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ABSTRACT 
 

Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. 
The cancer stem cells of GBM (GSCs) are notorious for being invasive as well as resistant to 
radiation and chemotherapy. The current treatment options for GBM lack specificity and 
result in severe side effects. Therefore, the need for finding novel and efficient treatments 
with high specificity in GBM has become paramount.  

In study I, to assess the role of various cytoskeletal regulators as potential biomarkers for 
prognosis and treatment design in GBM, we analyzed gene expression through a 
bioinformatics approach. Using this method, we identified six genes having a potential value 
as biomarkers. In combination, we performed a small molecule screen using various Food 
and Drug Administration (FDA) approved oncology drugs and compared the effects of these 
compounds, on GBM cytoskeleton, to the conventional chemotherapeutic temozolomide 
(TMZ). Our results show the importance of cytoskeletal regulators in GBM and the need for 
combinatorial therapies. 

In study II, to identify novel genes required for the growth of acute myeloid leukemia (AML), 
we performed a large scale short hairpin RNA (shRNA) screen in AML cells and non-
transformed bone marrow (BM) cells. We identified the chromatin remodeler, CHD4, as 
essential for leukemic growth and validated its role in-vitro and in-vivo using RNA 
interference and CRISPR-Cas9 approaches. More importantly, we found that CHD4 was not 
required for the growth of normal hematopoietic cells. The study suggests CHD4 as a novel 
therapeutic target in childhood AML. 

To identify genes that are required for the growth of GCSs, in studies III and IV, we 
performed an unbiased functional shRNA screen. Using this approach, in study III, we 
identified ubiquitin C-terminal hydrolase-L1 (UCHL1) as being selectively essential for the 
growth of GSCs. Inhibition of UCHL1 was detrimental to GBM cells, caused cell cycle arrest 
at G0 phase and induced apoptosis. Small molecule inhibitors of UCHL1 effectively and 
specifically reduced viability of GBM cells and did not affect viability or function of mature 
neurons.  

In study IV, we also developed a new shRNA/CRISPR-Cas9 modular vector system for 
efficient and multiplex validation of genes. From the screening data, we identified Ariadne 
RBR E3 Ubiquitin Protein Ligase 1 (ARIH1) and Ariadne RBR E3 Ubiquitin Protein Ligase 
2 (ARIH2) to be specifically required for the growth of GBM cells. Inhibition of ARIH1 and 
ARIH2 effectively reduced cell growth of various GBM cell lines, and loss of ARIH2 
specifically induced cell cycle arrest and sensitivity to DNA damage. Our data from studies 
III and IV suggests UCHL1, ARIH1 and ARIH2 as novel targets for future GBM therapies.     
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1 INTRODUCTION 
 

1.1 GLIOBLASTOMA MULTIFORME 

1.1.1 An Overview 

 

Glioblastoma multiforme (GBM) is one of the most common and highly malignant types of 

primary brain tumors. This disease is associated with poor prognosis and approximately 95% 

of the patients do not survive more than 5 years after diagnosis [1-4]. Standard care of 

treatment for GBM patients consists of surgical resection of the tumor, followed by several 

weeks of radio- and chemotherapy. However, the extent of surgery and intensity of therapy is 

considered carefully as the organ has mostly terminally differentiated cells and may be 

damaged irreversibly. 

Several pharmacological drugs have been developed against GBM and are currently in or 

have completed clinical trials. These inhibitors mainly target receptors of the receptor 

tyrosine kinase (RTK) family involved in processes like angiogenesis, cellular proliferation, 

DNA repair among others [5]. Although some of these drugs have promising efficacy, 

clinical outcome still remains dismal [6]. The main reasons for treatment failure are the rapid, 

diffuse and heterogeneous nature of the tumors and the presence of the blood brain barrier 

(BBB) hindering transport of chemotherapeutic agents [7, 8]. As a result of these complicated 

and distinct characteristics of GBM, with no known risk factors and poor understanding of 

the cellular origins of these tumors [9, 10], dissecting the biology of GBM becomes critical 

especially in designing novel targeted therapies. 

 

1.1.2 Histopathological and Molecular Stratification of GBM  

 

Classifying gliomas into different grades is clinically important for purpose of diagnosis, 

prognosis and makes it easier to compare treatments between different clinical trials [11]. A 

working group of the World Health Organization (WHO) has created a histo-morphological 

classification of gliomas to distinguish different tumor types and this has helped in improving 

prognosis and treatment strategies across the world [12, 13]. Gliomas are broadly classified 

into astrocytomas, oligodendrogliomas and mixed gliomas. They are also graded based on the 
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presence of important features like nuclear atypia, mitotic index, endothelial proliferation 

(microvascular) and necrosis (Table 1) [12, 14]. The number of features displayed by a tumor 

are directly correlated to the malignancy or its grade. Grade I tumors are associated with low 

proliferative potential while grade II tumors, in addition are infiltrative and recur. Grade III 

tumors are malignant and show increased mitotic activity and nuclear atypia. Grade IV, being 

the highest grade, is associated with all the above features including extensive necrosis, 

infiltration of tissue surrounding the tumor and rapid clonal evolution (pre- and post-

operative) leading to fatality [14].  

Astrocytic tumors Grade 
Pilocytic Astrocytoma I 
Diffuse Astrocytoma II 
Anaplastic Astrocytoma III 
Glioblastoma IV 
  
Oligodendroglial tumors Grade 
Oligodendroglioma II 
Anaplastic oligodendroglioma III 
  
Mixed gliomas Grade 
Oligoastrocytoma II 
Anaplastic oligoastrocytoma III 

Table 1: Grading of different gliomas according to the WHO classification of central nervous 

system tumors. Table content adopted from [12].  

