate from hematopoietic stem cells and maturate in the bone marrow.
B-cells carry antibodies on their cell surface and can recognize pathogens by themselves without
the need for APCs. Upon ligation of these surface antibodies, the B-cells differentiate into plasma
cells (effector cells) and produce antibodies (IgD, IgM, IgG, IgE and IgA). At the same time the
B-cells also differentiate into memory B-cells that are similar to memory T-cells in the sense that
they can rapidly act against similar pathogens should they encounter them again. Cytokines (e.g.
IL-6) secreted by helper T-cells enhance proliferation and differentiation of B-cells into plasma
cells but also aid them in developing the correct type of antibodies. The antibodies produced by
the plasma cells adhere to the pathogens and label them for elimination through either
phagocytosis or complement activation. Plasma cells undergo apoptosis when they have mediated

their action [111, 112, 114].
Microglia are the resident macrophages of the central nervous system

Microglia were first described and defined by Del Rio-Hortega P (1932). He defined nine criteria
that a macrophage has to fulfill in order to be called microglia. Microglia are cells with
mesodermal origin (I), which enter the CNS during early development (II) and migrate along
blood vessels and tracts in the white matter by which they spread in the entire CNS (III) and
distribute themselves evenly (IV). These cells acquire a ramified morphology during maturation,
which they maintain in homeostasis (V). Each microglia have a defined compartment in which
they rest (VI). Following injury or insult to the CNS microglia undergo activation (VII) and
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gain an amoeboid morphology (VIII). Following activation microglia proliferate, migrate to the
site of injury and phagocytose debris and cells undergoing necrosis (IX) [115].

Microglia are derived either from monocytes which are progenitors originating
from the bone marrow [116-119], or from fetal macrophages with an amoeboid morphology
which enter the CNS during the first- and second trimester [117-119]. In adults, the population
of resting microglia is stable and is not undergoing any exchange [120, 121]. Resting microglia
are said to have a ramified morphology and are characterized by having a small soma with delicate
processes [122-132]. The mechanism controlling the transformation from amoeboid into a
ramified morphology is not fully understood, but seems to be mediated by factors released from
astrocytes (e.g. TGF-B, M-CSF, GM-CSF) and/or the existence of Cl channels on microglia
[130-132]. The processes are utilized to scan the surroundings and enable rapid response to
injury or pathology in the CNS resulting in activation [133, 134]. However, the housckeeping
activity of microglia is mainly unknown [115]. Microglia are activated upon trauma, infection,
ischemia, degenerative disorder or other alterations in the homeostasis of the CNS resulting in
altered neuronal activity [122-129]. During activation microglia regain their amoeboid
morphology which is characterized by a retraction of the processes into the soma and thereby a
simplification of the morphology [135-137]. The transformation from a ramified morphology
to an amoeboid morphology during activation is distinct [136] but the exact morphology of
activated microglia can be of various types. Reports have indicated spindle- or rod like shapes or
even bi- or tripolar shapes [138, 139]. Additionally, microglia alters their expression of surface
markers and secretion of immunomodulatory compounds. Their phagocytic activity and
production of neurotrophic factors is also elevated [123, 124, 126]. The activation however is
heterogeneous in the sense that microglia can take many different functional states [126, 140].
This results in microglia having regional differences in morphology, proliferation rate, expression
of surface markers and secretion of factors [137, 141-145]. The functional properties and
expression profile of microglia seem to differ with localization in the CNS (white- or gray
matter). The level of myelin and/or oligodendrocytes seems to determine their functional
properties [146]. The functional state does not necessarily correlate with the morphology of
microglia [147-149]. Microglia can be detected with markers such as IBA1 [150, 151], CD16,
CD32, CD45, CD11B, CD169, CD206 and F4/80 [115]. However, these markers also label
macrophages [141]. CD45 can be used to separate microglia from macrophages in the sense that

microglia express low- or intermediate levels while macrophages express higher levels of CD45
[152] while both are positive for CD11B [115].

Mesenchymal stem cells can activate microglia alternatively

Microglia stimulated with lipopolysaccharide (LPS) are alternatively activated after exposure to
mesenchymal stem cells (MSCs) [153-156]. The LPS induced round morphology of microglia
can be shifted to a ramified morphology by colony-stimulating factor-1 (present in MSC-
conditioned medium) [157]. Alternative activation of microglia has also been reported following
exposure of stimulated microglia to MSC-conditioned cell culture medium [157, 158]. The
alternative activation has been correlated to the suppression of pro-inflammatory cytokines and
chemokines (e.g. TNF-a, IL-1, IL-6, iNOS, NO) [153, 155-160]. The alternative activation
has been suggested to be mediated by suppression of the phosphorylation of MAPK, ERK1/2
and JNKs [153]. The alternative activation caused by MSC-conditioned medium is due to TGF-
B mediated inhibition of the NF-kf pathway [158]. The alternative activation induced by MSC-
conditioned medium has also been proposed to be a consequence of activation of the PI3Ks
11
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pathway as well as Racl and Cde42 [157]. Moreover, MSCs can increase the phagocytic activity
[154, 156, 158], reduce the rate of proliferation [160-162] and elevate the expression of
neurotrophic factors (IGF-1, BDNF) from stimulated microglia [155]. Secretion of CX3CL1
from MSCs in an inflammatory environment can shift the phenotype of microglia from
detrimental to neuroprotective [154]. Following SCI, transplanted MSCs can decrease the
recruitment of microglia to the injury epicenter [163-165] and reduce the number of reactive
microglia in total [166-169]. MSCs transplanted into SCI alternatively activate microglia and
thereby reduce the phagocytic activity of microglia [170, 171]. This has been correlated to the
reduction in secretion of pro-inflammatory cytokines and chemokines from microglia [171].
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Stem cells

The common denominator for stem cells is that they can proliferate (self-renew) and differentiate
(transform into specific somatic cells) [172]. Stem cells are divided into five major categories
based on their differentiation potential: totipotent/omnipotent, pluripotent, multipotent,
oligopotent- and unipotent cells. Totipotent cells can differentiate into embryonal- or extra-
embryonal tissue and thereby form a new viable organism. Pluripotent stem cells can differentiate
into embryonal cells and thereby form all/any of the three germ layers. Multipotent cells can
differentiate into cells of one specific germ layer. Oligopotent cells are similar to multipotent
stem cells but with an even more limited range of differentiation while unipotent cells can form
only one type of somatic cells. Stem cells can also be categorized based on the tissue from which
they are established: embryonic, fetal, perinatal, adult- and induced pluripotent stem cells [172].

Embryonic- and fetal stem cells

The product of an oocyte merging with a spermatozoon is a zygote and is totipotent. Totipotent
cells can give rise to both extra-embryonal- (embryonic membranes and placenta) and embryonal
cells. The zygote undergoes 32-64 cell divisions forming a morula and eventually a blastocyst at
about 5 days following fertilization. The blastocyst consists of a trophoblast which encapsulates
the inner cell mass. The trophoblast forms the embryonic membranes and placenta while the
inner cells mass develops into the fetus. The inner cell mass is pluripotent and can thus form
cells belonging to any of the three germ layers (endoderm, ectoderm and mesoderm) [173].
Therefore, embryonic stem cells (ESCs) are established from the inner cell mass of the blastocyst
[174]. ESCs are characterized in terms of surface markers ALP, CD24, CD9 and in terms of
gene expression of Sox2, Oct4, Nanog, Thyl and RexI [175]. The benefit of using ESCs is an
unlimited supply of cells as well as the potential to create and replace any type of cell in the adult.
The limitation comes from the ethical issue of harvesting human embryos, risk of teratoma
formation and need for allogeneic transplantation [173]. Fetal stem cells can be harvested from
embryos of aborted fetuses, but are not as potent as ESCs [172].

Perinatal stem cells

These cells can be harvested from three areas: amniotic fluid, umbilical cord (cord blood or
Wharton’s jelly) or placenta (villi, blood and amnion). The cells in the amniotic fluid are mainly
fetal epithelial cells originating from the fetal skin and seem to be multipotent. Cells established
from the placenta have many similarities with mesenchymal- and hematopoietic stem cells. The
mesenchymal component (fibroblasts) of Wharton’s jelly in the umbilical cord are thought to
mediate the stem cell effect of this tissue [172].
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Adult/somatic stem cells

Adult stem cells can self-renew but have a more specific differentiation potential. These stem
cells aim at replacing cells lost due to pathology or in physiological processes in the adult [173].
The differentiation potential and properties of the stem cell is controlled by their niche, which
is defined as the extracellular matrix, surrounding cells and signal substances. The stem cell
characteristics are maintained only when the adult stem cells are associated with the niche. Adult
stem cells undergo asymmetric cell division through which the stem cells are maintained but also
eventually form a committed precursor/progenitor cell which is underway to becoming a
somatic/differentiated cell (Figure 1) [176]. Adult stem cells associated with neural, epithelial,
hematopoietic- and muscular tissue have been characterized most extensively [177].
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Figure 1. The adult stem cell niche. The adult stem cell niche is a microenvironment consisting of signal substances, extracellular
matrix and stromal cells. The microenvironment in combination with the intrinsic characteristics of the cells determines their
differentiation potential. The stem cells in the niche maintain their population by cell division and at the same time give rise to
progenitor/precursor cells, which eventually differentiate and form mature cells.

Reprinted from Kidney Int Suppl (Volume 1, Issue 3), Chagastelles et al., Biology of stem cells: an overview, Pages 63-67, Copyright
(2011), with permission _from Elsevier.

Induced pluripotent stem cells

Somatic cells can be re-programmed into becoming pluripotent stem cells (induced pluripotent
stem cells, iPSCs) by using transcriptions factors (KIf%, Myc, Oct4, Sox2) [178, 179]. The iPSCs
are similar to ESCs in terms of growth dynamics, gene- and protein expression as well as
differentiation potential. The iPSCs offer a method for producing pluripotent cells that can be
used for autologous cell transplantation. iPSCs might solve several ethical- and immunological
issues related to the usage of human-derived ESCs in clinical therapy and trials [173].
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Neural stem cells
The neural stem cell niche

Neural stem cells (NSCs) are located in
the ventricular-subventricular zone (V-
SVZ) in the lateral wall of the fourth
ventricle or in the subgranular zone (SGZ)
of the hippocampus [180-183]. NSCs can

differentiate into neurons in the olfactory

bulb and in the hippocampus and adopt
morphological- and electrophysiological
characteristics similar to existing neurons
[184-188]. The NSCs located in the SGZ
form excitatory neurons mediating pattern
recognition, learning and memory [180-
183] while the NSCs in the V-SVZ form
interneurons in the olfactory bulb [189].
NSCs were initially identified as a subtype
of astrocytes and are therefore in some

contexts termed radial astrocytes, radial
cells, neural/type-1 progenitors or radial
glia-like cells [190, 191]. In the
developing brain, the NSCs take the form
of radial glia [192, 193], which is the

precursor cell for most of the neurons, and

glia in the embryo. In the adult brain the

NSC:s take the form of Bl-cells [194] but
still share many characteristics with radial
glia [195, 196]. The NSCs reside in a
niche [176] which is defined by

immature- and mature NSCs as well as by

Figure 2. The ventricular-subventricular zone (V-SVZ) in the
lateral wall of the fourth ventricle in the adult brain is the
neural stem cell (NSC) niche. Bl-cells: NSCs; B2-cells:
derived from Bl-cells; C-cells: transient-amplifying cells; A-
cells: migratory neuroblasts; CP: choroid plexus; E/E2-cells:
ependymal cells; BV: blood vessel; As: astrocyte; N: neuron.

Supraependymal axons are indicated with orange color.

ependymal- and vascular cells [197]. The
V-SVZ has three domains, each with
different  cell
ependymal cell layer and the apical process
of B-cells, II) the A-, B-, and C-cells and
ITI) the basal processes of the B-cells with

associated vasculature (Figure 2).

Reprinted from Development (Volume 4), Obernier et al., Neural
stem cells: origin, heterogeneity and regulation in the adult
mammalian  brain, Pages 1-15, Copyright (2019), with
permission_from The Company of Biologists Limited.

composition: )  the

Bl-cells give rise to interneurons in the olfactory bulb

The Bl-cells generate transient amplifying intermediate progenitors (C-cells) [194] which
undergo proliferation and eventually form migratory neuroblasts (A-cells) which migrate towards
the olfactory bulb [198]. The A-cells migrate by chain migration along the rostral migratory
stream (RMS), which is a network of interconnecting paths [199], to the olfactory bulb [199-
201]. The neuroblasts divide 1-2 times during their migration along the RMS [198]. In the
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olfactory bulb, the A-cells differentiate into interneurons, integrate into the circuitry [202, 203]
and contribute to odor-reward association and fine odor discrimination [180, 204-207]. Six
subtypes of interneurons in the olfactory bulb have so far been described: CalB* periglomerular
cells (CalB'PGCs), CalR'PGCs, deep granule cells (GCs), CalR'GCs, superficial GCs and
THPGCs. The interneurons are derived from other regions in addition to the lateral ventricle
such as the pallium [208] as well as from the RMS and the septum [208, 209]. The formation
of A-cells, migration and differentiation into interneurons takes about 2 weeks. This indicates
that the signals controlling the proliferation of NSCs in the V-SVZ must have come well in
advance in relation to the need for new interneurons in the olfactory bulb. The number of NSCs
decrease during aging, which results in a reduced level of neurogenesis. The reduced ability of
neurogenesis is likely a consequence of protein aggregates forming due to lower lysosomal activity
[210, 211]. Migrating neurons in infants can be found in the RMS but also in the frontal lobe
[212, 213]. However, in the adult the migrating neurons are found in the lateral walls of the
ventricles but not in the RMS or the frontal lobes [212, 214]. The existence of neurogenesis in
the adult brain however is debated and while some authors report a distinct neurogenesis [215,
216] others report the opposite [217, 218]. The main function of NSCs seems to be a source of
plasticity [182].

Bl-cells are a heterogeneous population of cells

B1-cells can give rise to B2-cells [189, 219] which, in comparison to the B1-cells, have processes
reaching blood vessels but not the ventricle [220]. The B2-cells are proliferative but their
function is not yet fully understood [221]. The number of Bl-cells decrease with age but the
supply of A-cells and interneurons to the olfactory bulb is essentially unchanged indicating a
transformation of Bl-cells into B2-cells [189]. In addition to forming A-cells, the B1-cells can
also differentiate into oligodendrocytes [222, 223]. These oligodendrocytes migrate to and
myelinate axons in the corpus callosum [224]. The myelinating abilities of these
oligodendrocytes increase following injury to the CNS [225]. However, uncertainty remains
concerning the iz vivo differentiation potential of NSCs in the V-SVZ. In vivo studies have
indicated that only neuronal differentiation is possible [226] but 77 vitro studies have indicated
that NSCs can differentiate into both neurons and oligodendrocytes [227]. There is
heterogeneity within the Bl-cell population. One subset of radial glia diverts during
development (mid-embryonic phase) and starts to express VCAMI1 which is essential for
maintaining stem cell characteristics [228, 229]. Another subset of radial glia starts to express
GFAP during development and form pre-B1-cells, which do not proliferate until activated by
the need for A-cells [230, 231]. The type of interneuron which the B1-cells actually give rise to
depends on their location on the ventricle wall along the ventral/dorsal and anterior/posterior
direction [232-234]. The region itself does not determine the fate of the Bl-cells but this is
intrinsic to the cells [232]. NSCs in the ventral part of the V-SVZ form deep granule cells and
periglomerular cells expressing calbindin while NSCs in the dorsal part of the V-SVZ
differentiate into superficial granule- and periglomerular cells expressing tyrosine-hydroxylase

(232, 235].
Bl-cells are regulated by a complex microenvironment of cells, substances and nerves

The differentiation and renewal of the B1-cells in the V-SVZ is affected by signaling molecules
from neighboring cells in the CNS, the CSF as well as blood- and epithelial cells [236].
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Furthermore, NSCs in the adult brain release factors and act in an autocrine and paracrine
fashion [237]. NSCs communicate with each other using gap junctions and with other cell types
using cell-cell-interactions [238]. NSCs release substances (GABA, DII1, Notch-ligand) to
maintain the NSCs in the quiescent state [239]. Release of GABA from A-cells decreases the rate
of proliferation of Bl-cells [240] while diazepam-binding inhibitor protein released from B1-
and/or C-cells accelerate proliferation of B1-cells [237]. The B1-cells are actively communicating
with each other by exchanging signals and this might control the rate of proliferation [236]. The
B1-cells also interact and exchange information with cells in their surrounding by extending and
retracting processes [189].

NSCs are affected by signaling molecules transported to the V-SVZ through the
blood stream and detected by the basal processes but also by signaling molecules secreted by the
endothelial cells in the blood vessels [241]. The endothelial cells in general seem to have an
inhibiting effect on the proliferation (GO/G1-arrest) of the cells in the V-SVZ [242-244]. On
the other hand, betacellulin (EGF-like growth factor) released by the endothelial cells can
increase proliferation of B1- and C-cells resulting in increased neurogenesis [245]. Betacellulin
can also promote proliferation and production of migratory neuroblasts [245]. Moreover, the
vasculature of the V-SVZ contributes to the migration of A-cells along the RMS [246, 247]. The
endothelial cells also release VEGF and NT-3 which result in NSC self-renewal and maintenance
of NSCs in a quiescent state [241]. The interaction between B1-cells and blood vessels seems to
be dynamic in the sense that the processes extending from B1-cells to the blood vessels can move
along the vessels [189]. In the NSC-niche the blood brain barrier is less dense in comparison to
other areas of the brain which results in NSCs having a high access to substances transported by
the blood stream [248].

The apical process of Bl-cells extends through the ependymal cell layer and is in
touch with the ventricle. This single apical cilium is not motile, which is in contrast to the cilia
of the ependymal cells [194], but is instead similar to the cilia of radial glial cells [207].
Ependymal cells can also produce regulating substances such as SDF-1 and PEDF [243, 249].
The ependymal cells adjacent to the B1-cells release Noggin which acts as an antagonist to BMP-
4 which results in increased proliferation of B1-cells enhancing neurogenesis [242, 250]. BMP-
signaling in the V-SVZ can also promote differentiation of the NSCs into glial cells instead of
undergoing neurogenesis [250-252]. The CSF carries signaling molecules such as BMP, WNT,
RA, FGF, LIF and SHH [253] which regulate the cells in the V-SVZ [254]. WNT can maintain
NSC:s in their stem cell condition [255] which is also true for SHH but the levels thereof has to
be tightly regulated in order to avoid depletion of the NSCs following a rapid expansion [256].
The B1-cells sense these molecules using their processes, which are in contact with the ventricles
[257]. The presence of IL-1f in the CSF results in reduced proliferation of NSCs and elevated
expression of VCAM1 on NSCs [229]. The choroid plexus secretome is however altered during
aging [258] and the concentration of IGF2, which enhances proliferation of NSCs, is reduced
in the CSF with aging [254]. Moreover, the flow of CSF guide the migration of the A-cells along
the RMS [259].

Supraependymal axons originating in the dorsal raphe nucleus form a dense
network in the apical surface of the V-SVZ. Serotonin brought by these serotonergic axons to
the V-SVZ through this pathway can enhance the proliferation of Bl-cells [260, 261]. The 5-
HT axons form a plexus in the V-SVZ, are in touch with B1- and ependymal cells and regulate
neurogenesis and proliferation [260-262]. Neurons originating from the ventral tegmental area
and the substantia nigra also project axons to the V-SVZ and mediate proliferation of NSCs and
thereby neurogenesis [263, 264]. GABA-A released from neurons which project into the V-SVZ
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can promote the proliferation of NSCs [265, 266]. Glutamate released from striatal neurons can
enhance the proliferation of A-cells by activating AMPA receptors [267]. C-cells express
dopaminergic receptors, receive dopaminergic innervation from the midbrain and regulate- and
enhance neurogenesis and seems to be mediated by EGF [268, 269].

The extracellular matrix (ECM) is in close connection with the V-SVZ and
interacts using adhesion molecules (VCAMI1) [229]. Fractones in the ECM can collect
circulating growth factors and present these to the NSCs [270]. The ECM can thereby interact
with the NSCs and control their behavior [271]. Fractones can also release FGF2 that promotes
proliferation of Bl-cells. The B1-cells themselves can control the release of FGF2 from fractones
[270, 272]. The presence of microglia in the V-SVZ increases the rate of neurogenesis and
oligodendrogenesis and at the same time suppresses expression of cytokines. In the postnatal
phase, the presence of microglia is higher in the brain, which correlates with the higher level of
neurogenesis and oligodendrogenesis [273-275]. The microglia in the V-SVZ in the uninjured
adult have, in comparison to the remaining CNS parenchyma, an activated phenotype [142,
276]. The microglia in the V-SVZ seem to enhance and contribute to the migration of A-cells
along the RMS [277]. Astrocytes can affect the differentiation of NSCs by expressing ephrinB2
[238] similar to epithelial cells which can promote a quiescent state of NSCs by expressing
ephrinB2 but also by expressing Jagged1 [244]. Moreover, astrocytes can promote differentiation
of NSCs by secreting cytokines (IL-1f3, IL-6) [278].

Quiescent and active form of neural stem cells

Two subtypes of NSCs have been defined in the V-SVZ: quiescent- (QNSCs) and active NSCs
(aNSCs) (Figure 3). In addition, several subtypes of gNSCs and aNSCs have been described
[279, 280]. NSCs in the adult are mainly in the quiescent state [194]. Both these subtypes express
GFAP, BLBP, GLAST and prominin but only aNSCs express the EGFR and Nestin [281, 282].
gNSCs have a lower rate of protein synthesis but have larger lysosomes as compared to aNSCs
which enables them to efficiently eliminate protein aggregates [283]. In vitro propagation of
gNSCs result in far less neurospheres as compared to aNSCs. Both gNSCs and aNSCs have
processes which are in touch with the ventricle but only QNSCs express sphingosine-1-phosphate
and prostaglandin-D2 which can respond to substances present in the CSF [281]. The aNSCs
express genes related to cell-cycle regulation and repair of DNA while QNSCs express genes
related to cell-cell-adhesion and signaling [284]. GABA can maintain NSCs in a quiescent state
by inhibiting cell-cycle progression [285] and is regulated through a feedback-loop [240]. NSCs
have been shown to be able to transition from gNSCs into aNSCs and to differentiate selectively
[286]. Activation of QNSCs results in up-regulation of Nestin and EGFR in the gNSCs [281].
When the QNSCs transition into aNSCs the cells down-regulate genes related to glycolysis and
up-regulate genes related to oxidative phosphorylation [279]. When gNSCs are exposed to EGF
and FGF the cells increase their lysosomal activity which results in activation and transformation

into aNSCs [283].
Transcriptional plasticity and epigenetic control of neural stem cells

Transcriptional plasticity regulates the lineage specification of stem cells and is mediated by
changes in the chromatin state which promotes or suppresses transcription [287]. This
transcriptional regulation mediated by chromatin controls the neurogenesis mediated by the B1-
cells in the V-SVZ [288]. ATP mediated hydrolysis altering the chromatin structure promotes
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transcriptional programs mediating neurogenesis (Pax6 and Brgl interaction) [289]. Histone
acetylation mediated by transcription factors (Bmil, Ezh2) are also important for neurogenesis,
proliferation and self-renewal [290-292]. Nitric oxide (NO) is a key mediator of the innate
immune response and direct NSCs in culture conditions to undergo glial differentiation using
the VRSF/ REST transcription factor [293]. Moreover, DNA methylation is also important for
neurogenesis [294]. Methyl-CpG binding proteins can bind to methylated regions and regulate
cell division, neurogenesis as well as differentiation by regulating micro RNAs (miRNAs) [295-
297]. Non-coding RNA (miRNA, long non-coding RNA) are also important for regulation of
neurogenesis of NSCs in the adult [298]. mi-137 can for example enhance proliferation of NSCs
and prevent their differentiation by modifying EzA2 [297]. Long non-coding RNAs such as
Six30 and Dlx1 can enhance and direct the differentiation of NSCs towards astrocytes [299].
The regional differences in the types of interneurons in the olfactory bulb is likely regulated by
transcription factors (e.g. EmxI, Nkx6.2, Pax6, Sp8) [235, 300] which are partially controlled
by miRNAs (mi-7a, mi-124) [297, 301].

