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ABSTRACT 
Type 2 immune responses are characterized by the production of cytokines IL-4, IL-5 and 

IL-13. They are known to have crucial physiological and pathophysiological functions in the 

body. Data from recent studies indicate their importance in the containment and clearance of 

helminth infections. They are induced to generate rapid response against helminth infections 

even before the elicitation of specific adaptive responses. On the other hand, Th2 responses 

are also involved in the promotion of inflammatory conditions such as allergy and asthma. 

Studies from the past have probed the mounting of type 2 immune responses and Th2 

cytokine production by innate immune cells. In this thesis, we set out to study two innate 

cells, which are considered to be one of the key drivers of allergic conditions – mast cells and 

group 2 innate lymphoid cells.  

In paper I, an optimized protocol to efficiently isolate mast cells from human lung tissue 

with high yield and cell viability is described. Mast cells are heterogeneous, tissue-resident 

inflammatory cells characterized by the expression of high-affinity IgE receptor, FcεRI, and 

CD117/KIT, the receptor for stem cell factor (SCF). The isolation of mast cells was 

performed by a sequential combination of washing, enzymatic digestion, mechanical 

disruption and Percol centrifugation (WEMP). The yield from WEMP protocol was 

significantly high when compared to the conventional enzyme-based method. The isolated 

cells were further used for flow cytometry-based characterization studies and single cell RNA 

sequencing.  

Paper II is a study of human lung mast cells at the single cell level using RNA sequencing. 

The classic marker expression by mast cells revealed the integrity of the sort and the 

sequencing reactions. Following this, analyses of sequencing data was performed to depict 

highly variable genes, highly abundant genes and the presence of subpopulation. Preliminary 

data displayed homogeneity within the sorted population of the isolated lung mast cells with 

no clear subpopulations.  

In paper III, the fundamental aim was to determine the effects of prostaglandin D2 on ILC2. 

ILC2 play critical roles in the initiation and promotion of type 2 immune responses. The 

results indicated the constitutive expression of prostaglandin D2 synthase by ILC2 and the 

endogenous PGD2 production was involved in the activation of ILC2 through CRTH2 

receptors in a para/autocrine fashion. 

In paper IV, the study was designed to elucidate the effect of PGE2 on ILC2. ILC2 were 

isolated, cultured and expanded under different treatment conditions to study the effect. PGE2 

was found to have suppressive effect on GATA3 and IL-2 receptor (CD25) expression and 



cytokine production by ILC2. The suppressive effects were mediated by EP2 and EP4 

receptors. The use of EP2 and EP4 agonists can therefore serve as potential therapeutic target 

in controlling ILC2 mediated inflammation.  

In conclusion, the results from our studies add to the already known information about 

initiation, maintenance and regulation of type 2 immune responses. They serve as basis for 

future mast cell-ILC2 interaction studies that could provide potential insights into their 

contribution in allergic and other TH2-driven conditions.   
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1 INTRODUCTION 
Our immune system is an extensively evolved phenomenal defence system made up of a 

humongous array of cells primarily dedicated to protect our body from invading pathogens. 

They can not only distinguish foreign from its own but also can recognize the subtle 

differences between the foreign molecules and therefore can display remarkable specificity. 

Traditionally, immune responses to pathogens are broadly divided into two main categories 

- innate and adaptive. The very first line of defence upon pathogen encounter occurs in a non-

specific, yet effective manner by the recruitment of a number of innate cell types. This type 

of response is important for the rapid initial action to pathogen entry and exists from the birth. 

In adaptive immune responses, the initial recognition of the pathogen is relatively delayed 

yet is followed by the mounting of an appropriate effector response specific to the pathogen 

in order to eliminate or neutralize them. Adaptive arm of the immune system mainly 

constitutes B and T cells, which can respond in a highly specific way. The subsequent 

exposure to the same antigen induces a more accelerated memory response by B and T cells. 

The innate arm, on the other hand, is comprised of rapidly responding cells such as 

macrophages, neutrophils, dendritic cells that are readily present at the infection site and 

actively participate in the control and clearance of infection.  

1.1 TYPE 2 IMMUNE RESPONSES 
 
Type 2 innate immune responses are characterized by the production of type 2 cytokines IL-

4, IL-5, IL-9 and IL-13 by the recruitment and activation of TH2 cells, eosinophils, mast 

cells, ILC2 and basophils. Protective aspect of type 2 immunity lies majorly in orchestrating 

resistance against parasitic infections at the cutaneous and mucosal surfaces [1, 2]. Recent 

evidences suggest their protective roles in autoimmune diseases by suppressing type 1 driven 

tissue damage, inflammation and fibrosis [3-6]. Contrastingly, they play critical roles in the 

promotion of allergic inflammatory conditions like asthma, atopic dermatitis and anaphylaxis 

[7, 8].  

In response to allergens and helminths, epithelial cells produce TSLP, IL-25 and IL-33, which 

serve as the major inducers of type 2 immune response [9-11]. TSLP is identified as a potent 

Th2 activating cytokine that causes CD4+ T cell differentiation by the induction of dendritic 

cells. These TSLP-activated dendritic cells in turn produce Th2 attracting chemokines 

CCL17, CCL22, CCL24 [12, 13] 

In mice, IL-25 promotes TH2 response by bringing about eosinophilia and IgE production 

leading to type 2 cytokine release especially in the lung. This type of IL-25 induced Th2 
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response advocates inflammatory conditions in the lung [14, 15]. IL-33-activated basophils 

build up type 2 responses by generating IL-4, IL-5, IL-6 and IL-13. IL-33 administration in 

mice caused the IgE release, hyperplasia of goblet cells and eosinophilia [16-18]. 

The cytokine mediated effects of these responses can be both specific and non-specific. 

Recruitment and activation of innate cells by IL-25 and IL-33 caused the production of IL-5 

and IL-13. This effect was shown to occur entirely independent of B and T cells [14, 19, 20]. 

As mentioned previously, mast cells and basophils produce TH2 cytokines upon activation. 

In addition to this, NKT cells and ILC2 have IL-25 receptor (IL25R) and therefore can be 

activated by IL-25 that ultimately causes IL-13 release [21, 22]. In addition to suppression of 

TH1 driven inflammation as discussed above, type 2 cytokines such as IL-4 and IL-13 have 

found to be driving macrophages to promote tissue repair and regeneration following 

inflammation [23]. Increase in Th2 cytokine levels in response to chronic helminth infection 

often result in fibrotic lesions. Initial fibrosis resulting from worm egg storage in liver, lung 

and gut is highly altered by IL-4, IL-5 and IL-13 in addition to TH2 activated eosinophils 

and macrophages causing type 2 fibrotic condition [24, 25]. Such contrasting roles of type 2 

immunity in health and diseases explain the persistent efforts made in the medical field to 

carefully target their pro inflammatory roles without sacrificing their effective functions in 

health. 

