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ABSTRACT 

Particle matter (PM) has been associated with numerous adverse health effects including 

cardiovascular disease, chronic obstructive pulmonary disease and lung cancer in experimental 

studies and observation studies. The close and quantitative relationship between exposure to 

high concentrations of coarse particles (PM10) and fine particles (PM2.5) and increased mortality 

and morbidity in human has been confirmed in many epidemiology studies. The increases in 

urbanization and road motor vehicle use in China have raised concerns about the health effects 

of exposure to PM pollution from traffic emissions. 

In Study I, we obtained hourly PM2.5 concentrations at 35 air quality monitoring (AQM) 

stations in Beijing between 2013 and 2014, and daily meteorological data and geographic 

information during the same time period. Based on the PM2.5 concentrations from different 

AQM station types, a two-stage method comprising a dispersion model and a generalized 

additive mixed model (GAMM) was developed to estimate the traffic and non-traffic 

contributions to daily PM2.5 concentrations separately. The method provides a new solution for 

ecological and epidemiological studies to estimate the road traffic contribution to PM2.5 

concentrations when there is limited vehicle and emission profiles’ data. 

In Study II, we used causes of death registry and daily AQM data from eight districts in Beijing 

between 2009 and 2010 to demonstrate an application of Bayesian model averaging (BMA) 

method and provide a novel modelling technique to assess the association between PM10 

concentration and respiratory mortality. The BMA method within GAMM frame gave slightly 

but noticeable wider confidence intervals (CIs) for the single-pollutant model and the principal 

components based model, which indicates that BMA may provide a useful tool for modelling 

uncertainty in time-series studies when evaluating the effect of air pollution on fatal health 

outcomes. 

In Study III, we evaluated the effects of PM2.5 concentrations on non-accidental mortality as 

well as their interactions with extreme weather conditions and weather types in Shanghai 

between 2012 and 2014. A fully Bayesian generalized additive model (GAM) was set up to 

link the mortality with PM2.5 and weather conditions. We found that the effects of PM2.5 on 

non-accidental mortality differed under specific weather conditions. 

In Study IV, we compared the estimates from frequentist GAM and Bayesian GAM with 

simulated data. We also examined the sensitivity of Bayesian GAM to choices both of the 

priors and of the true parameter. The frequentist GAM and Bayesian GAM showed similar 

means and variances of the parameters of interest. However, the estimates from Bayesian GAM 

show relatively more fluctuation, which to some extent reflects the uncertainty inherent in 

Bayesian estimation.  

In conclusion, PM pollution poses great threat to human health in China. Road traffic is one of 

the major sources of PM pollution, and our two-stage model is a useful tool to proportionate 

its contribution to PM pollution in large cities such as Beijing where daily meteorological and 



traffic data are available. Given the statistically significant interactions between PM2.5 and 

weather, and climate and pollution challenges, adequate policies and public health actions are 

needed, taking into account the interrelationship between the two hazardous exposures. 

Although computationally intensive, Bayesian approaches would be better solutions to avoid 

potentially over-confident inferences in traditional frequentist methods. With the increasing 

computing power of computers and statistical packages available, fully Bayesian methods for 

decision making may become more widely applied in the future. 
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1 INTRODUCTION 

At the beginning of 2013, a term ‘PM2.5’ suddenly began attracting attention around China. It 

became the headline in almost every main traditional media and new media in China. Every 

Chinese began to talk about it, which even started drawing worldwide attention. What is PM2.5 

and why it suddenly became a daily hot topic in China? 

PM2.5 refers to atmospheric particulate matters (PM) with an aerodynamic diameter less than 

2.5 micrometers (m), which is about 3% the diameter of a human hair.1 PM, also called 

particles or particulates, is a mixture of solid particles and liquid droplets found in the air. These 

particles come from many different sources with different sizes and can be made up of hundreds 

chemicals, including acids (such as nitrates and sulfates), organic chemicals, metals, and soil 

or dust particles. Based on size, PM is often divided into two main groups: the coarse particles 

that contain larger particles with a size ranging from 2.5 to 10 µm (PM10), and fine particles, 

i.e. PM2.5. The particles smaller than 0.1 µm are called ultrafine particles. The larger particles 

usually contain earth crust materials and fugitive dust from roads and industries. The fine ones 

contain most of the acidity (hydrogen ion) and mutagenic activity of PM, although in fog some 

coarse acid droplets are also present. The aerodynamic properties of particles determine how 

they are transported in air and how they can be removed from it. Both PM10 and PM2.5 are 

called inhalable particulates, and have been associated with numerous adverse health effects 

including cardiovascular disease, chronic obstructive pulmonary disease and lung cancer in 

experimental studies and observation studies.2 The close and quantitative relationship between 

exposure to high concentrations of PM10 and PM2.5 and increased mortality and morbidity in 

human has been confirmed in many epidemiology studies. PM may have adverse impacts even 

at very low concentrations, and the threshold without health damage has not been identified. 

Our studies focused on the two largest and most populous cities in China, Beijing and Shanghai, 

and estimated the contribution of road traffic, a major source of air pollution in China, to daily 

PM2.5 concentrations, and evaluated the association of PM air pollution with daily non-

accidental mortality in the two cities. The following research questions were explored in our 

studies: 

1. How to use limited mornitoring data to estimate district-specific contribution of road 

traffic on PM2.5 concentrations? 

2. What is the spatiotemporal relationship between daily PM10 level and respiratory 

mortality in Beijing, China? 

3. Did PM2.5 air pollution and weather condtions affect non-accidental deaths interactively 

in Shanghai, China? 

4. How to better assess the effects of PM2.5 air pollution on respiratory mortality in a time-

series study? 
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2 BACKGROUND 

2.1 THE METHODS FOR ESTIMATING THE CONTRIBUTION OF ROAD 
TRAFFIC TO PARTICULATE MATTER CONCENTRATIONS 

Road traffic related pollution is one of the main sources of ambient PM, which includes both 

exhaust and non-exhaust resources. The emissions of different vehicles such as passenger cars, 

trucks or busses vary largely in terms of their emission class. Traffic related air pollution has 

shown negative health impacts according to a growing body of epidemiological evidence.3 

Increases in urbanization and road motor vehicle use in China have raised concerns about the 

health effects of exposure to pollutants from traffic emissions. Among all air pollutants, PM2.5 

is on the top of the list due to it posing great public health hazards, including higher risks of 

respiratory diseases, impaired lung function, asthma attacks, cardiovascular diseases, and 

potentially also premature death.3 Despite significant emission reductions in Europe during the 

last two decades, the road transport remains to be a major source of important pollutants, 

contributing with 42% to total EU-27 emissions in 2009.4 By collecting and analyzing aerosol 

samples of PM2.5 both in summer and winter seasons at different traffic, industrial and 

residential areas in Beijing, a multisite study found that industrial and motor vehicle emissions, 

together with coal burning, were the major contributors to the air-borne PM pollution.5 They 

have immediate impacts on air quality, mainly in urban areas and therefore on human exposed 

to the road traffic related pollution. However, measurements at regional monitoring stations 

may be too sparse to reflect the actual concentrations of pollutants related to automobile, bus, 

and truck traffic to which the surrounding population is exposed. This stresses the need to count 

on reliable inventories which can describe the sources of such emissions thoroughly. 

Consequently, these inventories need to be constantly improved and adapted to new 

methodologies and data as they become available.  

2.1.1 Field measurement methods 

In the last three decades, a significant amount of researches have been conducted to characterize 

and estimate exhaust emissions from road traffic based on the field measurement methods. 

These methods evaluate emissions from road vehicles using dynamometers, measurements in 

tunnels, near roadside measurements, and road simulator tests.6-11 

2.1.1.1 Tunnel measurements 

In tunnel studies, emission rate of vehicles in the tunnel is measured as the sum of the difference 

between the pollutant influx and outflux while velocity and concentration are assumed to be 

the same across the tunnel’s cross-section.12 Therefore, we may calculate the difference in PM 

concentrations between entrance and exit of a tunnel (Figure 1).13,14 The distribution of organic 

compounds between particles and vapor is heavily affected by the high PM concentrations in 

a road tunnel, and thus may influence the estimate of emission factors for semi-volatile 

components.15 Because of the variations in vehicle speed, aerodynamic conditions in the tunnel 

and the fleet characteristics (i.e. proportion of heavy-duty vehicles and light-duty vehicles), 

variability in measurements exists in tunnel studies when measuring PM emission on a mixed 
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vehicle fleet.12,16 We should also notice that vehicles in the tunnel are often driving at a steady 

speed which does not happen under other road conditions where traffic follows a stop-and-go 

pattern, which may influence the estimate of emission.17  

 

Figure 1. Tunnel method 

2.1.1.2 Receptor modelling 

Receptor models interpret measurements of physical and chemical properties taken at different 

times and places to infer the possible sources of excessive concentrations and to quantify the 

contributions from those sources (Figure 2).18 A number of receptor models are used for source 

apportionment including the chemical mass balance (CMB) model 19, statistical models such 

as principal component analysis (PCA) and positive matrix factorization (PMF) 20, multilinear 

engine (ME) 21, constrained physical receptor model (COPREM) 22 and UNMIX.23 Receptor 

models assume that the relative concentrations of chemical species are preserved between air 

pollution sources and receptors, and use the principle of mass conservation for apportionment 

of PM mass to different sources. 
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Figure 2. Receptor model 

2.1.1.3 NOx as tracer 

In the situation where road traffic is the primary source for ambient mono-nitrogen oxides 

(NOx), we may use regression analysis between particle mass fractions and NOx to estimate the 

contributions of the traffic source to ambient PM concentration.24 The method assumes that the 

regression intercept in PM at zero NOx is due to non-traffic sources, with the traffic contribution 

estimated by difference from the measured mean concentration. However, this method is only 

useful when traffic is the predominant source for local NOx concentrations. 

2.1.1.4 Twin-site studies 

Twin-site studies assume that all sources other than traffic (including any local or regional 

sources) have the same impact at both roadside and background sites, the increment at the 

roadside site obtained using the equation (1) is used as a local traffic increment estimate 11,25: 

Concentration of X traffic= Concentration of X roadside-Concentration of X background  (1) 

The difference in observed concentrations between rural and urban areas provides an estimate 

(usually) for the urban increment while the difference between roadside concentration and 

urban background concentration provides an estimate for the traffic increment. Pattern of air 

circulation is an important determinant of ambient PM concentration at an enclosed street site, 

therefor results from such studies may be influenced by street geometry.26  
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2.1.2 Surrogate models 

Although traffic emission is the principal source of intra-urban concentration of PM, the field 

measurement of motor-vehicle emission may not be feasible for most studies to track vehicles 

and measure corresponding components of the pollutant mixtures on site.27 As a result, 

different surrogates have been used to assess the contribution of road traffic to ambient air 

pollution. These surrogates allow for relatively easy computation of distances from emissions 

sources, such as roadways, and for enhanced characterization of land use likely to influence the 

emission or dispersion of traffic-related pollution. The emergence of remote sensing 

technologies based on satellite imagery has contributed to a further refinement of the data 

inputs, although at this time direct estimates of ground-level pollution from remote sensing are 

generally at scales coarser than estimates obtainable on the ground.28 

2.1.2.1 Land use regression models 

The land use regression (LUR) models use surrounding land usage and traffic characteristics 

at a given site to predict pollution concentrations. Regression mapping is the base of the models 

for assessing traffic-related pollution.29-31 It uses measured pollution concentration at a location 

as the dependent variable and land use type within the areas around the location as predictor. 

When air quality monitoring data and exogenous independent variables are available, LUR can 

be used to predict pollution surfaces. 

The advantage of LUR is accounting for small scale variability in intraurban pollutant 

concentrations. It requires similar geographic variables (traffic volume, distance to pollutant 

source), but necessitates sampling data. The ability to differentiate exposure within proximity 

distances through the use of additional land use variables is an added benefit. Geostatistical 

models (e.g., kriging) are similar to LUR models with respect to the need for sampling data.32 

2.1.2.2 Dispersion models 

Dispersion models use data on emissions, meteorological conditions, and topography to 

estimate ambient air pollution concentrations.33,34 The models require data on pollution, 

meteorological conditions, and emission to fulfill model assumptions (Figure 3). Data on 

background pollution concentrations are usually obtained from monitoring stations near the 

study area and are used for model calibration.35 Depending on the type of source, emission data 

are classified into stationary sources and mobile sources. Traffic emissions are estimated using 

traffic volume and standard emission factors for different types of vehicles, speeds, and 

gradients of the road network.34,36 

Recently, dispersion models have been used in conjunction with geographic information 

system (GIS), which allows both information from monitoring systems and data concerning 

the population distribution in the study area to be analyzed together. With additional data on 

the topography of the study area, local road network, and traffic characteristics, a more realistic 

representation of the pollution can be formed.37-41 The obstacles in the implementation of these 

models are the costly data input and expensive hardware requirements.42 
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Figure 3. Illustration of PM2.5 dispersion plume 

2.1.2.3 Interpolation models 

Interpolation models may be deployed where measurements of the target pollutant are available 

from a set of air quality monitoring (AQM) stations distributed throughout the study area. The 

method relies on geostatistical techniques. The most common geostatistical technique used in 

the air pollution field is ‘‘kriging’’.43 Kriging methods supply the best linear unbiased 

estimation (BLUE) of the variable’s value at any point in the study area.44,45 Estimates from 

interpolation models are usually obtained at the center of a grid, imposed over the study area, 

so that a continuous surface of pollution concentration can be established, then the 

concentration of pollutant at sites other than monitored locations are generated.  