The transcriptome of NSCs is regulated by transcription factors [302]. qNSCs
express transcription factors such as /D2, ID3 and Sox9 as well as the Notch2-receptor [279].
alNSCs express the transcription factor Asc/I that regulates several pathways in aNSCs including
neuronal differentiation [303, 304]. Some of the Bl-cells also express Asc/I which can promote
differentiation into neural- and glial cells [305]. Asc/I can also activate NSC cell-cycle regulation
[304]. A subpopulation of B- and C-cells express Olig2, which promotes differentiation into
oligodendrocytes as compared to neuroblasts [306-308]. C-cells in the V-SVZ also express Ascl/l
and use a Notch-feedback loop to regulate the quiescent state of NSCs [309]. Hence, notch-
receptor activation results in increased proliferation and neurogenesis by repressing genes
inhibiting neural differentiation [310]. In this way, Notch-signaling helps to maintain the pool
of undifferentiated gNSCs in the V-SVZ. Thus, notch-signaling preserves NSCs in their stem
cell niche and the lack of Notch-signaling results in NSCs entering a more committed progenitor
stage [311]. The gNSCs also express Notch3 which is essential for maintaining the cells in an
undifferentiated state [312]. On the other hand, aNSCs and C-cells express NotchI and Ascll,
which are important for maintaining proliferation of NSCs [313]. Sox2 is a key transcription
factor and is expressed by all cell types in the V-SVZ [314]. Sox2 interacts with transcription
factors such as Prx1, Ars2 and Tlx that result in control of self-renewal and proliferation of B1-
cells in the V-SVZ [315, 3106]. Sox2 is essential for maintaining the NSC population and the
expression of Sox2 is regulated by Notch-signaling [302].

Symmetric- and asymmetric cell division

The type of cell division that the NSCs undergo depends on the current developmental stage of
the individual. In the early embryonic stage the NSCs undergo symmetric self-renewal [207]
while radial glia undergo asymmetric cell division. Asymmetric cell division results in self-renewal
as well as fully differentiated neurons [317, 318]. Moreover, NSCs can self-renew for an extended
period of time in the V-SVZ by undergoing symmetrical cell division [189]. GLAST'NSCs
cannot self-renew for an extended period of time since the cells after a few cycles of symmetric
cell division end up in asymmetric cell division [226]. GFAP*NSCs undergo asymmetric cell
division, which results in self-renewal or differentiation. With time, these cells undergo more
consuming divisions reducing the number of B1-cells [189, 319].
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Figure 3. The life cycle of a neural stem cell (NSC). NSCs transform between being in a quiescent- and an active state.
Symmetric cell division of activated NSCs maintains the cell population while asymmetric division results in progenitor- or

glial cells.

Reprinted from Cell Stem Cell (Volume 4), M. Bond et al., Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades
Later, Pages 385-395, Copyright (2015), with permission from Cell Press.

Approaches for establishing neural stem cells

NSCs can be harvested from the spinal cord tissue and cultured with EGF and bFGF which
induce proliferation, self-renewal and expansion in culture conditions [320]. Moreover, NSCs
can established from the filum terminale, which is a structure that extends from the conus
medullaris located in the caudal most part of the spinal cord [321]. Harvested and dissociated
NSCs grow in neurospheres [322, 323]. Currently NSCs are established from tissue harvested
from the lateral walls of the fourth ventricle or the olfactory bulb [324, 325]. Pluripotent cells
(iPSCs, ESCs) can be differentiated into NSCs by culturing the cells in serum-free media [326,
327]. Generation of NSCs using trans-differentiation is achieved by using specific transcription
factors (Sox2, Zfp521) in combination with chemical compounds (valproic acid, TGEF-,
CHIR99021). Fibroblasts have been used for induction of trans-differentiation but other cell
types such as lymphocytes, astrocytes or liver cells might also make good candidates for induction
of trans-differentiation. Experiments in which the culture environment (three- dimensional
cultures) and/or the addition of growth factors (LIF or heparin in addition to EGF and bFGF)
have been investigated as methods to promote trans-differentiation of pluripotent cells into

NSCs [328].
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Mesenchymal stem cells
Colony forming unit fibroblasts

Multipotent stromal precursor cells harvested from guinea pig with spindle-shaped morphology
growing in monolayer cultures capable of supporting hematopoiesis as well as osteogenesis were
first described by Friedenstein in 1970 [329]. He termed these cells colony-forming unit
fibroblasts (CFUs). CFUs can differentiate into cells of mesodermal origin (adipocytes,
chondrocytes, osteocytes) in culture conditions but also following transplantation into a recipient
[330, 331]. These cells also adhere to plastic and grow in colonies with a fibroblast-like
morphology [332]. Caplan reported in 1991 that these stromal progenitor cells could proliferate
and differentiate, which fulfills the definition of a stem cell, and he therefore termed these cells
mesenchymal stem cells (MSCs) [333]. The stem- and stromal cell properties of the MSCs were
confirmed a few years later when MSCs from humans transplanted into immunodeficient mice
formed bone and supported niches capable of hematopoiesis [334]. Therefore, stromal
progenitors harvested from the bone marrow proliferated in culture conditions are now
commonly termed MSCs [332]. MSCs can be isolated from most connective tissues including
bone marrow, adipose tissue, kidney, umbilical cord, dental tissue, liver and lung [335].
However, bone marrow is most commonly used as donor tissue [336]. The immunomodulatory
capacity of MSCs vary depending on the tissue from which they are harvested [337] and even
MSC:s established from the same tissue type seem to be a heterogeneous population of cells [338].
Adipose tissue derived MSCs, for example, express higher levels of TGF-B1 and IL-6 in
comparison to MSCs established from bone marrow [337].

MSCs regulate proliferation and differentiation of hematopoietic stem cells

The population of stromal cells in the bone marrow is heterogeneous and contains progenitors
in different stages of mesodermal differentiation. The fraction of proliferating multipotent stem
cells is however very low [339] and only about 0.01-0.001% of the bone marrow cells are
considered as stromal progenitors [330]. MSCs are part of a highly specific niche in the bone
marrow, in which the MSCs regulate hematopoietic stem cells (HSCs) (Figure 4) [336, 340].
MSCs and HSCs differ by their differentiation potential; MSCs differentiate into cells with
mesodermal origin while HSC:s differentiate into immune- and blood cells [341]. More precisely,
there are two niches in the bone marrow: the endosteal- and the vascular niche. The endosteal
niche is made up of osteoblasts along the trabecular bone while the vascular niche is made up of
endothelial- and subendothelial stromal cells (CD146°) surrounding the bone marrow sinusoids.
The MSCs are present in both niches and in these they are responsible for maintaining HSCs in
their quiescent state (GO-phase) meaning that the HSCs proliferate but do not differentiate or
undergo apoptosis. The niche is responsible for the survival, proliferation, differentiation and
release of the HSCs into the vasculature when necessary [339]. Hence, the MSCs protect and
maintain the population of HSCs and control the differentiation and release of these cells [342,

343].
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Figure 4. Stromal progenitor cells in combination with the trabecular bones form the hematopoietic stem cell (HSC)
niche in the bone marrow. Stromal progenitor cells together with osteoblasts form the endosteal niche and keep HSCs in
a quiescent state. In the vascular niche, the endothelial and sub-endothelial cells regulate differentiation and proliferation
of HSCs as well as recruitment of HSCs into the vascular niche.

Reprinted from Nat Rev Immunol. (Volume 9), Uccelli et al., Mesenchymal stem cells in health and disease, Pages 726-736,
Copyright (2008), with permission from Nature Publishing Group.

Phenotypic profile of MSCs

Human MSCs lack expression of surface markers CD11B, CD14, CD34, CD19, CD79a,
CD45, CD31 and HLA-DR but do express surface markers CD13, CD44, CD54, CD73,
CD90, CD105, CD166 and Stro-1 [344]. Murine MSCs (mMSCs) from bone marrow do not
express CD34 or CD45 but do express CD105, CD44, CD90 [345], CD29 and SCAL.
Furthermore, human MSCs (hMSCs) do express MHC-I on the cell surface and MHC-II
intracellularly [346-348]. In the presence of IFN-y, expression of MHC-II molecules are
significantly up-regulated on the cell surface [347, 348]. This up-regulation seems to be valid
only for undifferentiated cells [346]. Exposure to IFN-y also significantly- and rapidly increases
the expression of MHC-I on the cell surface. The increase in MHC-I and MHC-II expression
implies that MSCs can act as APCs in addition to acting as immune modulating cells, in the

presence of IFN-y [347-350].
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MSCs act by secreting signal substances and extracellular vesicles

MSCs secrete proteins with anti-apoptotic, neuroprotective- and immunomodulatory
capabilities [351-353] such as trophic factors, growth factors and cytokines [354, 355] but also
miRNA and mRNA [355]. More precisely, MSCs secrete extracellular vesicles (EVs) (MSC-EVs)
from their endosomal compartments [356, 357] which are able to impact the microenvironment
of surrounding cells [358]. The MSC-EVs transport proteins [359, 360], lipids, organic
compounds [361], mRNA [362], tRNA [363], miRNA [362] which modify target cells.
Specifically, MSCs have been demonstrated to secrete factors such as IL-6, IL-10, IL-1a, PGE2,
HGF, IDO, NO, TGF-1, VEGF, PDGF, GDNF, BDNF, IGF-1, EGF, EPO, PDGFR-f3,
RANTES and COX2 [364-367]. The secretome of MSCs varies with the origin of the MSCs,
the batch as well as with the mix of functionally distinct subtypes of cells in the culture or
transplant [364-367]. The miRNA content in the EVs, for example, varies with the origin and
species of the MSCs [368, 369]. Moreover, the secretome of the MSCs can be modified by pre-
conditioning the cells [370, 371]. MSC-EVs are thought to mediate cell-to-cell communication
and thereby the immune-modulatory effect of MSCs [153, 354, 356, 359, 360, 363, 368, 372-
414]. Inflammation triggers MSCs to produce and release growth factors which mediate
remodeling of extracellular matrix, angiogenesis as well as differentiation of adult stem cells
which enables MSCs to contribute to tissue repair and regeneration [415]. These cytokines and
growth factors have been demonstrated to suppress the immune system, decrease apoptosis and
scar formation and contribute to angiogenesis following SCI [416]. However, the
immunomodulatory action mediated by the MSCs seem to vary depending on the type and
intensity of inflammation [415]. Taken together, MSCs seem to mediate the majority of their
immunosuppressive- and immune modulatory effects following transplantation by secretion of

soluble factors using EVs [345, 417, 418].
MSCs migrate to injured tissue using chemokine receptors

Systemically administrated MSCs migrate to injured tissue in the periphery [419]. Chemokine
receptors (e.g. CXCR4) expressed by MSCs facilitate their movement to the injured area [420-
422]. MSCs can extravasate from capillaries using their surface adhesion molecules and move
between endothelial cells by shifting from an adhesion- into a rolling state using VCAM1 [423,
424]. The ability of MSCs to cross the basement membrane is controlled by metalloproteases
which the MSCs secrete when affected by inflammatory cytokines such as TNF-a, TGF-B1 and
IL-1B [425].
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Neural stem cells transplanted into spinal cord injury

NSCs transplanted into SCI in rodents survive in the recipient [426-436]. Although NSCs
transplanted in the chronic phase of SCI experience good survival [437], transplantation in the
subacute phase seem to result in better graft survival [438, 439]. Moreover, Parr et al. (2007)
found that transplantation in the subacute phase resulted in superior graft survival as compared
to transplantation in the acute phase [440]. NSCs transplanted into intact parenchyma seem to
experience better survival as compared to NSCs transplanted into the SCI epicenter [441].

NSCs transplanted into SCI can differentiate into all neural lineages [429, 442,
443]. However, some authors found that NSCs only differentiated into astrocytes [432, 434,
435, 444, 445]. Ricci-Vitiani et al. (2006) suggested that the astrocytic differentiation is
controlled by pro-inflammatory cytokines such as TNF-a, IL-13 and IFN-y [445]. On the other
hand, some authors documented that NSCs differentiated into oligodendrocytes which
myelinated axons in the recipient [438, 439, 446]. Vroemen et al. (2003) among others noted
that the transplanted NSCs differentiated into glial cells but not into neurons [430, 431, 4306,
440]. Reports also indicate that NSCs differentiate into neurons and oligodendrocytes but not
astrocytes in the recipient [426, 427, 447]. Yan et al. (2007) suggested that the
microenvironment into which the NPCs are transplanted determines if and how the cells
differentiate. The authors found that NSCs placed close to the injury epicenter differentiated
into neurons to a higher extent while NSCs placed just under the pia mater more often
differentiated into astrocytes. The NSCs, which differentiated into neurons, also formed synapses
with resident neurons in the recipient [448]. Akesson et al. (2007) confirmed that the NSCs
mainly differentiated into neurons and astrocytes and rarely into oligodendrocytes [428]. Thus,
great controversy exist concerning the differentiation potential of NSCs transplanted into SCI.
However, NSCs transplanted following SCI integrate well in the spinal cord of the recipient
(427, 429, 436]. Moreover, neurons derived from transplanted NSCs form functional synapses
with neurons in the recipient [438, 443, 449-452]. Thus, the grafted NSCs act as
neuronal/electrophysiological relays by extending active axons across the injured spinal cord
(438, 443, 450-452]. However, neither Pallini et al. (2005) nor Gu et al. (2012) could detect
any synaptic formation between the grafted NSCs and the axons and/or neurons in the recipient
[432, 453]. However, Lu et al. (2003) observed that the grafted NSCs gave rise to significant
growth of axons, which could be further enhanced by administration of NT-3 [454]. Grafted
NSCs have also been reported to enhance axonal regeneration following SCI [430, 431]. NSCs
show a great ability to migrate following engraftment into the spinal cord [426, 427, 438, 455].
Chen et al. (2016) observed migration towards the site of the injury while Pallini et al. (2005)
observed migration away from the site of the injury [432, 456]. It has also been documented that
grafted NSCs migrate to and integrate with the white matter to a higher extent than gray matter
(438, 444].

Transplanted NSCs can suppress the inflammatory response following SCI [443].
Cusimano et al. (2012) suggested that this was due to the suppression of classical activation of
macrophages, which was confirmed by Cheng et al. (2016) [456, 457]. Alternative activation of
macrophages was enhanced following NSC transplantation in the subacute phase of SCI but not
when NSCs were transplanted in the chronic phase [455]. Grafted NSCs have been reported to
modulate activation and proliferation of microglia through secretion of VEGF [276]. In
addition, NSCs transplanted following SCI have been observed to suppress apoptosis [443, 453].
Moreover, NSCs transplanted following SCI contribute significantly to recovery of hind limb
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function [426, 427, 429, 432, 438, 443, 446, 447, 451-453, 455-460]. However, Jin et al.
(2016) among others have documented that NSCs transplanted in the chronic phase of SCI do
not contribute to functional improvement [455, 457, 461]. Some authors could not detect any
improvement of hind limb function following transplantation of NSCs into SCI regardless of
time point of transplantation [434, 440]. Enhanced angiogenesis through VEGF secretion [458]
and neurotrophic support have been proposed as explanations for the enhancement in recovery
of hind limb function [453, 459]. Interactive synaptic reorganization between grafted NSCs and
neurons in the recipient has also been proposed as an explanatory model for the improvement in
hind limb function [462]. NSCs transplanted post SCI improve motor recovery but also results
in aberrant axonal sprouting resulting in hypersensitivity [460].

Transplantation of NSCs has been combined with other treatments aiming at
enhancing the effect of NSCs. Wang and Zhang (2015) combined transplantation of NSCs with
hypothermia and observed that the combination enhanced recovery of hind limb function and
axonal regeneration as compared to NSC transplantation alone [463]. This was confirmed by
Tashiro et al. (2016) who also observed increased neuronal differentiation [464]. Hwang et al.
(2014) combined transplantation of NSCs with treadmill locomotor training and observed
enhanced recovery of hind limb function, graft survival, re-myelination and axonal regeneration
[465]. Administration of valproic acid in combination with transplantation of NSCs enhance
recovery of hind limb function, neuronal differentiation and the formation of synapses between
the grafted NSCs and resident neurons [466]. Su et al. (2007) observed that differentiation of
NSCs into neurons could be enhanced by administration of clinically relevant doses of lithium
[467]. Yuan et al. (2014) transplanted NSCs in double-layer collagen membranes and observed
an enhanced differentiation of NSCs into neurons and significant improvement of hind limb
function [468]. Devices consisting of fibrin matrix have also been utilized for transplantation of
NSCs and resulted in enhanced neuronal differentiation [469].
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Immunomodulatory effect of mesenchymal stem cells

Innate immunity

Dendritic cells

hMSCs can by means of IL-4 and GM-CSF signaling [470-472] inhibit monocytes from
differentiating into DCs (Figure 5) (470, 471, 473, 474]. hMSCs achieve this by inhibiting
monocytes from entering the G1-phase of the cell cycle (GO/G1 arrest) [474] and is most likely
regulated by secretion of prostaglandin-E2 (PGE2) from hMSCs [472]. Adipose tissue-derived
hMSCs (hAMSCs) are more capable of suppressing the differentiation of monocytes into DCs
as compared to hBMSCs [475]. Moreover, hAMSCs promote secretion of IL-10 from mature
DCs [475]. In addition to preventing differentiation of monocytes into DCs, hMSCs can also
inhibit secretion of IL-12 from mature DCs, which results in inhibition of T-cell activation- and
proliferation [471, 472]. Furthermore, hMSCs can polarize mature DCs to adopt an immature
phenotype (CD83"") [471].

mMSCs can impair TLR4-mediated activation of DCs iz vive. This reduces the
ability of DCs to migrate, secrete cytokines and present antigens to CD4'- and CD8* T-cells in
vivo [476]. Furthermore, mMSCs can polarize DCs towards an immature phenotype

(CD11b"e) [477].
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Figure 5. Effect of mesenchymal stem cells (MSCs) on the innate- and adaptive immune system. a) MSCs activated by IFN-y

Suppression

together with TNF-a or IL-1 produce chemokine receptor ligands, which results in activation of T-cells. MSCs can suppress
the activation of T-cells by secreting iNOS (in murine) or IDO (in humans). b) MSCs suppress proliferation and effector
functions of CD4* T-cells, macrophages, NK-cells, granulocytes and B-cells by secreting cytokines (TGF-a, IL-6), growth
factors (HGF, LIF), anti-inflammatory mediators (PGE2, TSGG6, HO1, exosomes) and enhance the number of regulatory T-
and B-cells and alternatively activate macrophages. ¢) The complement system as well as cytotoxic cells can promote MSCs to
undergo apoptosis. Phagocytic cells clearing apoptotic MSCs secrete IDO, which results in reduced proliferation of T-cells.

Reprinted from Nat Rev Nephrol. (Volume 8), Shi et al., Immunoregulatory mechanisms of mesenchymal stem and stromal cells in
inflammatory diseases, Pages 493-507, Copyright (2018), with permission from Nature Publishing Group.
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Natural killer cells

hMSCs can inhibit IL-2 activated proliferation of resting- and activated NK-cells [418, 478].
However, NK-cells activated by IL-2 can lyse both autologous- and allogeneic hMSCs [478,
479]. The NK-cell mediated lysis of hMSCs is accompanied by an elevation in secretion of
cytokines from NK-cells. hMSCs primed by TLR ligation are less sensitive to death by IL-2
activated NK-cells. In the presence of IFN-y, expression of MHC-I on the cell surface of hMSCs
is up-regulated which protects h(MSCs from NK-cell mediated lysis [478]. Hence, h(MSCs in an
inflammatory environment are more protected from NK-cells [480]. However, contradictory
evidence has been reported suggesting that MHC-I on hMSCs do not protect them from NK-
cell mediated lysis [479]. Moreover, h(MSCs can inhibit effector functions (cytokine secretion
and cytotoxic activity) of NK-cells by down-regulation of NKp30, NKp44 and NKG2D.
Furthermore, PGE2 and indoleamine 2,3-dioxygenase (IDO) secreted by hMSCs also have an
inhibitory effect on effector functions of NK-cells [481]. Additionally, by altering the phenotype
of NK-cells the hMSCs can reduce the cytotoxicity, cytokine secretion and proliferative capacity
of NK-cells when the ratio of NK-cells to hMSCs is low. These effects seem to be mediated by
PGE2 but also by TGF-B1 [482]. NK-cells secrete TNF-at and IFN-y as a response to cell-to-
cell interaction between hMSCs. This cellular interaction and response is dependent on ICAM1
expression on hMSCs and expression of LFA1 on NK-cells [479].

Adaptive immunity
T-cells

In an inflammatory environment hMSC:s can inhibit proliferation of activated T-cells [348, 418,
483-493] which is mediated by inhibiting activated T-cells from entering the G1-phase of the
cell cycle (GO/GT1 arrest) [483, 485]. This arrest is mediated by secretion of soluble factors (TGF-
B1, HGF) from hMSCs primed in an inflammatory environment [484]. Additionally, IFN-y
secreted by T- and NK-cells enhances secretion of IDO from hMSCs, which further suppresses
proliferation of T-cells [418, 494]. However, contradictory results do exist suggesting that
neither TGF-B1, HGF, PGE2 nor IL-10 are responsible for inhibiting the proliferation of T-
cells [348]. hMSCs secrete IL-6 and VEGF which induce phenotypic changes in DCs (reduction
of MHC-II, CD40, CD86 expression) which in turn results in the inhibition of T-cells [495].
Some contradictory evidence suggest that hMSCs can inhibit the proliferation of activated T-
cells by secretion of IDO following exposure to IFN-y which results in apoptosis of T-cells [490].
Others suggest that the inhibition of proliferation is not mediated by apoptosis of T-cells [418,
484]. Moreover, hMSCs can inhibit the proliferation of both CD4'- and CD8" T-cells [418,
484] and is true for both autologous- and allogeneic hMSCs [484]. The inhibition of T-cell
proliferation seems to depend on the dose of hMSCs and rate of contact between T-cells and
hMSCs. In low concentrations of hMSCs the cells support proliferation of T-cells by cell-to-cell
interaction and secretion of IL-6. In higher concentrations of hMSCs the cells instead inhibit
the proliferation of T-cells [486]. Furthermore, hMSCs can indirectly inhibit the activation of
T-cells by interacting with APCs which results in secretion of large quantities of IL-10 [496].
Stimulation of T-cells results in secretion of TNF-a which in turn activates the NF-k3 pathway
in hMSC:s resulting in inhibition of the proliferation of T-cells [487]. The TNF-a and IFN-y
induced inhibition of T-cell proliferation mediated by hMSCs seems to be related to an up-
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regulation in IDO [488]. hMSC:s activated by pro-inflammatory agents (IFN-y, TNF-a) secrete
Galectin-9 [492, 493] which can inhibit the proliferation of T-cells [492]. In addition, hMSCs
secrete OH-1 and iNOS, which also contribute to inhibition of proliferation of T-cells. This
inhibition only occurs when both OH-1 and iNOS are present [489]. Moreover, hMSCs
promote survival of unstimulated T-cells by down-regulating Fas ligand- and receptor on the
surface of the T-cells. Hence, MSCs can inhibit proliferation of activated T-cells and promote
the survival of non-activated T-cells [491]. IL-1f secreted from monocytes can induce secretion
of TGE-B1 from hMSCs which inhibits activation of both CD4*- and CD8* T-cells [497].
Another method by which hMSCs can modulate the immune response is by generating T-
regulatory cells. PGE2 and TGF-f1 secreted following cell-to-cell interaction between hMSCs
and CD4* T-cells enhance generation of T-regulatory cells [498, 499]. In addition, h(MSCs can
increase the generation of T-regulatory lymphocytes indirectly by alternatively activating
macrophages expressing CCL18. These alternatively activated macrophages also express high
levels of IL-10 [500].

mMSCs stimulated with IFN-y and/or pro-inflammatory cytokines (IL-1f3, IL-
la, TNF-a) secrete iNOS which is further converted into nitric oxide (NO) which reduces the
responsiveness of T-cells [501]. mMSCs can express NO in the presence of both CD4*- and
CD8* T-cells. Moreover, NO suppresses Stat5 phosphorylation in T-cells, which leads to
inhibition of proliferation of T-cells [502]. Guanylate cyclase activation is a key step in the NO
mediated inhibition of T-cell proliferation [503]. TGF-B can however reduce the secretion of
iNOS from mMSCs [504]. The proliferation of T-cells can also be inhibited by matrix
metalloproteinases (MMP), especially MMP-2 and MMP-9. These MMPs down-regulate the
expression of CD25 on the surface of activated T-cells which results in a reduced proliferation
[505]. The inhibition of T-cell proliferation can partially be explained by cell-to-cell interaction
between mMSCs and T-cells, which activates the inhibitory molecule programmed death 1
pathway. Inhibition of proliferation of CD4" T-cells seems to be mediated primarily by cell-to-
cell interaction between mMSCs and T-cells [506]. The T-cells respond to the interaction by
modulating their expression of cytokine receptors [507]. mMSCs pre-treated with adenosine
triphosphate (ATP) increase their expression of IL-2, IFN-y and IL-12 and decrease their
expression of IL-10 7z vive. This results in a reduced ability of mMSC:s to inhibit the proliferation
of T-cells [508]. Following systemic infusion of mMSCs, T-cells undergo apoptosis through the
FAS ligand dependent pathway. The apoptosis results in increased expression of TGF-B from
macrophages involved in the apoptosis. The elevated expression of TGF-f results in immune
tolerance by up-regulating levels of T-regulatory cells [509].

