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ABSTRACT 
The human microbiome is a very active area of research due to its potential to explain 

health and disease. Advances in high throughput DNA sequencing in the last decade have 

catalyzed the growth of microbiome research; DNA sequencing allows for a cost-effective 

method to characterize entire microbial communities directly, including unculturable 

microbes which were previously difficult to study. 16S rRNA sequencing and shotgun 

metagenomics, coupled with bioinformatics methods have powered the characterization of 

the human microbiome in different parts of the body. This has led to the discovery of novel 

links between the microbiome and diseases such as allergies, cancer, and autoimmune 

diseases. 

This thesis focuses on the application of both 16S rRNA sequencing and shotgun 

metagenomics for the characterization of the human microbiome and its relationship with 

health and disease. We established two methodologies to address these questions. The first 

methodology is a bench-to-bioinformatics pipeline to discover putative viral pathogens 

involved in disease using shotgun metagenomics technology. In paper I, we apply the 

proposed pipeline to explore the hypothesis of viral infection as a putative cause of 

childhood Acute Lymphoblastic Leukemia. In paper II, we propose a complementary 

method to the pipeline to improve the detection of unknown viruses, especially those with 

little or no homology to currently known viruses. We applied this method on a collection of 

viral-enriched libraries which resulted in the characterization of a new viral-like genome. 

The second methodology was developed to explore and generate hypothesis from a human 

skin microbiome dataset of Psoriasis and Atopic Dermatitis patients. The results of the 

analysis are presented in Paper III and Paper IV. Paper III is a pure data-driven exploration 

of the dataset to discover different aspects on how the microbiome is linked to both 

diseases. Paper IV follows up from the results of paper III but focuses on characterizing 

the skin site microbiome variability in Atopic Dermatitis.  
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1 INTRODUCTION 

1.1 The human microbiome 

Nearly four decades ago, the bacterium H. pylori was isolated from the stomach, debunking 

the common belief that the stomach is a sterile environment. We have now realized that the 

human body is host to a vast range of bacteria, fungi, viruses and other eukaryotes that 

interact with our organism. The existence of microbial communities in places such as the 

gut, the oral cavities or the skin have been well documented for many years now, but recent 

studies continue to find microbes residing in unexpected places (Dickson and Huffnagle 

2015). For example, the lung and the eye have been recently found to contain microbes 

(Hilty et al. 2010; O’Dwyer, Dickson, and Moore 2016; Huffnagle, Dickson, and Lukacs 

2017; St. Leger et al. 2017; Shin et al. 2016; Cavuoto et al. 2018). Other studies also 

suggest that microbes live in the placenta (Stout et al. 2013), and evidence from 

immunosuppressed individuals suggests the existence of viral communities in the blood (L. 

Li et al. 2013; Popgeorgiev et al. 2013). 

We refer to the collection of microbial communities colonizing the different sites in the 

human body as ‘the human microbiome1’ (E. A. Grice and Segre 2012). These communities 

are dynamical entities (Gonze et al. 2018; Faust et al. 2015); the composition of any 

microbial community in the human body will depend on the physiological conditions (e.g. 

temperature, pH, oxygen), resource availability, host-microbe interactions (Gilbert et al. 

2018; Virgin 2014) and the interactions within the community (Fredricks 2001; J. Xu 

2006).  Considering the wide variability of environments in the human body and across 

individuals, it is not unexpected that the variability of the human microbiome is huge, 

among individuals and between sites. A recent study even suggests microbiota is so unique 

that it could identify individuals (Franzosa et al. 2015), although host genetics appear not to 

be a strong determinant of the microbiome (Rothschild et al. 2018). 

The microbiome plays an important role in maintaining human homeostasis, contributing to  

metabolism(LeBlanc et al. 2013; Metges 2000; Flint et al. 2012), training of the immune 

system and modulation of the immune response (E. A. Grice and Segre 2012; Ursell et al. 

2012; Naik et al. 2012). Consequently, alterations to the healthy resident microbial 

 

1 In this thesis, the term ‘microbiome’ will be used as defined by Ledeberg & McCray(2001): “the ecological 
community of commensal, symbiotic, and pathogenic microorganisms that literally share our body space and 
have been all but ignored as determinants of health and disease”. However, it is noted that in the literature the 
term ‘microbiome’ can also be defined as ‘the collection of genomes from the aforementioned organisms’. 
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communities can have a considerable impact on health. These imbalanced states are termed 

‘dysbiosis’ (Petersen and Round 2014) and they have been linked to a wide range of 

diseases such as inflammatory bowel disease (Frank et al. 2007; Norman et al. 2015), 

asthma (Hilty et al. 2010), atopic dermatitis (Oh et al. 2013; Kong, Oh, Deming, Conlan, 

Grice, Beatson, Nomicos, Polley, Komarow, Murray, et al. 2012), and depression (Foster 

and McVey Neufeld 2013).  

Understanding the role of the microbiome in disease holds the potential for developing new 

diagnostic, therapeutic or preventive tools. Examples of this include the fecal transplants 

for the treatment of C. difficile infection (Aas, Gessert, and Bakken 2003) and the 

development of probiotics (Khalesi et al. 2019). However, further research is required to 

elucidate the complexity of the microbiome and to translate these insights gained from the 

research into clinical practice. 
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1.2 An ecological framework to study the microbiome 

To tackle the complexity of the microbiome and its effect on health and disease, the field 

has borrowed a conceptual framework from ecology. Biological complexity is partitioned 

into stratified levels of organization: organism, population, community, ecosystem, biome, 

and biosphere. However, for the study of the human microbiome, we will only consider the 

population, community and ecosystem levels (J. Xu 2006). 

At the population level, each species is studied independently from the community. The 

goal is to understand a microbial species in isolation and characterize its functions (e.g. 

metabolism, replication strategies, virulence, cell biology), patterns of evolution and 

variation(J. Xu 2006). Studying the behavior of individual microbial populations forms the 

basis to understand how a species will interact with the other members of the community 

and with the human body in different environments.  

At the community level, the aim is to investigate the composition, behavior and the spatio-

temporal dynamics of microbial populations that share a common environment (Konopka 

2009). Challenges at this level include determining the species and strain composition and 

profiling the functional and metabolic content of the entire community and the contribution 

of each population (Kuczynski et al. 2011).  

Another key aim when examining microbial communities is to determine the type and 

mechanisms behind microbe-microbe interactions and their spatial distribution (Mah and 

O’Toole 2001).  Microbial interactions can be classified into 5 broad categories:  

1) mutualistic, when both organisms benefit from the interaction  2) commensal, when one 

organism benefits from the interaction and the other one remains unaffected,   

3) competitive, when one organism will kill or inhibit the growth of another that requires 

the same resources; 4) parasitic, when one organism benefits while harming its host, and  

5) predatory, when one organism kills another one as part of its life cycle(Lang and 

Benbow 2013).   

At the ecosystem level, we examine how both individual populations and the entire 

community interact with the environment: the human body. The focus of study at this level 

include understanding how communities adapt to changes in the environmental conditions 

(e.g. nutrients, oxygen, pH) and describing the mechanisms and effects of the crosstalk 

between the microbes, the immune system and surrounding cells. Understanding human 

health and disease can only happen when the ecosystem is considered (Gilbert et al. 2018). 



 

4 

This introduction describes different techniques to extract population and community level 

information from microbial communities using DNA sequencing technologies and how to 

associate them with health and disease. The following sections (1.3–1.5) describe how 

sequencing can be used for characterizing the microbiome and two protocols to achieve 

this. Section 1.6 describes statistical techniques and algorithms to summarize population 

and community-level information and find ecosystem-level insights through associations 

with human information using clinical metadata or other omics datasets. Finally, section 1.7 

outlines two challenges in human microbiome research that will be addressed by the work 

in this thesis.    
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1.3 Characterizing the microbiome using DNA sequencing: a 
conceptual overview 

Microbiome studies depend on our ability to accurately profile microbial communities. One 

way of achieving this goal is to study their metagenome: the collection of genomes from all 

microbes in the community. The information from the metagenome enables the 

reconstruction of the microbial species profile from all kingdoms, including bacteria, 

viruses, archaea and other microscopic eukaryotes. Furthermore, because we are sampling 

complete genomes, we can infer the functional potential of communities and individual 

populations. Another advantage of metagenomics (i.e. the study of metagenomes), is that it 

allows the study of communities without isolating and culturing the organisms (K. Chen 

and Pachter 2005). 

The concept of an ideal human metagenomics pipeline is presented in Figure 1.3.1. The 

data generation follows a single-cell-like protocol, that can be broken down into three steps: 

sample processing, nucleic acid extraction and sequencing. The sample processing step 

consists of isolating all microbial cells and viral particles from any type of human sample 

(e.g. a skin biopsy, stool, or blood). An ideal sample processing step discards human cells 

and other molecules since these comprise a sizeable fraction of the original sample but 

contain no microbiome information. Purified microbes are then subjected to nucleic acid 

extraction, which isolates the genomic content from each microbe and labels them with a 

unique barcode that identifies genomic fragments from the same microbial cell or virus. 

Then, the barcoded genomic fragments are sequenced, generating error-free digital 

representations of the nucleotide composition of each genome. 

The resulting sequenced genomes can be used to extract biological information from the 

microbial community. Typically, the information we are interested to extract from the 

metagenomes falls into three categories (Knight et al. 2018): 

• Taxonomical abundance profile: A list of species present in the sample coupled with a 

measure of abundance for each species 

• Strain-level population information: For microbial populations of interest, inferred 

strain variation based on genotypes (SNVs) or gene content. 

• Functional profile: The coding potential of the entire community, as well as the 

coding content of the different populations. This include gene, gene family and 

pathway abundances 
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The biological information can be used to extract insights depending on the question under 

study. For example, we can use the taxonomical profile to determine whether certain 

populations expand or contract in relation to a clinical condition. We can also examine 

population-level variability within the different microbial populations to determine whether 

strains with different functional profiles are associated with a phenotype of interest. Finally, 

we can also examine the functional potential of the metagenome, both at the global level to 

understand what the community is able to synthesize and react to as a whole, and at a per-

clade level to predict mechanisms though which key populations partake in specific 

processes. 

Unfortunately, the state of technology is far away from this proposed scenario. Sections 1.4 

and 1.5 describe the two main protocols for human microbiome profiling using DNA 

sequencing technologies: shotgun metagenomics and amplicon sequencing respectively. It 

is worth noting that other techniques exist, such as metatranscriptomics, but they will not be 

covered in the scope of this document.  

  

Figure 1.3.1 - An ideal metagenomics assay 
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1.4 Shotgun Metagenomics 

Shotgun metagenomics is the real-life protocol to obtain metagenomes from a sample. The 

first pioneering metagenomics studies surveyed the microbial diversity of the oceans 

(Rusch et al. 2007) and it has since been used to characterize soil (Howe et al. 2014), 

wastewater (Munck et al. 2015) and even the New York City metro (Afshinnekoo et al. 

2015). The human microbiome field has also caught up, with the Human Microbiome 

Project utilizing shotgun metagenomics for the latter part of the project (Wylie et al. 2012). 

Now it is a common choice for the development of large studies such as MetaHIT 

consortium (Qin et al. 2010a). 

Figure 1.4.1 outlines a typical shotgun metagenomics pipeline. The following subsections 

will describe the steps of the process. Section 1.4.1 describes the sequencing data 

generation steps. Then Sections 1.4.2 and 1.4.3 describe two alternative but complementary 

ways of inferring biological information from the sequences: read-based analysis and 

metagenomic assembly. 

1.4.1 Data generation 

The sample processing steps from the shotgun metagenomics pipeline differ considerably 

from those proposed in the conceptual pipeline due to technological limitations. Compared 

to the conceptual pipeline, there is no purifying step that isolates and sorts the microbial 

cells and viral particles, so the nucleic acid extraction step is performed on the entire 

sample. The isolated DNA is then fragmented, amplified and adapters are ligated for 

sequencing.  This has important implications for the downstream data processing such as: 

• The nucleic acid extraction efficiency for each type of microbe will differ depending 

on the method, so the extracted genomic DNA concentrations will be biased with 

respect to the microbial abundances (Kong et al. 2017). 

• If the sample contains human cells, the extracted DNA will be a mixture of human 

and microbial DNA. This can impact the sensitivity of the assay if the human-to-

microbial DNA ratio is very high since human fragments will waste part of the 

sequencing capacity (Pereira-Marques et al. 2019). 

• All DNA is extracted in bulk, meaning it is not possible to track which DNA 

fragments come from a particular microbial cell or viral particle. This has to be 

inferred computationally downstream. 
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Figure 1.4.1 - The shotgun metagenomics pipeline 

• The presence of laboratory reagent contamination, especially on low biomass samples 

(Salter, Cox, Turek, Calus, Cookson, Pop, et al. 2014; Mollerup et al. 2016). The use 

of negative controls can help reduce the impact of this problem during analysis. 