1.1.1 Type 2 immunity in allergic inflammation 
Repetitive exposure to allergen leads to chronic inflammatory condition. Long term 

persistence of inflammation leads to asthma characterized by airflow obstruction, hyper 

responsiveness, mucus accumulation and airway remodelling. Asthma is recognized as a type 

2 inflammatory disorder characterized by type 2 cytokine-driven inflammation [10]. IL-4 

induces the basophil activation and IgE-dependent mast cell degranulation leading to the 

release of their mediators. IL-5 and IL-9 autonomously induce mast cell hyperplasia and 

eosinophilia. IL-13, on the other hand, promotes the hyperplasia of goblet cells during mucus 

production and airway hyper responsiveness in asthma. Elementary mouse models of asthma 

revealed the crucial roles of TH2 cells, mast cells and eosinophils in driving the disease [26, 

27]. 

IL-33 is a potent activator of IL-5 and IL-13-producing ILC2, which are important during 

initial inflammatory phases. They also create in interface between IL-33 and eosinophils to 

facilitate eosinophilic inflammation as observed in ILC-deficient mice [28-30]. TSLP-

deficient asthma mice models demonstrated resistance to airway hyper responsiveness 

indicating their allergy promotion roles [31]. The detailed pro inflammatory roles of mast 
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cells and ILC2 during the latent and chronic phase of allergic inflammation has been 

discussed in the following sections of this thesis.  

1.2 MAST CELLS 
Mast cells have remained inexplicable for over a century since they were first described as 

’mastzellen’ by Paul Enrich in the year 1878. Persistent research carried out in the field has 

helped unravel their characteristics and functions over the years.  

1.2.1 Mast cells  
The progenitors of mast cells originate from the pluripotent hematopoietic cells of the bone 

marrow and circulate in blood at low frequencies. The progenitors migrate to tissues where 

they mature under the influence of epithelial and mesenchymal-derived growth factors such 

as SCF and become exclusively tissue resident [32, 33]. These non-proliferative mature tissue 

resident cells are well-characterized by their surface expression of classic markers such as 

the high affinity immunoglobulin E (IgE) receptor, FcεRI, stem cell factor receptor CD117 

[34]. The secretion of various mediators and cytokines by mast cells has been shown to play 

significant roles in inflammatory and allergic responses. Mast cells are found throughout the 

body, particularly in connective tissues. They contribute to body’s first line of defence by 

their presence particularly in tissues in close contact with the environment; i.e., skin, lung 

and the gastrointestinal tract [35, 36]. 

1.2.2 Heterogeneity and activation 
The heterogeneous nature of mast cells is due to the variation displayed by them in terms of 

granularity, protease content, responsiveness to agents and mediator release. Based on the 

above factors, mast cells are compartmentalized in different parts of the same tissue such as 

the lung. Mast cells are classically divided into two main subsets based on their protease 

content – MCT and MCTC. Tryptase positive cells, often found in lung parenchyma and 

mucosal tissues, are classified as MCT. Mast cells that express chymase, carboxypeptidase 

and cathepsin G in addition to tryptase are called MCTC, predominantly found in connective 

tissues such as the skin [37]. A recent study described the presence of a new mast cell subset 

in airway epithelium of asthmatic patients expressing tryptase and carboxypeptidase A3, but 

not chymase[38]. Detailed description and characterization of such mast cell subsets are 

crucial in order to understand their role in homeostatic and disease conditions. Researching 

mast cells in such depth is made possible by recent advancements in the field that help us 

study them at single cell resolution.  
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As described above, mast cells are the storehouses of numerous granules such as histamine, 

serine proteases, chymase, heparin, and cytokines [39]. The classic and well-defined mast 

cell activation occurs through cross-linking of two IgE-molecules bound to high-affinity IgE 

receptors cross-linking, an activation that is more relevant in allergic responses. Initial 

exposure to the allergen causes the binding of IgE to the FcεRI receptor on the mast cells. 

Subsequent allergen exposure results in the cross linkage of FcεRI resulting in the initiation 

of signalling cascade. The proceeding series of events ultimately lead to mast cell 

degranulation – release of their cellular contents.  Upon their activation, mast cells also de 

novo synthesize and release inflammatory cytokines and lipid mediators that mediates 

various effects. [40].  

 
Figure 1: IgE dependant mast cell activation. 

 

Mast cell activation occurs also through a number of IgE independent pathways. Their 

location proximal to the external environment makes their encounter of pathogen likely and 

therefore their activation through pattern recognition receptors dependent [35]. Products of 

inflammation such as complements, IgG, cytokines, chemokines, adenosine etc. can also 

trigger mast cell activation. Mast cells located at the sensory nerve endings can be activated 

by neurotrophins and neuropeptides suggesting their contribution to neuro-inflammatory 

disorders [41]. Recent studies identified the activation of MCTC by Mas-related G protein-

coupled receptor X2 (MRGPRX2) leading to phospholipase C mediated release of 

cytoplasmic calcium release. [42]. 
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1.2.3 Mast cells in type 2 immune response 
In parasitic infections, antigen specific IgE-dependent mast cell degranulation results in 

release of growth factors like IL-3, IL-4, SCF, IL-9, which aids in regulating gastrointestinal 

permeability and recruitment of immune cell to the infection site. Mast cells play crucial role 

in the regulation of type 2 immune responses to helminth infections. Th2 responses have been 

shown to be inhibited when mice lacking mast cells (KitW/ KitW-v and KitW-Sh) were infected 

with parasitic helminth Heligmosomoides polygyrus bakeri. Apart from antigen specific IgE 

dependent degranulation, mast cells can also be activated in an IgE independent manner in 

response to parasites. During intestinal helminth infections, the secretory products serve as 

ample stimulatory molecules that can be sensed by mast cells through their surface TLRs, 

protease-activating receptors (PARs) and cause their degranulation [43]. The tissue derived 

cytokines IL-33 and TSLP released in response to pathogens and allergens can act on mast 

cells affecting their functions [44-46]. 

1.2.4 Physiological role of mast cells 
The widespread distribution particularly at the interface between host and external 

environment put mast cells in a privileged position to take part in biological actions and be 

one of the first responders to external stimuli [47]. Mast cells contribute to the body’s innate 

immune response by recognizing and interacting with pathogens, antigens and toxins.  

Pattern recognition receptors like TLR expressed by mast cells facilitate the direct binding 

of pathogens to them ultimately causing mast cell degranulation [48]. The release of 

inflammatory mediators thereby aids the control and clearance of pathogens. Release of such 

mast cell mediators upon TLR binding depends on the ligand and the receptor [49]. Classic 

examples of such reactions include the recognition and binding of TLR2 by bacterial 

peptidoglycan, TLR4 by LPS [50, 51].  

Mast cells also react to viral infection by producing interleukins IL-1, IL-6 and chemokine 

ligands like CCL3, CCL4, CCL8 [52, 53]. 

Number of mediators released during mast cell activation induces various physiological and 

immunomodulatory functions in endothelial, nervous and epithelial tissues. Mast cells 

maintain the tissue function and homeostasis through mediators such as histamine, tryptase 

and VEGF [54]. Mast cell tryptase has been shown to activate protease-activating receptor 2, 

which inhibits differentiation of osteoclasts [55]. On the other hand, mast cell mediators such 

as platelet activating factor (PAF), leukotrienes, t-plasminogen (tPA), heparin, tryptase are 

released by them in response to tissue injury that regulate fibrinolytic mechanisms thereby 

promoting tissue repair and remodelling [56, 57]. 
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1.2.5 Pathological role of mast cells 
In contrast to their multifunctionality in homeostasis, mast cells have typically been 

associated with pathological conditions such as allergy, asthma, mastocytosis and so on. 