B-cells

hMSCs can inhibit proliferation of B-cells [510-512]. Inhibition of proliferation of B-cells is
mediated by cell-to-cell interaction between hMSCs and CD4*- and CD8* T-cells and is not
dependent on interaction between B-cells and hMSCs [345, 510]. The inhibition of proliferation
results from GO/G1 arrest [511] and is thought to be mediated by secreted soluble factors in
addition to cell-to-cell interaction [511]. The inhibition of proliferation is however not due to
apoptosis [511]. Furthermore, by inhibiting the differentiation of B-cells the hMSCs indirectly
inhibit the production of antibodies [510, 511, 513]. The antibody secretion from B-cells is
hMSC dose dependent. Thus the antibody secretion can be enhanced or reduced depending on
the ratio between hMSCs and B-cells [514]. The inhibition of proliferation and differentiation
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is dependent on cell-to-cell interaction and presence of IFN-y and is probably mediated through
the programmed death 1 pathway [512]. Additionally, the chemotactic properties of B-cells are
significantly down-regulated by hMSCs [511]. However, following ligation of TLR9 hMSCs

can strongly enhance the proliferation and differentiation of B-cells into Ig-secreting cells [515].

General immunosuppressive properties

hMSC can alternatively activate macrophages to express high levels of IL-10 and IL-6 and low
levels of IL-12 and TNF-a. Additionally, hMSCs improve the phagocytic activity of these
alternatively polarized macrophages [516]. Monocytes co-cultured with placental derived
hMSC:s differentiate to a higher extent into alternatively activated macrophages rather than
classically activated macrophages. These alternatively activated macrophages have a high
expression of IL-10 and a low expression of IL-1f, IL-12 and MIP-1a as well as enhanced
phagocytic capability. The shift in activation mediated by hMSCs is most likely mediated by
soluble factors, which bind to progesterone- and glucocorticoid receptors [517]. The
differentiation of monocytes towards IL-10 secreting macrophages is thought to be partially
mediated by IDO secreted from hMSCs. These macrophages can inhibit proliferation of T-cells
through secretion of IL-10 [488]. Moreover, hMSCs can induce DCs to reduce their expression
of TNF-a and instead increase their expression of IL-10. In the presence of hMSCs effector T-
cells can increase their expression of IL-4 and reduce their expression of IFN-y. The effect of
hMSCs on T-, DCs and NK-cells is thought to be mediated mainly by secretion of PGE2 from
hMSCs [518]. COX2 mediates the production of PGE2 in hMSCs and might be an important
enzyme to consider therapeutically [519]. hBMSCs can either have an immunosuppressive effect
or act as APCs following pre-treatment with IFN-y. Ligation of TLR3- and 4 on hMSCs
enhances their expression of IL-1f3, IL-6, IL-8 and CCLS5. In the presence of IFN-y the hMSCs
elevate their expression of iNOS but not IL-12 and TNF-a following ligation of TLR3- and 4
[520]. Taken together, hMSCs secrete the following immunosuppressive factors: IDO, NO,
PGE2, HGF, COX1, COX2, VEGF, IL-10 and TGF-f [417, 521, 522].

mMSCs can reduce expression of IL-2, IL-12, IFN-y, TNF-a, IL-4, IL-5, IL-1f
and IL-10 but not TGF-f and IDO [506]. mMSC:s pre-treated with IFN-y in vitro up-regulate
surface expression of MHC-I but have their anti-inflammatory profile preserved (TGF-f and IL-
10 expression). In vivo this up-regulation results in hypersensitivity reactions (delayed-type) in
allogeneic recipients [346]. The kynurenine pathway (including IDO1 and IDO?2) is active in
both hMSCs and mMSCs. This pathway is important for the proliferation and differentiation
of MSCs and is regulated by IFN-y. In the presence of IFN-y the proliferation- and
differentiation of MSCs is inhibited [523]. Cell culture medium conditioned by mBMSCs
contains insulin-like growth factor 1 (IGF-1), HGF, VEGF and TGF-f31 which contribute to
neuronal survival and neurite outgrowth when mBMSCs and neurons are co-cultured [524].
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Mesenchymal stem cells transplanted into spinal cord injury

Transplanted BMSCs [525-532], AMSCs [527, 533, 534], umbilical cord BMSCs (UCBMSCs)
[535] and UCMSC:s [169] do survive in the recipient. The reported survival is varying but is in
the range of weeks and in some cases months. In contrast, some authors have not detected any
survival of transplanted MSCs [536, 537]. The time point of transplantation, time point of
evaluation, number of cells transplanted and route of transplantation are important parameters
to take into consideration when concluding if transplanted cells survive or not. Both allogeneic-
and autologous mBMSCs survive following intrathecal transplantation in the subacute phase of
SCI. Although both autologous- and allogeneic mBMSCs could be detected up to 4 weeks post
transplantation, the survival of autologous mBMSCs was superior to the survival of allogeneic
mBMSCs. However, the transplanted mBMSCs, regardless of histocompatibility, did not trans-
differentiate into neural cells. Although both autologous- and allogeneic mBMSCs did
contribute significantly to recovery of hind limb motor function the autologous mBMSCs
contributed significantly more [525]. Administration of immunosuppression in combination
with transplantation of mBMSCs has synergistic effects and can reduce the cystic cavity size and
enhance the regeneration of axons following SCI. Thus, Torres-Espin et al. (2015) suggested
that a large amount of mBMSCs transplanted shortly after SCI combined with administration
of immunosuppression is the most efficient approach. The authors also emphasized that survival
of transplanted mBMSC:s is important for functional improvement [538].

Reports indicate that MSCs can trans-differentiate and form neural tissue in
general [529, 530, 534, 535, 539-544] and specifically astrocytes [530, 539, 540, 542],
oligodendrocytes [529, 534] and neurons [530, 534, 535, 540, 541]. In contrast, many authors
could not detect any trans-differentiation of MSCs transplanted into SCI [164, 169, 525, 527,
528, 545-547]. Even though differentiation of MSCs might occur in some cases and might
contribute to repair of the injured tissue, many authors have suggested that the paracrine effects
mediated by MSCs explains the majority of their beneficial effect [164, 525, 527-529, 537, 545].
Thus, transplanted MSCs can increase expression of neurotrophic- and growth factors such as
BDNEF [164, 527,528, 539, 548, 549], GDNF [528], VEGF [164, 169, 525, 544], NGF [537,
539, 542, 548, 549], CNTF [534, 537], bFGF [169], TGF-B [525], SDF-1 [525] and NT-3
[169, 549] following transplantation into SCI. Cantinicaux et al. (2013) elaborated with this
theory and evaluted if transplantation of MSC-conditioned cell culture medium into the injury
epicenter could improve the hind limb locomotor function. The authors found that the
conditioned medium could reduce the size of the cystic cavity, protect neurons from apoptosis
and promote angiogenesis, which correlated with enhanced functional recovery [550]. Although
transplanted MSCs can elevate levels of neurotrophic- and growth factors it is not certain if these
factors are secreted by MSCs or if the secretion stems from endogenous sources up-regulated by
the transplanted MSCs. Furthermore, it is reasonable to argue that the secretome of transplanted
in vivo primed MSCs might be different from the secretome of unprimed MSCs in vitro,
especially considering the complexity and dynamics of the 7 vivo environment during SCI.

Various routes for transplantation have been utilized: intra-lesion [164, 169, 526-
528, 530-536, 538, 539, 542-546, 548, 549, 551-556], intravenous [529, 537, 539, 541, 542,
551, 557-561] and intrathecal [525, 526, 540, 547, 551, 556, 562, 563]. The ability of MSCs
to migrate from venous blood [529, 541, 557, 559] and subdural space [526, 540, 563] to the
lesion area has been demonstrated repeatedly. This suggests that less invasive transplantation

approaches (intrathecal and intravenous) might be more appealing than intra-lesion
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transplantation. Some groups have combined several transplantation routes [551]. Kim et al.
(1976) compared intra-lesion to intravenous transplantation of MSCs and found that intra-
lesion transplantation results in superior engraftment of MSCs and elevated expression of BDNF
and NGF as compared to intravenous transplantation. However, the authors could not detect
any difference in functional outcome between the two transplantation routes [539]. On the other
hand, Kang et al. (2012) did describe a better functional outcome (BBB score) following
intravenous transplantation as compared to intra-lesion transplantation. The authors suggested
that this supports the fact that MSCs can migrate across the blood spinal cord barrier but also
that the intra-lesion approach contributes to the injury. Moreover, the authors observed that the
number of cells engrafted following intravenous transplantation was lower and that the cells
differentiated mainly towards astrocytes as compared to intra-lesion transplanted MSCs which
mainly differentiated into neurons [542]. Shin et al. (2013) compared intra-lesion, intrathecal-
and intravenous transplantation of MSCs. They found that intrathecal transplantation results in
a more even distribution of MSCs as compared to intra-lesion transplantation, which instead
produces a mass-effect on the uninjured tissue. Superior functional recovery was observed in
animals which received intrathecal transplantation. Although many more cells were transplanted
using the intravenous route as compared to the intra-lesion route, the intravenous approach
resulted in very poor engraftment in the spinal cord [551]. Furthermore, the improvement in
functional recovery likely dependents on the number of engrafted MSCs [526]. In conclusion,
the route for transplantation seems to have a significant effect on the efficiency of the MSC
therapy for SCI and should be taken into consideration in the experimental planning and during
evaluation.

Transplanted MSCs have proven the ability to favorably modulate the
microenvironment in the injured spinal cord. Specifically, MSCs have proven the ability to
reduce glial scar formation [169, 533, 554, 562], cystic cavity size [525, 547, 550, 558], lesion
size [533, 553] and improve angiogenesis [164, 536, 550, 557] and tissue sparing [528, 532,
534, 536-538, 545, 550, 555, 562]. Additionally, MSCs can also improve axonal regeneration
[164, 528, 532, 533, 544, 554, 557, 562] and re-myelination [529, 557]. Furthermore,
transplanted MSCs can reduce the apoptotic activity in the recipient [164, 534, 543, 550, 552]
and alternatively activate macrophages [553, 562]. Moreover, transplanted MSCs can also reduce
expression of pro-inflammatory cytokines (I'NF-a, IL-6, IL-12, IL-4, IL-2, IL-1fB, IL-12,
COX2) [541, 553, 559, 560, 562] and up-regulate expression of anti-inflammatory cytokines
(IL-10, IL-4, IL-13) [537, 553]. Thus, MSCs contribute to neuroprotection and reduce the
degree of the injury but also contribute to regeneration in the injured spinal cord.

The functional outcome (motor, sensory and autonomic) is perhaps the most
relevant measurement of efficiency for a patient. MSCs have in several studies proven the ability
to significantly improve the hind limb motor function [164, 169, 525, 529-538, 541, 543, 546-
550, 552-555, 557, 558, 561-563]. This significant enhancement of hind limb motor function
is suggested to be a consequence of secreted soluble factors (e.g. neurotrophic- and growth
factors) resulting in neuroprotection with or without association to axonal regeneration and re-
myelination [164, 527, 529, 537, 547-549, 552, 558]. In contrast, fewer studies claim that the
trans-differentiation of MSCs explain the functional improvements [530, 535]. Taken together,
transplanted MSCs survive, trans-differentiate under some circumstances, elevate levels of
neurotrophic- and growth factors, favorably modulate the microenvironment and enhance
functional recovery in the recipient. Moreover, MSCs seem to improve the functional outcome
regardless of survival or trans-differentiation, which supports the theory that elevated expression
of neurotrophic- and growth factors is the main therapeutic effect that the MSCs contribute
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with. Therefore, in contrast to other cell transplantation approaches, MSCs are most often not
transplanted with the intention to replace damaged cells in the recipient but to contribute
temporarily with immunomodulation.

Genetic modification

In addition to enhancing the survival and engraftment of MSCs by seeding them onto scaffolds
prior to transplantation, modification of their transcriptome using plasmids or viral vectors have
been investigated. Transplantation of BDNFE-hBMSCs intra-lesion in the acute phase of SCI
results in significant improvement of hind limb motor function and increased sprouting of
corticospinal- and serotonergic axons. Thus, the enhanced axonal regeneration mediated by
BDNF most likely explains the improvement of hind limb motor function [564]. Similarly
BDNF-hMSCs, transplanted in  three-dimensional rather than in two-dimensional
conformation, contribute to recovery of hind limb motor function. The seeded three-
dimensional devices significantly reduce the expression of pro-inflammatory cytokines (TNF-a,
IL-1B) and the apoptotic activity in the injured spinal cord [565]. Functional improvement has
also been described following transplantation of BDNF-mBMSCs in combination with chABC.
This functional improvement has been associated with observations of improved axonal
regeneration and increased expression of NGF and BDNF [566]. Enhancement of axonal
regeneration and re-myelination has also been achieved by transplantation of mBMSCs over-
expressing CDNF, which correlate with improved hind limb motor function. These CDNEF-
mBMSCs have also managed to reduce the level of pro-inflammatory cytokines and thereby
further contribute to a favorable microenvironment for regeneration [567]. Neurotrophic factors
can be administrated either by means of MSCs over-expressing them or directly into the spinal
cord. Transplantation of mBMSCs over-expressing GDNF seems to be a feasible alternative to
direct administration of GDNF [568]. Wei et al. (2017) achieved over-expression of GDNF in
hBMSC:s by suppressing 7:-383. The GDNF secreted by the hBMSCs resulted in reduced cystic
cavity size and improved hind limb motor function [569]. Gene silencing has also been utilized
for the Nogo-66 receptor gene. This has resulted in improved neuronal survival and neurite
outgrowth as well as hind limb motor function [570]. Moreover, over-expression of NT-3 by
transplanted mBMSCs do enhance the survival of mBMSCs following transplantation into SCI.
In addition, the NT-3-mBMSCs reduce apoptosis of motor neurons [571]. Additionally, Wang
et al. (2014) reported that NT-3-mBMSCs could significantly improve hind limb motor
function, reduce the cystic cavity size and increase expression of BDNF and VEGEF. The NT-3-
mBMSC:s can also reduce astrogliosis and enhance axonal regeneration [572]. hUCMSC:s over-
expressing N'T-3 have also been transplanted into SCI and managed to improve the hind limb
locomotor function and reduce the cystic cavity size [573]. mBMSCs over-expressing bFGF have
also enhanced axonal outgrowth which did result in significant hind limb motor function
improvement, although the expression was only significant during the first week post
transplantation [574].

Transplantation of mBMSCs over-expressing the anti-inflammatory cytokine IL-
13 enhances the recovery of hind limb motor function but also reduce lesion volume, number
of resident microglia and increase the number of alternatively activated macrophages as well as
the macrophage-axonal contact. This seems to be a consequence of IL-13-induced apoptosis of
microglia [575]. Favorable modification of the inflammatory environment has also been achieved
by transplantation of heme-oxygenase-1 (OH-1)-MSCs, which can reduce the level of pro-
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inflammatory cytokines (TNF-a, IL-6, COX2), as well as the microglial infiltration.
Consequently, the OH-1-MSCs significantly improve the functional outcome following SCI
[576]. Promotion of axonal regeneration (elevated expression of GAP43 and MAP2) has been
observed post transplantation of Wnt3a-hUCBMSCs which has been associated with
improvement of hind limb motor function (BBB score) [577]. Transplanted mAMSCs over-
expressing Neurogenin-2 can differentiate into neurons (NEUN'- and/or TU]J1* cells) and
elevate the levels of BDNF and VEGEF in a recipient. This is associated with improved functional
outcome [578]. Taken together, neurotrophic factors (BDNF, CDNF, NT-3) but also growth
factors (bFGF) secreted by genetically modified MSCs can enhance the axonal regeneration and
re-myelination, which correlates with, enhanced hind limb motor function following SCI.

Seeded scaffolds

In order to enhance engraftment of transplanted MSCs in the lesion area several projects have
investigated the effects of transplanting scaffolds seeded with MSCs. Transplantation of
mBMSC:s on acellular spinal cord scaffolds results in improved survival of the transplanted MSCs
as well as enhanced trans-differentiation of the MSCs into glial cells. Additionally, this treatment
approach has managed to reduce apoptosis (lower expression of CASPASE-3) but also
significantly improve the hind limb motor function [579]. Acellular spinal cord scaffolds have
also been seeded with hUCMSC:s prior to transplantation and been able to support proliferation
and differentiation of resident oligodendrocytes resulting in enhanced re-myelination and hind
limb locomotor function. However, the hUCMSCs did not survive for more than 2 weeks in the
recipient [580]. hBMSCs transplanted on polymer scaffolds have proven the ability to
differentiate into oligodendrocytes, astrocytes and neurons and enhanced the motor- and sensory
functions post SCI [581]. On the other hand, mBMSCs transplanted on polymer scaffolds
survive at least 8 weeks in the recipient and enhance axonal regeneration and recovery of hind
limb function (BBB score and motor evoked-potentials, MEPs) [582]. Collagen scaffolds seeded
with mBMSCs can reduce astrogliosis, apoptosis and infiltration as well as enhance alternative
activation of macrophages, axonal regeneration and functional recovery following SCI [583]. A
three-dimensional, rather than two-dimensional, structure of collagen scaffold seeded with
mBMSCs seem to be more beneficial in improving hind limb motor function and axonal
regeneration and in reducing expression of pro-inflammatory cytokines (IL-6, IL-1B, TNF-a)
[584]. Biodegradable chitin conduits seeded with mBMSCs can reduce glial scar formation and
muscular atrophy following SCI. mBMSCs seeded on these scaffolds survive, proliferate and
differentiate into Schwann cell-like cells which promote axonal regeneration [585].
Transplantation of mBMSCs on gelatin sponge scaffolds promote angiogenesis, reduce
expression of pro-inflammatory cytokines (TNF-a, IL-1) as well as the cystic cavity size. Gelatin
sponge scaffolds also enhance survival and proliferation of transplanted mBMSCs [586].
Scaffolds seeded with genetically modified MSCs have also been investigated. Jiao et al. (2017)
found that hUCMSCs over-expressing GDNF loaded onto composite scaffolds (silk
fibroin/alginates) significantly improve the hind limb motor function and host neuronal survival
following SCI [587]. Furthermore, BDNF-mBMSCs seeded onto alginate-based anisotropic
capillary hydrogels survive up to 4 weeks in the recipient, promote axonal regeneration and aid
the guidance of axons through the lesion area [588]. Additionally, scaffolds seeded with BMSCs
in combination with activated Schwann cells survive up to 8 weeks, differentiate into neuron-

like cells in the recipient and improve axonal regeneration and recovery of hind limb motor
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function (BBB score & electrophysiological response) [589]. Taken together, scaffolds seem to
further enhance the positive effects on rehabilitation executed by MSCs. The impression is that
scaffolds improve survival and tend to promote trans-differentiation to a higher extent. Partial-
or complete transection SCI, as compared to contusion injuries, might be better suited for
scaffold transplantation.

Co-transplantation

In order to further enhance the therapeutic effects of transplanted MSCs some researchers have
assessed the potential benefit of co-transplanting MSCs with other cell types. Co-transplantation
of olfactory ensheathing cells (OECs) and mBMSC:s intra-lesion results in reduced loss of white
matter, reduced levels of apoptosis (reduction of CASPASE-3, CASPASE-9 and Bax/Bcl2 ratio)
and improved axonal regeneration which has been correlated with enhanced functional
improvement [590]. In contrast, intra-lesion co-transplantation of murine olfactory ensheathing
glia (mOEG) and mBMSCs results in poor graft survival which correlate with a lack of
enhancement of functional recovery [591]. Co-transplantation of mBMSCs and chABC reduce
the necrotic area, the astrocytic scar and expression of GFAP and CSPGs in the recipient. The
axonal regeneration is promoted which correlates with significant improvement of hind limb
motor function [592]. Lee et al. (2016) further refined this approach by transplanting BDNEF-
AMSC:s together with chABC followed by two additional equivalent transplantations at 1- and
2 weeks following the first transplantation. Already the first injection resulted in significant
improvement of hind limb motor function while the two additional transplantations increased
the recovery of hind limb motor function further but also managed to reduce the fibrotic scar
formation and expression of TNF-a, COX2 and IL-6. The therapy elevated expression of BDNF
in the recipient [593]. In contrast, co-transplantation of AMSCs together with chABC results in
increased levels of pro-inflammatory cytokines (COX2, TNF-a) but can on the other hand
reduce levels of CSPGs which results in significant improvement of hind limb motor function
[594]. Pre-treatment of MSCs prior to transplantation is another approach that has been
investigated. Chen et al. (2014) pre-treated mBMSCs with valproic acid prior to intravenous
transplantation. The authors documented improved survival of the transplanted mBMSCs and
improved ability for the cells to migrate to the injury epicenter by means of chemokine receptors.
Additionally, the authors documented improved functional outcome in animals which received
these pre-treated mBMSCs [595]. NT-3-mBMSCs pre-treated with retinoic acid contribute to
enhanced survival of resident neuronal cells and reduce cystic cavity size. These pre-treated cells
also enhance the axonal regeneration, which is associated with significant improvement of hind
limb motor function (BBB score) [596].

Another approach that has been investigated is transplantation of MSCs in
combination with growth factors. Intrathecal transplantation of hBMSCs in combination with
bFGF results in trans-differentiation into neural cells and significantly enhances functional
recovery [597]. mBMSCs transplanted in combination with NGF differentiate into astrocytes
(GFAP" cells) and neurons (NEUN" cells). Furthermore, axonal regeneration is improved and is
correlated with improved hind limb motor function [598]. Intra-lesion transplantation of
mBMSC:s followed by administration of minocycline (tetracycline antibiotic) during the first 2
weeks post transplantation reduces the infiltration of neutrophils and increases the expression of
BDNF and VEGEF. Moreover, this therapy reduces the level of apoptosis and enhances recovery
of hind limb motor function [599]. Transplantation of mBMSCs in combination with
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intravenous administration of propofol improves the recovery of hind limb motor function and
axonal regeneration [600]. Hyperbaric oxygen treatment post mBMSC:s transplantation do not
only reduce the size of the lesion but also reduces the expression of pro-inflammatory cytokines
(TNF-a, IL-6, IL-1B and IFN-y) and enhances recovery of hind limb motor function [601]. In
conclusion, several combinatory therapies have been investigated and the majority have indicated
promising results. It is however difficult to conclude which one of these therapies that is the most
efficient one.

Clinical trials involving mesenchymal stem cells as a treatment for SCI

Several aspects are important to take into consideration in clinical studies evaluating MSCs
(Figure 6). First, the immune status of the recipient has to be evaluated. If allogeneic cells are to
be used the age and gender of the donor is important to take into account. Allogeneic MSCs can
be used of the shelf and enables transplantation at any time point during the disease progression
but raises questions concerning graft rejection. MSC cultures rely on basal medium containing
xenogeneic serum. Since this might be associated with risk, serum-free culture conditions are
preferred when establishing cells which are to be administrated to humans. Moreover, the timing,
dose and administration route are key elements that probably have to be adapted to the disease
and condition which is to be treated. The dose has to be sufficient and might be difficult to know
beforechand. The administration route has to ensure proper migration of cells to the injury
epicenter or mediate a systemic immunomodulatory effect [338].
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Immune status

Source of recipient
of MSCs
=R~
In vitro
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Figure 6. Key aspects to consider in clinical studies and therapies using or evaluating mesenchymal stem cells (MSCs).

Reprinted from Nat Rev Nephrol. (Volume 8), Shi et al., Immunoregulatory mechanisms of mesenchymal stem and stromal cells in
inflammatory diseases, Pages 493-507, Copyright (2018), with permission from Nature Publishing Group.
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Transplantation of hAMSCs [602], hBMSCs [603-616] or hUCMSCs [617] to patients in
clinical studies is safe. However, adverse events and side effects such as head ache [608, 609, 615,
617], fever [608, 609, 615, 616], dizziness [608], lower back pain [617], neuropathic pain [618]
and spasticity [618] have been reported. On the other hand, several clinical trials have reported
a complete lack of complications following transplantation [602-607, 610-612, 614]. In those
cases in which side effects did occur, these usually subsided within 2-3 days post transplantation
[608, 609, 615, 617]. A systematic review of 36 studies including 1012 patients conducted by
Lalu et al. (2012) including intravenous and intra-arterial transplantation confirms that
transplantation of hMSCs in prospective clinical trials is safe and is not associated with death,
malignancy or organ system complications. However, the authors did detect an association
between transplantation and fever [616]. Although not all clinical trials investigated tumor
formation, the ones that did could not detect any such formation [602, 608, 611].
Transplantations in these studies were autologous [602-615, 618] except when hUCMSCs were
used [617]. However, establishing and verifying MSCs takes months, which implies that
transplantation of autologous MSCs in the acute- and subacute phase of SCI is not possible.
Common transplantation routes such as intra-lesion [603, 606-608, 611, 612], intrathecal [603-
606, 609, 610, 613-615, 617, 618] and intravenous [602, 611, 614] transplantation have all
been used for transplantation of hMSCs to patients. Intrathecal transplantation seems to be the
most commonly used route. In some cases, 2 or 3 routes have been combined [603, 606, 611,
612, 614]. hMSCs have been transplanted in the chronic [602, 604, 605, 607, 608, 613] or
subacute phase [604, 605, 614] of SCI. Transplantation has resulted in improvement in motor
[602, 603, 607-610, 612-615, 617], sensory [607-609, 612, 614, 615, 617], autonomic [609]
and urological functions [607, 608, 614, 617]. Furthermore, cystic cavity size has been reported
to decrease as a result of transplantation of MSCs [603]. However, some authors have not been
able to observe any functional improvement [618]. In conclusion, the functional improvement
following MSC transplantation is modest which might be a consequence of transplantation in

the subacute- or chronic phase.