However, geostatistical interpolation is limited by the requirement of a reasonably dense 

monitoring network. Government monitoring data come from a sparse network of stations that 

are likely to be affected by industrial and heavy transportation emission sources. Reliance on 

government monitoring data may introduce large errors in where few observations are 

available.34 
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2.1.2.4 Coupled chemistry-meteorology models 

It has been well recognized that weather has a profound impact on air quality and atmospheric 

transport of hazardous materials. Coupled chemistry-meteorology (CCM) models use 

meteorological and chemical modules together to simulate dynamics of atmospheric pollutants 

(Figure 4).46,47 The models provide tighter temporal coupling between meteorology and air 

quality models as well as feedback from the air quality simulation to the physical processes in 

the meteorology model. CCM models typically consist of three modules: meteorological 

module, chemistry transport module, and visualization and analysis module. Some of them 

were developed by essentially adding atmospheric chemistry, along with source and sink 

processors, to established meteorology models. In these models, meteorological data are 

provided to the chemistry modules at every simulation.48  

 

Figure 4. Coupled chemistry-meteorology model 

The models are useful for areas that do not have comprehensive observations to define 

characteristics of the key meteorological fields required for air quality application.34 A 

disadvantage of this approach is that air chemistry models often have different requirements 

for numerical integration such as strict mass conservation, positive definiteness, and greater 

computational efficiency, which make their use a costly endeavor. Although CCM models have 

not been widely used for linking air quality to health, they have considerable potential in areas 

with large populations, where relatively small air pollution risks may exert large burdens of 

illness and mortality.34,48 
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2.1.2.5 Hybrid Models 

The hybrid models combine personal or regional monitoring data with other air pollution 

exposure measurements. Most studies using hybrid models were conducted in European cities, 

which used personal monitoring methods in conjunction with fixed outdoor stations.49-51 Long-

term mean exposure to pollutants was assumed to be a function of different components: 

regional background, urban concentration, and local variation due to traffic. The regional 

background concentration was estimated by the inverse distance weighting interpolation 

method with use of data from a national monitoring network.52 To address the limitations of 

available monitoring data and the various metrics of exposure, a hybrid approach uses output 

from both a grid-based chemical transport model and a plume dispersion model to provide 

contributions from photochemical interactions, long-range (regional) transport, and details 

attributable to local-scale dispersion.53  

The modeling approach allows for estimating pollution from mobile vs. stationary sources and 

background vs. roadways, which provides an opportunity to compare relative contributions of 

various sources and total. The hybrid models may provide new information regarding exposure 

to traffic-related air pollutants that is not captured by simpler metrics commonly used in 

environmental epidemiology studies of traffic-related air pollution.53 Yet, the difficulty in 

implementing hybrid models depends on the combination of models being used. When ambient 

data are unavailable, this method becomes more difficult to implement.34 

2.2 HEALTH EFFECTS OF PARTICULATE MATTER 

2.2.1 Global health effects of particulate matter 

Inhalable PMs, including PM10 and PM2.5 are small enough to penetrate the thoracic region of 

the respiratory system. Their effects have been well documented, including: 

• respiratory and cardiovascular morbidity, such as aggravation of asthma, respiratory 

symptoms, and increase in hospital admissions; 

• mortality from cardiovascular and respiratory diseases, and from lung cancer.54 

PM2.5 is especially harmful because it can easily enter the alveoli and cross the membrane of 

lung cells, and eventually accumulates in the respiratory system (Figure 5). It is estimated that 

75% of PM2.5 particles, and 100% of PM2 particles will reach the alveoli.55 
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Figure 5. Visualization of air particles comparing with human hair 

PM2.5 has been one of the major causes of premature mortality in Asia, Europe and America. 

Concern over the health effects of PM2.5 in the ambient environment led the United States (U.S.) 

Environmental Protection Agency (EPA) to develop the first standard for PM2.5 in 1997.56 

Numerous time series studies have showed a considerable association of PM2.5 with daily 

respiratory death counts.57-62 According to the Air Quality in Europe – 2015 Report, about 

432,000 premature deaths were attributable to PM2.5 exposure in 2012 in 40 European 

countries.63 A recent review of seventeen studies showed that the excess risk percentage (ER%) 

per 10 g/m3 increase of pollutants was 1.5% [95% confidence interval (CI): 0.6% – 2.4%] for 

PM10 and 1.8% (95% CI: 0.5% – 3.1%) for PM2.5. The corresponding values per 10 parts per 

billion (ppb) increment of gaseous pollutants were 2.9% (95% CI: 0.4% – 5.3%) for sulfur 

dioxide (SO2), 1.7% (95% CI: 0.5% – 2.8%) for ozone (O3), and 1.4% (95% CI: 0.4% – 2.4%) 

for nitrogen dioxide (NO2). ER% per 1000 ppb increment of carbon monoxide (CO) was 0.9% 

(95% CI: 0.0% – 1.9%).64 On a global scale, the estimated premature deaths due to outdoor air 

pollution, mostly by PM2.5, can be as high as 3.3 (95% CI: 1.61 – 4.81) million per year, 

predominantly in Asia. Emissions from residential energy use such as heating and cooking, 

prevalent in India and China, have the largest impact on premature mortality, being even more 

dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the U.S. 

and in a few other countries emissions from traffic and power generation are important, in 

eastern U.S., Europe, Russia and East Asia agricultural emissions make the largest relative 

contribution to PM2.5.65 

As with all population studies, the conclusions are still open to debate. The arguments include: 

 Are the measured PM2.5 concentrations accurate? 
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 Are the confounders such as lifesyle and co-exposure to other pollutants accounted for 

adequately? 

 Do the concentrations measured at a monitoring station actually reflect the individual 

exposure? 

The last point is particularly important since the most epidemiological studies use fixed and 

limited monitoring stations’ data as human exposure.56 

2.2.2 Health effects of particulate matter in China 

Due to the rapid urbanization and dramatic increase of energy consumption and motor vehicles 

in major cities such as Beijing, Shanghai and Guangzhou in China after 1980s, air pollution 

has become a choking problem. Chinese researchers started conducting PM2.5 measurement 

since early 2000s, much earlier than the first Chinese PM2.5 standard promulgated in January 

2012.66 

Beijing, the capital city of China, is suffered from air pollution for decades because of its unique 

geographic location and manufactory industry. Local governmental authorities have paid the 

attention to environmental problem for three decades. The monitoring system was built from 

1984, and PM2.5 became a new monitoring pollutant from 2006. According to the air quality 

guideline of the World Health Organization (WHO), 24-hour mean of PM2.5 concentration < 

25 g/m3 or annual mean < 10 g/m3 is considered as no risk.67 The corresponding standard of 

the U.S. EPA is 35 g/m3 and 12 g/m3, respectively.68 However, the U.S. Embassy in Beijing 

posted that the PM2.5 levels were frequently over than 500 g/m3 in 2012, which meant 

extremely severe pollution. Since October 2012, Beijing government increased its fixed AQM 

stations from 27 to 35which covered the entire municipal area from the central business district 

(CBD) to rural industry region. A randomized intervention study of indoor PM2.5 filtration 

conducted in Beijing revealed that the reduction of main components of indoor PM2.5 by 42% 

to 63% resulted in significant reductions on systemic inflammation measured as of interleukin 

8 (IL-8) by 58.59% (95% CI: -76.31% – -27.64%) in the senior group and 70.04% (95% CI: -

83.05% – -47.05%) in the chronic obstructive pulmonary disease (COPD) patients with 

adjustments.69 Another observational study also found a significant association with ambient 

PM2.5 concentration and increased use of asthma-related health services. Every 10 g/m3 

increase in PM2.5 concentration on the same day was associated with a 0.67% (95% CI: 0.53% 

– 0.81%), 0.65% (95% CI, 0.51% – 0.80%), and 0.49% (95% CI, 0.35% – -0.64%) increase in 

total hospital visits, outpatient visits, and emergency room visits, respectively.70  

Shanghai, one of the biggest financial cities in the world, has been also impacted by heavy road 

traffic pollution. Hourly PM2.5 has been monitored in Shanghai since 2012. Till 2017, there 

have been approximate 50 monitoring stations in Shanghai. An earlier study has already found 

that PM2.5 was associated with the death rates from all causes and from cardiorespiratory 

diseases in Shanghai. A 10 μg/m3 increase in the two-day moving average of current day and 

the previous day (lag01) concentration of PM2.5 corresponded to 0.36% (95% CI: 0.11% – 

0.61%), 0.41% (95% CI 0.01% – 0.82%) and 0.95% (95% CI 0.16% – 1.73%) increase of total, 
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cardiovascular, and respiratory mortality, respectively.71 Another relative recent study 

investigated PM2.5 constituents and hospital emergency-room visits in Shanghai. During the 

study period, the mean of daily average PM2.5 concentrations in Shanghai was 55 μg/m3. Major 

contributors to PM2.5 mass included organic carbon (OC), elemental carbon (EC), sulfate, 

nitrate, and ammonium. The researchers found that for a 1-day lag, an interquartile range (IQR) 

increment in PM2.5 mass (36.47 μg/m3) corresponded to 0.57% (95% CI: 0.13% – 1.01%) 

increase of emergency room visits.72 

When China Daily reported the worst air quality in Beijing in December 2013, more than 80% 

of the seventy-four major cities in China could not meet the Chinese national standard for most 

days in that month.73 Even though, in a public survey about whether they felt harms 

environmental pollution, only 6% people across 28 provinces experiencing sever air pollution 

in China answered “YES”.74 In a nationwide time-series analysis performed in 272 

representative Chinese cities from 2013 to 2015, city-specific effects of PM2.5 on daily 

mortality were estimated using overdispersed generalized additive model. The average of 

annual-mean PM2.5 concentrations of the cities was 56 g/m3 (ranging from 18 to 127 g/m3). 

Each 10 g/m3 increase in daily PM2.5 concentrations (lag 01) was significantly associated with 

increments of 0.22% in mortality from total non-accidental causes, 0.27% from cardiovascular 

diseases, 0.39% from hypertension, 0.30% from coronary heart diseases, 0.23% from stroke, 

0.29% from respiratory diseases, and 0.38% from chronic obstructive pulmonary disease. 

These findings provided key epidemiological evidence for the review of the ambient air quality 

standards in China. Furthermore, these results have important policy implications as well, 

making the critical evaluation of the diverse modeling approaches that have been proposed in 

the literature an important task. 

2.2.3 Interaction with meteorological factors 

Both extreme weather conditions and PM air pollution are well-established risk factors of 

adverse health outcomes (Figure 6). The PM air pollution shows a clear seasonal trend.75-78 In 

China, the air quality is influenced by wind direction and temperature, and seasonal changes in 

PM2.5 and PM10 concentrations are striking, which may increase 2 to 3 times in winter in 

average.79-81 Dozens of studies showed the exposure to the climate change especially the 

extreme weather condition increased respiratory morbidity and mortality. There is a wealth of 

evidence showing that all-cause mortality increases during both cold season and hot wave 

period.82-97 There were differences in the spatiotemporal variations of extreme low 

temperatures for emergency transport during winter in Japan. The nationwide study indicated 

the overall cumulative relative risk (RR) at the first percentile vs. the minimum morbidity 

percentile was 1.59 (95% CI: 1.33 – 1.89) for respiratory diseases.98 The recent statistics from 

a European country showed the effect of cold temperatures in mortality was presented a 1 – 2-

day delay, reaching maximum increased risk of death after 6 – 7 days and lasting up to 20 – 28 

days.99 In China, cold spells significantly increased the risk of deaths due to non-accidental 

mortality (RR 1.08, 95% CI: 1.06 – 1.11), respiratory disease (RR 1.19, 95% CI: 1.11 – 1.27), 

and COPD (RR 1.27, 95% CI: 1.16 – 1.38). Heat waves significantly increased the risk of 
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deaths due to non-accidental mortality (RR 1.02, 95% CI: 1.00 – 1.05). Especially, the elderly 

and the children were more vulnerable to the extreme event.100 

 

Figure 6. Effects of particle matter pollution and extreme weather on human health 

In general, it has been well documented that both PM pollution and meteorological conditions 

are significantly associated with non-accidental mortality. Therefore, there are concerns that 

the reported association of PM with mortality might be a mixture of PM and weather 

conditions. However, few studies have investigated the interaction between meteorological 

variables and PM concentrations so far. In the thesis, a Bayesian approach within generalized 

additive model (GAM) framework was deployed to explore the influence of meteorological 

conditions on the effect of PM2.5 on non-accidental mortalities. 

2.3 BAYESIAN METHOD 

2.3.1 Bayes’ theorem 

There are two schools of statistical inference: Bayesian and frequentist. Both approaches allow 

one to evaluate evidence about competing hypotheses. Compare to the frequentist approach, 

Bayesian one requires prior distribution and likelihood of observed data. 