Additionally, current sequencing technology also imposes further constraints on the data: 

• Most current metagenomics studies nowadays are performed using short-read 

sequencing technologies. Even though the output is not full genome sequences, short-

reads can be used to infer information about the community either directly (see 

Section 1.4.2) or by reconstructing the genomic fragments from which they originate 

(see Section 1.4.3) (Knight et al. 2018). 

• DNA-sequencing is error-prone. Although the error rates of short-read sequencers are 

relatively low, existing errors convolute genome reconstruction and other analysis 

(Schirmer et al. 2016).  

• Sequencing instruments have a limited capacity below the total DNA molecule 

number in a typical microbiome sample. This implies that only relative abundances 

from can be obtained from sequencing data since the total sequence counts are 

constrained by the instrument capacity (Gloor et al. 2017).   
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• High complexity communities require deep sequencing to survey the low abundance 

members (Rodriguez-R and Konstantinidis 2014; Cleary et al. 2015) 

The resulting sequencing dataset will consist of millions of short sequences. Most 

metagenomic sequencing is performed with Illumina technology due to economic reasons, 

although other alternatives such as Ion Torrent or long-read technologies like Pacific 

Biosciences and Oxford Nanopore exist. This means the output sequences will be paired-

ended (a fragment is sequenced from 5’ to 3’ and also from 3’ to 5’) and read length will 

range from 100 to 300 bp depending on the sequencing instrument and kit.   

1.4.2 Read-based microbiome reconstruction  

One way of reconstructing a microbial community from shotgun metagenomics data is to 

leverage the information about existing microbial genomes in public databases to infer what 

is contained in the metagenome without explicitly reconstructing the genomes. These 

approaches are commonly known as ‘read-based’ or ‘reference-based’. Generally speaking, 

read-based analyses yield good results when the microbial diversity of the samples is 

relatively well known (Knight et al. 2018), but the final results can be heavily influenced by 

the choice of database (Shaiber and Eren 2019; Breitwieser et al. 2019).  

Read-based tools can recover different types of microbial information from the reads.  The 

following subsections describe different types of tools categorized by the microbial 

information they recover. 

1.4.2.1 Taxonomic profile inference 

Taxonomic profile inference tools aim to identify all taxa present in the sample and 

estimate the abundance of each taxon.  These tools can be broadly classified into three 

categories depending on the strategy they use: 

• Mapping-based with a strategy to deal with multimapped reads  
• Mapping-based with Lowest Common Ancestry  
• Marker gene-based 

The first approach is analogous to the transcriptome quantification problem. The problem 

can be framed as estimating the abundance of a set of reference genomes in a given dataset. 

The general concept consists of mapping the reads to the reference genomes and analyzing 

the mapping results to estimate the abundance of each species in the set. One of the main 

challenges with the abundance estimation step is to select a model to incorporate the 
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information from multi-mapped reads (reads that are assigned to more than one species) to 

obtain accurate abundance measurements.  This approach is very reliable if the genomes of 

the community members are well characterized. However, if unknown species are present 

in the samples, reads from these unknown species can be misclassified and skew the 

estimated profiles. 

Tools like Pathoscope (Francis et al. 2013) originally implemented this concept, analyzing 

the output of traditional mapping tools such as bowtie or bwa and using the Expectation-

Maximization (EM) algorithm to estimate the abundances from all mapped reads. Newer 

tools optimize the mapping step by determining if the read is compatible with the reference, 

instead of calculating the full alignment. Examples of this include Centrifuge (Kim et al. 

2016), which uses an FM-index based genome index for assignment and then implements a 

Cufflinks-like EM approach for multimapping read assignment. Pseudo-mapping tools for 

RNA-seq such as Salmon (Patro et al. 2017) and Kallisto (N. L. Bray et al. 2016) 

incorporate their own models to disambiguate multi-compatible reads in the quantification, 

as well as bias estimation. However, due to the large size of the microbial genome 

databases compared to a human or mouse transcriptome, RNA-seq tools must be adapted 

for metagenomics use, e.g FastViromeExplorer (Tithi et al. 2018), or metakallisto 

(Schaeffer et al. 2017). Minhash-based strategies for metagenome profiling could also be 

classified in this category (C. T. Brown and Irber 2016; Ondov et al. 2016). 

The second approach originates from addressing one of the main causes of read 

multimapping in microbial datasets: homologous regions. The lowest common ancestor 

(LCA) strategy states that if a sequence originates from a conserved region in different 

bacteria, the appropriate classification for the sequence is the taxonomical level where the 

region is conserved. For example, if a read maps to a conserved region of the 16S rRNA 

gene, it should be classified as ‘Kingdom: Bacteria’, whereas a read from a gene conserved 

only in Staphylococcal species should be classified as ‘Genus: Staphylococcus’. In practice, 

LCA approaches analyze all the database matches for each read and use the taxonomic 

lineage information to determine what is the lowest node in the taxonomical tree that spans 

all matches. 

The first LCA tools like MEGAN (Huson et al. 2007) analyze blast search results against 

nucleotide or protein databases such as NCBI nt or nr, using the NCBI taxonomy to place 

reads at the appropriate taxonomic level. However, blast searches are computationally 

expensive, and scaling up to millions of sequences becomes prohibitive. Kraken (Wood and 
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Salzberg 2014) pioneered an efficient k-mer based algorithm to implement the LCA. 

Kraken’s algorithm depends on building a database of informative k-mers from a set of 

reference genomes, where each k-mer is annotated with the LCA of the reference genomes 

where it was observed. Then, the database is used to classify reads by annotating each k-

mer of the read and performing an LCA of the k-mer hits to determine the final annotation.   

LCA-based methods have both advantages and disadvantages. In principle, these methods 

are more robust than other mapping approaches when classifying sequences from genomes 

that are not present in the database. However, in practice, the accuracy of most tools suffers 

when considering classifications below order (Vollmers, Wiegand, and Kaster 2017; 

Lindgreen, Adair, and Gardner 2015). Also, many LCA based tools do not include an 

abundance estimation model for the different clades (Schaeffer et al. 2017), so they need to 

be complemented with tools like Bracken for accurate abundance estimation (Lu et al. 

2017). Finally, modern LCA approaches such as Kraken2 and Clark-S (Ounit and Lonardi 

2016) are extremely fast classifiers, but the database construction can be very resource-

consuming. 

The last strategy for classification is to use marker genes for profiling. There are two types 

of marker genes: universal genes, and ‘clade-specific’ marker genes. Universal marker 

genes, such as the 16S rRNA gene, can be used for taxonomical classification if the gene is 

conserved in the species of interest and contains sufficient variability to distinguish clades. 

A tool that implements this approach is mOTU2 (Milanese et al. 2019), and it uses a set of 

40 marker genes for profiling. 

On the other hand, “clade-specific” marker genes are present in members of a clade but 

absent or too divergent in any other clades. This approach was pioneered by MetaPhlAn 

(Segata et al. 2012) and more currently MetaPhlAn2 (Truong et al. 2015). Using the marker 

database, clade abundance profiles can be estimated from read-mappings to the marker 

gene database, since reads are in general expected to map ‘uniquely’ to markers. For 

example, the Metaphlan2 gene database was built by first identifying core genes from all 

clades at all taxonomic levels. Then, the suitability of each candidate marker gene was 

evaluated by establishing a sequence identity threshold to check if the sequence is divergent 

enough from all other potential markers.  

Marker-gene based strategies address many limitations from other strategies. Marker gene 

databases are considerably smaller than a full genome database, and it streamlines the 

abundance estimation by removing the problem of multimapped reads. With appropriate 
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markers, the approach can be highly specific but sacrificing sensitivity (Vollmers, 

Wiegand, and Kaster 2017), since only a fraction of the metagenomic data will be used for 

the classification and the profile will be tied to the marker selection.  

1.4.2.2 Strain-level population inference 

Strain-level population analysis aims to recover strain variation from specific populations in 

metagenomics samples. Determining strain profiles requires fine-grained analysis, so strain-

calling tools typically work on a per-species basis. The available tools use two main 

strategies to infer strain information: analyze gene content or extract single nucleotide 

variation(SNV). Ideally, these tools should be able to deconvolute the mixture of strains, 

but in practice, most of them focus on characterizing the most abundant strain or computing 

some form of a representative strain profile. 

Tools that focus on gene content for strain profiling, such as PanPhlAn (Scholz et al. 2016), 

are based on the concept of a species pangenome: the complete set of genes present in any 

strain of a species. If the pangenome of a species is well known, it is possible to determine 

whether different samples contain different strains by examining the gene presence/absence 

profiles. The main advantage of this approach is that pangenome profiles enable direct 

functional interpretations: the presence or absence of genes with known function can be 

directly associated with any phenotype of interest.  

On the other hand, SNV-based strain profilers aim to identify informative SNVs that can be 

used to distinguish between the strain content of the samples. Some tools like StrainEST 

(Albanese and Donati 2017) use a precomputed SNVs database collected from reference 

genomes, while other tools like metaSNV (Costea et al. 2017) and StrainPhlAn (Truong et 

al. 2017) call the SNVs directly from the sequencing dataset by mapping to a reference 

database (metaSNV maps to genomes, while StrainPhlAn uses the MetaPhlAn2 marker 

gene database). 

Strain-profiling tools are sensitive to sequencing coverage requirements. For example, 

PanPhlAn requires a ‘nearly uniform coverage’ across the median number of genes in a  

strain to detect a strain in a sample, and imposes further coverage requirements for a gene 

to be called as ‘present’ (Scholz et al. 2016). This makes them applicable for high and 

medium abundance microbes, but not so effective for low abundance bacteria. 
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1.4.2.3 Functional profile inference 

Functional analysis is concerned with the prediction of the coding potential present in the 

metagenome. In metagenome analysis, we are interested in identifying the functional 

potential of the metagenome as a whole, as well as understanding the coding potential of 

individual taxa.  Read-based functional profilers mainly focus on characterizing the global 

functional potential by quantifying gene families and pathways from the reads. Associating 

genes with taxa using reads can be very challenging since the information in short 

sequences is often insufficient to distinguish between homologs. 

Read-based functional analysis depends on one or more databases of gene and protein 

sequences to annotate the reads. Database searches can be performed at the nucleotide level 

or using translated searches using blastx or similar tools like Diamond (Buchfink, Xie, and 

Huson 2015) or RapSearch2 (Zhao, Tang, and Ye 2012). Once the mappings have been 

calculated, gene family level abundances are calculated by aggregating mapping to 

sequences in the databases using gene family annotations. Commonly used gene family 

annotations come from databases such as COG (Galperin et al. 2015), EggNOG (Huerta-

Cepas et al. 2019) or KEGG (Kanehisa et al. 2016). Alternatively, it is also possible to map 

the reads to protein families directly with the HMMER suite (Mistry et al. 2013b)  using 

databases such as Pfam (Finn et al. 2014) or TIGRfam (Haft, Selengut, and White 2003). 

Finally, pathway coverage and abundance can be calculated from the gene family 

abundances, using databases such as MetaCyc (Caspi et al. 2018) or KEGG. 

In contrast with taxonomical annotation tools, there are fewer tools for read-based 

functional profile inference. HUMAnN2 (Abubucker et al. 2012), ShotMAP (Nayfach et al. 

2015) and Fun4me (Sharifi and Ye 2017) are some examples of the available command 

line- based pipelines for functional characterization. Some online services exist as well, 

such as MG-RAST (Keegan, Glass, and Meyer 2016), IMG/M (I.-M. A. Chen et al. 2017) 

and EBI metagenomics (Hunter et al. 2014). 
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1.4.3 Assembly-based microbiome reconstruction 

An alternative approach to read-based microbiome profiling methods consists of 

reconstructing the genomes present in the samples using sequence assembly. Metagenomics 

assembly can be considered a special case of the genome assembly problem, with the added 

complexity that different genomes are mixed in the same sample and the uneven fragment 

coverage due to differences in microbial abundances.   

Different metagenomics assemblers have been published in recent years, most of them 

based on de Bruijn graphs. Common cited tools include Megahit (D. Li et al. 2015), 

SPAdes (Bankevich et al. 2012) or MetaSPAdes (Nurk et al. 2016), IDBA-UD (Peng et al. 

2012) and Ray Meta (Boisvert et al. 2012). Although the choice of assembly tool is not 

trivial, the Megahit assembler is often recommended as a starting point based on assembly 

quality, resource usage and speed compared to other assemblers (Sczyrba et al. 2017; 

Ayling, Clark, and Leggett 2019). 

Assembly strategies will differ depending on the number of samples, the sequencing depth, 

and community complexity (Ghurye, Cepeda-Espinoza, and Pop 2016). Ideally, samples 

should be reconstructed individually to maximize the capture of sample-specific variation. 

However, to improve the recovery of low-abundance microbes, samples can also be co-

assembled together at the expense of disregarding individual sample variation. Assembly 

quality can be assessed by checking statistics such as the contig length distribution, 

checking contig read coverage, and measuring the percentage of read incorporation of the 

assembly.  Reconstructed sequences are typically called ‘contigs’.  