 

GBM is a grade IV tumor characterized by presence of necrotic tissue and increased 

vascularization around the tumors. GBM cells could vary from being small in size to giant 

cells, poorly differentiated and stain positively for glial-fibrillary acidic protein (GFAP) and 

vimentin due to their astrocytic nature [14]. The tumors are polymorphic and hence the term 

‘multiforme’. This is because even within the same tumor, the cells are heterogenous and 

display mixed histological features [15]. Cells could be multinucleated and stain strongly for 

Ki-67 proliferation marker. The cells are often shiny in appearance and hyperchromatic. One 

of the unique features of this tumor is the presence of pseudopalisading necrosis. Proliferating 

tumor cells line up around a central area of necrotic cells and form a palisade [16]. Clinically, 

a majority of these tumors are de novo and rapidly advance to a malignant state in elderly 
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patients. These are termed primary GBM, whereas secondary GBM usually progresses from 

lower grade astrocytomas and are often associated with younger patients [17].  

Chromosomal aberrations such as gain of whole chromosome 7 and loss of chromosome 10 

are very common events in GBM. But the need for stratifying GBM into different prognostic 

groups pushed research towards identifying genetic events like somatic mutations and copy 

number variations to classify GBM into different molecular subtypes. With emergence of the 

next generation sequencing technology, GBM genomes were sequenced for identifying 

amplification and deletions of protein coding genes [18]. This landmark study led to the 

discovery of several genes that were not implicated in human glioblastoma. One of the major 

findings from this study was the identification of recurrent mutations in the IDH1 gene. 

Following studies showed that the mutations on IDH1-R132 and IDH2-R172 hindered the 

generation of α-KG [19]. More precisely these were gain of function mutations in which the 

mutations conferred the IDH1/2 the ability to convert α-KG to D-2-hydroxyglutarate (D-

2HG) [20, 21]. Not only does reduction in α-KG or up-regulation of 2HG in IDH1/2 

mutations increases oxidative stress [22], but also alters the genome wide epigenetic pattern 

[23].  

In an alternate approach, gene expression analysis was used to identify specific gene 

expression patterns correlating to patient outcome. GBM was roughly classified into three 

subtypes: proneural, proliferative and mesenchymal [24]. It was observed that the 

mesenchymal subtype showed worse prognosis than the other two subtypes and had a gene 

expression signature characteristic of mesenchymal differentiation. This type of sub-

classification relating the molecular profiles to clinical outcomes set up the base for 

developing targeted therapies. 

The Cancer Genome Atlas (TCGA) was initiated as a pilot project by the National Cancer 

Institute and the National Human Genome Research Institute in an effort to identify and 

catalogue cancer-causing somatic alterations in various tumor types. TCGA Research 

Network released an interim report in 2008 and defined the major genes and pathways 

involved in human GBM based on gene expression and DNA methylation patterns [25]. 

Three major pathways were identified to be aberrant in most human GBMs- receptor tyrosine 

kinase, p53 and retinoblastoma protein signaling (Figure 1). 

By genomic profiling, the different subtypes were defined and classified as classical, 

mesenchymal, proneural and neural [26]. Each subtype was defined by an aberrant expression 

of a specific gene or genes. Following this, hot spot mutations were identified on the H3F3A 
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and IDH1 genes which further expanded and revamped the classification of GBM subtypes to 

six [27]. The new subtypes were based on the mutations in the gene H3F3A at K27 and G34 

on histone 3.3 and accounts for one-third of pediatric patients.  

 

Figure 1: Signaling pathways commonly altered in malignant gliomas. a. RTK/RAS/PI3K, b. 

p53 and c. Rb signaling pathways. Red and blue colors indicate activating and inactivating 

genetic alterations respectively.  Figure reprinted with permission from publisher [28].   

The recent multidimensional study by the TCGA network describes the somatic genomic 

landscape of GBM [29]. Analyzing and comparing over 500 GBM tumor samples, the study 

provides comprehensive genomic data linked to clinical outcome which can be utilized for 

discovering novel biomarkers and identifying disease related pathways for targeted therapies. 
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In light of these advancements, the latest edition of the WHO classifications for the first time 

incorporated molecular features as well to define diagnostic categories [13, 30-32]. GBM is 

currently classified into two categories namely IDH wild-type and IDH mutant which are 

associated with primary and secondary GBMs respectively (Table 2). Since the disease 

progresses rapidly, an efficient diagnosis to distinguish the different subtypes becomes 

critical.   

 GBM-IDH-Wildtype GBM-IDH-Mutant 

Synonyms Primary GBM Secondary GBM 

Tumor development De novo From diffuse or anaplastic 
astrocytomas 

Relative Frequency ~ 90% ~ 10% 

Median age at diagnosis ~ 62 years ~ 44 years 

Clinical history (mean length) 4 months 15 months 

Table 2: Table summarizing the latest WHO classification of GBM into two categories based 

on IDH status. Table data adopted from [13]. 

 

1.1.3 Tumor Heterogeneity 

 

Cancer cells are in general a very heterogeneous population of cells. GBM is not an exception 

and it in fact displays extensive intra-tumoral heterogeneity. Understanding how this is 

brought about as a result of tumor evolution will explain why treatments usually fail. By 

using fluorescence guided multiple sampling (FGMS) technique, multiple samples from the 

same tumor separated in space were collected in real time to conserve spatial information 

[33]. Analysis of these tumor samples showed that the different parts of the same tumor had 

different genotypes and molecular profiles. This study, by integrating multiple sampling with 

genomic data, showed the clonal evolution of GBM tumor at the level of an individual 

patient. 

Following this, a landmark study in 2014 showed that individual cells within the same tumor 

can show diverse expression patterns relating to different cellular processes, such as 

proliferation, immune response, hypoxia and oncogenic signaling [34]. Using single cell 

RNA-sequencing it was shown that different subtypes can be represented by individual cells 

within the same tumor sample. A more interesting finding was that the individual cells can 

also have ‘hybrid states’ meaning that they can have expression pattern of two or more 
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different subtypes at the same time, usually being classical and proneural or mesenchymal 

and neural. This subtype heterogeneity was also useful in being a prognostic marker and 

showed that pure proneural subtype tumors have an overall survival better than tumors with a 

more heterogeneous mix of proneural subtype with others. Identifying these various 

subclasses using these multi-dimensional approaches has made an impact on development of 

therapies and designing more efficient treatments. 

