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ABSTRACT 

Atherosclerosis is a multi-factorial immune mediated disease in arterial wall characterized by 

lipid driven inflammation through activation of the immune system. Chronic vascular 

inflammation is an important component that modulates atherosclerosis evolution and its 

complications. The interaction of innate immune activators from both host and environment 

with innate immune receptors has been considered as one of fundamental mechanisms 

accounting for the inflammatory responses that affect multiple pathogenic processes during 

atherosclerosis. The aim of the thesis is to improve our understanding of innate immune 

mechanisms in atherosclerosis. The objective of the thesis is to investigate the cellular 

mechanism of NOD1 and TRIM21, to identify the innate immune phenotype of intimal 

vascular smooth muscle cells (SMC) and to elucidate the activity and clinical relevance of 

inflammasome-IL-1 signaling in atherosclerosis. 

Paper I addresses how the local NOD1 signaling in vascular wall contributes to 

atherosclerosis and vascular inflammation. We report that a phenotypically distinct 

subpopulation of VSMC imprinted by NOD1high, a member of NOD-like receptor family, 

have unique functions in promoting vascular inflammation and lesion development. 

Paper II reports the identification of a SMC subpopulation with typical innate immune 

features in human atherosclerosis lesion and rat neointimal lesion. Functional studies and 

numerical quantifications further establish that these SMCs as important source of arterial 

resident innate immune effector cells. 

Paper III investigates inflammasome function and IL-1 generation in human atherosclerosis 

lesion. IL-1α/β production is a common feature of advanced lesion, and is linked with the 

regulation of multiple canonical and non-canonical inflammasome. Plaque IL-1β increases in 

complex plaques and in the patients with hyperlipidemia and no or low-dose statin therapy. 

Paper IV elucidates the mechanisms of Trim21, an ubiquitin E3 ligase with potent regulatory 

function in innate immune responses, in the pathogenesis of atherosclerosis. TRIM21 

deficiency drives the generation of non-pathogenic Th17 in a cell-intrinsic manner and leads 

to a more stable plaque phenotype with higher collagen content. 

This thesis illustrates the involvement and regulation of different modules in innate immunity 

in the pathogenesis of atherosclerosis. These notions may provide novel understandings in the 

inflammatory hypothesis of atherosclerosis and lead to new therapeutic strategies. 
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1 INTRODUCTION 
1.1 THE ADVANCES IN UNDERSTANDING OF ATHEROSCLEROSIS 

PATHOGENESIS 

Atherosclerosis is the underlying cause of cardiovascular diseases (CVDs), including 

ischemic heart disease and stroke, the leading cause of death worldwide1. The development 

of atherosclerosis has been linked with one or more risk factors, such as age, obesity, 

hypertension, diabetes mellitus, tobacco use, genetic background, and in particular, high 

plasma concentrations of low-density lipoprotein (LDL)2, 3.  

The understanding on the pathogenesis of atherosclerosis has over the years been improved 

from being a lipid accumulation disorder to a chronic inflammatory disease, characterized by 

a sustained activation of immune responses that triggered by so called ‘‘danger signals’’ 

developed locally in the lesion along with atherosclerosis progression4, 5. The inflammatory 

hypothesis was first proposed in 1994 on the basis of circulating acute-phase reactants C-

reactive protein (CRP) in the prediction of acute coronary syndrome (ACS)6. Nonetheless, 

this hypothesis was yet validated until the very recent results from the Canakinumab Anti-

inflammatory Thrombosis Outcome Study (CANTOS) were published. It shows for the first 

time a significantly lower rate of recurrent cardiovascular events by targeting the interleukin-

1β (IL-1β) innate immunity pathway, independent of lipid-level lowering7. Thus, 

inflammation itself as an independent causative pathogenesis in human atherosclerosis has 

been finally established.  

Atherosclerosis develops in the sub-endothelial area of large and medium sized artery and 

more frequently at the vessel bifurcation region with disturbed blood flow2, initiated by 

endothelial dysfunction and followed by sub-endothelial lipoprotein retention2. Activated 

endothelial promotes the entry of circulating monocytes and other leukocytes into the intima 

by up-regulating adhesive molecule expression and chemokine secretion. Infiltrated 

monocytes differentiate into macrophages and undergo a transformation into foam cells after 

a continuous engulfment of lipoproteins, which builds up the lipid-laden plaques. In parallel, 

accumulated lipoproteins are subjected to complex modifications on both lipid and protein 

components, partially owing to oxidations and protease and lipase mediated reactions in the 

lesion. This process transforms lipoproteins, leading to generation of “danger signals” that 

elicit a series of inflammatory response and immune activation, which involves both innate 

and adaptive immune system. In addition, vascular smooth muscle cells (VSMCs) also 
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response to the vessel injuries and inflammation by migrating to the intima and contributing 

to the fibrous cap formation8, 9.   

As a consequence of the chronic maladaptive inflammatory response with impaired 

resolution, atherosclerosis lesion is characterized by severe necrosis and plaque destruction, 

and eventually causes arterial thrombosis and end-organ ischemia10. The pathological features 

of clinical vulnerable atherosclerosis plaques comprise thinning of fibrous cap, large necrotic 

area and severe inflammation, which displaying a high risk of plaque rupture and fissure 

formation11. Additionally, acute thrombotic vascular events also occur in plaques with 

superficial erosion, characterized by endothelial detachment and neutrophil and platelet 

activation12, 13. Of note, due to the intensive lipid-lowering treatment, a decreased occurrence 

of plaque rupture caused acute thrombotic vascular events has been achieved. On the other 

hand, plaque erosion has been accounted for causing more than 30% of total ACS, which 

contributes considerably to the residual burden of risk13, 14.  

1.1.1 The innate immune system and atherosclerosis 

In general, the arteries can be seen as an integral components of the immune system15. Innate 

immunity, first line of host defense and capable to mobilize in minutes2, plays important roles 

in both vessel homeostasis and the pathogenesis of atherosclerotic development. Innate 

immune regulation starts from endothelial activation characterized by adhesion molecule 

expression and chemokine secretion, followed by immune cell recruitment and complex 

cellular interactions in atherosclerotic lesion2, 16. A great number of studies have shown that 

disruption of key innate immune components can considerably influence atherosclerosis 

burden17. 

In atherosclerosis lesion, molecular patterns from both host and exogenous sources are shown 

to promote lesion development. Accumulation of modified LDL promotes the inflammatory 

response throughout lesion development16. On the other hand, pathogenic infection and tissue 

injury mediated danger signals have also been implicated as inducers of lesion 

inflammation16. 

Several different cell types are implicated in the innate immune response in atherosclerosis, 

most importantly those of the mononuclear phagocyte lineage such as macrophages15. 

Activation of the innate immune cells relies on the expression of a group of innate immune 

receptors, which comprises scavenger receptors (SRs), Toll-like receptors (TLRs) and 

nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) etc16. The receptors 

recognize various pathogen-associated molecular patterns (PAMPs) from exogenous invaders 
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and host-derived damage-associated molecular patterns (DAMPs) that are formed at sites of 

sterile inflammation16. So far, compelling evidence has shown the innate immune recognition 

and activation play pivotal roles in the development of the disease18-20.  

1.1.2 The adaptive immune system and atherosclerosis 

Compared to innate immunity, adaptive immunity is characterized by its exquisite specificity 

and long-lasting memory that favours recognition of millions of different molecular 

structures. As the main constituents of adaptive immune system, T and B cells are essential 

participators in atherogenesis and plaque stability. The adaptive immune response targeting 

auto-antigenic components derived from LDL particles orchestrate plaque development 

together with innate immune response. The specificity of adaptive immune recognition relies 

on the expression of T-cell receptor and the B-cell receptor, which is generated by germ-line 

rearrangement that governed by key enzymes including recombination-activating genes 

(RAGs)5, 9.  

T cells are present in all stages of disease in mice and humans, whereas B cells are 

occasionally found in plaques but more in the adventitial layer of the arterial wall5, 21-23. 

Global deficiency of T and B cells leads to a substantial reduced atherosclerosis, which has 

been shown in hypercholesteraemic mice lacking RAG1 or RAG2, two essential enzymes for 

T and B cell maturation24, 25. However, dissecting the roles of different subsets of T and B 

cells in atherosclerosis suggests a diverse and complex network. 

CD4+ T helper cells (Th cells) are the main adaptive immune cells in atherosclerosis and 

different Th cell subsets have substantial distinct roles in disease development26. As the major 

Th subset in atherosclerosis plaque, Th1 cells have been well demonstrated as a 

proatherogenic population. Indeed, mice lacking T-bet (key transcription factor for Th1 

differentiation) or IFN-γ (signature cytokine for Th1) displayed remarkable reduced 

atherosclerosis27-29. On the contrary, regulatory T cells (Tregs) display athero-protective roles 

which partially mediated by cytokines like IL-10 and TGFβ30-32. In addition, conflicting 

results on the role of Th17 cells and its signature cytokine IL-17 have been shown in disease 

development and plaque stability33. Other T cell subpopulations have also been described in 

atherosclerosis, including Th2, CD8+ T cell, TCRγδ+ T cell and NKT cell. However, the 

functions and importance of these minor subsets in atherosclerosis is still ambiguous5, 9.   

Similar to T cells, opposing roles from different B cell subsets have been described in 

atherosclerosis5, 34. Conventional B2 cells are suggested to be proatherogenic, as an 

attenuated atherosclerosis formation was observed after B2 cells depletion by anti-CD20 
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antibody (rituximab) in hyperlipidaemia mice35. By contrast, B1 cells with the germline-

encoded natural antibodies and a newly described regulatory B-cell subtype show protective 

effect against atherosclerosis36, 37. However, mechanistic clarification of how these cells 

influence atherogenesis is still uncompleted.  

 

1.2 INNATE IMMUNE MECHANISMS IN ATHEROSCLEROSIS 

1.2.1 Innate immune activators 

1.2.1.1 Endogenous innate immune activators 

In the context of atherosclerosis, plaque-accumulated LDL has been considered to constitute 

the primary endogenous innate immune activator in terms of both quantity and immune 

activity and is considered a relative causal risk factor according to the modified Koch’s 

postulates1, 38. LDL levels are correlated with augmented individual susceptibility to 

atherosclerosis and its complications1. Several interventions that lowering LDL levels by 

independent mechanisms diminish the incidence of cardiovascular events1.  

However, although LDL has an indispensible role in plaque formation and development, the 

mechanistic links between high LDL level and atherogenesis remains elusive. Despite 

oxidized LDL (oxLDL) and its early form induced by mild oxidation, minimally modified 

LDL (mmLDL) have been shown to trigger a cellular response in macrophages39, key 

question remains on identification of the bioactive component of LDL particles that triggers 

innate immune activation in atherosclerosis. Recent studies by Ketelhuth et al. identified a 

distinct native peptide derived from apolipoprotein B100 that displays sequence-specific 

proinflammatory bioactivity40. This study provided new mechanistic insights to better 

understand the disease-promoting effects of LDL in the pathogenesis of atherosclerosis. 

Cholesterol crystals have also been demonstrated to be a host derived danger signal, and their 

accumulation in the arterial wall is considered as an early cause of inflammation in 

atherosclerosis, rather than a consequence41,42. Mechanistically, cholesterol crystals employ 

the complement system to activate NLR family pyrin domain-containing 3 (NLRP3)-

inflammasome and result in mature IL-1β production43.  

In addition, phospholipids, another type of essential component in the LDL particle, also play 

important roles in atherogenesis. Phosphocholine (PC)-containing oxidized phospholipids 

(OxPL) have been shown to be highly immunogenic and pro-inflammatory and are found in 
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atherosclerosis lesions in humans, particularly in vulnerable and disrupted plaques44. A recent 

study also suggested that elevated OxPL levels can be used as a biomarker for predicting 

cardiovascular outcomes in patients with established stable coronary heart disease45. 

