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ABSTRACT 

Basic molecular and cell research, production of recombinant proteins, diagnostic detection of 

genetic mutations, construction of nanostructures and high-throughput DNA sequencing are only 

a few examples of the diverse set of applications that are amenable thanks to the availability of 

synthetic DNA polymers in biomedicine.  

Strategic investments and technical progress together with the introduction of automation in the 

synthesis of DNA oligomers enabled to transform, in just a few decades, a process mastered only 

by a niche of biochemists into an affordable and available custom-made product to every scientific 

field.  

Despite such progress, innovation soon reached a plateau due to intrinsic limitations of the 

synthesis process, putting a barrier at two hundred nucleotides as the maximum length of synthetic 

DNA molecules. In the meanwhile, molecular biologists closed the gap thanks to a better 

understanding of polymerases and the mastering of directed evolution protocols making it possible 

to redesign processes that are more similar to what happens in nature, taking advantage of existing 

and improved enzymes for the generation of long and high-quality DNA molecules. This enabled 

to find novel applications for DNA such as gene editing or information storage.  

In this thesis I focused on the enzymatic production and functionalization of single stranded DNA. 

More specifically, in paper I we directed our attention to optimize the protocol for the templated 

enzymatic synthesis of oligonucleotides. We highlighted possible limitations of the technique and 

proposed a solution in employing a single stranded binding protein greatly decreasing double 

stranded DNA contaminants.  

In paper II we further extended the workflow. In here, we focused on continuing the previous 

protocol to accommodate the production of chimeric DNA-protein molecular tools needed in 

nanotechnology where DNA is considered more a building material rather than an information rich 

polymer while the actuation of a particular function is operated by proteins. We worked on a 

minimal bacteria-derived self-tagging domain that has the capacity to establish a covalent bond 

with a specific DNA sequence and some applications are suggested. Paper III represents the natural 

extension of this work even if, in this specific case, the earlier presented rational is reverted. More 

specifically, a biosensor for the detection of aquatic microorganisms was produced with the 

characterized bioconjugation technique where the chimeric protein was used as recognition moiety 

and the oligonucleotide as signal amplification device through its intrinsic DNAzyme activity.  

Finally, in Paper IV, we decided to use all the previously gathered knowledge – enzymatic DNA 

production and bioconjugation techniques – to conceive a novel basic biology investigation tool 

for the study of spatial organization of proteins. Here we took advantage of the possibility to grow 

a localized and unique DNA polymer with the ability to target proteins with DNA-protein chimeras. 

The resulting product is then recovered and decoded by next generation sequencing.   
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1 INTRODUCTION 

 

DNA is an information-rich polymer1 common to living organisms and made upon the 

repeating monomers, the nucleotides: made of a 2-deoxyribose sugar, a purine base - adenine 

(A) or guanine (G) - or a pyrimidine base - thymine (T), cytosine (C) - and a phosphate group2 

(Figure 1) As suggested by Phoebus Levene in 19193, a polynucleotide is a directional polymer 

made of those nucleotides that are connected between the fifth carbon atom of a nucleotide 

with the third carbon atom of the following nucleotide through phosphodiester bonds by the 

phosphate group. This nitrogen and phosphorous rich biomolecule was isolated for the first 

time at the end of the nineteenth century by the Swiss physician Frederich Miescher4 and 

twenty years later Albrecht Kossel identified the five nucleobases5. It is only by the middle of 

the twentieth century that enough knowledge6,7 was accumulated to obtain a more complete 

picture about its function and structure8. Understanding how DNA is organized also promptly 

suggested how molecular mechanisms work enabling a secure propagation of the genetic 

information.  

 

 

 

“It has not escaped our notice that the specific pairing we have postulated 

immediately suggests a possible copying mechanism for the genetic material.” 

Watson, J. D. & Crick, F. H. C., 1953 

 

 

 

In nature, DNA is mostly found in its double stranded forms where two complementary 

filaments interacting through base pairing and stacking are directed toward opposite directions 

forming an antiparallel polymer8. Nevertheless, it is also possible to find organisms that make 

use of single stranded DNA (ssDNA)9,10 and even in higher eukaryotes, the double stranded 

genomic DNA can take advantage of ssDNA structures as, for example, regulatory elements11.  
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Figure 1. Structure of nucleosides and features of a single-stranded polynucleotide. DNA 

in its single stranded form exhibits a peculiar elastic behavior that is of major relevance for 

biological and non-biological processes. Such molecule forms secondary structures as a 

consequence of canonical Watson-Crick hydrogen bonding and other non-ordinary base 

paring.   

Synthetic ssDNA, in vitro, is an extremely versatile molecule that can be exploited for a wide 

range of applications. Despite being rather fragile, it enables an unprecedented control over the 

possibility to position molecules in space with a nanometer precision when used as a 

construction material in nanotechnology12. Moreover, chemicals moieties and proteins 

connected to ssDNA can be organized with great precision13. Taking advantage of strand 

complementarity, ssDNA can also be designed to interact with genomic sequences or 

messenger RNA14. Furthermore, the selection of specific primary structures of a polynucleotide 

that could be generated rationally or combinatorically, is also responsible for the formation of 

intramolecular secondary structures, known as aptamers15, able to interact with more complex 

players, such as proteins16. Selection and evolution methods17 of specific structures enable the 

possibility to discover nucleic acids able to execute enzymatic-like processes18 or behave like 

fluorescent molecules19.  

Another important aspect that makes ssDNA an attractive molecular tool, is the possibility to 

produce it in large amounts with different technologies and platforms at competitive prices. 

Herein the methods for production and functionalization of ssDNA will be briefly described 

while the stress will be put on selected applications in the enclosed papers of this thesis.  

 

1.1 METHODS FOR THE PRODUCTION OF ssDNA 

There are essentially three main strategies for the production of synthetic DNA. The method 

that dominates the market is the chemical synthesis on solid-phase but its intrinsic limitations 

drove the development of alternative strategies using enzymes in vitro or even taking advantage 



 

 9 

of the molecular machinery of living organisms. The following table summarizes the main 

methods discussed in this thesis (Table 1).  

 

 

Table 1. Direct comparison of some of the most representative ssDNA production methods 

discussed in this thesis.  

 

1.1.1 Chemical synthesis 

Oligonucleotides have been synthetized in solution from the 1950s20. The synthesis method 

rapidly evolved, and a more efficient reaction, based on the phosphoramidite chemistry21, was 

implemented on solid-phase in columns. 

The opportunity to easily synthesize nucleic acid polymers made it possible to understand many 

different molecular processes that occur in a cell, further testifying the complementarity need 

and importance of chemistry and biology. Among the most important milestones achieved at 

the early stage of such technology, we have the deciphering of the genetic code22 and the 

synthesis of the first synthetic gene encoding for the somatostatin hormone in Escherichia 

coli23. Moreover, the introduction of automation in the synthesis process was fundamental to 

reach a cost-effective scalable production of oligonucleotides, up to 96 or even 384 at the same 

time, in the synthesis scale ranging from 10 to 100 nmol24. 

Nevertheless, solid-phase column based synthesis of oligonucleotides is affected by limitations 

with respect to lengths and fidelity25,26. In fact even if the reaction yield of each cycle is rather 

high, more than 99% per coupling cycle, this will result in a final 13% yield for a desired 200 

nucleotide oligo27. Length of the desired oligonucleotide is not the only problem, as also sudden 

cleavage of the polymer could happen during the deprotection step. Still connected with this 

step, another common problem is single base deletion. For all these reasons, a purification step 

of the aimed product is always advisable when long oligonucleotides are desired. Recent 

progress in the production steps will soon be translated in better commercially available 

oligonucleotides28 and some companies have already extended the maximum length of 

oligonucleotides to 300-400 bases29,30. 
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A further improvement in the industrial process is exemplified by the development of array-

based oligonucleotides synthesis. DNA printing was first achieved with the use of 

photoactivated deprotection of the phosphoroamidite chemistry31. The invention of microarray 

enabled to reduce the synthesis scale, thus reducing the synthesis costs down to $0.0001 - 

$0.00001 per nucleotide depending on the platform used and the oligonucleotide 

characteristics, whereas the price for column synthesized oligos still ranges from $0.05 to $0.10 

per base32. For these reasons, oligonucleotide pools are now the preferred starting material for 

gene synthesis even if the concentration of every oligo is really low.  

A major difference between chemical synthesis of ssDNA and the other proposed methods is 

the possibility to grow a polymer in an untemplated fashion while, most of the enzymatic 

protocols, such as the asymmetric PCR method, rely on a sequence-verified DNA template to 

be further propagated. The exception to this rule is represented by those methods based on the 

activity of the enzymes like terminal deoxynucleotidyl transferase (TdT) or similar52.   

1.1.2 Enzymatic synthesis 

Synthetic biochemistry is not the only discipline that enabled to produce high-quality 

oligonucleotides. In fact, molecular biologists soon understood that polymerases provide a 

much higher fidelity in DNA synthesis. The error rate of chemical synthesis is between 

1 × 10−2 and 1 × 10−4 according to the method used27, while enzymatic synthesis in vitro has 

reported an error rate of 1 × 10−5 to 1 × 10−6 33,34 and this without cells proofreading 

machineries.  

Since the development of the polymerase chain reaction (PCR) with thermostable enzymes35 it 

was immediately clear that such method is much more practical, if a template sequence is 

available. Taking advantage of those findings a series of enzymatic strategies have been 

developed and optimized. The first reported approach for the production of a ssDNA molecule 

of interest, is an asymmetric PCR36–38. In this protocol, the proportion of primers used in the 

reaction is strongly unbalanced enabling a favorited synthesis of one strand over the other. 

Even if effective, this approach remains imprecise and requires a purification step as point 

mutations are amplified during each round. Similar approaches take advantage of 3’ protected 

oligonucleotides and enzymatic clean-up through exonuclease treatment of the unprotected 

strand39. In alternative to exponential amplification, other protocols are based on a linear 

amplification taking advantage of naturally occurring ssDNA producing polymerases such as 

Φ29 during the rolling circle amplification (RCA)33,40,41. Such strategies have been extensively 

used to amplify genomic DNA for sequencing purposes42, DNA and RNA detection43–45 but, 

most importantly, it has been used for high quality ssDNA production within the monoclonal 

stoichiometric method (MOSIC)46,47. Notably, the production of ssDNA for the MOSIC 

protocol can also take place in biological systems such as bacteriophages. Other variants of the 

technique48 aimed to remove the enzymatic restriction step and rather relied on autocatalytic 

deoxyribozymes in presence of metal ions thus reducing the freedom in the choice of the 
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sequence to produce49. Other approaches seem achievable with new molecular tools such as 

modified versions of the CRISPR-Cas9 system but have never been exploited for this 

purpose50. An alternative and more recent approach is based on the usage of the enzyme 

terminal transferase in combination with adapted nucleobases51,52. 

The unmet need for the market of long ssDNA with high degree of purity motivated the 

investments53 in this field leading to the foundation of several startups such as DNAscript54, 

Nuclera55, Evonetix56 and Moligo Technologies57.  