 

1.1.4 Cancer Stem Cells and Cell of Origin 

 

More than two decades ago, the clonal expansion model of cancers was the prevalent dogma 

where one cell had to pick up all the required mutations for malignant transformation and 

gave rise to bulk tumors [35-37]. It was also postulated that each cell in this bulk tumor 

population retained tumorigenic potential. This belief was succeeded by the cancer stem cell 

hypothesis where a subset of the tumor cells gained unlimited replicative potential, 

immortality and self-renewal capacity and could give rise to and maintain tumor population 

[38-42]. This paradigm shift meant a leap in targeted therapy of cancers.    

Stem cell populations in the adult brain are found within the sub-ventricular zone (SVZ) or in 

the sub-granular zone (SGZ) of the dendate gyrus (DG) at high density and are regions of 

active neurogenesis throughout life [43-47]. However, the glial progenitor cells have been 

found in different regions of the brain at lower numbers indicating that gliomas could 

potentially also arise from outside the SVG or SGZ [48, 49]. 

Glioma cancer stem cells (GSCs) represent a small population of cells within the tumor, 

which are capable of self-renewal, can form neurospheres, differentiate into various cell types 

and form tumors upon xenotransplantation [50-55]. CD133 (Prominin-1) together with SOX2 

and Nestin has been widely used as glioma stem cell markers [56-59]. However, opposing 

studies show that not the expression of CD133 but rather the ability to form neurospheres 

defines the aggressiveness of the tumor [60], that CD133+ cells are not required for tumor 

initiation [61] and that they do not represent the whole self-sufficient tumor initiating cells 

[62]. 
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GSCs are similar to neural stem cells (NSC) or progenitor cells, in terms of their capacity to 

migrate long distances within the central nervous system [63]. A pathologist named Hans-

Joachim Scherer in the 1930s observed that the glioma cell migration pattern was not random 

and were selective to certain paths made of myelinated fibers or blood vessels. These paths 

were eventually termed secondary structures of Scherer and they closely mirror the same 

migration pattern and behavior of glial progenitor (GP) cells [64]. Also, the morphology of 

the migrating glioma cells resemble that of the migrating GPs [65]. Adult neural stem cells 

and transit amplifying cells have been shown to populate and regenerate at vascular niches in 

the sub-ventricular zone (SVZ) and sub-granular zone (SGZ) [66-69]. Strikingly, GSCs 

(CD133+/Nestin+) were also found to utilize these vascular niches for self-renewal and 

proliferation [70, 71]. These suggest possible related mechanisms for the utilization of 

nutrient rich angiogenic sites in NSC/GSC maintenance.  

 

Figure 2: Schematic illustration of probable cells of origin in GBM. Landscape represents a 

steep hill with NSCs at the top. Its natural movement is down, indicating differentiation. 

However, mutations and microenvironment influences cells and could transform them to a 

malignant state (by climbing uphill). Figure illustrated by Aditya Harisankar. 
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Defining the cell type of origin and elucidating the tumor hierarchy helps understand tumor 

biology and the specific targeting of cancer stem cells (Figure 2). Although, in GBM the cell 

of origin has remained elusive, the most probable candidates have been established namely 

the neuroglial stem cells (type B cells) and the transit amplifying cells (type C cells) [72]. 

However, they could also arise from the de-differentiation of mature cells as previously 

shown [73].  

With similar cellular and molecular features to that of NSCs and the ability to generate 

recurrent tumors causing disease relapse, GSCs have stolen the spotlight in GBM research. 

Identifying the cell of origin which gives rise to GSCs and understanding the underlying 

pathways required for such a transformation, have become a priority in order to develop 

novel targeted therapies against this deadly disease. 

 

1.1.5 Treatment strategies for GBM 

 

1.1.5.1 Conventional treatment 

The standard treatment options for newly diagnosed GBM patients include maximal safe 

resection of the tumor followed by radiation and chemotherapy. The extent of surgery usually 

depends on the location of the tumor and patients receiving a gross total resection (GTR) 

have better survival over those receiving subtotal resection (STR) [74-76]. However, this 

could simply be due to differences in tumor subtype or performance status of the patient.  

Temozolomide (TMZ), an alkylating agent with potential anticancer activity was developed 

three decades ago by Malcolm Stevens and his research team [77, 78]. Being small in size, it 

is readily absorbed in the digestive tracks and crosses the blood brain barrier (BBB) at high 

efficiency [79]. This has made TMZ a valuable drug against high grade gliomas like GBM 

[80]. The MGMT gene encoding the O6-alklyguanine DNA alklytransferase protein, is critical 

for repair of methylated guanine residues and therefore protects cells from alkylating agents 

[81, 82]. However, this mechanism also exists in the cancer cells particularly CSCs making 

them resistant to alkylating chemotherapeutic agents [83, 84]. Since MGMT is responsible 

for repair of TMZ-induced DNA damage, epigenetic silencing of MGMT gene promoter has 

been linked to increased survival of patients upon TMZ treatment [85-87]. In conclusion, 

although TMZ has been shown to improve overall survival in post-operative patients in 
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combination with radiation therapy (RT), the median survival is still very low at 14.6 months 

[88].  

1.1.5.2 Novel and targeted treatments 

With the establishment of the important chromosomal aberrations and recurrent mutations in 

GBM, it is evident that the major pathways being deregulated are involved in signal 

transduction, cell cycle control, angiogenesis and metabolism [18, 26, 29]. At least one 

genetic alteration has been observed in genes belonging to the PI3K pathway, RTK genes and 

PTEN gene in approximately 89% of GBM cases. Also, in 67.3% of GBM cases, at least one 

RTK gene has been found to be altered with EGFR being the most frequent (57.4%) [29]. 

Several different RTK gene amplifications have been observed to be mutually expressed in 

different cells within the same tumor indicating intratumoral heterogeneity [89-92]. 

Therefore, these pathways have been highly targeted for novel treatments in GBM. 

The involvement of vascular niches and endothelial cells in maintenance and proliferation of 

GSCs [70, 71], has led to targeting factors involved in angiogenesis. Bevacizumab, a 

monoclonal antibody targeting VEGF-A, has been considered successful in targeted therapy 

of GBM with increased progression free survival (PFS) [93-96], yet not significantly 

increasing overall survival [97, 98].  

