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ABSTRACT 

 

Parkinson's disease (PD) is a devastating neurodegenerative disorder with aging as the main 

risk factor. PD is characterized by severe movement disturbances but is also associated with 

non-motor symptoms. Affected motor functions in PD are due to alteration in the basal 

ganglia circuitry as a consequence of loss of dopaminergic neurons which project to the 

striatum, an important part of basal ganglia. One important mechanism controlling the 

neuronal activity within striatum and hence motor functions and learning is synaptic 

plasticity. Synaptic plasticity in striatum is highly dependent on efficient interactions between 

two neurotransmitters, dopamine and glutamate. Long term potentiation (LTP) form of 

synaptic plasticity in striatum is dependent on glutamatergic neurotransmission through 

NMDA receptors. As a result of progressive degeneration of the dopaminergic neurons in the 

substantia nigra, the glutamatergic neurotransmission is altered. This alteration directly 

affects LTP as it has been shown in different animal models of PD that LTP is lost in striatum 

of PD models.  

Synaptic plasticity and it’s mechanisms of induction in experimental settings has been studied 

extensively for over a century, especially in hippocampus. Studying plasticity in striatum has 

been much more complicated due to cellular heterogeneity and random distribution of 

different cell types within striatum. Also, how different types of plasticity in the principal 

projection neurons are modulated by dopamine and other modulatory neurotransmitters in 

striatum is not clear. Moreover, experimental settings and different protocols for induction of 

synaptic plasticity in striatum in both in-vivo and in-vitro conditions results in different 

outcomes and effects the direction of the plasticity.  

This thesis aimed to study how glutamatergic neurotransmission and LTP are affected in 

striatum upon dopaminergic degeneration and with aging. In paper I of this thesis we 

investigated the difference in using different electrophysiological recording conditions in 

induction of LTP in dorsolateral part of striatum using same induction protocol (high 

frequency stimulation). Based on our results we establish that high frequency stimulation 

induces opposing forms of dopamine-dependent synaptic plasticity in the striatum depending 

on recording method. We also conclude that cell-attached and field potential recordings can 

be useful methods studying LTP in striatum as they do not alter the intracellular milieu of the 

neurons. In paper II we studied the effect of a positive allosteric modulator of NMDA 

receptors containing GluN2D/2C, CIQ, on synaptic plasticity and behavioral deficits in a 

mouse model of PD. We demonstrated that by using CIQ we can rescue the lost LTP in 6-

OHDA lesion model of PD and improve forelimb-use asymmetry.  As aging is the main risk 

factor for developing PD in Paper III we investigated the effect of aging on LTP and the 

effect of CIQ on LTP, because we had shown beneficial effect of this compound on LTP in a 

PD model. Our result demonstrates that LTP is lost in the striatum of aged mice; however this 

loss does not share same mechanisms as seen in PD and LTP is not rescued by CIQ.   

In conclusion the findings presented in this thesis help to better understand and study the 

mechanisms of synaptic plasticity in striatum under in-vitro experimental procedures. Our 

findings also suggest that targeting GluN2D containing NMDA receptors might have 

potential therapeutic implications for intervention in Parkinson's disease.  
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1 INTRODUCTION 

 

1.1 PARKINSON’S DISEASE 

 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after 

Alzheimer’s disease (Lee and Gilbert 2016, Michel, Hirsch et al. 2016). James Parkinson first 

described PD back in 1817 (Wood-Kaczmar, Gandhi et al. 2006). In the “essay on the 

shaking palsy” he describes the main clinical features of PD as: rigidity, bradykinesia and 

resting tremor that are considered as the key motor symptoms (Przedborski 2017). PD is 

foremost a sporadic disease with less than 10% inherited cases and age as the main risk factor 

as the average age of onset is 60 of years (Tysnes and Storstein 2017) (Michel, Hirsch et al. 

2016). For example mutations in the two autosomal dominant genes; Leucine-rich repeat 

kinase-2 (LRRK2) and Alpha-synuclein (α-Syn) are associated with a rare form of familial 

PD. Also, Parkin and DJ-1 are the two identified autosomal recessive genes which when 

mutated can give rise to PD (Kalia and Lang 2015).  