The next step after assembly is binning:  the aim is to group (or ‘bin’) contigs that belong to 

the same genome. Available de novo binning tools rely on two main strategies for grouping 

contigs: sequence composition or coverage. Sequence composition-based binning is derived 

from the observation that the tetramer composition of fragments of the same genome will 

be similar. In contrast, coverage-based binning is based on the assumption that the coverage 

of contigs from the same genome will co-vary among different samples.  State-of-the-art 

binning tools such as CONCOCT (Alneberg et al. 2014), Metabat2 (Kang et al. 2015) and 

MaxBin 2.0 (Wu, Simmons, and Singer 2016) use a combination of both strategies. 

Recently, a meta-binner called Das-Tool (Sieber et al. 2018) was released, to combines the 

results from different binners. Alternatively, genome bins can be inferred by taxonomically 

annotating each contig and grouping contigs with the same taxonomical annotation 

(Sczyrba et al. 2017). 
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Bins can be evaluated using different tools to determine the quality of the recovered 

genomes. Tools like checkM (Parks et al. 2014) or metaQUAST (Mikheenko, Saveliev, and 

Gurevich 2016) can be used for this purpose. Common metrics include contamination, 

genome completeness, and purity. Bins can be manually refined with the help of annotation 

and tools like Anvi’o (Eren et al. 2015). Finally, bins above certain quality criteria can be 

labeled taxonomically using tools like Kraken or MEGAN(Wood and Salzberg 2014; 

Huson et al. 2007), phylogenetically using PhyloPhlAn (Segata et al. 2013) and run through 

gene prediction and annotation pipelines like MetaGeneMark or Prokka. (Rho, Tang, and 

Ye 2010; Zhu, Lomsadze, and Borodovsky 2010; Seemann 2014). 

Finally, the new genomes and their annotation can be used to infer the taxonomical 

abundance profiles of each sample and perform functional analysis both at global and per-

genome level, using read-based tools or ad-hoc strategies similar to the ones implemented 

in read-based analysis tools. 
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1.5 Amplicon Sequencing: A cost-effective alternative  

An alternative for microbiome profiling is marker gene or amplicon sequencing, also 

known as metabarcoding. Unlike shotgun metagenomics, the approach targets conserved 

genes in the genomes of microbes which can be used to infer the taxonomic and 

phylogenetic structure of the microbial community in a sample. In practice, most human 

microbiome studies use the 16S ribosomal RNA subunit (16S rRNA) gene to characterize 

bacteria and some types of archaea, since the gene is well conserved and with sufficient 

variation to distinguish between subclades (Olsen et al. 1986; Hugenholtz 2002). In this 

thesis, I will refer to amplicon sequencing to mean 16S rRNA gene amplicon sequencing 

unless noted otherwise. However, the same strategy can be extended to characterize 

archaeal (Gantner et al. 2011; Chaban and Hill 2012) and fungal populations (Lindahl et al. 

2013) using different conserved genes.  

The amplicon sequencing approach was instrumental for the first large scale analysis of 

human bacterial communities (E. a. Grice et al. 2009; Costello et al. 2009; Ravel et al. 

2011) and for the establishment and execution of the Human Microbiome Project(HMP), a 

systematic effort to map the diversity of the microbiota in the body (The Human 

Microbiome Project Consortium 2012).  

A typical 16S amplicon sequencing pipeline is described in Figure 1.5.1. The following 

subsections describe the data generation and community profiling processes. 

1.5.1 Data generation 

The first step for amplicon sequencing is DNA extraction, similar to shotgun 

metagenomics. In the library preparation step, a PCR is used to enrich for the desired 

conserved regions and sequencing adapters are ligated to the fragments. Then, the 

amplicons are forwarded for sequencing.  

The 16S rRNA gene is around 1500bp in bacteria and contains 9 hypervariable regions that 

can be targeted for phylogenetic analysis. Due to the constraints of short-read sequencing 

length, a selection of hypervariable regions is required. This selection must be performed 

carefully, since the resolution of a variable regions to distinguish members of certain clades 

vary between variable regions and this impacts directly the downstream interpretation of 

results (Graspeuntner et al. 2018; Yang, Wang, and Qian 2016; Teng et al. 2018). 
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Figure 1.5.1 - 16S rRNA amplicon sequencing pipeline 

16S rRNA-based microbiome profiling is a cost-effective method for microbiome studies; it 

avoids many of the pitfalls from shotgun metagenomics while enabling taxonomic 

profiling. The maturity of the technology has even led to its consideration for clinical 

diagnostics (Almonacid et al. 2016). For example, human DNA does not waste any 

sequencing since the 16S gene is not conserved in humans. Additionally, sequencing depth 

requirements are much lower since we are not attempting to reconstruct genomes, and thus 

lower abundance species are easier to detect.  Bioinformatics analysis of 16S rRNA 

sequences is also more standardized compared to shotgun metagenomics (Hillmann et al. 

2018).  

The main drawback of the 16S rRNA amplicon sequencing approach is that it only yields 

taxonomical information, and species and subspecies (strain) resolution can be difficult to 

attain (Knight et al. 2018). Another issue with this approach is the dependence on PCR. It 

has been shown that the choice of primers and PCR cycles will bias the compositional 

estimation, as some primers will favor the amplification of certain clades (Eloe-Fadrosh et 

al. 2016).  Additionally, PCR amplification carries the risk of chimera formation, which 

must be addressed during the analysis steps (Haas et al. 2011). Finally, while the approach 
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can be extended for archaea and fungi, it cannot be extended for universal virome 

inspection due to the low level of gene conservation among viruses (Kuczynski et al. 2011).  

1.5.2 OTU-based profiling 

One way of describing the taxonomical profile of a microbiome sample based on amplicon 

data is to create Operational Taxonomic Units or OTUs. OTUs are clusters of amplicon 

sequences above a certain similarity threshold and represent the lowest-level “unit” of 

analysis.  

Amplicon sequencing data processing starts with the quality control and filtering of the 

reads, removing low-quality bases and any adapters, primers or linkers used during the 

library preparation process. In the case of Illumina sequences, the quality trimming must 

take care that the paired-ends still overlap sufficiently so that they can be merged at a later 

stage. 

The next step is to identify and correct errors in the 16S sequences. Denoising and chimera 

removal algorithms typically rely on error models and take advantage of unique sequence 

counts and base quality scores to predict which sequences are likely to contain errors. Then, 

sequences can be either corrected or discarded if they are PCR artifacts (Quince et al. 2011; 

R. C. Edgar et al. 2011). 

Denoised sequences are subsequently clustered based on similarity to form the OTUs. An 

identity threshold should be selected; a 97% similarity threshold is commonly used in the 

literature (Konstantinidis KT 2005), but other thresholds have been suggested (R. C. Edgar 

2018; Yarza et al. 2014; Nguyen et al. 2016). Subsequently, a representative sequence is 

selected for each OTU for downstream analyses, typically the cluster ‘medoid’. 

OTU clustering can be performed in three ways: open-reference, close- reference and de 

novo (Caporaso et al. 2010). In closed-reference OTU picking, the clustering is performed 

against a set of sequences (known as seeds) from a database like Greengenes (DeSantis et 

al. 2006) or Silva (Yilmaz et al. 2014). Sequences that do not cluster over the sequence 

identity threshold are discarded. Alternatively, de novo OTU picking compares each 

sequence in the dataset to each other and clusters them using the set identity threshold. De 

novo OTU picking is computationally expensive since each unique sequence must be 

compared to every other. An intermediate solution is to perform open-reference OTU 

picking, where sequences are subject to closed-reference OTU picking, and ‘discarded’ 

sequences are then subject to de novo OTU picking. 
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Once the OTUs have been formed, three main artifacts are produced to enable downstream 

analysis (McMurdie and Holmes 2013): 

• a feature count matrix (OTUs vs samples) 
• a phylogenetic tree 
• taxonomical annotation of the OTUs  

The feature count matrix is constructed by counting the reads belonging to each OTU in 

each of the samples.  

The phylogenetic tree is built from performing a multiple sequence alignment from the 

representative sequences of each OTU, and then using the alignment to create a rooted 

phylogenetic tree. 

Finally, sequences can be taxonomically annotated by comparing them to any database of 

sequences with taxonomic annotation. Typically, taxonomical classification is performed 

using a Naïve Bayes Classifier. 

Clustering sequences into OTUs has several advantages for downstream processing and 

analysis. It helps eliminate left-over errors from the denoising process, as the sequences 

will most likely end up in the same OTU. Additionally, since the 16S gene is multi-copy, 

clustering can collapse paralogs into the same OTU, simplifying interpretation of the 

results. It also reduces the computational load of inferring phylogeny, since only the 

representative sequences will be considered (R. Edgar 2019). 

However, the biological interpretation of OTUs is not straightforward because 1) OTU 

formation is sensitive to the choice of clustering algorithm and parameters (Mahé et al. 

2014; W. Chen et al. 2013) 2) OTUs are dataset specific, which means they cannot be 

easily compared between datasets (Callahan, McMurdie, and Holmes 2017). 3) clustering 

can mask relevant biological variation from species and strains (Tikhonov, Leach, and 

Wingreen 2015) and 4) OTUs within a single dataset will correspond to different 

taxonomical levels, as there is no standardized definition of a bacterial species. 5) The 

taxonomical annotation can vary depending on the choice of database (Park and Won 

2018). 
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1.5.3 ASV-based profiling 

In recent years, the analysis of 16S datasets has shifted from the use of OTUs to the use of 

Exact Sequence Variants (ESVs) or Amplicon Sequence Variants (ASVs). ASVs give the 

maximal possible taxonomical resolution, allowing some ASVs to reach species or 

subspecies resolution. Additionally, it makes it easier to compare between datasets, since 

the sequences are directly comparable to each other (Callahan, McMurdie, and Holmes 

2017).  

The process of inferring ASVs from a dataset is almost identical to creating OTUs, except 

for the sequence clustering step. This step is substituted by a more complex denoising step 

that attempts to recover all ‘true’ sequence variants in the sample. The resulting ASVs can 

be annotated taxonomically, used to construct a feature count table (ASVs vs samples) and 

subject to phylogenetic analysis with the same methods as OTUs. 

Three denoising pipelines are the most commonly used in the literature to produce ASVs: 

DADA2 (Callahan et al. 2016), Deblur (Amir et al. 2017) and UNOISE (R. C. Edgar 2016). 

All denoisers are Illumina-specific, although dada2 authors suggest the method can be 

applied to 454 sequences as well. The DADA2 denoising strategy relies on learning 

parametric error profiles from the sequencing data, and then employ a divisive partitioning 

algorithm to infer the true sequence variants. Deblur uses a per-sample approach, using 

Hamming pairwise distances calculated from multiple sequence alignments coupled with a 

parametric error profile specified by the user to identify noisy sequences. Deblur uses the 

UCHIME (R. C. Edgar et al. 2011) algorithm implemented in VSEARCH (Rognes et al. 

2016) for chimera removal. The UNOISE3 algorithm is based on predicting ‘zero-radius 

OTUs’ or zOTUs. The general idea is to perform one-pass clustering such that the centroids 

of the cluster are inferred to be the ‘true sequences. For this, preset values for two 

parameters for the clustering have been optimized for different datasets.  

A recent benchmark suggests the results from the three pipelines are mostly comparable, 

although the total number of predicted ASVs varies with the dataset. From a computational 

resource point of view, UNOISE3 is the fastest of the alternatives, but dada2 might be 

better at recovering low-abundance organisms(Nearing et al. 2018). 
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1.6 Tools and techniques to summarize and derive biological insights 
from the microbiome 

1.6.1 Data distribution 

The biological information obtained from both shotgun metagenomics and amplicon 

sequencing datasets after processing can be generally summarized as a set of abundance or 

binary matrixes of samples vs. features, with associated metadata for both features and 

samples. 

In amplicon sequencing, the features will be OTUs or ASVs, and the feature metadata 

consists of the taxonomical annotation and phylogenetic tree relating the OTUs/ASVs. In 

the case of shotgun metagenomics, it is possible to infer a more varied set of features such 

as taxa, genes, gene families, pathways, or strains. The associated metadata varies 

depending on the type of data: e.g. a full taxonomical lineage for taxa, or some kind of 

categorical annotation for genes and pathways (e.g. Gene Ontology). 

Abundance matrixes, as the name implies, store an abundance estimate of each feature in 

the samples. The estimates are inferred from some form of sequence counts (e.g. number of 

reads mapped). In the case of amplicon sequences, the raw abundance matrix consists of 

sequence counts, whereas in shotgun, the abundances can sometimes be already normalized 

or transformed by the tool that generated it.  

Microbiome data often resembles transcriptome data, where the results are summarized in a 

gene or transcript count matrix. However, there are a few key differences. Microbiome data 

tends to be sparser, or zero-inflated (Jonsson et al. 2018a; L. Xu et al. 2015; Kaul et al. 

2017): not all features are expected to be present in any sample, and different samples can 

have feature subsets with little overlap in content.  Also, microbiome features are related 

along ‘natural hierarchies’ (e.g. taxonomy, phylogeny). This implies that features can be 

aggregated at different levels to create different features for downstream analysis. 