Targeting other RTKs, like PDGFR alpha/beta, c-kit, c-abl and FLT3, using small molecule 

inhibitors like sunitinib and imatinib mesylate have also shown limited success in GBM 

treatment [99-102].  

EGFR is a frequently mutated gene in GBM [29, 103] and in around 40% of the cases, 

EGFRvIII is expressed, depleted of ligand binding domain by gene rearrangement, leading to 

ligand independent constitutive activation [104-106]. Since EGFR signals through different 

signaling pathways [107], the constant activation leads to increased proliferation and 

aggressiveness of the tumors including radio-resistance [108]. Due to these reasons several 

inhibitors targeting EGFR like erlotinib and gefitinib and cetuximab (monoclonal antibody) 

have been tested clinically but have shown no improvements in overall survival [109-115].  

Several new drugs are currently in phase I/II clinical trials for safety and efficacy studies. 

These include drugs targeting RTKs such as Acalabrutinib (BTK inhibitor from Acerta 

Pharma), AZD2014 (mTORC1/mTORC2 inhibitors from AstraZeneca) and immunotherapies 

like ICT-107 (dendritic cell vaccine, ImmunoCellular Therapeutics, Ltd.) and CAN008 

(fusion protein with extracellular domain of CD95 receptor, CANbridge Life Sciences Ltd.). 
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There are also novel and non-invasive treatments like use of Nativis Voyager® which 

delivers ultra-low radio frequency energy (ulRFE) in disrupting signal transduction and 

metabolic pathways and Optune® (Novocure) which delivers low energy electric field in 

waves to slow down tumor cell division. However, as previously mentioned in paragraph 1, 

several oncogenic mutations and activation of several different signaling pathways within the 

same tumor create intratumoral heterogeneity. These indicate the oncogenic dependencies of 

tumor cells through multiple redundant pathways to establish cell survival and resistance to 

therapy. Since each patient is unique with respect to their tumor profile, adapting a 

combinatorial approach in targeting several of these receptors/pathways, tailored to the 

patient profile, could prove effective in fighting this deadly disease [116-122]. 

In line with this, a second generation proteasome inhibitor, marizomib is currently being 

tested in phase III clinical trials on patients with newly diagnosed GBM in combination with 

TMZ-RT and previously in phase II with bevacizumab (Avastin®). Unlike Bortezomib 

(Velcade®), proteasome inhibitor approved by FDA for treatment of multiple myelomas, 

marizomib binds and affects all three proteolytic subunits of the proteasome, thereby shows 

more potency [123-126]. Compared to bortezomib and carfilzomib, one of the major 

advantages of marizomib is its ability to cross the blood-brain barrier and also affect 

proliferation and invasion of glioma cells in rodent and non-human primate models [127]. In 

conclusion, exploiting the proteasome system and utilizing combinatorial therapies could 

improve selectivity and treatment efficacy in GBM.  

 

1.1.6 Ubiquitin Proteasome System 

 

The ubiquitin proteasome system (UPS) is a highly regulated and fundamental part of cellular 

machinery necessary for protein turnover and localization by controlling ubiquitination and 

de-ubiquitination of target proteins. Ubiquitination is a process which occurs as a post-

translational modification regulated stepwise by ubiquitin activating enzymes (E1), ubiquitin 

conjugating enzymes (E2) and ubiquitin ligases (E3) [128]. These post-translational ubiquitin 

(Ub) tags are crucial for the recognition by the 26S proteasome for target protein degradation 

(Figure 3). However this process is reversible, similar to protein phosphorylation, and is 

carried out by deubiquitinating enzymes (DUB). Several cellular processes like cell cycle, 

apoptosis, DNA damage repair, protein metabolism etc., depend on the UPS for the timely 

disposal or recycling of proteins [129-131].  
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Figure 3: Schematic illustration of the ubiquitin proteasome system (by Aditya Harisankar). 

To date, there are only two E1-activating enzymes, thirty eight E2-conjugating enzymes, 

around 700 E3-ligases and approximately 100 putative DUBs identified in the human 

genome [132]. The large number of E3-ligases and DUBs provide high substrate specificity 

for the entire ubiquitin proteasome system. And not surprisingly, the UPS is deregulated in 

several malignancies and neurodegenerative disorders [133-149].  

Although the similarities between ubiquitination and protein phosphorylation are striking, the 

pharmaceutical industry has mainly focused its resources on developing drugs against protein 

kinases while very few drugs targeting the ubiquitin system have made it to the clinics [150]. 

Also, the field of protein phosphorylation has already been heavily exploited through 

medicinal chemistry leaving little room for developing novel drug targets. Therefore, in the 

recent years, the UPS has become a major target for drug development against several 

malignancies [132, 151-155] including leukemia [156-158] and GBM [127, 159-163].  
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1.2 ACUTE MYELOID LEUKEMIA: AN OVERVIEW 

 

Acute myeloid leukemia (AML) is a hematological malignancy arising from infiltration of 

the bone marrow and peripheral blood by proliferating and poorly differentiated 

hematopoietic cells (myeloid blast cells) [164]. Previously considered incurable, now up to 

40% of patients below the age of 60 years and up to 15% of patients over the age of 60 years 

are cured [165]. Symptoms of AML manifest as anemia, weight loss, fever etc., and are 

mainly due to lack of healthy blood cells which are outcompeted by leukemic blast cells. The 

diagnosis for AML is primarily by morphological examination of blood smears and 

characterized by the presence of 20% or more of blast cells in the bone marrow or peripheral 

blood [166, 167]. Cytogenetic examinations to detect important chromosomal aberrations by 

karyotyping or fluorescent in situ hybridization (FISH) are still used and in combination with 

targeted sequencing of important biomarkers for AML diagnosis [168].  

Large scale sequencing efforts by TCGA has helped identify genetic and epigenetic changes 

in adult de novo AML [169]. From this data it is evident that AML, in general, has very few 

mutations per genome compared to other forms of cancers. However, several of these are in 

recurrently mutated genes and nearly all AML samples analyzed had at least one potential 

mutation for AML pathogenesis. These findings have helped improve AML evaluation and 

mutations in KIT, NPM1, CEBPA and FLT3-ITD are now used for AML diagnosis [164, 

170]. 