Moreover, endogenous danger signals can also originate from the products of lesional 

inflammation. Heat shock proteins (HSPs) generated from cell necrosis trigger the production 

of proinflammatory cytokines and is mediated by TLR2 and TLR4 signaling46. High-mobility 

group box 1 (HMGB1) produced by macrophages and vascular cells or released through 

passive diffusion from surrounding necrotic cells has been shown to promote a local 

inflammatory response through activation of TLR2 and TLR447.  

Nevertheless, recent discoveries regarding neutrophil extracellular traps (NETs) as a novel 

host-derived pro-atherogenic danger signal. NETs are net-like chromatin fibers that are 

released from dying neutrophils and comprise nuclear chromatin in association with nuclear 

histones and granular antimicrobial proteins48. During activation, the release of NETs is 

triggered along with reactive oxygen species (ROS) production49. The presence of NETs in 

the luminal portion of atherosclerotic lesions has been reported in both human and mice50, 51. 

A recent study by Warnatsch et al. showed that NET-deficient mice exhibited a reduction in 

atherosclerotic lesion growth with dampened IL-1 production. Mechanistically, the release of 

NETs triggered by cholesterol crystals can function as a danger signal for priming IL-1 

transcription in macrophages, activating Th-17 cells and amplifying immune cell recruitment 

in atherosclerotic plaques52.   

1.2.1.2 Exogenous innate immune activators 

A number of pathogens have been reported in epidemiological studies to be associated with 

an elevated risk of atherosclerosis, including Chlamydia pneumoniae (C.pn), Helicobacter 

pylori, and Porphyromonas gingivalis53, 54. In addition, previous studies have shown the 

presence of pathogen derived materials in human atherosclerotic plaque, suggesting a direct 

etiological role55. A pro-atherogenic effect of C.pn infection in ApoE-/- mice has been shown 

and mainly mediated via a TLR2/TLR4-driven pathway56. Recent study also discovered that 

NLRP3 inflammasome-IL-1 signaling was highly involved in C.pn-induced atherosclerosis 

by dampening cholesterol efflux57. Nevertheless, during acute infections, CVD events 

including myocardial infarction and stroke are increased58. However, a direct causative effect 

rather than an immune-mediated systemic inflammation for the suggested pathogens within 

the lesion still needs to be established16. In summary, despite its strong association with 

disease occurrence, pathogen infection cannot be confirmed to be the causative agent or the 
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specific pathogenesis of atherosclerosis, and the contribution of infection to atherosclerosis 

remains to be defined.  

In addition, recent studies suggested that intestinal microbiota is a key component in the 

pathogenesis of metabolic disorders and cardiovascular diseases. Gut microbiota is 

considered as an endocrine organ and interacts with the host through many pathways. 

Specifically, trimethylamine N–oxide (TMAO), a oxidation product of the microbial 

metabolite trimethylamine TMA, is shown to be a potential promoter of atherosclerosis and 

cardiometabolic diseases59. 

On the other hand, metabolism-independent processes of intestinal microbiota have also been 

implied to contribute to cardiovascular disease. In particular, impaired intestinal barrier 

function is considered to contribute to bacterial translocation. Thus, the invasion of bacterial 

products (e.g., lipopolysaccharide and peptidoglycans) in the systemic circulation and local 

tissue stimulates and instructs the host immune response though innate immune receptors, 

thus heightening the inflammatory state in atherosclerosis60.  Alteration of the gut microbial 

composition in atherosclerosis patients has been shown by Karlsson et al. using metagenomic 

sequencing, indicating a microbiome featured by producing proinflammatory peptidoglycans 

rather than anti-inflammatory carotenes61. Modulation of gut microbiota through diet, 

prebiotic and probiotic use and transplantation may favor the host metabolic profile in a 

desired direction60. 

1.2.2 Innate immune receptors  

1.2.2.1 The orchestrated PRR network 

A wide range of pathogen recognition receptors (PRRs) expression profiles has been 

observed in human atherosclerotic lesions62. Moreover, atherosclerotic plaque contains a 

mixture of various PRR ligands as described above. Therefore, it is likely that multiple innate 

immune pathways are activated either simultaneously or alternatively along with the disease 

progression16.  

Two principal classes of PRRs have been proposed to function in atherosclerosis: endocytic 

receptors and signaling receptors. Endocytic receptors include scavenger receptors (SRs), C-

type lectins, and opsonic receptors, which are responsible for the metabolism of lipoprotein, 

the clearance of apoptotic cells, the elimination of pathogens, and antigen uptake and 

presentation63. The signaling receptors consist of TLRs and NLRs that are critical for the 

activation of proinflammatory pathways upon infection. TLRs are membrane-anchored and 
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consist of a leucine-rich repeats domain and a Toll/IL-1R homology domain, which are 

responsible for ligand sensing and signaling transduction respectively. NLRs are a family of 

cytoplasmic PRRs and have a NATCH domain responsible for self-oligomerization in 

addition to leucine-rich repeats domain and effector domain63. An indispensible basis of TLR 

and NLR signaling depends on the recruitment of several adaptors. Adaptor-like myeloid 

differentiation factor 88 (MyD88) and TIR-domain-containing adaptor protein inducing IFN-

β (TRIF) are the adaptor proteins for most TLRs, whereas receptor-interacting serine-

threonine kinase 2 (RIP2) for NOD1 and NOD2. Once activated, these adaptor molecules 

relay the downstream kinases and transcription factors to modulate inflammatory response64.  

As a complex milieu, multiple innate immune mechanisms are in play simultaneously or 

sequentially in atherosclerotic lesions, which inevitably lead to a crosstalk between different 

signaling pathways. This likely determines the specificity of innate immune response in 

atherosclerosis. For instance, CD36 and lectin-like oxidized low-density lipoprotein receptor-

1 (LOX-1) function as co-receptors with TLR2 and regulate inflammatory response65, 66. In 

return, activation of TLR3, TLR4, and TLR9 in macrophages induce the scavenger receptors 

expression thus leading to an increased phagocytosis67.  

On the other hand, the activation of TLRs or NLRs can trigger shared signaling cascades, 

such as MyD88 or RIP2, and result in NFκB activation, which increases the levels of 

transcription mediators such as pro-IL-1β and pro-IL-1816. Nonetheless, bioactive form of 

these cytokines requires processing by NLRP3 inflammasome activation, which can be 

considered a second signal (Figure 1). With these two signals, these potent proinflammatory 

cytokines can induce inflammation, cause tissue damage, enhance cascade signaling and play 

an important role in the pathogenesis of atherosclerosis68, 69. As a consequence, the loop 

effect contributes to an irreversible and chronic inflammation lesion. 
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Figure 1.  TLR and NLR signaling pathways. Activation of TLRs (e.g., TLR4) and NLRs (e.g., NOD2) 

facilitates the recruitment of adaptor protein MyD88/TRIF and RIP2, respectively. The activated MyD88, 

TRIF and RIP2 pathways lead to the activation of NF-κB, IRF3 and MAPKs pathways, which drives the 

production of inflammatory mediators. Furthermore, activation of NLRP3 triggers the forming of 

inflammsomes, which is essential for IL-1β maturation.  

1.2.2.2 Toll-like receptors 

So far, 10 human TLRs and 13 mouse TLRs have been characterized19. They are capable of 

recognizing a wide spectrum of microbial and host-derived danger signals. The location of 

most TLRs is found on the cell surface, however TLR3 and TLR7-9 are positioned in 

intracellular compartments19. As the earliest and widely investigated TLRs in atherosclerosis, 

TLR2 and TLR4 have been shown to be pro-atherosclerotic in hyperlipidemia mice in the 

absence of exogenous stimulation70,71. TLR4 deficient ApoE-/- mice showed attenuated 

atherosclerosis lesion and macrophage content after high fat diet70. Similarly, TLR2 

deficiency in Ldlr-/- mice on high-fat diet displayed reduced lesion size and decreased 

inflammatory cytokine levels71. Recent investigations on the roles of the remaining TLRs in 

atherosclerosis demonstrate the diversity and complexity of this receptor family.  

TLR3 

TLR3 is carried by both myeloid cells such as macrophages and dendritic cells and vascular 

cells such as SMCs and recognizes viral double-stranded RNA (dsRNA)72. Both pro- and 

anti-atherogenic roles have been characterized for TLR3 in atherosclerosis. The observation 

by Cole et al. that TLR3 deficiency accelerated the onset of atherosclerosis in ApoE-/- mice 
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suggested a protective role of TLR3 in early atherosclerosis (at 15 weeks of age) but not in 

advanced atherosclerosis (at 30 weeks of age)72. In addition, another study by Ishibashi et al. 

using Tlr3-/-Ldlr-/- mice showed no change in aortic root lesion area compared to Ldlr-/- 

mice, despite a significant increase in the cap thickness with higher collagen and SMC 

content, together with the suppression of MMP-2/9 activity73. Using a bone-marrow 

transplantation strategy in Ldlr-/-, Lundberg et al. demonstrated that deleting TLR3 or its 

essential signaling adaptors in immune cells significantly reduced both aortic inflammation 

and atherosclerotic burden74. Taken together, the role of TLR3 is prone to be pro-atherogenic. 

However, the TLR3-activating ligands in human atherosclerotic lesions remain to be 

identified. The presence of cell death material such as host-derived RNA in the necrotic core 

makes this a plausible means of TLR3 activation within the lesion.  

TLR5 

TLR5 is a cell surface receptor for bacterial flagellin and is ubiquitously expressed. Although 

there is a enrichment in TLR5 expression in human carotid plaque compared to normal 

arteries62, the functional relevance of TLR5 to atherosclerosis has remained unknown until 

recently. A study by Ellenbroek et al. suggested that TLR5 deficiency in the myeloid cells 

limited atherogenesis due to decreased macrophage accumulation, reduced necrotic core and 

impaired T-cell responsiveness75. Kim et al. further demonstrated that activation of the 

TLR5-Nox4 cascade contributes to atherogenesis development. Challenge of recombinant 

FliC (rFliC) in ApoE-/- mice showed a marked increase in atherosclerosis, which is NOX4 

dependent76.Based on both loss of function and gain of function studies, the role of TLR5 in 

atherosclerosis seems to be consistently deleterious.  

TLR7 

However, a deleterious role of TLR activation in atherosclerosis does not apply to all the 

members in this family. TLR7, another endosomal receptor, recognizes single-stranded RNA 

from both viral and host. It is also a ubiquitously expressed receptor carried by macrophages, 

T cells and capillary endothelial cells within human advanced carotid atherosclerotic 

lesions77. The role of TLR7 in atherosclerosis has been described as protective78. TLR7 

deficiency in ApoE-/- mice showed increased atherosclerosis lesion in comparison to the 

control mice. This has been attributed to a TLR7-related constraining of inflammatory 

macrophage activation and cytokine production78. A recent study on TLR7 in human 

atherosclerotic plaques demonstrated an association of high TLR7 expression with better 

clinical outcome. Increased TLR7 transcript in the plaque from patients who underwent 
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carotid endarterectomy was linked with fewer adverse cardiovascular events77. In addition, 

the study further strengthened the function of TLR7 in atheroprotective cytokine IL-10 

production, presumably through alternative macrophages (M2) and T cells77. However, the 

underlying mechanism needs further investigation.  

TLR9 

TLR9, another endosomal TLR, recognizes the CpG motif in both bacterial and host DNA79. 

This receptor is expressed by various cell types, including macrophages, B-cells, and 

plasmacytoid dendritic cells (pDCs)79, 80. Like TLR3, TLR9 has been described as causing 

both pro- and anti-atherosclerotic effects. An athero-protective role for TLR9 has been shown 

in both Tlr9-/-ApoE-/- mice and TLR9 agonist type B CpG oligodeoxynucleotide (CpG 

ODN)-treated ApoE-/- mice, in which CD4+ T cells were identified as potential mediators81. 