Bayes’ theorem (Figure 7) describes the posterior or conditional probability of a hypothesis 

(H) based on prior knowledge of evidence (e) that might be related to the hypothesis. The 

posterior p(H|e) of H given e is definite as:  
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𝑝(𝐻|𝑒) =
𝑝(𝐻,𝑒)

𝑝(𝑒)
   (2) 

By manipulating the definition, we may have the equations below:  

𝑝(𝐻, 𝑒) = 𝑝(𝐻|𝑒) ∙  𝑝(𝑒), 𝑎nd 𝑝(𝑒, 𝐻) = 𝑝(𝑒|𝐻) ∙  𝑝(𝐻) (3) 

Because of 𝑝(𝐻, 𝑒) = 𝑝(𝑒, 𝐻), by rewriting the above equations we get: 

𝑝(𝐻|𝑒) =
𝑝(𝑒|𝐻)∙ 𝑝(𝐻)

𝑝(𝑒)
   (4) 

 

Figure 7. Bayes’ theorem 

When rewriting the denominator in (4) in terms of p(e|H), we may have: 

𝑝(𝐻|𝑒) =
𝑝(𝑒|𝐻)∙ 𝑝(𝐻)

∑ 𝑝(𝑒|𝐻∗
)∙ 𝑝(𝐻∗)𝐻∗

   (5) 

Equation (5) is the Bayes’ rule and lies at the core of Bayesian inference whereas 𝐻∗in the 

denominator is a variable that takes on all possible hypotheses.101 

With Bayes’ rule, we may convert the prior distribution with probability of the various 

parameters to what we really want to know, and shift the attention from the marginal 
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distribution of the parameters and the prior to the posterior or conditional probability of the 

parameters. 

When we obtain a particular dataset D and denote θ is the parameter that we are interested in, 

then the posterior can be denoted as p(θ|D); the likelihood denoted as p(D|θ), which means the 

probability of the data might be obtained with the parameter θ under certain model assumptions; 

and the prior denoted as p(θ), which means the credibility of the parameter values without D.  

The marginal likelihood or the denominator in Bayes’ rule can be rewritten for continuous 

variables using the denotations above as: 

𝑝(𝐷) = ∫ d𝜃∗ 𝑝(𝐷|𝜃∗)𝑝(𝜃∗)  (6) 

where 𝜃∗denotes any possible value of θ. 

2.3.2 Bayesian model averaging 

Bayesian model averaging (BMA) is an application of Bayesian inferential analysis. It has been 

applied to model selection problems, where one combines estimation and prediction to produce 

a straightforward model choice criteria and less risky predictions. By averaging over many 

different competing models, BMA incorporates model uncertainty into the estimation of 

parameters and prediction. BMA has been applied successfully in many statistical model 

classes including linear regression, generalized linear models (GLMs), Cox regression models, 

and discrete graphical models, in all cases improving predictive performance.102 So the average 

estimation across a set of models would generate more robust interval estimation, and 

meanwhile, reduce the type I error.  

Suppose in a study, Ml is one of a set of models considered to fit the research question, Δ is the 

interested parameter, D is the dataset given, then the BMA-averaged Δ is the sum of specific 

model derived Δl weighted by the posterior model probability 𝑝(𝑀𝑙|𝐷) (Figure 8):102 

𝐸(𝛥|𝐷) = ∑ 𝛥𝑙
𝐾
𝑙=1 𝑝(𝑀𝑙|𝐷)  (7) 

Although we cannot get the posterior probability 𝑝(𝑀𝑙|𝐷) directly, according to the Bayes’ 

rule, the posterior for a given model Mk is: 

𝑝(𝑀𝑘|𝐷) =
𝑝(𝐷|𝑀𝑘)∙ 𝑝(𝑀𝑘)

∑ 𝑝(𝐷|𝑀𝑙)∙ 𝑝(𝑀𝑙)𝐾
𝑙=1

  (8) 

where p(Mk) is the probability that Mk is true and the likelihood 𝑝(𝐷|𝑀𝑘) is given by: 

𝑝(𝐷|𝑀𝑘) = ∫ d𝜃𝑘  𝑝(𝐷|𝜃𝑘, 𝑀𝑘 ) 𝑝(𝜃𝑘|𝑀𝑘) (9) 

In equation (9), 𝜃k is the parameter vector of model Mk, 𝑝(𝜃𝑘|𝑀𝑘) is the prior density of θk 

under model Mk, and 𝑝(𝐷|𝜃𝑘, 𝑀𝑘 ) is the likelihood. The posterior distribution of  given data 

D is: 

𝑝(𝛥|𝐷) = ∑ 𝑝(𝛥|𝑀𝑙 , 𝐷)𝐾
𝑙=1 𝑝(𝑀𝑙|𝐷)  (10) 
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Figure 8. Illustration of Bayesian model averaging 

Although there are some computational difficulties, by averaging all potential models, BMA 

provides better predictive results and less uncertainty. In the thesis, we demonstrated an 

application of BMA within a generalized additive mixed model (GAMM) frame in a time-

series study. 

2.3.3 Frequentist and Bayesian inferences in air pollution study 

Both frequentist and Bayesian approaches are used to evaluate the evidence about competing 

hypotheses of health effects of air pollution. The Bayesian school uses probabilities for both 

hypotheses and data given the prior and likelihood of the data. The robustness of its result 

somehow depends on the subjective prior distribution. However, the frequentist school depends 

on the likelihood for observed and unobserved data and uses the conditional distribution. It 

presumes that a certain hypothesis is true and the observed data are sampled from that 

distribution.103 

In literatures, GLM with parametric splines (e.g. natural cubic splines)104 or GAM with 

nonparametric splines (e.g. smoothing splines or locally weighted smoothers [LOESS])105 are 

used to estimate effects associated with exposure to air pollution while accounting for smooth 

fluctuations in outcomes that confound the estimated effects of pollution. These two similar 

models sever as different analytic purpose, usually GLM emphasizes on estimation and 

inference for the parameters of the model while GAM focuses on non-parametrical model for 

exploring the association between the dependent and independent variables.106 The 

conventional algorithm for fitting GAM (hereinafter called frequentist GAM) is the back fitting 
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algorithm and corresponding robust estimation method has also been developed.107,108 A 

disadvantage of GAM is that it is difficult to integrate with the estimation of the degree of 

smoothness of the model terms, so that in practice the user must set these, or select between a 

modest set of predefined smoothing levels.  

During recent decades, Bayes methods enjoyed the popularity due to the computational 

progress. A class of Markov chain Monte Carlo (MCMC) algorithm became a practical method 

to estimate the complex random variables instead of direct sampling. A detailed tutorial is given 

by Hanson and Kruschke.101,109 A semi-parametric Bayesian approach and a simulation study 

was displayed by Conley et al.110 The computationally efficient approaches such as fully 

Bayesian method thus have been developed in recent years. A fully Bayesian approach for 

modeling and inference within GAM requires prior assumption for unknown smooth function 

S(·). Several alternatives have been recently proposed for specifying smoothness prior for 

continuous covariates or time trends, such as random walk priors or more generally 

autoregressive priors111,112, Bayesian P-splines113, and Bayesian smoothing splines.114  

Although there are some applications115-119 of Bayesian GAM analysis in recent years, few of 

them compared the performance of frequentist and Bayesian GAMs in terms of accuracy and 

precision. In the thesis, we took advantage of the available citywide data in China including 

causes of death registry data and daily air quality monitoring data to conduct a simulation study. 

The study compared the estimates from frequentist and Bayesian methods using simulated data 

with underlying ‘true’ parameters based on a genuine time-series study on PM2.5 and 

respiratory deaths in Shanghai. 
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3 AIMS 

The overall aim of the studies is to develop a simple method to estimate the contribution of 

road traffic to PM2.5 concentration in metropolises in China, and evaluate the spatiotemporal 

relationship of PM pollution with non-accidental mortality, by setting up the hybrid models 

and introducing the Bayes approach. 

The specific objectives are as follows: 

 Study I: to characterictize geographical profile of PM2.5 concentrations in 16 municipal 

districts in Beijing, China, and develop a hybrid model to estimate the contribution of 

road traffic to PM2.5 concentrations. 

 Study II: to evaluate the association between daily PM10 concentrations and respiratory 

mortality in eight municipal districts in Beijing, China using GAMM, and demonstrate 

the application of BMA method for GAM estimates. 

 Study III: to quantify the effects of PM2.5 on daily non-accidental mortality in Shanghai, 

China, and evaluate the interaction between weather conditions and PM2.5 

concentrations using a fully Bayesian approach within GAM framework. 

 Study IV: to compared the performance of frequentist and Bayesian GAMs in terms of 

accuracy and precision using simulated data with underlying ‘true’ parameters derived 

from the genuine time-series data in Study III. 
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4 MATERIALS AND METHODS 

4.1 STUDY DESIGN 

All the four studies are time-series study using daily PM2.5 or PM10 concentrations, 

meteorological variables, traffic information, and population registry-based non-accidental 

death data in Beijing or Shanghai, China. 

4.2 STUDY AREA AND POPULATION 

The studies were conducted in the two biggest cities in China: Beijing, the capital city of China 

(studies I and II), and Shanghai, one of the biggest global financial centers in the southeast of 

China (studies III and IV). 

4.2.1 Beijing (studies I and II) 

Beijing, located in the northern China plain with a vast land of 16,410 km2, 16 municipal 

districts and a population of 21.148 million, is surrounded by serval severe contaminated 

industry cites. However, 92% of the land belongs to the suburban and rural area. The urban 

area of Beijing covers a small central municipality’s part and spreads out in ring roads. The 

geographical distribution and demographical information of the 16 districts in Beijing is shown 

in Figure 9 and Table 1. 

In studies I and II, the geographical information was collected by the College of Resources and 

Environment, University of Chinese Academy of Sciences. 

In Study II, 10.38 million permanent residents from 8 municipal districts of Beijing and 9,559 

respiratory deaths were included in the study period between Jan 1st, 2009 and Dec 31st, 2010. 

4.2.2 Shanghai (studies III and IV) 

Studies III and VI were conducted in Shanghai, one of the most important financial cities in 

the world and the largest transport hub in China, located in the Yangtze River Delta and 

bounded by the East Sea with a population of 24 million in 2014 and 6,340 km2.120 Due to its 

location, the whole city land is flat, divided into east and west sections by the Huangpu River. 

Compare to Beijing, the smog and PM pollution is lower, however it remains a substantial 

problem by European Union (EU) or U.S. standards.  

There are also 16 municipal districts in Shanghai, all with own urban cores. The geographical 

distribution and demographical information of the districts are shown in Figure 10 and Table 

2. 

In studies III and IV, 336,379 non-accidental deaths occurred during the study period between 

January 1st, 2012 and December 31st, 2014 in Shanghai. 
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Figure 9. Geographical distribution of the 16 municipal districts in Beijing 

 

Table 1. Demographical information of the 16 municipal districts in Beijing121 

District Population (2010) Area (km2) 
Population density 

(per km2) 

Dongcheng 919,000 40.6 22,635 

Xicheng 1,243,000 46.5 26,731 

Chaoyang 3,545,000 470.8 7,530 

Haidian 3,281,000 426.0 7,702 

Fengtai 2,112,000 304.2 6,943 

Shijingshan 616,000 89.8 6,860 

Tongzhou 1,184,000 870.0 1,361 

Shunyi 877,000 980.0 895 

Changping 1,661,000 1,430.0 1,162 

Daxing 1,365,000 1,012.0 1,349 

Mentougou 290,000 1,331.3 218 

Fangshan 945,000 1,866.7 506 

Pinggu 416,000 1,075.0 387 

Huairou 373,000 2,557.3 146 

Miyun 468,000 2,335,6 200 

Yanqing 317,000 1,980.0 160 
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Figure 10. Geographical distribution of the 16 municipal districts in Shanghai 

Table 2. Demographical information of the 16 municipal districts in Shanghai122 

District Population (2015) Area (km2) 
Population density 

(per km2) 

Huangpu 658,600 20.46 32,190 

Xuhui 1,089,100 54.76 19,889 

Changning 691,100 38.30 18,044 

Jing’an* 1,074,000 36.88 29,121 

Putuo 1,288,000 54.83 23,491 

Hongkou 809,400 23.46 34,501 

Yangpu 1,315,200 60.73 21,657 

Minhang 2,537,900 370.75 6,845 

Baoshan 2,022,900 270.99 7,465 

Jiading 1,568,231 464.20 3,378 

Pudong New Area 5,474,900 1,210.41 4,523 

Jinshang 798,000 586.05 1,362 

Songjiang 1,760,200 605.64 2,906 

Qingpu 1,209,100 670.14 1,804 

Fengxian 1,159,900 687.39 1,687 

Chongming 696,400 1,185.49 587 

* Combined with Zhabei district on November 4, 2015. 
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4.3 AIR QUALITY AND METEOROLOGICAL DATA 

4.3.1 Beijing (studies I and II) 

Because of the unique location, increasing industrialization, and dramatically increased coal 

and fossil fuel burning, Beijing has been suffered from environmental problems for a long 

period. Since October 2012, Beijing has established 35 fixed AQM stations across the entire 

municipal area (Figure 11). Both hourly ambient air pollution concentrations and air quality 

indices (AQI) are reported by the AQM stations. Beijing has a monsoon-influenced humid 

continental climate, with four distinctive seasons, very dry and cold winter, and humid and hot 

summer. The average temperature high varies from 1.8 °C in January to 30°C in June and July, 

and the temperature low usually is between -8°C to 22°C.  