The treatment strategy has remained the same in over three decades, beginning with induction 

therapy and followed by consolidation therapy. The intensity and type of these treatments are 

decided based on factors like age, performance status of patient, biomarkers etc. [165].  

Similar to GBM, AML is organized in a hierarchical manner with leukemic stem cells (LSC) 

or leukemic initiating cells (LIC) at the apex [171]. These cells are characterized by their 

ability to initiate AML in serial transplantation experiments, ability to self-renew and display 

surface markers similar to HSCs [38, 171, 172]. Similarly, LSCs were thought to originate 

from hematopoietic stem cells (HSC) but they have also been shown to arise from 

transformation of differentiated hematopoietic cells by certain mutations [173, 174]. The 

importance of these findings are that LSCs, similar to GSCs, are a rare population of 

quiescent cells displaying intratumoral heterogeneity which develop resistance to treatment 

and cause tumor relapse [175-177]. Therefore, to ensure complete remission (CR) and long-

term cure for AML, elimination of these elusive LSCs is critical. 
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GBM and AML are surprisingly similar in the nature of their aggressiveness, predominantly 

occurring de novo [178, 179] and having poor 5-year survival rates [1, 3, 4, 180, 181]. Both 

diseases display cancer stem cell hierarchy, intratumoral heterogeneity and recurrent 

deregulation of genes like TP53, IDH1, MET and NF1 [29, 50, 51, 169, 171, 175-177]. 

Cancer stem cells are the predominant reason for disease relapse but targeting them have 

been difficult. By drawing parallels between GBM and AML, basic research from either field 

can be transposed for identifying dual targets and shorten time required for developing novel 

therapies.  
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2 AIMS OF THE THESIS 
 

The overall aim of the thesis was to identify novel genes with important functions in 
glioblastoma multiforme and acute myeloid leukemia. 

 

Study I 

The aim of this study was to understand the role of various cytoskeletal regulators in 
glioblastoma multiforme (GBM), how they are affected by various cancer drugs including 
temozolomide (TMZ) and assess these regulators for use as biomarkers in GBM. 

 

Study II 

The aim of this study was to identify novel cancer specific genes using childhood acute 
myeloid leukemia as a model system.  

 

Study III 

The aim of this study was to identify and characterize novel target genes required for the 
growth of glioblastoma multiforme (GBM) cells by utilizing a functional genomics approach. 

 

Study IV 

The aim of this study was to identify novel targets in glioblastoma multiforme using a large-
scale functional shRNA screen. We also aimed to develop a new dual CRISPR-Cas9/shRNA 
vector system for multiplexing and efficient validation of target genes. 
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3 SUMMARY OF PRESENT INVESTIGATIONS 
 

3.1 STUDY I 

Methodology 

For the bioinformatics analyses, we selected 85 genes encoding different cytoskeletal 
regulators and classified them into 10 groups based on their molecular function and 
compartments. To understand their role in GBM, we then analyzed their expression levels in 
several gene expression data sets comparing patient derived tumors versus non-tumor tissue, 
CD133 positive and negative GBM and neural stem cells (NSC) and stem versus 
differentiated GBM cells. We also compared the association of these genes to clinical 
parameters such as percent genetic alterations and overall patient survival using various 
databases. To understand the effects of various FDA approved drugs including TMZ on 
GBM cells, we performed a small molecule screen and monitored effects on the cytoskeleton 
by immunofluorescence and performed gene expression analysis by qPCR. 

Results 

To assess if cytoskeletal regulators can be used as prognostic markers in GBM, a list of 
known cytoskeleton genes were analyzed in different gene expression GBM data sets 
available from GEO and the TCGA data. We observed that most of these genes were 
differentially expressed compared to normal tissue and harbored at least some type of genetic 
aberration. Using the TCGA survival data we were able to shortlist 6 genes that were 
significantly correlated with overall patient survival. Having established these as potential 
prognostic markers, we wanted to test if they have predictive value. To do so, we performed a 
small molecule screen and evaluated the potency of several FDA approved drugs in 
comparison to TMZ, a standard chemotherapeutic agent used for treatment of GBM. 
Compounds were classified based on their molecular function they inhibit and shortlisted 
based on their ability to affect viability of GBM cells. Compounds belonging to classification 
‘kinase inhibitor’, ‘antimetabolite’ and ‘alkylation agents’ drastically reduced GBM cell 
viability within 4 days of treatment. We next investigated if TMZ or any of these shortlisted 
compounds exert effects on GBM cells by affecting the cytoskeleton. We measured viability 
and performed immunostaining on GBM cells after 2 days of drug treatment. We also 
measured gene expression changes of the selected 6 genes and from our study, it is evident 
that TMZ does not have the best potency as many of the other FDA approved drugs on the 
cytoskeletal regulators but further evaluation shows that it is consistent in its effect.  

Conclusions 

Our study highlights the importance of cytoskeleton regulators in GBM and suggests that 
combinatorial therapies, specifically targeting the cytoskeleton, might be more efficient in 
GBM. 
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3.2 STUDY II 

Methodology 

In order to identify AML specific vulnerabilities, we performed a negative selection RNAi 
screen in AML cells and non-transformed bone marrow cells with a library of pooled 
barcoded shRNAs. To validate the findings from our screen, we used several leukemia cell 
lines and performed loss of function studies in mixed growth competition assays. By using 
qPCR and western blots to quantify relative gene expression and protein levels, we ensured a 
good knockdown efficiency. To circumvent the possible off-target effects of using shRNAs, 
we also performed CRISPR-Cas9 based knockout studies. In addition, to rule out effects on 
normal cells, we functionally tested the effects of gene inhibition in primary normal human 
and mouse cells by using colony formation assays (CFU). To show the importance of the 
target gene in disease progression, we transplanted AML knockout cells in immune 
competent mice. Using flow cytometry, we were able to assess the effects on disease 
maintenance in primary leukemia-initiating cells and bulk cancer cells. To elucidate the 
cellular and molecular mechanisms by which the target gene contributes to childhood AML 
cells, we used cell cycle analysis, apoptosis assays and RNA-sequencing. 