1.6.1.1 Data normalization 

Due to the relative abundance nature of the data, the most common normalization is 

performed to adjust the abundances to the sequencing depth of the sample. Some shotgun 

tools will output relative abundances (e.g. as percentages) directly. For shotgun data, 

abundance estimates can be also adjusted for microbial genome size or gene length.  
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1.6.1.2 Compositional data analysis 

Quantification estimates from sequencing data, despite appearing as sequence counts, 

should be regarded as relative abundances (Gloor et al. 2017), since the total number of 

counts is constrained by the instrument’s capacity.  In other words, the abundances within a 

sample behave like percentages, where the features are dependent on each other. This has 

important implications for data analysis, because standard statistical techniques do not 

consider the dependencies between the features. This problem can be overridden if an 

estimate of total microbial abundance is available to scale the relative abundances into 

absolute abundance, but this is usually not the case. 

The key property of relative abundances is that they store information about the ratios 

between the features. Ratios, unlike the relative abundances, are amenable to standard 

statistical techniques.  Thus, different Log-Ratio data transformations have been proposed, 

each with different mathematical properties and interpretations. There are three main types: 

Additive Log Ratio (ALR), Centered Log Ratio (CLR), and Isoform Log Ratio (ILR) 

transformations(Quinn et al. 2018). 

• ALR: Every feature is divided by a feature of reference and then log-transformed.   

• CLR: Every feature is divided by the geometric mean of all the features.  

• ILR: New features are created based on the concept of balances, which are ratios 

defined from a sequential binary partition of the features (e.g. a feature dendrogram).  

The main issue with log-ratio transformations is the problem of features with zeroes 

(Silverman et al. 2018). Typically, zero imputation techniques are applied to deal with this 

problem (Quinn et al. 2018). 
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1.6.2 Global analysis – Introduction 

To analyze microbiomes at the community level, we require methods to summarize 

characteristics of the entire community such as the microbe distribution or find ways to 

compare directly entire microbial profiles.  Alpha and beta diversity measures accomplish 

this. Common packages to perform these analyses include vegan (Oksanen et al. 2019), 

microbiome (Lahti, Shetty, and et al 2017), phyloseq (McMurdie and Holmes 2013) and 

Qiime (Caporaso et al. 2010). 

1.6.3 Global analysis – Alpha diversity 

Alpha diversity is a measure describing the ‘local’ species diversity of a site. Although the 

use of ‘local’ can vary between ecologists, in human microbiome research one estimate of 

an alpha diversity index is calculated per sample. The distribution of the index is then 

analyzed according to the relevant sample groups (e.g. disease condition, anatomical site). 

Alpha diversity indexes typically consider the number of species (i.e. richness) and the 

distribution of species abundances (i.e. evenness) (Knight et al. 2018). 

Species richness can be estimated directly from the number of observed species in a 

sample. However, due to limited sequencing depth, we expect the number of observed 

species to be an underestimate of the real richness value (Hughes et al. 2001). Therefore, 

some indexes like Chao1 and ACE aim to estimate species richness as the “effective 

number of species”. For example, Chao1 estimates the number of missing species based on 

the number of species with low counts (such as singletons and doubletons) (Chao 1984). 

ACE type estimators rely on the inverse of the singleton count (Hughes et al. 2001). 

Rarefaction curves can also be used to estimate richness, but it has been suggested to be 

suboptimal (McMurdie and Holmes 2014). 

As mentioned previously, alpha diversity measures can also account for evenness or species 

abundance. In general, more ‘even’ samples (samples in which every species has similar 

numbers) are more diverse than samples where few species have high numbers and the rest 

are low abundant. The most commonly used index is the Shannon-Wiener index, based on 

Shannon’s entropy which measures the information entropy (or uncertainty) in a sample 

(Shannon 1948). Intuitively, the Shannon entropy measures the difficulty of guessing what 

species would come out if a random microbe was drawn from a community. A similar 

measure is the Simpson diversity index, which is formulated as the probability that a 
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random sample of 2 species will result in both individuals being of the same species 

(Simpson 1949).  

Alpha diversity indexes are useful proxies to identify differences or changes in the 

distribution of microbes between groups of samples. The measures can help identify total 

changes in the number of species in the samples, or differences in microbial abundances. 

1.6.4 Global Analysis - Beta diversity 

Beta diversity was formally defined as the ratio between local (alpha) diversity and total 

diversity (of the ecosystem under study). However, in human microbiome research, beta 

diversity indexes are used in practice as pairwise distance or dissimilarity measures to 

explore the variability within and between sample groups (e.g. clinical condition, sample 

type). Similar to alpha diversity indexes, different beta diversity measures make different 

assumptions and therefore have different biological interpretations. Some examples of 

commonly used beta diversity indexes include: 

• Jaccard index: a metric that considers only the binary presence/absence of each 
taxon. It is calculated as the ratio of common species between both samples divided 
by the total number of unique species.  

• Bray-Curtis dissimilarity: a semi-metric (does not necessarily satisfy triangle 
inequality) which considers not only the presence but also the abundance of the 
common taxa between the samples (J. R. Bray and Curtis 1957) 

• Yue-Clayton is a similarity measure that considers both the abundance of common 
species and also the abundances of species unique to one of the samples (Yue and 
Clayton 2005). 

• Aitchison distance, a compositional data analysis concept defined the Euclidean 
distance of Centered or Isometric Log Ratio transformed vectors can also be used as a 
beta diversity measure (Gloor et al. 2017). 

The aforementioned indexes assume each taxon is equally distinct from each other. 

However, beta diversity indexes can also consider the phylogenetic distance between 

community members in the calculation. Indexes based on phylogenetic distances include: 

• UniFrac: Considers only presence/absence of taxa, similar to the Jaccard index 

(Lozupone and Knight 2005). 

• Weighted and Generalized UniFrac: Considers phylogenetic distance but also 

considers taxon abundance (J. Chen et al. 2012). 
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The beta diversity index should be carefully selected depending on the question under 

study. Indexes like the Jaccard or unweighted UniFrac weight low and high abundance 

microbes equally, whereas weighted UniFrac or Bray Curtis will highlight communities 

where the dominant microbes are similar. Similarly, the choice between phylogenetic-based 

and ‘standard’ indexes depends on what functions are the focus of the study. In the case of 

the human microbiome, closely related microbes can have very different roles in disease 

(e.g. Staphylococci in AD), so a phylogenetic-based measure could obscure this difference. 

However, when studying processes that are more likely to be conserved between related 

species, phylogenetic-based distance measure will identify better groups with similar core 

functions.  

1.6.4.1 Statistical testing  

Distances calculated from beta diversity indexes can be used to compare groups using a 

statistical test called Permutational Multivariable Analysis of Variance or 

PERMANOVA(Tang, Chen, and Alekseyenko 2016). The PERMANOVA tests for the null 

hypothesis that the centroids and dispersion of groups are equal. Other alternatives include 

the Analysis of Similarities (ANOSIM) test, which uses ranks to test whether similarities 

between two groups are different from the similarities within the groups, and the Mantel 

test (Anderson and Walsh 2013). 

1.6.4.2 Ordination  

Ordination is the process of projecting samples into a low-dimensional space for 

visualization. The most well-known ordination method is Principal Component Analysis 

(PCA), but the method is not appropriate for compositional data. It is however possible to 

apply PCA to CLR- or ILR-transformed data (Section 1.6.1.2). 

In microbiome studies, distance-based ordination methods are quite common. Methods like 

Metric Multidimensional Scaling or (m)MDS can be applied to beta diversity metrics (i.e. 

not appropriate for Bray Curtis). Other methods like Non-metric Multidimensional Scaling, 

and more recently t-SNE (Van Der Maaten and Hinton 2008) and UMAP (McInnes et al. 

2018) can also be used for ordination, but should be used with caution since they can 

introduce distortion(Cooley et al. 2019). 
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1.6.4.3 Clustering 

Beta diversity indexes can also be used for cluster analysis: automatically find sample 

groups based on the features. Different clustering algorithms exist, with different 

requirements and complexity. Examples include k-means and its variants, mixture-model 

based clustering and density-based clustering such as DBSCAN. Another clustering 

technique commonly used in the microbiome research is hierarchical agglomerative 

clustering (HAC), which is used in conjunction with heatmap visualizations to relate 

features to hierarchical groupings. 

Briefly, hierarchical agglomerative clustering is an iterative clustering algorithm that begins 

by placing each sample in an individual cluster. Then, at each step, the two clusters with the 

closest distance are merged into a new cluster. This is repeated until all clusters are merged 

into a single one, and this process generates a binary-tree structure which can be easily 

visualized with a dendrogram. An important consideration for HAC based clustering is the 

choice of cluster-to-cluster distances a.k.a linkage: alternatives include single-linkage, 

complete-linkage, weighted or unweighted average linkage clustering (UPGMA or 

WPGMA) among others. 

1.6.5 Feature-level analysis 

Another way to approach microbiome data is to examine the association between individual 

features (microbes or genes) and phenotypes or sample groups (like disease condition). 

Typically, the problem is framed as a comparison between groups (i.e. an association with a 

categorical variable), so it is also known as differential abundance analysis. For continuous 

measurements, it is possible to extend some models for continuous variables; alternatively, 

the discretization of values is an option.  

Many different approaches and models have been used in the literature for differential 

abundance testing. The following subsections summarize the most common choices. 

1.6.5.1 Non-parametric or normalization-based approaches 

Many studies perform differential abundance analysis using non-parametric statistical tests 

such as Kruskal-Wallis or Wilcoxon test, as they make no data distribution assumptions. 

Another method is to arcsin-transform the relative abundance data and use multivariate 

linear regression for testing. This approach is implemented in tools such as MaAsLin 

(Morgan et al. 2012). 
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1.6.5.2 Count-based models - GLMMs 

The RNA-seq differential expression problem is analogous to the microbiome differential 

abundance problem, so many authors have chosen to apply state-of-the-art tools of the 

transcriptomics field such as DESeq2 (Love, Huber, and Anders 2014) and edgeR 

(Robinson, McCarthy, and Smyth 2010) for microbiome differential abundance analysis. A 

recent benchmark suggests these methods perform well for microbiome data (Weiss et al. 

2017a). 

Transcript abundance data is commonly modeled as a negative binomial distribution of 

counts, but as discussed in section 1.6.1, microbial data tends to be sparser than 

transcriptome data. To address the excess zeroes that might not be captured by the 

overdispersion parameter of the negative binomial model, different models have been 

proposed for analysis: zero-inflated gaussian(ZIG) (Paulson et al. 2013), zero-inflated 

Poisson (ZIP) (Jonsson et al. 2018b), zero-inflated negative binomial (ZINB) (J. Chen et al. 

2018) and the use of hurdle models (a two part model for 0’s and a normal model for 

values) (L. Xu et al. 2015).  

1.6.5.3 Compositional Data-based testing 

The compositional data analysis field has developed methods for differential abundance 

testing as well. For example, the Analysis of Composition of Microbiomes (ANCOM) 

method (Mandal et al. 2015), derives a pseudo F statistic that can be used to determine 

statistical significance per feature. ANCOM makes two strong assumptions to simplify the 

problem with compositionality: 1) at least two of the tested features are not differentially 

expressed and 2) features are not all differentially expressed by the same amount. Another 

method for differential abundance analysis is ALDEx2, which performs classical statistical 

tests on CLR or ALR transformed data (Fernandes et al. 2013). In this case, the differential 

abundance result should be interpreted with respect to the chosen reference (e.g. geometric 

mean, or a linear combination of features). Finally, a very recent paper from the Knight lab 

describes a method based on the ranking of differentials (i.e. ratios of relative features 

between two groups) (Morton et al. 2019). 

1.6.5.4 Machine learning 

A less traditional alternative to identify features associated with metadata variables or 

phenotypes is to use machine learning models. One possibility is to use models from which 

a measure of variable importance for classification or regression can be calculated, such as 
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decision trees or random forests. Another possibility is to combine machine learning 

techniques with classical statistical testing. For example, MaAsLin uses gradient boosting 

machines for feature selection but performs GLM based testing (Morgan et al. 2012). 

1.6.6 Microbe-microbe interactions 

Another task in the analysis of microbiome datasets is to infer relationships between 

microbial populations (or genes) in a community. From a data analysis perspective, it is 

possible to capture patterns of co-variation and use these to hypothesize about the 

relationships. 

1.6.6.1 Network analysis 

Microbial co-abundance networks are built with the same methods applied to create 

transcriptional co-expression networks. To create a network, the analyst can define one or 

more criteria to determine if two microbes share an edge. Common criteria include setting a 

minimum similarity threshold between the microbe abundance profiles. Examples of 

similarity measures include the Pearson or Spearman correlation, Euclidean distance, or the 

mutual information criteria. The compositional data analysis field has contributed the 

SparCC (Friedman and Alm 2012) and proportionality (Lovell et al. 2015) similarity 

measures as well.  

Once the network has been constructed, different network analysis techniques can be 

applied depending on the question. For example, calculating network statistics, such as 

node degree and centrality, are helpful to identify microbes with a strong influence in the 

community. Additionally, community discovery algorithms can help identify subsets of 

microbes that depend on each other. Network visualizations can be constructed using force-

directed layouts. 