However, in another study using a higher dose CpG ODN as a TLR9 agonist in ApoE-/- 

mice, impaired re-endothelialization upon acute vascular injury and increased atherosclerotic 

plaque development were observed82. Moreover, a recent study also showed TLR9 deficiency 

attenuated atherogenesis in an angiotensin II-infused mouse model83. In addition, HMGB1, a 

potential endogenous risk factor for atherosclerosis84, has been implicated in lesion 

development in a TLR9 dependent pathway under vascular injury85. The discrepancies 

between these different models might largely be due to the diverse and complex roles of 

TLR9 in various cell populations in atherosclerosis.  

1.2.2.3 NOD-like receptors 

So far, more than 20 NLR genes have been found in humans. NLRs can be categorized 

generally into two major subgroups on the basis of the N-terminal effector domain, including 

NLR family caspase recruitment domain (CARD)-containing (NLRC) group and pyrin 

domain-containing (NLRP) group19. One of the most distinct features of NLRP is the 

assembly of inflammasome, a multi-protein complex formed in response to stimulation19, 86.  

Compared to TLRs, the roles of NLRs are less investigated in atherosclerosis. However, 

several recent studies have demonstrated a critical role for NLRs in lesion development.   

NOD1  

NOD1 is a cytosolic innate immune receptor that mediates bacterial peptidoglycan-induced 

immune activation. NOD1 expression has been found in a wide array of cell types, including 

arterial endothelial cells and VSMCs87, 88. NOD1 recognizes D-glutamyl-meso-

diaminopimelic acid (meso-DAP), a dipeptide that occurs in the peptidoglycans of many 
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Gram-negative bacteria and certain Gram-positive bacteria89, 90. Kanno et al. have shown a 

pro-atherogenic role of NOD1 in the oral administration of a synthetic NOD1 ligand FK565 

in ApoE-/- mice91. Moreover, NOD1 has also been demonstrated to play a pivotal role in site-

specific vascular inflammation, particularly coronary arteritis and valvulitis88. 

Mechanistically, endothelial NOD1 signaling promotes the recruitment of cardiac CD11c+ 

macrophages via VCAM-1 up-regulation, which exacerbates the inflamed micro- and 

macrovasculature92, 93. However, the cellular basis of NOD1 signaling in the context of 

vascular inflammation remains to be elucidated.  

NOD2 

Unlike NOD1, NOD2 is preferentially found in myeloid immune cells, intestinal epithelial 

cells and Paneth cells94. NOD2 recognizes muramyl dipeptide (MDP), a bioactive motif of 

peptidoglycans that occurs in both gram-positive and gram-negative bacteria94. Alterations in 

NOD2 immune function drive a higher incidence of autoimmune diseases such as Crohn’s 

disease95, 96.  

A pro-atherogenic effect of NOD2 immunity was suggested on the basis that human culprit 

atherosclerotic plaques with enhanced inflammatory responses were enriched with NOD2 

ligands97 and was further supported by studies in experimental models of atherosclerosis, 

which demonstrated that the ligation of NOD2 in vivo with its ligand aggravates 

atherosclerosis, as indicated by increased lesion size with enlarged lipid-rich necrotic cores 

and heightened vascular inflammatory responses. These pro-atherogenic effects are 

dependent on NOD2 immunity carried by myeloid immune cells because the myeloid-

specific ablation of NOD2 restrains the expansion of the lipid-rich necrotic core98. Moreover, 

in human carotid plaques, NOD2 activation unregulated inflammatory lipid pathways, 

preferentially the COX-prostaglandin E2 pathway99, and triggered IL-1β production98, thus 

confirming the functional relevance of NOD2 in human atherosclerosis.  

On the other hand, NOD2 immunity reportedly provides protection against P. gingivalis-

induced atherosclerosis in ApoE-/- mice100. The discrepancy of NOD2 function in 

atherosclerosis between this study and others leads to the caveat that the role of innate 

immunity in atherosclerosis may change in accordance with environmental cues.  

NLRP3 

Another important member in the NLR family is inflammasome, a multimeric protein 

complex that senses not only microbial infection but also a wide array of host-derived danger 



 

12 

signals and is essential for inflammatory cytokine production101, 102. As the most-studied 

inflammasome, NLRP3 inflammasome induces the assembly of apoptosis-associated speck-

like protein containing a CARD (ASC), then trigger the cleavage of pro-caspase 1101, 102. The 

cleaved caspase-1 promotes the maturation and secretion of IL-1β and IL-18101, 102. 

The NLRP3 inflammasome was first identified as a critical component of the inflammatory 

process that causes the inherited Muckle–Wells syndrome (MWS) and familial cold 

autoinflammatory syndrome103. The NLRP3 inflammasome is also implicated in several other 

autoinflammatory diseases including gout, Alzheimer’s disease, T2 diabetes, and 

atherosclerosis103. Cholesterol crystals and oxidized LDLs, which are commonly deposited 

with atherosclerotic plaques, have been reported to be endogenous danger signals that trigger 

NLRP3 inflammasomes activation in macrophages104,105.  

Current studies propose several models for the activation of the NLRP3 inflammasome. First, 

extracellular ATP induces the caspase 1-dependent release of IL-1β through the activation of 

P2X7 receptor106, subsequently activating potassium efflux. High concentrations of 

potassium in the cell culture medium have been shown to inhibit potassium efflux and thus 

suppress inflammasome activation107, 108. Second, for crystalline materials and peptide 

aggregates such as silica and crystalline or amyloid-β, phagocytosis is needed for 

inflammasome activation since the secretion of IL-1β is suppressed by cytochalasin D, which 

is an inhibitor of phagocytosis. Upon uptake, lysosomal membrane integrity is disrupted, 

resulting in the leakage of lysosomal proteases into the cytosol where they activate the 

NLRP3 inflammasomes109. Third, the dysfunction of mitochondria and the generation of 

ROS by the mitochondrial respiratory chain have been shown to participate in inflammasome 

activation110. Takeshi Ichinohe et al. showed that the mitochondrial protein mitofusin 2 plays 

essential roles in RNA virus infection triggered NLRP3 activation111. Fourth, a recent 

discovery shows that cAMP acts as a key molecular regulator that binds to NLRP3 and 

promotes its ubiquitination and degradation, thus dampening its activation112.  

However, the importance of the NLRP3 inflammasome in atherosclerosis has been 

challenged by its controversial role in animal models. Ldlr-/- mice with NLRP3-deficient 

bone marrow exhibit a 69% reduction in atherosclerotic lesion size compared to wild-type 

bone marrow recipients41. Moreover, a recent study showed that silencing NLRP3 in ApoE-/- 

mice effectively decreased lipid and macrophage contents in atherosclerotic lesions while 

increasing smooth muscle cell and collagen contents, thus increasing the stability of 

atherosclerotic lesions113. In contrast, another study in ApoE-/- mice crossing Nlrp3-/-, Asc-/-, 

or Caspase1-/- showed mild differences between NLRP3 inflammasome component-deleted 



 

 13 

mice and control mice114. A possible explanation is that NLRP3 inflammasome priming or 

even activation requires extra damage in the vasculature, such as radioactive damage in the 

bone marrow transplantation model or viral infection in the NLRP3-silencing model, 

respectively. In comparison, the endogenous danger signals in low-grade chronic 

inflammatory processes such as atherosclerosis might be insufficient for NLRP3 

inflammasome activation. Thus, the discrepancies between these mouse models await a direct 

clarification of NLRP3 inflammasome function in human atherosclerosis.  

1.2.3 Innate immune cells  

A key pathology of atherosclerosis lesion is featured by the persistence of inflammation and 

different innate immune cell populations including macrophage, mast cell, neutrophil and 

natural killer cell18. These innate immune effector cells orchestrate the inflammatory 

responses and contribute to plaque evolution115, 116. In addition to the classical hematopoietic 

innate immune cell, vascular cells (endothelial cells and VSMCs) also respond to both 

exogenous and host derived innate immune activators, indicative of innate immune 

capability117.  

1.2.3.1 Macrophages and monocytes  

Lesional macrophage is considered to be primarily derived from circulating monocyte118. 

Monocytes adhere and infiltrate through the activated endothelium, differentiate into 

macrophages in the sub-endothelial space118.  On the other hand, local proliferation of 

resident macrophage proliferation is likely an alternative mechanism accounting for 

macrophage accumulation in atherosclerosis119, adding a new dimension to our understanding 

of lesional leukokinetics. However, more mechanistic dissection is needed to understand the 

orchestration of monocyte recruitment and macrophage self-renewal at various stages of 

atherosclerosis. 

The abundance of monocytes in the circulation is strongly associated with atherosclerotic 

vascular disease3, 120, 121. In ApoE-/- mice, continuous influx of monocytes is observed 

throughout all stages of atherogenesis, which is considerably governed by chemokines and 

the receptors like CCR2, CX3CR1 and CCR5122. Depletion of CCR2+Ly6Chigh monocytes in 

ApoE-/- mice leads to a decreased plaque formation123, 124, 125. In addition, ApoE-/- mice 

lacking CX3CL1 or CX3CR1 also show attenuated atherosclerosis126-128. Thus, the 

recruitment of circulating monocytes into plaques is a key step for lesion development. 
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Once the monocytes into the lesion, a differentiation process into macrophages takes place 

rapidly in response to the stimuli in the microenvironment124. As the most studied innate 

immune cell in atherosclerosis lesion, macrophage has been considered as the signature cell 

and the major effector cell responsible for innate immunity mediated inflammation. Excess 

lipoprotein uptake and impaired exocytosis of lipids by macrophages is central in the 

development of foam cells. In addition, dysregulated lipid metabolism and the resulting 

endogenous danger signals that in plaques trigger PRRs, thereby activating the inflammatory 

response by secreting cytokines such as IL-1β and IL-12, chemokines including monocyte 

chemoattractant protein-1 (MCP-1) and chemokine (C-C motif) ligand (CCL) 2, proteases 

and other potent immune effectors such as nitric oxide and reactive oxygen species3, 129. A 

chronic inflammatory response then leads to a further expansion of specific cellular 

components as well as severe cell death, and promotes detrimental plaque morphological 

changes like necrosis core formation and fibrous cap thinning3.  

The diversity and plasticity of macrophage phenotype have been well recognized for a long 

time. Homeostatic imbalance in microenvironmental cues and the intracellular 

proinflammatory versus proresolving pathways affects macrophage phenotype and function 

considerably118, 130. Compared to the classical activated macrophages (M1) that served as the 

major inflammatory cells in atherosclerosis progression, several subsets of alternatively 

activated macrophages (M2, M(Hb), Mhem, Mox, M4) have been implicated in inflammation 

resolving and tissue repair118, 130-132. However, due to the remarkable plasticity and 

complicated regulatory network, lesional macrophages with different phenotypes may not be 

classified into predetermined subsets, but rather function on a spectrum from inflammatory to 

resolution and repair118.  

1.2.3.2 Neutrophils 

Pleiotropic roles of neutrophils have been linked to plaque development in atherosclerosis. 

The proteolytic enzymes release, including myeloperoxidase (MPO), elastase and matrix 

metalloproteinase (MMP), contributes to tissue damage and plaque destabilization133.  

Neutrophils are detected in human atherosclerotic lesion, albeit in much lower numbers 

compared to macrophages134, 135. The presence of neutrophils in the plaque is shown to be 

associated to the features of plaque rupture and erosion135, 136, which goes in line with a 

prognostic role of peripheral neutrophil counts in cardiovascular events137, 138. In ApoE-/- 

mice, neutrophils have been implicated in early atherosclerosis formation139. Moreover, 

Zernecke et al. showed that neutrophil depletion by anti-PMN antibody leads to a reduced 
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plaque formation in ApoE-/- mice140. Of note, recent study by Franck et al. showed the 

interplay between neutrophils and endothelial cells in regions of disturbed arterial flow as 

mechanisms that contribute to plaque erosion in ApoE-/- mice136, which may serve as a 

potential therapeutic target in controlling plaque erosion caused CVD risk.  