36



Introduction

Disease-associated microglia

Microglia, the tissue resident myeloid-like cell in the CNS, have traditionally been defined as
CD11B*CD45"" cells. Recently, single-cell RNA sequencing (scRNAseq) has become a popular
method for characterizing heterogeneity of cell populations by determination of marker genes
and regulatory factors in subpopulations of cells over time, conditions and/or development in
various tissues and species [619-623].

Disease-associated microglia are detected in various pathological conditions in the CNS

In recent years, several disease models of CNS pathology in rodents have been used as a platform
for investigation of disease-associated transformations of microglia. O’Koren et al. (2019)
reported that degeneration of retina resulted in a down-regulation of genes associated with
homeostasis of microglia (P2ry12, Tmem119, Selplg, Cst3) and up-regulation of genes defining
disease-associated microglia (DAM) (Lgals3, Sppl, Lpl, Cd68) (Figure 7). In addition, DAM
relocated within the retina and contributed to the protection of the retinal epithelium [624].
Mathys et al. (2017) reported that microglia in Alzheimer’s disease transformed over time and
formed specific sets of subpopulations with a transcriptional profile different from microglia in
homeostasis. Early on in the disease microglia were characterized by expression of Crsb, Cisz,
Cst7, Mif, Cel12, Cel3, Ccl4, Lilrb4 while microglia later on in the disease (i.e. DAM) were
characterized by expression of Apoe, Lgals3bp, Axl and H2-D1 [625]. Keren-Shaul et al. (2017)
made similar observations and reported that DAM in Alzheimer’s disease indeed down-regulate
expression of genes associated with homeostatic microglia (P2ry12, P2ry13, Tmem119, Cx3crl)
and instead up-regulate genes associated with phagocytosis and lipid metabolism (Apoe, Crsd,
Lpl, Tyrobp, Trem2, Cst7). Furthermore, they observed that DAM co-localized with AB-plaques
[626]. Masuda et al. (2019) used a model of demyelination (cuprizone) and confirmed that
microglia in these circumstances up-regulate expression of genes associated with DAM (Apoe,
Mafb, Apocl, Gpnmb, Anxa2, Lglasl, Spp1, Lpl) while suppressing expression of genes associated
with homeostatic microglia (7mem119, P2ry12). Moreover, they found that the expression
profile of DAM in rodents and humans was similar [627]. In addition, DAM has also been
detected and described in experimental models of multiple sclerosis (EAE, experimental
autoimmune encephalomyelitis). While these microglia also down-regulate genes associated with
homeostatic microglia (P2ry12, Tmeml119, Siglech, Selplg, Gpr34, P2ryl12, Maf, Slc2a5, Sall,
Serpine2, Bhlhe4l) they specifically up-regulate genes associated with chemokines and
proliferation (Mki67, Ly86, Ccl2 and Cxcl10) [628]. However, in EAE the down-regulation of
genes associated with homeostatic microglia seem to be temporary and the cells regain their
original expression after the acute phase of the disease [629]. Krasemann et al. (2017) injected
apoptotic neurons into the CNS that were phagocytized but also mediated the transformation
of homeostatic microglia into DAM. The authors concluded that the formation of DAM was a
result of suppression of TGF-B-signaling and enhancement of 7rem2-regulated Apoe-signaling.
The Apoe-signaling mediated suppression of transcription factors (Mafb, Mef2a, Smad3)
associated with homeostatic microglia and up-regulation of transcription factors (443, Tfe,
Bhlhe40) associated with inflammatory programs [629]. Facial nerve axotomy used as a model
of transient neurodegeneration has also been associated with elevated expression levels of Apoe,
Axl, Cel12, H2-K1, Crss, H2-D1 and suppression of Cst3, Maf, Gpr34, P2ry12, Sparc implying
formation and existence of DAM [630]. Activation of microglia using LPS, which simulates
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acute inflammation, also induces a transformation of microglia into DAM characterized by
suppression of homeostatic microglia genes (Siglech, Tmem119, P2ry12, Mef2c, Ferls, Olfml3),
genes related to anti-inflammation (Mrcl, Argl) and phagocytosis (Tyrobp, Trem2). LPS
stimulation however up-regulate expression of genes related to pro-inflammation (//16, Ccl2,
Tnf, Nfkbia, Gpr84, Sppl, Tlr2) in microglia [631]. Moreover, myeloid cells in the CSF of
patients infected with human immunodeficiency virus (HIV) have an up-regulated expression of
genes associated with DAM (Apoe, Axl, Trem2, Apocl, Ctsb, Clga, Clgb, Clgc) [632]. Taken
together, DAM seem to be present in various types of CNS pathology indicating that microglia
respond in a homogenous fashion to injury and disease.

Homeostatic microglia Stage 1 DAM Stage 2 DAM
/ ( ¢ \
A \\_/ Ap 2 \\_/ Ap .
-
Unknown il TREM2
signals /) signaling
s i — i J
Cx3cri1
P2ry12 Cx3cr1 Tyrobp Lpl Spp1
Tmem119 P2ry12 Apoe Cst7 Ca9
Hexb CD33 82m Axi Cclé
Cst3 Tmem119 Trem2 Itgax Csf1

Figure 7. Trem2-independent and Trem2-dependent transformation of homeostatic microglia into disease-associated microglia

(DAM) type one and two.

Reprinted  from Cell. (Volume 5), Deczkowska et al., Disease-Associated Microglia: A Universal Immune Sensor of
Neurodegeneration., Pages 1073-1081, Copyright (2018), with permission from Cell Press.

Disease-associated microglia in the developing brain

Microglia with a transcriptional signature of DAM have been detected in brains of healthy
developing mice, in addition to in CNS pathology. Li et al. (2019) reported that microglia in
the developing brain, especially in the white matter, express low levels of genes associated with
microglia in homeostasis (P2ry12, Tmem119, Tgfbrl) and instead express high levels of genes
characteristic for DAM (lgf1, Lpl, Clec7a, Fabp5, Cd63, Sppl, Itgax, Gpnmb, Apoe, Tyrobp).
These cells were especially characterized by expression of Ce/3 and Ccl4, were able to phagocytize
oligodendrocytes and astrocytes, and were therefore termed postnatal proliferative-region-
associated microglia (pPAM) or white matter-associated microglia (WAM). In contrast to DAM in
CNS pathology, the formation of WAM was not regulated by the 7rem2-Apoe signaling-pathway
[633]. Moreover, Masuda et al. (2019) reported that postnatal microglia have an expression
profile similar to microglia in homeostasis (7mem119, Selplg, Slc2a5) but also over-express Csz3,
Sparc and Ihal while embryonic microglia instead are characterized by elevated expression of

genes associated with lysosomal activity (Ctsb, Cisd, LampI) but also by Apoe and Thal [627].
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Formation and origin of disease-associated microglia is not yet fully understood

Currently, the transformation of homeostatic microglia into DAM is thought to be mediated
mainly by a Trem2-dependent pathway. More precisely, the initial transformation of homeostatic
microglia into DAMI is not mediated by 77em2 but is then followed by a Trem2-dependent
transformation from DAM1 into DAM2 (Figure 7) [626, 634]. It is in the first transformation
into DAM1 in which microglia down-regulate expression of 7mem119 and P2ry12 and up-
regulate expression of 7yrbop and Apoe. During the second transformation from DAMI into
DAM2 these cells instead up-regulate expression of Csz7, Lpl and Ax/. Interestingly, the Trem2-
mediated activation of microglia seems to enhance the survival and proliferation of DAM [635].
Moreover, in the absence of 77em2, microglia do not seem to transform from DAMI into
DAM?2 but they do acquire a phagocytic phenotype [629, 636]. The Trem2-signaling seems to
be partially activated by phospholipids in AB-plaques in disease models of Alzheimer’s disease
[637]. Moreover, Trem2 can bind to lipoproteins on Af3-plaques [638] which results in microglia
phagocytosing AB-plaques at a higher rate [639].

Although Trem2-signaling seems to mediate the transformation of DAMI into
DAM2, the initial activation of homeostatic microglia is not yet fully understood. One
hypothesis is that microglia respond to specific molecular patterns associated with CNS
pathology which they detect using sensory mechanisms. Extracellular protein aggregates (e.g. AB-
plaques), ADP, myelin debris and apoptotic bodies have been suggested and to some extent
demonstrated to be able to act as such activating molecular patterns [635]. P2ry12 for example,
a gene which defines microglia in homeostasis, is a receptor for ADP which is a danger signal in
the CNS [626]. Moreover, down-regulation of regulators such as Cx3¢r and CD200 which are
associated with homeostatic condition of microglia is possibly inducing the transformation
[626]. Activation of microglia mediated by other immune cells responding to CNS pathology is
another likely mechanism which might contribute to initiating the transformation [640].
Moreover, the ability of microglia to transform seems to be reduced with increased age and is
currently explained by a dysregulation of transcription factors and chromatin modifiers in
microglia [641]. In conclusion, DAM down-regulate expression of homeostatic markers for
microglia (7mem119, Cx3crl, P2ryl12, P2ry13) [642] and up-regulate genes related to lipid
metabolism, phagocytosis and lysosomal activity (7rem2, Apoe, Tyrobp, Ctsd, Lpl) [643]. Several
questions concerning DAM are still unanswered. The relation between DAM, disease
progression and outcome in CNS pathology has not been properly evaluated. The mechanisms,
which mediates transformation of homeostatic microglia into DAM, is not fully understood and
neither is the mechanism that triggers and initiates this transformation.
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AIM

The cellular- and immune response following SCI is complex and has implications for
regeneration and recovery. The immune cell response and the microglial response in particular,
following SCI has not yet been investigated at single-cell resolution. Furthermore, several
questions remain concerning the importance of histocompatibility of transplanted stem cells,
their cellular response and their causal contribution to functional recovery following SCI.
Therefore, this thesis aimed at investigating stem cell transplantation as a therapeutic approach
for SCI as well as disease-specific transformations of immune cells in SCI.

The general aim was divided into four specific aims:
1. Investigate neural progenitor cells transplanted into SCI in terms of their differentiation,
transcriptional changes, effect on neuroinflaimmation and causal contribution to

functional recovery (Paper I).

2. Evaluate differences in therapeutic potential between syngeneic- and allogeneic
mesenchymal stem cells transplanted into SCI (Paper II).

3. Investigate the cellular response of mesenchymal stem cells transplanted into SCI

(Paper III).

4. Investigate disease-specific transformations of immune cells over time in SCI at single-

cell resolution (Paper IV).
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MATERIAL AND METHODS

Ethical considerations

All animal experiments were conducted according to ethical permits granted by the ethical
committee in Stockholm (Sweden) (Table 1). In addition, specific regulations and guidelines
issued by veterinarians at Karolinska Institutet were implemented at all times. Human spinal
cord injury (SCI) samples were retrieved from an ongoing clinical trial (SC0806-A101,
NCT02490501) approved by the Swedish Medical Products Agency Study Protocol. All study

participants gave informed written consent for participation.

Table 1. Ethical permits.

Permit Principal investigator Date Date Pur
e cipal investigato ose
p & (approval) | (valid) up
N38/16 Lou Brundin 2016-01-28 | 2021-02-28 Cell harvesting
Lou Brundin, Mikael .
N196/15 2015-11-12 2020-11-12 SCI, cell transplantation
Svensson
N12317/2017 | Low Brundin Mikacl 150 0 05 | 2020-11-12 | SCL cell transplantation
Svensson
N124/15 Mikael Svensson 2015-08-20 | 2020-08-20 SCI

Robert Harris, Tomas

N138/14 Olsson, Maja Jagodic 2014-07-08 2020-07-08 Breeding

2013/2257-31/1 Hans Basun. Mikael 2013-01-29 | No time limit | Resection of glial scar in
2015/1436-31 Svensson ’ 2015-09-10 | (maximum 45 | human SCI and replacement
2019-03671 2019-07-31 patients) with a FGF1 soaked device

Abbreviations: SCI: Spinal Cord Injury; FGF1: Fibroblast Growth Factor 1.

Experimental animals

Each researcher involved in experiments involving laboratory animals was educated and certified
at FELASA B equivalent level. Experimental animals were kept at an approved and regularly
controlled facility at Karolinska Institutet. Animals were kept in room temperature with constant
access to food and water. The room was lit twelve out of twelve hours per day. Cages were
enriched and no more than five animals were kept in each cage. Veterinarians were always
informed of ongoing experiments and were available for secondary opinion on questions
concerning animal health. Animals were acclimatized to the facility during at least 7 days prior
to surgical intervention and/or functional evaluation. Animals in ongoing experiments
experiencing deterioration in health were scored using a template developed by the veterinarians
at Karolinska Institutet (Utdkad bedomning av djurhilsa for smagnagare och kanin postoperativt
eller annars nér det ir pikallat) and treated accordingly.

Mus musculus

Inbred mice were purchased through Scanbur (Stockholm, Sweden). SCI was induced in
C57BL/6] (The Jackson Laboratory, 000664) female mice. Female mice have shorter urinary
tracts, which makes assisted bladder compression significantly easier, which is the reason for only

inducing SCI in female mice. Cells were harvested from C57BL/6] or BALB/cJ (The Jackson
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Laboratory, 000651) mice. Male Cx3cr1“"" (The Jackson Laboratory, 005582) were crossed with
female C57BL/6] mice in order to obtain C57BL/6]-Cx3cr1“" mice. Microglia/macrophage-
and monocyte populations were isolated from the spinal cords of healthy and injured C57BL/6]-
Cx3cr1“*f mice and the cells were subjected to bulk RNA sequencing. Cx3cr1“<*® (The Jackson
Laboratory, 021160) were crossed with Rosa26°™ (The Jackson Laboratory, 010527) to obtain
Cx3crl1 R Rosa26™ mice. All Cx3crl* cells (-microglia) in the central nervous system (CNS)
of the Cx3crl“™®Rosa26”™ mice were labelled with yellow fluorescent protein (YFP).
Cx3cr1“FR*Rosa26°™ mice induced with tamoxifen resulted in a depletion of Cx3crl* cells in
the entire CNS of the animal. All inbred mice were genotyped prior to use (below). Mice used
in experiments were between 8-10 weeks old with a weight between 18-20g, except BALB/c]
mice that were all male and between 4-6 weeks old.

Rattus norvegicus

The ventricular-subventricular zone (V-SVZ) from adult Lewis rats (LEW-Tg(EGFP)455Rrrc)
heterozygous for the enhanced green fluorescent protein (eGFP) under the ubiquitin C promotor
on chromosome 5 were harvested from which neural progenitor cells (NPCs) were established.
These GFP*NPCs were transplanted into wild-type littermates. All rats were genotyped prior to

use (below).
Genotyping

Ear biopsies from C57BL/6]J-Cx3crl1“*f mice were incubated in 100 pl of ddH,O with 1:200 5
M NaOH (in-house) and 1:2500 0.5 M EDTA (Thermo Fisher, AM9260G) for 1 hour at 95°C.
100 pl ddH,O with 1:25 Tris-HCI (Sigma, 10812846001) was added to the suspension and
samples were kept on ice. 16 pl of PCR master mix (62.5 % REDExtract-N-Amp PCR (Sigma,
R4775), 28 % RNase-free H,O, 3 % mutant primer, 3 % wild-type primer and 3 % common
primer) was combined with 4 pl of the suspension in each well of a 96-well PCR plate (Life
technologies, N8010560). Primer stock concentration was 20 uM (Eurofins Genomics) (Table
2). Thermal cycling was performed at 94°C for 2 min, 10 cycles of: 94°C for 20 s; 65°C for 15 s
(decreased 0.5°C/cycle) and 68°C for 10 s followed by 28 cycles of: 94°C for 15 s; 60°C for 15 s
and 72°C for 10 s followed by 2 min at 72°C. The samples were added onto an agarose gel
SYBR™ Safe DNA Gel stain (Invitrogen™, G521802) in combination with 20 ul of DNA
ladder (Invitrogen™, SM0241) and connected to a power-supply (Bio-Rad, Power-Pac 100)
delivering 90 V during ~15 min. Gels were then analyzed (Bio-Rad, ChemiDoc™ XRS").

Ear biopsies from Cx3crl1“***Rosa26°™ mice were first denatured for 5 min at
94°C and then subjected to 35 cycles of: 94°C for 30 s, 60°C for 60 s and 72°C for 60 s followed
by incubation at 72°C for 2 min using a PCR apparatus (Applied Biosystems, 2720) (Table 2).
DNA fragments were analyzed on gels (4 % agarose) and visualized using GelRed fluorescent
nucleic acid gel stain (Bio-Rad, ChemiDoc™ XRS*).

Genotyping was performed on ear biopsies using standard protocols (Rat Research
Resource center RRRC, Columbia). REDExtract-N-AMP™ Tissue PCR Kit was used for
obtaining total DNA from each biopsy using manufacturer’s protocol. The animals were
inspected before use by illuminating the eyes using a flashlight with an attached dichroic filter
(excitation at 470/40 nm) enhancing the GFP fluorescence which was inspected by placing an
emission filter (515/30 nm) above the eye of the rat.
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Table 2. Primers for genotyping.

Strain Primer Sequence 5’23’
moIMRO0003 GGGCCAGCTCATTCCTCCCACTCAT

C57BL/6]-Cx3cr1SF oIMR4281 CCACAGGATTTCAGCCTGAACTTTG
oIMR4282 CGTGCACTATGCTCAGATATCTGTC

Rosa26 Mutant Forward CGACCTGCAGGTCCTCG

Rosa26 Mutant Reverse CTCGAGTTTGTCCAATTATGTCAC
Rosa26 WT Forward CGTGATCTGCAACTCCAGTC
Rosa26 WT Reverse GGAGCGGGAGAAATGGATATG

Cx3cr1 “<FRR 0sa2 6P TA*

Experimental spinal cord injury

Intraperitoneal anesthesia was used in order to ensure a reproducible and stable anesthesia that
allowed one to easily move the animal during surgery. Medetomidin (0.5 mg/kg, Domitor® vet.
1 mg/ml) and ketamine (75 mg/kg, Ketador vet. 100 mg/ml) were given i.p. to mice. Rats were
anesthetized using 5 % isoflurane (Baxter) with 30 % oxygen, which was reduced to 2.5 %
isoflurane during surgery. At the time of induction buprenorfin (0.05 mg/kg, Temgesic® 0.3
mg/ml) and karprofen (5 mg/kg, Rimadyl® vet. 50 mg/ml) were given s.c. to counteract pain.
Dehydration was antagonized by s.c. injection of normal saline (Baxter) prior to surgery. Weight
was documented and animals were marked using ear biopsy. Eyes were protected using cerate
(Oculentum simplex) and the fur on the back on the place for the upcoming incision was shaved
(Aesculap, ISIS 273278). Animals were placed on a heating pad, a small skin incision was made
and the muscles were gently set aside and the spinal column stabilized by using a stereotaxic
frame (Model 900 & 900-c, Kopf®). The dorsal part of the vertebraec above Th10/11 was
removed using a drill (Anspach®, EMAX® 2). The dura mater was cut open and a severe
contusion SCI (75 kdyn in mice, 200 kdyn in rats) was induced using a IH-0400 impactor
(Infinite Horizon). A SCI was called successful if the measurement displayed by the apparatus
showed a distinct impact peak and both hind limbs extended at the moment of impact and
retracted and ended up flaccid. Bupivakain (Marcain®, 2.5 mg/ml) was administrated into the
muscles surrounding the site of incision prior to suturing the skin. The skin was closed using a
running suture (Ethicon, Vicryl 4.0) supplemented with two or three single sutures in order to
properly secure the closure. Animals were allowed to recover on a heating pad and observed for
a while prior to a second administration of analgesics. Analgesics were administrated twice daily
during the first 3 days following surgery. Assisted bladder emptying was applied until reflexive
bladder emptying returned. Mice were weighed at the day of surgery and weekly thereafter.
Animals were sacrificed given a weight loss exceeding 25 % of their initial weight.

Mesenchymal stem cells

Bone marrow for establishment of mesenchymal stem cells (MSCs) was harvested from mice
(C57BL/6]J, BALB/cJ). Animals were given a lethal dose of pentobarbitalnatrium i.p. (Apotek
Produktion & Laboratorier, 60 mg/ml) and underwent cervical dislocation prior to initiation of
harvest. Following rinse in 70 % ethanol (Solveco, 1000) the skin was cut open in a circular
fashion around the abdomen and the skin was removed by pulling in a caudal direction. The
tibia and femur were removed, isolated and kept on ice in HBSS (Gibco®, 14170112)
containing 1:50 Penicillin-Streptomycin  (Pen-Strep, Gibco® 15140122). Muscles and
connective tissue were removed from the bone and the epiphysis was cut open on both sides in
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a ventilated cell culture hood. The bone marrow was removed from the bone by flushing with
pre-warmed basal medium (89 % a-MEM (Gibco®, 22561054), 1 % Pen-Strep, 10 % fetal
bovine serum (FBS, Gibco® 10082147) through the bone using a 27 gauge needle connected
to a 10 ml syringe. The suspension was passaged several times through a thick needle (18 gauge)
attached to a 10 ml syringe to properly dissociate the cells. The suspension was run through a 70
pm cell strainer (Corning®, 352350) prior to counting (BLAUBRAND®, Biirker 718920). The
cells were centrifuged at 300xg for 10 min and re-suspended in basal medium and plated
(1.45x10° cells/cm?) in 100 mm cell culture dishes with tissue culture treated surfaces (Nunc™,
150350) and kept at 37°C and 5 % CO,. Three days following initial plating the basal medium

was replaced.

Immunodepletion

The MSCs were harvested for immunodepletion 8-10 days following initial plating. Plates were
washed with 1xDPBS (Gibco®, 14190250) and incubated for 5 min at 37°C in 4 ml of 0.5 %
Trypsin-EDTA (Gibco®, 15400054). Non-lifted cells were mechanically removed using a cell
scraper (Nunc™, 179693). Trypsin was inactivated with 0.5 ml FBS, cells collected and stored
on ice. Cells were washed twice in 20 ml a-MEM (500xg, 15 min, 4°C). Cells were
immunodepleted using biotinylated antibodies against CD11B, CD45 and CD34 (Table 3)
using Dynabeads™ M-280 Streptavidin (Gibco®, 11206D) and a magnetic particle
concentrator (DYNAL MPC®-1, 120.01) as described by Boregowda et al. (2016). Five
Dynabeads™ per cell and 10 pg antibody per target was used. The immunodepleted MSCs were
plated in pre-warmed basal medium at 1x10° cells/cm?in T75 flasks (Nunc™, 156499) and kept
at 37°C and 5 % COs,. Basal medium was replaced 2-3 times per week [644].