1.1.3 In vivo synthesis 

A more recent approach is based on the exploitation of the life cycle of ssDNA phages. In this 

case, the sequence of interest, embedded in a plasmid characterized also by the presence of a 

bacteriophage specific packaging consensus sequence, is propagated in phage-competent 

bacteria in a bioreactor58,59. The method aims primarily to permit an agile scale-up enabling 

gram-scale production of ssDNA and has been developed mainly in the field of DNA 

nanotechnology but greatly limits the sequence freedom of choice. A few attempts of producing 

ssDNA60–62 in eukaryotic cells for therapeutic purposes have been documented in the past but 

little or no follow-up studies have been published.  

 

1.2 OLIGONUCLEOTIDES-PROTEINS CONJUGATION METHODS 

Even if DNA offers the unprecedented ability to program the assembly of nanostructures at the 

nanoscale or enables precision molecular detection operations with a large degree of control 

that is unreachable by any other molecule, the amount of operations carried by naked DNA are 

limited. For this reason, most of the applications of ssDNA in nanotechnologies rely on a 

multitude of biomolecule conjugates to obtain the desired outcome13,63,64.  

Conjugation represents the best possible way to increase the functionality of nanostructures. 

Many molecules have been coupled to DNA oligonucleotides such as lipids65, drugs66,67 and 

even chemical libraries68. But hereon we will mainly focus on protein conjugates69.  

Despite the availability of several different approaches70–73 (Figure 2) achieving a successful 

DNA-protein conjugate remains a pitfall-prone process that is highly protein dependent and 

that requires optimization for each new conjugate. Over-conjugation, target protein loss of 

function or low reaction yield represent common problems. Two main conjugation approaches 

intended to overcome the previously highlighted limitations will be introduced here. 
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Figure 2. Main protein bioconjugation strategies discussed in this work. 

 

1.2.1 Self-labeling tags 

To avoid the above mentioned issues, conjugation strategies based on genetically encoded self-

labeling tags, have been recently developed to enable a reproducible site specific labeling of 

the target proteins74,75. Nevertheless, for any of these common strategies (SNAP tag, HALO 

tag), as it happens to the protein as well, the DNA molecule of interest needs to be chemically 

modified – a process that is only feasible when starting out with synthetic DNA 

oligonucleotides in vitro. 

Aiming for an automated system that enables self-assembly and functionalization through 

protein conjugation in physiological conditions is a challenging task for most of the listed 

strategies while, rather than DNA, the most successful orthogonal approaches are directed to 

functionalize proteins76,77. As previously mentioned, it has been reported that there is the 

possibility to produce ssDNA in eukaryotic cells60–62. Therefore, the possibility to use 

genetically encoded self-tagged domain taking advantage of viral and bacterial proteins69,78 to 

covalently bind unmodified DNA becomes an attractive approach for the autonomous 

assembly of macromolecular complexes in living organisms. 

1.2.2 Copper-free click chemistry 

This relatively new approach is compliant with most of the earlier stated requirements for an 

efficient and biologically compatible reaction. The term was first introduced in 2001 by Barry 

Sharpless79 and became a very successful strategy to efficiently link biomolecules modules 

with high specificity and in aqueous environment. The set of reactions was expanded over time 

and the copper catalyst, that could be damaging for nucleic acids80, is not necessary to activate 

the alkyne if introduced in a strain-promoted destabilized form81.  



 

 13 

Even though such class of reactions are fast, specific and efficient for bioconjugation, both in 

vitro and in vivo82,83, modifications of the biomolecules of interest are needed to introduce the 

moieties for the reaction to happen. For what regards nucleic acids, most suppliers provide in 

their catalogs84 at an extra cost the introduction of the desired modification while proteins 

require a supplementary effort to become compatible for such approach. The modifications 

could be made by introduction of unnatural amino acids85 or by a first, unspecific86 or site 

directed87, conjugation step with a divalent chemical handle.  

 

1.3 ssDNA AND ssDNA-PROTEIN CONJUGATE APPLICATIONS  

Since their introduction on the market, commercially available oligonucleotides have soon 

become affordable and indispensable instruments in the toolbox of molecular biologists. 

Nowadays DNA oligonucleotides are used in many other disciplines such as material sciences 

and data sciences88–91. 

Oligonucleotides have found applications in very diverse situations and for this reason it would 

not be possible to exhaustively list all of them but, for the purpose of clarity, it is possible to 

group the main uses of ssDNA into the following categories. 

1.3.1 Detection and / or amplification  

Historically, this is the first and main application of short oligonucleotides. This could be 

achieved using both enzymatic and non-enzymatic methods. Among the enzymatic methods 

we encounter the most popular protocol in molecular biology where a couple of 

oligonucleotides, in this case called primers, promote a targeted enzymatic amplification of a 

DNA sequence via polymerase chain reaction (PCR)92 by thermal cycling that could be used 

for both preparative and analytical purposes.  Since then, new enzymes have been produced 

and protocols optimized according to specific needs. A second big family of enzymatic 

reactions is represented by isothermal amplification reactions. This last set of reactions is 

performed by a specific set of polymerases characterized by a strong strand displacement 

activity hence the reaction does not need a thermal induced denaturation between every new 

cycle. This specific activity connected with a circular template enables the rolling circle 

amplification (RCA). This very processive reaction has been extensively used for the purpose 

of amplifying the signal and being detected by hybridization but also for the generation of 

genomic DNA libraries for sequencing and for in situ sequencing applications when combined 

with the specific design of padlock probes that provide the amplification template. There are 

also other chimeric (enzymatic-non-enzymatic) reactions such as the loop mediated isothermal 

amplification (LAMP)99,100. 

Non-enzymatic methods have also been extensively used for the detection of nucleic acids. 

Those approaches are primarily based on classical Watson-Crick base pairing93,94. 

Oligonucleotides could be intrinsically fluorescent, radio-labeled or modified with small 
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molecules such as biotin or digoxigenin for immuno-based assays. These techniques are widely 

applied when it comes to decipher gene expression profiles, when labeled molecules are 

hybridized to synthetic oligonucleotides printed on microarrays but also to detect messenger 

RNA in situ. Lately such techniques have been further implemented and the detection of even 

weak signals is guaranteed by nucleic acids self-assembly such as the hybridization chain 

reaction (HCR) 101 or RNAScope® commercial system. The first method is based on 

oligonucleotides forming metastable hairpin structures that, once triggered with an initiator 

strand, are able to grow linear polymers made of fluorescently labeled oligonucleotides. The 

second method instead is based on a less dynamic assembly of labeled oligonucleotides 

following a “Christmas tree”-like scheme. Recently, labeled oligonucleotides have also been 

used as super resolution microscopy probes.103,104. 

A less canonical use of nucleic acids is as a detection tool of proteins or small molecules 15,95. 

This could be achieved by a direct interaction of the oligonucleotide secondary structure, when 

a so called aptamer96 is used, or by an indirect interaction when the nucleic acid handle is 

conjugated to a protein such as an antibody (discussed in further details in section 1.3.4). 

1.3.2 Nano-construction material  

ssDNA is extensively used for the production of nanostructures105. Such devices can be 

assembled from a rationally designed pool of oligonucleotides to form bidimensional106 or 

tridimensional structures107. The easy access to short oligonucleotides enables the design of 

nanostructures upon a given sequence of the ssDNA from different sources such as the genome 

of bacteriophages108. To enable the compaction of DNA strands (“scaffold” and “staples”) a 

saline buffer containing magnesium is used. DNA nanostructures can be folded thanks to direct 

complementarity of the sequences in a temperature ramp protocol. New generations of 

structures are less packed thus require less salts in the buffer for a successful folding107. 

Nanostructures can be folded naked or functionalized with chemicals or proteins to execute 

specific tasks109. Other than rationally designed nanostructures, DNA can be used to form 

hydrogels and matrices by RCA reaction110.        

1.3.3 Therapeutics, genome editing and gene assembly 

A growing application field of ssDNA is the development of therapeutic protocols thanks to 

the ability to design with precision macromolecules able to target cells at different levels such 

as transcription, RNA splicing and gene expression. For example, DNA oligonucleotides and 

later chemically modified oligonucleotides have been used to disrupt putative transcription 

sites through the formation of triplexes111–113. Such macromolecules interact with the target 

sequence via either Watson-Crick base paring or form triple helices on polypurine stretches of 

DNA double helices via Hoogsteen or reverse Hoogsteen interactions. Despite the precision of 

such tools, synthetic oligonucleotides suffer from two main drawbacks: limited extracellular 

stability and difficult delivery. For those reasons, chemists developed several generations of 

modifications to improve oligonucleotides half-life, biodistribution and increase efficient 
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delivery to target cells114, without impairing the specificity toward the target but aiming to 

increase the desired disruptive activity115. More recently, ssDNA has also been used as donor, 

to template the desired mutations or de novo insertions of DNA in genome editing protocols 

using the CRISPR-Cas9 system116. Furthermore, what fits this section is the possibility to 

assemble genes from oligonucleotides pools for synthetic biology applications117. 

1.3.4 DNA assisted proteomics 

Many different methods have been developed over time for the detection of proteins and to 

highlight hypothesized protein-protein interaction. A classical thorough analysis workflow 

would require a multi-step approach. Following in vitro characterization, interactions would of 

course need to be validated in vivo as well. Additional needed steps for a full characterization 

require the study of the domains involved in the interaction. Moreover, functional assays need 

to be designed to understand the consequences of the interactions.  

The choice of the optimal technique to apply depends on the question that needs to be answered 

but also on the specific nature of the interaction. For example, a stable interaction can be best 

investigated by co-immunoprecipitation118 or far western methods119 while a transient 

interaction is more difficult to capture and could require a cross-linking step or label transfer 

method. Briefly, techniques could be organized into four different groups: 

● The main category is represented by the so-called “classical” biochemical approaches. 

Protein array120, co-immunoprecipitation, affinity chromatography121 and far western.  

● The other main category of “classical” approaches involves genetic manipulations such 

as the yeast-two hybrid system122, phage display123 and the expression of protein 

libraries.  

● Modern co-localization approaches are based on FRET124 and BRET125 methods and 

co-immunolocalization by microscopy.   

● Other main techniques that cannot find a place in these classes are: surface plasmon 

resonance126, X-ray crystallography127 and cross-linking128. 

Plasma membrane proteins (PMPs) have peculiar chemical and physical properties that make 

their study difficult, therefore a new set of methods, mainly low-throughput optical methods, 

have been developed. Each method guarantees a different spatial and temporal resolution 

power that has to be taken into account accordingly. For example, single-molecule fluorescence 

imaging129 and fluorescence correlation spectroscopy (FCS)130 have more or less the same 

spatial resolution (250 nm) but FCS has a superior temporal resolution and should be preferred 

for highly dynamic proteins. FRET instead, enables resolution down to 5-10 nm with diffracted 

limited acquisition systems. Other PMPs study methods aim to reduce membrane complexity 

and use synthetic and cell derived membranes to be probed with atomic force microscopy131 or 

other diffraction or non-diffraction limited microscopy methods such as DNA-PAINT132 that 

is based on antibody-oligonucleotide conjugates.  