1.2.3.3 Mast cells 

Mast cells are present in human atherosclerotic lesions at sites of plaque erosion, rupture or 

hemorrhage2, 141-143. Accumulating evidence establish the contribution of the mast cell to 

atherosclerosis plaque progression and destabilization, through its role in lipoprotein 

metabolism and inflammation144, 145. Specific proteases released from activated mast cells 

such as chymase and tryptase result in matrix degradation, thus have detrimental effects on 

the vessel wall. In addition, mast cells serve as a big source of growth factors, histamine and 

chemokines, thereby actively contributing to lesion development146.  

Indeed, lacking of mast cells in the mast cell-deficient mice (Ldlr-/-KitW-sh/W-sh) was linked 

with a reduction in atherosclerosis lesion, which was attributed to an attenuation in both 

hyperlipidaemia and vascular inflammation145, 147. Consistently, pharmacological 

stabilization of mast cells significantly attenuates atherogenesis and plaque destabilization 

in Ldlr-/- mice 88, 148.  

1.2.3.4 Innate lymphoid cells 

Innate lymphoid cells (ILCs) is a recently identified member in the lymphoid lineage, 

reveal important roles in host immunity, tissue homeostasis and inflammation149, 150. ILCs 

represent a heterogeneous population being composed of three subgroups: ILC1, ILC2 and 

ILC3. The classification of these 3 subgroups is mainly based on their capacity to produce a 

number of Th1, Th2 and Th17 cell-associated cytokines, which mirrors the adaptive Th 

responses respectively151. The classically defined natural killer cells (NK cells), a potent 

innate immune effector cell population, has recently been categorized into ILC1152. 

ILC populations rely on common key developmental signals for their maintenance, as 

through the cytokine receptor γ-chain (also known as IL-2Rγ), the transcriptional repressor 

inhibitor of DNA binding 2 (ID2) and interleukin-7 receptor subunit-α (IL-7Rα)153-155. An 

essential criterion is that they do not possess other immune cell lineage markers on the cell-

surface, as negative for CD11c, CD14, CD3, TCRαβ, TCRγδ and CD19 etc149, 151.  

Although a global depletion of all the ILC populations showed no effect in atherosclerosis 

development in Ldlr-/-Rag1-/- mice, an expansion of ILCs successfully reduced 
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atherosclerosis in these mice156. Moreover, studies targeting specific ILC populations 

further suggest a diverse role of each cell subsets in atherosclerosis.  

As a prototypical member of ILC1s, NK cells have been discovered in human and mouse 

atherosclerosis lesions157, 158. Although the function of NK cells in atherosclerosis remains 

controversial, an atherogenic role of these cells is shown from most of the studies159, 158, 160, 

161. Recent study by Selathurai et al. showed that specific depletion of NK cells by adopting 

anti-Asialo-GM1 antibody reduced atherogenesis in ApoE-/- mice. On the other hand, 

reconstituting NK cells in ApoE-/-Rag2-/-IL2rg-/- mice that deficient in all lymphocytes 

augmented atherosclerosis162. However, the contribution of non-cytotoxic IFN-γ secreting 

ILC1s has not been addressed.  

The role of ILC2s and ILC3s has been mainly studied in tissue homeostasis and 

inflammation at mucosal and barrier surfaces. Proinflammatory and tissue reparative 

functions of ILC2s have been reported in disorders like atopic dermatitis, Crohn’s disease 

and chronic rhinosinusitis152, 163-165. Recently, studies investigating the role of ILC2 in 

hyperlipidaemia mice attracted big attention to these cells in atherosclerosis156, 166. A very 

recent study from Engelbertsen et al. showed a presence of ILC2s in para-aortic adipose 

tissue and lymph nodes in ApoE-/- mice166. Moreover, a selective ablation of ILC2s 

(Staggerer/RorαFlox-Cd127Cre mice) in Ldlr-/- mice significantly accelerated atherosclerosis, 

which was mediated by IL-5 and IL-13 production166. These data indicate ILC2s as an 

important source of atheroprotective immunity. The presence and role of ILC3s in murine 

and human atherosclerotic lesions remains unclear.  

 

1.3 VSMC IN ATHEROSCLEROSIS 

1.3.1 VSMC heterogeneity  

The mature VSMC is a highly specialized cell type whose major physiological function is 

contraction to maintain the vessel tone and homeostasis of blood flow. However, VSMC is 

not terminally differentiated and retains remarkable plasticity that allows rapid adaptations to 

fluctuating environmental cues167, which differs them from skeletal and cardiac muscle cells 
168.  

During the latest two decades, increasing number of publications demonstrate that the 

presence of VSMC with distinct phenotypes in arteries of various species, including humans. 

Even though the origin remains debated, the presence of phenotypically heterogeneous 
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VSMC has been observed in the arterial wall that under both normal and atherosclerotic 

conditions167, 169. Numerous attempts have been made to isolate VSMC subpopulations with 

distinct phenotypes from both normal and disease arterial vessels, which established an even 

broader scope of VSMC heterogeneity. 

1.3.1.1 Contractile and synthetic VSMC phenotype 

The provocative paradigm depicts that during atheromatous plaque formation or restenosis 

after angioplasty, the complex network of growth factors, cytokines, chemokines and 

proteolytic agents generated in the lesion induces medial SMC migrating to the 

subendothelial space, where they proliferate and undergo a phenotypic switch from a 

contractile to a synthetic phenotype170.  

Contractile VSMCs (conventional VSMCs) are elongated or spindle-shaped, whereas 

synthetic VSMCs (unconventional VSMCs) have an epithelioid, rhomboid or cobblestone-

like morphology. Synthetic VSMCs contain increased number of organelles involved in 

protein synthesis, in contrast to prevailing contractile filaments in contractile VSMCs. In 

particular, synthetic VSMCs have several distinguished features when compared with 

contractile SMCs: (1) high proliferative capability171, 172; (2) profound migratory activity172, 

173; (3) enhanced proteolytic activity172, 174; (4) poorly differentiated172, 173; and (5) 

distinguished sensitivity to apoptotic stimuli170 (Figure 2).  

 

Figure 2.  Characteristics of conventional and unconventional VSMCs. 
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The contractile and synthetic VSMCs represent the two extremes of a spectrum of VSMC 

phenotypes175. Numerous explorations have so far been carried out to define the markers of 

differential VSMC subtypes. Apart from classical contractile proteins like smooth muscle cell 

α-actin (SMA), myosin heavy chain 11 and SM22, etc., newly identified transforming growth 

factor-1-induced transcript 1(TGFB1I1) is a novel marker for the contractile phenotype of 

VSMC176. TGFB1I1 is tightly regulated by SRF/myocardin and is essential for maintaining 

contractile phenotype in SMCs176. On the other hand, S100A4, a low molecular weight 

calcium-binding proteins, was barely detectable in human coronary artery media but 

markedly expressed in VSMCs of atheromatous and restenosis coronary artery lesions177. 

Additionally, CRBP-1, Flt-1, c-kit, Calmodulin and Heparanase has also been defined as 

specific signature of VSMC synthetic phenotype under aging or pathological conditions178, 

179, 180, 181. However, due to the phenotype plasticity and technical limitations, it is difficult to 

address the question in vivo whether these markers represent an intrinsic phenotype or a 

transient expression in response to the environmental stimulation.  

1.3.1.2 VSMC contribute to foam cell formation in atherosclerosis 

Unlike macrophages, the contribution of lesional SMCs to foam cell formation in human 

atherosclerosis has received inadequate attention until recently Allahverian et al showed 

about 50% of the total foam cells were VSMC derived in human coronary artery182. Similar 

result was also observed in advanced atherosclerosis lesion in ApoE-/- mice183. 

It is conceivable that under atheromatous conditions, VSMCs, one of the major cell 

populations, may develop or activate the lipid metabolism pathway and contribute to the total 

foam cell population. Although atherogenic lipoproteins uptake is mainly mediated by 

scavenger receptors typically seen in macrophages, the expression of scavenger receptors 

have also been found in VSMCs in both human and mouse atherosclerosis lesions184, 185, 186. 

On the other hand, intracellular cholesterol removal is mediated by ATP-binding cassette 

(ABC) transporters and scavenger receptor class B type I (SR-BI), which are lower expressed 

in human coronary artery intimal SMCs compared with medial SMCs187. These descriptive 

and comparative studies provide new insights that intimal SMCs serve as an important source 

of lesional foam cells, differing from the differentiated SMCs in the tunica media.  

Furthermore, the consequences of the increase in VSMC derived foam cells leads to not only 

the enlargement of lesion size, but also an alteration of lesion microenvironment and plaque 

stability. Lipid loading of VSMCs is associated with acquirement of macrophage markers, 

pro-inflammatory cytokines188-190, phagocytic properties188, migration and calcification 
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properties191 and impairment in collagen and fibronectin assembly192. Overall, these 

alternations synergistically increase the vulnerability of atherosclerotic plaques.  

1.3.1.3 VSMC-macrophage trans-differentiation in atherosclerosis 

Along with the re-evaluation of VSMC derived foam cells in atherosclerosis, studies by 

Allahverdian et al. also proposed that nearly 40% of CD68+ cells co-expressed SMA in 

human coronary atherosclerosis lesion182. This has triggered intense discussions on the 

phenotypic transition between VSMCs and macrophages, and has brought a tricky question 

regarding the ambiguous origin for the cells in atherosclerosis lesion.  

A trans-differentiation from VSMC to macrophage was suggested by using SM22α lineage 

tracing technique in ApoE-/- mice, which showed medial SMCs underwent clonal expansion, 

converted to MAC-2+ and CD68+ cells and lost classic SMC marker expression193. These in 

vivo observations are consistently with the in vitro observation showing that cholesterol 

loading of VSMC activates macrophage markers expression188. However, the functionality 

and pathological relevance of these VSMC-derived macrophage-like cells compared to 

classic monocyte-derived plaque macrophages require further studies.  

On the other hand, in a human cross-gender bone marrow transplantation study, 10% SMA+ 

cells in atherosclerosis lesion showed a myeloid origin194. Similar phenomenon was also 

observed in mice subjected to wire-induced arterial injury, which showed a fraction of bone 

marrow derived cells express SMA after migrated into the injured vessel wall. However, 

further lineage identifications demonstrated that these myeloid derived SMA+ cells do not 

acquire a fully differentiated VSMC phenotype, which requires SM-MHC and calponin 

expression195. Moreover, multiple cell types other than SMC can also express SMA, which 

requires more comprehensive lineage identification. Thus, despite the trans-differentiation of 

VSMCs from bone marrow or peripheral mononuclear cells has been shown in vitro196, 197, 

the in vivo evidence supporting a myeloid origin of VSMCs is still missing.  

1.3.2 Role of VSMC in inflammation 

1.3.2.1 Innate immune receptors expressed by VSMC 

Some of TLRs and NLRs, which are the classical innate immune sensor, are also expressed 

by VSMCs and play functional roles in SMC biology. TLR2 is important for the recognition 

of bacterial lipotelchoic acid and lipoprotein, and to promote inflammation in VSMCs in 

ApoE-/- mice198, 199. Moreover, Lee et al. showed that MMP2 and pro-inflammatory cytokines 

can be produced in TLR2-Nox1-dependent manner in VSMCs, leading to increasing 
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monocyte-endothelial cell adhesion and trans-endothelial migration of monocytes200. In 

addition, TLR4 mediates LPS induced nitric oxide production in human aortic VSMCs201. 

However, a comprehensive characterization on the immune phenotype of VSMC is still 

lacking.   

1.3.2.2 VSMC produce immune effective mediators 

Cytokines, chemokines and other proinflammatory mediators are potent immune effectors in 

maintaining or commoving tissue homeostasis. Within the vessel wall, VSMCs can 

significantly contribute to the cytokine dependent inflammatory network202. 