Improper regulation of mast cells causes them to respond to harmless antigens in an 

imprudent manner. Under such circumstances, antigen-specific IgE that are produced by B 

cells bind to the FcεRI receptor on mast cells causing sensitization. Subsequent antigenic 

exposure ultimately results in mast cell degranulation and release of pre-formed and newly 

synthesized mast cell mediators and cytokines. The released pro-inflammatory mast cell 

contents such as histamine, prostaglandins and leukotrienes trigger allergic reactions causing 

symptoms like mucus production, edema and itch [48]. The release of cytokine leads to the 

recruitment and activation of other immune cells like T cells, eosinophils, basophils causing 

persistent chronic inflammation, tissue remodelling and fibrosis that can be observed in 

disorders like asthma [58, 59]. Crohn’s disease is characterized by the chronic inflammation 

of the gastrointestinal tract. Mast cells have shown to contribute to the disease pathology by 

releasing IL-16. The mast cell produced IL-16 causes the recruitment of circulating T 

lymphocytes to the inflammatory site [60]. In mastocytosis, a primary mast cell-driver 

disease, the clonal accumulation of mast cells is caused by a c-KIT activating mutations that 

causes mast cell accumulation in bone marrow, GI tract, skin and other organs [61]. 

Phenotypic modifications of mast cells under the influence of micro environmental changes 

in the tissue, e.g., during inflammation, determine their roles in health and pathophysiological 

conditions. Such multifunctionality brings about a need to study these cells in depth. In this 

thesis, we have described two such studies – a protocol for the effective isolation of human 

lung mast cells and their detailed characterization using single cell RNA sequencing 

platform. 

1.3 INNATE LYMPHOID CELLS 
Innate lymphoid cells are a novel heterogeneous family of cells consisting of 3 main subsets 

- group 1 (ILC1), group 2 (ILC2), and group 3 (ILC3) [62, 63]. They play roles in various 

bacterial, fungal, viral and parasitic infections [64]. Their improper regulation causes the 

worsening of chronic inflammatory conditions such as allergy, asthma, COPD, IBD etc [65, 

66]. ILCs also have roles in driving certain cancers and autoimmune disorders [67]. The 

homeostatic and inflammatory roles of ILCs are being extensively studied for the better 

understanding of their roles.  
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1.3.1 Group 2 innate lymphoid cells  
Group 2 innate lymphoid cells (ILC2) originate from the common lymphoid progenitor of 

bone marrow and become committed to ILC2 lineage. The maturation, maintenance and 

survival of ILC2 mainly rely on the transcription factor GATA3 and RORa expression. 

Genetic knockout studies in mice proved GATA3 to be a crucial transcription factor in the 

ILC2 development and regulation. Mature ILC2s are characterized by their predominant 

expression of GATA3 and production of type 2 cytokines IL-4, IL-5, IL-9 and IL-13 [68-70]. 

These cells lack antigenic receptor expression on their surface unlike B and T cells. Owing 

to this reason, ILC2 confer immune responses in a non-specific manner making them a strong 

part of the innate immune family [71]. ILC2 are highly responsive to and activated by IL-33, 

IL-25 and TSLP [72]. CRTH2 a receptor for prostaglandin D2 (PGD2) is expressed in human 

ILC2 and can activate them upon CRTH2-PGD2 binding [73].  

 
Figure 2: Activation of ILC2 

 

The two major classes of ILC2 are natural ILC2 (nILC2) and inflammatory ILC2 (iILC2). 

Natural ILC2, as the name suggests, mostly possess functions related to homeostasis [74] and 

respond to IL-33. Recent experiments on the synovial samples of arthritic patients suggest a  

possible IL-9 mediated anti-inflammatory role of ILC2 by restriction of inflammation and 

cell death.  Their close proximity to regulatory T cells at the site of inflammation and their 

abundant IL-9 production were observed in these samples [75]. On the contrary, iILC2 that 

respond to IL-25, has pro-inflammatory roles that promote certain chronic inflammatory 

conditions through their surface expression of KLRG1 and IL25R. These pro inflammatory 
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ILC2 are highly responsive to chemotactic signals and migrate between mucosal sites 

promoting cytokine mediated type 2 inflammation [76].  

Recent advancement in the field has enabled the high throughput, in-depth analyses of ILC2 

using RNA-seq, CHIP-seq platforms in order to better understand their transcriptional and 

regulatory network [77, 78]. Heterogeneity in the ILC2 exits because of their interaction with 

the different environmental situations. The gene expression profile and phenotypic variations 

exist from counterbalancing their anti and pro inflammatory roles [79]. The above described 

natural and inflammatory ILC2s are a result of the establishment of such an equilibrium. 

ILC2 subclasses have been identified based on their gene expression - ILC1/2 also expressing 

Gzma, Hopx Epas1 and ILC2/3 expressing Cxcl2, Cxcl3, Arg1 [80].  

1.3.2 ILC2 plasticity 
ILCs are known for their plastic nature, which was first observed in the ILC3 present in gut, 

where they modify their gene expression to transform into ILC1 [81]. ILC2 are able to show 

plasticity by upregulating T-bet in the presence of IL-33 and IL-1β and produce interferon g 

(IFNg) to become ILC1 [66, 82, 83]. Administration of IL-25 in mice resulted in the 

generation of IL-17 producing inflammatory ILC2, a typical ILC3 cytokine, which is in 

addition to their well-defined type 2 cytokine profile [74]. In another notch ligand mediated 

condition, ILC2 upregulate Rorgt and produce IL-17 and IL-13 causing ILC2 to ILC3 

transformation [84]. In addition to the above heterogeneous nature of ILC, recent mice 

studies identified a group of ILC that has regulatory roles through IL10 production [85]. 

1.3.3 Role of ILC2 in type 2 immune responses 
ILC2, as discussed above, performs various pro- and anti-inflammatory roles in the body 

through their predominant production of type 2 cytokines, i.e., IL-4, IL-5, IL-9 and IL-13 

upon activation through IL-25, IL-33 and TSLP. Due to the absence of an antigenic receptor, 

therefore a lack of specificity, they stand unique from the CD4+ Th2 helper cells. ILC2 play 

a role in orchestrating type 2 immune responses such as eosinophilic induction, class 

switching of B cells, expansion of CD4+ T cells, initiation of adaptive immune response.  

ILC2 from the spleen and lymph nodes of mice expressed MHC-II and co-stimulatory 

molecules such as CD80 and CD86. Combined expression of these molecules allowed the 

CD4+ T cell interaction, activation and expansion, which is critical in the clearance of murine 

helminth infection [86]. In humans, ILC2 are found in tonsils, skin, spleen, lymph nodes, 

liver, blood and lungs [87-91]. ILC2 population were assessed in helminth infected children 

in Zimbabwe. Children aged 6-13 had lower ILC2 counts when compared to uninfected 
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cases. While 14-18-year-old groups has higher ILC2 counted in comparison with uninfected 

individuals. These findings suggest an early role of ILC2 in parasitic infection and also in the 

initiation of Th2 immune response [92]. ILC2 are found to be located in proximity to the 

enteric neurons. These neurons are capable of activation and cytokine production of ILC2 by 

interacting through mediators. The vasoactive intestinal peptide (VIP) receptor engagement 

causes the enhancement of type 2 cytokine production by ILC2 [93]. Further ILC2 helps in 

the pathogen clearance and tissue repair in the lung through post viral infection through the 

release of epidermal growth factor amphiregulin, which is predominantly expressed by Th2 

cells [94]. 