In this context DNA became more and more popular as an additional tool for protein detection 

and identification133,134. The introduction of DNA to decode the proteome became attractive 

thanks to the technical improvement in the ability to sequence DNA with next generation 
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sequencing135. Among the implemented strategies involving DNA-antibody conjugates, a 

prominent microscopy-based technique is the so-called proximity ligation assay (PLA)43,45,136. 

Here the proximity of proteins of interest determine the assembly of a circular template for a 

localized RCA reaction. The RCA product is detected by hybridization with a fluorescently 

labeled complementary probe.  

To address the low throughput achieved so far, new proteomic methods have been recently 

published to study cell-type specific proteomes in vivo137 and proteins surrounding a protein of 

interest by biotin labeling 138. 

All the aforementioned techniques provide a lot of information about targets vicinity, but it is 

not yet possible to have an amplification template guaranteed by a greater number than two 

analytes. One such technique that enables an open detection of an undefined number of proteins 

locally constrained has not yet been described. 

Nevertheless, there is a growing interest in the establishment of a technique able to decipher 

the relations of proteins in constrained spaces as it is possible to have a bulk measurement on 

the protein presence in the cell and a fairly good idea of how the protein is organized but not 

totally conclusive yet139,140. Each and every method suffers from strong limitations and 

therefore makes it less appealing to a wide application.  

 

1.4 DECIPHERING MEMBRANE PROTEIN ORGANIZATION 

In all biological systems it is common to encounter the compartmentalization phenomenon141. 

This ability to develop specialized units with all the necessary components to accomplish 

specific tasks is oriented toward the overall increased efficiency of the cell’s biochemical 

machinery and represents a clear proof of the endosymbiotic theory142. Nature-inspired 

compartments re-created in vitro have also been used for the optimization of synthetic 

biochemical processes143.  

Cell-cell communication, signal transduction and integration are some of the functions that are 

made possible thanks to the organization of proteins in the plasma membrane (PM). PM is one 

of the major cell compartments and it is now clear that proteins are not simply distributed 

uniformly but they are highly organized according to the cell’s needs144.   

Since the 1970s a lot of theories about the organization of plasma membrane proteins (PMPs) 

have been developed and revised145. For the aim of this introduction it is possible to focus on 

different types of PM organization units according to their size extension. When a cell is 

polarized, the membrane is organized in obvious macrodomains that exhibit peculiar structures 

such as microvilli in small intestine epithelial cells. Other macrodomains are represented by 

podosomes and focal adhesions146 or immunological synapse in leukocytes cells147. Even if a 

sharp distinction is always difficult to make, other PM functional units are microdomains that 

range from a few micrometers to 100 nm usually induced by ligands13; such domains are 
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thought to be organized thanks to the PM lipid composition148 and proteins such as the arginine 

transporter can be found149. Another smaller PM unit is represented by nanodomains that have 

a size between 100 and 10 nm in which RAS proteins can be found150. Finally, nanoclusters 

have a size of a few nanometers such as GPI-AP clusters151.  

The clustering of PMPs has been described earlier145,152 and the reasons that could explain this 

phenomenon could be stretched beyond the fact of having specialized areas to execute specific 

tasks. As a matter of fact, clustering enables different proteins to interact and expose hidden 

domains that could trigger signaling pathways. On top of that, increasing the critical mass of 

receptors interacting with ligands could provoke a stronger signal cascade that would affect the 

cell behavior153,154.  

 

1.5 TOWARDS AN OPTICS FREE DNA-MICROSCOPY 

DNA-protein conjugation techniques enabled the generation of new powerful biological 

investigation tools that, among the other things, permitted a better understanding of protein-

protein interactions. However, the usage of such tools is framed in rigid and binary systems 

able to achieve only an all-or-none output and, most importantly, where the exact number of 

proteins within a cluster remains unclear. To gather such information, using a high throughput 

technique, biological detection devices should be re-designed taking advantage of an existing 

approach: DNA-encoded barcodes.  

Such method was already applied in pharmaceutical industry. In 1992, Sydney Brenner and 

Richard Lerner published a thought experiment that preconized DNA-encoded chemical 

libraries155 for combinatorial chemistry. Since then, some companies such as GSK156 and 

Vipergen157 have decided to embrace such technology bringing to light some interesting 

molecules. The concept has since been expanded and it is also possible to profile cells 

individual proteomes thanks to DNA-encoded antibody libraries68. DNA-encoded barcodes 

had become even more attractive thanks to the parallel development of cost-efficient high 

throughput sequencing methods158.  

Inspired by this approach, a breakthrough study attempted to reconstruct the connectome 

labeling each neuron with a different RNA barcode and collecting the fusion products of two 

barcodes in synapses159,160. In the specific case, Zador’s lab engineered a population of viruses 

to produce a specific protein with, on one hand, the ability to bind a randomized - barcoded - 

mRNAs intracellularly and, on the other hand, to be crosslinked to the same protein expressed 

from a neighboring cell. In such a way the crosslinked protein product brings to close proximity 

two unique short mRNAs that can be fused in a single molecule. In this case cell unique 

barcodes enable to reconstruct the connectome in a matrix.  

The ability to reconstruct the spatial organization of proteins or any other biomolecule of 

interest thanks to localized and unique DNA sequence barcodes would enable one to investigate 

even protein interactions and distribution on PM161–163. Toward this direction a new DNA 
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origami-made platform, called “nanoscope” by the authors, has been recently published164 but 

has not yet been used on biological samples.  

Today the generation of new tools to answer biological questions at the nanoscale represents 

an unmet need that could be achieved in the near future combining previously developed 

techniques. This would enable us to broaden our knowledge of basic molecular mechanisms of 

the living cell with an unprecedented throughput and resolution. 
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2 AIMS 

The works collected in this thesis aim to both explore the understanding of basic molecular 

mechanisms underlying single-stranded DNA amplification and enzymatic conjugation as well 

as applying such knowledge to the development of tools and methods for biological 

investigation at the nanoscale. 

Paper I: To investigate the causes and possible countermeasures of the generation of an 

unwanted – double stranded DNA – product in the generation of single stranded DNA via 

rolling circle amplification.  

Paper II: To take advantage of a naturally occurring enzymatic process in pathogenic bacteria 

to develop and optimize a novel DNA-protein conjugation method. 

Paper III: To implement a novel bio-sensing strategy with the use of a chimeric DNA-protein 

conjugate. 

Paper IV: To deliver a set of molecular tools and protocols for the study of protein clustering 

organization at the nanoscale enabling topological reconstruction via next generation 

sequencing without the need of microscopy. 
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3 MATERIALS AND METHODS 

Here some of the most relevant methods used in the appended works are introduced. A detailed 

explanation of relevant protocols and techniques are included in the manuscript section. 

3.1 ENZYMATIC PRODUCTION OF SSDNA (MOSIC) 

The production of unmodified oligonucleotides of different lengths was carried out with the 

method developed in our lab46, the so called MOSIC protocol. Briefly, the generation of an 

oligonucleotide of interest is ensured by the following steps: 

 1) The generation of a clonal template;  

2) The linear RCA amplification reaction in vitro; 

3) The enzymatic digestion and purification of the oligonucleotide of interest.  

3.1.1 Generation of RCA template 

A MOSIC template is generated either by a sequence verified clonal plasmid or 

oligonucleotides assembly. In the first case the plasmid containing the pseudogene template 

(BioCat) is harvested from a bacterial culture, digested to remove the unwanted features (i.e. 

antibiotic resistance, origin of replication) and the fragment of interest is re-ligated in a mini-

circle like template form using the T4 ligase (0.25 U/ µl, Thermo Scientific) in 1x rapid ligation 

buffer at 22 ºC for 2 hours. In the latter case, synthetic oligonucleotides (IDT) are circularized 

by hybridization to a bridging oligonucleotide (100 mM potassium acetate; 30 mM HEPES, 

pH 7.5) in a 1 to 1 ratio (1 µM for each oligonucleotide). Fifteen μL of such reaction are 

combined with 5 units of T4 ligase (Thermo Scientific) in a diluted ligation buffer (1:20) 

supplemented with 1 mM ATP. The twenty μL reaction is incubated at 22 ºC for 2 hours and 

the product of interest is purified first by enzymatic removal of unligated oligonucleotides with 

the addition of 1 μL of ExoSAP-IT (Thermo Scientific) and 1 μL of Exonuclease III (Thermo 

Scientific) for 30 minutes at 30 ºC and later by extraction from a 10% denaturing (8 M urea) 

polyacrylamide gel by diffusion in a 10 mM Tris-HCl pH 7.5 solution at 40˚ C for 16 hours 

and concentrated using the QuiaEX II kit (Quiagen) according to the manufacturer instructions. 

The MOSIC template sequence encloses the following features: one or more oligonucleotide 

template sequences interspaced by short self-folding sequences with the aim to generate a 

restriction site for enzymatic cleavage of the polymer. Moreover, the sequence hosts also a 

nicking site or hybridization target site for an oligonucleotide to prime the enzymatic 

amplification reaction.  

3.1.2 Linear RCA amplification 

The combination of the so-prepared template with a RCA amplification reaction mixture: Φ29 

polymerase (0.5 U/µl, Thermo Scientific), dNTPs (1 mM each, Thermo scientific) in a 1x Φ29 

reaction buffer 33 mM Tris acetate, 10 mM magnesium acetate, 66 mM potassium acetate, 0.1 

% (v/v) Tween 20 and 1 mM Dithiothreitol (DTT), Thermo Scientific) is then incubated at 30 
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ºC. Such reaction is known to generate a great amount of product in short time. When a high 

yield and purity of the product is paramount, a long reaction (12-16 hours) is supplemented 

with T4 gene 32 ssDNA binding proteins (100 ng/µl, NEB) to inhibit the formation of dsDNA 

products. The reaction is stopped with a denaturation step (20 minutes, 75 ºC). 

3.1.3 Enzymatic digestion and purification of the oligonucleotide of interest 

The so-generated ssDNA polymer is enzymatically digested at the “hairpins” site, with the use 

of a type IIs restriction enzyme BseGI - GGATG(2/0)^ (Thermo Scientific) or BtsCI165. The 

choice of this enzyme guarantees maximum freedom in the design of oligonucleotide 

sequences. The digestion reaction is carried out with a 1:100 dilution of the enzyme for 12 

hours at 50 ºC in 1x CutSmart (NEB) buffer. The degree of digestion and the purity of the 

desired oligonucleotide are assessed by a denaturing polyacrylamide gel (PAGE), 20% 

polyacrylamide, 20% formamide and 8 M urea dissolved in 1× TBE buffer. Nucleic acids are 

stained with SYBR® Gold (Thermo Scientific) and images are acquired using a Las 4000 

imager (GE). The oligonucleotide can be extracted directly from the gel by diffusion or used 

as is after a desalting/buffer exchange step in an Amicon spin filter (Millipore). 