Two decades later after the first description of PD by James Parkinson, Trétiakoff reports the 

neuropathological alterations associated with PD (Przedborski 2017). In PD the ability to 

control voluntary movements is lost as a consequence of profound alterations in the 

functional organization of a group of subcortical nuclei, the basal ganglia (BG) (Afifi 2003). 

PD  is  a  progressive  disease  in  which  the  clinical  symptoms  are manifested as a result of 

degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), 

one of the nuclei that compose the basal ganglia. Motor symptoms of PD are manifested 

when dopamine neuronal loss reaches 50-60% and after 70-80% loss of dopamine terminals 

in the striatum (Masilamoni and Smith 2018). This loss of DA neurons in SNpc results in a 

typical depigmentation of this brain region as neurons of SNpc contain high amount of 

neuromelanin (Przedborski 2017). Additionally presence of intraneuronal proteinaceous 

cytoplasmic inclusions termed “Lewy bodies” (LB) is another pathological hallmark of PD 

(Lees, Hardy et al. 2009). Neurodegeneration and LB formation is not solely limited to BG 

but also are present in other brain regions such as hippocampus and locus coreleus. This 

spread of disease pathology to different brain structures may explain the development of non-

motor symptoms ;which often precede the motor symptoms;  such as cognitive impairments; 

sleep disorders, fatigue and psychiatric symptoms among others (Przedborski 2017). 

Although to date the mechanisms that lead to neurodegeneration and inclusion formation are 

still unclear, several pathways and mechanisms have been suggested as potential candidates. 

These pathways are believed to be altered pararllely and in different stages of the disease or 

as a cascade of events. Mitochondrial dysfunctions, protein homeostasis, inflammation and 

environmental toxins alongside the genetic factors mentioned above are described as 

pathogenesis in PD. Also it has been suggested that neuroinflammation which is prompted by 

dopamine cell loss may in fact trigger further neuronal degeneration and hence progression of 
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the disease (Przedborski 2017). Nonetheless the outcome of alteration in these pathways and 

final degeneration of DA-neurons cause pathological changes in neurotransmission in the 

basal ganglia thalamocortical-motor circuit (Wood-Kaczmar, Gandhi et al. 2006, Surmeier, 

Guzman et al. 2010, Surmeier and Sulzer 2013). Thereby it is believed that the loss of DA-

neurons, and hence the affected mechanisms controlling the motor circuit such as plasticity, 

account for the majority of the motor symptoms (Schirinzi, Madeo et al. 2016). The chain of 

events and mechanisms between dopamine loss and manifestation of motor symptoms 

however remain unclear. 

 

1.2 ETIOLOGY OF PD 

 

To date the etiology of PD remains unknown and can only be explained by a combination of 

environmental and genetic risk factors which together interact and increase the risk of 

developing PD (Bartels and Leenders 2009). Based on epidemiological studies it has been 

shown that men have overall higher incidence of PD than women (Wirdefeldt, Adami et al. 

2011). Environmental factors such as exposure to neurotoxin 1-Methyl-4-phenyl-1, 2, 5, 6-

tetrahydropyridine (MPTP) has been also shown to increase risk of developing PD 

(Mursaleen and Stamford 2016). MPTP is a byproduct of synthesis of synthetic heroin which 

causes loss of nerve cells through blocking complex in the mitochondrial electron transport 

chain (Mursaleen and Stamford 2016). Other environmental risk factors include exposure to 

pesticides, heavy metals and rural living and use of well water among others (Mursaleen and 

Stamford 2016). Also head trauma, infection, inflammation and diabetes are some of pre-

existing medical conditions that in some studies have been reported to correlate with 

increased risk of developing PD (Mursaleen and Stamford 2016). Familial components have 

been studied in monozygotic and dizygotic twins were genetic and environmental risk factors 

can be studied. Based on these studies late-onset PD is mostly caused by environmental 

factors and for early-onset PD the important factor is the genetics (Mursaleen and Stamford 

2016). 11 genes have been linked to PD; most of the genes have been shown to be involved 

in the oxidative response pathway, mitochondrial function, and vesicle trafficking and protein 

degradation pathway with autosomal dominant or autosomal recessive inheritance (Swanson, 

Sesso et al. 2009, Mursaleen and Stamford 2016). Neuroprotective factors associated with 

lifestyle such as exercise, Uric acid, nicotine, caffeine, estrogen and calcium modulators have 

been shown to slow down or minimize risk of developing PD (Swanson, Sesso et al. 2009). 