A classic example is the discovery of inducible nitric oxide synthase (iNOS) expression and 

nitrite oxide (NO) production in VSMCs. Aside from the important roles in the physiological 

regulation of vascular tone and platelet aggregation and adhesion, NO serves as an important 

innate immune effector produced by iNOS in host defense. INOS, which was originally 

identified in cytokine-activated macrophages, can also be rapidly induced in VSMCs in vivo 

during the formation of the neointima in a rat balloon injury model. Moreover, intimal SMCs 

produced remarkably higher levels of NO than medial SMCs upon stimulation with IFNγ and 

LPS203.  

Recently, Kiyan et.al showed oxLDL impaired the expression of contractile proteins and 

myocardin in VSMC and promoted NFκB dependent colony-stimulating factors (G-CSF and 

GM-CSF) expression and other proinflammatory cytokines like IL-8 upregulation204. Zeiffer 

et.al also have identified a NFκB-mediated proinflammatory phenotype of neointimal SMCs 

that is characterized by increased P-selectin and chemokine expression and thereby 

effectively supports leukocyte recruitment205. In addition, VSMCs have shown the 

competence of producing TNF-α, IL-6, MMP2, MCP-1 and CX3CL-1, despite many of them 

are traditionally described as myeloid immune cells derived cytokines or chemokines126, 206, 

207, 208-210.    

1.3.2.3 Crosstalk between VSMC and leucocytes 

Lesional SMCs often reside in close proximity to invading macrophage and T cell clusters, 

constituting inflammation niches211. Interaction of SMCs with these leucocytes or activated 

endothelial cells may result in many subsequent enhancements of cellular responses, thereby 

perpetuating the atherosclerotic development. Ostriker et al. showed that SMC-derived 

transforming growth factor beta (TGF-β) modulates the phenotype of maturing macrophages 

in vitro212. In return, SMC-modulated macrophages can further promote SMC activation to a 
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greater extent compared to unmodulated macrophages212. Meanwhile, macrophage–SMC co-

culture experiments demonstrated the macrophage differentiation in the presence of M-CSF 

produced by smooth muscle cells213. 

In addition, VSMCs have been shown to orchestrate the homeostasis of both innate and 

adaptive immunity in atherosclerosis through regulation of artery tertiary lymphoid organs 

(ATLOs) development23. ATLOs refer to the lymphoid aggregates with varying degrees of 

complexity ranging from lymphocyte clusters to well-structured unencapsulated lymph node-

like tissues in the adventitia of the diseased arteries. In ApoE-/- mice, ATLOs are formed in 

the adventitia adjacent to atherosclerotic plaques during aging. ALTOs have been suggested 

as powerhouses of advanced atherosclerosis immunity as the size and structure of ATLOs is 

correlated with the disease severity214. On the other hand, ATLOs seemingly also can afford 

protection from advanced atherosclerosis214, 215. This is supported by a recent study from 

Habenicht et al. that showed VSMC lymphotoxin b receptors (LTbRs) protected against 

atherosclerosis development by maintaining the morphology and function of ATLOs. 

Atherosclerosis was markedly exacerbated in Ltbr-/- ApoE-/- mice, which has been linked to 

the key role of LTbR signaling in initiating the transdifferentiation of VSMCs to a lymphoid 

tissue organizer-like phenotype215. Their data suggest that the immune system employs 

VSMC-LTbRs to maintain the immune homeostasis in the vasculature via ATLOs. 

1.3.3 Transcriptional regulation of VSMC phenotype  

Extensive studies have demonstrated that vascular SMC differentiation and phenotypic 

modulation are governed by a delicate network of transcription regulatory mechanisms and 

controlled by a dynamic array of environmental cues216. Moreover, recent advances in this 

area have provided significant insight into master transcriptional pathways that control SMC 

phenotype in atherosclerosis and restenosis (Table1). 

Myocardin is a muscle restricted transcriptional co-activator of serum response factor. By 

interaction with serum response factor, myocardin binds and selectively activates the 

degenerate CC(A/T-rich)6GG (CArG) cis-elements of virtually all the CArG-dependent SMC 

marker genes that confer contractile, morphological and structural properties of conventional 

VSMC217-219.  

Matthew et al. recently showed myocardin deficiency accelerates atherogenesis in ApoE-/- 

mice220. Mechanistically, increased myocardin potently abrogates the production of a large 

number of inflammatory molecules in VSMCs220. This has been putatively attributed to the 

inhibition of intracellular proinflammatory pathway mediators CCAAT/enhancer-binding 
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protein (C/EBP) transcription factor (CEBPB) and CEBPD CCAAT/enhancer-binding 

protein (C/EBP) transcription factor delta (CEBPD) by myocardin220, 221. CEBPB and 

CEBPD have been reported to synergistically increase and sustain the inflammatory gene 

expressions in VSMCs220, 221. Taken together, myocardin displays a critical regulatory role in 

vessel inflammation.  

Recently, the advances in SMC specific gene modified mice have enormously improved our 

understanding in VSMC origin and function222. Krüppel-like factor 4 (KLF4), a stem cell 

pluripotency gene, is a transcription factor (TF) that plays a crucial role in regulating 

phenotypic transitions of SMCs223, 224. Strikingly, SMC-specific conditional knockout of 

KLF4 resulted a marked reduction in lesion size and increases in plaque stability. This is 

associated with a selective reduction of SMC-derived macrophage-like cells in the lesion223, 
224, which strongly indicates that KLF4-dependent SMC phenotype transitions are critical in 

lesion pathogenesis. Intriguingly, another pluripotency gene octamer-binding transcriptional 

factor 4(OCT4) has recently shown to be atheroprotective. SMC specific Oct4 knockout 

within ApoE-/- mice resulted in increased lesion size and decreased plaque stability, including 

increased necrotic core and intra-plaque hemorrhage with a thinner fibrous cap. These 

changes were linked to an impaired SMC migration related to fibrous cap formation225. Thus, 

the roles of these two key pluripotency genes, KLF4 and OCT4, turned to be contradictory in 

atherosclerosis. This may reflect a counterbalanced and complex regulation of these genes in 

VSMC phenotype. Nevertheless, even though striking discoveries have been made on these 

mice, how to translate the knowledge to human atherosclerosis is another challenging task.  

Table 1. Transcriptional regulation of VSMC phenotype in vascular diseases 

TF                             Model                                 Lesion phenotype              Reference 

Myocardin    ApoE-/-Myocd+/- mice                  Lesion↑, macrophage-like cell↑       220 

KLF4            ApoE-/-Myh-Klf4-/- mice              Lesion↓, cap↑                                    226 

OCT              ApoE-/-Myh-Oct4-/- mice             Lesion↑, SMC migration↓                225 

TET2             Locally Tet2-/-  mice                    Neointima↑, MyH11↑                       227                                                           

NF-κB          Sm22α-IκB-/- mice                         Neointima↓, SMC proliferation↓     228 

IRF7             Irf7-/- rat                                         Neointima↑, SMC proliferation↑     229 
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IRF8             Irf8-/- mice                                      Neointima↓, SMC differentiation ↑ 230 

IRF9            Irf9-/- mice                                       Neointima↓, SMC proliferation↓     231 

HIFα            Locally Hifα-/- mice                        Neointima↓, VEGF-A; Flt-1↓          232 

GATA6       Locally GATA6 inhibition mice      Neointima↓, SMC proliferation↓    233 

STAT3        Locally STAT3 inhibition mice       Neointima↓                                       234 

TET2 (Ten-eleven translocation-2); HIF (Hypoxia-inducible factors); GATA6 (GATA-binding factor 6); 

STAT3 (Signal transducer and activator of transcription 3). 
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2 AIMS 
The studies included in this thesis aimed to improve our understanding of innate immune 

mechanisms in atherosclerosis. 

The specific aims were to: 

I. Investigate the role and cellular mechanism of NOD1 in atherosclerosis 

II. Identification of the innate immune phenotype of intimal SMCs and its relevance 

in atherosclerosis  

III. Elucidate the activity and clinical relevance of IL-1 and inflammasome in human 

atherosclerosis plauqe 

IV. Explore the role and cellular mechanism of TRIM21 in atherosclerosis 
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3 METHODOLOGICAL CONSIDERATIONS 

3.1 MOUSE MODELS OF ATHEROSCLEROSIS 

Mouse models are useful for exploring the role of target molecules in atherosclerosis. 

Compared with the complexity of human population, animal models provide a rather 

identical genetic and environmental background, which enables a better observation of 

certain biological phenomena without being influenced by many unpredictable factors. 

Moreover, mouse models allow mechanistic investigations by pharmacological interventions 

and genetic modifications235.  

However, wild-type mice like C57BL/6 strain are generally resistant to atherosclerosis due to 

a HDL dominant serum cholesterol profile. Therefore, genetically modified hyperlipidemia 

mouse models such as Ldlr-/- and ApoE-/- on the C57BL/6 background are more widely used 

as experimental models of atherosclerosis236. 

LDLr is expressed mainly on hepatocytes and binds to ApoE and ApoB-100 on the 

lipoproteins, thus functions as the main mechanism to remove intermediated density 

lipoprotein (IDL) and LDL from the plasma237. ApoE is an apolipoprotein mainly found in 

IDL, and mediates cholesterol metabolism by binding to LDLr and chylomicron remnant 

receptor. The lack of either LDLr or ApoE severely disturbs the lipid metabolism and leads to 

hyperlipidemia. Compared to LDLr, ApoE is produced by both hepatocytes and bone marrow 

cells. Thus, transplantation of bone marrows with wild-type ApoE to ApoE-/- mice will 

rescue the hyperlipidemia and atherogenesis238. Therefore Ldlr-/- mice were used as the 

recipients in the bone marrow transplantation model in this thesis.   

To study the role of hematopoietic NOD1 and TRIM21 in a hyperlipidemia condition in vivo, 

Nod1-/- or Trim21-/- mice (C57BL/6 background) were used as donors in a bone marrow 

transplantation model in Paper I and IV. 6-9 weeks old Ldlr-/- mice were irradiated with 

lethal doses and received bone marrow cells lacking NOD1 or TRIM21 from the donor mice. 

A high fat diet for 6-12 weeks was used for atherosclerosis development after 4 weeks 

recovery from the transplantation.  

Bone marrow transplantation model is hematopoietic-specific and rather time-efficient 

compared to double knockout mouse model. However, total body irradiation causes not only 

acute but also long term persistent multiple tissue and organ damages, adding a new 

confounding variable to LDL-induced atherosclerosis. Thus, data need to be interpreted with 

appropriate caveats and proper controls. 
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On the other hand, a pharmacologically synthesized ligand of NOD1, FK565, was used to 

investigate the direct effect of NOD1 activation in Ldlr-/- mice in Paper I. 

Pharmacologically intervention provides an exogenous activation or blockage of targeted 

signaling pathway in addition to the endogenous regulation network. This allows an efficient 

dose- and time-dependent investigation, and avoids the compensatory effect in genetic 

modified mouse models. However, the efficacy and specificity of the ligands or inhibitors 

need to be critically evaluated, and the gap between the exogenous intervention and the 

endogenous regulation need to be kept in mind. 

Despite the rapid advances in experimental atherosclerosis from mouse models have provided 

us striking insights in the disease pathogenesis, the translation of the data from mice to 

human is still a big task due to the inherent differences between species. Thus, it is very 

important to put more considerations into the animal model selection, data interpretation and 

method standardization239.  

3.2 RAT CAROTID ARTERY BALLOON INJURY AND VSMC CULTURE 

A rat carotid balloon injury model was used in Paper I and II. Male adult Sprague-Dawlery 

rats (3 months old) were subjected to angioplasty injury by repeatedly forwarding and 

withdrawing an inflated F2 balloon catheter to left common carotid artery under general 

anesthetization240. This well-characterized model provides an ideal tool to investigate the 

biological behaviors of VSMCs under neointima formation.  