1.6.6.2 Frequent Pattern mining 

Frequent Pattern Mining algorithms are designed to search efficiently for sets of items that 

co-occur together often in a set of transactions. For microbiome data, by defining items as 

microbes, and the transactions as samples, we can adapt these algorithms to identify all the 

sets of microbes that occur together ‘frequently’ in samples.  In contrast with network 

analysis, pattern mining only considers the presence (and not the abundance) of the items 

(i.e. microbes). Additionally, these algorithms are not ideal to identify microbes with 

antagonistic relationships, since this can imply the microbes will often not co-occur. 
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Commonly used algorithms for pattern mining include a priori, ECLAT and FP-growth 

(Chee et al. 2018). 

1.6.7 Data Integration 

The questions relating the human microbiome to health and disease are becoming 

increasingly more complex. To answer these, the analysis requires the integration of 

different datasets, both microbial and human. 

Data integration is a complex subject, and it typically requires large sample sizes for 

statistical power. In the case of microbiome studies, integration methods are developed ad 

hoc for the data and questions at hand. For example, Morgan et al. 2015 implemented a 

strategy to associate human transcriptome data to microbial data in inflammatory bowel 

disease. Another study, based on the LifeLinesDeep cohort, examined the relationship 

between host genetics and the microbiome integrating 16S data, shotgun metagenomics, 

genomics and other phenotype variables like fasting glucose levels (Rothschild et al. 2018). 

However, there are also efforts to develop general tools to aid with general data integration. 

A promising recent development is Hierarchical All-against-All significance testing or 

HALLA (huttenhower.sph.harvard.edu/halla), which attempts to reduce the multiple testing 

burden by performing statistical testing based on a hierarchical aggregation of features. 

Other examples include tools like MVDA (Serra et al. 2015) which employs a multiview 

clustering approach, and the framework  proposed by Pedersen et al. 2018. 
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1.7 Challenges in human microbiome characterization 

The methods discussed in the previous sections have enabled the characterization of the 

diversity of the human microbiome in general, especially in the gut. A PubMed search on 

July 2019 revealed more than 15000 hits for gut microbiome studies compared to less than 

10 000 hits for oral, skin and lung microbiome together. In the gut, diverse aspects of the 

microbiome have been explored, like the characterization of novel bacterial (Wylie et al. 

2012) and viral (Dutilh et al. 2014) taxa, temporal dynamics (Caporaso et al. 2011) and 

bacterial genomic variation (Schloissnig et al. 2013). A human gut gene catalog has also 

been established (J. Li et al. 2014b) by combining data from other gut microbiome studies 

(Qin et al. 2010b, 2012).  

However, many studies have also explored other body sites, like the respiratory tract 

(Dickson et al. 2016; O’Dwyer, Dickson, and Moore 2016; Huffnagle, Dickson, and Lukacs 

2017) and the biogeographical and temporal dynamics of skin (Oh et al. 2014, 2016). The 

latest report from the Human Microbiome Project (HMP) focused on sampling the nose, the 

mouth and the vagina(Lloyd-Price et al. 2017). Data from 48 different body sites is 

available in the HMP data portal (https://portal.hmpdacc.org/search) 

Other microbiome studies have focused on characterizing the human virome in different 

conditions. For example, (Minot et al. 2013) described the variability and temporal 

dynamics of the human virome in the gut, and Norman et al. 2015 examined the role of the 

virome in inflammatory bowel disease. Other studies have explored the virome composition 

in the lower respiratory tract (Lysholm et al. 2012) skin (Hannigan et al. 2015) and the 

oropharynx(Yolken et al. 2014).  

Shotgun metagenomics and 16s rRNA sequencing have been instrumental in associating the 

microbiome to a wide range of diseases as well. Examples include obesity, diabetes and 

inflammatory bowel disease in gut (Gevers et al. 2014; Frank et al. 2007; Hartstra et al. 

2015), urinary tract infections (Stapleton 2016), atopic dermatitis and psoriasis in skin 

(Kobayashi et al. 2015; Gong et al. 2006; Waldman et al. 2001; Alekseyenko et al. 2013) 

and neurological disorders like depression and anxiety(Foster and McVey Neufeld 2013; 

Zheng et al. 2016). The microbiome has also been linked to cancer (Neto, Whitaker, and 

Pei 2016; Guma et al. 2016).  

However, there are still many open questions and challenges regarding the role of the 

human microbiome in health and disease. The following subsections summarize current 
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challenges in two areas of human microbiome research that are addressed in this thesis: 

virome exploration and the association between skin microbiome and disease. 

1.7.1 Virome characterization 

From the different components of the human microbiome, the virome is the most 

understudied (Virgin 2014). This fact is not surprising if we examine the numbers of viral 

genomes available in public databases. To July 2017, the NCBI genome database contains 

205 692 entries for prokaryotic genomes compared to only 32 212 viral genome entries. 

Moreover, it has been estimated that we have only explored about 1% of the global virome 

at the sequence level (Mokili, Rohwer, and Dutilh 2012). 

We have yet to decode most of the variety of the human virome. One effort in this direction 

is viral discovery projects, which aim to discover novel viruses by studying diseases with 

unknown etiology. Clinically relevant viruses such as the Human Bocavirus (Allander et al. 

2005), old-world arenavirus (Palacios et al. 2008), and the Merkel cell polyomavirus 

(Spurgeon and Lambert 2013) have been discovered with these approaches. However, 

careful result validation is paramount in these kinds of studies, since they can often result in 

false positives due to contamination (Naccache et al. 2013).  

Viral discovery projects hold great potential, since many complex diseases of unknown 

etiology are hypothesized to be caused or mediated by infections (Kraszewska-Głomba, 

Matkowska-Kocjan, and Szenborn 2015; Virtanen and Jacobson 2012; Pou et al. 2018). 

One example of such diseases is childhood acute lymphoblastic leukemia or ALL. There is 

evidence of pre-leukemic clones in utero developing into ALL later in life (Wiemels et al. 

2002; Maia et al. 2004). DNA viral infections have been hypothesized to play a role in 

generating the aberrant clones that give rise to ALL, but attempts to identify a candidate 

virus using traditional methods have yielded no results (Gustafsson and Carstensen 1999; 

Isa et al. 2004).  

Another challenge in the study of human viruses is to understand the link of many 

‘asymptomatic’ viruses to health and disease. Most individuals are estimated to carry at 

least 10 asymptomatic viral infections during their lifetime (Virgin, Wherry, and Ahmed 

2009). One hypothesis is that these viruses play an important role in immunomodulation. 

For example, it has been observed that GBV-C, an asymptomatic chronic infection, confers 

some protection in the presence of HIV infection (Lanteri et al. 2015). Characterizing and 

studying the interactions between asymptomatic viruses, such as the giant marseille-like 
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virus (Popgeorgiev et al. 2013), anelloviruses and human endogenous retroviruses (L. Li et 

al. 2013), with our immune system might help us elucidate mechanisms of immune system 

development, maturation and their potential involvement in immune pathologies such as 

allergies or autoimmunity.  

Also, the human body is colonized by bacteriophages (Dutilh et al. 2014; Minot et al. 2013; 

Hannigan et al. 2015) which could have a direct impact on human health (Barr et al. 2013; 

Kernbauer, Ding, and Cadwell 2014; Hsu et al. 2019) , and disease (Tetz and Tetz 2016).  

Interestingly, the human prokaryotic virome appears to be stable across time. Oh et al. 2016 

observed that while the human skin virome is quite variable, the phageome is more stable. 

This is consistent with observations in saliva (Pride et al. 2012) and gut (Minot et al. 2013), 

which found an 80% conservation of viral diversity during a 2.5 year follow up period. 

Although it has been suggested that this stability is intrinsically linked to the stability of the 

bacterial microbiome, the specific mechanisms behind phage modulation of microbiota are 

still mostly unknown. 

Shotgun metagenomics projects should theoretically facilitate the study of the entire viral 

fraction of any sample, but practical limitations hamper its effectiveness. For instance, viral 

fragments are often orders of magnitude lower in abundance compared to host and bacterial 

fragments after library preparation, rendering them hard to detect. To address this 

shortcoming, many virome studies opt for viral particle enrichment. The most common 

enrichment procedures are based on filtration, centrifugation and homogenization. These 

protocols are effective at reducing the host and bacterial load, but they can also bias the 

viral composition (Conceição-Neto et al. 2015).  

Virome characterization also presents specific challenges at the data analysis level which 

are usually not accounted for by more general microbiome analysis tools (Rose et al. 2016). 

The main challenge is the recovery and characterization of unknown viruses with no 

homology to known species (Hurwitz, U’Ren, and Youens-Clark 2016). Other challenges 

include low coverage and high within-species and within-population genomic 

heterogeneity, which complicate the accurate reconstruction and annotation of viral 

fragments. For this reason, researchers have developed specialized methods, such as 

assemblers that address the variability of viral populations (Hunt et al. 2015), and methods 

for viral haplotype reconstruction (Prosperi and Salemi 2012; Giallonardo et al. 2014). A 

comprehensive review of these challenges has already been addressed in Rose et al. 2016.  
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1.7.2 The Skin microbiome 

The skin microbiome plays an important role in maintaining homeostasis. For example, the 

microbiota is involved in processes like perspiration (Natsch, Schmid, and Flachsmann 

2004), immune system modulation (Lai et al. 2010) and in the maintenance of barrier 

function of the skin, where the microbial communities exert defense against pathogens 

through colonization resistance mechanisms (Otto 2010). 

One of the most salient characteristics of the skin microbiome is that it is not a global 

homogeneous community, but rather a heterogeneous collection of communities in balance 

with their microenvironment (E. a. Grice et al. 2009; Costello et al. 2009). These 

microenvironments are divided into three categories: dry, sebaceous and moist (E. a. Grice 

et al. 2009), and are characterized by different physiological conditions such as humidity, 

temperature, pH, nutrients, and antimicrobial peptide composition (Schommer and Gallo 

2013). The microenvironments, in conjunction with the immune system, help determine the 

composition of the microbial community residing in any given site. In fact, body sites have 

been found to be very different in terms of bacterial species richness, diversity, stability and 

species composition (Oh et al. 2014, 2016)  Moreover, body site diversity is so striking that 

diversity between body sites within the same individual is greater than diversity in the same 

body site between individuals (Oh et al. 2014) , but stable over time (Oh et al. 2016). 

Designing and executing a good skin microbiome study is challenging, despite being easily 

accessible for sampling. The selection of the appropriate sampling strategy is paramount. 

Besides skin site variation, both the sampling method and level of skin under study have 

been shown to influence the final characterization (E. A. Grice et al. 2008; Nakatsuji et al. 

2013). In addition, many studies also control for external factors that could influence the 

microbiota and therefore confound the analysis. Examples of these include antibiotic use 

(E. a. Grice et al. 2009; Costello et al. 2009), topical medications and emollients (Kong, 

Oh, Deming, Conlan, Grice, Beatson, Nomicos, Polley, Komarow, Mullikin, et al. 2012) 

and washing or hygiene habits(Oh et al. 2014). Another factor to consider when designing a 

study is that skin microbiome is low-biomass, so there is a high risk of contamination 

(Kong et al. 2017). 

The skin microbiome is very rich, hosting not only a wide range of bacteria but also 

viruses, fungi and other eukaryotes (Oh et al. 2014, 2016; Lacey, Ní Raghallaigh, and 

Powell 2011). From the bacterial side, most studies suggest there are 4 dominating bacterial 

phyla on healthy skin: Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes. It has 
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also been observed that the Propionibacterium, Staphylococcus and Corynebacterium genus 

are common in most skin sites(E. a. Grice et al. 2009; Costello et al. 2009).  

Fungal and viral species have also been observed in the skin. The most common fungus is 

Malassezia spp. (Oh et al. 2014, 2013), but other fungi such as Candida spp.(Waldman et 

al. 2001) and dermatophytes (Findley et al. 2013) are commonly associated with skin. 

Other eukaryotes such as Demodex mites (Lacey, Ní Raghallaigh, and Powell 2011) have 

also been associated with the skin. Human viruses such as papillomavirus and 

polyomavirus are frequently detected in skin (Foulongne et al. 2012; Hannigan et al. 2015; 

Schowalter et al. 2010; Oh et al. 2016), although Poxviridae and Circoviridae have also 

been observed (Oh et al. 2016; Foulongne et al. 2012). Polyomaviruses are of particular 

scientific interest, since two previously unknown strains are shed chronically from healthy 

skin, but are yet to be linked with any disease, while another member of the family has been 

associated with cancer (Schowalter et al. 2010). Phages like Staphylococcus and 

Streptococcus phages were found ubiquitously in Oh et al. 2016, but their relevance is still 

unclear. 

The skin microbiome has long been considered to play a role in many skin pathologies. 