 

1.3 PATHOGENESIS OF PD  

 

Observation of "Lewy bodies" as the hallmark of Parkinson's disease was first reported by 

Fritz Heinrich Lewy back in 1912. Postmortem studies confirm presence of Lewy bodies in 
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almost all regions of the brain from PD patients both with sporadic and familial form of PD 

(Breydo, Wu et al. 2012). These inclusions are mainly composed of toxic misfolded 

aggregations of the protein α-synuclein, exclusively in neurons. Additionally, inclusions 

"Lewy neutritis" are composed of α-synuclein and are also hallmarks of PD pathophysiology. 

The exact function of α-synuclein is not known, however under normal physiological 

conditions this protein is mainly located at synaptic terminals, modulating vesicle docking to 

presynaptic terminal and vesicle release and has protective effects against nerve injury, 

protecting nerve terminals (Vekrellis, Xilouri et al. 2011, Dehay, Bourdenx et al. 2015). 

Based on genetic studies, autosomal dominant early-onset PD in some cases are due to 

missense mutations in the gene (SNCA) encoding α-synuclein (Breydo, Wu et al. 2012). 

Also, non-genetic factors such as post-translational modifications in form of phosphorylation 

at sites were under physiological conditions are not or nitration may lead to missfolding of 

this protein (Dehay, Bourdenx et al. 2015). Another triggering factor for missfolding of α-

synuclein can be due to higher expression levels of the protein itself due to alteration in the 

SNCA transcriptional regulatory mechanisms or in chaperone-mediated autophagy and 

clearance of the extra number of the protein. Thus, an imbalance or alteration in the levels of 

synthesis and degradation of this protein may cause an increase in aggregation and 

oligomerization of α-synuclein into inclusions (Vekrellis, Xilouri et al. 2011). Lewy bodies 

and Lewy neutritis formation and accumulation disturb normal cellular machinery and 

functions through targeting different pathways and compartments. For example, various 

studies confirm impairment of mitochondrial complex I and V activity due to overexpression 

of oligomeric aggregates of α-synuclein. This in turn may lead to neuronal cell death by 

indirectly triggering release of reactive oxygen species (Vekrellis, Xilouri et al. 2011). 

Additionally, neurotoxic effects of α-synuclein overexpression on Ca
2+

 homeostasis have 

been proposed as another mechanism. One hypothesis is that overexpression of α-synuclein 

may cause cell death by increasing levels of calcium and proton leaking from lysosomes into 

cytosol by increasing lysosomal permeability (Post, Lieberman et al. 2018). Importantly 

dopamine neurons have been shown to be more sensitive and vulnerable to higher levels of α 

-synuclein compared to other neurons even though non-dopaminergic neuronal loss due to 

overexpression of α-synuclein is also detected in PD. This is believed to be due to highly 

branched axons of these neurons and synapses, resulting in a higher bioenergetics demand 

which can lead to mitochondrial oxidative stress (Pacelli, Giguere et al. 2015). This is 

confirmed by the observation that striatal DA terminals are lost earlier during the progression 

of the disease before dopamine cell bodies are degenerated (Kordower, Olanow et al. 2013). 

How α-synuclein is released into the extracellular space from one neuron is not confirmed but 

one possible mechanism may be through exocytosis along with secretory vesicles and 

eventually spreading through a cell-to-cell transmission to other cells and brain regions 

(Beyer, Domingo-Sabat et al. 2009, Vekrellis, Xilouri et al. 2011).   
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1.4 SPREAD OF THE DISEASE 

 

According to postmortem investigation comparing healthy and Parkinson's disease human 

brains staining for α-synuclein inclusions, tracing the spread of inclusions, PD pathology is 

described to be affecting different parts of the brain in six stages commonly known as Braak 

staging hypothesis (Goedert, Spillantini et al. 2013). Commonly Lewy bodies emerge first in 

the olfactory bulb and vagus nerve (stage 1) from there via the pons (stage 2) to the midbrain 