Tri-lineage differentiation potential

MSCs were cultured 5-7 days post immunodepletion prior to evaluation of tri-lineage
differentiation potential. Adipogenic differentiation was induced by plating MSCs at 12.000
cells/cm? in 35 mm tissue culture treated dishes (Falcon®, 353001) in basal medium. One day
post plating the basal medium was replaced with adipogenic induction medium (a-MEM, 1 %
Pen-Strep, 10 M Dexamethasone (Sigma, D4902), 20 uM 5, 8, 11, 14 — Eicosatetraynoic acid
(Sigma, E1768), 25 pg/ml bovine insulin (Sigma, 10516), 10 % rabbit serum (Sigma, R4505))
and replaced 2-3 times/week. After 2-3 weeks of culture, the cells were fixed with 4 %
paraformaldehyde (PFA) (Solveco, 1198) for 30 min. After wash in dH,O, cells were stained in
a working solution (60 %, 0.5 % stock in isopropanol diluted in dH,O) of Oil Red O Staining
(Sigma, O1391) for 20 min, washed in tap water and then analyzed under a microscope (Zeiss,
Axiovert 200). Gene expression for Cfd and Lp!/ (Eurofins Genomics) was estimated using
RTqPCR (Table 4) [644]. Osteogenic differentiation was induced by plating 8.000 cells/cm? in
35 mm tissue culture treated culture dishes in basal medium. One day post plating the basal
medium was replaced with osteogenic induction medium (high glucose DMEM (Sigma,
D5796), 1 % Pen-Strep, 10 % FBS, 10 mM B-glycerol phosphate (Sigma, G9422), 50 pg/ml
ascorbic acid-2-phosphate (AA2P) (Sigma, A8960), 10* M Dexamethasone (Sigma, D4902)).
The induction medium was changed 2-3 times/week for a total of 3 weeks. After 3 weeks the
cells were washed in 1xPBS and fixed in 4 % paraformaldehyde (PFA) 20-30 min at RT and
finally stained in 2 % Alizarin Red S (Sigma, A5533) for 5 min, washed in tap water, and then
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visualized under a microscope. Gene expression for Ibsp, Spp1, Ctsk, Runx2 and Sparc (Eurofins
Genomics) (Table 4) was estimated using RTqPCR [644]. Chondrogenic differentiation was
induced in a three-dimensional culture [645, 646]. 2.5x10° MSCs (500.000 cells/ml) were re-
suspended in chondrogenic induction medium (high glucose DMEM, 1 % Pen-Strep, 10 ng/ml
TGEF-B3 (Sigma, 80330), 100 nM Dexamethasone, 50 pg/ml ascorbic acid-2-phosphate (AA2P),
100 nM sodium pyruvate (Sigma, P5280), 40 ug/ml proline (Sigma, P5607), 6.25 pg/ml bovine
insulin (Sigma, 10516), 6.25 pg/ml transferrin (Sigma, T8158), 6.25 pg/ml selenous acid (Sigma,
211176), 5.33 pg/ml linoleic acid (Sigma, L1012), 1.25 mg/ml bovine serum albumin (Sigma,
A7900) and centrifuged at 500xg for 10 min at 4°C to pellet the cells. Induction medium was
changed 2-3 times per week without disturbing the pellet. Gene expression of Sox9 (Eurofins

Genomics) (Table 4) was estimated using RTqPCR [644].

Phenotypic characterization

Undifferentiated MSCs (P3, P12) were washed using 1xDPBS and harvested by incubation in
0.5 % Trypsin-EDTA at 37°C for 5 min. Cells were washed twice in a-MEM (500xg, 15 min,
4°C). CD105, CD29 and SCA1 were used as positive markers and CD45 as a negative marker
for MSCs using a multi-color flow kit (R&D Systems, FMC003). Non-specific background
signal caused by primary antibodies was measured using cell marker specific isotype controls. Fc
receptor-mediated binding by antibodies was reduced by incubating samples in a-CD16/CD32
antibody at a concentration of 10 pl per 100 pl cell suspension for 5 min on ice prior to staining
(Table 3). Cells were analyzed using a BD LSRFortessa™ cell analyzer. Phenotypic
characterization of MSCs was also performed following transfection (below).

Traditional colony-forming unit assay

The growth potential of MSCs was assessed using traditional colony forming unit assay (tCFU-
assay). MSCs (P10) were plated in a six-well plate (Nunc™, 140675) at a density of 100 cells/cm?
in basal medium and incubated at 37°C and 5 % CO,. Basal medium was replaced at 3- and 6
days post plating [647, 648]. After 7 days in culture the cells were washed (1xDPBS) and fixed
with 4 % PFA for 20-30 min and stained with 3 % crystal violet (Sigma, C3886) in methanol
at RT for 20 min [649] followed by wash in dH,O. An inverted microscope was used for scoring
and counting the colonies. A colony was defined as 5 or more cells with fibroblast-like

morphology [648, 650].
Population growth dynamics and doubling time

MSCs (P10) were plated in two six-well plates at ~220 cells/cm? in basal medium and kept at
37°C and 5 % CO; for a total of 12 days. Every other day two six-wells were harvested using 0.5
% Trypsin-EDTA in 1xDPBS. Cells were counted using a counting chamber and the population
doubling time (PDT) was estimated. The PDT takes into account the number of cells (N) at
plating (0) and at a later time point (t) [648].

tx log(2)

PDT= log(IN./Ny)
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Table 3. Antibodies.

Material and Methods

Type Host Target Fluorochrome Manufacturer ID
Goat IBA1 NA Abcam ab5076
Rabbit IBA1 NA Wako 019-19741
Goat IBA1 NA Abcam ab48004
Mouse NEUN NA Merck Millipore MAB377
Mouse TUJ1 NA Merck Millipore MAB1637
Rabbit GFAP NA Dako 70334
Rat MHC-II NA Abcam ab25333
Rabbit CASPASE-3 NA Abcam ab13847
Mouse NESTIN NA Merck Millipore MAB353
Primary Mouse CC1 NA Merck Millipore OPr8o
Mouse CNPase NA Abcam ab6319
Rabbit SOxX2 NA Merck Millipore AB5603
Rabbit OLIG2 NA Abcam ab109186
Rabbit GFP NA Merck Millipore AB3080
Rat MBP NA Abcam ab7349
Mouse NF NA Dako GAGO7
Rabbit CST7 NA Nordic Biosite 12073-1-AP
Rabbit TMEMI119 NA Abcam ab209064
Mouse APOE NA Abcam ab1907
Rabbit IGF1 NA Abcam ab40657
NA GOAT Alexa Fluor® 488 Invitrogen A11055
NA MOUSE Alexa Fluor® 488 Invitrogen A11001
NA RABBIT Alexa Fluor® 488 Invitrogen A11008
NA MOUSE Alexa Fluor® 594 Invitrogen A11005
NA RABBIT Alexa Fluor® 594 Invitrogen A21207
Secondary — -
NA GOAT Alexa Fluor® 594 Invitrogen A27016
NA RAT Alexa Fluor® 568 Invitrogen A11077
NA MOUSE Alexa Fluor® 647 Invitrogen A28181
NA RABBIT Alexa Fluor® 647 Invitrogen A27040
NA GOAT Alexa Fluor® 647 Invitrogen A27018
Rat CD45 PE/Cy7 BD Biosciences 552848
Rat CD45 PE/Cy7 Biolegend 103113
Mouse CD45 v450 BD Biosciences 560697
Rat CD45 PE BD Biosciences 553081
Rat CDI11B PE Biolegend 101208
Rat CDI11B PerCP-Cy5.5 Biolegend 101227
Rat CDI11B APC BD Biosciences 553312
Rat CD11B BV421 BD Biosciences 562605
Mouse CD64 PerCP-Cy5.5 Biolegend 139308
Rat LY6G v450 BD Biosciences 560603
Rat LY6G BV421 BD Biosciences 562737
Pre- Rat LY6C PE Biolegend 128007
conjugated Hamster CD29 APC eBioscience 17-0291-80
Rat SCA1 FITC BD Biosciences 561077
Rat MHC-1I FITC Biolegend 125508
Rat MHC-II FITC Biolegend 107606
Hamster CD3E BV421 BD Biosciences 562600
Rat CD19 BV421 BD Biosciences 562701
Rat SIGLEC-F BV421 BD Biosciences 562681
Mouse NKI.1 BV421 Biolegend 108741
Rat CD14 FITC Biolegend 123307
Rat CDI11B Biotin BD Biosciences 553309
Rat CD45 Biotin BD Biosciences 553078
Rat CD34 Biotin eBioscience 13-0341-85
Fc block, Rat CD16/32 NA BD Biosciences 553141
Counterstain, NA dsDNA Hoechest 33258 Abcam ab228550
Live/dead NA dsDNA Hoechest 33342 Thermo Fisher 62249
marker NA dsDNA Propidium iodide Sigma P4170
NA Free amines Near-IR Invitrogen L34959
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Expression construct and transfection

HBEGEF/DTR linked to mCherry was inserted into the CAG promotor of a modified episomal
expression vector (EEV, System Biosciences EEV600A-1) (Eurofins Genomics) [651, 652]. Prior
to use in culture the EEV plasmid was made endotoxin-free using a kit and manufacturer’s
instructions (Qiagen, 12362). 10.000 MSCs were plated per cm?, in basal medium, 4 days prior
to transplantation. MSCs were transfected using a kit (Lipofectamine™ 3000, Invitrogen) 2 days
following plating in combination with replacing the medium with fresh basal medium. Cells
were incubated for an additional 2 days, washed in 1xDPBS, harvested and stored in a-MEM
on ice until transplantation. mCherry fluorescence of transfected MSCs was inspected and
confirmed prior to harvesting and transplantation (Zeiss, Axiovert 200).

Mouse stromal vascular fraction

Adipose tissue (brown and white) was harvested from mice and kept on ice in HBSS with 1:50
Pen-Strep. Using two scalpels the tissue was first mechanically dissociated/minced followed by
incubation in 2 mg/ml Collagenase P (Sigma, 11213857001) at 37°C for 1 hour. Suspension
was triturated every 10 min. The suspension was passed through 100 pm (Corning®, 431752)
and 40 pm (Corning®, 431750) cell strainers in order to remove debris and aggregation of cells.
Following wash with basal medium (600xg, 7 min) the cells were re-suspended in 3 ml ACK
lysis buffer (Gibco®, A1049201) and kept at RT for 5 min. Following wash in 1xDPBS twice
(600xg, 5 min), the cells were re-suspended in a-MEM and kept on ice until transplantation

[653].
Neural progenitor cells

Harvesting and culturing

The V-SVZ was harvested from adult rats expressing GFP and used for isolation of NPCs
according to the modified protocol from Johansson et al. (1999) [654]. Following a lethal
injection of pentobarbitalnatrium i.p., the rats were decapitated and the cerebrum dissected and
kept in 1xDPBS on ice. The V-SVZ was identified using a surgical microscope (Nikon, SMZ-
2T) and removed using surgical scissors. The V-SVZ was enzymatically dissociated with 10 U/ml
papain (Worthington, LS003126), washed in L-15 medium (Invitrogen™, 11415064) and
cultured in growth medium (DMEM/F-12 (Gibco®, 31331093), B27 (Gibco®, 17504044),
Pen-Strep (Sigma, 15140122), epidermal growth factor (20 ng/ml, Sigma E4127), basic
fibroblast growth factor (10 ng/ml, R&D Systems 3339-FB). Growth factors were added to the
cultures every second day. Neurospheres were passaged twice, the first time 4-5 days following
initial plating. Size and fluorescence of neurospheres were evaluated using a table microscope
prior to transplantation (Nikon, eclipse TS100).

Multi-lineage differentiation potential

Neurospheres or single NPCs (dissociated using papain) were plated in growth medium at
10.000 cells/well in a 24-well plate (Nunc™, 142475) onto coverslips coated with poly-D-Lysine
(Sigma, A-003-M). Some cells were kept undifferentiated, while cells intended for differentiation
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were induced 1 day after plating and cultured for 7 days in L-15 with 1 % FBS. Cells were then
fixed with PFA (2 %) and evaluated using immunocytochemistry.

Stem cell transplantation

Mesenchymal stem cells

One day following SCI surgery, the mice were anesthetized once again. The spinal cord was
exposed with no additional incision of the skin or surrounding tissue. A total of 0.5x10° MSCs
in 3-4 pl a-MEM were transplanted using a pipette prepared from a glass capillary needle (WPI,
1B150F-6) connected to a 10 pl syringe (Hamilton®, 80330) into 4 sites adjacent to the injury
epicenter. A pipette puller (HEKA, PIP5) was utilized to form the glass capillary needle into a
pipette tip. The syringe was attached to a fixating arm on a stereotaxic frame (Model 900 & 900-
¢, Kopf®) and the cell suspension was delivered under microscopic visualization. The suspension
was injected slowly, the needle was left in place for 5 minutes and then slowly retracted with
intermittent pausing. The skin was closed (Ethicon, Vicryl 4.0) and analgesics administrated in
the same fashion as during SCI surgery. Transplantation of MSCs established from C57BL/6]
mice to C57BL/6] mice was defined as syngeneic transplantation while transplantation of MSCs
established from BALB/cJ mice into C57BL/6] mice was defined as allogencic.

Neural progenitor cells

NPCs were transplanted using a method similar to MSC transplantation. However, rats were
treated with 10 mg/kg cyclosporine (Novartis, Sandimmun® 50 mg/ml) once daily during the
first week following SCI. 0.5-0.6x10° NPCs (neurospheres and single NPCs) diluted in 6 pl
1xDPBS were transplanted into the SCI epicenter at 8-10 days following SCI.

Locomotor and kinematical assessment of hind limb function

The hind limb function of rats and mice were objectively documented and observed when
walking on a runway. The animals were recorded (Canon EOS 6D, 60 fps, 1/800 shutter speed)
and the recordings analyzed offline (Click Joint, AEA solutions). In order to ensure proper
visualization, the animals were placed under a brief anesthesia using 4 % isoflurane. The fur on
the hind limbs was removed, and the joints of the hind limbs were labelled using a permanent
marker. The following anatomical landmarks on the hind limbs were labelled: 1) iliac crest, II)
greater trochanter, III) lateral malleolus, IV) metatarsophalangeal joint of the fifth toe, and V)
tip of the toe. Animals were given 2-3 practice runs prior to induction of SCI in order to
acclimatize to the measurement environment and equipment. A 100 cm runway was used for
walking analysis from which the first and last 10 cm were excluded from analysis (80 cm of
efficient runway was used in analysis). The glass was illuminated with LED light, which enabled
visualization of the stepping pattern of the animals. By using a small amount of water coating
the surface, the paws were clearly visible when pressed onto the bottom surface. Random frames
from recordings were selected. Using the software, the height of the iliac crest, stride- width and
length, footsteps, number of steps on runway, velocity, and protraction- and retraction distances
were measured. The iliac crest height (ICH) was defined as the distance from the foot to the iliac
crest at mid-stance face. The stride width was defined as the horizontal distance between the legs,
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while the stride length is the vertical distance between steps (for the same foot) along the axis of
movement [106]. Protraction was defined as the forward dragging of the hind limbs, while
retraction is defined as the opposite. Using the recordings the Basso, Beattie and Bresnahan
(BBB) locomotor rating scale was estimated for each animal at each time point of observation
[104]. For mice the Basso Mouse Scale (BMS) score was estimated instead of the BBB using an
open field environment constructed using Plexiglas [655]. The locomotor rating scale and
kinematical analysis were assessed prior to the SCI and up to 12 weeks post SCI.

Table 4. Primers for RTqPCR.

Gene Sense Antisense
Cfd ATGGTATGATGTGCAGAGTGTAG CACACATCATGTTAATGGTGAC
Lpl GAGGACACTTGTCATCTCATTC CCTTCTTATTGGTCAGACTTCC
Ibsp CAAGCGTCACTGAAGCAGGTG CATGCCCCTTGTAGTAGCTGTATT
Ctsk TGCCTTCCAATACGTGCAGCA TGCATTTAGCTGCCTTTGCCG
Runx2 CCGCACGACAACCGCACCAT CGCTCCGGCCCACAAATCTC
Sparc AGCGCCTGGAGGCTGGAGAC CTTGATGCCAAAGCAGCCGG
Sppl1 CAGTGATTTGCTTTTGCCTGTTTG GGTCTCATCAGACTCATCCGAATG
Sox9 CTCTGGAGGCTGCTGAACG TTGTAATCGGGGTGGTCTTTCTT
Actb TGGAATCCTGTGGCATCCATGAAAC TAAAACGCAGCTCAGTAACAGTCCG
Gapdh AAGGGCTCATGACCACAGTC CAGGGATGATGTTCTGGGCA
Cel2 GCTCAGCCAGATGCAGTTA TACGGGTCAACTTCACATTC
Cel3 CCATGACACTCTGCAACCAA CGTGGAATCTTCCGGCTGTA
Celd TGCTCGTGGCTGCCTTCT CAGGAAGTGGGAGGGTCAGA
” Cel5 GACAGCACATGCATCTCCCA CCTTCGAGTGACAAACACGACT
g T:J, Celll GGCTGACCTCAAACTCACAGAAA ACATTCTGGCTTGGCATGGT
= 3 Cxell CTGGGATTCACCTCAAGAACATC CAGGGTCAAGGCAAGCCTC
& Csf2 CTGTCACGTTGAATGAAGAGGT GGCTTCCTCATTTTTGGCCT
Ifng AGCTGATCCTTTGGACCCTC GTCACCATCCTTTTGCCAGTT
I1b CTGTGTCTTTCCCGTGGACC CAGCTCATATGGGTCCGACA
Illa TGCGCTGCCAGGGGTCTT ATTCCACGGTTCCACGGTTAGG
15 GACAAGCAATGAGACGATGA GAACTCTTGCAGGTAATCCA
16 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC
110 ACCTGGTAGAAGTGATGCCC ACAGGGGAGAAATCGATGACA
1124 CCAAACCAGCACATTGAAGA AGCTCCCTCTTGTTGTGGAA
1126 GGGACATCATCAAACCAGACCC GCCTTTGCATTGGACTTCGG
Tnfa AAGCCTGTAGCCCACGTCGTA GGCACCACTAGTTGGTTGTCTTTG
Fegr3a TTTGGACACCCAGATGTTTCAG GTCTTCCTTGAGCACCTGGATC
Fegr2a AATCCTGCCGTTCCTACTGATC GTGTCACCGTGTCTTCCTTGAG
Mrcl TCTTTGCCTTTCCCAGTCTCC TGACACCCAGCGGAATTTC
Argl TTGGGTGGATGCTCACACTG TTGCCCATGCAGATTCCC
Acth AGCTGAGAGGGAAATCGTGC ACCAGACAGCACTGTGTTGG
Gapdh ATGGGAGTTGCTGTTGAAGTCA CCGAGGGCCCACTAAAGG
g Illa GGCTAAGTTTCAATCAGCCCTTT AGGTGCTGATCTGGGTTGGAT
3 3 I1b TCCAGTCAGGCTTCCTTGTG GGTCATTCTCCTCACTGTCGAA
,{:" % 1124 TGTCAATCACGCTACCTCCTC AAGACACTTGGCAGGTCCAG
s Csf2 TGCTCTGGAGAACGAAAAGAACG ATTGAGTTTGGTGAGGTTGCCCC
Cel3 TCCTATGGACGGCAAATTCCACGA AGATCTGCCGGTTTCTCTTGGTCA
Tnfa GGTGATCGGTCCCAACAAGGA CACGCTGGCTCAGCCACTC
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Active elimination of engrafted neural progenitor cells

The same expression construct used for transfection of the MSCs (above) was used for
transfecting NPCs enabling them to be actively eliminated following transplantation. Hence, in
this case the mCherry expression and the DTR was both of interest. Approximately 0.5-3 pg
DNA was added to 0.2x10° NPCs in buffer T. The transfection was conducted using
electroporation (Neon® Transfection System) using settings: 990 V, 40 ms, 1 pulse. Cells were
plated in growth medium following transfection and kept in culture for 2 days prior to
transplantation. The transplanted NPCs were actively eliminated immediately post
transplantation by injecting the rats with 100 mg/kg diphtheria toxin i.p. per day on 3
consecutive days.

Induction of Cre recombinase

Tamoxifen was used for induction of the Cre recombinase in the Cx3cr1“*<*®*Rosa26°™* mice.
The tamoxifen (Sigma, T5648) was suspended in corn oil (Sigma, C8267) and incubated at
75°C for at least 1 hour. Five mg (200 ul) tamoxifen was administrated to each animal s.c., once
daily for a total of 3 consecutive days.

Animal sacrifice and tissue harvesting

Animals were sacrificed by administrating a lethal dose of pentobarbitalnatrium. Following loss
of conscience the animals were mounted in a stereotaxic frame, the skin above the cervical region
incised and the musculature separated. Cerebrospinal fluid (CSF) from mice was collected from
the cisterna magna using a pipette prepared from a glass capillary needle and connected to a 10
ul syringe (Hamilton®). CSF from rats was also collected from the cisterna magna but using a
safety needle (Venofix® Safety, 4056501-01) attached to a 1 ml syringe. The CSF was collected
into Eppendorf® tubes and snap-frozen in liquid nitrogen. The animals then underwent cervical
dislocation and the SCI epicenter +/- 3 mm was dissected and snap-frozen in Eppendorf® tubes
using liquid nitrogen. CSF and spinal cord samples were stored at -80°C. Animals (spinal cords)
subjected to evaluation using fluorescence activated cell sorting (FACS) or flow cytometry did
not undergo cervical dislocation but were instead transcardially perfused with 1xDPBS (Watson
Marlow, 120S) and the spinal cords were kept in 1xDPBS on ice until dissociation. Animals
evaluated using immunohistochemistry were first transcardially perfused with 1xDPBS and then

with PFA (4 %). The spinal cords were fixed in PFA (4 %) at 4°C O/N.
Human spinal cord samples

The injured human spinal cord segment was removed surgically according to the study protocol
in the ongoing clinical trial (above) and the rostral 1/3 of the sample was immediately fixed in
PFA (4 %) at 4°C O/N and then subjected to histological evaluation.
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Fluorescence activated cell sorting

Bulk cell samples

Spinal cords containing transplanted MSCs or NPCs underwent enzymatic dissociation using
10 U/ml papain (Worthington, L5003126) with a combination of trituration and incubation at
37°C. The same protocol was used for isolating microglia/macrophages, microglia-like
macrophages and monocyte-like cells from spinal cords of C57BL/6]J-Cx3cr1“*" and C57BL/6]
mice respectively. DNAse 200 U/ml (Sigma, D7291) was added to the cell suspension during
dissociation. 1 % BSA (Gibco®, 15260-037) in 1xDPBS was added to the cell suspension to
inactivate the papain. Cells were collected and 10 ml of 30 % Percoll (Sigma, P1644) diluted in
1xDPBS was added. The myelin was separated from the cells by centrifugation at 750xg at 4°C
for 10 min with brake set at 2. The pellet was aspirated and filtered through pre-wet cell strainers
(100 pm, 40 pm). Cells were washed in 2 ml fluorescence activated cell sorting (FACS)-buffer
(1 % BSA, 2 mM EDTA (Gibco®, 15575-038), 25 mM HEPES (Sigma, H0887)). Fc receptor-
mediated binding by antibodies was reduced by incubating cells in 1 pg Mouse Fc Block
(CD16/CD32) per 1x10° cells in 100 pl FACS-buffer for 5 min on ice (Table 3). Pre-conjugated
antibodies were added at a concentration of 1pug/10° cells to the cell suspension and incubated
for 30 min on ice (Table 3). For isolation of MSCs and NPCs from the dissociated spinal cords
their mCherry and GFP fluorescence, respectively, were utilized and no additional antibodies
were added in order to distinguish them. Microglia/macrophages were defined as
CX3CRI1'*CD19Ly6G CD3NK1.1'SIGLECFCD11b*CD45"¢>" cells while microglia-like
macrophages were defined as CD11b*CD45°"Ly6G' CD64" and monocyte-like cells were
defined as CD11b*CD45""Ly6G CD64" cells. Cells were washed twice, re-suspended in 300 pl
FACS-buffer, and sorted using a BD Influx™ cell sorter. Cells were collected in FACS-buffer,
and re-suspended in 1 ml Trizol (Thermo Fisher, 15596026) following centrifugation at 300xg
for 5 min and eventually stored at -80°C until downstream processing.

Single cells

SCI epicenters from C57BL/6] and tamoxifen induced Cx3crl1“®®*Rosa26°™* mice were
dissected and dissociated using enzymatic dissociation (above). Single cell suspensions from 3-5
spinal cords per condition were pooled and stained with antibodies against CD45, CD11B,
CD64 and CD14 using the procedure described above (Table 3). CD45" cells were isolated
from the aggregated suspension of cells using FACS (Sony SH800S). A mixture of unstained
cells from healthy- and injured spinal cords was used as negative control when setting the
voltages. Cells were sorted into wells containing 2 pl lysis buffer (Table 5) in Hard-Shell® 384-
well PCR plates (Bio-Rad, hsp3805). Plates were covered with a seal, centrifuged at 4000 rpm
(Hettich, Universal 320R) then snap-frozen on dry ice and stored at -80°C. A compensation
matrix was estimated using UltraComp eBeads (Thermo Fisher, 01-2222-41) stained with 1 pg
antibody per fluorophore. ArC™ Amine Reactive Compensation Bead Kit (Invitrogen, A10628)
was used when setting up the compensation matrix for the live/dead marker. When using
transgenic animals (Cx3cr1“***Rosa26°™"), unstained spinal cord tissue (containing YFP* cells)

was used for compensation setup for the YFP-fluorescence.
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Flow cytometry

Spinal cords were dissociated as described above. Phenotypic characterization of spinal cords
containing transplanted MSCs was performed using a cell analyzer (BD Biosciences,
LSRFortessa™). A compensation matrix was calculated based on single stains. Data was analyzed
in Kaluza Analysis Software (Beckman Coulter). During analysis, dead cells and non-singlets
were excluded. Phenotypic characterization and quantification of number of microglia
(CD11b*Cx3crl* and CD11b*CD45"" cells) in Cx3cr1“***Rosa26P™* mice prior to and
following depletion of microglia was conducted using another cell analyzer (Beckman Coulter,
Gallios flow cytometer) but analyzed using the same analysis software.