3.1.4 Electrophoretic characterization of ssDNA 

Despite denaturing (8M Urea) PAGE gel represents the best option to characterize 

oligonucleotides, native agarose gel (2% or above), ethidium bromide stained, are used to 

highlight the formation of undesired dsDNA47. 

3.2 RECOMBINANT PROTEINS DESIGN, EXPRESSION AND 
CHARACTERIZATION  

The open reading frame encoding proteins expressed in this thesis were derived from NCBI 

Genes database or from the literature166–168. The coding sequence was optimized for the 

bacterial expression169 and synthetized as dsDNA fragment (IDT) or fusion products that were 

obtained by PCR. Such fragments were cloned in expression vectors, such as pET-16b, under 

the control of an IPTG inducible T7 promoter. For affinity purification purpose a 6 or 10 His 

tag was also added in frame at the C or N terminus of the recombinant protein. A small-scale 

production of the recombinant protein was expressed in E. coli BL21 pLyss and IPTG induced 

overexpression of the protein of interest was validated by SDS-PAGE. Large scale production 

and purification was carried out by the protein science facility (Karolinska 

Institutet/SciLifeLab).  

3.3 DESIGN OF MOSIC PSEUDOGENES AND OLIGONUCLEOTIDES FOR 
PROTEIN CONJUGATION 

In silico analysis of the sequence enabled to reduce secondary structures that might hinder or 

inhibit the conjugation yield. For this purpose, the prediction tool Nupack170 

(http://www.nupack.org) was used to evaluate the complexity of both synthetic 

oligonucleotides and MOSIC-produced oligonucleotides. The template design of MOSIC 

oligonucleotides was generated via the online tool available on our website 

http://www.nupack.org/
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(http://www.hogberglab.net/software/). Oligonucleotides to be conjugated with the mVirD2 

tag were fused at the 5’ with the T1 target sequence69 while those to be used with click 

chemistry were ordered (IDT) with a 5’ azido moiety.  

3.4 DNA-PROTEIN CONJUGATION 

3.4.1 mVirD2 tag mediated conjugation of oligonucleotides 

The self-tagging domain mVirD2 was used alone or in fusion at the N terminus with other 

proteins for the sequence specific conjugation of an oligonucleotide. The conjugation reaction 

yields a site-specific conjugation product in biological conditions. Generally, protein and 

oligonucleotide are mixed at a 1:1 ratio in TKM buffer (50mMTris–HCl pH 8, 150 mM KCl, 

1 mM MgCl2, 10% glycerol) and incubated at 37 ºC for 1 to 2 hours in a PCR thermocycler. 

When using synthetic oligonucleotides, phosphorothioate bonds are introduced in the 

conjugation site to further increment the reaction yield69. 

3.4.2 Sortase A mediate conjugation of oligonucleotides 

This two-step protocol takes advantage of the Sortase A enzyme (SrtA)171. Such enzyme 

recognizes a specific peptide tag (LEPTGG) and has the ability to cut the polypeptide at the 

glycine position and fuse it to another protein substrate with a N terminus glycine. The 

introduction of a DBCO-amine compound (Sigma Aldrich) in the reaction enables the site-

specific modification of proteins for strain-promoted azide-alkyne cicloaddition81 with an azido 

modified oligonucleotide. Briefly, a reaction containing 50 μM of the recombinant affibody, 

150 μM of Sortase A and 10 mM of DBCO-amine (Sigma Aldrich) in Sortase A Buffer 

(HEPES 20 mM, NaCl 150 mM, CaCl2 10 mM) was incubated for 2.5 hours at 25˚ C. The 

conjugation product (affibody-DBCO) was purified flowing the crude reaction through a 

HisPur cobalt superflow agarose resin (Thermo Scientific) for 1.5 min at 1000 g. The coeluted 

DBCO-amine compound was removed using an Amicon® 3 kDa spin filter (Millipore). The 

conjugate was quantified with Bradford assay. The conjugation reaction was assessed in a Tris-

Tricine 16% gel (Novex). 

3.5 ELECTRO MOBILITY SHIFT ASSAY 

The degree of conjugation with the mVirD2 tag was assessed with native PAGE gels (a fresh 

solution comprising polyacrylamide (19:1) final concentration 10% (Biorad), 0.5x TBE buffer 

and glycerol (2.5%, v/v) was mixed and polymerized by the addition of fresh 10% APS 

solution, final concentration 10%, and TEMED, final concentration 1%, in a mini-protean gel 

system (Biorad). TBE 0.5x was used as running buffer and the gels were run at room 

temperature for 30 min at 40 V/cm. Such gels enable to detect the intrinsic fluorescence of 

modified oligonucleotides or GFP protein, to stain all nucleic acids with SYBR® Gold 

(Thermo Scientific) and are compatible with total protein GelCode blue stain reagent 

(ThermoFischer). 

 

http://www.hogberglab.net/software/
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3.6 ONE-POT SYNTHESIS OF OLIGONUCLEOTIDES AND CONJUGATION 
WITH MVIRD2-TAGGED PROTEINS 

The sequential oligonucleotides synthesis and conjugation, with no need of buffer exchange, 

was made possible by the compatibility among amplification, digestion and conjugation. 

Typically, a MOSIC digestion reaction with BseGI is heat inactivated (75 ºC for 20 minutes) 

and slowly cooled down to 37 ºC. The mVirD2 chimeric protein is directly added to the reaction 

and incubated for 1 to 2 hours previous assessment on a 12 % Bis-Tris PAGE gel.  

3.7 PREPARATION OF G-QUADRUPLEX OLIGONUCLEOTIDES 

The stabilization of G-quadruplex structures in the oligonucleotide (IDT) used for signal 

amplification in conditions suitable for the conjugation with the mVirD2-C1 protein was 

optimized. The conjugation buffer was modified by increasing its potassium chloride 

concentration (modified TKM buffer: mTKM: containing 150 mM KCl, 3.5 mM MgCl2, 10% 

glycerol and 50 mM Tris HCl, pH 8.0). Proper folding of secondary structures was enabled by 

heating the sample in mTKM buffer at 95 ºC for 5 minutes in a PCR thermocycler and gradually 

cooled down to 4 ºC at a rate of 0.1 ºC/s. Evaluation of the folding was made by gel 

electrophoresis and peroxidation assay. 

3.8 CONJUGATION SCALE UP AND PURIFICATION OF THE 
OLIGONUCLEOTIDE-PROTEIN BIOSENSOR 

Small scale conjugation reactions were performed similarly to what previously indicated while 

preparative conjugation reactions were performed in a 45 µl volume. The typical reaction 

comprises 22.5 µl of mTKM buffer, 22.5 µg of the fusion protein mVirD2-C1 and folded G4 

oligonucleotides in molar ratios of 1:1 or 2:1 and incubated at 37 ºC for 2 hours. The crude 

reaction was speared in a 10 % native PAGE stained with SYBR® Gold (Thermo Scientific) 

and bands of interest were excised. Gel slices were soaked in TBS 1x buffer supplemented with 

150 mM KCl for 4.5 h at 35°C under constant agitation (300 rpm). Next, the extracts were run 

through a 0.45 μm nylon filter device (VWR) in a bench-top centrifuge (90 sec at 16,800 rcf) 

and assessed for purity by gel electrophoresis. 

3.9 COLORIMETRIC DNAZYME POX ASSAY 

Prior to the experiment, a 4 μM hemin (Sigma-Aldrich) working solution was prepared by 

diluting a freshly thawed stock solution (1 mM in DMSO, stored at -20° C, protected from 

light) with mTKM buffer. Ten μL of this hemin stock solution were mixed with an equal 

volume of folded G-quadruplex oligonucleotides (1.6 μM, if not indicated differently) or gel-

purified mVirD2-C1 DNAzyme conjugates (0.16 μM), respectively, and incubated in the dark 

for 30 min at 25 °C in a PCR thermocycler. At time point 0 of the reaction, 10 μL of freshly 

prepared 20 mM ABTS (Roche) and 3 μL of 3.75 mM H2O2 (Sigma-Aldrich) were added to 

the hemin-DNA mixture and the samples were mixed thoroughly for a few seconds (Figure 

S3A). The final working concentrations were 1.2 μM hemin, 0.5 μM DNA, 6 mM ABTS and 

350 μM H2O2 in either mTKM buffer or, for experiments on gel-purified conjugates, in 1x TBS 

buffer containing 150 mM KCl. Two μL of the reaction mixture were then loaded onto a 
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μDrop™ Plate (Thermo Scientific) and the change of absorbance at 420 nm and 25°C was 

recorded every minute on a Varioskan Lux microplate reader (Thermo Scientific) with a 

measurement time of 250 milliseconds per read. Absorbance data were plotted with GraphPad 

Prism 8 after subtraction of background signal (absorbance in the absence of G-quadruplex 

DNA). 

3.10 BRANCHED RCA IN SOLUTION AND ON DNA NANOSTRUCTURES  

In this specific case, a circular ssDNA (1 ng/μL) serves as template in an RCA reaction primed 

by an oligonucleotide - P1- (100 nM) in a typical reaction mixture (0.5 U/μL Φ29 (Thermo 

Scientific), dNTPs 1 mM each in 1x Φ29 buffer). The branched amplification is triggered by a 

second oligonucleotide species - P2 - (100 nM) complementary to the previously generated 

DNA polymer. Such reaction is generally incubated for 30 minutes at 30 ºC and stopped by 

heat inactivation.  

3.11 PREPARATION OF “READY TO SEQUENCE” LIBRARY AND NEXT 
GENERATION SEQUENCING 

The information-dense DNA fragment generated during the RCA reaction is collected with the 

use of streptavidin functionalized magnetic beads (Thermo Scientific) and used as template for 

a two-step PCR.  
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4 RESULTS AND DISCUSSIONS 

 

4.1 PAPER I 

4.1.1 Φ29 polymerase driven RCA produces mainly dsDNA 

In paper one, we studied the RCA with the aim to optimize the amplification reaction for the 

production of ssDNA oligonucleotides. In such process, we discovered that most of the product 

resulting from long incubations (> 10h) is in the form of dsDNA. This has been proved using 

two different templates, pUC19 and pBluscript II SK(+), on which an RCA reaction is initiated 

from a 3’ end generated by a nicking endonuclease. In such experiment, the product of a 24-

hour amplification – in absence or presence of single-stranded DNA binding proteins (SSBs) - 

is assessed in an agarose gel as is or after treatment with restriction endonucleases. It is pretty 

noticeable how the presence in the reaction mix of SSBs, in this case the T4 gene 32 protein, 

affects the total amount of DNA produced. However, a high molecular weight polymer is still 

noticeable in the gel well. Moreover, the treatment of the RCA product with restriction 

endonuclease in absence of SSBs leads to the predicted digestion pattern of regular dsDNA 

while, in the presence of SSBs, this pattern is absent. Such findings have also been confirmed 

by an additional experiment in which the RCA product generated from the pUC19 template in 

presence of a gradient of SSBs, as for the restriction assay, was combined with the dsDNA 

specific fluorescent dye PicoGreen®. Here it is noticeable how including the T4 gene 32 

protein at a concentration of 100 ng/μL almost abolished the recorded fluorescence.  