(stage 3) and to the basal prosencaphalon and mesocortex (stage 4) and finally to the 

neocortex (stages 5 and 6) (Braak, Ghebremedhin et al. 2004). Stages 1-3 are presymptomatic 

stages and the symptomatic phase starts after stage 3, when the extend of dopaminergic 

neuronal loss is great (Dexter and Jenner 2013). It is at this stage which motor symptoms of 

Parkinson's disease are manifested. Nevertheless, as predicted from the wide spreading of the 

disease pathology before reaching basal ganglia, non-motor symptoms emerge as Lewy 

bodies affect non-dopaminergic nuclei of the brain as well (Dexter and Jenner 2013). "For 

example, constipation as a common NMS is associated with neuronal loss and the presence of 

Lewy bodies in the dorsal motor nucleus of the vagus, which provides parasympathetic 

innervation to the stomach and intestine" (Dexter and Jenner 2013). However, this hypothesis 

is challenged by scientists who demonstrate that Lewy pathology and distribution in different 

brain regions are very sparse and cell type specific (Surmeier, Obeso et al. 2017). For 

example, according to some recent works by independent groups it has been shown that 

GABAergic neurons independently of the brain region studied are never affected by Lewy 

pathology (Kingsbury, Bandopadhyay et al. 2010, Surmeier, Obeso et al. 2017). In 

conclusion the theory of PD acting as a Prion-like disease and spread of the pathology in a 

cell-to-cell fashion resulting in neuronal dysfunction and eventually neurodegeneration needs 

further investigation and to date it remains ambiguous (Surmeier, Obeso et al. 2017).   

 

1.5 PATHOPHYSIOLOGY OF PD   

 

Mechanisms leading to dopaminergic cell death and development and progression of 

Parkinson's disease remains to date for most part unknown. Great amount of research is being 

done worldwide targeting this question which will lead to identification of better 

symptomatic treatments or hopefully cure of this neurodegenerative disorder.  Several 

mechanisms and cellular alterations have been proposed to be involved as a cascade of events 

which eventually cause neuronal cell death. Studies done in humans and animal models of 

PD both in genetic cases and sporadic PD have led to several well confirmed theories of 

which some are briefly described below.  
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1.5.1 Mitochondrial dysfunction 

 

Mitochondrion is responsible to produce energy in form of adenosine triphosphate (ATP) for 

the survival of cells. ATP is produced in the inner membrane of the mitochondria as the end 

product of electrons flowing down the electron transport chain, generating energy which is 

used by ATP synthase to through oxidative phosphorylation produce ATP from adenosine 

diphosphate (ADP). Reactive oxygen species (ROS) are byproducts of oxidative 

phosphorylation, which under normal conditions are kept under regulated levels by the action 

of antioxidant proteins (Puspita, Chung et al. 2017). Increased levels of ROS production due 

to ex. dysfunction of electron transport chain can lead to oxidative stress with severe effects 

on the overall cell machinery and survival. Several observations have linked oxidative stress 

due to dysfunction of mitochondria to neuronal degeneration in PD (both in sporadic and 

familial), specially dopamine neurons which are more susceptible to oxidative stress 

(Subramaniam and Chesselet 2013). Postmortem studies on brains from PD patients strongly 

confirm reduction in activity or protein levels of mitochondria complex in substantia nigra, 

frontal cortex and striatum (Mizuno, Ohta et al. 1989, Schapira, Cooper et al. 1990, Parker, 

Parks et al. 2008, Subramaniam and Chesselet 2013). More importantly studying genetic 

studies have confirmed that several of the PD related genes identified encode proteins which 

are directly linked to mitochondrial function. Mutations in genes; PINK1, Parkin, DJ-1 and 

LRRK2 are all linked to mitochondrial dysfunction associated with familial PD (Surmeier, 

Guzman et al. 2010). For example, alterations in mitochondria autophagy due to mutations in 

PINK1 and Parkin results in accumulation of damaged mitochondria as the proteins encoded 

by these genes are involved in repair and autophagic mechanisms (Michel, Hirsch et al. 2016, 

Puspita, Chung et al. 2017). Moreover, mitochondrial DNA (mtDNA) is especially 

vulnerable to oxidative stress as they lack protection by histone proteins compared to nuclear 

DNA. mtDNA encode proteins involved in the electron transport chain and thus any mutation 

caused by excessive ROS production to mtDNA directly effects the ATP production 

machinery which in turn leads to production of even more ROS and thereby a negative loop 

causing cell death (Puspita, Chung et al. 2017). Environmental toxins such as MPTP 

mentioned previously and the pesticide Rotenone (mitochondrial complex I inhibitor) are also 

directly linked to oxidative stress and damaging for mitochondria hemostasis and increased 

risk of developing PD (Puspita, Chung et al. 2017). In conclusion directly or indirectly 

mitochondrial dysfunction and ROS production have a toxic effect on individual neurons and 

ultimately pathology of sporadic and familial PD. 