With the microbiome revolution, we have begun to elucidate its effect in diseases such 

atopic dermatitis (Kong, Oh, Deming, Conlan, Grice, Beatson, Nomicos, Polley, Komarow, 

Mullikin, et al. 2012), psoriasis (Fry et al. 2013) and other diseases like acne and rosacea 

(Fredricks 2001). In this thesis, we focused on atopic dermatitis and psoriasis, since these 

diseases can be used as models to study the allergy and autoimmunity.  

1.7.2.1 Atopic dermatitis 

Atopic dermatitis (AD), is a chronic allergic disease associated with genetic defects in the 

skin barrier function. This is supported by evidence that 10 to 30% of patients suffer from 

mutations in the FILAGGRIN gene (S. J. Brown and Mclean 2012). The skin microbiome is 

suspected to influence the development and severity of AD (Williams and Gallo 2015). For 

instance, Kong et al. 2012 observed a link between disease severity and lower bacterial 

diversity, and a corresponding increased diversity post-treatment, supporting the 

hypothesis. 

Most microbiome studies in AD have focused on Staphylococcus aureus, which colonizes 

90% of patients (Rudikoff and Lebwohl 1998). S. aureus is believed to be the main driver 

of inflammation and it is closely linked to the severity of the flares (Gong et al. 2006; 
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Pascolini et al. 2011). Proposed mechanisms are S. aureus virulence factors such as the 

alpha- and delta- hemolysins (Brauweiler, Goleva, and Leung 2014; Nakamura et al. 2013). 

Interestingly, Kobayashi et al. 2015 demonstrated a dysbiosis-mediated mechanism for S. 

aureus colonization that results in inflammation, highlighting the role of other local 

microbial players. 

Other suspected players in AD are Staphylococcus epidermidis and Malassezia spp. S. 

epidermidis is a skin commensal involved in immune modulation (Lai et al. 2009; Naik et 

al. 2012, 2015). In the context of AD, S. epidermidis has been shown to inhibit S. aureus 

growth and biofilm formation, through the production of antimicrobial peptides (Sugimoto 

et al. 2013; Cogen et al. 2010) and immune modulation (Lai et al. 2010). However, its role 

in the disease is still unclear, as Kong et al. 2012 observed a corresponding increase in S. 

epidermidis during flares. Whether S. epidermidis has a commensal relation with S. aureus 

or grows as a counter-response to the increase of S aureus is an open question. The 

involvement of Malassezia spp. in AD is also unclear, as there is conflicting evidence in 

favor and against its implication (Jo, Kennedy, and Kong 2016).  

Another open question in AD microbiome research is the role of skin site with respect to 

the skin microbiome. Skin site is known to be an important determinant of the healthy skin 

microbiome (Oh et al. 2014; E. a. Grice et al. 2009), but skin variability in AD is not well 

studied. A recent study by Baurecht et al. 2018, suggest that there is a decrease in diversity 

between skin sites compared to healthy skin.  

1.7.2.2 Psoriasis 

Psoriasis is an autoimmune disease characterized by keratinocyte hyperproliferation and 

immune cell infiltration. There are 5 main types of psoriasis based on the clinical 

presentation, and while genetic predisposition factors have been identified, the causes 

remain elusive (Parisi et al. 2012). 

The role of the microbiome in psoriasis is less understood compared to AD, but some 

associations have been identified. For example, psoriasis is generally characterized by a 

lower bacterial diversity on the skin (Fahlén et al. 2012; Gao et al. 2008; Alekseyenko et al. 

2013)  but increased fungal diversity compared to healthy skin (Takemoto et al. 2015). 

Statnikov et al. 2013  proposed that the skin microbiome could be used as an accurate 

marker for psoriasis diagnosis. Several studies also linked the guttate form of psoriasis to 

Group A Streptococcal infection (Leung et al. 1995). The role of fungal microbiota in 
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psoriasis is of special interest, as lesions can resemble the ones caused by some fungal 

infections. Several studies focusing on Malassezia spp. and Candida spp. exist, but no 

definite association has been proven (L. C. Paulino et al. 2006; Luciana C. Paulino, Tseng, 

and Blaser 2008; Waldman et al. 2001). A recent shotgun metagenomics study suggests that 

key insights about the influence of the microbiome in psoriasis can be obtained by studying 

strain-level differences in the microbiota (Tett et al. 2017). 

The skin microbiome field is growing rapidly, and the increasing evidence of its 

involvement in diseases such as atopic dermatitis and psoriasis call for increased efforts to 

characterize the microbiome profiles in-depth, which in turn might result in better 

diagnostics and treatment for these maladies. 
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2 AIMS 

The overall aim of this thesis is to explore ways to improve the state-of-the-art methods 

used to investigate the human microbiome and its role in health and disease. The specific 

aims of the constituent studies are as follows: 

• To propose a bench-to-bioinformatics viral discovery pipeline to explore hypotheses 

related to unknown etiological agents causing disease.  

• To utilize the viral discovery pipeline to explore as a way to explore viral-mediated 

pathogenesis hypothesis of childhood Acute Lymphoblastic Leukemia (Paper I) 

• To propose a method for the discovery of novel viruses in virome datasets (Paper II) 

• To establish a methodology for the exploration and hypothesis generation of human 

skin microbiome datasets 

• To apply our exploration methodology on a human skin microbiome dataset from 

atopic dermatitis and psoriasis patients (Papers III & IV) 
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3 RESULTS AND DISCUSSION 

3.1 Papers I & II: Viral discovery  

One strategy to explore the human microbiome and its role in health and disease is to 

investigate the role of viruses in diseases with cases of unknown etiology. Studies that use 

shotgun metagenomics for this purpose are commonly categorized as Viral Discovery 

projects. A typical viral discovery study starts with a disease of interest, where a fraction of 

the cases is of unknown etiology and ideally some indication of a viral infection playing a 

role in pathogenesis exists. A cohort of patients suffering from the disease are subsequently 

identified and relevant clinical specimens are collected.  The choice of clinical specimens 

must be carefully selected based on the working hypothesis of the study. Specimens can 

then be pooled and then run through a shotgun sequencing-based pipeline for virome 

characterization, which results in a list of candidate sequences for validation. Viral 

candidates resulting from the analysis can then be confirmed in the samples via PCR or 

other methods, and based on these results, follow-up studies for genome reconstruction (in 

the case of a novel virus) and targeted association studies with the new pathogen can be 

designed. 

The core element of any Viral Discovery project is the shotgun metagenomics-based 

pipeline for virome characterization. For this thesis, we propose a bench-to-bioinformatics 

pipeline, which is summarized in Figure 3.1.1.  The data generation takes place in four 

steps: a) The pipeline takes as input samples or sample pools and performs a viral particle 

enrichment. In our implementation, the viral enrichment procedure consists of a filtration 

step, using filters of 0.45 and 0.22 nanometers, or a low-speed (1000g) centrifugation step 

for 5 minutes at room temperature to pellet bacterial and human cells. Tests on the 

enrichment procedure showed that low-speed centrifugation was similarly effective than 

filters at enriching for small viruses, and less prone to discard larger viral particles (such as 

Cytomegalovirus). b) After the viral enrichment, we aliquot the sample and run separate 

DNA and RNA extractions to ensure the capture of both DNA and RNA viruses. c) 

Unbiased amplification and library preparation are performed to account for the low nucleic 

acid concentration and to ligate adapters for sequencing. In our implementation, we use 

sequence-independent single primer amplification (SISPA), a common choice for virus 

studies (Reyes and Kim 1991; Chrzastek et al. 2017)  d) Finally, the resulting libraries are 

submitted for sequencing. We use Illumina sequencers, typically MiSeq due to its longer 

read length (2x300bp) or NovaSeq or HiSeq if higher coverage is desired. 
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Figure 3.1.1 Bench-to-Bioinformatics viral discovery pipeline 

The sequencing data is analyzed through our bioinformatics pipeline, which can be split 

into two ‘conceptual’ modules: preprocessing and discovery.  The preprocessing module 

starts by removing adapters, both from Illumina and SISPA amplification and trimming 

low-quality bases, which typically occur at the end of Illumina reads. Then, the pipeline 

performs a filtering step to remove human sequences by mapping the quality-filtered reads 

against the human genome reference. This step yields a set of reads we label as “microbial 

reads” and an estimate of microbial-to-human ratio, which varies greatly with the type of 

clinical specimen, the condition (disease vs. healthy) and the viral enrichment procedure. 

The human filtering step reduces the downstream processing load and removes the 

identifiable human sequences to ensure patient anonymity. 
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Figure 3.1.2 – MEGAN output of the validation of the viral discovery pipeline with a mock sample 

The discovery module takes the filtered microbial reads and processes them using two 

different strategies: 1) reads are analyzed directly with read-based taxonomical inference 

tools, or 2) reads are through metagenomics assembly pipelines, and the resulting contigs 

annotated downstream. Earlier iterations of the pipeline (used in papers I & II) relied 

heavily on blast-like searches for annotation and LCA tools such as MEGAN for 

taxonomical annotation. However, method developments for efficient taxonomical profiling 

and taxonomical sequence annotation have become available, and these have been 

incorporated into the latest versions of the pipeline: https://github.com/maubarsom/VD_pipeline 

We validated the suitability of our pipeline for viral discovery by assembling a mock 

sample and processing it through our method. The mock was created by combining four 

clinical specimens positive for DNA and RNA pathogens: parvovirus (plasma, ssDNA), 

adenovirus (nasopharyngeal aspirate, dsDNA) and cytomegalovirus (CMV or HHV-5, 

serum, dsDNA), respiratory syncytial virus type A (RSV, tracheal secretion, ssRNA) and 

enterovirus (nasopharyngeal aspirate, ssRNA). The sample containing CMV(HHV-5) was 

merged in a lower proportion to assess the sensitivity of the integrative approach to detect 

low copy viruses. The pipeline was able to recover sequences from four out of the five 

viruses including CMV which was merged at a lower proportion (Figure 3.1.2). 
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3.1.1 Paper I: Inspecting the roles of viral infections in the pathogenesis of 
Acute Lymphoblastic Leukemia 

Paper 1 is an application of our pipeline to examine the possible role of a viral infection in 

the pathogenesis of childhood acute lymphoblastic leukemia (ALL). In this study, we 

inspected the virome of neonatal bloodspots (NBS) taken from newborns who later 

developed ALL. The virome of ALL children was then compared to the virome of healthy 

children. Viruses from the normal human flora were identified, and sequences belonging to 

pathogenic viruses such as human herpesvirus 6 and parvovirus B19 were detected.  

To validate the results, we designed primers specific to the detected viruses and tested the 

sequenced pools and the individual clinical specimens by PCR. The presence of HHV-6 

was confirmed in 2 patients and 3 controls, while 1 patient and 0 controls were positive for 

parvovirus B19. These findings, despite being potentially interesting candidates, do not 

suggest the existence of an association between the observed viruses and the disease. 

Paper I illustrates many of experimental design and implementation challenges that arise in 

viral discovery projects. The goal of the study is to find evidence of a viral infection in 

children that developed ALL, to serve as a basis for subsequent studies to determine 

possible causality and elucidate mechanisms. This study chose to inspect neonatal 

bloodspots, since they are sampled close to the date of birth and being convenient for 

research purposes. Neonatal bloodspots could in principle contain traces of the infection, 

but depending on the time of the event, evidence of the causal viral infection is likely to be 

cleared. Better sampling strategies such as periodically collecting maternal blood or 

amniotic fluid over the course of a pregnancy in a prospective study could be envisioned. 

However, without other evidence, a project of this scale would be hard to justify. 

Another challenge, which is common to most viral discovery projects, is the choice of 

pooling strategy and sequencing depth. Appropriate choices for these variables will depend 

greatly on the disease under study, the number of patients and the type of samples. Factors 

to consider in the decision include the 1) expected prevalence of the virus in the population 

of interest (from which we will obtain our samples), 2) the virus load and especially in 

relation to human and bacterial load in the clinical specimens of interest, and 3) whether the 

pathogen is completely unknown or at least a close relative to known ones. Since many of 

these are impossible to know or estimate beforehand, these choices commonly made based 

on a combination of previous experience and economical constraints. 
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From the bioinformatics perspective, our pipeline depends heavily on database searches to 

characterize the virome population. However, this approach is insufficient to detect viruses 

that are unrelated or very distantly related to known viruses; database searches would yield 

either no matches or misclassifications. Considering most of the viral sequence biodiversity 

is unknown(Virgin 2014), we need to complement our strategy with other approaches to 

detect uncharacterized viral sequences. 

3.1.2 Paper II: ORFan protein prediction in viral metagenomics datasets 

The aim of Paper II was to prototype a novel bioinformatics strategy to detect novel protein 

families in metagenomics datasets and apply the method to explore the set of unannotated 

sequences from viral-enriched human metagenomics libraries. The motivation behind the 

project is that the prediction of novel or ‘orfan’ proteins in virome datasets can be used as 

anchor points for the discovery of novel viruses.  

An outline of the method is available in Figure 3.1.3. The method starts with a set of 

unannotated sequences from metagenomics samples and clusters them based on sequence 

identity. The aim of the clustering step is to group sequences that potentially belong to the 

same gene family. Then, sequences with identity > 95% within each cluster are merged into 

a consensus sequence, since they likely represent gene fragments from the same species. 