 

Figure 11. Distribution of 35 air quality monitoring stations in Beijing 

In Study I, hourly PM2.5 concentrations from the 35 AQM stations during January 1st, 2013 to 

December 31st, 2014 were collected by the College of Resources and Environment, University 

of Chinese Academy of Sciences. According to the standard of Ministry of Environmental 

Protection of China, the AQI measurements are classified into six categories, good, moderate, 

unhealthy for sensitive group, unhealthy, very unhealthy, and hazardous.123,124 Daily 

meteorological data during the same period were obtained from National Meteorological 

Information Center of China, which included temperature, wind speed, wind direction, 

barometric pressure, rainfall volume and hours of daylight. In Study II, daily air quality data 
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included the concentrations of PM10, nitrogen oxides (NOx) and CO and meteorological 

conditions were obtained from eight districts having AQM stations in Beijing between January 

1st, 2009 and December 31st, 2010. Furthermore, for Study I, five-minute traffic volume and 

speed data per 30 minutes from eight road conjunctions in core city districts were also collected 

by University of Chinese Academy of Sciences between January 1st, 2013 and December 31st, 

2014. Traffic densities of the AQM stations were calculated using an inverse function of mean 

road vehicle speed on the main roads.125 

4.3.2 Shanghai (studies III and IV) 

In studies III and IV, daily average PM2.5 concentrations between January 1st, 2013 and 

December 31st, 2014 were obtained from the Shanghai Meteorological Bureau. Only the 

measurements from one AQM station were available during the study period and used for 

whole Shanghai area. Because PM2.5 was not routinely monitored in Shanghai until late 2012, 

the hourly PM2.5 data in 2012 were obtained from the online database published by the AQM 

station of the U.S. Consulate General in Shanghai, China, which is located in the Xuhui district 

of Shanghai.126 The daily average PM2.5 concentrations in 2012 were calculated from the hourly 

concentrations published by the U.S. Consulate General in Shanghai. Recent studies have 

indicated that PM2.5 data from the U.S. embassy and consulates’ AQM stations were highly 

consistent with those reported by local AQM stations.127,128 Shanghai has a climate with 

subtropical characteristic, characterized by very humid summer and winter, comparatively dry 

and pleasant autumn. The average temperature averages around 4.2°C in January and 28°C in 

July. Daily meteorological data from Jan 1st, 2013 to Dec 31st, 2014 were obtained from 

Shanghai Meteorological Bureau. Citywide daily meteorological data used in studies III and 

IV include temperature, relative humidity, barometric pressure, wind speed, precipitation and 

sunshine time et al. No district-specific data were available in studies III and IV. 

4.4 MORTALITY DATA 

In Study II, the respiratory mortality data between January 1st, 2009 and December 31st, 2010 

were obtained from the Causes of Death Registry (CDR) in Beijing. The causes of death were 

coded according to the 10th version of the International Classification of Disease (ICD-10). 

Death codes J00-J98 were used to identify deaths due to respiratory diseases. 

In studies III and IV, the daily mortality data from Jan 1st, 2012 to Dec 31st, 2014 were 

obtained from the CDR in Shanghai collected by Shanghai Municipal Center for Disease 

Control and Prevention (SCDC). Deaths for all non-accidental causes (ICD-10 codes A00-R99) 

and respiratory diseases (ICD-10 codes J00-J99) were examined. Individual information of age, 

sex, occupation, education, residential area and smoking rate were also obtained from SCDC 

and summarized for each 5-year age group. 
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4.5 METHODS FOR CATEGORIZING WEATHER CONDITIONS 

To investigate the effects of weather conditions on non-accidental mortality and interaction 

between weather conditions and PM2.5 in studies III and IV, we identified extreme weather 

conditions and categorized the days into different synoptic types during the study period.  

According to Guidelines on Analysis of Extremes in a Changing Climate in Support of 

Information Decision for Adaptation of the World Meteorological Organization (Climate Data 

and Monitoring, WCDMP-No. 72),129 one of the methods to get extreme weather is to calculate 

the number of the days in a year exceeding specific threshold. Day-count indices based on 

percentile threshold are expression of anomalies related to local climate. These anomalies have 

fixed rarity, that is, the thresholds are chosen so as to be exceeded at a fixed frequency, often 

10 percent. As for the statistical modelling, usually the extreme quantiles were estimated from 

an extreme value distribution, usually using the “peaks over threshold” mothed or “block 

maximum” method. We adopted the similar rule to define extreme weather conditions in our 

study as the daily minimum/maximum temperature, minimum/maximum barometric pressure, 

average humidity or wind speed lower or higher than the corresponding yearly the 10th 

percentile or the 90th percentile in the 3-year study period, respectively. The derived eight 

extreme weather conditions are hot, cold, hyperbaric, hypobaric, humid, dry, windy and 

windless. Numbers of the days with two or more extreme conditions are shown in Table 3. 

Table 3. Numbers of the days with two or more extreme weather conditions 

 Hot 

n=109 

Cold 

n=109 

Hyperbaric 

n=107 

Hypobaric 

n=105 

Humid 

n=101 

Dry 

n=103 

Windy 

n=100 

Windless 

n=94 

Cold         

Hyperbaric  60       

Hypobaric 40        

Humid    13     

Dry 16 18 12 9     

Windy 14 8 7 22 11 6   

Windless 4 20 11 8 17    

 

We also categorized the observed days in studies III and IV into different synoptic weather 

types (SWTs) as proposed by Kalkstein et al.130 Our clustering approach offered categories by 

15 meteorological parameters, including three barometric pressure measurements, three 

temperature measurements, two humidity measurements, five wind speed measurements, one 

precipitation measurement and one time of sunshine measurement. Since there was high inter-

correlation within these parameters, we used principal component analysis (PCA) for 

dimensionality reduction for the variables. As a result, we got six principal components (PCs) 

that may explain 93% of the variance of the original 15 meteorological parameters, therefore 

we classified the 1096 days into six SWTs based on six PCs, which are hot dry, warm humid, 

cold dry, moderate dry, moderate humid and cold humid weather types. Meteorological profiles 

and PM 2.5 concentrations of the SWTs are shown in Table 4. 

Table 4 Meteorological characteristics and PM2.5 concentrations of synoptic weather types 
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 Number 

of days 

Pressure 

(kPa) 

Temperature 

(C) 

Humid 

(%) 

Precipitation 

(mm) 

Wind speed 

(m/s) 

Sunshine 

(hour) 

PM2.5 

(g/m3) 

Hot dry 167 100.60.4 28.44.0 62.010.2 1.254.55 3.410.91 8.792.76 41.229.3 

Warm humid 214 100.80.4 23.83.8 79.96.9 4.118.28 2.240.63 2.2532.77 49.530.1 

Cold dry 158 102.40.4 8.05.1 60.813.2 0.983.43 2.820.94 5.453.39 82.850.6 

Moderate dry 225 101.70.3 18.53.8 66.410.8 0.321.35 2.680.68 6.673.30 49.030.4 

Moderate humid 107 101.10.6 19.16.1 82.38.3 17.2825.26 3.831.17 8.991.76 40.425.1 

Cold humid 225 102.50.4 6.73.2 72.09.6 1.814.39 2.480.82 3.323.36 63.542.9 

 

4.6 STATISTICAL METHODS 

4.6.1 Two-stage method to estimate the contribution of road traffic to fine 
particle concentrations (Study I) 

In Study I, we developed a two-stage method to estimate the road traffic contribution to the 

daily ambient fine particle (PM2.5) concentrations measured in Beijing. Thirty-five AQM 

stations were categorized into four groups, including six background stations, five traffic 

stations, two industrial stations and 22 other stations adjusted for the locations, traffic densities 

and meteorological conditions. Background stations were comparatively located far away from 

the busy roads, therefore they were less affected by traffic emission and most of pollution 

variation was accounted for geographic trend, usually heavier in the south part than in the north. 

In the first stage, regional non-traffic portion of PM2.5 in the background stations was fitted by 

a three-level generalized liner mixed model (GLMM) and the traffic contribution to PM2.5 at 

the background stations was then estimated by a dispersion model:  

𝐶̂𝑝(𝑡) = [𝑘1 𝐶𝑝(𝑡−1) + 𝑘2 ×
1

√𝐷𝑖𝑛𝑑𝑝

× 𝐶𝑖𝑛𝑑(𝑡) × (𝑊̂𝑖𝑛𝑑(𝑡)/𝑊𝑎𝑣𝑔)𝑘3 + 𝑘4 ×
1

√𝐷𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑝

×

𝐶𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑡) × (𝑊̂𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑡)/𝑊𝑎𝑣𝑔)𝑘3] × 𝑒−𝑘5×𝑊(𝑡)  (11) 

where 𝐶̂𝑝(𝑡)denotes the expected PM2.5 concentration at station 𝑝 on day t; 𝐶𝑝(𝑡−1) denotes the 

observed PM2.5 concentration on day t-1; 𝐷𝑖𝑛𝑑𝑝
 represents the average distance from station p 

to industrial stations; 𝐶𝑖𝑛𝑑(𝑡) denotes the observed PM2.5 concentration of industrials stations 

on day t; 𝐷𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑝
 represents the average distance from station p to traffic stations; 𝐶𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑡) 

denotes the observed PM2.5 concentration of traffic stations on day t; 𝑊̂𝑖𝑛𝑑(𝑡)  denotes the 

summation of valid flux of wind from industrial stations and 𝑊̂𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑡) means the summation 

of valid flux of wind from traffic stations on day t; 𝑊𝑎𝑣𝑔 is the average wind speed of the year; 

𝑊(𝑡) is the maximum wind speed on day 𝑡; and 𝑘1,···, 𝑘5 are the parameters to be estimated. 

The dispersion model made the reference to the hybrid single-particle Lagrangian integrated 

trajectory (HYSPLIT) model used to track the transport corridors that are regarded as a “region 

of influence” i.e. the five traffic stations and two industrial stations in our study.131 According 

to the community multiscale air quality (CMAQ) model, all emissions are assumed to be 

instantaneously well-mixed and have own lifetime.132 The model simulated the decay of 

previous pollutant concentration mixed with newly dispersed pollution making use of PM2.5 
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concentrations of certain station, distance between the stations, wind speed and wind direction. 

The parameters 𝑘1,···, 𝑘5 in the model were estimated by computational method of Levenberg-

Marquardt and global minimum algorithm till their convergence in software 1stOpt.133 

Based on equation (11), the daily traffic contribution to PM2.5 at background stations can be 

calculated as: 

𝑇𝑝(𝑡)% =

𝑘4×
1

√𝐷𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑝

×𝐶𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑡)×(
𝑊̂𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑡)

𝑊𝑎𝑣𝑔
)𝑘3×𝑒

−𝑘5×𝑊(t)

𝐶𝑝(𝑡)
× 100% (12) 

where 𝑇𝑝(𝑡)%  is estimated percentage of daily traffic contribution to total PM2.5 

concentration at background stations. Meanwhile, the expected daily non-traffic contribution 

𝑁𝑇𝑝(𝑡)
∗ can be calculated as: 

𝑁𝑇𝑝(𝑡)
∗ = 𝐶𝑝(𝑡) × (1 − 𝑇𝑝(𝑡)%)  (13) 

The second stage is to quantify the non-traffic contribution to PM2.5 concentrations at non-

background stations. In this stage, a GAMM was established with B-spline as additive 

smoothing function. The numbers of knots were determined by minimizing Akaike information 

criterion (AIC). The final selection of the variables was determined by the top-down rule.134 

The final GAMM is: 

𝑙𝑜𝑔(𝑁𝑇𝑝(𝑡))
 ∗

= 𝛽0 + 𝛽1 × 𝑌𝑝 + 𝛽2 × 𝑊𝑖𝑛𝑑(𝑡) + 𝛽3 × 𝐿𝑖𝑔ℎ𝑡(𝑡) + 𝛽4 × 𝑅𝑎𝑖𝑛(𝑡) + 𝜷5 ×

𝑀𝑎𝑥_𝑤𝑖𝑛𝑑_𝑑𝑖𝑟(𝑡) + 𝜷6 × 𝐷𝑂𝑊𝑡 + 𝑆(𝑡, 𝑘 = 10 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟) + 𝑆(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑡), 𝑘 = 5) +

𝑠(ℎ𝑢𝑚𝑖𝑑(𝑡), 𝑘 = 5) + 𝑆(𝑎𝑡𝑚𝑜𝑠(𝑡), 𝑘 = 4) + 𝜇 × 𝑍𝑝  (14) 

where 𝑙𝑜𝑔(𝑁𝑇𝑝(𝑡))
 ∗

 is expected log transformed non-traffic PM2.5 concentration; 𝛽s are 

parameters to be estimated; 𝑆(. )s are additive smoothing functions which illustrate the 

effects of day, temperature, humidity and atmospheric pressure on non-traffic concentrations; 

Zp is a random intercept for station p.  