4.1.2 T4 gene 32 SSB prevents the formation of dsDNA in RCA 

To investigate if SSBs simply inhibits RCA or rather specifically prevents the formation of 

dsDNA we assessed the product quality of an enzymatically produced 378 bases long 

oligonucleotide with the MOSIC protocol. Seven independent RCA reactions – in presence or 

absence of SSBs - using a nicked minicircle enclosing the oligonucleotide template were 

stopped after 30 minutes, 1, 3, 6, 9, 12, 24 hours. The obtained products were first digested 

with the restriction endonuclease BseGI and size separated on an agarose gel. It was then 

possible to appreciate that the digestion product of reactions incubated in absence of SSBs is 

running, according to the ladder, as a dsDNA of almost 400 bp while in presence of SSBs in 

the reaction most of the digested product is running faster (at the height corresponding to the 

300 bp band of the ladder) as it is ssDNA. Nevertheless, the ethidium bromide is not staining 

with the same efficiency ssDNA and dsDNA therefore it is not possible to compare the 

reactions yield. For this reason, an additional experiment was designed. The same template 

(p378), was used for new RCA reactions in presence or absence of SSBs for up to 72 hours. 

After digestion, a part of the product was assessed on a native agarose gel to determine the 

ssDNA/dsDNA ratio while the second part of the sample was used for total DNA quantification 

in a denaturing PAGE gel stained with SYBR® Gold. The relative band intensity was used to 

determine the amount of total, single-stranded and dsDNA produced at each time point. It is 
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interesting to notice that in absence of SSBs, ssDNA is produced first and later (> 12 hours) 

converted to dsDNA while this is inhibited with SSBs without affecting the reaction yield.  

 

4.2 PAPER II 

4.2.1 Characterization of the self-tagging domain mVirD2 

The Protein VirD2 from Agrobacterium tumefaciens is known to drive the genetic material 

transfer of pathogenic genes in the host cell. In this work we exploited this ability to generate 

a compact self-tagging domain for site specific conjugation of ssDNA to a protein of choice. 

The native protein exhibits two main functions, the N-terminus domain is involved with the 

recognition of the DNA sequence consensus that triggers the nicking coupled with the bond 

formation and a C-terminus helicase capable of unwinding dsDNA. It has also been 

demonstrated that a conserved tyrosine at position 29 is involved in the bond formation with 

the DNA molecule. For those reasons a minimal self-tagging domain was established by 

truncating the protein at the end of the N-terminus domain (amino acid 204) producing a 24.5 

kDa. The tag was produced alone or in fusion with the green fluorescent protein (GFP) and its 

ability to recognize and establish a covalent bond with oligonucleotides was assessed with 

electro mobility shift assays where both nucleic acids and proteins were stained. This first assay 

confirmed that the purified minimal recombinant protein is active in binding the 

oligonucleotide in a dose dependent manner. Moreover, the presence of the GFP did not hinder 

the conjugation. A limitation of the technique itself resides in the reversibility of the 

conjugation reaction that imitates the effective conjugation to env. 40% of the proteins while 

the DNA is entirely bound to proteins if the latter are present in excess. We faced this limitation 

by developing some strategies to increase the conjugation yield by using chemically modified 

oligonucleotides. We observed that 3’ end locked oligonucleotides could safely be incubated 

in a conjugation reaction in presence of exonucleases (3’ to 5’ activity) while the nicked 

byproduct fragment produced in the reaction is degraded. The degradation of this substrate 

reduces the chances for the reverse reaction to happen. A second strategy regards the use of 

phosphorothioate (PS) modified oligonucleotides. In this case, the reverse reaction is 

unfavorable for the charges distribution on the residues involved in the bond.  

4.2.2 Sequential synthesis and conjugation of oligonucleotides 

The main motivation behind the development of this conjugation strategy is to extend the 

capabilities of the previous implemented method for the enzymatic synthesis of 

oligonucleotides combining a conjugation step in a biologically neutral condition. To validate 

this combined protocol, the conjugation was first tested in the RCA restriction enzyme buffer. 

Later, two different pseudogenes were produced enclosing respectively a 103-nucleotide long 

oligonucleotide and two oligonucleotides of 87 and 57 bases. All oligos produced 

enzymatically for conjugation have been elongated at the 5’ sequence with the T1 consensus 

(17 nucleotides long). Different PAGE gels enabled to highlight the different steps of the 

sequential method in respect of the DNA or the protein.  
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4.2.3 Applications of the new conjugation technique 

As a general proof of relevance of the technique a few applications have been proposed. In the 

first case a DNA aptamer generated enzymatically was coupled with a HER2 aptamer. This 

biosensor was proved to associate with the recombinant protein in vitro (in solution or blotted) 

or to find application in sating biological samples. As a continuation of the project the protein 

was also transiently expressed extracellularly as chimera of the PDGF receptor’s 

transmembrane domain. The incubation of a labeled oligonucleotide with the cells in PBS 

buffer supplemented with magnesium enabled to label the cells membranes. Another proof of 

concept was to explore the possibility to use mVirD2 DNA binding tag to direct transcription 

activator with the use of oligonucleotides pre-complexed to a luciferase plasmid.  

 

4.3 PAPER III 

4.3.1 Generation of a DNA-protein conjugate for antigen detection 

In this work a specific application suggested in the previous paper was further explored: the 

construction of a biosensor for the detection of the toxic algae Alexandrium minutum. In this 

case the oligonucleotide is used as signal propagation tool by mean of the intrinsic capabilities 

of G rich oligonucleotides to operate as peroxidase-like DNAzymes while the mVirD2 domain 

was designed, produced and purified in fusion with a nanobody with a yield of 30-50 mg/L. 

The ability of the fusion nanobody to bind its antigen was assessed by immunostaining against 

A. minutum cells and detected with an anti His-tag secondary antibody. While the ssDNA 

binding activity was validated before with the use of electromobility shift assays, the biosensor 

was produced substantially as before, exception made for the oligonucleotide’s secondary 

structure that needed a folding step and a buffer supplementation with further KCl (150 mM) 

to stabilize the G-quadruplex structure. Such deviations did not impact the conjugation ability 

furthermore the presence of the bound protein did not affect the selected DNAzyme 

peroxidation activity. To obtain a maximal response a set of previously validated DNAzymes, 

with the wanted function, were tested as for their ability to retain the secondary structure after 

conjugation (EMSA) and to induce a peroxidation (ABTS-H2O2 system) once complexed with 

hemin. The selected sequence T2-CatG4 is a fusion of the mVirD2 PS modified binding 

domain (T2) connected through a 3 or 12 nucleotide linker with the DNAzyme sequence 

(CatG4). The linker purpose is to reduce interactions between the protein and the DNAzyme 

even though a direct comparison of the different lengths did not influence the activity in ABTS 

oxidation or conjugation therefore we chose to conduct further experiments with T2-CatG4a 

(12 nucleotides spacer).  

4.3.2  Production scale up and validation 

The main challenge of this project was the production of enough conjugate for the validation. 

For this reason, a novel strategy is here proposed. Large scale reactions were incubated as 

before in a modified buffer (150 mM KCl) and verified by EMSA. To validate the activity of 
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the biosensor it was necessary to remove the unreacted oligonucleotides and proteins. For this 

purpose, the most effective strategy was to select the right conjugation product using a 

preparative PAGE gel. The so obtained biosensor was used in immune staining to check if the 

oligonucleotide hindered the antigen recognition or impaired the specificity for the target. 

Finally, the purified biosensor was used in an ELISA assay and absorbance of the oxidized 

ABTS substrate was measured a t 420nm. The recorded signal revealed a dependency on the 

cell number used on the assay that is clearly above the background signal.   

 

4.4 PAPER IV 

4.4.1 Design of a DNA-based approach for the detection of the organization 
of proteins of interest 

In the present work we designed a strategy to collect information from the reciprocal 

localization of proteins of interest (POI). The amplification reaction relies on a rolling circle 

amplification of a circular ssDNA template embedding a unique molecular identifier (ID) that 

was produced by annealing to a padlock oligonucleotide and enzymatic ligation. Such a 

template is able to produce a long homo-polymer propagating locally the distinctive ID. The 

polymer is designed in such a way to enable hybridizations with a second species of uniquely 

identified oligonucleotides linked to protein binders. Those oligonucleotides can be extended, 

in the same reaction, on the polymer template thus providing a fusion product bearing the two 

IDs sequences (ID1 and ID2). The ability of producing such information-rich fragments, 

retrieving the embedded information and giving an interpretation to the collected data was 

assessed in vitro. In first place an RCA reaction is triggered with the use of the oligonucleotide 

P1. The presence of biotinylated P2 oligos enables the generation of the fusion strand and its 

selection from the mass of amplification product. A first step of enzymatic restriction enables 

to reduce the complexity of the sample and select with more precision the fusion product with 

streptavidin coated magnetic beads. The collected product is amplified by PCR for increasing 

the number of molecules and including the necessary adapters for the sequencing part.  

4.4.2 Proof of concept and validation of the proposed workflow 

Such described design was first tested in vitro on streptavidin-coated magnetic beads. This 

experiment proved that, once correctly designed, the oligonucleotides involved in the reaction 

are able to 1) generate an RCA product and 2) promote the fusion of DNA molecules - 

including unique molecular identifiers – during the same reaction. The information-rich 

fragment was at first PCR amplified and sequenced. Bulk sequencing (Sanger) of the 

information-rich pool of molecules highlighted the structure of the desired barcode. Similar 

experiments were reproduced in solution or on DNA nanostructures and modified in such a 

way to produce an NGS compatible library via a 2-step PCR protocol. DNA was sequenced 

with an Illumina Nextseq instrument. Analysis showed the possibility to recover single 

ID1/ID2 combinations and to reconstruct a connection network.  
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Next steps to prove the validity of the method will involve the use of fixed cell lines with known 

expression levels for the two antigens of choice (HER2 and EGFR). Different cell lines have 

been screened with the PLA method as a comparison method.  
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5 CONCLUSIONS 

Historically, the miniaturization of devices in biomedicine aimed to reduce the costs by 

lowering the consumption of limiting reagents. A macroscopic example of this could be the 

invention of hand micropipettes that enabled the development of molecular biology. A similar 

motivation also underlined the development of DNA nanotechnology now more than 20 years 

ago even though researchers are still looking for a “killing” application of the method for which 

the metaphor of the colossus with clay feet would give a good description. The capability of 

investigating biological reactions at the nanoscale would provide us precious information to 

decipher physiological and pathological phenomena. However, too many intrinsic limitations 

of nanostructures - i.e. construction, stability, functionalization - often lead to an increasing 

level of complexity to solve problems resulting in an overcomplication of the strategy. More 

fundamental work is indeed needed to extend the applicability of such tools. 