Subsequently, the reduced clusters are subject to codon-aware multiple sequence alignment. 

The resulting MSAs (which belong to a potential gene family) are trimmed and split 

(manually) into smaller subalignments to improve the quality of the alignments. Finally, the 

curated alignments are evaluated using RNAcode for coding potential, and predictions are 

ranked using the RNAcode score, alignment length and sequence complexity.  

We applied the method to an unannotated set of sequences from a collection of viral 

discovery libraries generated from serum, nasopharyngeal and throat swabs, feces, and 

cerebrospinal fluid (CSF). This resulted in a set of 32 high-quality candidate ‘orfan’ 

proteins. Homology searches for protein annotation revealed that most gene families had 

been recovered in other metagenomics datasets such as the MetaHIT human gut 

microbiome gene catalog(J. Li et al. 2014a) but only 6 were functionally annotated. 

Additionally, the method also predicted gene families that were not present in any of the 

inspected metagenomic datasets, and from one of these, it was possible to reconstruct a 

5.7kb circular genome with some evidence of phage origin. 
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Figure 3.1.3 - ORFan protein prediction method summary 

Our results suggest that the method is effective to recover ORFan proteins from viral 

metagenomics datasets. However, the implementation of the method requires further work 

to become widely applicable in practice. For example, the main clustering step with MCL 

together with the single-linkage subclustering on each cluster to reduce redundancy were 

very time-consuming. Reimplementing the method with state-of-the-art methods for 

clustering such as VSEARCH (Rognes et al. 2016) or MMSeqs2 (Steinegger and Söding 

2017) could improve the speed and throughput of the method without compromising cluster 

quality. The other main limitation lies in the curation of high-quality multiple sequence 

alignments. The choice of a codon-aware alignment tool such as MACSE was key, but 

without automatized methods for alignment curation, the scalability of the method is 

severely limited. The development of methods in this area would improve the scalability of 

this method greatly. 
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From a viral discovery perspective, these results also suggest that predicting novel ORFan 

can be effectively used to recover unknown viral genomes. The recovery of the 

bacteriophage-like genome in paper II was based on one of the 32 predicted ORFan 

proteins. The presence of the fragment in the fecal sample pool was confirmed by PCR and 

subsequently tested in the individual fecal specimens. From these, only one out of 10 

individuals tested positive for the fragment. Interestingly, this observation provides further 

evidence about the efficacy of our viral discovery pipeline, despite possible limitations 

imposed by the pooling and sequencing depth. 

The genome reconstruction follow-up was performed using an inverse PCR, using primers 

designed from the new protein family sequences. This resulted in an amplicon of around 7 

kbps, suggesting the genomic fragment was circular. We then sequenced and assembled the 

fragment using a combination of Illumina and Sanger sequencing, with the help of the IVA 

assembler(Hunt et al. 2015). Annotation of the circular fragment was performed using ab 

initio gene prediction and homology searches with HMMER3 (Mistry et al. 2013a). 

Phylogenetic placement was based on one ORF with Pfam (Finn et al. 2014) annotation. An 

alternative for genome recovery in other viral discovery projects could involve pooling 

positive-testing samples and performing deep shotgun sequencing together with viral 

enrichment strategies. 

The role of bacteriophages in human health is not well understood, but studies in recent 

years have revived the interest in the field. For example, Hsu et al. 2019 recently 

demonstrated the impact of phage predation on the microbiome and its impact on the 

metabolome in a mouse model, suggesting that the phages could actively play a similar role 

in humans. Additionally, phage therapy is regaining traction as an alternative to antibiotics, 

with recent studies suggesting it can fend off bacterial infections (Hu et al. 2018; Schooley 

et al. 2017; Chan et al. 2018). Thus, the characterization of phages could have important 

repercussions in the fight against antibiotic-resistant bacteria in the near future (Kortright et 

al. 2019). 

3.1.3 Conclusions 

In conclusion, paper I and II showcase the development of effective methods to execute 

viral discovery projects. However, continuous research is needed to improve the quality of 

virome characterization, both from the data generation and bioinformatics angles. For 

example, the development of efficient methods for unbiased viral enrichment would 

drastically impact the quality of virome characterization and novel virus discovery. From 
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the bioinformatics side, novel strategies for the characterization and annotation of unknown 

viruses are required. Tools based on machine learning techniques like VirFinder (Ren et al. 

2017) and Metavir2 (Roux et al. 2014) are pushing the boundaries for novel virome 

characterization, but there is plenty of room for development. 
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3.2 Papers III & IV: Associating the human skin microbiome to disease 

Another way to study the influence of the microbiome in health and disease is to sample 

and characterize human microbial communities of interest and study the community 

variation in relation to the phenotype of interest (e.g. a comparison between communities 

from healthy individuals and patients suffering from a disease).  In this thesis, we studied a 

cohort of Atopic Dermatitis (AD), Psoriasis (PSO) and healthy controls to understand the 

role of the skin microbiome in allergy and autoimmunity, using AD and PSO as model 

diseases. One lesional skin sample and one non-lesional skin sample from matching skin 

locations were collected from each patient and every sample was processed with 16S rRNA 

sequencing, shotgun metagenomics for microbiome data and microarrays for human 

transcriptome profiling.  Extensive clinical data from each study participant was also 

collected for analysis. 

The results of the analysis of the cohort are presented in papers III and IV. Paper III 

describes the results from an open-ended exploratory analysis to examine the role of the 

skin microbiome in AD and psoriasis versus healthy skin. In this study, lesional samples 

from both diseases were compared to the samples from healthy individuals. Paper IV 

focused on understanding the microbial and transcriptional variability in atopic dermatitis 

across skin sites. This study was motivated by the observation that few studies had analyzed 

diseased skin-site variability as thoroughly as it has been studied in healthy skin (Segre 

2014, 2016). In paper IV, we analyzed both lesional and non-lesional sample from Atopic 

Dermatitis patients and the healthy controls samples.  

The bacterial taxonomical profile for both papers was obtained from the V3-V4 16S rRNA 

454 pyrosequencing data using the QIIME pipeline. Open OTU picking was performed 

against the Greengenes database (13.8) with a similarity threshold of 99.3%. The choice of 

threshold was selected to optimize distinguishing S. aureus from other Staphylococcus 

species. The 16S rRNA processing pipeline choice is now outdated by 2019 standards, but 

the choices were state-of-the-art at the time of data generation, processing and analysis. In 

any case, most ASV-based methods are not compatible with the data since they are specific 

for Illumina data. Shotgun metagenomics data was not used for taxonomical profiling due 

to issues with data quality that made the taxonomical profiles unreliable (data not shown). 
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To analyze this dataset, we established a general methodology for microbiome analytics, 

focused on exploration and hypothesis generation. The methodology follows a top-down 

approach based on the ecological levels of complexity from Section 1.2. The methodology 

can be summarized as follows: 

• Community-level analysis 

o Identify community-level variation associated with the condition under study  

o Identify clades driving the observed community-level variation  

o Deduce microbial interactions between the clades that drive variation 

o Study associations with other disease-related variables (disease subtypes, risk 

factors, severity) 

• Population-level analysis 

o Explore strain-level variation on key microbial populations 

• Mechanisms: 

o Use functional data and data integration to elucidate mechanisms 

The following sections will describe each of the six steps of the methodology and 

exemplify how these were applied to explore biological questions in both paper III and IV. 

3.2.1 Community-level analysis 

The first step in the analysis of the skin microbiome dataset was to identify community-

level associations with the variables of interest. Since communities are typically high-

dimensional vectors of values, finding global associations requires statistical techniques to 

summarize some characteristics of the community. In microbiome analysis, alpha and beta 

diversity indexes are commonly used for this purpose. 

In paper III, we were interested in understanding the variability in the microbial 

communities among the two diseases and healthy skin. For this, we compared the Shannon 

index between AD, psoriasis, and healthy skin and observed decreased that AD samples 

had a decreased alpha diversity with respect to the controls and psoriasis samples. Beta 

diversity ordinations based on the Bray-Curtis dissimilarity show a segregation between the 

AD and healthy populations, and similarly between PSO and healthy. In paper IV, the same 

diversity measures allowed us to identify varying ‘microbial’ dynamics between the thigh 

and the upper back in AD samples.  Consistent with other studies, we observed decreased 

inter-site variability in AD with respect to healthy using beta diversity (Baurecht et al. 

2018). 
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The choice of alpha and beta diversity measures should be tuned to the phenomenon under 

study. In the context of the human skin microbiome, indexes like the Shannon or Simpson 

diversity are useful summaries to identify dysbiosis, since they can reflect changes in the 

composition (both in number and abundance) of the microbiome. However, alpha diversity 

measures interpreted in isolation can be misleading. In paper IV, the Shannon diversity 

index from the upper back samples does not change significantly between the groups 

(Figure 3.2.1), but further investigation with beta diversity measures and taxonomical 

barplots reveal that the healthy upper back community has a very different bacterial 

composition compared to AD upper back (Figure 3.2.2). 

Identify clades driving global variation 

Once patterns in global community variation have been identified, a natural follow-up is to 

identify which microbes drive these patterns. In paper III, we employed two different 

strategies to identify OTUs driving the differences between the diseases. First, we 

performed a differential abundance analysis, comparing the arcsin transformed abundance 

between the three diseases while accounting for possible confounding factors with a GLM. 

The second strategy consisted of training Random Forest classifiers to discriminate between 

the conditions (healthy vs PSO, healthy vs AD, and AD vs PSO), and using the variable 

importance Z-score to identify the OTUs that most reliably distinguished between the 

healthy and diseased groups. Both analyses yielded coherent results, with differentially 

abundant microbes having high Z-scores.  Important microbes in AD include S. aureus, S. 

epidermidis, Burkholderia sp., Staphylococcus sp. and in psoriasis, C. simulans, C. 

Kroppenstedtii and Lactobacillus spp. 

In paper IV, we performed differential abundance analysis between healthy controls, 

lesional and non-lesional for each skin site (thigh and upper back). For this, we applied a 

compositionally-aware method called ANCOM (Mandal et al. 2015). The analysis 

identified S. aureus and a Staphylococcus spp. as being differential abundant between the 

groups in the thigh. Two  other OTUs were identified as differentially abundant in upper 

back, but these are known kit contaminants (Glassing et al. 2016; Salter, Cox, Turek, Calus, 

Cookson, Moffatt, et al. 2014). A possible explanation for this is that upper back controls 

are lower-biomass with respect to AD upper back and therefore more likely to be 

contaminated during the sample processing. The choice of ANCOM was due to its effective 

control of the false discovery rate (FDR) compared to other methods (Weiss et al. 2017b). 
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Figure 3.2.1 - Shannon diversity index of AD and healthy samples between skin sites (thigh and upper back) 

 

 

Figure 3.2.2 - Beta diversity plot of AD and healthy samples based on the Bray Curtis dissimilarity using 

UMAP (Paper IV) 
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Microbe-microbe interactions 

Once key microbial players have been identified, we can use the abundance data to infer to 

understand dependencies between the microbial key players and the rest of the community.  

In paper III, we constructed two microbial co-abundance networks using SparCC 

(Friedman and Alm 2012) using all OTUs present in more than 5% of the samples, one for 

AD and one for psoriasis. The resulting AD co-abundance network resulted in a single 

connected component. Salient features of the network include that S. aureus correlations 

with most bacteria were negative, and the existence of a clique between S. epidermidis, two 

Corynebacterium sp. OTUs and Finegoldia sp., with links to P. acnes (now C. acnes). In 

psoriasis, the co-abundance network yielded a set of five independent connected 

components. The network suggests that C. simulans, which is a strong determinant for 

psoriasis is associated with two OTUs: Streptococcus spp. and P. anaerobius. Another 

notable feature of the network is that the node with the highest degree is an OTU labeled as 

C. kroppenstedtii. 

Association with disease-related variables 

Another way of understanding how the community is involved in the disease is to examine 

the association with measures of disease variability. Examples include disease severity, risk 

factors, comorbidities, or the presence of specific symptoms. In paper III, we examined the 

association between microbial features and disease severity for both AD and PSO. We 

employed a forward selection strategy to train regression models containing 5 to 50 

microbial features (in increments of 5) to predict SCORAD (AD severity index) or PASI 

(PSO severity index) scores. Microbial features were ranked according to their individual 

correlation with the severity score. The best model was achieved using 35 OTUs to predict 

SCORAD with a Mean Absolute Error (MAE) of 9.84.  

In paper IV, we re-examined the microbial association with severity with respect to skin 

site. In this analysis, we focused only on S. aureus association to severity, based on our 

results from paper III and previous studies (Kong, Oh, Deming, Conlan, Grice, Beatson, 

Nomicos, Polley, Komarow, Murray, et al. 2012). Interestingly, the association between S. 

aureus and severity could only be observed in the thigh but not in the upper back.  