Results 

CHD4, a chromatin remodelling factor, severely affected cell growth of AML cells upon 
deregulation but did not affect growth of non-transformed bone marrow cells. We used 
knockdown and knockout experiments to functionally validate the importance of CHD4 in 
the growth of leukemic cells and demonstrated that CHD4 inhibition arrested leukemic cells 
in G0 phase of the cell cycle. Inhibition of CHD4 downregulated genes important for cell 
cycle progression, particularly, through Myc and its downstream effectors. Loss of CHD4 
function prevented disease progression in xenotransplantation models and was shown to have 
anti-leukemic effects on primary childhood AML cells when targeted by shRNAs. 
Interestingly, CHD4 was essential in driving growth of leukemia initiating cells (LIC) but not 
in normal hematopoietic cells.  

Conclusions 

Overall, our findings indicate the importance of CHD4 for maintenance of LICs and thereby 
emergence and development of childhood AML. This AML-specific dependency suggests 
that CHD4 may represent a novel therapeutic target in childhood AML. 
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3.3 STUDY III 

Methodology 

To identify genes specifically required for the growth of GBM cells, we performed a negative 
selection shRNA screen in proneural glioma stem cell (GSC) lines. Fibroblast cells were used 
to identify genes that were GBM specific. We utilized inducible constructs to validate our 
findings from the screen and used qPCR and western blot analysis to confirm knockdown 
efficiency at the mRNA and protein levels. Using commercially available cell lines and a 
flow cytometry based cell growth assay, we functionally validated the role of our target gene. 
To prove that the target gene was specifically required for the growth of GBM cells, we 
performed rescue experiments. In addition, to identify the cellular mechanisms by which the 
target gene operates, we performed cell cycle analysis and apoptosis assays. We also 
performed small molecule inhibition of the target protein utilizing several active and inactive 
tool compounds. Compounds were tested for their ability to bind and stabilize target protein 
by differential scanning fluorimetry (DSF) assays and IC50 values were established by using 
Ub-Rho110 assays. To assess the potency of the tool compounds, we measured viability of 
different GBM cell lines after treatment. To ensure there is no effects on healthy neural cells, 
we utilized the neuroepithelial-like stem cells (NES) and NES-derived neurons and 
functionally tested effects of target gene inhibition. To understand how UCHL1 functions at 
the molecular level in GBM and dissect downstream pathways, we performed RNA-
sequencing and validated results by functional enrichment analysis and qPCR.  

Results 

UCHL1 is an enzyme in the ubiquitin proteasome pathway with ubiquitin hydrolase and 
ligase functions. shRNAs targeting UCHL1 showed significant effects on GSC growth but 
did not result in pronounced effects on fibroblast cell growth. By using inducible shRNAs 
and over-expression plasmids in rescue experiments, we were able to demonstrate the 
specific effects of UCHL1 in GBM cell growth. Loss of UCHL1 arrested GSCs in the G0 
phase of the cell cycle which also caused apoptosis. Transcriptomic profiling by RNA-
sequencing showed that genes positively correlating with UCHL1 inhibition were important 
for cell proliferation and involved in cell invasion while the genes negatively correlating with 
UCHL1 inhibition were important in stress response and regulation of cell death. Quantitative 
real time PCR (qPCR) analysis of these findings showed a significant correlation with the 
RNA-seq data. Further, inhibition of UCHL1 using various active and inactive control tool 
compounds showed that pharmacological inhibition of UCHL1 prevents growth of GBM 
cells. In contrast to GBM cells and GSCs, UCHL1 downregulation did not increase cell death 
in NES cells or NES derived neurons. Also, chemical inhibition of UCHL1 in NES-derived 
neurons demonstrated that two of the three compounds tested did not affect neuronal 
functions like membrane potential and action potential.  
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Conclusions 

From our study it is evident that UCHL1 is crucial for the growth and survival of GBM cells 
while being expendable in NES cells or NES derived neurons for their function or survival. 
Our results highlight the important and cancer-specific functions of UCHL1 in GBM and 
indicate that UCHL1 may represent a novel therapeutic target in GBM. 

 

3.4 STUDY IV 

Methodology 

A large scale shRNA screen was performed in two patient derived glioma stem cell (GSC) 
lines and fibroblast cells with the aim to identify GBM-specific dependencies. We also 
developed a new dual shRNA/CRISPR-Cas9 multiplex vector system capable of switching 
between 9 different fluorescent reporters, 3 different antibiotic selection markers and a 
luciferase/FUCCI system. Using this new vector system developed in-house, we validated 
target genes by knockdown and assessed gene inhibition using qPCR and western blots. We 
used several commercially available glioma cell lines and U2OS cells for growth and colony 
formation assays. In addition, we were able to validate our vector system by multiplexing 
several target genes at the same time and distinguished their effects on glioma cells by 
immunofluorescence. To understand the cellular mechanisms by which the target genes 
contributed to the growth of GBM cells, we utilized the FUCCI reporter to assess cell cycle 
status after gene inhibition in glioma cells. To delineate molecular function of the target 
genes, we performed transcriptomic analysis using RNA-sequencing. 

Results 

ARIH1 and ARIH2 are two E3 ubiquitin ligases identified from the shRNA screens for their 

specific contribution to GBM cell growth. Downregulation of ARIH1 or ARIH2 in GSCs or 

different glioma cell lines severely affected growth compared to scramble control and 

inhibition of ARIH2 but to a lesser extent ARIH1 decreased colony formation in U2OS cells. 