Apart from the protective roles, ILC2 critically contribute to the promotion of chronic 

inflammatory condition by means of cytokine production. They are said to be the key drivers 

of type-2 mediated inflammatory diseases like asthma. Intranasal delivery of the ILC2 

activating epithelial cytokines such as IL-25 and IL-33 resulted in the induction of an allergic 

response even in the absence of B and T cells implicating the involvement of ILC2 in the 

promotion of such response [14, 29]. In the absence of T cells, papain induced lung 

inflammation by means of ILC2 suggesting the ability of these cells to stand alone in 

promoting Th2 inflammation [28]. Furthermore, ILC2 are found to be enriched in chronic 

rhinosinusitis and atopic dermatitis patients suggesting their pro-inflammatory roles in other 

sites as well. Skin-residing ILC2, however, are mainly activated by TSLP and remain 

resistant to the action of IL-25 and IL-33 [95]. This observation indicated the variability of 

ILC2 characteristics based on where they reside [96]. Much remains to be studied about 

biology and functions of these fairly new cells. The possibility of these cells to be a potential 

therapeutic target poses the need to study their key anti-inflammatory functions. In this thesis, 

we have probe into the factors involved in the activation and inhibition of ILC2 functions 

that provide new insights in understanding them better.  

1.4 LIPID MEDIATORS 

1.4.1 Arachidonic acid 
Lipid mediators have many essential physiological and pathological functions. They often 

engage in cell proliferation, migration and apoptosis. Arachidonic acid (AA) is a well-studied 

PUFA composed of 20 carbon atoms. Egg, fish, seafood and poultry are some of its abundant 

sources [97, 98]. They are generally found to be fused with the phospholipids in the cell 

cytoplasm. One fourth of phospholipid fatty acids in cells such as mononuclear cells, 

neutrophils, platelets and tissues such as brain, muscle, liver is in the form of AA [99, 100]. 

They help in maintaining selective permeability and integrity of the cell membrane serving 
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as a basic constituent of the cell [101, 102]. They are necessary for general growth and 

development, especially in newborns where they are an important nutrient supplement [103, 

104].  

AA is present adjacent to the endoplasmic reticulum and nuclear membrane of the cell [99]. 

Upon cellular activation, AA is freed from phospholipids by the action of enzyme 

phospholipase A2 (PLA) [105]. The metabolism of the released AA can lead to two main 

pathways – either by the enzyme cyclooxygenase (COX) or by lipoxygenase (LOX). The 

downstream products of these pathways are collectively known as eicosanoids and consist of 

prostaglandins, leukotrienes, thromboxanes and lipoxins. Eicosanoids have various 

biological roles in cell growth, vascular permeabilization, inflammation, blood pressure 

maintenance, platelet aggregation etc. [106]. The generation of prostaglandin G2 (PGG2) 

from the intracellular AA is catalysed by the COX enzymes [107]. Further activation of 

synthases leads to the conversion of PGG2 to PGH2. The downstream metabolites of AA 

encompass inflammatory roles such as immune cell activation, bronchoconstriction and 

vasodilation [108, 109]. 

1.4.2 Prostaglandins & Leukotrienes 
Prostaglandins are found almost throughout the body and have both pro- and anti-

inflammatory effects. Consequent to activation, mast cells release AA metabolites such as 

PGD2 and leukotriene C4 (LTC4) that have significant roles in health and diseases. PGD2 is 

a biologically active lipid that is enzymatically derived from PGH2 by the action of PGD2 

synthase [107]. PGD2 is particularly expressed by mast cells and is a classic mast cell marker. 

CRTH2 and PTGDR are the well-defined receptor for PGD2 [110, 111]. They participate in 

the recruitment of immune cells such as Th2 cells, eosinophils and basophils. They play 

critical role in the development of allergic conditions such as asthma owing to their roles in 

bronchial constriction, vasodilation and mucus production [112].  

The potential effects of PGD2 on ILC2 have been studied extensively in both human samples 

and mouse models [113]. One of their major interaction pathways is via CRTH2, a well-

known surface receptor expressed on human ILC2. Studies have demonstrated that PGD2 can 

induce ILC2 to produce IL-13 through CRTH2 receptor activation [114]. It has also been 

shown that PGD2 induced the production of IL-5 and IL-13 by human skin ILC2 [73]. They 

help in the chemotaxis of human blood ILC2 [115]. Upon treatment of CRTH2 antagonist, 

IgE-activated mast cells were found to have lesser stimulatory effects[73]. Helminth mouse 

models were found to have increased ILC2 accumulation upon PGD2 action [116]. Adding 
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to these, PGD2 is found in considerable amounts in brain and its signalling blockade in krabbe 

mouse models lowered neuro-inflammatory effects [117].  

Unlike pro-inflammatory effects, the role of PGD2 and its distal products in the resolution of 

inflammation is not well studied. LPS induced inflammation in human models causes flu-

like symptoms combined with pyrexia. The PGJ2, a downstream product of PGD2 

metabolism has been shown to have anti-pyretic effects in these models [118]. Undermining 

of inflammation by PGD2 is observed in models of pleuritis, a lung inflammatory condition 

[119]. 

PGE2 is another lipid mediator derived from arachidonic acid. It acts through the binding of 

four different E-type prostanoid receptors such as EP1, EP2, EP3 and EP4. The sensitivity 

and activation pathways of these EP receptors diverge, which explains the pro and anti-

inflammatory roles of PGE2. The protective roles of PGE2 in allergy and asthma is supported 

by recent studies in mouse models [120, 121]. In human lung, PGE2 was observed to inhibit 

bronchoconstriction induced by allergen [122]. Furthermore, immune cells such as 

macrophages, mast cells, eosinophils, neutrophils and Th2 cells are inhibited by PGE2 [123-

127]. In addition to this, PGE2 has been found to support the production of suppressive factors 

such as IL-10 [128] and trombospondin [129] by dendritic cells. They also enhance the ability 

of dendritic cells to cause T cell expansion [130-132]. EP2 and EP4 mediated PGE2 signalling 

promotes the production of Th17 cells [133-136]. 

Leukotrienes (LT) are also a class of bioactive lipids derived from intracellular AA through 

LOX enzymes. The nuclear membrane AA initially binds to 5-lipooxygenase-activating 

protein (FLAP) which transfers AA to LOX enzyme producing an unstable LTA4 [137]. 

Further conversion of LTA4 is controlled based on the cell type, like in neutrophils, LTA4 

hydration by LTA4 hydrolase (LTA4H) converted it to LTB4 [138]. The action of LTC4 

synthase causes the conversion of LTA4 to LTC4 in mast cells [139]. The extracellular 

cleavage of LTC4 produces LTD4 and LTE4. LTD4 has a notable contribution in mediating 

bronchoconstriction during allergic conditions such as asthma [140].  