  



 

52 

3.2.2 Population-level analysis 

Strain analysis can help provide insights about the results derived from the community-

level analysis. For example, we hypothesized that the differences in the association between 

S. aureus and severity observed in paper IV could be partially explained by the presence of 

different S. aureus strains. To investigate this, we profiled S. aureus strains using 

StrainEST (Albanese and Donati 2017) from the available shotgun metagenomics data. The 

tool outputs relative abundance strain profiles for S. aureus for each sample based on the 

available genomes from NCBI. Figure 3.2.3 summarizes the number of detected S. aureus 

strains per sample. These results suggest that most samples have more than one S. aureus 

strain co-colonizing the skin, both in lesions and non-lesions. 

The S. aureus strain data allowed us to examine different questions. Firstly, we inspected 

the S. aureus strain profiles at the level of each individual: are the strains that colonize 

nonlesional skin the same that are present in lesional skin? Analyzing subjects with both a 

lesional and a nonlesional sample, we observed that the most dominant strain matches in 19 

out of 21 patients sampled in the thigh and 7 out of 7 patients sampled in the upper back. 

However, the Bray-Curtis dissimilarity of the profiles is not very high for most samples 

(Figure 3.2.4). Another observation is that thigh lesional samples tend to have more 

detected strains than nonlesional (Figure 3.2.5).  

We can generate different hypotheses from these observations. One possibility is that the 

dominant S. aureus strain present in unaffected skin, plays a role in exacerbating severity 

when external factors (e.g. inflammation) together with other microbiome changes (e.g. loss 

of ‘protective’ species) trigger its virulence. Another possible hypothesis is that the thigh 

lesional ‘microenvironment’ is more favorable than the upper back for S. aureus strains 

colonization. Another hypothesis could be that the thigh lesional microenvironment is more 

favorable for the recruitment of virulent S. aureus strains.  
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Figure 3.2.3 Distribution of number of strains per sample 

 

 

Figure 3.2.4 Bray-Curtis dissimilarity between lesional and nonlesional samples per individual 

 



 

54 

 

Figure 3.2.5 Difference in number of strains between lesional and nonlesional samples per individual 

 

 

Figure 3.2.6 Graph-based visualization of closed frequent itemsets of S. aureus strains 
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We also examined the co-occurrence of S. aureus strains. To accomplish this, we applied 

the ECLAT algorithm to find closed frequent itemsets with a minimum support of 6 

(arbitrary choice).  This resulted in a list of strain-sets represented in a graph-based layout 

in Figure 3.2.6. The most notable feature of these results was a set of four strains which co-

occur very frequently, but only with each other. In particular, one of the strains 

(000248915.1) appears to be central to the other three, since it appears together with them 

21,18 and 16 samples, which are the closed itemsets with the highest support in the data. 

We further investigated which strains are associated with AD severity in our samples. We 

used a simple Bayesian model to estimate the posterior likelihood of a strain to occur in a 

patient with severe AD as opposed to a patient with moderate AD. Assuming a probability 

p of a strain colonizing a severe patient (with probability 1-p of colonizing a moderate 

patient),  the likelihood of observing a number of severe patients carrying the strain from a 

set of N patients is distributed as a Bernoulli(N,p). We set a Beta(2,2) prior for the 

parameter p, to enforce the belief that by default, strains do not show a preference between 

severe and moderate patients. The posteriors for the 12 strains with the highest MAP 

estimates for p are shown in Figure 3.2.7. Interestingly, the group of 4 highly co-occurring 

strains (000239655.1, 000248915.1, 000586755.1 and 000735755.1) are all among the 

strains with the highest MAP estimates for probability of occurring in severe patients. We 

asked also if these severity-associated strains showed any distinct preference for any of the 

sites. Figure 3.2.8 reveals that most of these strains appear in both sites. 

The strain analysis helped refine some hypotheses concerning the site-specific differences 

in severity, but some open questions remain. For example, we identified a set of strains that 

are associated to severe disease, but these are present in both skin sites. A possible follow-

up study could focus on S. aureus strain variability across skin sites. Another caveat about 

these results is the reliability of the strain inference algorithm and the database. StrainEST 

uses NCBI genomes as ‘strains’, so it is possible that the algorithm misclassifies a SNP 

profile that is not present in the database as combinations of close strains. However, the fact 

that the most dominant strain matches across lesional and non-lesional samples of the same 

individual suggests the algorithm works correctly to some degree. Further work is required 

to validate and characterize these strains. 
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Figure 3.2.7 Posterior distribution of the probability of a given strain appearing in a severe sample (vs. a 

moderate sample). The figure shows the 12 strains with the highest MAP estimate. 

 

 

Figure 3.2.8 Number of samples where each of the severe-associated strains was detected 
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3.2.3 Data integration and functional analysis  

The final aim of microbiome studies is to find possible mechanisms that drive the microbial 

and phenotype variation identified in previous analyses. Shotgun metagenomics data allows 

the identification of gene families and pathways present in the microbial community. 

Mechanisms can be also inferred by integrating human-level data, such as direct 

measurements of physiological conditions (oxygen, pH), molecules (lipid content, 

antibacterial peptides), or omics datasets. In the case of papers III and IV, we used both 

shotgun metagenomics and the skin transcriptome data for this purpose. 

In AD, we wanted to understand the effects of S. aureus colonization on the human skin. 

For this, we divided the lesional samples based on their S. aureus abundance profile into 

two categories: samples with ‘high’ (> 87% relative abundance) or ‘low’ abundance of the 

OTU. Based on this partition we explored 1) which microbial functions were associated 

with the groups, and 2) the effect of S. aureus dominance on the skin transcriptome.  

For (1), we used PiCRUST (Langille et al. 2013) to perform an initial prediction of 

functions that are differentially represented between the S. aureus high and low groups. The 

analysis resulted in gene families from different KEGG pathways like “Bacterial toxins”, 

the “Two-component system” and “Glycolysis / Gluconeogenesis” enriched in the ‘high’ 

samples. PiCRUST predictions were then validated using a subset of shotgun 

metagenomics samples. Gene family abundance prediction was obtained using HUMAnN2, 

and statistical analysis confirmed the enrichment of the genes in the predicted pathways. 

Notable examples include the alpha and delta-toxin S.aureus genes. 

PiCRUST is a useful hypothesis generation for microbial mechanisms from 16S data. 

However, results should be interpreted with care, since the taxonomical resolution of 16S is 

not sufficient to make inferences about strain-level functional variation. Shotgun 

metagenomics data or targeted experiments are good alternatives to validate the predictions 

test the predictions made by PiCRUST. However, validation approaches must be planned 

carefully:  merging annotations between PiCRUST and HUMAnN2 was problematic since 

they employ different databases: KEGG and UniRef with COG annotations respectively. 

We chose to match the annotations based on gene name but recognize this is far from ideal. 
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To explore (2), the association between S. aureus and the skin transcriptome, we performed 

a differential expression analysis between S. aureus high and low groups, which resulted in 

a set of 256 DEGs (referred in the manuscript as “S. aureus signature”). Annotation of the 

DEGs using Ingenuity Pathway Analysis observed an enrichment of different categories, 

such as Keratinocyte differentiation and different components of the kynurenine pathway. 

Based on these results, we hypothesized that the host could employ a tryptophan 

‘starvation’ strategy to control S. aureus colonization. Follow-up experiments based on this 

hypothesis revealed that AD S. aureus strains have low dependence on tryptophan, so the 

hypothesis was discarded. We performed a similar analysis in paper IV but focusing on the 

AD thigh samples. Results like ‘keratinocyte differentiation’ were also present, but a 

surprising association with ‘Circadian Rhythm signaling’ were also predicted. Further 

research is required to determine the significance of this finding. 

To elucidate mechanisms in psoriasis, we selected a different strategy since there were no 

bacterial OTU candidates with a strong association with the disease as S. aureus in AD. 

Therefore, we decided to test the associations between data-defined gene groups and the top 

differentially abundant OTUs using MaAsLin. Gene groups were inferred from the results 

of module detection on the Psoriasis-versus-healthy DEG co-expression network. We 

performed association tests of 12 gene modules against the 25 most differentially abundant 

OTUs, accounting for body site, age, gender and institution. This resulted in 6 associations 

after multiple testing correction, three of which related an OTU annotated as 

Corynebacterium spp. to genes enriched for cell cycle, and inflammatory pathways. This 

strategy is similar to the one used by (Morgan et al. 2015). 

3.2.4 Conclusions 

The work on papers III and IV illustrate the use of our established methodology for the 

exploration of a human skin microbiome dataset. This allowed us to draw new insights, 

generate and test hypothesis, and confirm previous observations from other studies about 

the relationship between the host and the skin microbiome in psoriasis and atopic 

dermatitis. The methodology proved to be flexible enough to allow the use of a broad range 

of statistical techniques and algorithms, while providing enough structure to facilitate 

reasoning about the results and connecting insights drawn from different analyses.  
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Many choices in technology, data processing and analysis for this skin microbiome project 

do not reflect the current state of the art. The project was conceived and executed when 454 

pyrosequencing was the standard for 16S rRNA sequencing (circa 2011). Nevertheless, the 

cohort is still (to our knowledge) one of the largest studies of the skin microbiome in both 

diseases. Also, solid study design choices, e.g. the use of negative controls, were 

implemented in the study when they were not standard practice. Nevertheless, the results of 

the analysis are congruent with the literature.   

A modern redesign of the study would be developed using shotgun metagenomics. 

However, ensuring good data quality and sufficient sequencing depth to characterize skin 

communities is still a challenge due to the low biomass of the samples and the high 

proportion of human DNA. In the case of designing a similar amplicon-based study, 

sequencing the V1-V3 regions would be a better choice than V3-V4, as the V1-V3 region 

has a better resolution for Staphylococcus species (Meisel et al. 2016).  

However, the analysis strategies and most of the methods we used are still widely used in 

current microbiome papers, and many modern analysis techniques like machine learning 

and compositional-based data analysis were applied in this work. The observations and 

generated hypothesis will lead to interesting biological insights with the appropriate follow 

up studies.  Future work will include further mining of the shotgun metagenomics dataset 

for non-bacterial microbes, and bench work to validate some of the observations. 

An important limitation of this study was the choice of anatomical locations. During the 

patient sampling phase, a second AD skin site (upper back) was included in the design. The 

measure enabled the study in paper IV, since the number of AD samples from each site was 

balanced (~40 per group). However, the collection of healthy controls for the upper back 

site was overlooked, so only few healthy controls are available for the upper back.  This 

implies that the interpretation of results where samples are compared to upper back controls 

must account for this sample size unbalance. 

In conclusion, the results of paper III and paper IV will serve as a basis for the design and 

development of future studies to further understand the role of skin microbiome in atopic 

dermatitis and psoriasis.  
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4 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

The human microbiome field has been growing at an accelerated pace for the past decade 

due to the developments in high throughput sequencing and bioinformatics methods. This 

has resulted in numerous studies looking for possible associations between the human 

microbiome and every disease. However, the lack of standardized practices has hampered 

reproducibility and the ability to compare between studies due to the relative novelty of the 

field.   

The field has started to reach an inflection point: the cumulative knowledge has finally 

started to push towards a new stage where we are demanding more stringency about 

experimental design, data generation and analysis methodologies. Examples of these trends 

include big efforts like the CAMI challenge (Vollmers, Wiegand, and Kaster 2017) and 

reviews for conducting high quality microbiome research (Knight et al. 2018; Kong et al. 

2017). As human microbiome research evolves into a more rigorous state, we will be able 

to distinguish true associations between the microbiome with disease and better 

characterize the mechanisms behind these associations, hopefully leading to translational 

research that impacts human health. 

The work in this thesis has sought to contribute to the state of human microbiome research 

by developing methods and executing analysis following the best practices in the field. We 

proposed a bench to bioinformatics pipeline for executing viral discovery projects, together 

with a method prototype for unknown virus discovery. The methods helped explore the role 

of the virome in acute lymphoblastic leukemia and also enabled the discovery of a new 

bacteriophage genome. Additionally, we analyzed one of the largest skin microbiome 

datasets regarding atopic dermatitis and psoriasis. This resulted in many insights and 

testable hypotheses that can potentially form the basis of further studies to understand the 

relationship between the microbiome and these diseases. 

From the technology development perspective, the microbiome field will surely be 

impacted by developments in single-molecule long-read sequencing. Currently, Pacific 

Biosciences and Oxford Nanopore have already revolutionized the way we approach 

genome sequencing projects(Koren et al. 2013), helped monitor the spread of viruses in an 

outbreak(Quick et al. 2016), and coupled with tools like What’s In My Pot(WIMP) enable 

real-time profiling of any metagenomics sample(Juul et al. 2015). Although throughput, 

error rates and costs are currently limiting, it is only a matter of time before they become 
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routinely employed for metagenomics projects. In parallel, developments in single-cell 

technologies will provide an alternative method to perform metagenomics studies that 

address many of the limitations we have with current techniques (Rinke et al. 2013). New 

bioinformatics methods will surely accompany the fast-paced developments in technology. 

The progress in methodology and technology coupled with improved study designs should 

allow the field to solve many open questions. Hopefully, these answers will impact human 

health during the coming decades. 
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