Downregulation of ARIH2 significantly affected viability of MO59K cells compared to 

ARIH1 targeted cells or negative non-targeting controls and arrested U2OS cells in S and G2-

M phases of the cell cycle. Previous reports of involvement of ARIH1 and ARIH2 in DNA 

damage response led us to investigate if ARIH1/2 inhibition will sensitize cells to DNA 

damage. Only inhibition of ARIH2, not ARIH1, led to increase in fragmented DNA in single 

cell gel electrophoresis (SCGE or COMET) assays compared to control cells. In addition, 

increased protein levels of DNA damage markers c-PARP and Ɣ-H2AX was observed, 

which are known indicators of single and double stranded DNA breaks respectively. RNA 

sequencing of ARIH1 and ARIH2 knockdown samples identified genes which were 
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positively correlated to gene sets enriched in post translational protein modifications and cell 

proliferation. Loss of ARIH1 lead to upregulation of genes associated with regulation of cell 

death and apoptosis and downregulated genes involved in regulation of cell proliferation and 

neuron parts. Genes negatively correlated to ARIH2 inhibition were enriched for gene sets 

such as positive regulation of cell differentiation, neurogenesis and neuronal differentiation. 

Further, qPCR analysis confirmed our findings from the RNA-seq data. Overall, the RNA-

sequencing data suggests the involvement of ARIH1 and ARIH2 in GBM cellular 

proliferation through different cellular processes. 

Conclusions 

Here we show, in part, that ARIH1 and ARIH2 contribute to GBM cell growth through 
different pathways. Although further validation is required to establish this, our data 
demonstrates the importance and possible cancer-specific dependencies of ARIH1 and 
ARIH2 and suggest them as novel therapeutic targets in GBM. 

 

3.5 UTILIZATION OF RELEVANT MODEL SYSTEMS AND COMPARATIVE 
ANALYSIS TO BUILD SPECULATIVE MODELS  

 

The purpose of this section is to highlight and discuss the use of appropriate model systems 
and the choice of experimental techniques to address relevant scientific questions. 

In addition, findings from the functional genomics screen have been compared with the 
transcriptomic data to build a speculative model outlining the possible role of identified genes 
in GBM. Some of these findings are purely speculative and have not been discussed in 
studies III and IV for this reason.  

To refresh, studies III and IV demonstrate the use of a functional genomic screening approach 
in identifying novel targets required for the growth of GBM CSCs. By doing so, we have 
identified three genes belonging to the ubiquitin proteasome system to be important for the 
growth of GBM cells. 

3.5.1 Model system and functional screening approach  

It is evident from the TCGA data that patients with a classical or mesenchymal subtype 
respond better to high doses of temozolomide (TMZ) and radiation and have increased 
survival, compared to the proneural subtype of GBM [26]. Interestingly, the two patient 
derived proneural GSC lines used for this study showed worse survival in xenotransplantation 
experiments compared to other subtypes [55]. Studies III and IV utilize the aforementioned 
model system, which faithfully represents the parent tumors, in screening for novel GBM 
targets.  
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Functional screens utilizing siRNAs, shRNA or CRISPR-Cas9 based knockdown/knockout 
systems, have been successfully used to identify vulnerabilities in cancer cells including 
GBM and AML [182-190]. However the caveats of using such systems are the possibilities of 
off-target effects leading to false positive discoveries. We addressed this issue by using 
human fibroblast cells to filter for effects in control cells and identify GBM specific effects. 
Although they are not representing the most relevant cancer-specific control cells, fibroblasts 
are still useful in identifying possible side effects. From our screening data, we found 
shRNAs targeting numerous genes important for GBM cell growth and survival, like AKT1 
[191], CCND2 [192], EGFR [90, 193-197], FGFR1 and FGFR3 [198, 199], IDH1 [200], 
MDM2 [201, 202], KDM2B and KDM5A [203-206] etc., to be reduced in abundance, 
specifically in the GSCs and not in the fibroblast cells. Thus, these findings from study III 
and IV validate the use of a shRNA-based screening methodology and presents a resource of 
possible GBM-specific vulnerabilities.  

3.5.2 Comparing transcriptomic and functional genomics data 

Transcriptomic analysis of UCHL1 inhibition in GSCs showed that genes involved in cell 
cycle, PI3K/Akt and Myc signaling were affected. PI3K/Akt signaling pathways is one of the 
three major pathways deregulated in GBM accounting for at least one altered genetic event in 
86% of patient samples [25]. We observed that upon UCHL1 inhibition, EGFR, FGFR1, 
FGFR3, FGFR4, PDGFRA, PIK3C2A and PI3KR2 transcripts are downregulated, which are 
genes involved in the activation and downstream signaling of PI3K/Akt/Ras-MAPK 
pathways. Strikingly, the same genes were found to be reduced more than two-fold in shRNA 
abundance in GSCs and did not affect fibroblast cell growth. Such comparative analysis 
strengthens the validity of our data and the pathways identified.  

3.5.3 Speculative modeling to generate new hypothesis 

More in depth analysis of this data revealed pathways which require further validation, 
especially at the proteomic level. However they were used to build a speculative model 
showing interaction between the genes identified from the RNA-seq data.  

Study III 

There has been previous reports of UCHL1 physically interacting with β-catenin, a Wnt 
signaling molecule, through which a positive feed-back loop is established as UCHL1 
deubiquitinates β-catenin and stabilizes it while β-catenin/TCF4 binds and upregulates 
UCHL1 transcript levels [207, 208]. β-catenin is usually kept inactive by GSK3β mediated 
phosphorylation under normal conditions but in GSCs unphosphorylated forms of β-catenin 
are found to be in high levels compared to adult human neural stem cells [209]. Previous 
studies have shown that PI3K/Akt signaling pathways interact and inhibit GSK3β by 
phosphorylation [210-213]. One of the downstream targets of β-catenin, cyclin D1 [214], a 
major cell cycle regulator of G1-S transition, was also downregulated upon UCHL1 
inhibition. Therefore, we speculate that UCHL1 inhibition leads to downregulation of 
PI3K/Akt signaling axis leading to loss of proliferative potential. 
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Study IV 

ARIH1 downregulation showed a strong downregulation of RBBP4, a protein regulating 
DNA repair components and modulating chemo-sensitivity to TMZ treatment in GBM cells 
[215] and significantly upregulated CEND1, a protein involved in cell cycle exit and 
differentiation of neuronal precursors [216, 217]. We also noticed that genes required for 
transcriptional activation and neuronal determination and differentiation, NEUROG2 and 
NEUROD1 were found to be negatively correlated to ARIH2 expression. These two 
proneural genes have been shown to be important for the progression of neurogenesis in the 
inner ear [218] while NEUROD1 is important in the terminal differentiation of proneural 
precursors in the olfactory bulb [219]. In contrast, activation of NEUROG2 is linked to cell 
cycle exit by repression of D and E type cyclins [220]. In vivo experiments have also shown 
that NEUROD1 expression can reprogram reactive glial cells, which are formed after 
neuronal injury/death, into functional neurons [221].  