1.5 INTERACTION BETWEEN MAST CELLS AND ILC2 
Extensive pro- and anti-inflammatory roles of mast cells and ILC2 in health and diseases 

suggests possible interactions between them. The elucidation of their interactions and 

therefore their ultimate effect could potentially facilitate the understanding of various 

inflammatory conditions better. Efforts have been made in the field to figure out the means 

of communication between them and this part of the thesis will review important finding 

from such studies.  



 

12 

As discussed in the previous section, ILC2 mediate immune responses via type 2 cytokine 

production playing roles in inflammation, allergy and tissue repair. Murine lung ILC2 

isolated from wildtype, RAG2-/- and STAT6-/- animals when treated with cysteinyl 

leukotrienes (cysLTs), interact with their receptors on ILC2. This leukotriene-mediated 

activation of ILC2 leads to their production of type 2 cytokines [141]. ILC2 express 

leukotriene receptors cysLT1 and especially found to be increased in atopic subjects. A recent 

study investigated the role of cysteinyl leukotrienes on ILC2. The results from this study 

showed that LTE4 facilitated the migration and cytokine production of human ILC2 in vitro. 

Further they enhanced the action of known ILC2 activators – IL-25, IL-33, TSLP and PGD2. 

These effects were hindered by cysLT1 antagonist. Further, LTE4, in presence of IL-2, 

upregulated the expression of IL-25 and IL-33 receptors [142]. Mast cells have long known 

for their production of lipid mediators such as prostaglandins and leukotrienes following 

FceRI activation. This classic characteristic of mast cells suggests a possibility of their 

interaction with ILC2 via cysLTs. Further, prostaglandin-mediated mast cell-ILC2 

interaction through CRTH2 has been demonstrated. It was observed that ILC2 were activated 

upon treatment with PGD2 from human skin tissues [73]. Further follow-up study in mice 

lung tissues showed the critical role of CRTH2-PGD2 interaction in ILC2 activation and 

cytokine release. This kind of ILC2 activation via CRTH2 was found commonly in lung 

tissues in comparison with skin ILC2. Hence the production of the potent activator PGD2 by 

mast cell, resulted in the ILC2 activation and promotion of allergic reaction in lung [116].  

Recent studies showed that serine proteases generated by activated mast cells produced 

mature forms of IL-33 that had potent effects on ILC2. The effects of tryptase-mediated 

cleavage of IL-33 3-fold increase in action when compared to the full-length IL-33. The 

cleaved IL-33 therefore caused strong increase in ILC2 and eosinophil expansion in vivo and 

lead to the production of Th2 cytokines such as IL-5 and IL-13 by ILC2 [143]. 

Th9 cells promote lung inflammation mainly by the production of IL-9. Studies conducted in 

cystic fibrosis patient samples lead to the proposal of a positive feedback mechanism wherein 

the released IL-9 induced the IL-2 production by mast cells. The action of IL-2 lead to the 

activation of CD25+ ILC2 ultimately causing the increase in IL-9 production. In addition to 

IL-9, the cytokines released from the ILC2 activation during this loop contributed to the 

inflammatory reactions [144].  
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Figure 3: Interaction between mast cells and ILC2 

 

Yet another mast cell-ILC2 interaction pathway has been recently proposed in helminth 

infected mice models. Intestinal epithelial cells undergo apoptosis during helminth infection. 

The released ATP molecule induce mast cell degranulation and IL-33 release, which causes 

the activation of ILC2 that results in IL-13 production. This ILC2 activation pathway 

ultimately leads to goblet cell hyperplasia and the clearance of helminth infection [145].  

Continuous research carried out in the field could result in more interesting insights into the 

possible mast cell-ILC2 interaction mechanisms. These data consistently help in unravelling 

the role of these cells in health and diseases.  
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2 METHODS 
 
Patient sample collection 
All the studies included in this thesis were done on freshly obtained and processed human 

samples from surgeries. We value these samples a lot and preciously protect the interests of 

our donors.  

 

Lung 
Lung tissue samples used in papers I and II were obtained from the lung resection surgery of 

tumor patients at Karolinska University Hospital, Solna, Sweden. A portion of the lung tissue 

was cut out from the region far from tumor site. The obtained tissue was stored in Krebs-

henseleit buffer on ice until the beginning of tissue processing. It was taken into account that 

the patients did not receive chemotherapy or radiotherapy. The donors were provided with 

informed written consent and the study was approved by regional review board in Stockholm.  

 

Tonsil and Buffy coats 
Tonsil and blood samples were the main sources of immune cells used in papers III and IV. 

The tonsil tissues were obtained from the routine tonsillectomy operations conducted on 

patients with obstructive sleep and apnea syndrome at ear nose throat clinic, Karolinska 

University Hospital, Huddinge, Sweden. Blood samples were provided by the blood bank at 

Karolinska University Hospital, Huddinge. The use of such samples were used with proper 

consent from patients and the studies were approved by the regional ethical board at 

Karolinska University Hospital.  

 

Flow cytometric analyses and sorting 
Flow cytometric analyses and sorting is one of the main methods used in all the four studies 

included in this thesis. The technique enables the identification and distinguishing of various 

cell populations at once based on the different surface molecules they express. The isolated 

cells from the human tissue were incubated with antibodies that can bind to the surface 

molecules on the cells of our interest. Each of these antibodies are tagged with different 

flourochromes. The focus of papers I and II involved the efficient isolation and single cell 

sequencing of mast cells. The papers III and IV involved the sorting of ILC2, expanding them 

and analyzing these cells using flow cytometer. In order to perform this, mast cells, NK cells 

and ILCs were stained for their surface markers by incubating the cells under question in a 
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pool of fluorescently labelled antibodies that bound to the surface molecules on our desired 

cells. Thereafter, the cells were stained for live/dead markers to rule out the dead cells from 

analyses. Intracellular tryptase staining of mast cells was performed by permeabilization of 

cells followed by blocking step to rule out non-specific binding using blocking buffer 

consisting of 5% dry milk and 2% FCS in PBS. Cells were thereafter stained with Tryptase 

antibody conjugated with a flourochrome and then subjected to flowcytometric analyses. 

Similarly, intracellular cytokine staining of ILCs were performed by permeabilizing and then 

staining them with appropriate antibodies. The data obtained from the flow experiments were 

analyzed using the Flowjo software. 

 

Single cell RNA sequencing 
In paper II, single cell RNA sequencing was performed using Smart-seq2 that facilitated full-

length characterization of the entire transcriptome. The sequencing process was carried out 

by our collaborators from Science for life laboratory, Solna. A brief description of the entire 

process is presented in this section. The mast cells isolated from fresh lung tissue were sorted 

as single cells into 384 well plates using a flow cytometer. The lysis buffer contained free 

dNTPs and oligo-Dt primers necessary for cDNA synthesis. Once sorted, the single mast 

cells were lysed and the released RNA were converted to cDNA by reverse transcriptase 

enzyme. This enzyme acts by the addition of 2-5 nucleotides on the 5’ end of mRNA thus 

creating overhangs mostly composed of cytosine. A template switch oligo with the same 

anchor sequence as the oligo-dT at its 5’ facilitates the CDNA extension with template switch 

oligo as template. The template switch oligo contains special locked nucleic acid that 

increases the cytosine binding strength and thermal stability. The cDNA thus carries same 

known anchor sequencing facilitating the subsequent PCR reaction. The cDNA is randomly 

amplified with Tn5 transposase containing adaptor sequence. Finally, an enrichment PCR 

introduced unique adaptor sequences to be able to pool them and run on the same lane of 

Illumina sequencing instrument. 