The overall aim of the papers presented here is to take a step back and work on the improvement 

of the basic building materials – DNA oligonucleotides (Paper I), DNA-protein conjugates 

(Paper II). As earlier discussed, there is a growing need of high-quality DNA for precision 

application not only connected to the construction of DNA nanostructures but also for example 

in the production of nucleic acids-based therapeutics or genome editing applications. In this 

thesis we proved that limitations of traditional solid-state chemical synthesis can be overcome 

with the use of enzymatic strategies. Such strategies have room for improvement and will most 

probably become a competitive alternative in the next decade. The ability of exploiting 

enzymatic systems to build biomolecules enables the integration of several modules that are 

traditionally separated as, for instance, proved with the combination of synthesis and targeted 

conjugation to proteins.  

As a secondary aim of this thesis, the outcomes of the new tools provided were leveraged to be 

applied for the solutions of problems. The trait d’union with this section is represented by the 

possibility of using the minimal unit of a DNA-protein conjugate as a biosensor (Paper III). In 

this case, we wanted to prove how environmental point of analysis devices could greatly benefit 

from the modular assembly, a key concept in nanotechnology, to produce consistent, cost-

effective and time saving biosensors. 

The same technology also enabled the production of monomeric binders conjugated with DNA 

in a 1:1 ratio. They have been used in the last presented manuscript (Paper IV). Starting from 

this point we wanted to prove that it is indeed possible to (a) locally grow a DNA amplification 

product able to (b) create a bipartite network among biomolecules of interest encoding (c) a 

reciprocal spatial organization in a couple of DNA barcodes. Even though a minimal proof of 

concept of the approach has been provided, the so far obtained data look encouraging. Further 

work is indeed necessary to fully validate the methodological approach and its capabilities. 

 

 



 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 33 

6 ACKNOWLEDGEMENTS 

 

 

 



 

34 

7 REFERENCES 

1. Avery, O. T., Macleod, C. M. & McCarty, M. Studies on the chemical nature of the 

substance inducing transformation of the Pneumococcal types : induction of 

transformation by a desoxyribonucleic acid isolated from Pneumococcus type III. J. 

Exp. Med. (1944). 

2. Neidle, S. Principles of Nucleic Acid Structure. Principles of Nucleic Acid Structure 

(2008). doi:10.1016/B978-0-12-369507-9.X5001-8 

3. BASS, L. W. PHOEBUS AARON THEODOR LEVENE 1869-1940. Science (80-. ). 

(2006). doi:10.1126/science.92.2392.392 

4. Miescher, F. Ueber die chemische Zusammensetzung der Eiterzellen. Medicinisch-

chemische Untersuchungen (1871). doi:10.1002/andp.18491530607 

5. JONES, M. E. Albrecht Kossel, a biographical sketch. Yale J. Biol. Med. (1953). 

6. Franklin, R. E. & Gosling, R. G. Evidence for 2-chain Helix in crystalline structure of 

sodium deoxyribonucleate. Nature (1953). doi:10.1038/172156a0 

7. Wilkins, M. H. F., Stokes, A. R. & Wilson, H. R. Molecular structure of deoxypentose 

nucleic acids. in 50 Years of DNA (2016). doi:10.1038/nature01396 

8. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids. Nature 171, 737–

738 (1953). 

9. Tischer, I., Gelderblom, H., Vettermann, W. & Koch, M. A. A very small porcine 

virus with circular single-stranded DNA. Nature (1982). doi:10.1038/295064a0 

10. Krupovic, M. & Forterre, P. Single-stranded DNA viruses employ a variety of 

mechanisms for integration into host genomes. Ann. N. Y. Acad. Sci. 1341, 41–53 

(2015). 

11. Hänsel-Hertsch, R., Di Antonio, M. & Balasubramanian, S. DNA G-quadruplexes in 

the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell 

Biol. 18, 279–284 (2017). 

12. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. 

Nature 459, 414–418 (2009). 

13. Shaw, A. et al. Spatial control of membrane receptor function using ligand 

nanocalipers. Nat. Methods 11, 841–6 (2014). 

14. Ke, R., Mignardi, M., Botling, J., Wählby, C. & Nilsson, M. In situ sequencing for 

RNA analysis in preserved tissue and cells In situ sequencing for RNA analysis in 

preserved tissue and cells. Nat. Methods 10, 857–860 (2013). 

15. Gijs, M. et al. Improved aptamers for the diagnosis and potential treatment of HER2-

positive cancer. Pharmaceuticals 9, (2016). 

16. Kankia, B. I. & Marky, L. A. Folding of the thrombin aptamer into a G-quadruplex 

with Sr2+: Stability, heat, and hydration. J. Am. Chem. Soc. (2001). 

doi:10.1021/ja010008o 

17. Chai, C., Xie, Z. & Grotewold, E. SELEX (systematic evolution of ligands by 

exponential enrichment), as a powerful tool for deciphering the protein-DNA 



 

 35 

interaction space. Methods Mol. Biol. 754, 249–258 (2011). 

18. Zhou, W., Ding, J. & Liu, J. Theranostic dnazymes. Theranostics 7, 1010–1025 

(2017). 

19. Huang, H. et al. A G-quadruplex–containing RNA activates fluorescence in a GFP-

like fluorophore. Nat. Chem. Biol. 10, 686–691 (2014). 

20. M Michelson, B. A. & Alexander Todd, S. R. Synthesis of a Dithymidine Dinucleotide 

Containing a 3’,5’-Internucleotide linkage. Biochim. Biophys. Acta J . Biot. Chern 

8350208, (1952). 

21. Beaucage, S. L. & Caruthers, M. H. Deoxynucleoside phosphoramidites-A new class 

of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–

1862 (1981). 

22. H. G. Khorana, H. Büchi, M. H. Caruthers, S. H. Chang, N. K. Gupta, A. Kumar, E. 

Ohtsuka, V. Sgaramella, and H. W. Progress in the Total Synthesis of the Gene for ala-

tRNA. Cold Spring Harb Symp Quant Biol 33, 35–44 (1968). 

23. Itakura, K. et al. Expression in Escherichia coli of a Chemically Synthesized Gene for 

the Hormone Somatostatin. Science (80-. ). 198, 1056–1063 (1977). 

24. Rayner, S. et al. MerMade: An oligodeoxyribonucleotide synthesizer for high 

throughput oligonucleotide production in dual 96-well plates. Genome Res. 8, 741–747 

(1998). 

25. Semenyuk, A. et al. Cartridge-based high-throughput purification of oligonucleotides 

for reliable oligonucleotide arrays. Anal. Biochem. 356, 132–141 (2006). 

26. Badi, N. & Lutz, J.-F. Sequence control in polymer synthesis. Chem. Soc. Rev. 38, 

3383–3390 (2009). 

27. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: Technologies and 

applications. Nature Methods 11, 499–507 (2014). 

28. LeProust, E. M. et al. Synthesis of high-quality libraries of long (150mer) 

oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 38, 

2522–2540 (2010). 

29. Biolegio. No Title. https://www.biolegio.com/products-services/long-ol 

30. Biosynthesis. No Title. https://www.biosyn.com/long-dna-oligonucleotide-sy 

31. Fodor, S. P. et al. Light-directed, spatially addressable parallel chemical synthesis. 

Science 251, 767–773 (1991). 

32. Hughes, R. A. & Ellington, A. D. Synthetic DNA synthesis and assembly: Putting the 

synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol. 9, (2017). 

33. Reagin, M. J. et al. Templiphi: A sequencing template preparation procedure that 

eliminates overnight cultures and DNA purification. J. Biomol. Tech. 14, 143–148 

(2003). 

34. Esteban, J. A., Salas, M. & Blanco, L. Fidelity of φ29 DNA polymerase. Comparison 

between protein-primed initiation and DNA polymerization. J. Biol. Chem. 268, 2719–

2726 (1993). 



 

36 

35. Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I. & Khorana, H. G. Studies on 

polynucleotides. XCVI. Repair replication of short synthetic DNA’s as catalyzed by 

DNA polymerases. J. Mol. Biol. 56, 341–361 (1971). 

36. Citartan, M. et al. Asymmetric PCR for good quality ssDNA generation towards DNA 

aptamer production. Songklanakarin J. Sci. Technol. 34, 125–131 (2012). 

37. Marimuthu, C., Tang, T.-H., Tominaga, J., Tan, S.-C. & Gopinath, S. C. B. Single-

stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137, 1307 

(2012). 

38. Poddar, S. Symmetric vs asymmetric PCR and molecular beacon probe in the 

detection of a target gene of adenovirus. Mol. Cell. Probes 14, 25–32 (2000). 

39. Dongran Han1, Xiaodong, Cameron Myhrvold, Bei Wang, Mingjie Dai, Shuoxing 

Jiang, Maxwell Bates, Yan Liu, Byoungkwon An, Fei Zhang, Hao Yan, P. Y. Single-

stranded DNA and RNA origami. Science (80-. ). 358, (2017). 

40. Dean, F. B., Nelson, J. R., Giesler, T. L. & Lasken, R. S. Rapid amplification of 

plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling 

circle amplification. Genome Res. 11, 1095–1099 (2001). 

41. Silander, K. & Saarela, J. Whole genome amplification with Phi29 DNA polymerase 

to enable genetic or genomic analysis of samples of low DNA yield. Methods Mol. 

Biol. 439, 1–18 (2008). 

42. Johne, R., Müller, H., Rector, A., van Ranst, M. & Stevens, H. Rolling-circle 

amplification of viral DNA genomes using phi29 polymerase. Trends in Microbiology 

17, 205–211 (2009). 

43. Bagchi, S., Fredriksson, R. & Wallén-Mackenzie, Å. In Situ Proximity Ligation Assay 

(PLA). Methods Mol. Biol. 1318, 149–159 (2015). 

44. Ke, R., Nong, R. Y., Fredriksson, S., Landegren, U. & Nilsson, M. Improving 

Precision of Proximity Ligation Assay by Amplified Single Molecule Detection. PLoS 

One 8, (2013). 

45. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation 

assays. Nat. Biotechnol. 20, 473–477 (2002). 

46. Ducani, C., Kaul, C., Moche, M., Shih, W. M. & Högberg, B. Enzymatic production 

of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides. Nat. Methods 

10, 647–52 (2013). 

47. Ducani, C., Bernardinelli, G. & Högberg, B. Rolling circle replication requires single-

stranded DNA binding protein to avoid termination and production of double-stranded 

DNA. Nucleic Acids Res. 42, 10596–10604 (2014). 

48. Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 

84 (2017). 

49. Gu, H. & Breaker, R. R. Production of single-stranded DNAs by self-cleavage of 

rolling-circle amplification products. Biotechniques 54, 337–343 (2013). 