Combining data from studies III and IV, including the data validated by qPCR, a speculative 
schematic model of interaction between the different genes has been illustrated (see below). 
Such models can help describe novel molecular mechanisms of action for genes identified 
from omics studies and conceive hypothesis for further testing. 

 

Figure 4: Schematic illustration of the speculative model showing interactions between genes 
identified from RNA-sequencing in studies III and IV. Green and red dashed lines indicates 
unknown but speculated interactions based on RNA-seq data. Green arrow and red inhibition 
symbols are drawn based on evidence from literature. 
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4 FUTURE PERSPECTIVES 
 

Even though the incidence of GBM is considered rare in comparison to other cancers, it is a 
truly fatal disease. In the last two decades several drugs have entered clinical trials and have 
failed to improve the overall survival of GBM patients, due to lack of specificity and inability 
to eradicate the GSCs. Therefore the need for a targeted therapy has grown exponentially.  

Evidence points to GSCs, which cycle slowly and acquire radio- and chemotherapeutic 
resistance, in tumor relapse. GSCs have been observed to migrate along and proliferate at 
vascular branch points. Additionally, pushing GSCs to enter cell cycle can sensitize them to 
chemotherapeutic agents aimed at proliferating cells. Identifying and targeting critical 
molecules required for migration and quiescence of GSCs will significantly reduce tumor 
invasiveness and increase treatment efficiency.  

Use of next generation genomics and proteomics have helped paint a detailed GBM 
landscape. However, it is hard to obtain brain tissue from healthy individuals, let alone isolate 
NSCs or GPCs. With the help of single cell genomic and proteomic analysis, one can catalog 
the cellular and molecular profiles of NSCs or GPCs from thousands of healthy donors. With 
time and large scale efforts, this data can be pooled to create a database. By data mining, we 
can then identify unique cellular and molecular profiles of GSCs and NSCs which can then 
be thoroughly and functionally interrogated. This would help in designing targeted therapies 
with minimal side effects.  

One of the biggest problems with treating GBM is the delivery of the chemotherapeutic 
agents across the blood brain barrier (BBB). With advances in high resolution imaging, a map 
of the patient’s brain can be created. This generates spatial data and much like a GPS, a brain 
positioning system can be developed. With advancements in the field of nanotechnology, 
nanobots could be engineered to mobilize to any given position in the brain simply by using 
spatial coordinates and arrive at the tumor site for targeted drug delivery.  

As the tumor cells proliferate rapidly in a background of post-mitotic neurons, use of 
microchips to monitor, in real time, parameters like pH, temperature and cellular ATP levels 
can help identify minute differences between normal and malignant cells. With quantum 
computing capabilities in the near future, instruments can be trained to identify abnormalities 
including GBM cells at very early stages.  

Several oncogenic events and activation of different signaling pathways within the same 
tumor create intratumoral heterogeneity. Tumor cells utilize such redundant pathways to 
establish cell survival and resistance to therapy. Since each patient is unique with respect to 
their tumor profile, adapting a combinatorial approach in targeting several of these receptors 
or pathways, tailored to the patient profile, could prove effective in fighting this deadly 
disease. 
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5 POPULAR SCIENCE SUMMARY 
 

Cells are the most basic building blocks of the human body. They are like tiny machines with 
thousands of moving parts and are constantly being repaired and rebuilt while performing 
routine work. They produce the energy required for us to perform daily activities, produce 
proteins to build muscles and so on. Cells can also multiply and give rise to more cells. But 
this is tightly controlled by the body to make sure not too many are produced too quickly. 
Cells also get damaged from daily wear and tear, by what we eat and by the environment we 
are exposed to. If the cells are damaged too badly, they are automatically destined to die 
while those with repairable damages are rescued. On rare occasions, such repair mechanisms 
fail and the cells continue to function with damages. Such events change the behavior of the 
cells and makes them go rogue. They begin to disobey the laws of the human body and begin 
to produce more cells, avoid the body’s police system (immune cells) and eventually form 
cancers. This thesis describes studies performed in two different types of cancers, namely 
brain cancer and blood cancer. 

Glioblastoma is an aggressive form of cancer arising in the brain. Patients feel severe 
headaches and can experience problems with other body functions due to damage to the brain 
cells. Even with intensive treatments and good care, the life expectancy of these patients are 
short and the disease is incurable.  

Acute myeloid leukemia is a form of blood cancer, where cancer cells steal the nutrients and 
the space in the bone marrow so normal cells become a minority. Patients feel weak and 
anemic due to this reason and must be treated quickly. However only 40% of young patients 
and 15% of old patients are cured from this disease.  

Treatment for both diseases are often associated with severe side effects. It means that the 
treatment affects normal healthy cells and cause more damage to the body. There are also 
special cancer cells (cancer stem cells) which are like guerrilla warriors and go into hiding. It 
is hard to identify and destroy these cells. Even a single cancer stem cell can give rise to an 
army of dangerous cells with time. Therefore, complete elimination of these cells is a priority 
in curing these diseases. 

By identifying vulnerabilities for such sneaky cancer cells and targeting those weak points, 
we can specifically and effectively eliminate them. By turning off genes one at a time, we 
have in this thesis, identified three genes that are vulnerable for the glioblastoma cells and 
one gene that is the weak point for leukemia cells. We also saw that turning off these genes in 
normal cells did not affect their cell growth or other activities. Therefore, the thesis presents 
three new genes that could be targeted in glioblastoma and one gene in acute myeloid 
leukemia for future treatments. 
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