 

Culture, expansion and treatments of mast cells and ILC2 
Freshly sorted ILC2 were cultured in IMDM media containing Yssel’s supplement, 1% 

serum, penicillin and streptomycin. The cells were expanded and maintained in culture for 

two weeks with irradiated PBMC and JY cells as feeders. The culture was done under the 

presence of IL-2, IL-4 and phytohemagglutinin. The cells were maintained in U bottom 96 

well plates for one week in 200ul media and then to a 24 well plate, where they were 

maintained as 1ml cultures. Media was changed once in every two days. In order to treat 
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them with different culture conditions, the maintained cells were seeded as 5x104 cells/well. 

Seeded cells were thereafter subjected treatment conditions depending on the aim of the 

experiment. For LC-MS, cells were seeded at a concentration of 2.5x105 and incubated for 

24 hours. Supernatants were collected following each experiment to assess the effects using 

ELISA. 

  

ELISA 
The effect of various treatment conditions was deciphered by measuring the type and 

theamount of cytokines released by the cells into the supernatant. This is done by ELISA, a 

sandwich immunoassay that detects the specific cytokine levels. IL-5 and IL-13 were 

detected by the commercially available Duo set kit from R&D systems and human IL-13 kit 

from Sanquin.  

 

RT-qPCR 
Total RNA was extracted from the tonsil cultures using RNeasy kit from Qiagen. cDNA 

synthesis was performed by using commercially available iScript cDNA synthesis kit. For 

PCR reactions, gene specific primers and SsoAdvancedTM Universal SYBR® Green 

supermix (Bio-Rad) were used. The reactions were performed on CFX Connect Real-Time 

PCR Detection System (Bio-Rad). 
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3 AIMS  
 
In this thesis, we set out to study mast cells and ILC2 and their role in type-2 immune 
responses in detail.  
 
Paper I – To optimize a protocol to efficiently isolate mast cells from human lung tissues. 
 
Paper II  – To study human lung mast cells on a single cell level using RNA sequencing 
platform. 
 
Paper III – To determine the production of PGD2 by human ILC2 and to investigate their 
endogenous effects on ILC2. 
 
Paper IV – To elucidate the role of PGE2 in human ILC2 regulation. 



 

 19 

4 RESULTS AND DISCUSSION 
 

4.1 PAPER I: AN OPTIMIZED PROTOCOL FOR THE ISOLATION AND 
FUNCTION ANALYSIS OF HUMAN LUNG MAST CELL 

The aim of this study was to optimize a protocol to isolate mast cells from human lung tissue 

by increasing yield and not sacrificing cell viability. Modern day techniques such as flow 

cytometry, RNA sequencing at single cell level can be used to study cells, including mast 

cells, on a highly detailed level. This will enable us to understand the biology of these cell 

types and unravel their physiological and pathophysiological roles. However, mast cell being 

a highly granular tissue-resident, it is necessary to optimize a protocol to facilitate their 

efficient isolation from complex tissues such as human lung. In this paper, we developed a 

protocol named WEMP – Washing, Enzymatic digestion, Mechanical disruption and Percoll 

purification, where each and every step is optimized to reduce cell death and significant 

increase the mast cell yield. During wash, red blood cells and blood pockets in the tissue are 

gently removed in order not to lose the immune cells (Paper I, Figure 1B-C, 1J-O) and to 

avoid treating final cell suspension with repeated ACK lysis buffer to lyse RBC, which can 

affect cell viability. Increasing enzymatic digestion time can increase total number of cells 

isolated. Enzymatic digestion with collagenase can affect cell surface marker, which is vital 

for fluorescence-based cell analyses. In this protocol, we however did not change enzymatic 

digestion time from conventional protocol (45 minutes). We instead included an additional 

step called mechanical disruption, where we collect enzymatically digested tissue pieces and 

use a 50ml syringe to mechanically disrupt it 10 times (repeated thrice) to squeeze out tissue-

resident cells such as mast cells (Paper I, Figure 1 S-U). This step will not only squeeze 

mast cell in particular but also other tissue-bound cells such as macrophages. Also, a 

conventional Percoll based mast cell purification by using 70%-30% Percoll interface might 

not be efficient to isolate all mast cells. Therefore, we re-suspended cells from mechanical 

disruption in 30% Percoll, centrifuged it and isolated all immune cells along with remaining 

RBCs. Using this Percoll gradient, larger alveolar macrophages will be collected in the 

supernatant along with cell debris (Paper I, Figure 1W). Cells are then washed and treated 

with ACK lysis buffer to get rid of RBC (Paper I, Figure 1X). Yield of human lung mast 

cell from WEMP protocol was significantly increased compared to conventional protocol 

(enzymatic digestion) (Paper I, Figure 3). We also isolated ILC2 and compared it with 

conventional protocol. Percentage of ILC2 of CD45 was similar between WEMP and 

conventional protocols. However, increase in total number of cells isolated using WEMP 
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protocol means that increase in total number of ILC2. This is important as ILC2 are known 

to be rare in number and in in vitro experiments using freshly isolated ILC2 and single cell 

sorting, such increase will be effective. Another application of WEMP protocol is isolation 

of all immune cells using 30% Percoll, which enables us to isolate all immune cells including 

lymphocytes and granulocytes. This is particularly helpful in studying different cell types at 

once, as we managed to do the flowcytometric analysis and sorting on lymphocytes and 

granulocytes using same FACS panel. Also, more cell numbers mean that cells from such a 

tissue can be used for different studies and scientific collaborations at same time. 

4.2 PAPER II:  DECIPHERING THE HETEROGENEITY OF HUMAN LUNG 
MAST CELLS BY SINGLE CELL RNA SEQUENCING 

The aim of this study was to characterize human lung mast cells on a more detailed level 

using single cell RNA sequencing platform. Human lung samples received post-surgery were 

processed using WEMP protocol as described in paper I. Using fluorescent-activated single 

cell sorting, mast cells, ILC and NK cells were sorted in 96 well plates containing lysis buffer 

(Paper II, Figure 1). Following the quality control analyses, sequencing of the sorted cell 

populations was carried out by SciLifeLab Eukaryotic Single-cell Genomics Facility, 

Stockholm, and delivered to 183 Uppmax c2016002. Principle component analyses of the 

sequencing data showed three different sorted populations – mast cells, ILC and NK cells. 

Further results of the analyses are summarized with a particular focus on mast cells as this is 

the aim of our study.  Primarily, the expression of key mast cell markers such as CD117/KIT, 

IgE receptor FceRI, IL-33 receptor IL1RL1, tryptase, chymase, carboxypeptidase, histidine 

carboxylase, prostaglandin synthase and arachidonate-5-lipoxygenase i.e., 5-lipoxygenase, 

were confirmed from the sequencing data, which as validates the single cell sort (Paper II, 

Figure 2A-2D). Key observation here was that not all mast cells expressed chymase. This 

data is cohesive with the fact that chymase is generally not expressed by mucosal mast cells 

[146].  