Table 5. Library preparation using the Smart-Seq2 protocol.

Type Ingredient Ratio Manufacturer | Identifier
H,O 1:53 NA
Recombinant RNase Inhibitor 1:40 Takara | 2313A
Lysis buffer ERCC 1:600000 1:40 In-house
10 % Triton™ X-100 1:50 | Sigma | 93443
10 mM dNTP 1:4 In-house
100 uM dT 1:40 In-house
SMARTScribe 1:6.32 Takara 639538
Recombinant RNase Inhibitor 1:24 Takara 2313A
5x First Strand Buffer 1:3 Takara 639538
Reverse 100 mM DTT 1:12 Promega P117A
transcription mix 5 M Betaine 1:3 Sigma B0300
1 M MgCl, 1:100 Sigma M1028
100 uM TSO 1:60 In-house
H,O 1:43 NA
H,O 1:7 NA
Pre-amplification Kapa HiFi HotStart ReadyMix (2x) 1:1.2 Kapa Biosystems | KK2601
mix 10 uM ISPCR primer 1:60 In-house
Lambda exonuclease 1:133 New England Biolabs | MO0262S
H,O 1:1.7 NA
Tn5 mix TAPS-PEG 1:3.6 In-house
Tn5 stock 1.7.2 In-house
H,O 1:1.47 NA
. 5x buffer 1:3.9 KAPA KB2500
PCR/barcode mix =3 rp 126 | KAPA KN1009
Hifi 1:39 KAPA KE2004

Proliferation assay

Proliferation of MSCs in culture was investigated by incubating the cells in 1:1000 EdU
(Thermo Fisher, A10044) for 24 hours prior to analysis. Proliferation rate of transplanted MSCs
was investigated by administrating EAU (0.75 mg/ml) in drinking water supplemented with 1
% sucrose (Sigma, S0389) available from induction of SCI until sacrifice. Proliferation was
assessed using flow cytometry (cells in culture) and immunohistochemistry (transplanted cells)
using the Click-iT™ Plus EdU Alexa Fluor™ 488/555 Imaging Kit (Thermo Fisher, C10637).
Manufacturer’s instructions were used throughout. Proliferation of CD45* immune cells in SCI
was assessed by incubating dissociated cells with Hoechest 33342 (Table 3) according to
manufacturer’s instructions. The S-phase of the cell cycle was defined as the right-most peak in
a histogram of 33342 on a log-scale and used as the definition of proliferating cells.
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RNA isolation

Spinal cords and differentiated mesenchymal stem cells

RNA isolation and clean up was performed using the RNeasy mini kit (Qiagen, 74104) or
RNeasy micro kit (Qiagen, 74004). The tissue was mechanically dissociated (IKA®, T8.01) in
lysis buffer containing B-mercaptoethanol (1 %). Genomic DNA was digested using DNase I
(Qiagen, 79254). The RNA was re-suspended in nuclease-free H,O and stored at -70°C.

Bulk cell samples

Isolated and Trizol treated samples of NPCs, MSCs and microglia/macrophages, microglia-like
macrophages and monocyte-like cells were thawed and incubated at RT for 5 min. Following
incubation, the samples were vortexed and 0.2 ml chloroform (Merck Millipore, 102445) was
added. Following vigorous shaking samples were incubated on bench-top for 5 min and then
centrifuged at 12000xg for 15 min at 4°C. The aqueous phase was removed and placed in a
separate Eppendorf® tube containing 10 pg glycogen (Invitrogen™!, 10814-010) in 0.5 ml 100
% isopropanol (Solveco, 1131). Samples were incubated at -20°C O/N. The next day, samples
were centrifuged at 12000xg for 10 min at 4°C. After removing the supernatant 1 ml of 75 %
ethanol (Solveco, 1000) was added followed by centrifugation at 7500xg at 4°C for 5 min. The
supernatant was aspirated, the RNA dried at RT and then diluted in nuclease-free water.
Genomic DNA was digested using DNase I (Qiagen, 79254). RNA was purified using the
RNeasy micro kit (Qiagen, 74004), diluted in 14 pl nuclease-free H,O and stored at -70°C.

Reverse transcription and real-time quantitative polymerase chain reaction

Spinal cords and differentiated mesenchymal stem cells

RNA (500 ng) was converted into cDNA using the iScript™ ¢DNA Synthesis Kit (Bio-Rad,
1708891) on a block heater (Eppendorf® ThermoStat Plus, 022670204). The cDNA was
diluted 1:5 in RNase-free water (Sigma, W4502). The cDNA was then used in a 10 pl PCR
reaction using the iQ™ SYBR® Green Supermix (Bio-Rad, 170-8887) in combination with 25
mM forward- and reverse primers (Eurofins Genomics) (Table 4) in a 384-well PCR plate.
RTqPCR was performed at 95°C for 3 min followed by 40 cycles of: 95°C for 10 s; 60°C for 30
s and 72°C for 30 s with a CFX384 Touch™ Real-Time PCR detection System (Bio-Rad,
1855485). The protocol was finalized with a melt curve (65°C to 95°C, increment 0.5°C every
5's). The AACt method was used for data analysis. Gapdh and/or Acth were used as housekeeping
genes. Plate setup and normalization of expression was performed in Bio-Rad CFX manager
(Bio-Rad Laboratories Inc., v3.1).

Isolated microglia/macrophages and monocytes

RNA was converted to ¢cDNA as described above. The ¢cDNA was pre-amplified prior to

RTqPCR. Briefly, 500 pl pre-amplification assay pool was prepared using 5 pl of each TagMan

Assay (20x) and nuclease-free H,O. Pre-amplification reaction mix was prepared (1 for each

sample) using 25 pl of the pre-amplification assay pool, 12.5 pl SsoAdvanced™ PreAmp
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Supermix (Bio-Rad, 172-5160) and 12.5 pl of template. Following thorough vortex, the reaction
mix was dispensed into a 96-well PCR plate (Life technologies, N8010560). The PCR plate was
then loaded onto a PCR instrument and kept at 95°C for 3 min followed by 15 cycles of: 95°C
for 15 s; 58°C for 4 min and finally diluted 1:5 in TE buffer (Invitrogen™, 12090015). Master
mix for a 10 ul RTqPCR reaction was prepared with 5 pl SsoAdvanced™ Universal Probes
Supermix (Bio-Rad, 172-5280), 1 pl TagMan assay (20x), 2 pl template and 2 pl nuclease-free
H,O. Master mix and template were dispensed into a 384-well PCR plate (Bio-Rad, Hard-
Shell®) and RTqPCR was conducted at 95°C for 30 s followed by 40 cycles of: 95°C for 10 s;
60°C for 20 s. Expression was normalized to Acth. The AACt was used for analysis in Bio-Rad
CFX manager (Bio-Rad Laboratories Inc., v3.1).

RNA sequencing

Libraries for sequencing were prepared from RNA isolated from isolated cells
(microglia/macrophages, MSCs, NPCs) using the SMARTer Stranded Total RNA-Seq Kit - Pico
Input Mammalian (Clontech) due to low amounts of RNA obtained from each sample.
Sequencing libraries for RNA isolated from spinal cord tissue were prepared using TruSeq
stranded mRNA library preparation kit implementing polyA selection (Illumina Inc.). Libraries
were sequenced 2x125bp using HiSeq2500 (Illumina Inc.) on high output mode. For each
sample, a minimum of 15x10° read-pairs were used. The read-pairs were aligned to a reference
genome (GRCm38: mouse; Rnor_6.0: rat) using STAR [656] followed by summarization of
read counts over genes using featureCounts [657] and Ensembl annotation (release 81) (Table
6). Differential gene expression analysis was performed in R (v3.3.2-3.6.0) [658] using a limma
[659] and edgeR [660] approach.

Enrichment- and network topology-based analysis

Genes were determined to be significantly differentially expressed in any given contrast if they
had a FDR<0.01 and (logFC>1 OR logFC<-1). Up- and down-regulated genes from each
contrast were analyzed using over-representation enrichment analysis (ORA) and network
topology-based analysis (NTA). The WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) was
implemented through the R package WebGestaltR [661]. All three subcategories of Gene
Ontology (GO) terms were investigated: biological process (BP), molecular function (MF) and
cellular component (CC). Pathway analysis was conducted using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) terms. Network retrieval & prioritization (NRP) and network
expansion (NE) algorithms were used for network construction in the NTA. All GO-terms (and
associated genes) significant at FDR<0.01 were exported. Terms were grouped into general
categories and the median FDR was estimated for each contrast and category. All unique genes
within each category and contrast were subjected to competitive gene set testing (accounting for
inter-gene correlation). Given that the median FDR for the terms and the FDR for the
competitive gene set test were both <0.05, the category for that contrast was deemed significant.
The Molecular Signatures Database (MSigDB, v6.2) was used for performing gene set
enrichment analysis (GSEA). Hallmark gene sets, curated gene sets (C2) an immunologic gene
sets (C7) were used.
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Single-cell RNA sequencing
Library preparation

RNA was converted to ¢cDNA and further into sequencing libraries using the Smart-Seq2
protocol [662]. Briefly, primers were annealed at 72°C for 3 min (Bio-Rad, 1000C Touch™
Thermal Cycler) followed by immediate reverse transcription and template switching by adding
3 pl of reverse transcription mix (Table 5) to each well (Eppendorf, epMotion 5073) and kept
at 42°C for 90 min and 70°C for 5 min. DNA was pre-amplified by adding 7.5 ul of pre-
amplification mix into each well and kept at 37°C for 30 min, 95°C for 3 min, 22 cycles of: 98°C
for 20's, 67°C for 15 s; 72°C for 4 min followed by 72°C for 5 min. DNA was purified by adding
solid phase reversible immobilization (SPRI) beads at a ratio of 0.75:1, incubated for 5 min at
RT, washed with 30 pl 80 % EtOH twice, air dried for 15 min and eluted in 15 ul EB buffer
(Qiagen, 19086). A custom 3D-printed magnetic plate was used for bead separation during
processing. DNA concentration was measured in 16 random wells per 384-well plate using a
step-wise pattern with QUBIT™ dsDNA HS Assay Kit (Q33231). 3 ul sample was added to 97
pl buffer in a 96-well plate (Invitrogen™, M33089) and concentrations were measured and
compared to standard (Tecan spark 10M, ex/em 485/528nm). DNA was then diluted to a
concentration of 0.15 pg/pl using RNase-free H,O. Tagmentation was performed by adding 1.8
ul Tn5 mix to each well in a 384-well plate. 0.7 ul diluted cDNA (0.15 ng/ul) was then added
into each well containing the Tn5 mix. The plate was vortexed (Thermo Fisher, 88880017TY),
centrifuged and kept at 55°C for 10 min. Tn5 was inactivated by adding 1 pl 0.1 % sodium
dodecyl sulfate (SDS, Sigma L3771) to each well. Plate was vortexed and incubated at RT for 7
min. Libraries were barcoded by adding 19.5 ul PCR/barcode mix into each well now containing
3.5 pl sample. 2 pl primer (3.75 pM/primer) was finally added to each well. PCR/barcoding was
then conducted at 72°C for 3 min, 95°C for 3 min, 12 cycles of: 95°C for 15 s; 55°C for 30 s;
72°C for 45 s. DNA was pooled (5 pl from each well) into an Eppendorf® tube. Clean up, as
described above, was repeated twice and DNA was eventually eluted in 30 pl EB buffer.
Concentration was again measured using QUBIT™ followed by 37 bp paired-end sequencing
typically with dual index 8 bp using 2.6 pm on a 309 bp peak on Illumina NextSeq.

Data analysis
Demultiplexing and alignment

Reads were aligned to the GRCm38 reference genome following trimming and removal of
adaptor sequences using STAR [656]. Following removal of duplicate reads [663] HT-seq was
used for obtaining raw transcript counts [664]. Raw count (Rc) for each gene (i) and cell (j) were
log2-transformed into log2-counts per million (CPM) using the total number of raw counts for
each cell (TRc) and adding pseudo count (1) to handle zero counts. This value is denoted in text

and figures as log2(CPM):

TRci

100
log2 (R i +1) = log2(CPM+1) = log2(CPM),
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Data pre-processing and quality control

The count matrix was cleared from wells intentionally containing 0 (empty) or 5 (bulk) cells as
well as non-genes, ERCC and genes not expressed in any cell. Cells with low Actb expression
(<0.01 quantile) were removed by filtering. The cutoff for the minimum number of counts per
cell was determined by visualizing all cells in a log2-log2 plot of number of features »s number
of counts per cell. The cutoff was eventually determined at 2'® counts per cell. Following
processing the data set used for analysis had 606.166 reads/cell (IQR: 643.913) and 2191
genes/cell (IQR: 1228). 4734 cells were sequenced out of which 3687 cells and 20469 genes with

a mean of 307 cells/condition remained for downstream analysis.
Clustering and dimensionality reduction

The downstream data analysis was conducted solely in R (v3.6.0) [658] using the Seurat package
(v3.0.0) [665]. The NormalizeData() function using scale.factor=10* was used for data
normalization. Highly variable genes given to the FindVariableFeatures() function had a
log2(cpm)>0.3 and a normalized dispersion>0.5. Following scaling of the data using the
ScaleData() function the first 50 principal components (PCs) were determined using RunPCA().
The first 17 PCs were determined as highly variable by plotting the st.dev for each PC. A Shared
Nearest Neighbor (SNN) graph was constructed using the first 17 PCs in the FindNeighbors()
function. Clusters in the SNN graph were identified using the FindClusters() function in which
the Louvain algorithm with resolution 1.3 was selected. The resolution was selected by varying
it in a range between 0.5 and 4 and carefully evaluating the relevance of the clustering. The t-
distributed stochastic neighbor embedding (tSNE) algorithm was used for dimensionality
reduction. Using the RunTSNE() function the first 15 variables were estimated using seed 132
and perplexity 70. When cells isolated and sequenced from spinal cords of mice depleted of
Cx3crl*  cells  prior to SCI  were analyzed key settings were adjusted to:
FindNeighbors(dims=1:20); FindClusters(resolution=0.75); RunTSNE(dims=1:16,
seed.use=2406).

Pseudotime ordering of microglial cells

A pseudotime axis was constructed by combining the cell clustering and the actual time series.
Firstly, a subset of all microglial cell clusters was created. Secondly, for each condition (time
point) a centroid, defined as the position of the mean tSNE-1 and tSNE-2 value for all cells in
that condition, was estimated. Thirdly, each cell was assigned to the closest centroid measured
using the Euclidian distance in two-dimensional space. Within each newly formed cluster, the
cells were arranged based on their tSNE-1 value following a 0-1 normalization. The clusters were
arranged in chronological order and the gene expression for each cell expressed as log2(cpm) was
plotted over pseudotime.

Cluster marker genes and differential gene expression analysis

The FindAllMarkers() function was used for determining marker genes for each cell cluster. The
threshold for logFC (logfc.threshold) was set at log(2). Differential gene expression analysis
between clusters was conducted using the edgeR [660] and limma [659] packages in R [658]

implementing the trimmed mean of M-values (TMM) function for normalization of data.
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Integration with peer data sets

The current data was integrated with three published data sets using the Seurat package (v3.0.0)
[665]. As described above, NormalizeData() was used for normalizing the data and
FindVariableFeatures() used for the identification of variable genes. For the latter function
selection.method=vst and nfeatures=2000 was used. Anchors for the integrated data were
identified using the FindIntegrationAnchors() function and the data sets were eventually
integrated using the IntegrateData() function. Scaling of the data and determination of top PCs
was conducted as described above. The SNN graph was constructed using the first 10 PCs in the
FindNeighbors() function. Clusters were identified using resolution 1 and the Louvain algorithm
in the FindClusters() function. The first 10 dimensions for the tSNE was estimated using seed
246 and perplexity 70 in RunTSNE(). Data published by Li et al. (2019) [633] was integrated
with the current data in the first part of this analysis. Secondly, this data set was expanded with
data published by Mathys et al. (2017) [625] and Masuda et al. (2019) [627] using the settings
in Seurat described in this section (Table 6).

Correlogram of transcription factors

The FindAllMarkers() function was used for determining transcription factors for each
microglial cell cluster. Key settings in the function were: min.diff.pct=0.1; logfc.threshold=0.4;
min.pct=0.3. The transcription factors were ranked in terms of logFC and top transcription
factors from each cell cluster were used in the construction of a correlogram.

Index sorting and FACS trace-back

The surface expression of CD11B, CD45, CD64 and CD14 (Table 3) was recorded, normalized
to voltage settings and plotted for each cell in order to correlate cell clusters to phenotypic profile
(index sorting). Moreover, the isolated, sequenced and QC-checked cells were identified among
all analyzed and/or sorted cells and labelled using color in a reconstructed FACS plot reporting
CD45 vs BSC-A. This was termed a FACS trace-back plot and was reported for each plate

separately due to variations in voltage settings between sorting occasions.

Table 6. RNA sequencing data sets.

Study Title GEO ID PMID

I Adult neural progenitor cells transplanted into spinal cord
injury differentiate into oligodendrocytes, enhance myelination, | GSE125134 | 31031190
and contribute to recovery.

II Syngenelc,‘m contrast t? allogen‘elc, meser‘lchyn?al stem c?ll.s GSE139227 | 30551037
have superior therapeutic potential following spinal cord injury.

111 Mesenfhymal stem c.ells transplar}tﬁd into spinal cord injury GSE125176 | 30944028
adopt immune cell-like characteristics.

v Permanently re-programmed microglia in spinal cord injury

. | In progress In progress

contribute to functional recovery.

Lietal. Developmental heterogeneity of microglia and brain myeloid GSE123022, 30606613

2019 cells revealed by deep single-cell RNA sequencing. GSE123024

Masuda et al. Spatial and temporal heterogeneity of mouse and human GSE120744, 30760929

2019 microglia at single-cell resolution. GSE120745

Mathys et al. Ter.nporal tracking (;)f microglia activation in neurodegeneration GSE103334 | 29020624

2017 at single-cell resolution.
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Immunoassay

Expression of cytokines/chemokines in the CSF of mice was investigated using a Bio-Plex Pro™
Mouse Cytokine 23-plex Assay (Bio-Rad). 10 pl CSF from each mouse was used. Expression of
cytokines/chemokines in CSF of rats was analyzed using the Bio-Plex Pro Rat Cytokine 24-plex
Assay (Bio-Rad, 10014905). 25 ul CSF from each rat was used. A Bio-Plex® MAGPIX (Bio-
Rad Laboratories, Hercules, CA, USA) was used for detection. Manufacturer’s protocols were
used throughout.

Immunohistochemistry

Thin tissue

Post-fixed spinal cords were cryo-preserved in 15 % sucrose (Sigma, S9378) O/N followed by
30 % sucrose O/N diluted in 1xPBS. A 25x20x5 mm cryomold (Tissue-Tek® Cryomold®,
420572) was filled with compound (Tissue-Tek® O.C.T.™), the spinal cord placed in the
compound and frozen to -60°C. A cryostat (Leica, CM1850 or CryoStar™ NX70 Cryostat) was
used for producing 14-20 pum transversal- or coronal sections. The sections were mounted on
adhesion slides (VWR, SuperFrost® Plus 48311-703) and stored at -20°C until staining. Prior
to staining the sections were thawed ~10 min at RT and excessive cryomold was peeled of and
cach section encircled with a PAP pen. Sections were rehydrated ~20 min in 1xPBS at RT.
Blocking solution (0.3 % Triton X-100 (Sigma, 93443), 5 % normal donkey serum (Millipore,
$30-100), 1xPBS and 0.01 % NaNj; (Sigma, S-2002)) was added and the sections were incubated
for 1 hour at RT. Excess blocking buffer was removed and primary antibody diluted in blocking
buffer was added onto the sections and incubated at 4°C for 24 hours (Table 3). Sections were
rinsed in 1xPBS three times and incubated in secondary antibody diluted in 1xPBS for 1 hour
at RT (Table 3). Following wash in 1xPBS three times the cell nuclei were labelled by adding
nucleic acid stain onto the sections. The sections were incubated for ~20 min at RT. Following
wash three times in 1xPBS Mowiol® (Sigma, 81381) was added onto each slide followed by a
22x50 mm cover slip (Marienfeld, 010243). Sections were imaged using a confocal microscope

(below).

Thick tissue

The dura mater was removed from the fixed spinal cords using forceps under a table microscope.
The spinal cords were blocked (20 % donkey serum (Merck, $30), 0.3 % Triton X-100 (Sigma,
93443) and 0.01 % NaNj3, 1xPBS) for 24 hours at 37°C. After 24 hours, the tissue pieces were
rinsed twice in washing solution (1xPBS, 0.3 % Triton X-100) and incubated in primary
antibody (Table 3) diluted in blocking solution at 37°C during 4 days. The sections were then
rinsed twice in washing buffer and incubated in secondary antibody for 3 days at 37°C (Table
3). The tissue was rinsed twice in washing solution. Sca/eCUBIC-1 (25 % urea (Sigma, 208884),
25 % N,N,N’,N -tetrakis (2-hydroxypropyl) ethylenediamine (Tokyo Chemical Industry CO.,
T0781), and 15 % polyethylene glycol mono-p-isooctylphenyl ether/Triton X-100 (Nacalai
Tesque Inc., 25987-85), 35 % dH,O) was used for tissue clearing. Propidium iodide (1 mg/ml
stock) 1:20000 was added to the clearing solution (Table 3). The spinal cord sections were
incubated in the suspension at 50°C during 3 days [666].
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Immunocytochemistry

MSCs intended for immunocytochemistry were plated at 20.000 cells/cm? in tissue culture-
coated slides (Nunc™ Lab-Tek® Chamber Slide™, 177402) in 0.3 ml basal medium and
incubated for 3 days. Cells were then fixed (2 % PFA) during 30 min and stained using same
procedures described for fixed thin spinal cord sections. The same procedure for fixation and
staining was implemented for evaluation of both differentiated- and undifferentiated NPCs.

Cells were imaged using a confocal microscope (below).
Confocal microscopy

A confocal microscope (Zeiss, LSM 880 Airyscan) was used for imaging thin spinal cord sections
as well as cell cultures following fixation and staining. Images were exported using Zeiss Zen
Blue software as tagged image file format (tiff) files.

Light sheet fluorescence microscopy

Thick transparent tissue was imaged using a light sheet fluorescence microscope (LSFM). The
microscope was placed on a metric optical breadboard (Technical Manufacturing Corporation,
78-25555-01). An argon laser (JDS Uniphase, 2211-10SLHP) with a wavelength of 488 nm was
used for illuminating the tissue. The laser was directed towards a 10x beam expander
(Rodenstock). Secondly, the laser was reflected on a Galvo Scanner (8660231, Cambridge
Technology). Thirdly, the laser traveled through a theta lens (Rodenstock) to focus the light into
a single point. The light sheet was formed by letting the Galvo scanner oscillate. For imaging, a
10x objective (Olympus), a fluorescence filter and a tube lens 135 mm /2.8 (Yashica) was placed

in front of a camera (Canon, EOS 6D) equipped with Magic Lantern. Recordings were exported
and rendered in Da Vinci Resolve (v14).

Luxol fast blue staining

Spinal cord sections were thawed, re-hydrated for 15 min in 1xPBS at RT followed by hydration
in 95 % EtOH at RT for 15 min. Sections were stained at 56°C O/N in 0.1 % luxol fast blue
solution (0.1 mg luxol fast blue (Waldeck, 1B-389), 100 ml 95 % EtOH and 0.5 ml glacial
acetic acid (Millipore)). Following incubation, the sections were first washed in 95 % EtOH and
then rinsed in dH,O. Slides were incubated for 30 s in 0.05 % lithium carbohydrate solution
(0.05 mg lithium carbonate (Karolinska apoteket, 941122), 100 ml dH,O) followed by
incubation in 70 % EtOH for 30 s and finally rinsed thoroughly in dH,O. Sections were
mounted (VWR, Xylene) and imaged using a microscope (Leica reichert polyvar 2).

Automatic cell quantification

Cells of interest in confocal images were quantified using Image Processing and Analysis in Java
(Image], 64-bit Java 1.6.0_24). Individual images were imported as an image sequence and
saved. A custom-built macro for automatic cell quantification was developed. Briefly, each image
in the image sequence was split into its three channels (red, green, blue). The channels of interest
were kept and the remaining channels discarded. The remaining images were then multiplied in

61



Material and Methods

order to enhance the overlap between the selected stainings/channels. The product image was
then converted into binary format followed by water shedding to enhance separation between
structures. Remaining- and separated structures were counted allowing the user to set a range of
interest for the cell size- and circularity. The counted regions were laid on top of the original

image sequence for verification purposes.
Data- and statistical analysis

Data for each biological replicate was reported in combination with mean (95 % confidence
interval) or median (25" and 75" percentile). P-values <0.05 were considered significant.
Assumptions for statistical tests were evaluated and used as a basis for test selection. Assumption
of normality was evaluated using Shapiro Wilk’s test. Assumption of homogeneity of variances
between groups was evaluated using Bartlett’s test for normally distributed data and using the
Fligner-Killeen test for non-normally distributed data. A mixed ANOVA followed by one-way
ANOVA of significant main effects followed by Tukey’s post hoc test was implemented for
determination of the interaction between dependent- and independent continuous variables.