Log transformed non-traffic PM2.5 concentrations at non-background station q, 𝑙𝑜𝑔(𝑁𝑇𝑞(𝑡))
 ∗

, 

were then predicted using equation (14). The estimated contribution of road traffic to PM2.5 

contribution at non-background station q, 𝑇𝑞(𝑡)% , was calculated as observed PM2.5 

concentration deducted by estimated non-traffic PM2.5 concentration: 

𝑇𝑞(𝑡)% =
𝐶𝑞(𝑡)−𝑒

log (𝑁𝑇𝑞(𝑡)) ∗

𝐶𝑞(𝑡)
× 100  (15) 

The whole process of the two-stage method is demonstrated in Figure 12. 
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Figure 12. Two-stage method for estimating road traffic contribution to PM2.5 concentrations 

in Beijing, China 

4.6.2 Bayesian model averaging within the generalized additive mixed model 
frame (Study II) 

In this time-series study, we evaluated the association between daily PM10 concentrations and 

respiratory deaths in eight municipal districts in Beijing using GAMM. The daily deaths due 

to respiratory diseases subjected to quasi-Poisson distribution. To model the nonlinear 

relationship with daily deaths, the GAMM used calendar day, temperature and barometric press 

as nonparametric part and district as random effect. As for the smoothing function, we used 

natural splines for calendar day, temperature and barometric pressure. The optimal number of 

knots was selected by AIC. For the parametric part, we included the PM10 concentration, 

humidity, wind speed and day of the week (DOW). The full GAMM can be expressed as: 

Log (E(𝑦𝑖,𝑡)) = 𝛽0 + 𝛽1 × PM10𝑖,𝑡
+ 𝛽2 × Relative Humidity𝑡 + 𝛽3 × Wind speed𝑡 +

𝛽4 × DOW𝑡 + 𝑆(Day𝑡 , 𝑛1/ year) + 𝑆(Temperature𝑡, 𝑛2) +

𝑆(Barometric pressure𝑡, 𝑛3) + 𝛽 × District𝑖 + 𝑍𝑖𝜇 + log(Population𝑖) (16) 

where E(yi,t) is the expected number of deaths in district i on the tth day, DOW is a dummy 

variable for day of week, Districti is a dummy variable for the eight districts and Zi is a random 

intercept for districts i. S(.)s are the smoothing functions realized by natural cubic spline with 

n1 knots per year to adjust for long-term temporal trend, n2 knots for temperature and n3 knots 

for barometric pressure. 
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Since we had very few information about the time trend in mortality, the knots selection would 

increase the model uncertainty and leading to over-confident inferences, therefore we used 

BMA method to build up a more robust predictive performance. The BMA estimation as 

illustrated in equation 7 and Figure 8 essentially is an average of posterior estimations under 

each model we’ve considered, weighted by the posterior model probabilities. For Bayesian 

reference in Study II, we assumed the prior probability of the models followed a uniform 

distribution: 

𝑝(𝑀𝑙) =
1

𝐾
   (17) 

The likelihood 𝑝(𝐷|𝑀𝑘)  in equation (9) can be approximately estimated using Bayesian 

information criterion (BIC), thus the posterior probability of model k could be represented as:135 

𝑝(𝑀𝑘|𝐷) =
𝑝(𝑀𝑙)∙𝑒

−0.5·𝐵𝐼𝐶𝑀𝑘

∑ [𝑝(𝑀𝑙)∙𝑒
−0.5·𝐵𝐼𝐶𝑀𝑙 ]𝐾

𝑙=1

  (18) 

To simplify the computation, equation 18 can be rewritten as: 

pr(𝑀𝑘|𝐷) =
𝑒

−0.5(𝐵𝐼𝐶𝑀𝑘
−𝐵𝐼𝐶̅̅ ̅̅ ̅̅ )

∑ 𝑒
−0.5(𝐵𝐼𝐶𝑀𝑙

−𝐵𝐼𝐶̅̅ ̅̅ ̅̅ )𝐾
𝑙=1

  (19) 

where 𝐵𝐼𝐶̅̅ ̅̅ ̅ is the average of the BICs for all models. With this key step, the weight in equation 

7 can be analytically solved in any mainstream statistical software. We have already given the 

BMA expectation of the interested parameter 𝛥 in equation (7), and the corresponding variance 

is given by:102 

Var[|𝐷] = ∑ (Var[|𝐷, 𝑀𝑙] + (𝑙 − 𝐸[|𝐷])2)𝑝(𝑀𝑙|𝐷)𝐾
𝑙=1   

= ∑ (Var[|𝐷, 𝑀𝑙] + (𝑙
2 − 2𝑙 ∙ 𝐸[|𝐷] + 𝐸[|𝐷]2)) 𝑝(𝑀𝑙|𝐷)𝐾

𝑙=1   

=∑ (Var[|𝐷, 𝑀𝑙] + (𝑙
2 − 2𝑙 ∙ 𝐸[|𝐷])) 𝑝(𝑀𝑙|𝐷)𝐾

𝑙=1 + 𝐸[|𝐷]2 ∑ 𝑝(𝑀𝑙|𝐷)𝐾
𝑙=1  

=∑ (Var[|𝐷, 𝑀𝑙] + 𝑙
2)𝑝(𝑀𝑙|𝐷)𝐾

𝑙=1 − 2𝐸[|𝐷] ∑ 𝑙 ∙ 𝑝(𝑀𝑙|𝐷)𝐾
𝑙=1 + 𝐸[|𝐷]2  

=∑ (Var[|𝐷, 𝑀𝑙] + 𝑙
2)𝑝(𝑀𝑙|𝐷)𝐾

𝑙=1 − 2𝐸[|𝐷] ∙ 𝐸[|𝐷] + 𝐸[|𝐷]2  

      =∑ (Var[|𝐷, 𝑀𝑙] + 𝑙
2)𝑝(𝑀𝑙|𝐷)𝐾

𝑙=1 − 𝐸[|𝐷]2   (20) 

where 𝑙 = 𝐸[|𝐷, 𝑀𝑙]. The 95% Bayesian credible interval (CrI) of  is: 

E[|D]1.96√Var[|𝐷]   (21) 

4.6.3 Generalized additive model within fully Bayesian frame (Study III) 

In study III, we applied the GAM for fitting and inference within a fully Bayesian frame to 

evaluate the associations of non-accidental mortality with PM2.5 concentrations and extreme 
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weather conditions in Shanghai, China. The daily non-accidental deaths in Shanghai followed 

a Poisson distribution. We set up a model with log form of expected daily death count as 

dependent variable, and PM2.5 concentration, gender, age, job, day of week, and smoking status 

as independent variables. A smoothing function for calendar day was included to present the 

seasonal trend of deaths. To investigate the impact of weather on mortality, we generated a set 

of dummy variables for the extreme weather conditions and SWTs. The interaction between 

weather variables and PM2.5 was also taken into consideration. With regard to knot selection 

for the smoothing function, according to generalized cross-validation and our simulation study, 

which indicated that 14 knots were enough to present the temporal trend and capture the 

underlying true parameter of PM2.5, five knots per year was adopted to fit the temporal trend of 

death. The final GAM linking the mortality with PM2.5 and weather conditions is given by: 

log(𝐸(𝑌𝑡)) = 𝛽0 + 𝛽1 ∙ 𝑃𝑀2.5,𝑡 + 𝜷𝟐 ∙ 𝑾𝑡 + 𝜷𝟑 ∙ 𝑃𝑀2.5,𝑡 × 𝑾𝑡 + 𝛽4 ∙ 𝑆𝑒𝑥 + 𝜷𝟓 ∙ 𝑨𝒈𝒆 +

𝜷𝟔 ∙ 𝑱𝒐𝒃 + 𝜷𝟕 ∙ 𝑫𝑶𝑾𝑡 + 𝛽8 ∙ 𝑆𝑚𝑜𝑘𝑖𝑛𝑔 + 𝑆(𝑡) (22) 

where 𝐸(𝑌𝑡) refers to the expected count of deaths on calendar day t; 𝑃𝑀2.5,𝑡 refers to the PM2.5 

concentration on day t; 𝑾𝒕 = (𝑊1, ⋯ , 𝑊𝑗)′ denotes a vector of the j (=5 or 7) dummy variables 

of the six SWTs or the eight extreme weather conditions on day t; 𝑃𝑀2.5,𝑡 × 𝑾𝑡 denotes the 

interaction term between PM2.5 and 𝑾𝑡; Sex is a dummy variable of sex;  𝑨𝒈𝒆 denotes a vector 

of the dummy variables of age groups; 𝑱𝒐𝒃  denotes a vector of the dummy variables of 

occupations; 𝑫𝑶𝑾𝑡 denotes a vector of the dummy variables of day of week; Smoking denotes 

smoking rate; S(t) is the smoothing function for t realized by cubic B-splines. 

To benefit from Bayesian approach with as limited influence from the prior distribution as 

possible, we chose the Jeffreys’ distribution as the prior distribution, which does not change 

much over the region where the likelihood is significant and does not have large values outside 

that range, i.e. the local uniformity property. Because of this good attribution that is consistent 

with the prior distribution after several transformation, it is always a practical way of setting a 

non-informative prior in Bayes model. 136-138 

Depending on the parameterization in equation (22) and daily mortality Y follows a Poisson 

distribution, the likelihood for an observed Y given data X is given by: 

𝐿(𝑌|𝑿, 𝜷, 𝑺) = ∏ {
𝑒−𝑒𝛽0+𝑿𝑡

𝑇𝜷+𝑆(𝑡)
𝑒[𝛽0+𝑿𝑡

𝑇𝜷+𝑺(𝑡)]𝑌𝑡

𝑌𝑡!
}𝑁

𝑡=1   (23) 

As a very key step that Bayes model bridges the prior to the posterior, we reallocated the CrI 

of the parameters value by MCMC simulation method with adaptive rejection sampling 

algorithm to overcome the integration problem of high dimensional data. We also implemented 

the adaptive rejection Metropolis sampling (ARMS) algorithms to increase the computational 

efficiency.139 Implementation of the ARMS algorithm in our study is based on the code 

provided by Gilks.140 To define the convergence of MCMC chain, we set the Gelman-Rubin 

statistics less than 1.01 as the stop sign.141,142 Representative of the MCMC chains was 
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evaluated visually using the trace plots,101 and dependency and efficiency of the chains were 

evaluated using autocorrelation and effective sample sizes (ESS).143 

We reported the posterior mean of βi with corresponding CrIi. The definition of posterior mean 

is: 

𝐸(𝛽𝑖|𝑿, 𝑌, 𝑺) = ∫ 𝛽𝑖 𝑝(𝛽𝑖|𝑿, 𝑌, 𝑺)𝑑𝛽𝑖   (24) 

where 𝑝(𝛽𝑖|𝑿, 𝑌, 𝑺) is posterior probability of 𝛽𝑖 given the observed X and Y. The definition 

of posterior CrIi is: 

𝑝(𝛽𝑖 ∈ CrI𝑖|𝑿, 𝑌, 𝑺) = ∫ 𝑝(𝛽𝑖|𝑿, 𝑌, 𝑺)𝑑𝛽𝑖CrI𝑖
  (25) 

4.6.4 Simulation of time-series data based on quasi-Poisson distribution 
(Study IV) 

The distribution of the observed daily respiratory mortality in Shanghai and the theoretical 

quasi Poisson distribution with the same mean and an overdispersion index = 1.3 are shown in 

Figure 13. In the simulation study, the estimates derived from the real world data were used as 

‘true’ parameters. We used the predicted daily deaths Y𝑡̂  as the mean daily deaths, then 

simulated daily deaths 𝑌𝑡
′ by multiplying Y𝑡̂ by a random error eε: 

𝑌𝑡
′ = Y𝑡̂ ∙ 𝑒𝜀 , 𝜀~N(0, 𝜎2)   (26) 

where ε follows a distribution from exponential family and we applied normal distribution here. 

The simulation framework ensures that the same concurvity will exist between the simulated 

mortality and covariates. By changing  we may introduce different ‘noise’ in mortality to 

simulate the effects from unobserved confounders. In our simulation, the changing of the  

was achieved by multiplying 𝜎̂, the standard deviation (SD) of logarithmic daily deaths, by a 

factor , i.e. 𝜎 = 𝛾𝜎̂. By selecting different random seeds, we may generate different time-

series using random number generator in any statistical software. Figure 14 shows nine 

simulated time-series of daily respiratory deaths for =0.1, 0.2, , 0.9. We can see that when 

 is equal to 0.4 or 0.5 the simulated data are most approximate to the real world data. 

In the first simulation, we set =0.5, 0.6, …, 1.0 to generate six sets of simulated respiratory 

mortality data, where each set included 2,000 time-series. In total, 12,000 time-series datasets 

were generated. When we run the frequentist GAMs using simulated daily mortality as 

dependent variable we set the degrees of freedom (df) for S(t) from 1 to 20 per year in our 

models. For each df we run the frequentist GAM using 100 simulated time-series.  

In the second simulation, we investigated the impact of informative priors rather than non-

informative uniform prior on the posterior parameter β1 of PM2.5. We simulated the time-series 

of daily respiratory mortality with a fixed 𝜎 = 0.5𝜎̂ and true β1 = 0.0049. In our analyses, we 
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used a normal prior for β1, and set the varied prior mean (β1) ranging from 0.001 to 0.020 by 

0.001, and varied prior variance [V(β1)] equal to 𝛽1 , where =0.5, 0.6, …, 1.0. For each 

combination of (β1) and V(β1), we did 100 analyses. In total 12,000 simulated time-series 

datasets were used. 