Following this, top 50 highly expressed genes were found that made up to 24% of totally 

gene expressed. Well studied mast cell markers observed among the highly expressed genes 

were tyrosine kinase receptor KIT, tryptase genes TPSAB1 and TPSAB2, IL-33 receptor and 

GATA2 transcription factor.  

We then set out to decipher the highly variable genes (HVG) within the sorted cell population 

as shown in the violin plots (paper II, Figure 3A). Elucidation of HVG expression remains 

as a basic aspect of this kind of studies as it helps us identify subpopulations within a cell 

type and therefore unravel their biological functions. Recognizing subsets within a cell 
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population and understanding their roles in vivo can serve as a basis for being able to 

specifically target them in various treatment strategies. Among the identified HVG from the 

sequencing data, cathepsin G and prostaglandin endoperoxide synthase 2 (PTGS2) were 

well-known mast cell markers [147, 148]. Cathepsin G has been shown to be generally 

expressed in the mast cell subset MCTC. PTGS2 is a main enzyme that catalyses prostaglandin 

biosynthesis. Dual specificity phosphatases (DUSP6) is a MAP kinase phosphatase that has 

main role in mast cell stimulation during PI3K pathway [149]. Among the other identified 

HVG were TSC22D1, ZNF331, CD83, MAOB, SGK1, SLC43A3.  

Hierarchical clustering of batch-corrected log- HVG expression were used to cluster them 

into putative sub-populations. This analysis did not indicate the presence of subpopulation. 

The results from t-SNE plots were also consistent with this.  

Top 50 abundant genes from the sequencing data was then looked at. Among them were 

RSG1 and RSG2 – regulators of mast cell signalling in inflammation, FOS – regulators of 

mast cell degranulation, SRGN – hematopoietic core glycoprotein critical in production and 

storage of mast cell proteases, HDC – histidine decarboxylase in histamine formation and 

thereby mediating allergic diseases. Preliminary pathway analyses based on the above 

observations was carried out using enricher. Gene expression profile noted from these results 

followed by pathway analysis confirmed the involvement of mast cells in TNF, PI3K and 

MAPK pathways.  

Such thorough in-depth studies form the basis for better understanding of mast cell functions 

and building a targeted approach for the development of new therapeutic strategies. 

4.3 PAPER III: CYTOKINE-INDUCED ENDOGENOUS PRODUCTION OF PGD2 
IS ESSENTIAL FOR HUMAN ILC2 ACTIVATION 

ILC2 have long been known to be activated by epithelial derived cytokines IL-33, IL-25 and 

TSLP to produced their signature type 2 cytokines IL-5 and IL-13[150]. Although ILC2 can 

be activated by each one of these epithelial cytokines individually, their synergistic effect 

leads to a very potent ILC2 activation [151]. This highly potent type 2 cytokine producing 

effect of ILC2 is not only significant in the induction of type 2 immune responses, but also 

in maintaining them during inflammatory conditions such as allergy and asthma[152]. In 

addition to the above mentioned epithelial derived cytokines, PGD2 was also shown to be 

important for ILC2 activation, chemotaxis and proliferation [73, 115, 116]. Therefore, in this 

study our aim was to determine the possibility of PGD production by human ILC2 and its 

role in activation, proliferation and regulation of ILC2 functions. 
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Cells suspensions isolated from tonsil tissue were used to sort ILC2 by FACS. Sorted ILC2s 

were expanded in Yssel’s medium in the presence of IL-2 and IL4. After 2 weeks of 

expansion, ILC2 phenotype was confirmed by flow cytometry analysis. 

Our first goal was to investigate the effect of COX1/2 inhibition in ILC2 activation. For this, 

ILC2 were pre-treated for 40 minutes with flurbiprofen, a COX1/2 inhibitor and incubated 

with IL-2, IL-33, IL-25 and TSLP. Type 2 cytokines, IL-5 and IL-13, production was 

observed in the presence of IL-33, IL-25 and TSLP (along with IL-2). No cytokine production 

was observed in non-stimulated condition (only IL-2). However, IL-5 and IL-13 production 

by ILC2 were shown to be inhibited following flurbiprofen pre-treatment. Both IL-5 and IL-

13 release and production per cell analysed through ELISA and intracellular flow cytometry 

respectively showed that COX1/2 is required for ILC2 activation. Also, transcription factor 

GATA3, previously shown to be important for ILC2 activation, was upregulated following 

IL-33, IL-25 and TSLP stimulation. However, COX1/2 inhibition reduced GATA3 

upregulation (Paper III Figure 1). Above data suggest COX1/2 blockade inhibited the 

prostaglandin production, which might be critical for ILC2 activation. 

To confirm and investigate further, supernatant from non-stimulated ILC2 cultures, cytokine 

stimulated ILC2 cultures in presence or absence of flurbiprofen pre-treatment were analysed 

by high sensitivity mass spectrometry. Results from this analysis revealed presence of PGD2 

and its metabolites PGJ2, delta-12-PGJ2 (D12-PGJ2) and 13, 14 dihydro-15-keto PGD2 in 

supernatants of cytokine stimulated ILC2. However, supernatant from non-stimulated ILC2 

did not contain lipid mediator and the flurbiprofen pre-treatment inhibited release of lipid 

mediators by cytokine stimulation (Paper III, Figure 2).  

 

Upon confirming endogenous production of PGD2 and its metabolites by ILC2, our next aim 

was to look into effect of endogenous PGD2 on ILC2 activation. To investigate this, we aimed 

at inhibiting PGD2 release by blocking HPGDS inhibitor (KMN698) and look at its effect in 

ILC2 activation. As expected, blocking HPGDS inhibited IL-5 and IL-13 release and also 

reduced the cytokine-induced CD25 expression (Paper III, Figure 4). In the next 

experiment, we used a selective CRTH2 antagonist (CAY10471) to block CRTH2 receptor. 

Expanded ILC2 were pre-treated with the CRTH2 antagonist for 20 minutes and stimulated 

with IL-33, IL-25 and TSLP. CRTH2 antagonist pre-treatment inhibited IL-5 and IL-13 

production by ILC2 (Paper III, Figure 5). Inhibition of IL-5 and IL-13 production from 

activated ILC2 by blocking COX2, HPGDS and CRTH2 suggests that endogenously 

produced PGD2 by ILC2 upon activation is required for GATA3 upregulation and ILC2 

activation.  
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It was previously shown that PGD2 produced by mast cell is important for ILC2 activation. 

In this study we showed that ILC2 can endogenously produce PGD2 and its metabolites upon 

activation. However, it is noteworthy that the amount of PGD2 produced from ILC2 is much 

less when compared to mast cells. This finding is crucial as CRTH2 blocking can be a potent 

therapeutic target for ILC2 inhibition. 

4.4 PAPER IV: PROSTAGLANDIN E2 SUPPRESSES IL-5 AND IL-13 
PRODUCTION IN HUMAN TONSIL ILC2 

In Paper IV, we investigate the effect of another prostaglandin, PGE2, in human ILC2 

function. Taken into account the abundance of PGE2 in lung tissue and the roles of ILC2 in 

asthma conditions, it is worthwhile to investigate the PGE2 effects on ILC2 [120, 121]. This 

hypothesis is also supported by the fact that PGE2 has suppressive effects on Th2 cells, 

macrophages, mast cells and neutrophils [123-127]. 