In general, continuous variables for two or more categorical groups were evaluated
using one-way ANOVA and Tukey’s post hoc test given normality and sphericity of data.
Repeated measures ANOVA was implemented in the case of dependent groups. The Kruskal-
Wallis H test followed by pair-wise Mann-Whitney U-tests using Holm-Bonferroni correction
was implemented given that the assumptions for ANOVA were not fulfilled. Student’s t-test was
used for investigation of difference between two normally distributed continuous variables.
Consideration was taken to if samples were dependent of independent as well as the homogeneity
of variances between the samples. The Wilcoxon rank sum test was used as the non-parametrical
equivalent to the Student’s t-test for independent samples while the Wilcoxon signed-rank test
was used as the non-parametrical equivalent to Student’s t-test for dependent samples. Sensitivity
of statistics was evaluated by resampling using the ordinary bootstrap approach. Correlation
between two continuous, normally distributed, variables was estimated using Pearson’s product
moment correlation given a linear relationship and homoscedastic data. Correlation between two
continuous variables with a monotonic but non-linear relationship was investigated using
Spearman’s rank-order and/or Kendall's Tau-b correlation. Data, statistical- and sensitivity

analysis was conducted in R (v3.3.2-3.6.0) [658].
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Paper I: Neural progenitor cells as a treatment for spinal cord injury

NPCs transplanted into SCI form myelinating oligodendrocytes

Conflicting results have been reported concerning the differentiation of neural progenitor cells
(NPCs) transplanted into SCI. In this study, the NPCs transplanted into SCI were found in the
SCI epicenter in which they filled the cystic cavity. In the chronic phase of SCI, the transplanted
NPCs had almost no expression of SOX2 or NESTIN suggesting a loss of their stem cell
potential. This was also true for TUJ1, which was expressed to a low extent during the chronic
phase of SCI, suggesting that the NPCs do not differentiate into neurons. On the other hand,
25 % of the NPCs expressed GFAP at this time point indicating that transplanted NPCs
differentiated into astrocytes. Moreover, more than half of the NPCs expressed CC1 in the
recipient and many of which expressed OLIG2 and CNPase. Thus, the NPCs differentiated
mainly into oligodendrocytes following transplantation. In proximity to the engrafted NPCs, a
high density of MBP was detected. The differentiation of NPCs into oligodendrocytes and the
enhanced myelination adjacent to the NPCs was confirmed by global transcriptional profiling
and luxol fast blue staining respectively. Moreover, most of the engrafted NPCs were localized
in the white matter. In addition, no co-localization between CASPASE-3 and the NPCs could
be detected, indicating that the NPCs did not undergo apoptosis. In conclusion, NPCs
transplanted into SCI migrate into the white matter, differentiate mainly into oligodendrocytes,
and enhance myelination of axons close to the transplantation site.

NPCs transplanted into SCI up-regulate expression of genes related to oligodendrocytes and

myelination

The precise response of transplanted NPCs in the subacute phase of SCI has never been properly
investigated. Therefore, at 3- and 4 weeks following transplantation the NPCs were isolated
using FACS and subjected to global transcriptional profiling. We found that transplanted NPCs
were significantly different from NPCs in culture in terms of gene expression. We also
documented a significant difference in gene expression between NPCs transplanted into injured
and those transplanted into uninjured spinal cord. The injury environment induced NPCs to
up-regulate expression of genes related to proliferation, metabolism and signaling while the same
cells down-regulated expression of genes associated with migration, inflammation and immune
response at 3 weeks post SCI. Four weeks post SCI the injury environment still mediated up-
regulation of genes related to synaptic signaling but caused down-regulation of genes associated
with response to stimuli and cell structure. The up-regulation of genes associated with signaling
secemed to be related to inhibitory signaling mediated by GABA. Moreover, the global
transcriptional profiling of NPCs exposed to SCI revealed that they up-regulated expression of
genes associated with oligodendrocytes (Asc/l, Nkx2-2, Hes5, Tcf7/2) and myelination (Azpla3,
Cntnl, Dnml, Erbb2, Ina, Uchll) at both 3- and 4 weeks post SCI. In conclusion, the SCI
environment mediates transcriptional changes in the NPCs up-regulating expression of genes
associated with metabolism and signaling and in particular genes related to oligodendrocytes and
myelination during the subacute phase of SCI.
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Transplantation of NPCs into SCI results in suppression of neuroinflammation

The effect of NPC transplantation on neuroinflammation during SCI was investigated by
measuring the levels of pro-inflammatory cytokines/chemokines in the cerebrospinal fluid (CSF).
Transplantation of NPCs mediated lower levels of pro-inflammatory cytokines/chemokines (IL-
la, IL-1B, IL-2, TNF-a, GRO/KC, MCP-1 and MIP-1a), as compared to saline injection, in
the CSF at 3 weeks post SCI. However, the NPCs, in contrast to saline, could not suppress
inflammation at later time points (6 & 12 weeks) following SCI. The suppressive effect of the
NPCs on expression of inflammatory cytokines/chemokines in the CSF was also detected in the
global transcriptional profiling of NPCs that revealed down-regulation of genes related to pro-
inflammatory cytokines/chemokines (//1a, 1115, 1/6). In conclusion, transplanted NPCs can
suppress pro-inflammation in the subacute phase of SCI.

Enhancement of hind limb locomotor function recovery is observed following transplantation of
NPCs into SCI

The implications of the beneficial modulations mediated by NPCs in SCI were investigated by
evaluating the hind limb function during 12 weeks following SCI. Animals treated with NPCs
recovered significantly in terms of Basso, Beattie and Bresnahan (BBB) locomotor rating score
over time. NPC-transplanted animals reached a BBB score of about 15 (0-21 point scale), while
saline treated animals had an average score of about 8.5. In addition, animals treated with NPCs
recovered their iliac crest height (ICH) to a level comparable to uninjured rats, while this was
not the case for saline treated animals. Moreover, the number of steps needed to cover a specific
distance was fewer for the NPC treated animals. These animals also had longer protraction- and
shorter retraction distances as compared to the saline treated animals at 12 weeks post SCI. The
stride width was shorter and the stride length longer for NPC treated animals. The stepping
pattern for the NPC treated animals normalized to the level of uninjured rats at 12 weeks post
SCIL. In conclusion, NPC-transplantation is positively correlated with significant recovery of
hind limb motor function following SCI.

Causality do exist between transplantation of NPCs and functional recovery following SCI

In order to determine if the significant recovery of hind limb motor function had a causal
connection to the transplantation of NPCs we eliminated the NPCs following transplantation
and observed the hind limb function during 6 weeks. We found that the BBB score and the ICH
were significantly higher at 6 weeks following SCI in animals that received transplantation of
NPCs as compared to animals in which the transplanted NPCs were ablated. Moreover, we

found that the ablated NPCs were phagocytosed by IBA1* cells. In conclusion, NPCs do

contribute causally to recovery of hind limb motor function following SCI.
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Paper II: Importance of histocompatibility of mesenchymal stem cells
transplanted into spinal cord injury

Transplanted syngeneic MSCs suppress immune response, microglial activation and
neuroinflammation in SCI

The global transcriptional profile of spinal cords of animals subjected to transplantation of
mesenchymal stem cells (MSCs) with different histocompatibility was investigated in the
subacute phase (20 days post SCI). The expression pattern of spinal cords subjected to syngeneic
MSC transplantation was more similar to uninjured spinal cord tissue than to spinal cords
subjected to injury but no treatment. The opposite was true for spinal cords subjected to
transplantation with allogeneic MSCs. We found that 62 genes were significantly down-
regulated in spinal cords of animals given syngeneic MSCs in comparison to those treated with
allogeneic MSCs. Using enrichment analysis for this subset of genes we identified gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms related to both innate-
and adaptive immune response. The global transcriptional analysis also revealed that animals
given syngeneic MSCs had a lower expression of genes associated with pro-inflammatory
cytokines/chemokines in the spinal cord (Cel2, Cel3, Cel4, Ccl5, Cxell, Il15, Tnfa). Furthermore,
the syngeneic MSCs also suppressed the expression of genes related to homeostatic microglia
(I mem119, P2ry12, Hexb, Ferls, Salll, Olfmi3). In conclusion, syngeneic but not allogeneic
MSCs suppress pro-inflammation, the innate- and adaptive immune response and genes
associated with homeostatic microglia in the injured spinal cord.

Transplanted syngeneic MSCs reduce levels of pro-inflammatory cytokines/chemokines in the acute-
and subacute phase of SCI

The global transcriptional analysis was followed by an investigation focusing on the protein
expression of pro-inflammatory cytokines/chemokines in the CSF during the acute- and
subacute phase of SCI. Transplantation of allogeneic- or syngeneic MSCs resulted in elevated
levels of pro-inflammatory cytokines/chemokines in the CSF at 3- and 10 days following SCI as
compared to injury- and transplantation control. In the subacute phase (20 days post SCI)
animals subjected to transplantation of syngeneic MSCs had lower expression levels of pro-
inflammatory cytokines/chemokines (CCL2, CCL3, CCL4, CCL5, GM-CSF, IFN-y, IL-18,
IL-6, CXCLI1 and TNF-a) in the CSF as compared to animals subjected to allogeneic MSC
transplantation as well as compared to injury control. Gene expression data obtained in the global
transcriptional profiling, and using RTqPCR, of spinal cord tissue was in line with the protein
expression of inflammatory cytokines/chemokines detected in the CSF. In conclusion, syngeneic

MSCs suppress the pro-inflammatory response following SCI, which is not the case for allogeneic
MSCs.

Transplanted syngeneic MSCs activate macrophages alternatively in SCI

Differences in activation of macrophages was investigated as a potential and partial explanation
for the observed differences in the immune system- and inflammatory response. In the subacute
phase of SCI, transplantation of allogeneic MSCs mediated classical activation of macrophages
(M1) while syngeneic MSCs resulted in alternative activation of macrophages (M2) in the spinal
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cord. The activation profile (M1/M2 ratio) of the macrophages demonstrated a positive
correlation with the inflammatory response. Moreover, the activation profile of
microglia/macrophages (CD11B*CD45"Ly6G CD64") and monocytes
(CD11B*CD45"8"Ly6GCDG64") were investigated specifically. The alternative activation of
macrophages observed in the spinal cord was confirmed to be true in isolated
microglia/macrophages but not in isolated monocytes. In addition, transplantation of syngeneic
MSC:s resulted in a lower proliferation rate of IBA1* cells in the spinal cord, as compared to
transplantation of allogeneic MSCs. In conclusion, transplantation of syngeneic MSCs results in
an alternative activation of microglia/macrophages, which correlates with lower levels of pro-
inflammatory cytokines/chemokines in the CSF and in the spinal cord as well as with a general

suppression of the immune response.
Transplanted syngeneic MSCs enhance neuronal survival and recovery of hind limb function in SCI

The implications of the immune system alterations mediated by the syngencic- and allogeneic
MSCs on the functional recovery was investigated. Animals transplanted with syngeneic- or
allogeneic MSCs both recovered in hind limb function (iliac crest height index, ICHI) over time,
which was not the case for injury- and transplantation control. However, transplantation of
syngeneic MSCs, as compared to allogeneic MSCs, resulted in a higher rate of recovery in ICHI
over time. Animals treated with syngeneic MSCs had a higher ICHI at steady state (>7 weeks
post SCI) in comparison to animals subjected to allogeneic MSCs as well as compared to injury-
and transplantation control. We could not detect any difference in the trochanter major height
index at steady state when comparing animals given syngeneic- or allogeneic MSCs. The density
of NEUN" cells in the spinal cord of animals treated with syngeneic MSCs was higher at sacrifice
(10 weeks post SCI), in relation to spinal cords subjected to allogeneic MSC transplantation. In
conclusion, transplantation of syngeneic MSCs contribute to enhanced neuronal survival and
hind limb recovery, as compared to allogeneic MSCs, following SCI.

Transplanted syngeneic MSCs have superior survival in SCI

The survival of transplanted syngeneic- and allogeneic MSCs was estimated as a measure of the
importance of histocompatibility. Both syngeneic- and allogeneic MSCs survived for 3 days in
the recipients injured spinal cord. Most allogeneic MSCs had perished at 10 days post SCI while
syngeneic MSCs at 10 days post SCI had a rate of survival similar to the one at 3 days following
SCI. Twenty days following SCI almost no transplanted MSCs could be detected in the spinal
cord, regardless of their histocompatibility. Taken together, although the survival of transplanted
MSC:s is poor in SCI the histocompatibility is of importance for MSC graft survival.
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Paper I1I: Cellular response of mesenchymal stem cells transplanted into
spinal cord injury

Transplanted MSCs up-regulate expression of genes related to phagocytosis, inflammation and
immune response in SCI

The global transcriptional profile of MSCs was investigated 7 days following transplantation into
SCI. MSCs transplanted into healthy spinal cord and MSCs in culture were used as control. We
detected that transplanted MSCs had a distinctly different gene expression profile in comparison
to MSCs in culture. A slight difference was detected between MSCs transplanted into SCI and
MSC:s transplanted into healthy spinal cord. Gene expression analysis indicated that genes related
to proliferation and DNA processes and repair of DNA were down-regulated in transplanted
MSCs in comparison to MSCs in culture. On the other hand, genes related to functions
mediated by immune cells were up-regulated including genes related to cytokine production,
cytokine signaling, phagocytosis, stress response and apoptosis in transplanted MSCs. The genes
related to the immune system response were associated with both innate- and adaptive immunity
and especially activation of macrophages. With regards to cytokines, predominately genes related
to pro-inflammatory cytokines (/1a, 116, Ifng, 1/12a, 118, 1/10, 1l2) were up-regulated in MSCs
following transplantation. In conclusion, the transcriptional profile of MSCs transplanted into
SCI suggest that the i# wvivo primed MSCs have similarities with classically activated
macrophages.

Transplanted MSCs up-regulate surface expression of CD45 in SCI

Phenotypic characterization of transplanted and non-transplanted MSCs was conducted. Seven
days post transplantation the MSCs had a preserved surface expression of MSC markers CD29
and SCAL in injured- and uninjured spinal cord. This was confirmed by gene expression analysis.
MSC:s should by definition not express CD45 on the cell surface, which was also true for the
MSC:s used in this study, prior to transplantation. Following transplantation however the MSCs
up-regulated both gene- and surface expression of CD45. Moreover, we observed that Cx3r1*
cells surrounded but did not infiltrate the graft at evaluation. In conclusion, MSCs maintain
expression of MSC specific markers while they up-regulate expression of CD45, which is a
common marker for immune cells, on their cell surface following transplantation into SCI.

Transplanted MSCs up-regulate expression of MHC-1 and MHC-II in SCI

MSCs express MHC-I but not MHC-II on the cell surface. MSCs exposed to IFN-y in culture
conditions up-regulate expression of MHC-II on the cell surface. We investigated whether this
was the case for MSCs transplanted into SCI. MSCs did not express MHC-II on the cell surface
prior to transplantation but did express MHC-I. Seven days following transplantation into SCI
the MSCs maintained their expression of MHC-I on the cell surface but up-regulated their
surface expression of MHC-II. We confirmed this significant up-regulation with gene expression
data extracted from the global transcriptional profiling of MSCs as well as by using
immunohistochemistry. In conclusion, MSCs up-regulate surface expression of MHC-II

following transplantation into SCI which raises questions concerning their immune-privilege.
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Transplanted MSCs proliferate but do not undergo trans-differentiation in SCI

Investigations concerning the fate of MSCs following transplantation into SCI has produced
conflicting results. In this study, we found that transplanted MSCs survived for 7, but not 14
days, following transplantation into SCI. The survival rate was not different in injured as
compared to non-injured spinal cord. MSCs in culture conditions proliferated to a high extent
while only a small portion of the MSCs engrafted in the recipients spinal cord proliferated.
Transplanted MSCs did not seem to undergo apoptosis due to undetectable co-expression
between MSCs and CASPASE-3. Using histological examination, we could not detect any
TUJ1*-, NEUN*- or GFAP*MSCs suggesting that no trans-differentiation occurred following
transplantation. This was confirmed with gene expression analysis. In conclusion, MSCs
transplanted into SCI proliferate to a low extent during the first week but do not undergo trans-
differentiation. No MSCs could be detected at 2 weeks following transplantation but it did not

seem to be a consequence of apoptosis.
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Paper IV: Defining spinal cord injury associated microglia

Disease-associated microglia are detected in SCI

We characterized the transcriptional profile of 3069 CD45" immune cells isolated from the
injury epicenter of traumatic SCI in mice over time. Healthy spinal cord tissue was used as
reference. SCI induced a distinct, rapid and permanent transformation of the immune cells in
the spinal cord. The changes were evident already at 0.5 hour post SCI and stabilized at 21 days
post SCI. Homeostatic microglia (hMicroglia) expressing P2ry12, Tmem119 and Siglech had
transformed already at 0.5 hour following SCI. The hMicroglia transformed into activated
microglia (aMicroglia) expressing [/1a and Cd83. At 2 hours post SCI the aMicroglia had
transformed into a homogenous cell population expressing Hbegf and Ednl (proliferation-
mediating microglia, pmMicroglia). This population further transformed into a population
expressing M2 and Msrl which persisted between 6- and 36 hours post SCI (monocyte-
activating microglia, maMicroglia). At 3 days post SCI a cell population defined by expression
of Cst7, Igfl, Apoe, Ctsd, Clec7a, Lilrb4a, Lpl and Axl was evident. This population was stable
from 21 days post SCI onwards and was identical at 90 days post SCI. This population of
immune cells had an expression profile similar to disease-associated microglia (DAM) detected
in experimental models of Alzheimer’s disease, neurodegeneration, demyelination and
inflammation. Therefore, this population was deemed DAM in SCI. This was confirmed using
protein expression of CST7, IGF1 and APOE on thin sections from SCI in mouse and humans.
Using FACS index sorting and by constructing trace back plots (indicating sorted, sequenced
and annotated cells in a plot of CD45 us BSC-A) we concluded that surface expression of CD45
cannot be used for distinguishing hMicroglia from DAM in SCI. We also documented, using
flow cytometry, that the proliferation of DAM was virtually non-existent. The gene expression
of DAM in SCI and hMicroglia detected using scRNAseq were confirmed in bulk RNA
sequenced CD11B*CD45""" et cells at 7- and 21 days post SCI. In conclusion, hMicroglia are
permanently transformed into a cell type characterized by a low rate of proliferation and up-
regulated expression of genes associated with lipoprotein- and cholesterol metabolism, lysosomal

proteolysis as well as cell- and organelle adhesion.

Disease-associated microglia in SCI originate from homeostatic microglia and enhance recovery of
hind limb locomotor function

The data suggested that DAM originated from hMicroglia. In order to confirm this hypothesis
we created a pseudotime axis by re-clustering the microglial cells. We estimated centroids in the
two-dimensional tSNE for each condition and then assigned cells to the closest centroid.
Secondly, the cells were normalized according to the tSNE-1 value for each cell within each
condition. Thirdly, all conditions were arranged in chronological order. Expression of genes
associated with hMicroglia were down-regulated and expression of genes associated with DAM
in SCI were up-regulated when moving along the pseudotime axis. This was confirmed using
protein expression of CST7, IGF1 and APOE on thin sections from SCI in mouse. Moreover,
unique transcription factors could be identified for each microglial subtype. The gene expression
pattern in combination with the unique transcription factors for each microglial subtype
supported the hypothesis that DAM are indeed a product derived from hMicroglia. In order to
fully confirm this hypothesis we implemented a mouse model of microglial depletion. At full
depletion of Cx3crl* cells (-microglia) SCI was induced. Isolation and scRNAseq of CD45*
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immune cells at 7- and 21 days post SCI in the Cx3cr* cell depleted mice revealed no trace of
DAM. Thus, DAM could not be formed when there was a lack of hMicroglia at the moment of
SCI, which confirms that DAM are indeed re-programmed hMicroglia. Mice, which did not
have DAM during SCI, had a significantly lower recovery of hind limb locomotor function
measured using the Basso Mouse Scale during the first 90 days post SCI. In conclusion, DAM
in SCI are re-programmed homeostatic microglia, which do enhance the recovery of hind limb

locomotor function.
Disease-associated microglia have the same transcriptional profile regardless of CNS pathology

DAM in SCI had a transcriptional profile similar to DAM detected in disease models of
neurodegeneration and demyelination. Therefore, we integrated published data from these
studies with the data in the current study. First, data published by Li et al. (2019) who sequenced
microglia- and myeloid cells from mice undergoing development was integrated. The authors
documented a subpopulation of cells in the white matter of developing mice, which was
metabolically active and phagocytized newly formed oligodendrocytes and termed this
population postnatal proliferative-region-associated microglia (pPAM). pPAM co-localized with
DAM in SCl in the integrated data set indicating a distinct similarity between the two cells types.
Moreover, aMicroglia detected in SCI was found adjacent to immediate early genes
(IEG)+Microglia in the aggregated tSNE. Microglial cells in SCI that up-regulated expression of
Clga-c were detected adjacent to embryonic microglia (eMicroglia) in the aggregated tSNE and
we therefore termed these cells embryonic-like microglia (elMicroglia). We then added data
published by Masuda et al. (2019) and data published by Mathys et al. (2017). Masuda et al.
investigated microglia in models of demyelination (cuprizone) and neurodegeneration (n. VII
axotomy) while Mathys et al. investigated microglia in the hippocampus of mice in an
experimental model of Alzheimer’s disease (CKp25 inducible mice). We found that microglia in
demyelination co-localized with DAM in SCI while this was not the case for microglia in
neurodegeneration. Unfortunately, we could not detect any distinct co-localization between the
disease-associated cells in Alzheimer’s disease with any of the cell clusters in our data set. In
conclusion, the transcriptional profile of DAM do not seem to be affected by the type of
pathology affecting the CNS. In addition, DAM seem to have similarities with microglia in
development that supports the beneficial rather than detrimental function of these cells.
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The end of correlation

In Paper I, we investigated neural progenitor cells (NPCs) as a therapy for spinal cord injury
(SCI). Transplantation of NPCs into SCI has been associated with enhanced recovery of hind
limb function [426, 427, 438, 443, 446, 451, 452, 456, 458, 459]. Moreover, results concerning
differentiation of transplanted NPCs has been conflicting [426, 427, 429-432, 434-436, 438-
440, 442-447]. Therefore, this project aimed at understanding the fate of transplanted NPCs as
well the causal contribution of NPCs to recovery of hind limb function. The importance of the
differentiation stems from NPCs having similarities with astrocytes (B1-cells) in the ventricular-
subventricular zone (V-SVZ) [299]. Some suggest that NPCs differentiating into astrocytes
following transplantation into SCI might contribute and add to the glial scar. Scar formation is
one of the main obstacles for regenerating axons and thus for functional recovery. However,
consistent reports indicate a correlation between transplantation of NPCs and recovery of hind
limb motor function following SCI [426, 427, 438, 443, 446, 451, 452, 456, 458, 459], which
is not in line with this theory. Moreover, NPCs preferably differentiate into oligodendrocytes,
which have the ability to myelinate CNS axons and especially following injury to the CNS [222-
225]. Therefore, in Paper I the main aim was to investigate the causality between transplantation
of NPCs and the recovery of hind limb motor function. By transplanting NPCs and actively
eliminating them and measuring the hind limb function we found that the NPCs did indeed
contribute in a causal fashion to hind limb locomotor function recovery. Moreover, using
histology we found that NPCs seem to enhance the recovery by differentiating into myelinating
oligodendrocytes. Interestingly, ~25 % of the NPCs differentiated into GFAP" astrocytes but
their relation to the glial scar was never investigated. In this project, we showed that the NPCs
have a differentiation potential and pattern similar to what has been observed in the V-SVZ in
the sense that the NPCs favorably differentiate into oligodendrocytes. The increased myelination
observed in relation to the NPCs is a likely explanation for the enhanced recovery of hind limb
function.