50. Ma, E., Harrington, L. B., O’Connell, M. R., Zhou, K. & Doudna, J. A. Single-

Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Mol. Cell 60, 398–



 

 37 

407 (2015). 

51. Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Enzymatic DNA 

synthesis for digital information storage. bioRxiv (2018). doi:10.1101/348987 

52. Palluk, S. et al. De novo DNA synthesis using polymerasenucleotide conjugates. Nat. 

Biotechnol. (2018). doi:10.1038/nbt.4173 

53. Perkel, J. M. The race for enzymatic DNA synthesis heats up. Nature (2019). 

doi:10.1038/d41586-019-00682-0 

54. No Title. Available at: http://www.dnascript.co/.  

55. No Title. Available at: https://www.nuclera.com/technology/science/.  

56. No Title. Available at: https://www.evonetix.com/.  

57. No Title. Available at: http://www.moligotechnologies.com/.  

58. Shepherd, T. R., Du, R. R., Huang, H., Wamhoff, E. C. & Bathe, M. Bioproduction of 

pure, kilobase-scale single-stranded DNA. Sci. Rep. (2019). doi:10.1038/s41598-019-

42665-1 

59. Kick, B., Praetorius, F., Dietz, H. & Weuster-Botz, D. Efficient Production of Single-

Stranded Phage DNA as Scaffolds for DNA Origami. Nano Lett. (2015). 

doi:10.1021/acs.nanolett.5b01461 

60. Datta, H. J. & Glazer, P. M. Intracellular generation of single-stranded DNA for 

chromosomal triplex formation and induced recombination. Nucleic Acids Res. 29, 

5140–7 (2001). 

61. Chen, Y., Ji, Y. J. & Conrad, C. Expression of ssDNA in mammalian cells. 

Biotechniques 34, 167–171 (2003). 

62. Chen, Y. & McMicken, H. W. Intracellular production of DNA enzyme by a novel 

single-stranded DNA expression vector. Gene Ther. 10, 1776–1780 (2003). 

63. Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance 

of antibodies. Nat. Nanotechnol. (2019). doi:10.1038/s41565-018-0336-3 

64. Grossi, G., Dalgaard Ebbesen Jepsen, M., Kjems, J. & Andersen, E. S. Control of 

enzyme reactions by a reconfigurable DNA nanovault. Nat. Commun. (2017). 

doi:10.1038/s41467-017-01072-8 

65. Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA 

nanostructures. Science 338, 932–6 (2012). 

66. Thazhathveetil, A. K., Liu, S. T., Indig, F. E. & Seidman, M. M. Psoralen conjugates 

for visualization of genomic interstrand cross-links localized by laser photoactivation. 

Bioconjug. Chem. (2007). doi:10.1021/bc060309t 

67. Liu, T., Song, P., Märcher, A., Kjems, J., Yang, C. and Gothelf, K. V. Selective 

Delivery of Doxorubicin to EGFR+ Cancer Cells by Cetuximab–DNA Conjugates. 

ChemBioChem 20, 1014–1018 (2019). 

68. Bailey, R. C., Kwong, G. A., Radu, C. G., Witte, O. N. & Heath, J. R. DNA-encoded 

antibody libraries: A unified platform for multiplexed cell sorting and detection of 



 

38 

genes and proteins. J. Am. Chem. Soc. 129, 1959–1967 (2007). 

69. Bernardinelli, G. & Högberg, B. Entirely enzymatic nanofabrication of DNA-protein 

conjugates. Nucleic Acids Res. 45, e160 (2017). 

70. Kukolka, F. & Niemeyer, C. M. Synthesis of fluorescent oligonucleotide-EYFP 

conjugate: Towards supramolecular construction of semisynthetic biomolecular 

antennae. Org. Biomol. Chem. (2004). doi:10.1039/b406492e 

71. Debets, M. F. et al. Aza-dibenzocyclooctynes for fast and efficient enzyme 

PEGylation via copper-free (3+2) cycloaddition. Chem. Commun. (2010). 

doi:10.1039/b917797c 

72. Yang, Y. R., Liu, Y. & Yan, H. DNA Nanostructures as Programmable Biomolecular 

Sca ff olds. (2015). doi:10.1021/acs.bioconjchem.5b00194 

73. Rosen, C. B. et al. Template-directed covalent conjugation of DNA to native 

antibodies, transferrin and other metal-binding proteins. Nat. Chem. (2014). 

doi:10.1038/nchem.2003 

74. Los, G. V. et al. HaloTag: A novel protein labeling technology for cell imaging and 

protein analysis. ACS Chem. Biol. 3, 373–382 (2008). 

75. Cong, Y. et al. Site-specific PEGylation at histidine tags. Bioconjug. Chem. (2012). 

doi:10.1021/bc200530x 

76. Hino, N., Hayashi, A., Sakamoto, K. & Yokoyama, S. Site-specific incorporation of 

non-natural amino acids into proteins in mammalian cells with an expanded genetic 

code. Nat. Protoc. 1, 2957–2962 (2007). 

77. Hohsaka, T. & Sisido, M. Incorporation of non-natural amino acids into proteins. 

Current Opinion in Chemical Biology 6, 809–815 (2002). 

78. Lovendahl, K. N., Hayward, A. N. & Gordon, W. R. Sequence-Directed Covalent 

Protein-DNA Linkages in a Single Step Using HUH-Tags. J. Am. Chem. Soc. 139, 

7030–7035 (2017). 

79. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click Chemistry: Diverse Chemical 

Function from a Few Good Reactions. Angewandte Chemie - International Edition 

(2001). doi:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 

80. Schweigert, N. et al. DNA degradation by the mixture of copper and catechol is 

caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH. Environ. 

Mol. Mutagen. (2000). doi:10.1002/1098-2280(2000)36:1<5::AID-EM2>3.0.CO;2-4 

81. Agard, N. J., Baskin, J. M., Prescher, J. A., Lo, A. & Bertozzi, C. R. A comparative 

study of bioorthogonal reactions with azides. ACS Chem. Biol. (2006). 

82. Chang, P. V. et al. Copper-free click chemistry in living animals. Proc. Natl. Acad. 

Sci. (2010). doi:10.1073/pnas.0911116107 

83. Yoon, H. I. et al. Bioorthogonal Copper Free Click Chemistry for Labeling and 

Tracking of Chondrocytes In Vivo. Bioconjug. Chem. (2016). 

doi:10.1021/acs.bioconjchem.6b00010 

84. IDT. Available at: https://eu.idtdna.com/site/Catalog/Modifications/ClickChemistry/8.  



 

 39 

85. Tyagi, S. & Lemke, E. A. Genetically Encoded Click Chemistry for Single-Molecule 

FRET of Proteins. in Methods in Cell Biology (2013). doi:10.1016/B978-0-12-407239-

8.00009-4 

86. Gong, H. et al. Simple Method to Prepare Oligonucleotide-Conjugated Antibodies and 

Its Application in Multiplex Protein Detection in Single Cells. Bioconjug. Chem. 

(2016). doi:10.1021/acs.bioconjchem.5b00613 

87. Trads, J. B., Tørring, T. & Gothelf, K. V. Site-Selective Conjugation of Native 

Proteins with DNA. Acc. Chem. Res. (2017). doi:10.1021/acs.accounts.6b00618 

88. Bornholt, J. et al. A DNA-Based Archival Storage System. ASPLOS ’16 - Proc. 

Twenty-First Int. Conf. Archit. Support Program. Lang. Oper. Syst. 637–649 (2016). 

doi:10.1145/2872362 

89. Bornholt, J. et al. Toward a DNA-Based Archival Storage System. IEEE Micro 37, 

98–104 (2017). 

90. Willner, I. Biomaterials for Sensors, Fuel Cells, and Circuitry. Science (80-. ). 298, 

2407–2408 (2002). 

91. Van Den Beucken, J. J. J. P. et al. Fabrication, characterization, and biological 

assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials 27, 

691–701 (2006). 

92. Mullis, K. B. The unusual origin of the polymerase chain reaction. Sci. Am. (1990). 

doi:10.1038/scientificamerican0490-56 

93. Conner, B. J. et al. Detection of sickle cell beta S-globin allele by hybridization with 

synthetic oligonucleotides. Proc. Natl. Acad. Sci. 80, 278–282 (1983). 

94. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point 

mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 

874–879 (1989). 

95. Fang, X., Sen, A., Vicens, M. & Tan, W. Synthetic DNA aptamers to detect protein 

molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem 

4, 829–834 (2003). 

96. Lee, J. F. Aptamer Database. Nucleic Acids Res. (2003). doi:10.1093/nar/gkh094 

97. Bülbül, G., Hayat, A. & Andreescu, S. ssDNA-Functionalized Nanoceria: A Redox-

Active Aptaswitch for Biomolecular Recognition. Adv. Healthc. Mater. 5, 822–828 

(2016). 

98. Goux, E. et al. A colorimetric nanosensor based on a selective target-responsive 

aptamer kissing complex. Nanoscale 9, 4048–4052 (2017). 

99. Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 

28, E63 (2000). 

100. Kishi, J. Y., Schaus, T. E., Gopalkrishnan, N., Xuan, F. & Yin, P. Programmable 

autonomous synthesis of single-stranded DNA. Nat. Chem. (2017). 

doi:10.1038/nchem.2872 

101. Evanko, D. Hybridization chain reaction. Nat. Methods 1, 186–187 (2004). 



 

40 

102. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative Monitoring of 

Gene Expression Patterns with a Complementary DNA Microarray. Science (80-. ). 

270, 467–470 (1995). 

103. Raap, A. K. et al. Ultra-sensitive fish using peroxidase-mediated deposition of biotin- 

or fluorochrome tyramides. Hum. Mol. Genet. 4, 529–534 (1995). 

104. Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-

PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014). 

105. Seeman, N. Nucleic acid nanostructures and topology. Angew. Chemie Int. Ed. 37, 

3220–3238 (1998). 

106. Benson, E. et al. Computer-Aided Production of Scaffolded DNA Nanostructures from 

Flat Sheet Meshes. Angew. Chemie - Int. Ed. 55, 8869–8872 (2016). 

107. Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 

441–444 (2015). 

108. Kick, B., Hensler, S., Praetorius, F., Dietz, H. & Weuster-Botz, D. Specific growth 

rate and multiplicity of infection affect high-cell-density fermentation with 

bacteriophage M13 for ssDNA production. Biotechnol. Bioeng. 114, 777–784 (2017). 

109. Shaw, A. et al. Spatial control of membrane receptor function using ligand 

nanocalipers. Nat. Methods 11, (2014). 

110. Ali, M. M. et al. Rolling circle amplification: a versatile tool for chemical biology, 

materials science and medicine. Chem. Soc. Rev. 43, 3324 (2014). 

111. Guntaka, R. V., Varma, B. R. & Weber, K. T. Triplex-forming oligonucleotides as 

modulators of gene expression. International Journal of Biochemistry and Cell 

Biology 35, 22–31 (2003). 