Similar to paper III, ILC2 were sorted from human tonsil tissue using flow cytometry-based 

sorting. These sorted ILC2 were expanded for 2 weeks in Yssel’s medium with IL-2, IL-4 

and irradiated feeder cells for 2 weeks. Phenotype of expanded ILC2s were confirmed by 

flow cytometric analysis. 

Expanded tonsil ILC2, in the presence of IL-2, were stimulated with IL-33, IL-25 and TSLP 

in presence or absence of PGE2. IL-33, IL-25 and TSLP combination resulted in IL15 and 

IL-13 release, which was analysed by ELISA. PGE2 (30nM) was shown to inhibit IL-5 and 

IL-13 release. However, PGE2 had no effect on ILC2 cell viability and cell proliferation after 

24 hours. Further intracellular IL-5 and IL-13 production in ILC2 were analysed by 

flowcytometry (Paper IV, Figure 1). These results confirmed PGE2 inhibitory effect of IL-

5 and IL-13 on per cell basis. 

As production of IL-5 and IL-13 was inhibited, it was interesting to measure the effect on 

transcription factor GATA3, which is required for ILC2s cytokine production. As already 

shown in other studies, high intracellular GATA3 protein expression was high in non-

stimulated ILC2 and this was increased by cytokine stimulation[69]. Intracellular GATA3 

expression was significantly lowered in presence of PGE2. CD25, a receptor for IL-2, is also 

important for ILC2 co-stimulation. CD25 expression was upregulated following 24-hour 

cytokine stimulation and presence of PGE2 was shown to significantly lower CD25 

expression (Paper IV, Figure 2A-C). 

From the above results, it is understood that PGE2 effect on GATA3 and CD25 expression 

are part of a mechanism supporting IL-5 and IL-13 production in ILC2. 
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Our next aim was to investigate long lasting effect of PGE2 on ILC2. To study this effect, we 

incubated the expanded ILC2 in the above-mentioned treatment conditions for 72 hours. 

Compared to 24-hour time point ILC2 produced higher amount of IL-5 and IL-13 after 72-

hour incubation period. This IL-5 and IL-13 production was significantly lowered in the 

presence of PGE2 after 72-hour time point (Paper IV, Figure 3A-B). Also, GATA3 

expression and CD25 expression were low in the presence of PGE2 at 72-hour time point. 

PGE2 effect on CD25 expression was much stronger at the 72-hour time point when 

compared to 24-hour time (Paper IV, Figure 2D-F). This raised the question on the long 

lasting PGE2 effect on ILC2 proliferation as IL-2-CD25 interaction is important for 

proliferation. To answer this question, we used cell proliferation assay – cell trace violet dye 

at 72-hour time point. 

Cells were loaded with dye before treatment condition, as cells divide fluorescence of dye in 

cells diluted depending on number of cell division undergone. Cytokine stimulation of ILC2 

induced cell proliferation, which also could be attributed to increase in IL-5 and IL-13 

production compared to 24-hour time point. However, we observed the inhibitory effect on 

ILC2 proliferation in presence of PGE2 and most of the cells failed to undergo second cycle 

cell division (Paper IV, Figure 2G-I). This further confirms that PGE2 effect on per cell 

basis in reducing GATA3 and CD25 expression in ILC2. 

Importantly, similar inhibitory effect of PGE2 was observed in freshly sorted ILC2 from 

tonsil and buffy coat. Microscopic image of 5-day treatment condition of freshly sorted 

Tonsil and buffy coat ILC2 showed lower number of cells in presence of PGE2. In addition 

to this, reduced CD25 expression of ILC2 in presence of PGE2 confirmed PGE2 effect in 

ILC2 proliferation (Paper IV, Figure 4). 

Next, we investigated the mode of action of PGE2. PGE2 is known to act through 4 of its E-

prostanoid (EP) receptors, EP1, EP2, EP3 and EP4. The EP2 and EP4 mRNA expression was 

observed in tonsil ILC2. These expression levels were significantly higher when compared 

to EP1 and EP3 mRNA expression. This result was consistent with the data obtained from 

single cell study[153] (Paper IV, Figure 5). 

To further investigate role of EP2 and EP4 receptors in ILC2, we pre-treated expanded cells 

with EP2 and EP4 antagonist for 20 mins. Following this, the cells were incubated with IL-

2, IL-33, IL-25 and TSLP. IL-5 and IL-13 levels in supernatant were analysed with ELISA 

at 24-hour time point. Partial suppression of IL-5 and IL-13 release was observed in presence 

of one of the EP receptor antagonists. This indeed proved that both EP receptor antagonist 

was necessary to completely reverse PGE2 suppressive effect, confirming the EP2 and EP4 

receptor mediated PGE2 effect on ILC2. Similar involvement of EP2 and EP4 receptor effect 
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was observed in intracellular IL-5 and IL-13 production, CD25, GATA3 expression and ILC2 

proliferation (Paper IV, Figure 6). 

Comprehensively, this study showed the negative regulation of ILC2 by PGE2 through EP2 

and EP4 receptors. Adding to this effect of PGE2 in IL-5 and IL-13 production, we also 

showed their inhibitory action on ILC2 proliferation. Hence, PGE2-EP2/EP4 interaction can 

be a potential therapeutic target in allergy and asthma.  

Future perspectives 

The functions of type 2 immune responses in health and diseases are still left to be fully 

explored. By studying the critical roles played by mast cells and ILC2 can deepen our current 

knowledge about such responses. The data obtained from such studies can serve as a basis 

for future research.  

In order to probe the mast cell biology and functions, we employed a up-to-date single cell 

RNA sequencing technique. The extensive information that could be obtained from such 

studies can potentially put us one step ahead in fully understanding mast cells. To be able to 

perform an effective sequencing reaction that could yield good quality data, it was crucial for 

us to isolate intact mast cells from complex tissues such as the lung. Application of the 

WEMP protocol in human lung tissue has facilitated this and thereafter, WEMP protocol can 

be further optimized for the isolating and studying mast cells from other relevant tissues. It 

would be of great value to extend the studies by having the mast cell sequencing data as the 

basis. The gene expression profile of mast cells from lung can be compared with that of the 

other tissues such as skin to understand their tissue-specific roles.  

ILC2 stand in need for various signals for their activation and regulation. ILC2 play 

significant roles in initiating and maintaining type 2 immune responses. Improved knowledge 

about the regulation of these cells is necessary for the development of novel therapeutics. 

Several studies are being conducted to study the lipid mediators and their effects on ILC2. 

The elucidation of the activating and suppressive action of two such lipid mediators, PGD2 

and PGE2, on ILC2 from human tissues will serve as a basis for further studies. Following 

the observations from these studies, it will be worthwhile to investigate the effects of various 

other lipid mediators on ILC2 and also to determine their long-term effect. The 

prostaglandins studied here can further be exploited as a therapeutic targets by CRTH2 

antagonist or EP2/4 agonist in treating inflammatory conditions due to their activating and 

suppressing effects.  
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