 

Figure 13. Distribution of the observed daily respiratory deaths in Shanghai and theoretical 

distribution quasi-Poisson distribution (mean=32, overdispersion index=1.3) 
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Figure 14. Examples of simulated time-series of daily respiratory deaths with different 

random noises 

4.6.5 Comparison of frequentist and Bayesian generalized additive models 
(Study IV) 

We used the distributed lag model instead of a single-day exposure model in Study IV. The 

basic form of the distributed lag GAM applied in the study may be expressed as:144 

𝑙𝑜𝑔(𝐸(𝑌𝑡)) = 𝛽0 + 𝛽𝑙𝑋𝑡−𝑙 + 𝑆(𝑡) + 𝑆(𝑤𝑒𝑎𝑡ℎ𝑒𝑟) +  ∙ 𝑫𝑶𝑾𝑡 (27) 

where Yt is count of daily deaths, β0 denotes the intercept, t indicates calendar day, Xt are daily 

concentration of the studied air pollutant, i.e. PM2.5 in our study, l is the lag time of the pollution 

exposure (which is generally restricted to 1 to 7 days for acute effects), S(·) denotes a smooth 

function of a covariate (calendar day or meteorological variable such as temperature and 

humidity).  is the vector of the regression coefficients associated with vector DOWt (indicating 
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the 7 days of a week) for the tth day. βl is the parameter of our interest describing the change 

in the logarithm of the average mortality count over population per unit of change in Xtl. 

We defined the unknown function evaluation Sj(·) as the matrix product of a design matrix j 

and a vector of unknown parameters βj with variance parameter 𝜏𝑗
2, i.e.:145,146 

𝑆𝑗(∙) = 
𝑗
𝜷𝑗 , 𝑗 = 1, ⋯ , 𝑝  (28) 

then we obtain the predictor in equation (27) as  

𝑙𝑜𝑔(𝐸(𝑌𝑡)) = 𝛽0 + 𝛽𝑙𝑋𝑡−𝑙 + ∑ 
𝑗
𝜷𝑗

𝑝
𝑗=1 +  ∙ 𝑫𝑶𝑾  (29) 

Depending on the above parameterization of the model, the posterior for fully Bayesian 

inference is given by: 

𝑝(𝛽0, 𝛽𝑙 , 𝜷1, ⋯ , 𝜷𝑝, 𝜏1
2, ⋯ , 𝜏𝑝

2, |𝑦) ∝ 𝐿(𝑦, 𝛽0, 𝛽𝑙 , 𝜷1, ⋯ , 𝜷𝑝, ) ∏ (𝑝(𝜷𝑗|𝜏𝑗
2)𝑝(𝜏𝑗

2))
𝑝
𝑗=1   (30) 

where L(·) denotes the likelihood which is the product of individual likelihood contributions.  

In the fully Bayesian approach, parameter estimates are obtained by drawing random samples 

from the posterior (30) via MCMC simulations techniques. More details about the fully 

Bayesian inference can be found in Fahrmeir and Lang111, and Brezger and Lang147. 

4.7 STATISTICAL SOFTWARE 

All the analyses in the studies were performed in SAS 9.4 M4 (SAS Institute Inc, Cary, North 

Carolina, U.S.), Stata 14.2 (StataCorp LLC, College Station, Texas, U.S.), and R 3.33 (R 

Foundation for Statistical Computing, Vienna, Austria). 

4.8 ETHICAL CONSIDERATIONS 

The four studies are observational study and based on Chinese population-based CDRs, which 

only observed and analyzed information about exposure to risk factors and health outcomes 

but did not alter the health care services that the participants received, and there was not any 

conflict between the investigators and grant bodies. The anonymized data files obtained from 

the Chinese collaborators are stored in the server in the Institute of Environmental Medicine, 

Karolinska Institutet. Only researchers directly involved in the analysis are authorized to the 

access. All data had been anonymized when we started to process them for the specific research 

questions, and the data were analyzed and reported exclusively at group level. Since we only 

used de-identified aggregated data and have not access to the original Chinese databases, there 

was no risk that any individual information could be identified. Only statistical findings were 

and will be published or used in scientific journals and this thesis, and no personal information 

will be released. 

We consulted with the Regional Ethical Review Board in Stockholm (EPN) about the ethical 

approval issue and got reply that no ethical approval was needed for the studies. For using the 
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Chinese data, our four studies were approved by the local ethical review boards in Beijing 

(approval #: 028-2013) and Shanghai (approval #: 2016-8). 
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5 RESULTS 

5.1 CONTRIBUTION OF ROAD TRAFFIC TO FINE PARTICLE 
CONCENTRATIONS IN BEIJING (STUDY I) 

During 2013 – 2014, the medians of PM2.5 concentrations in 35 AQM monitoring stations were 

40 – 92 g/m3 with a total median of 65 g/m3, the mean of the concentration varied from 63 

– 112 g/m3 with a total average of 90 g/m3 which was higher than 55.4 g/m3 reported in 

the previous study.148 The detailed PM2.5 and meteorological information are listed in tables 5 

and 6. 

Table 5. PM2.5 concentrations and Y coordinates of 35 AQM stations in Beijing, 2013 – 
2014 

Stations 
PM2.5 (g/m3) Y coordinate 

(km) Mean P25 Median P75 
Background stations      

Badaling 64.8 17.0 40.0 91.0 100.47 
Beibuxinqu 86.5 24.2 62.0 122.7 69.47 
Dingling 71.2 15.0 45.0 101.0 93.12 
Miyunshuiku 63.4 13.0 40.3 91.0 109.68 
Yungang 90.0 28.0 65.0 125.0 41.32 
Zhiwuyuan 79.7 19.0 56.0 112.7 60.91 

Traffic stations      
Dongsihuan 97.5 29.0 71.0 135.0 54.82 
Nansanhuan 106.6 36.2 81.0 147.0 44.70 
Qianmen 100.0 31.0 76.6 138.8 49.45 
Xizhimenbei 92.8 29.0 68.3 127.2 54.66 
Yongdingmen 98.0 31.0 73.0 135.1 46.62 

Industrial stations      
Liulihe 122.2 44.0 92.0 169.0 16.81 
Yufa 109.6 38.0 79.8 148.0 4.06 

Other stations      
Aoti 89.8 27.0 67.0 125.0 58.61 
Changping 78.0 19.0 53.0 111.0 84.81 
Daxing 106.9 35.0 79.0 147.0 31.81 
Donggaocun 79.3 22.0 58.0 113.0 72.61 
Dongsi 90.4 25.2 66.5 128.0 52.71 
Fangshan 101.2 33.0 75.8 140.8 32.43 
Fengtaihuayuan 99.7 31.0 74.1 139.0 45.53 
Guanyuan 88.4 27.0 65.5 123.4 52.82 
Gucheng 90.0 28.0 67.5 125.0 51.16 
Huairou 76.1 19.0 52.9 108.0 96.85 
Mentougou 79.2 22.0 55.4 111.0 53.85 
Miyun 71.9 17.5 49.0 100.0 101.39 
Nongzhanguan 91.3 26.4 66.0 126.0 53.63 
Pinggu 80.8 23.0 57.0 111.0 76.40 
Shunyi 84.8 22.0 61.0 121.0 74.58 
Tiantan 89.0 27.0 66.4 125.2 48.00 
Tongzhou 105.7 33.2 79.3 144.0 47.08 
Wanliu 93.6 29.8 69.5 130.1 59.28 
Wanshouxigong 91.2 26.0 68.0 128.0 47.13 
Yanqing 72.0 20.0 49.5 102.0 111.24 
Yizhuang 105.3 34.2 78.9 144.0 37.93 
Yongledian 111.8 38.7 81.7 149.8 28.87 

Total 90.0 25.2 65.0 125.5 59.13 
P25: the 25th percentile; P75: the 75th percentile. 
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Table 6. Meteorological conditions in Beijing, 2013 – 2014 

Meteorological conditions Mean P25 Median P75 

Temperature (C) 13.4 3.2 14.3 23.7 

Humid (%) 53 38 53 68 

Atmospheric pressure (hPa) 1012.5 1004.2 1012.7 1021.1 

Wind speed (m/s) 2.1 1.5 1.9 2.5 

Hours of light (h) 6.5 2.4 7.8 9.6 

Rain volume (mm) * 15.6 - - - 

P25: the 25th percentile; P75: the 75th percentile. 

* Because 81% of days had no rain, P25, median, and P75 are 0. 

Based on a three-level GAM with 15-minute observations nested within hour and hour nested 

within day, we found a significant linear relationship between Y coordinates and log 

transformed PM2.5 concentrations in AQM stations in Beijing (Figure 15), supporting our 

assumption that PM2.5 concentration followed an exponential decline function on distance. 

 

Figure 15. Relationship between Y coordinate (distance to the south of the city) and log 

transformed PM2.5 concentrations at air quality monitoring stations in Beijing 

According to the GAM results, PM2.5 pollution level increased with the stations getting 

approaching to the southern industrial area of Beijing, and the north-south location of the 

stations may account for approximate 80% of the variation in the log transformed PM2.5 

concentrations. 

Moving to the dispersion model, the estimated parameters covered more than 60% of the 

variation in the background stations, and the rest of the variation could be explained by the 
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GAMM. The result showed the greater wind speed and rain volume would lead to better 

pollution dispersion. Hours of sunshine and rain volume were negatively associated with PM2.5 

concentration. The residuals were examined for a good fitness. 

The road traffic contribution to PM2.5 concentration of the background stations is shown in 

Table 7. The contributions ranged from 17.2% in Yungang station to 25.3% in Zhiwuyuan 

station. 

Table 7. Contribution (%) of road traffic to PM2.5 concentrations of background stations 

Station Mean 95% Confidence Interval 

Badaling 20.5 18.7 – 22.2 

Beibuxinqu 19.6 18.1 – 21.1 

Dingling 20.9 19.2 – 22.6 

Miyunshuiku 21.8 19.5 – 24.1 

Yungang 17.2 15.5 – 18.8 

Zhiwuyuan 25.3 23.3 – 27.3 

 

The absolute and relative contributions of road traffic to PM2.5 concentrations of all the stations 

are shown in Figure 16. The average annual contributions of road traffic to PM2.5 

concentrations ranged from 17.2% to 37.3% with a mean of 30%. The highest contribution was 

found in busy road areas, and the contribution in traffic-related stations is about 14% higher 

than those in rural areas. 

 

Figure 16. Contributions of road traffic to PM2.5 concentrations in Beijing, 2013 – 2014 
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5.2 ASSOCIATION BETWEEN COARSE PARTICLES AND RESPIRATORY 
MORTALITY IN BEIJING (STUDY II) 

Daily respiratory mortality rate (per 100,000 persons) and PM10, NOx and carbon monoxide 

CO concentrations of the eight studied districts in Beijing are shown in Table 8. During the 

two-year study period, annual median concentrations for PM10, NOx and CO were 106.0 μg/m3, 

61.0 μg/m3 and 1.20 mg/m3, respectively. The annual median concentrations of PM10 and NOx 

were above the limits of Class II of the National Ambient Air Quality Standards of China (70 

μg/m3 for PM10 and 50 μg/m3 for NOx), but annual median CO concentration was below the 

national limit (4 mg/m3).149 

Table 8. Daily respiratory mortality rate and pollutants’ concentrations in the studied districts 

in Beijing, 2009 – 2010 

Districts 
Population 

(in 1000) 

Mortality rate 

(1/100,000 persons) 

PM10 

(g/m3) 

NOx 

(g/m3) 

CO 

(mg/m3) 

Median P25 – P75 Median P25 – P75 Median P25 – P75 Median P25 – P75 

District 1 896 0.11 0 – 0.22 94.0 57 – 138 52.0 33 – 78 1.20 0.8 – 1.7 

District 2 3,001 0.10 0.06 – 0.13 106.5 67 – 151 72.0 50.5 – 109.5 1.30 0.85 – 1.9 

District 3 851 0.24 0.12 – 0.35 110.3 73.5 – 159 70.5 50.5 – 107.5 1.38 1.0 – 2.1 

District 4 2,814 0.07 0.04 – 0.14 112.0 71 – 154 79.0 52 – 116 1.20 0.8 – 2.0 

District 5 316 0.00 0 – 0.32 82.5 49 – 124 33.0 23 – 53 1.00 0.6 – 1.4 

District 6 546 0.18 0 – 0.18 129.0 83 – 174 60.0 44 – 88 1.40 1.0 – 2.0 

District 7 736 0.00 0 – 0.14 108.5 66 – 154 52.0 37 – 75 0.90 0.6 – 1.4 

District 8 1,218 0.25 0.08 – 0.33 105.5 68.5 – 150.5 73.0 53 – 107.5 1.35 0.95 – 2.0 

Total 10,378 0.11 0 – 0.22 106.0 66 – 150 61.0 41 – 93 1.20 0.8 – 1.8 

P25: the 25th percentile; P75: the 75th percentile 

We observed strong linear correlation between temperature and barometric pressure (Figure 

17; r = -0.83, p < 0.001). To control for the collinearity, we included temperature, relative 

humidity and wind speed but not barometric pressure in the regression models.  

To account for correlations between PM10 and CO and NOx, we introduced PCs derived from 

PCA into the multi-pollutant models to exclude the impacts of collinearity between the three 

pollutants. The first two PCs may explain about 94.22% of the variance of the three pollutants 

(Figure 18) and were included in the GAM. We then transformed the regression coefficients of 

the PCs back to the regression coefficients of the original pollutants. 