Three different types of rat VSMCs were used in the studies. They were normal adult medial 

SMC, intimal SMC and neonatal arterial SMC. The normal medial SMC were isolated from 

the medial layer of the thoracic aorta of male adult Sprague-Dawley rats, and intimal SMC 

were derived from the carotid artery of male adult rats 2 weeks after balloon angioplasty. At 

this time point, the intima could be easily identified and separated from the media under a 

dissection microscope. The neonatal SMC were derived from the thoracic aorta of rat pups (4 

days). All three types of VSMC were prepared from tissues by using enzymatic dissociation 

techniques or by explanation. Cells were maintained under standard cell culture conditions 

(+37°C, 5% CO2). Rat medial, intimal and newborn SMCs were grown in DMEM 

supplement with 10% (vol/vol) FCS, 1 mmol/L L-glutamine and antibiotics (penicillin G 100 

U/mL, and streptomycin 100 µg/mL). Cells were passaged with trypsin, and used from 

passages 5 to 10 for all experiments.  



 

 27 

The comparisons among three SMC populations give us a comprehensive view of the 

similarities and diversities of these SMCs, which enables a better understanding the role of 

VSMC under pathological conditions like vascular injury, inflammation and atherosclerosis. 

However, it is important to adjust certain factors like proliferation rate among different 

populations before analyzing other cell behaviors such as SMC migration. Another potential 

issue of using primary VSMC culture is the plasticity or phenotypic transformation of the 

SMC in vitro.  Thus, it is necessary to routinely evaluate of the cell morphology and other 

biological behaviors, and examine the expressions of the cell linage markers.  

3.3 HUMAN CAROTID ATHEROSCLEROSIS PLAQUE CULTURE 

Human atherosclerotic plaque tissue ex vivo culture has been used to determine the functional 

relevance of the innate immune receptors in human atherosclerosis98, 99. This has been so far, 

one of the most useful tools to understand the biological and pathological functions of target 

molecules or pathway in human atherosclerosis lesion. Compared with cell culture 

experiments, tissue culture keeps a rather intact lesion microenvironment and cell-cell 

interaction. The variety of cell types and extracellular components, the abundant of cytokines 

or chemokines, to the most extent mimics the complex inflammatory milieu in vivo with high 

clinical relevance. This model was used to investigate the function and regulation of NOD1 

and inflammasome in human atherosclerotic plaques in Paper I and III.  

Of note, the heterogeneity of the plaque may cause big variations between individuals. Thus, 

a standardized protocol and adequate number of replicates is essential to show the real 

biological difference. On the other hand, the plaque heterogeneity may link to other 

biological phenomena or clinical presentations, which provides important information to 

understand the clinical relevance of the observation.   

However, the complexity of the plaque tissue may bring difficulties for certain analysis like 

western blot. The enrichment of various extracellular matrixes considerably dilutes the target 

proteins and also brings trouble for the normalization. To remove the noise from non-cellular 

components, plaque isolated cells were used in some experiments.  

3.4 BIOBANK OF HUMAN ATHEROSCLEROSIS PLAQUES 

The Biobank of Karolinska Endarterectomies (BiKE) was established in 2001 as a 

collaborative research effort between the Experimental Cardiovascular Research Unit at 

Karolinska Institutet and the Department of Vascular Surgery at Karolinska University 

Hospital241-243. The biobank consists of more than 400 carotid plaques from patients 
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undergoing carotid endarterectomies at Karolinska University Hospital upon informed 

consent. Carotid endarterectomy is recommended in cases with more than 70% stenosis as 

determined by ultrasonography.  The atherosclerosis specimens were snap frozen followed by 

RNA purification for gene expression microarrays, or tissue fixation for histological analysis. 

So far, total gene expression profiling was performed on RNA samples from 127 plaques by 

Affymetrix Gene Array U133 Plus 2.0 (Paper I, III and IV). Non-atherosclerotic normal 

arteries were obtained from 10 macroscopically disease-free iliac arteries or aorta from organ 

donors without a history of cardiovascular disease at Karolinska University Hospital. The 

vessels were dissected and the intima and media used for RNA isolation and microarrays.  

A critical limitation of this biobank is the lack of ideal control tissues. It is noteworthy that 

the distinct gene expression profile between plaques and lesion-free arteries may considerably 

due to the difference in cell composition and the complexity of the tissue environment. 

Another noteworthy point is the plaques used here only represent the advanced stages of 

atherosclerosis lesion, and the majority of the patients were under Statins therapy. Therefore, 

the data may not provide the whole picture of disease development, and the effect of statins 

on plaque progression may remain unrevealed and require validation in a larger cohort. 

3.5 MOLECULAR BIOLOGICAL TECHNIQUES  

3.5.1 mRNA expression analysis 

Quantification of mRNA concentrations was performed by real-time quantitative PCR (qPCR 

and microarray analysis. For qPCR, mRNA was extracted and reversely transcribed to 

complimentary DNA (cDNA), which was amplified and quantified “real-time” in a PCR 

reaction utilizing the SYBR green or Taqman system (PaperI, II and IV). Normalization 

was performed by comparing the expression values to the housekeeping genes. Chip-based 

microarray analyses, utilizing hybridization techniques to quantify the transcriptome, were 

performed in human carotid atheroma (Paper I, III and IV). Data was normalized using 

robust multi-array analysis (RMA), utilizing light intensity comparisons inter- and intra-chip.  

3.5.2 protein expression analysis 

Analysis of protein expressions was performed by western blot, enzyme-linked 

immunosorbent assay (Elisa), immunostaining and flow cytometry analysis. Western blot 

was used as a classic and important technique for protein identification and semi-

quantification in tissues and cells (Paper I and III). Elisa was used for measurement of 

protein concentrations in serum, plasma and cell culture supernatants (Paper I-IV). 

Immunocytochemistry or immunofluorescence staining was used for analysis of protein 
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localization and quantification in the fixed human or mouse tissues (Paper I- IV). Double or 

triple immunofluorescence staining analyzed by confocal microscopy allowed us to further 

investigate the relationship between different proteins, thus providing valuable information to 

understand the cell biology.  In addition, multicolor flow cytometry allowed a cellular 

analysis investigating multiple extracellular and intracellular protein expression 

simultaneously (Paper IV).  

Of note, all these antibody-techniques above require a high specificity of the antibodies and 

well-reserved antigen epitopes. Appropriate sample preservation, adequate background 

blotting, optimized antibody concentration and proper positive/negative controls are essential 

for the data quality. For multicolor confocal imaging and flow cytometry, the compensation 

and adjustment of voltage between different channels is of utmost importance for a well-

performed analysis.  
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4 RESULTS AND DISCUSSION 

4.1 NOD1HIGH VASCULAR SMOOTH MUSCLE CELL IS IMPLICATED IN 
VASCULAR INFLAMMATION AND DAMAGE    

Paper I investigated the molecular mechanism of NOD1 in the pathogenesis of 

atherosclerosis by using Ldlr-/- mice fed with high-fat diet and challenged for 10 weeks with a 

chemically synthesized NOD1-specific ligand FK565. Severe atherosclerosis was observed in 

mice that were treated with NOD1 ligand, demonstrated by a 3-fold increase of 

atherosclerotic plaque area in the aortic arch compared to the control mice (Figure 3A). Of 

note, stimulation of NOD1 resulted in the development of occlusive atherosclerosis in the 

coronary and innominate artery, causing fatal lumen occlusion with a large amount 

macrophage infiltration (Figure 3B). These findings indicate a crucial role of NOD1-

mediated signaling in accelerating atherogenesis and development of severe coronary 

inflammation. 

 

Figure 3.  Exposure to NOD1 ligand in drinking water exacerbates development of atherosclerosis 

and results in occlusive coronary arteritis in Ldlr-/- mice. High-fat diet fed Ldlr-/- mice were treated for 

10 weeks with NOD1 ligand FK565 (FK, 21 µg/ml) or without the ligand (Ctrl) in drinking water. (A) 

Representative images and quantifications of atherosclerotic lesion in aortic arch stained with Sudan IV. 

Data are presented as mean ± SEM, FK n = 5 and Ctrl n = 10. Mann-Whitney test, ** p < 0.01. (B) 

Representative micrographs of Oil Red O and immunohistochemistry staining for SM-α-actin and CD68 in 

coronary artery from the mice as in (A). Scale bar, 100 µm. 

Despite being extensively used for studying the pathogenesis of atherosclerosis, the Ldlr-/- 

mouse fed with high-fat diet does not usually develop the culprit coronary atherosclerosis as 
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shown in the NOD1-ligand treated Ldlr-/- mice. Furthermore, immunohistochemistry 

examination of the aortic root lesion in NOD1 ligand treated mice demonstrated heavy damage 

of elastic lamellae including internal elastic lamina, and exaggerated infiltration of CD68+ 

macrophages, Ly6G+ neutrophils and CD3+ lymphocytes across atherosclerotic lesion into 

tunica media (Figure 4), 

 

Figure 4.  Arterial wall destruction accompanied by inflammatory infiltration into arterial media 

characterizes the functional role of NOD1 activation. Immunofluorescence images of macrophage 

(CD68), neutrophil (Ly6G), and T lymphocyte (CD3) infiltrate in aortic root from the mice as in Figure 3.  

Scale bars, 50 µm. Numeric analyses of inflammatory cell infiltrates in the media are presented at right of 

corresponding images. Dotted lines mark media of aorta. Data are presented as mean ± SEM, FK n = 4-6 

and Ctrl n = 10. Mann-Whitney test, ** p < 0.01. 

Given the fact that NOD1 is implicated in vascular inflammatory disorders, the cellular basis 

of NOD1 signaling in the context of vascular inflammation remains to be elucidated. While 

myeloid NOD1 pathway has been shown as irrelevance to disease progression, endothelial 

NOD1 signaling is regarded as necessary for the recruitment of myeloid cells, thus 

contributing to the pathogenesis of acute coronary arteritis and atherosclerosis92, 93. In our 

study, immunostaining for NOD1 protein noted that a number of SMC (α-actin positive) in 

brachiocephalic artery were distinguished from other α-actin positive SMC by expressing 

high levels of NOD1, hereafter termed NOD1high SMC. Nevertheless, activated NF-κB, one 

defined canonical signal of NOD1 activation, was exclusively associated NOD1high SMC in 

atherosclerotic lesion of Ldlr-/- mice subjected to NOD1 ligand (Figure 5). These 

observations suggest NOD1high SMC as the main cellular basis in the NOD1-ligand induced 

transvascular inflammation.   
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Figure 5.  Involvement of NOD1high SMC in atherosclerosis in Ldlr-/- mice. Immunofluorescence 

micrographs of NOD1 and NF-κB p65 in the brachiocephalic artery from NOD1-ligand treated (FK) and 

untreated mice (Ctrl) as in Figure 3. Arrowheads denote NOD1 or NF-κB (red) expression in Sm-α-actin 

(SMA, green) positive SMC. Scale bar, 50 µm. Data are representative of 3 independent experiments. 

To better understand the role of SMC NOD1 signaling, we used rat carotid balloon injury 

model which developed neointima resembles many aspects of accelerated atherogenesis and 

restenosis. Immunostaining for NOD1 expressing cells further supported the occurrence of a 

phenotypically distinctive population of NOD1high SMC in neointima (Figure 6A). 

Genotyping of the SMC confirmed that constitutive NOD1 mRNA was three-fold higher in 

neointima-derived SMC vs medial SMC (Figure 6B). Of note, NOD1high SMC was 

characterized by spontaneous releasing of CCL5 in the absence of extra stimulation (Figure 

6C). These findings in combination suggest that NOD1high SMC have unique capability in 

producing chemokine thereby contributing to NOD1-induced transvascular inflammation and 

accelerated atherosclerosis. 
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Figure 6.  NOD1high SMCs function as NOD1 effector cell. (A) Immunohistochemistry staining of 

NOD1 in rat carotid arteries 14 days after balloon injury. Arrowheads indicate endothelium. Arrows 

indicate internal elastic lamina. (B) NOD1 mRNA in rat primary SMC isolated from media of uninjured 

carotid artery (Medial) or neointima of injured carotid artery (Intimal) measured by RT-PCR. (C) ELISA 

assessment of CCL5 production by the SMCs as in (B) in the absence exogenous stimuli for 24 h. Results 

are presented as mean ± SEM. Mann-Whitney test, ** p < 0.01. Data are representative of 3 independent 

experiments. 