The transplanted NPCs were actively eliminated immediately following
transplantation in order to avoid any loss of the diphtheria-toxin receptor. This setup is inferior
to active elimination in the chronic phase of the injury since such a setup has the potential to
more clearly reveal the long-term effects of the cells and how they relate to function. Stem cell
transplantation studies suffer from difficulties in judging the success of the transplantations when
evaluating the hind limb function with or without active elimination. The only way to find out
is by evaluation of the tissue after sacrifice, which consumes a lot of time and effort, and results
in a vague conclusion after all. However, this is a step in the right direction, a direction towards
proving causality and not only correlation between therapeutic efforts and functional recovery.
Far too many publications report correlation and not causation. In order to develop therapies for
SCI which are efficient enough to restore normal or near-normal function first the causation and
second the mechanism has to be shown. Proving causation allows one to distinguish the potential
while the mechanism reveals potential targets to be modulated.

Moreover, NPCs are harvested from adult V-SVZ. Thus, the experimental setup
used in this study (transplantation at 8-10 days post SCI) would not be possible in a clinical
setting considering that harvesting and establishing NPC cultures takes a minimum of 2 weeks.
Transplantation in the subacute phase would be the only option. Secondly, harvesting the
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V-SVZ implies that the affected patient has to undergo complex surgery and risk potential
functional loss by the removal of tissue from the V-SVZ. Harvesting V-SVZ from a donor is also
highly unlikely to be a feasible option considering that few would risk such complex surgery but
also to lose valuable tissue from their brain. Moreover, the usage of NPCs has to be placed in
relation to the expected beneficial effects of the NPCs. Thirdly, the timing of transplantation has
to be carefully evaluated prior to the initiation of clinical trials in order to evaluate if harvesting
the V-SVZ and establishing NPCs is even worthwhile considering that they cannot be
transplanted until the subacute phase. The NPCs could perhaps be established from embryonic
stem cells (ESCs) or induced pluripotent stem cells (iPSCs). iPSCs first have to be established
and then differentiated into NPCs, which is vastly time consuming. Hence, autologous
transplantation might be possible but the question of the timing of transplantation again
becomes an issue. Both ESCs and iPSCs would most likely produce populations with a low
fraction of NPCs, which implies the need for selection and intense evaluation prior to
transplantation in order to eliminate the risk of teratoma formation. Moreover, the usage of
NPCs should be placed in relation to other therapeutic options, not limited to stem cells, and
their beneficial effects as well as the risk and complexity of the treatment. In this project, we
transplanted the NPCs at 8-10 days following severe SCI and evaluated during 12 weeks
following SCI. As for Paper II-IV, the results in this project are valid only for the experimental
setup implemented. The results might be different for a less severe injury, for a different time
point of transplantation and different time points of evaluation.

Implications of histocompatibility

In Paper II we investigated the importance of histocompatibility of mesenchymal stem cells
(MSCs) transplanted into SCI. The importance of this study stems from the rapid and varying
cellular- and molecular response following SCI as well as from reports indicating that MSCs are
able to beneficially modulate the immune response following SCI [541, 553, 559, 560, 562].
We hypothesized that MSCs had to be transplanted in the acute phase of SCI for them to be
able to modulate the immune response considering that the immune response is most prominent
during the acute- and subacute phase of SCI (0-3 weeks post SCI). This raises questions
concerning MSC availability and histocompatibility as well as the timing and route of
transplantation. MSCs take weeks to establish and validate, which eliminates the possibility for
transplantation of autologous MSCs during the acute- and subacute phase of SCI. Therefore,
established, verified and stored allogeneic MSCs are the only MSCs that can be offered to
patients during this period. Technological advances are not likely to overcome this issue since
this limitation is a consequence of the time required for culturing and validating the MSCs.
Although syngeneic MSCs were superior to allogeneic MSCs it is not possible to transplant
autologous MSCs in the acute phase of SCI in the clinical setting as in this experimental design.
We found that allogeneic MSCs activated macrophages classically and thereby contributed to
enhancing pro-inflammation and did not enhance recovery of hind limb function. Hence, the
usage of allogeneic MSCs might have a negative rather than a beneficial effect for the patient.
Moreover, MSCs have been evaluated as a therapy for several diseases, not only in the CNS. The
results concerning the immune-privilege of MSCs and the usage of autologous s allogeneic
MSC:s could be of importance for other disease models as well.

However, several aspects of the experimental design in this paper are important to
take into account when interpreting the results: the SCI was severe, the MSCs were harvested
from the bone marrow and transplanted during the acute phase of SCI into the injury epicenter.
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Moreover, variation in surgical technique, variation in SCI induction and MSC transplantation
accuracy are also important sources of error to take into consideration. The transplantation
accuracy is by far the most crucial aspect to keep in mind. All transplantations were conducted
with caution and patience in order to minimize additional injury and to ensure accurate
placement of the cells. Moreover, the SCI was induced using a commercially available
standardized contusion apparatus (IH-0400) and the SCI was induced with the spinal column
fixated and stabilized in a stereotaxic frame. This minimized variations in injury severity (tissue
damage and impact on the corticospinal tract). This experimental design also implied
transplantation of MSCs into the injury epicenter, which creates an additional injury to the
spinal cord since a needle has to be inserted and a cavity created into which the MSCs are placed.
The beneficial effect of the MSCs therefore has to exceed the additional injury caused by the
transplantation. Thus, the experimental procedures are complex and several pitfalls and
difficulties have to be taken into consideration when interpreting the results. It is possible that
these results will vary given a different experimental setup (time of transplantation, time of
evaluation, number of transplanted cells, injury severity, strain), evaluation of different
parameters or when including more biological replicates.

This project aimed at investigating features and characteristics of MSCs focusing
on their immune-privilege and immunomodulatory effect. Although immune system
modulation certainly is of importance for regeneration and recovery, reduction of scar formation
and enhancement of myelination are perhaps even more important aspects to focus on. In
conclusion, although the histocompatibility of MSCs is of importance and MSCs can beneficially
modify the microenvironment and contribute to recovery of hind limb function [164, 166, 533,
534, 5306, 538, 541, 550, 552, 554, 555, 557, 558] there might be better therapeutic options for

SCI to explore and to invest in.
Replacing stem cells

In Paper III, we developed the ideas and findings from Paper II. The main goal was to understand
and map the mechanisms of action of MSCs and we therefore sought to investigate the cellular
response of MSCs following transplantation into SCI. Understanding the cellular response is the
first step in understanding how MSCs are actually mediating their beneficial function and effect
in the recipient. Until this day MSCs have been evaluated using methods investigating specific
pre-determined aspects of the cellular response of MSCs including secretion of neurotrophic
factors and differentiation [164, 527, 530, 535, 549]. Considering that transplantation of MSCs
can enhance the recovery of hind limb function following SCI there is certainly a mechanism,
but it has not yet been described. The majority of studies investigating the cellular response and
secretome of MSCs have been conducted in culture conditions. We hypothesized that replication
of the SCI conditions cannot be done accurately in culture conditions considering the complex
cellular- and molecular response in combination with effects such as edema, ischemia and
instability of the spinal column. Therefore, we sought to investigate the cellular response of
MSC:s following exposure to a SCI environment. We found that MSCs exposed to a SCI
environment for 7 days adopt immune-cell like characteristics in terms of their gene- and surface
marker expression. The MSCs seem to adopt characteristics of macrophages but did not seem to
be immune-privileged or trans-differentiate as reported in the literature. It is likely that the MSCs
mediate their beneficial modulations and effect in the SCI microenvironment by adopting
macrophage-like characteristics and phagocytizing cells undergoing apoptosis and contributing
to modulation of the immune response by secretion of cytokines/chemokines. It is likely that the
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adoption of immune-cell like characteristics has implications for other disease models in the CNS
and outside the CNS in which MSCs are being transplanted. The similarity between MSCs
transplanted into SCI and the MSCs transplanted into uninjured spinal cord is most likely a
result of a non-significant injury caused by the transplantation. The additional injury is a major
limitation in the cell transplantation approach for treatment of SCI. Furthermore, important to
keep in mind when interpreting these results are the facts that these results might vary with the
source from which the MSCs were harvested, the time point of transplantation as well as the
time point of evaluation, strain, age, sex as well as the type and severity of the SCI. However,
MSC:s do not survive for too long in the recipient and evaluation at a later time point might have
resulted in too few cells to evaluate.

More importantly, this project aimed at identifying the cellular response of MSCs
with the intention of finding a way to replace the need for MSC transplantation. If MSCs could
be replaced the discussion on the histocompatibility and route of transplantation would be
eliminated, while the question concerning the timing would still be present. In addition to the
adoption of immune-cell like characteristics, the secretome (proteins, trophic factors, cytokines,
mRNA, miRNA) of MSCs is thought to mediate a significant part of the beneficial effects of
MSCs. These substances are thought to be secreted in extracellular vesicles (MSC-EVs) [351-
353,355, 359, 362, 369, 376, 391, 667]. Although these MSCs-EVs have been quite extensively
studied in culture conditions, the important thing going forward is to characterize the MSC-EVs
secreted from MSCs in a SCI environment. In order to characterize these MSC-EVs one would
have to develop a method in which the EVs secreted from MSCs can be isolated and
distinguished from EVs released by other cells in the spinal cord. Given that the content of the
MSC-EVs could be identified, the MSC-EVs could be replicated and administrated as a synthetic
drug. This drug could then be evaluated in clinical trials in which the safety, dosage and time
point of administration could be assessed. Such a drug in combination with decompressive- and
stabilizing surgery could perhaps help to minimize the extent of the secondary injury. Even
though the secretome of MSCs is beneficial and could perhaps be replicated and amplified, it
might not be the entire solution to reducing or eliminating the secondary injury. In conclusion,
understanding the basic science of SCI in combination with understanding and replicating the
beneficial modulations mediated by (mesenchymal) stem cells and other therapeutic approaches
could perhaps, in the distant future, be combined into a simple and efficient treatment/drug
which minimizes the extent of the secondary injury.

Disease-associated non-immune cells in spinal cord injury

In Paper IV, we investigated the immune cell response following SCI focusing on microglia. We
utilized scRNAseq and characterized the heterogeneity of the cell population over time and
identified marker genes and subpopulations. We found that homeostatic microglia (hMicroglia)
in SCI undergo transcriptional re-programming and eventually adopt a gene expression profile
similar disease-associated microglia (DAM) described in various disease- and injury models of
the CNS [625, 630, 634, 668, 669].

Although we did observe DAM in SCI, we did not investigate the mechanisms
that initiates the transformation of hMicroglia nor the mechanisms regulating the transformation
of microglia into DAM. Transcriptional programs have been suggested as mediators and
regulators of the transformation. Using a pseudotime approach, we were able to identify unique
transcription factors for each subtype of microglia. However, the transcription factors we

identified were not in line with those previously published [629, 634]. This might indicate
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differences between disease- and injury conditions or indicate the need for more detailed studies
on this issue. 77em2 has been reported to be an important regulator and mediator of
transformation from hMicroglia into DAM [626, 629, 634, 636]. In this study, however we did
not investigate the importance of 7rem2 due to the simple lack of access to such knock out
animals. However, we have no reason to doubt that 7rem2 is most likely a key regulator for
DAM formation in SCI as well. Although the transcriptional profile of DAM in SCI was similar
to DAM detected in other disease and injury models of the CNS the origin of these cells in SCI
was not certain. Moreover, the distinction between tissue resident immune cells and infiltrating
immune cells is a recurring question if the field of SCI research. Using a microglia (Cx3crI* cell)
depletion model we were able to determine that a lack of hMicroglia at the moment of SCI
results in a lack of DAM at 21 days post SCI. Thus, DAM are with high probability re-
programmed hMicroglia, which is also in line with the literature. In addition, this gave us an
indication of the importance and function of DAM in SCI by measuring and recording the hind
limb locomotor function over time. We found that DAM enhance recovery of hind limb
function and that this effect is mainly mediated during the first week following SCI. There are
however a few limitations to keep in mind concerning the microglia depletion model. Firstly,
the depletion is not specific for microglia and includes all Cx3crI* cells. Immune cells such as
NK-cells, DCs and monocytes are also Cx3crl*. Hence, the lower rate of functional recovery
observed in the Cx3crI* cell depleted animals might be a consequence of depletion of other
immune cells and not due to the lack of DAM. Secondly, the depletion is not specific for the
spinal cord nor the injury epicenter and instead depletes all Cx3crl* cells in the entire CNS.
Thus, there is a potential risk of a systemic response in the CNS to the local and delimited injury
in the spinal cord. This might have implications for the functional recovery. A model that
depletes microglia only in the injury epicenter could eliminate such a potential bias. Thirdly, the
depleted microglia were re-placed by infiltrating monocytes that eventually formed macrophages.
We observed this re-population to be complete at 28 days post the last day of tamoxifen injection
in non-injured animals. In mice which received an SCI we also detected monocyte-derived
macrophages implicating re-population following injury as well. The hind limb function of
animals depleted of microglia and which did not receive a SCI did not deteriorate in hind limb
locomotor function. However, it is difficult to determine if the inferior functional recovery is
due to the lack of DAM or the presence and actions of monocyte-derived macrophages, both or
neither of these two effects. Moreover, depleting immediately at injury or 3-4 weeks post injury
could help explain additional aspects concerning the role and importance of DAM. The co-
localization between postnatal proliferative-region-associated microglia (pPAM) in the developing
brain and DAM in SCI as revealed by the integrated data analysis is in line with the beneficial
effect mediated by the DAM in SCI. When interpreting the results limitations such as: no
individual biological replicates were used, only adult females were used and a small number of
animals were used in the functional assessment, are important to keep in mind. Thus, alterations
in the current experimental design might yield different results and conclusions than those
presented in this thesis.

Microglia is an important cell type to investigate and consider in SCI with
implications on inflammatory- and immune response. Although the mechanism that activates
and regulates the transformation of hMicroglia into DAM remains to be elucidated other cell
types such as astrocytes, oligodendrocytes and pericytes are more directly related to the
mechanical- and chemical barriers of re-generation in the spinal cord. The mechanical barrier
mainly consists of the glial scar formed by reactive astrocytes surrounding the cystic cavity.
Characterization of the heterogeneity and temporal changes of astrocytes in the glial scar as well
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as the mechanisms mediating the formation of the various subpopulations could potentially
unfold novel targets for therapy and approaches for treatment. The biochemical barrier to
regeneration consists mainly of demyelination and the lack of re-myelination of spared- or newly
formed axons in the spinal cord. Characterization of oligodendrocytes over time following SCI
might contribute to the identification of subpopulations whose survival could be enhanced
resulting in better myelination. Individually sequencing a larger number of cells from an unsorted
population of cells from spinal cord (injury) could result in a data set in which the above-
mentioned and several other cell types could be identified and studied. Later on, using knock
out models and/or cell depletion models the importance and function of these cell populations
could be determined. This would result in a better understanding for the pathology of SCI at
single-cell resolution but hopefully also result in new clues on how to construct new treatment
approaches for SCI. In conclusion, the efforts in this study can and should be broadened to
include additional cell types of the CNS and thereby dig deeper in the function of these cell
(sub)populations during SCI, how they are formed as well as their origin.

Ethical considerations

The single most important potential ethical issue in this doctoral project is the implementation
of research animals. Each project defined in this thesis is centralized around experimental SCI.
Several perspectives of SCI in each project have to be covered which results in usage of a large
number of research animals. The core ethical issue is actually an ethical dilemma in the sense
that usage of research animals is not self-evident in all cultures, countries or for all individuals.
The chances are also that the course of time will alter the attitude towards use of research animals.
Therefore, it is of substantial importance to actively discuss the potential benefits of using
research animals for studying SCI in relation to the obvious harm and suffering brought upon
the mice.

The 3Rs (Replace, Reduce, Refine) defined by the Bologna declaration and
accepted in 1999 is generally accepted as the basis for discussion for the usage of research animals.
Replacement alternatives are no longer available. Stem cells have been studied extensively 77
vitro. The environment following a SCI iz vivo is utterly complex and is not fully understood or
mapped. Due to the complexity and the lack of full understanding, the iz vivo environment is
impossible to replicate iz vitro. In order to study and evaluate the effect and the modulation of
stem cells and immune cells they have to be studied 7 vivo. Furthermore, in vivo studies are
required to evaluate the therapeutic efficiency of stem cells for treatment of SCI. Reduction
alternatives were actively discussed in the project design process. Each project was designed to
provide substantial material and data in order to accurately reject or accept the null hypothesis
using as few research animals as possible. One strategy used for reducing the number of animals
was to describe the studied phenomena from several different perspectives using different
methodologies. The proof became more rigorous and the number of animals used was
minimized. Additionally, well-established and reproducible methods were used in order to
minimize the risk for having to exclude animals due to technical errors or include more due to
mishaps. Refinement alternatives refers to the selection of species and why the animal model is
the most refined one and how any potential suffering of the animals will be minimized. Rodents
have an anatomy which resembles humans and makes SCI in mice a realistic model. This ensures
that any potential insights gained in mice can be transferred into treating humans. Rodents have
been used for a long time within several branches of medical research. Hence, the knowledge

about mice and rats as research animals is vast and several research methods and techniques have
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been developed. This has enabled researchers to pursue their projects and study their hypothesis
accurately. Additionally, this ensures that the wellbeing and living conditions for the animals can
be optimized. Moreover, the pre-, intra- and post-operative treatment and care of the animals is
similar to the clinically accepted practice used in humans.

From an utilitaristic perspective, this doctoral project is difficult to advocate for.
Humans do not suffer any negative consequences but do have a large potential gain. However,
the research animals do not have any potential gain at all, only suffering. The doctoral project is
also difficult to motivate from a deontological perspective. Far from every human/individual
would classify this type of animal research as law or generally accepted practice. The contrary is
more probably true. The opposition towards use of animals in research has always been present
and these individuals and groups frequently express their opinion not only in words but also in
action. Furthermore, the animals are not free and cannot express their opinion and thereby not
execute their autonomy, which makes this approach unfair. Hence, this project have both
positive and negative consequences and fulfills three out of four criteria in the doctrine of double
effect. The nature of the act is to do well, the intentions are right and the potential positive effects
are in proportion to the negative side effects (suffering of the mice). However, the positive effect
is achieved through a deliberate negative action toward the mice. This implies that the doctrine
is not fulfilled.

Currently a vast number of SCI studies are conducted in research animals, mainly
rodents of various types. These animal models however are highly standardized which certainly
is not the case in the clinical setting. The problem of translation from basic science to clinical
application has proven to be difficult and could be explained by the heterogeneity of injuries in
the clinical setting to which the treatment developed in rodents might not be sufficiently
applicable. Thus, the robustness of the results should be properly evaluated by altering the
experimental design and parameters investigating the sensitivity of both negative and positive
effects of the treatment. Therefore, results obtained in animal models should be validated
thoroughly in other animal models prior to trials involving humans. It is however common that
far too many general conclusions are made and clinical trials initiated following experiments
conducted only in one animal model. Unfortunately, in this thesis only one animal model of
SCI has been implemented, which is usually the case in SCI research and a consequence of
limited resources. Although the results are promising they should be evaluated in other animal
models while also extending the number of biological replicates prior to even considering
initiation of a clinical trial.
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CONCLUSION

This thesis investigated stem cell transplantation as a therapeutic approach for SCI as well as

disease-specific transformations of immune cells, focusing on microglia, following SCI. We

found that stem cell therapy for SCI shows a great deal of potential but is, at the moment, not

sufficient or efficient enough to restore function to a near-normal level. Following SCI, microglia

undergo disease-associated transformations, which persists in the chronic phase of the injury,

and contribute to functional recovery.

Specifically:

1.

Immunocompatible NPCs transplanted into SCI contribute causally to recovery of hind
limb function. The NPCs seem to mediate this effect by differentiating into
oligodendrocytes through which they enhance myelination of CNS axons (Paper I).

The histocompatibility of transplanted MSCs is of importance for their therapeutic
potential in SCI. Syngeneic MSCs have a higher therapeutic potential, as compared to
allogeneic MSCs, by alternatively activating macrophages and by enhancing neuronal
survival, which results in suppression of inflammation and enhancement of hind limb
functional recovery (Paper II).

MSC:s transplanted into SCI adopt immune-cell like characteristics. The MSCs adopt
this profile by up-regulating expression of genes and surface markers associated with
immune cells, production of cytokines/chemokines as well as phagocytosis and
endocytosis (Paper III).

Following CNS pathology homeostatic microglia undergo a distinct temporal
transformation resulting in a disease-associated subtype of microglia. These discase-
associated microglia persist during the chronic phase of SCI in murine and humans and
seem to enhance the recovery of hind limb motor function (Paper IV).
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Epilogue
OUTLOOK

The field of spinal cord injury (SCI) research has for an extended period of time been
investigating a large variety of different approaches and treatments. However, at the moment, no
therapy can restore lost functions to a normal or near-normal level.

The extent- and occurrence of the primary injury could be reduced by means of
technical development and increased emphasis on safety in everyday life, sports, traffic and work
places. Non-traumatic injuries could be counteracted by early identification and treatment of the
underlying diseases. In the end, injuries to the spinal cord can perhaps never be avoided.
However, the extent of the secondary injury could in the best of scenarios be significantly reduced
or eliminated. A large number of research projects have aimed at enhancing regeneration and
restoring function using stem cells, grafts, devices, bioengineering, drugs, hypothermia,
stimulation and many other approaches. All of these methods have shown some potential to
enhance regeneration and functional recovery. However, the spinal cord is a vastly complex
structure and simulating the innervation of skeletal muscles, organs and smooth muscle is a
highly complex task. This perhaps explains the limited success of many of the treatment
approaches. Furthermore, the complexity of the spinal cord tissue makes it very difficult to
replace. If the tissue cannot be adequately repaired using current treatment approaches and not
replaced cither, efforts should perhaps be directed towards characterizing the cellular- and
molecular response following SCI in greater detail prior to evaluating any treatments. Hence,
SCI is not yet fully understood which limits our ability to design a therapy that can reduce and
hopefully eliminate the extent of the secondary injury. The simple lack of success in SCI research
supports the idea that something has to change. One of the critical areas to focus on is scar
formation. The glial scar creates a mechanical barrier that inhibits regenerating axons from
growing through the injured area. The prevention of scar formation in combination with
enhanced myelination of regenerating axons is likely to significantly enhance recovery. Utilizing
modern techniques such as single-cell RNA sequencing has the potential to uncover subtypes of
cells, their characteristics and dynamics over time. Identifying the scar-forming cells and the
pathways that mediate the formation of these cells is the first step. In the second step drugs that
inhibit these pathways and thus the formation of these cells has the potential to minimize the
scar formation and thus the mechanical barrier. Moreover, a better understanding for
oligodendrocytes and their myelinating capabilities has the potential to uncover ways of
enhancing myelination of regeneration axons. In the best of scenarios, a medicament could be
developed which modulates the cellular response and minimizes the scar formation and
maximizes the myelination of regenerating axons. Thus, the spinal cord tissue is immensely
difficult to replicate and replace which is the motivation for the development of a therapy that
minimizes or reduces the negative effects of the secondary injury. Given that the scar formation
can be eliminated and regenerating axons are successfully re-innervating the skeletal muscles
emphasis could be shifted towards enhancing neuronal survival by reducing or eliminating
excitotoxicity. In this case, the patient would only loose the cells which were damaged in the
primary injury which might give some (but hopefully less) functional reduction. This functional
reduction could in best case be managed by the plasticity of the CNS and in combination with
rehabilitation efforts be reduced to almost none. Thus, one vision would perhaps be to develop
the “SCI drug” which could be administrated to the patient when a SCI is suspected.
Decompressive surgery should be preserved and is likely necessary for decompression itself but
also to stabilize and reconstruct the spinal column and manage any fractures to the vertebrae.
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Taken together, an increased focus on basic science focusing on mechanisms in SCI should
perhaps, at the moment, be prioritized in favor of projects blindly evaluating various therapeutic
approaches.

Alongside increased efforts in basic science, intense efforts should be made to
exploit technical innovation to replace lost functions and/or to manage them in the best possible
manner. Highly sophisticated exoskeletons in combination with artificial intelligence could
perhaps be able to restore several somatic functions. Utilizing sensors on the motor cortex
recording the activation of regions associated with walking connected to mechanical devices
attached to the lower limbs is one potential solution for voluntary control of walking. Thus,
some extent of voluntary control in combination with artificial intelligence might be a feasible
option. Devices implanted into the muscles and/or nerves regulating these functions and
attached to the motor- and sensory cortex in a similar fashion as the artificial legs could perhaps
control urogenital- and anal functions. Sensory functions could perhaps be replaced using a lower
body suit that has sensors detecting touch and relays this information to the correct region of the
sensory cortex. If connection between the mechanical devices and the motor- and sensory cortex
is difficult to establish this could be replaced using mobile applications, through which the
individual could activate functions at any given time. Hence, technical development could
provide patients with more instant relief and recovery until research in basic science has identified
mechanisms which have a distinct and important causal connection to functional outcome and
which can be distinctly, precisely and efficiently targeted and/or modulated.

Taken together, an increased emphasis on basic science focusing on characterizing
and understanding the mechanisms of SCI in combination with application of technical
innovation and artificial intelligence has a high probability of assisting and aiding these patients
in the short- and long run.
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