We tried different numbers of knots for each smoothing function. The knot combinations with 

convergence problem or extreme small posterior probability were excluded from analysis. The 

results indicated that the model with 6, 7, 8 knots per year for calendar day, 5, 6, 7 knots for 

temperature and 4, 5, 6 knots for the aerometric pressure got the relative large posterior 

probabilities. We compared the GLMM, optimal GAMM and GAMM+BMA methods for 

single-pollutant, multi-pollutant and PCA-based multi-pollutant settings. The results are listed 

in Table 9. The GAMM of a single pollutant model showed a statistical significant association 

between PM10 and respiratory mortality that every IQR increase in PM10 would lead to 1.39 

(95% CI: -1.08 – 3.93) percent increase in daily respiratory mortality. In addition, the 

BMA+GAMM gave a relative wider confidence interval (-1.09 – 4.28) in single-pollutant 
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model and (-2.23 – 4.07) in PCA-based model which reflected a noticeable uncertainty 

originating in the knots selection. In addition, the effects of the first PC in GAMM and 

GAMM+BMA were statistically significant, potentially indicating a joint effect of PM10, NOx 

and CO on respiratory mortality. 

 

Figure 17. Bivariate Pearson’s correlation coefficients between the meteorological variables 

and the studied air pollutants 

 

Table 9. Percent increase in daily respiratory mortality rate (MR) associated with an IQR 

increase in PM10 concentration from GLMM, optimal GAMM and GAMM+BMA 

Model 
Single-pollutant Multi-pollutant Multi-pollutant (PCA) 

Percent (%) 95% CI Percent (%) 95% CI Percent (%) 95% CI 

GLMM 3.07 0.91 – 5.27 1.94 -0.80 – 4.75 1.47 -1.17 – 4.17 

Optimal GAMM† 1.39 -1.08 – 3.93 1.83 -1.11 – 4.83 0.88 -2.03 – 3.88 

GAMM+BMA 1.38 -1.09 – 4.28 1.81 -1.12 – 4.85 0.87 -2.23 – 4.07 

GLMM, generalized linear mixed model; GAMM, generalized additive mixed model; GAMM+BMA, generalized 

additive mixed models with Bayesian model averaging; IQR, interquartile range. 
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Figure 18. Original pollutants and principal components 

5.3 EFFECTS OF FINE PARTICLES AND EXTREME WEATHER CONDITIONS 
ON NON-ACCIDENTAL MORTALITY IN SHANGHAI (STUDY III) 

In total, 336,379 non-accidental deaths occurred during the study period between January 1st, 

2012 and December 31st, 2014 in Shanghai. Average daily deaths were 307. The demographic 

characteristics of the subjects are shown in Table 10. 

Table 10. Demographic characteristics of the non-accident deaths in Shanghai (2012 – 2014) 

Sex, n (%)  
Male 178,786 (53.15%) 
Female 153,593 (46.85%) 

Age (year), meanSD   77.012.6 
Age distribution, n (%)  

0-14 years 1,252 (0.37%) 
15-39 years 3,080 (0.92%) 
40-64 years 54,404 (16.17%) 
65+ years 277,643 (82.54%) 

Education, n (%)  
Illiterate 84,943(25.25%) 
Preliminary school 100,194 (29.79%) 
High school 118,235 (35.15%) 
Undergraduate and above 27,063 (8.05%) 
NA 5,944 (1.77%) 

Occupation, n (%)  
Governmental 2,760 (0.82%) 
Professional 28,992 (8.62%) 
Administrative 34,431 (11.13%) 
Business 32,823 (9.76%) 
Agriculture and stockbreeding 77,832 (23.14%) 
Manufactory 123,998 (36.86%) 
Military 201 (0.06%) 
Others 3,185 (0.95%) 
Preschooler 1,060 (0.32%) 
Students 337 (0.10%) 
Retired or jobless 27,760 (8.25%) 

Smoking rate *, %  
Male 29.71% 
Female 0.92% 

* Indirectly standardized rate. 



 

 43 

The Elbow method indicates that six clusters are optimal for the K-means cluster analysis 

(Figure 19). Using the six PCs derived from the PCA, the 1096 days during the study period 

were categorized into six SWTs. The meteorological characteristics and PM2.5 concentrations 

of the six SWTs in Shanghai between 2012 and 2014 are show in Figure 20. 

 

Figure 19. K-means cluster analysis of the 15 meteorological variables 

 

Figure 20. Meteorological characteristics and PM2.5 concentrations of the six synoptic 

weather types in Shanghai, 2012 – 2014 
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We summarize the effects of extreme weather conditions and PM2.5 on non-accidental mortality 

in Table 11. With no interaction assumption, every 10 g/m3 increase in PM2.5 concentration 

was associated with 0.31 (95% CrI: 0.22 – 0.40) percent increase in non-accidental mortality. 

Moreover, hot, hypobaric and windy days were statistical significantly associated with 

increased mortality as well. However when considering the interaction between PM2.5 and 

extreme weather conditions, every 10 g/m3 increase in PM2.5 concentration was associated 

with 0.27 (95% CrI: 0.13 – 0.41) percent increase in deaths. The interaction between PM2.5 

with three types of extreme weather conditions (hot, hypobaric and dry) was significantly and 

positively associated with mortality. 

Table 11. Effects of PM2.5, extreme weather conditions and demographic characteristics on 
non-accidental mortality 

Variables 
Percent increase in mortality (95% CrI) 

Model without interaction Model with interaction 

PM2.5 (per 10 g/m3) 0.31 (0.22 – 0.40) 0.27 (0.13 – 0.41) 
Hot 6.41 (4.93 – 7.96) 3.59 (1.22 – 6.13) 
Cold 0.87 (-0.41 – 2.07) 0.02 (-2.36 – 2.68) 
Hyperbaric 0.46 (-0.85 – 1.80) 0.73 (-1.77 – 3.19) 
Hypobaric 1.52 (0.19 – 2.87) -1.55 (-4.05 – 1.05) 
Humid 0.73 (-0.48 – 1.98) 1.41 (-0.36 – 3.19) 
Dry -0.75 (-1.91 – 0.50) -4.80 (-7.76 – -2.07) 
Windy 2.58 (1.29 – 3.96) 3.75 (1.74 – 5.85) 
Windless -0.60 (-1.91 – 0.64) 0.54 (-2.11 – 2.96) 
Interactions   

PM2.5Hot  0.50 (0.08 – 0.95) 
PM2.5Cold  0.12 (-0.17 – 0.40) 
PM2.5Hyperbaric  -0.02 (-0.33 – 0.29) 
PM2.5 Hypobaric  0.62 (0.16 – 1.14) 
PM2.5Humid  -0.12 (-0.36 – 0.10) 
PM2.5Dry  0.59 (0.21 – 1.00) 
PM2.5Windy  -0.22 (-0.66 – 0.19) 
PM2.5Windless  -0.15 (-0.41 – 0.12) 

Female 47.68 (44.55 – 51.00) 47.60 (44.49 – 50.85) 
Age   

0-14 years -98.81 (-98.87 – -98.75) -98.81 (-98.88 – -98.74) 
15-39 years -99.32 (-99.34 – -99.30) -99.32 (-99.34 – -99.29) 
40-64 years -94.43 (-94.51 – -94.33) -94.42 (-94.52 – -94.34) 
65+ years (Ref)   

Occupation   
Governmental -97.78 (-97.87 – -97.69) -97.78 (-97.86 – -97.70) 
Professional -76.63 (-76.94 – -76.32) -76.62 (-76.90 – -76.32) 
Administrative -69.83 (-70.21 – -69.49) -69.82 (-70.18 – -69.47) 
Business -73.53 (-73.84 – -73.23) -73.55 (-73.87 – -73.23) 
Agriculture -37.26 (-37.84 – -36.71) -37.25 (-37.77 – -36.69) 
Manufactory (Ref)   
Military -99.84 (-99.86 – -99.81) -99.84 (-99.86 – -99.81) 
Others -97.43 (-97.53 – -97.34) -97.43 (-97.52 – -97.32) 
Preschool -99.15 (-99.19 – -99.10) -99.15 (-99.20 – -99.09) 
Students -99.73 (-99.75 – -99.70) -99.73 (-99.76 – -99.69) 
Jobless -77.62 (-77.93 – -77.34) -77.63 (-77.90 – -77.35) 

Day of week   
Sunday (Ref)   
Monday 1.67 (0.45 – 3.00) 1.73 (0.27 – 3.04) 
Tuesday 0.68 (-0.56 – 1.95) 0.70 (-0.52 – 2.04) 
Wednesday 0.93 (-0.33 – 2.24) 0.89 (-0.35 – 2.11) 
Thursday -0.01 (-1.24 – 1.32) 0.07 (-1.19 – 1.35) 
Friday 0.05 (-1.14 – 1.41) 0.03 (-1.17 – 1.24) 
Saturday 0.09 (-1.08 – 1.47) 0.04 (-1.24 – 1.26) 

Smoking rate 2.01 (1.95 – 2.08) 2.01 (1.95 – 2.08) 
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5.4 EFFECTS OF FINE PARTICLES AND SYNOPTIC WEATHER TYPES ON 
NON-ACCIDENTAL MORTALITY IN SHANGHAI (STUDY III) 

The effects of PM2.5 and the SWTs on non-accidental mortality are shown in Table 12. Without 

including the interaction term between PM2.5 and SWTs, per 10 g/m3 increase in PM2.5 

concentration was associated with 0.35 (95% CrI: 0.26 – 0.44) percent increase in mortality. 

Compared to cold humid SWT, hot dry SWT had the greatest effect followed by moderate 

humid and warm humid SWTs, while cold dry SWT had the smallest effect. 

The effects of SWTs on mortality shown significant changed when including the interactions. 

The highest effect of SWTs was found in moderate humid SWT (4.37, 95%CI: 1.49 – 7.32) 

followed by moderate dry SWT (2.78, 95%CI: 0.53 – 5.13). The greatest effect of PM2.5 was 

found in hot dry SWT, followed by warm humid SWT. 

Table 12. Effects of PM2.5, synoptic weather types and demographic characteristics on non-
accidental mortality 

Variable 
Percent increase in mortality (95% CrI) 

Model without interaction Model with interaction 

PM2.5 0.35 (0.26 – 0.44) 0.26 (0.10 – 0.43) 
Synoptic weather types   

Hot dry  7.09 (5.18 – 9.14) 1.51 (-1.42 – 4.52) 
Warm humid 2.18 (0.41 – 4.11) -0.32 (-2.78 – 2.37) 
Cold dry -1.98 (-3.15 – -0.85) -1.84 (-3.83 – 0.23) 
Moderate dry 1.94 (0.48 – 3.37) 2.78 (0.53 – 5.13) 
Moderate humid 5.36 (3.61 – 7.08) 4.37 (1.49 – 7.32) 
Cold humid (Ref)   

Interactions   
PM2.5×Hot dry   1.02 (0.62 – 1.40) 
PM2.5× Warm humid  0.38 (0.05 – 0.70) 
PM2.5×Cold dry  0.00 (-0.23 – 0.23) 
PM2.5×Moderate dry  -0.16 (-0.47 – 0.14) 
PM2.5×Moderate humid  0.16 (-0.27 – 0.63) 
PM2.5×Cold humid (Ref)   

Female 47.74 (44.6 – 51.20) 47.57 (43.84 – 50.83) 
Age   

0-14 years  -98.81 (-98.88 – -98.74) -98.81 (-98.88 – -98.74) 
15-39 years -99.32 (-99.34 – -99.29) -99.32 (-99.34 – -99.30) 
40-64 years -94.43 (-94.51 – -94.34) -94.42 (-94.52 – -94.34) 
65+ years (Ref)   

Occupation   
Governmental  -97.78 (-97.87 – -97.69) -97.78 (-97.87 – -97.70) 
Professional -76.62 (-76.91 – -76.32) -76.64 (-76.93 – -76.34) 
Administrative -69.81 (-70.13 – -69.46) -69.82 (-70.20 – -69.42) 
Business -73.55 (-73.84 – -73.23) -73.55 (-73.90 – -73.24) 
Agriculture -37.24 (-37.81 – -36.64) -37.25 (-37.79 – -36.69) 
Manufactory (Ref)   
Military -99.84 (-99.86 – -99.81) -99.84 (-99.86 – -99.81) 
Others -97.43 (-97.52 – -97.33) -97.43 (-97.52 – -97.35) 
Preschool -99.15 (-99.20 – -99.09) -99.15 (-99.20 – -99.09) 
Students -99.73 (-99.76 – -99.70) -99.73 (-99.76 – -99.70) 
Jobless -77.62 (-77.91 – -77.33) -77.63 (-77.93 – -77.35) 

Day of week   
Sunday (Ref)   
Monday 1.88 (0.63 – 3.24) 1.91 (0.63 – 3.27) 
Tuesday 0.92 (-0.34 – 2.24) 0.88 (-0.33 – 2.12) 
Wednesday 0.95 (-0.39 – 2.20) 0.98 (-0.30 – 2.17) 
Thursday 0.24 (-0.97 – 1.56) 0.31 (-0.92 – 1.57) 
Friday -0.10 (-1.35 – 1.13) -0.10 (-1.30 – 1.22) 
Saturday 0.07 (-1.19 – 1.43) 0.06 (-1.14 – 1.32) 

Smoking rate 2.02 (1.95 – 2.09) 2.01 (1.94 – 2.09) 
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In terms of the smoking effect, the report indicated the mortality risk was almost doubled in 

the smoking population adjusting for the gender and occupations. 

We performed a sensitivity analysis using the estimates from Chen’s study150 as the informative 

normal prior mean in the Bayesian reference but no detectable changes in the results were 

found. 