Furthermore, NOD1 was also found expressed in a notable number of SM α-actin positive 

SMC in human atherosclerotic lesion. Stimulation of ex vivo atheromatous tissue culture with 

NOD1 ligand resulted in MAPK p-38 and JNK dependent generation of IL-1b, IL-6 and IL-8 

and IL-10 (Figure 7). These data demonstrate for the first time a SMC based NOD1 pathway 

with inflammatory activities in human atherosclerosis.  

 

Figure 7.  NOD1 mediates innate immune inflammation in human atherosclerosis. NOD1 induced IL-

1β, IL-6, IL-8 and IL-10 production by human carotid plaques pre-treated with or without p38 inhibitor 

(SB203080), ERK inhibitor (PD98059), JNK inhibitor (SP00125), or NF-ĸB inhibitor (BAY117082) 30 

min in prior to DAP. The cytokines in supernatant were determined by ELISA 24 h after the treatments. 

Data are presented as mean ± SEM, n = 7. Wilcoxon matched-pairs signed rank test, * p < 0.05. 

In summary, we propose a subpopulation of vascular SMC defined by NOD1high imprint in 

humans and rodents have unique function in promoting transvascular inflammation and 

lesion development in response to infection and vascular injury. However, whether bacterial 

peptidoglycans alone are responsible for the activation of NOD1 or NOD2 in atherosclerosis 

or require additional endogenous danger signals remains to be elucidated. 

4.2 INTIMAL VSMCS HAVE AN INNATE IMMUNE EFFECTOR CELL 
PHENOTYPE IN ATHEROSCLEROSIS 

Paper II further analyzed the innate immune phenotype of human plaque intimal SMCs with 

NOD1high imprint, pointed to the existence of such SMCs with innate immune capacity in 

human atherosclerosis plaque characterized by the constitutively expression of a panel of 

PPRs including TLR2, NOD2 and NLRP3 which typically observed in macrophages (Figure 
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8A, 8B). The distinguished activated NFκB, iNOS and chemokine expression featured in 

these intimal SMCs may qualify them a considerable competence as innate immune effector 

cells. Notably, these TLR2+NOD2+NOD1high SMCs surrounded by macrophages and T cells 

promote severe inflammation niches formation and further exacerbate the stenosis in human 

plaque (Figure 8C). 

 

Figure 8. Identification of lesional SMCs with innate immune phenotype in human atherosclerosis. 

(A) Immunofluorescence micrographs of SM-α-actin (SMA), Calponin, SM22 or MYH11 in human 

carotid plaques, images are captured from the region indicated in the white-box of the schematic plaque. 

(B-C) Immunofluorescence micrographs of (B) NOD1, NOD2 or TLR2 and (C) NOD2, NFκBp65 or 

iNOS in SM-α-actin positive cells from adjacent sections in human carotid plaques in A. Nuclei are stained 

by DAPI. Arrows show the cells positive for corresponding markers indicated in each image. Images are 

representative from 5 individuals. 

In line with the observation in human plaque, examination of innate immune phenotype of rat 

neointimal NOD1high SMCs suggested a similar innate immune phenotype to human intimal 

SMCs. Besides NOD1, rat neointimal SMCs were characterized by constitutively expressing 

a broad profile of innate immune receptor such as NOD2, NLRP3 and TLR2-5, some of 

which are typically only seen in myeloid cells. Intriguingly, IFIT-1, normally silent or 

expressed at very low constitutive levels, was also remarkably high expressed in rat 
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neointimal SMCs (Figure 9). IFIT-1 has been shown to specifically recognize and bind 

mRNAs or proteins of a number of viruses, thus play important role in host defense against 

viral infection244. This may considerably compensate role of TLR7-9 that are lower expressed 

in intimal SMCs than myeloid cells.  

Thus, these data suggest that rat NOD1high SMC recapitulate the immune phenotype of 

human NOD1high SMC in atherosclerosis and distinguished from medial SMCs and 

macrophages by the TLR2+NOD2+NOD1high signature, thus being an ideal model for 

deciphering their immune function. 

 

Figure 9.  Rat neointimal SMCs display a unique innate immune signature. qPCR analysis for ()Nod1-

2; Nlrp1/3; P2rx7; Tlr2-9 and Ifit-1 in the rat medial (M-SMC) and neointimal SMC (I-SMC) populations 

and peripheral blood derived monocytes. Data is presented as mean ± SEM, *p < 0.05; **p < 0.01; ***p < 

0.001; ****p < 0.0001, unpaired t test, n=3-6. 

Functional studies demonstrated that this innate immune signature confer rat 

TLR2+NOD2+NOD1high SMC the ability to react to an extensive list of microbial 

components, leading to production of inflammatory mediators including nitric oxide, 

cytokines and chemokine (Figure 10A). Moreover, rat TLR2+NOD2+NOD1high SMC possess 

intrinsic innate effector activity, spontaneously producing leukocyte chemokine CCL-5 in the 

absence of exogenous stimuli (Paper I), and the activity will be further enhanced when innate 

immune receptor NOD1 and NOD2 are activated. CCL-5 has been recognized as an 
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important chemokine in immune cell recruiting, however, a recent study identified another 

role of CCL-5/CCR5 axis in promoting SMC proliferation and phenotype transition from 

contractile to synthetic245. Thus, the production of CCL-5 from these SMC may serve as an 

important therapeutic target in the context of atherosclerosis.  

Additionally, our current and previous studies have also showed that rat 

TLR2+NOD2+NOD1high SMC distinguish from medial SMC by spontaneously activated 

NFκB signals and hyper-responsiveness to pathogen derived stimuli203 (Figure 10B). Of note, 

since NLRP3 inflammsome components are highly expressed in intimal SMCs, we could not 

observe IL-1 production upon inflammsome activation. One explanation could be the 

presence of constitutive inhibitory mechanisms that impedes inflammasome mediated IL-1 

production in SMC246. However, a recent study implied a non-canonical role of NLRP3 

inflammasome in promoting foam cell formation in SMCs, which provides new insights in 

understating the SMC immune phenotype in the context of atherosclerosis247. In all, these 

findings from rat TLR2+NOD2+NOD1high SMCs strongly support the innate competence of 

intimal SMCs in human atherosclerosis, based on their similarities in the immune phenotype.  

 

Figure 10.  NOD-like receptors driven iNOS expression and chemokine production in rat 

TLR2+NOD2+NOD1high SMC. (A) Nitrite oxide production in rat intimal SMCs after DAP or MDP 

(1µg/ml) with or without IFNγ  (100U/ml) stimulation for 72-hour is analyzed in the supernatant by griess 

reagent system. (B) CCL5 production in rat neointimal SMCs after 24-hour DAP or MDP (1µg/ml) with or 

without Rip2 or NFκB inhibitors (SB203580 1µg/ml, BAY-11-7082 10nM) is measured in the supernatant 

by Elisa. Data is presented as mean ± SEM, ***p < 0.001; ****p < 0.0001, one-way ANOVA followed by 

Tukey’s multiple comparisons test, n=3-6. 

Of note, the numerical quantification of human plaque cells showed comparable amount of 

TLR2+NOD2+NOD1high SMCs and macrophages with similar innate immune phenotype 

(Figure 11). Together with the phenotypic characterization of human intimal SMCs and 
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functional investigations in rat neointimal SMCs, these data strongly support a distinguished 

innate immune capacity of the TLR2+NOD2+NOD1high SMCs in inflammation initiation and 

propagation. The innate immune receptors equipped by these SMCs enables them to direct 

interact with environmental danger signals, triggering the activation of intracellular signaling 

like NFκB and RIP2, and mediating the production of NO, chemokines and cytokines. In 

comparison, lesional macrophages, the classic innate immune effector cell in atherosclerosis 

lesion, with the expression of most innate immune receptors except NOD1, may serve as the 

dominant effector cell in phagocytosis, efferocytosis and the cytokine production such as IL-

1β and TNF-α etc.  

 

Figure 11.  TLR2+NOD2+NOD1high SMCs serve as potent innate effector cells in human 

atherosclerosis. (A-B) Immunofluorescence micrographs of (A) NOD2 and (B) TLR2 expressing SMCs 

(SM-α-actin+) and macrophages (CD68+) in human carotid plaques. Images are captured from the region 

indicated in the white-box of the schematic plaque in Figure 8A. Arrows show NOD2/TLR2 expressing 

SMCs and arrowheads show NOD2/TLR2 expressing macrophages. Pie charts show the percentage of 

NOD2/TLR2 positive SMCs and macrophages in total NOD2/TLR2 expressing cells (quantified as the 

average of five fields for each specimen, n=8-22).  

In conclusion, the identification of the intimal SMC population with TLR2+NOD2+NOD1high 

imprint in human plaque highlights the importance of SMCs in atherosclerotic inflammation 

and stabilization, arguing an indispensable role for SMCs in addition to monocyte-derived 

macrophages and other myeloid lineage cells. Moreover, the clarification of innate immune 

phenotype of SMCs provides a mechanistic explanation of the pro-inflammatory properties in 
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intimal SMC that has been implicated previously. Instead of passively recognized 

inflammatory activity, SMCs may function as potent innate immune effector cells in vascular 

inflammation and immune homeostasis.  

4.3 INFLAMMASOME DRIVEN IL-1 PRODUCTION IS LINKED TO 
HYPERLIPIDEMIA AND PLAQUE COMPLEXITY   

Despite the CANTOS trial demonstrated IL-1β as an appealing therapeutic target for human 

atherosclerosis and related complications, there are still serious gaps in our understanding of 

IL-1 production in atherosclerosis. Paper III investigated the inflammasome-IL-1 activity 

and regulation in advanced atherosclerosis using transcriptome analysis, immunostaining and 

ex vivo culture in human atherosclerotic plaques. Firstly, a heat map generated from 

microarray based gene expression analysis in carotid plaques revealed that atherosclerotic 

plaques were enriched with a broad reservoir of inflammasome transcripts, characterized by 

top expression of both canonical inflammasome sensors Nlrp1-3248, Nlrp8-9, Nlrp11-12, 

Nlrc3-5, Naip, Pyrin and Absent in melanoma 2, (Aim2), and also non-canonical 

inflammasome components caspase-4, -5. Of them, Nlrp6, Nlrp12, Nlrc4, caspase-4 and the 

recently reported Nlrp3248 were highly expressed in symptomatic plaques compared to 

asymptomatic plaques (Figure 12). These highly suggest that apart from NLRP3, there are 

possibly additional inflammasome pathways relevant to IL-1 signaling in atherosclerosis. 

 

Figure 12.  Selected inflammasome components are associated with symptomatic atherosclerotic 

plaques. Heat map representation of the top 5 differentially expressed inflammasome genes in 

atherosclerotic plaques from patients without clinical symptoms (asymptomatic, n = 40) and patients with 

clinical symptoms (symptomatic, n=85). Gene expression was determined by ribonucleic acid microarray 

analysis. P values are based on Mann-Whitney U test. The scale bar shows color-coded differential 

expression, with red indicating higher levels of expression and blue indicating lower levels of expression. 

Consistently, the markedly elevated levels of NLRP3 and NLRC4 in atherosclerotic plaques 

were furthermore underscored by the IL-1β production in response to their external ligands 

(ATP and S.typh, respectively) in plaque-derived tissue (Figure 13A). Despite a 

proatherosclerotic role of AIM2 in mice has been proposed from recent studies249, 250, we did 

not observe AIM2 induced IL-1β response in our current plaque culture model. However, 
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other potential effectors from AIM2 activation had not been evaluated in our study. Thus, the 

contribution of AIM2 in human atherosclerosis needs to be further investigated. Additionally, 

increased plaque caspase-4 expression and LPS stimulation boosted IL-1β together pointed to 

the direction of non-canonical inflammasome activation, an alternative mechanism that has 

been demonstrated for IL-1β in murine macrophages in vitro but has not been shown in 

human atherosclerotic plaques.  