112. Knauert, M. P. & Glazer, P. M. Triplex forming oligonucleotides: sequence-specific 

tools for gene targeting. Hum. Mol. Genet. 10, 2243–2251 (2001). 

113. Faria, M. & Giovannangeli, C. Triplex-forming molecules: From concepts to 

applications. J. Gene Med. 3, 299–310 (2001). 

114. Rogers, F. A., Manoharan, M., Rabinovitch, P., Ward, D. C. & Glazer, P. M. Peptide 

conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. 

Nucleic Acids Res. 32, 6595–6604 (2004). 

115. Havre, P. A., Gunther, E. J., Gasparro, F. P. & Glazer, P. M. Targeted mutagenesis of 

DNA using triple helix-forming oligonucleotides linked to psoralen. Proc. Natl. Acad. 

Sci. 90, 7879–7883 (1993). 

116. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing 

homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 

using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016). 

117. Quan, J. et al. Parallel on-chip gene synthesis and application to optimization of 

protein expression. Nat. Biotechnol. 29, 449–452 (2011). 

118. Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 

450, 683–694 (2007). 



 

 41 

119. Wu, Y., Li, Q. & Chen, X. Z. Detecting protein-protein interactions by far western 

blotting. Nat. Protoc. 2, 3278–3284 (2007). 

120. Melton, L. Protein arrays: Proteomics in multiplex. Nature 429, 101–107 (2004). 

121. Kasai, K. Affinity chromatography. Tanpakushitsu Kakusan Koso Protein Nucleic 

Acid Enzym. 31, 1143–1151 (1986). 

122. Brückner, A., Polge, C., Lentze, N., Auerbach, D. & Schlattner, U. Yeast two-hybrid, 

a powerful tool for systems biology. International Journal of Molecular Sciences 10, 

2763–2788 (2009). 

123. Smith, G. Filamentous fusion phage: novel expression vectors that display cloned 

antigens on the virion surface. Science (80-. ). 228, 1315–1317 (1985). 

124. Clegg, R. M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6, 103–

110 (1995). 

125. Bacart, J., Corbel, C., Jockers, R., Bach, S. & Couturier, C. The BRET technology and 

its application to screening assays. Biotechnology Journal 3, 311–324 (2008). 

126. Zeng, S., Baillargeat, D., Ho, H.-P. & Yong, K.-T. Nanomaterials enhanced surface 

plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 

43, 3426 (2014). 

127. Gregory, N. W. Elements of X-Ray Diffraction. J. Am. Chem. Soc. 79, 1773–1774 

(1957). 

128. Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein–protein interactions: 

Rapid and efficient cross-linking triggered by long wavelength light. Chem. Biochem. 

96, 6020–6024 (1999). 

129. Lommerse, P. H. M. et al. Single-Molecule Imaging of the H-Ras Membrane-Anchor 

Reveals Domains in the Cytoplasmic Leaflet of the Cell Membrane. Biophys. J. 86, 

609–616 (2004). 

130. Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P. F. Fluorescence correlation 

spectroscopy diffusion laws to probe the submicron cell membrane organization. 

Biophys. J. 89, 4029–4042 (2005). 

131. Whited, A. M. & Park, P. S.-H. Atomic force microscopy: a multifaceted tool to study 

membrane proteins and their interactions with ligands. Biochim. Biophys. Acta 1838, 

56–68 (2014). 

132. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. 

Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017). 

133. Sano, T., Smith, C. L. & Cantor, C. R. Immuno-PCR: Very sensitive antigen detection 

by means of specific antibody-DNA conjugates. Science (80-. ). (1992). 

doi:10.1126/science.1439758 

134. Cao, Y., Kopplow, K. & Liu, G. Y. In-situ immuno-PCR to detect antigens. Lancet 

(2000). doi:10.1016/S0140-6736(00)02696-9 

135. Nong, R. Y., Gu, J., Darmanis, S., Kamali-Moghaddam, M. & Landegren, U. DNA-

assisted protein detection technologies. Expert Review of Proteomics (2012). 

doi:10.1586/epr.11.78 



 

42 

136. Gullberg, M. et al. Cytokine detection by antibody-based proximity ligation. Proc. 

Natl. Acad. Sci. 101, 8420–8424 (2004). 

137. Alvarez-Castelao, B. et al. Cell-type-specific metabolic labeling of nascent proteomes 

in vivo. Nat. Biotechnol. (2017). doi:10.1038/nbt.4016 

138. Bar, D. Z. et al. Biotinylation by antibody recognition—a method for proximity 

labeling. Nat. Methods (2017). 

139. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell 

biology. Nature Reviews Molecular Cell Biology (2019). doi:10.1038/s41580-018-

0094-y 

140. Gatto, L., Breckels, L. M. & Lilley, K. S. Assessing sub-cellular resolution in spatial 

proteomics experiments. Current Opinion in Chemical Biology (2019). 

doi:10.1016/j.cbpa.2018.11.015 

141. Alberts, B. et al. Molecular Biology of the Cell 6e. Garland Science 6, (2014). 

142. Martin, W. et al. Modern endosymbiotic theory: Getting lateral gene transfer in- to the 

equation. J. Endocytobiosis Cell Res. Int. Soc. Endocytobiol. Endocytobiosis Cell Res. 

J. Endocytobiosis Cell Res. J. Endocytobiosis Cell Res. 23, 1–5 (2012). 

143. Li, X. & Liu, D. R. DNA-templated organic synthesis: Nature’s strategy for 

controlling chemical reactivity applied to synthetic molecules. Angewandte Chemie - 

International Edition 43, 4848–4870 (2004). 

144. Jacobson, K., Mouritsen, O. G. & Anderson, R. G. W. Lipid rafts: at a crossroad 

between cell biology and physics. Nat. Cell Biol 9, 7–14 (2007). 

145. Kusumi, A., Ike, H., Nakada, C., Murase, K. & Fujiwara, T. Single-molecule tracking 

of membrane molecules: Plasma membrane compartmentalization and dynamic 

assembly of raft-philic signaling molecules. Seminars in Immunology 17, 3–21 (2005). 

146. Wu, C. Focal adhesion: a focal point in current cell biology and molecular medicine. 

Cell Adh Migr 1, 13–18 (2007). 

147. Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023–33 (2014). 

148. Anderson, R. G. W. A Role for Lipid Shells in Targeting Proteins to Caveolae, Rafts, 

and Other Lipid Domains. Science (80-. ). 296, 1821–1825 (2002). 

149. Malinska, K., Malinsky, J., Opekarova, M. & Tanner, W. Visualization of protein 

compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 

14, 4427–4436 (2004). 

150. Prior, I. A., Muncke, C., Parton, R. G. & Hancock, J. F. Direct visualization of ras 

proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 

(2003). 

151. Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living 

cells revealed by crosslinking. Nature 394, 802–805 (1998). 

152. Garcia-Parajo, M. F., Cambi, A., Torreno-Pina, J. A., Thompson, N. & Jacobson, K. 

Nanoclustering as a dominant feature of plasma membrane organization. J. Cell Sci. 

127, 4995–5005 (2014). 



 

 43 

153. Lingwood, D. et al. Cholesterol modulates glycolipid conformation and receptor 

activity. Nat. Chem. Biol. 7, 260–262 (2011). 

154. Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their 

structure and function. Nature 510, 172–175 (2014). 

155. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. 

89, 5381–5383 (1992). 

156. Wu, Z. et al. Cell-Based Selection Expands the Utility of DNA-Encoded Small-

Molecule Library Technology to Cell Surface Drug Targets: Identification of Novel 

Antagonists of the NK3 Tachykinin Receptor. ACS Comb. Sci. 17, 722–731 (2015). 

157. Blakskjaer, P., Heitner, T. & Hansen, N. J. V. Fidelity by design: Yoctoreactor and 

binder trap enrichment for small-molecule DNA-encoded libraries and drug discovery. 

Current Opinion in Chemical Biology 26, 62–71 (2015). 

158. Shendure, J. et al. DNA sequencing at 40: Past, present and future. Nature (2017). 

doi:10.1038/nature24286 

159. Kebschull, J. M. et al. High-Throughput Mapping of Single-Neuron Projections by 

Sequencing of Barcoded RNA. Neuron 91, 975–987 (2016). 

160. Peikon, I. D. et al. Using high-throughput barcode sequencing to efficiently map 

connectomes. Nucleic Acids Res. 45, (2017). 

161. Weinstein, J. A., Regev, A. & Zhang, F. DNA Microscopy: Optics-free Spatio-genetic 

Imaging by a Stand-Alone Chemical Reaction. Cell (2019). 

doi:10.1016/j.cell.2019.05.019 

162. Boulgakov, A. A., Xiong, E., Bhadra, S., Ellington, A. D. & Marcotte, E. M. From 

Space to Sequence and Back Again: Iterative DNA Proximity Ligation and its 

Applications to DNA-Based Imaging. bioRxiv (2018). doi:10.1101/470211 

163. Hoffecker, I. T., Yang, Y., Bernardinelli, G., Orponen, P. & Högberg, B. A 

Computational Framework for DNA Sequencing-Based Microscopy. bioRxiv 476200 

(2018). doi:10.1101/476200 

164. Schaus, T. E., Woo, S., Xuan, F., Chen, X. & Yin, P. A DNA nanoscope via auto-

cycling proximity recording. Nat. Commun. 8, 696 (2017). 

165. Rosa, J., Fernandez-Gonzalez, E., Ducani, C. & Högberg, B. BtsCI and BseGI display 

sequence preference in the nucleotides flanking the recognition sequence. PLoS One 

(2018). doi:10.1371/journal.pone.0202057 

166. van Kregten, M., Lindhout, B. I., Hooykaas, P. J. J. & van der Zaal, B. J. 

Agrobacterium-mediated T-DNA transfer and integration by minimal VirD2 

consisting of the relaxase domain and a type IV secretion system translocation signal. 

Mol. Plant. Microbe. Interact. 22, 1356–1365 (2009). 

167. Orlova, A. et al. Synthetic affibody molecules: A novel class of affinity ligands for 

molecular imaging of HER2-expressing malignant tumors. Cancer Res. (2007). 

doi:10.1158/0008-5472.CAN-06-2887 

168. Glasgow, J. E., Salit, M. L. & Cochran, J. R. In Vivo Site-Specific Protein Tagging 

with Diverse Amines Using an Engineered Sortase Variant. J. Am. Chem. Soc. (2016). 



 

44 

doi:10.1021/jacs.6b03836 

169. Grote, A. et al. JCat: A novel tool to adapt codon usage of a target gene to its potential 

expression host. Nucleic Acids Res. (2005). doi:10.1093/nar/gki376 

170. Zadeh, J. N. et al. NUPACK: Analysis and design of nucleic acid systems. J. Comput. 

Chem. 32, 170–173 (2011). 

171. Parthasarathy, R., Subramanian, S. & Boder, E. T. Sortase A as a novel molecular 

‘stapler’ for sequence-specific protein conjugation. Bioconjug. Chem. (2007). 

doi:10.1021/bc060339w 

 