5.5 SENSITIVITY OF BAYESIAN GENERALIZED ADDITIVE MODEL TO 
CHOICE OF PRIOR MEAN AND VARIANCE (STUDY IV) 

Using the simulation data with a fixed 𝜎 = 0.5𝜎̂ and true β1 = 0.0049 based on the real-world 

data in Shanghai 2012 – 2014, we investigated the impact of informative priors on the posterior 

𝛽̂1 in Bayesian GAM analysis. For Bayesian GAM analyses, we set the varied normal prior 

mean (β1) ranging from 0.001 to 0.020 by 0.001, and varied prior variance [V(β1)] equal to 

𝛽1, where =0.5, 0.6, …, 1.0. For each combination of (β1) and V(β1), we did 100 Bayesian 

analyses. To reduce computation task, we set the df for splines to 8 per year. The distribution 

of Bayesian estimates (𝛽̂1s) are shown in Figure 21. The mean of 𝛽̂1s is fluctuated but closely 

around the true β1 for different (β1). These is no noticeable difference among the means of 

𝛽̂1s derived from different V(β1) (Figure 21). The SD of 𝛽̂1s is not sensitive to the V(β1). 

5.6 SENSITIVITY OF BAYESIAN GENERALIZED ADDITIVE MODEL TO TRUE 
PARAMETER (STUDY IV) 

In another simulation, we artificially set the  = 0.5𝜎̂ and ‘true’ β1 ranged from 0.001 to 0.020 

to generate 20 sets of simulated daily respiratory deaths, while kept the other coefficients in 

equation (29) unchanged. In Bayesian GAM analysis, we used a normal prior for β1 with a 

fixed mean (β1) = 0.005 but varied V(β1) = 0.5, 0.6, …, 1.0 times of (β1), i.e. 0.0025, 0.003, 

0.0035, 0.004, 0.0045 and 0.005. For each combination of β1 and V(β1), we did 100 Bayesian 

GAM analyses. The estimates were shown in Figure 22. 

We can see that the mean of the estimated 𝛽̂1s is only sensitive to the underlying true β1 and is 

almost not affected by the prior (β1) (Figure 22). Because of the small coefficients the 

difference between means and SDs of the estimated 𝛽̂1s can only be seen in the fifth or sixth 

decimal digit. 

Regarding the comparison between frequentist GAM and Bayesian GAM, although the 

Bayesian 𝛽̂1s appear more fluctuated around the true β1, their SDs are comparable to those of 

their frequentist counterparts. 
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Figure 21. Distributions of Bayesian 𝛽̂1s from simulated data with =0.5𝜎̂, the true 

β1=0.0049; in Bayesian GAM analyses, df =8 for S(t), normal prior with varied (β1)=0.001 

to 0.02 by 0.001 and varied V(β1) equal to 𝛽1, where =0.5, 0.6, …, 1.0 
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Figure 22: Distributions of Bayesian 𝛽̂1s from simulated data with =0.5𝜎̂, varied true 

β1=0.001 to 0.02 by 0.001; in Bayesian GAM analyses, df =8 for S(t), normal prior with fixed 

(β1) =0.005 and varied V(β1) =0.0025, 0.003, 0.0035, 0.004, 0.0045 and 0.005. 
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6 DISCUSSION 

6.1 MAIN FINDINGS 

Road traffic emissions make significant contribution to the PM2.5 pollution in Beijing. 

According to our estimation, about 17.2% – 37.3% of daily PM2.5 concentrations were due to 

road vehicles’ emissions. The closer a site is to a busy road the higher contribution of the traffic 

is, which can also partially explain the spatiotemporal pattern of the road traffic emissions in 

Beijing. Beijing Municipal Environmental Protection Bureau had also released similar statistic 

which was between 22% and 30%. The wider range revealed in our study may be due to the 

longer monitoring period and the increasing fuel burning in recent years. Compared to other 

results in the literature during different seasons151-153, the road traffic accounted for 10% – 50% 

to PM2.5 concentrations in the city, and Study I is highly consist with these results. 

In studies II, III and IV, we investigated the association between daily PM concentrations and 

deaths in the two most populous and developed cities in China using GAMM within BAM 

frame or fully Bayesian GAM. Although there have been some studies looking for the PM 

impacts on mortality using GAM previously,57,154 they did not take the inner heterogeneity of 

covariates or the model uncertainty into account. Adding the random effects and averaging the 

results of different knot selections, our GAMM+BMA method for single-pollutant gave 

comparable results, percent increase ranging from 0.87 to 1.38 vs. 1.01 to 2.07.57,154-157 

However, our multi-pollutant models showed smaller effect of PM10, which was consistent 

with previous findings suggesting that the effect of PM10 in multi-pollutant models was about 

2-3 times smaller 57,157 or slightly reversed.154 

In the simulation study IV, the results are quite consistent with the previous studies. We found 

that the fully Bayesian GAM might generate almost as the same accurate estimations as the 

frequentist GAM did, moreover it might increase the power and include more uncertainty 

compared to frequentist one. 

6.2 METHODOLOGY 

To estimate the traffic-related pollution, traditionally it largely depends on the detailed 

compilation of traffic flow volume, traffic emission factor, vehicle speed and type et al during 

a consistent period. It is hardly practical to conduct such a study citywide. For example, the 

receptor models and air quality dispersion model158, source apportionment estimation 

methods159 such as CMB160 or PMF, air mass trajectory analysis, and land regression model 

are all commonly used to analyze the various pollutant source. In study I, we developed a two-

stage method combining the simplified dispersion model with GAMM model since we were 

lacking of the full compilation of traffic emission data and meteorological data over the whole 

city. With limited information about vehicle account and emission factors, we took advantage 

of the geographical location and wind dispersion trajectory to classify the stations, and used 

numerical calculation algorithm to estimate the parameters for the dispersion model. It is a 
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novel way to model the association between geographical and meteorological data and PM2.5 

concentrations using fixed AQM stations’ data over given time period. 

In study II, because the mortality data were available on district level, we added the random 

effects from districts to take the intra-cluster correlation and inter-cluster heterogeneity into 

consideration when we evaluated the association between daily PM10 concentrations and 

respiratory mortalities in Beijing. Due to the uncertainty in our GAMM analysis derived from 

knot selection, we averaged the model coefficients weighted by model posterior probability, 

given the prior as uniform distribution. The estimates demonstrated wider interval compared 

to those from the conventional single optimal model method. 

In Study III, we made some modification in GAM to control for confounding from 

meteorological variables. We introduced categorical SWTs rather than put very individual 

weather variables in the GAM. Although our estimate is higher than the one from another 

similar study in China150, it is consist with the result of a U.S. study.161 Extreme weather does 

have interactive impact with PM2.5 on mortality. We found higher mortality in extreme hot days 

than cold days. Given the interaction, there were significant interactions between hypobaric 

and dry weather with PM2.5 concentration, this might be duo to hypoxia and excessive 

dehydration caused by low pressure and humidity, which is more informative than only looking 

into temperature, humidity or PM2.5 concentration. 

In Bayesian inference, sometimes subjectivism is a controversial problem due to the prior 

selection. There is no correct way to choose a prior. In most practice, analyses are performed 

with non-informative priors. In our study, we selected the Jeffreys’ rules as non-informative 

prior. Kass et al have already pointed out that the problems raised by the research on priors 

chosen by formal rules are serious and may not be dismissed lightly. When sample sizes are 

small (relative to the number of parameters being estimated), it is dangerous to put faith in any 

‘default’ solution; but when asymptotics take over, Jeffreys’ rules and their variants remain 

reasonable choices.137 

In Study IV, we compared frequentist GAM and Bayesian GAM with simulation data. Both 

methods showed similar mean estimates of the interested parameters. The estimates from 

frequentist GAM showed relatively less fluctuation, which to some extent reflects the over-

confident inferences embedded in this method. Regarding the accuracy and precision of the 

estimates, both methods gave mean estimates close to the true parameter with comparable 

variances. It suggests that Bayesian GAM might be an ideal alternative to the conventional 

frequentist GAM. Our simulation study also indicated that when the underlying parameter was 

true, the informative normal priors had no noticeable influence on the Bayesian estimate 

(Figure 21), which was only sensitive to the underlying true parameter (Figure 22). The reason 

might be the large number of data that we have and the posterior is dominated by the data rather 

than the prior. 
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6.3 SENSITIVITY AND BIAS 

In stage 1 of Study I, we made simulation using different parameters to control for the precision 

of road traffic contribution and test the sensitivity of the model. The results showed that 20% 

of the change in parameters would lead to less than 7% deviation in results. In stage 2, we tested 

the residual of the GAMM model and the results implied that geographical trend was almost 

regressed by the coordinate variables. 

In Study II, we added the wind speed as a linear predictor in GAMM and the results turned out 

almost the same. 

In Study III, we used an informative normal prior mean from Chen’s study150 but we did not 

found detectable change. 

In Study IV, more sensitivity analyses were performed in depth. In general, the Bayesian GAM 

estimates are not sensitivity to the choice of prior mean and variance but only sensitive to the 

underlying true parameter. 

6.4 STRENGTHS 

There were very few studies on PM2.5 concentration decomposing studies in China during 2012 

to 2014, however deep knowledge of the traffic contribution to PM2.5 pollution in big cities was 

in exigent demand for the government. Our Study I made maximum use of the available data 

to develop a simple model to estimate road traffic related PM2.5 concentrations within a wide 

region quickly and economically as long as there were enough monitoring sites, regular district-

specified traffic volume, and citywide meteorological data. 

In Bayesian inference, probability represents degree of belief, therefore there is no need to 

figure out many thresholds to come up with a hypothesis. Unlike the frequentist methods, 

which provide point estimation or interval estimation for each model parameter, Bayesian 

methods believe that parameters follow a certain distribution, and simulate a bunch estimates 

from posterior distribution for each parameter, then report the mean and posterior distribution. 

Under a probability model, Bayesian methods provide inferences that are conditional on the 

data, and the results are exact, without reliance on asymptotic approximation, and are more 

interpretable. 

Although in Bayes inference it always comes with a high computational cost, especially in 

models with a large number of parameters, thanks to the advances in current computer science 

and statistical software, the computational process has become much more cost effective than 

two decades before. 

We tested the sensitivity to choice of the prior mean and variance, and all the results showed 

very little changes when we set different  and , which indicated the stability of the estimation. 
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6.5 LIMITATIONS 

Because of the complex aerodynamic process of pollution dispersion and pollutant source 

formation, our dispersion model used in Study I may oversight some other factors such as the 

secondary production of PM2.5, the chemical interaction of PM2.5 with other pollutants, and/or 

the dispersion caused by other factors rather than wind. Furthermore, due to the limited 

available data sources, we only took into account industrial and traffic emissions, whereas 

combined all other pollution sources as a whole. Besides, the dispersion model in Study I highly 

depended on the location of the stations that may add extra uncertainty in estimates. 

There is a limitation of prior selection in Study III, i.e. although Jeffreys’ priors work well for 

single parameter models, they are not so suitable for multidimensional parameters, and even 

contribute to a poor convergence sometimes. One better alternative is proposed by Jeffreys 

himself using a production of the separate priors for μ and σ, or selecting reference prior 

proposed by Berger et al.162 

In studies II and III, we ignored the lag effects that might lead to some overestimation of the 

effects of PM pollutants. Besides, in studies III and IV, only citywide PM2.5 concentrations 

were available that on the other hand might underestimate the association of PM2.5 with 

mortality.163 

In Study IV, although lag effects were considered, we did not impose any structure on the 

relationship of the coefficients of the lagged PM2.5 concentrations with each other. Potential 

multicollinearity among the lagged independent variables often arises, leading to high variance 

of the coefficient estimates. 
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7 CONCLUSIONS 

PM pollution has already become a severe public concern because it poses great threat to 

human health. Road traffic is one of the major sources of PM pollution, and our two-stage 

model demonstrated its proportional contribution in Beijing, China, which would be up to 37% 

in the busy road, even worse, in view of the increasing traffic volume in the metropolis.  

Interactive effects of PM pollutants and weather conditions on non-accidental mortality do exist. 

Given the global climate change, policy makers should consider the application of the synoptic 

approach in decision making and prevention activities to ameliorate the adverse effects from 

air pollution. 

Both our time series analysis study and simulation study indicate that fully Bayesian GAM 

may generate as accurate and precise estimations as conventional frequentist GAM does while 

reveals potential uncertainty that frequentist GAM could not detect. Bayesian GAM would be 

a better solution to avoid over-confident inferences potentially seen in a frequentist one. With 

the increasing computing power of computers and statistical packages available, we may see 

the increasing application of fully Bayesian methods for decision making. 
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8 FUTURE PERSPECTIVES 

Study I helps us to get more understanding of the PM2.5 concentrations brought by road traffic 

and the importance of vehicle control for a city. It largely confirms the assumption that road 

traffic does play an essential role in air pollution. Our future emphasis will focus on the 

multilevel data collected to compare both the indirect and direct methods, and develop a more 

precise way for assessing the traffic-related PM pollution. 

In BMA method used in Study II, we only included the uncertainty from knots selection. In the 

future, we will address more emphasis on covariates and confounders selections that are also 

major sources of the uncertainty in estimation. Furthermore, although it is an easy and frugal 

way of using non-informative priors in Bayesian inference, after obtaining more information 

about the data, we may try informative priors to further test the sensitivity of the estimations. 

We will also address measurement errors by employing a more elaborate simulation framework 

in the future. 

We mainly explored the non-accidental and respiratory deaths in current studies, some further 

exploration on cause-specific mortality with multi-pollutant interaction association are needed 

for both method optimization purpose and public health concerns.  
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