Of note, an equivalent quantity of IL-1α production upon LPS stimulation was also observed 

in human plaques (Figure 13B). Given the pro-atherosclerotic role of IL-1α from previous 

study251, an uncontrolled IL-1α generation can be as important as IL-1β in the pathogenesis of 

atherosclerosis. In all, these data suggest that most advanced atherosclerotic plaques retain a 

considerable inducible IL-1 capacity, being constituted by canonical and non-canonical 

inflammasomes.  

 

Figure 13.  Canonical and non-canonical inflammasome activity in atherosclerotic plaques. (A) IL-1β 

production by atherosclerotic plaque samples in response to NLRP3 activators ATP (5 mmol/l), NLRC4 

activator Salmonella typhimurium (S. typh) (10 mmol/l), or AIM2 activator (poly dA dT) (10 mg/ml). The 

concentration of IL-1β in the supernatant was quantified using ELISA. Data are shown as mean±SEM; n= 

3 to 7. (B) Release of IL-1 cytokines from atherosclerotic plaque samples upon lipopolysaccharide (LPS) 

challenge (100 ng/ml for 24 h). IL-1α (n=16) and IL-1β (n=24) concentrations in the supernatant were 

measured by ELISA. P values are based on Mann-Whitney’s U test. ns, not significant. 

An important observation of the present study is the relationship between plaque IL-1 

signaling and the classic proatherogenic risk factor LDLc. Compared with individuals with 
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circulating LDLc below 130 mg/dl, the average of LPS inducible IL-1β was more than two-

fold higher in the individuals whose circulating LDLc over the borderline high (>130 mg/dl), 

indicative of a potential role of LDL in the regulation of plaque IL-1 signaling (Figure 14A). 

Indeed, danger signals derived from LDL like oxidized LDL and cholesterol crystals has been 

shown to provide both signal 1 and signal 2 for priming and activating inflammasome and 

promote IL-1 production in macrophages41, 104, 252. LDLc levels may thus, indeed, serve as an 

important parameter for plaque IL-1 signaling and identification of the patients prone to 

inflammasome activation. Furthermore, we found that atherosclerotic plaque tissues from 

patients on no or low-intensity statin therapy mounted much higher IL-1β production upon 

stimulation. Taken together, these data lend support for an aggressive lipid-lowering therapy 

in patients with advanced atherosclerosis as an important translational aspect. However, 

optimal LDLc goals must be carefully evaluated due to the individualized risk factors in 

clinical practice. The LDLc values provide clinicians with actionable information to help 

further optimize medications and improve outcomes.  

Another important finding is that IL-1 signaling was significantly upregulated in the culprit 

lesions featured by imaging signs of one of the complexities as hemorrhage, ulceration or 

calcification (Figure 14B). In combination with increased expression of inflammasome 

components in symptomatic plaques, these data suggest inflammasome pathways are primed 

and prone to activation in more complex and biologically active plaques.  

 

Figure 14.  Plaque high IL-1 activity is linked with uncontrolled hypercholesterolemia and disease 

complexity. (A) Analysis of the relationship between LPS induced plaque IL-1 responses and serum total 
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cholesterol, LDLc and triglycerides. P-values based on Mann-Whitney’s U test, data shown as mean ± 

SEM, n=14. (B) IL-1β fold-increase by LPS stimulation (100 ng/ml, 24 hours) in cultured carotid plaques 

with low or high degree of complexity measured by ELISA in supernatant. P-values based on Mann-

Whitney’s U test, data shown as mean ± SEM, n=6-15.  

At last, we show that LPS-triggered IL-1β and IL-1α secretion could be effectively inhibited 

by MCC950, a recently developed NLRP3 inhibitor253 (Figure 15). This is in keeping with an 

experimental in vivo study noting a reduction in atherosclerotic lesion development by 

inhibition of the inflammasome with MCC950254. On the other hand, since the current IL-1β-

blocking antibody still has the drawbacks such as heightened risk for infection and high 

economic cost7, targeting the inflammasomes with MCC950 may be a promising therapeutic 

alternative to inhibit the IL-1 signaling in atherosclerosis. 

 

Figure 15.  Inflammasome inhibitor dampens plaque IL-1 activity. ELISA assessment of LPS induced 

IL-1α and IL-1β production in the carotid artery plaque tissues pre-treated with or without MCC950 (100 

nM). MCC, MCC950; n=6, Wilcoxon matched-pairs test.  

4.4 TRIM21 INFLUENCES ATHEROSCLEROSIS VIA REGULATION OF TH17 
RESPONSES 

Previous studies have shown that TRIM21 is predominantly expressed in haematopoietic 

cells and play important roles in controlling innate immune responses and tissue 

inflammation255, 256. However, the role of TRIM21 in atherosclerosis is unknown. Paper IV 

investigated the role and cellular mechanism of TRIM21 in atherosclerosis using a bone 

marrow transplantation mouse model. A myeloid TRIM21 deficiency was achieved by 

reconstituting bone marrow from Trim21-/- mice into Ldlr-/- mice, which followed by a high-

fat diet kept for 6 or 12 weeks after the transplantation. Herein, Trim21-/- bone marrow 

chimeras developed significantly larger atherosclerotic plaques (Figure 16A). Intriguingly, 

multiple signs of increased plaque stability were observed in these Trim21-/-Ldlr-/- chimeric 

mice, indicated by increased collagen content and fibrous cap thickness (Figure 16B). In 

addition, increased CD4+ T cells with higher IL-17A production instead of IFNγ was also 
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observed in the lesion, implicating a Th17 response driven by TRIM21 deficiency in disease 

development (Figure 16C, 16D). 

 

Figure 16.  Trim21 deficiency increases atherogenesis and fibrous content with enhanced local Th17 

response in plaques.  (A) Lethally irradiated Ldlr-/- mice were transplanted with bone marrow from 

Trim21+/+ or Trim21-/- mice, and fed a high-fat diet for 12 weeks (n= 8; 10). Lesion size was measured by 

Oil Red-O staining at the aortic root. (B) Collagen content visualized in polarized light after Picrosirius 

Red staining in the aortic root. (C) CD4 Positive cells detected by immunohistochemistry staining in the 

aortic root. (D) Gene expression of CD4, IL-17A, and IFNγ in the aorta assessed by RT-PCR relative to 

HPRT. Trim21+/+->Ldlr-/- depicted with open circles and Trim21-/-->Ldlr-/- with black boxes. P-values 

based on Mann-Whitney U test, *P<0.05, ***P< 0.001, ****P< 0.0001, data shown as mean ± SEM.  

To understand how TRIM21 is influencing T cell biology, an in vitro T cell differentiation 

experiment was performed using naïve T cells. Consistently, instead of Th1 or Th2 

differentiation, Trim21 deficient T cells differentiated into Th17 cells as shown by both 

intracellular cytokine staining and quantitative RT-PCR (Figure 17A-C). These data for the 

first time demonstrated that Trim21 directly regulates the generation of Th17 cells in a cell-

intrinsic manner. Moreover, further investigation of the phenotype of Th17 cells generated by 
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Trim21-/- cells indicated a rather nonpathogenic phenotype based on gene expression 

profiling257, 258. Due to the mysterious role of Th17 in atherosclerosis, our data may bring new 

clues for future studies.  

 

Figure 17.  Enhanced Th17 differentiation of naïve Trim21-/- CD4+ T cells. CD4+CD44-CD62L+ naïve 

T cells were cultured under conditions promoting T helper cell differentiation for 5 days. Cells were 

analyzed by flow cytometry and RT-PCR. For flow cytometric analysis, live CD3+ T cells were stained and 

analyzed for the expression of lineage specific cytokines. (A) Cells differentiated into Th1, (B) Th2 cells, 

and (C) Th17 cells. Trim21+/+ open circles and Trim21-/- black boxes (n= 6 in each group), representative 

data of three independent experiments. P-values based on Mann-Whitney U test, *P<0.05, **P< 0.01, data 

shown as mean ± SEM. 

To elucidate the clinical relevance of TRIM21 in human atherosclerosis and translate our 

findings from mouse experiments, we analyzed the transcription level of TRIM21 and Th17-

associated genes in human atherosclerosis plaque using BiKE cohort. Surprisingly, almost all 

the essential regulators of Th17 response were inversely correlated with TRIM21 expression, 

including key transcriptional factors as IRF4 and RORγT, crucial cytokines for Th17 cells 

maintaining as GM-CSF and IL-23, and the signature cytokine IL17A. Furthermore, inverse 

correlation was also found between TRIM21 and Collagen type 1, which went in line with the 

increased collagen content in the plaques of Trim21-deficient mice (Figure 18).  
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Figure 18.  TRIM21 expression correlates to the Th17 pathway in human atherosclerotic plaques. 

Pearson correlation analysis between gene expression of TRIM21 and IRF4, RORγt, GM-CSF, IL-23, IL-

17A and Collagen type 1 in atherosclerotic plaques (obtained from 127 patients undergoing carotid 

endarterectomy), respectively. 

In conclusion, we here demonstrate a potent regulatory role and provide a mechanistic insight 

of TRIM21 in atherosclerosis development. TRIM21 deficiency leads to a more stable plaque 

phenotype with higher collagen content, which is linked to a newly discovered role for 

TRIM21 as an intrinsic negative regulator of Th17 differentiation.  

 

4.5 CONCLUDING REMARKS 

This thesis illustrated the roles of NOD1, intimal SMCs, NLRP3 inflammasome and TRIM21 

in contribution to the complex pathogenesis of atherosclerosis (Figure 19). Specific 

conclusions include the following: 

Paper I provides key insights on the role of NOD1 in vascular biology and its molecular 

mechanisms. Activation of NOD1 causes extensive atherosclerosis throughout aorta and 

striking occlusive atherosclerosis in both coronary and innominate arteries that are 

accompanied by transmural infiltrates and arterial wall demolition. NOD1high SMCs are likely 

the vascular innate immune cell capable of detecting vascular infection and injury, 

transducing danger signals into inflammatory responses and accelerating atherosclerosis. 

On the basis of the study in NOD1high SMCs, Paper II further identifies a SMC 

subpopulation in human atherosclerosis lesion possessing a TLR2+NOD2+NOD1high imprint 

with distinguished proinflammatory activity. The considerable numeral capacity and 

functional potential of this SMC population suggest them as an important source of arterial 

resident innate immune effector cells in human atherosclerosis that may have been 

underestimated. 
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On the other hand, the role of NLRP3 inflammasome and IL-1 signaling seems to be 

dominated by macrophages. In Paper III, the expression and activity of multiple canonical 

and non-canonical inflammasome pathways in atherosclerotic plaques have been 

investigated. Producing IL-1 has been shown as a hallmark of advanced atherosclerosis, 

while IL-1β yield is markedly increased in more complex plaques and in individuals with 

higher levels of circulating LDL cholesterol or receiving no or low statin treatment. 

Moreover, IL-1generation in human atherosclerotic plaques is suppressible by inhibition of 

the inflammasome, providing a novel angle to the reduction of plaque inflammation.   

Last but not least, Paper IV strongly supports the notion that Trim21 negatively regulates the 

generation of non-pathogenic Th17 cells that proposes a novel mechanism of the stabilization 

of atherosclerotic plaque. 

Taken together, the innate immune system is presented as a diverse and coordinated 

regulatory network, which plays important roles in the pathogenesis in atherosclerosis.   

 

 

Figure 19. Schematic summary of the innate immune mechanisms in atherosclerosis. Activation of 
NOD1 and other innate immune receptors in intimal VSMCs leads to a potent chemokine production, 
which drives a continuous macrophage and T cell recruitment into the lesion. Lesional macrophages sense 
the danger signals generated in the plaque that triggers the activation of inflammasomes, which controls IL-
1 production and is associated with disease activity. In addition, non-pathogenic Th17 cells regulated by 
Trim21 promote fibrous cap formation, thus contribute to plaque stabilization.  
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