 

1.5.2 Neuroinflammation 

 

Neuroinflammatory mechanisms are involved in various neurodegenerative disorders. 

However, whether inflammatory responses are triggered and activated due to neuronal 

degeneration or whether inflammatory processes are part of the dysfunctional toxic pathways 
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which may partly lead to progression of the disease is not known. Microglial activation and 

astrocytic reaction are strongly linked to neuropathology of PD (Hirsch and Hunot 2009). 

Several post-mortem studies have demonstrated activated microglial cells in the substantia 

nigra of patients with PD compared to healthy controls (McGeer, Itagaki et al. 1988, Banati, 

Daniel et al. 1998). Also, involvement of astrocytes was shown based on the observation that 

astrocyte density in SN of PD patients is lower than in areas not affected by the disease. 

Lower astrocyte density may lead to a less effective clearance of the surrounding milieu of 

affected neurons from reactive free radicals and hence might be a triggering factor in 

progression of the disease (Damier, Hirsch et al. 1993). Neurodegeneration caused by 

activation of inflammatory processes insert the toxic effect through mediating oxidative stress 

and damage on dopaminergic neurons and adjacent environment. For example, microglial 

activation which is increased in substantia nigra of PD patients and animal models of PD, 

may lead to production of toxic amounts of oxygen and nitrogen-derived products (O
2-

 and 

NO free radicals). Through this process recognized as oxidative burst, NO and O
2-

 react and 

the highly reactive species peroxynitrite (ONOO
-
) is produced causing further toxic oxidative 

reactions and damage to enzymes such as Tyrosine hydroxylase (TH) (Przedborski, Chen et 

al. 2001). Other consequences of highly activated microglial cells in substantia nigra are 

mediated through release of cytotoxic inflammatory compounds. Proinflammatory cytokines 

such as TNF could through direct binding to cell surface receptors on dopaminergic neurons 

activate proapoptotic pathways. Also, it has been shown that NO free radicals can potentiate 

production of TNF by microglial and astrocyte cells and hence creating a damaging cycle 

(Hirsch and Hunot 2009). Nevertheless, as mentioned whether neuroinflammation is the 

cause or consequence of neurodegeneration needs to be established to understand the origin 

and cause of this disease.  

 

1.5.3 Dysfunction of the Autophagy-Lysosome system 

 

One of the mechanisms used by cells for degrading dysfunctional proteins or organelles is the 

autophagy-lysosome pathway. This system is highly regulated and also can affect apoptosis 

(Kenney and Benarroch 2015). In this process structures called autophagosomes which 

contain the cytosolic components for removal, transport the contain to lysosomes. This 

process can be considered as a recycling pathway, as the metabolites produced after 

degradation are once again used by the cell to produce new compartments or energy (Boya, 

Reggiori et al. 2013). Dysfunction of this pathway has been associated with PD and α-

synuclein pathology. Based on a recent work studying dopamine neurons in brain tissues 

from PD patients researchers have found a decreased lysosomal expression in DA neurons 

compared to controls which was also shown to be associated with a higher α-synculein 

expression (Chu, Dodiya et al. 2009). In addition, PD-related genes such as DJ-1 and LRRK2 

are also indirectly coupled to this pathway as mutations in these two genes result in 

accumulation of autophagosomes and reduced lysosomal enzyme activity respectively 
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(Michel, Hirsch et al. 2016). Also, loss of autophagy gene Atg7 which is involved in 

formation of autophagosome was demonstrated to result in accumulation of  α-synuclein in 

the presynaptic terminal, resulting in enhanced levels of this protein and hence PD pathology 

(Friedman, Lachenmayer et al. 2012). In conclusion failure in removal of excessive and 

dysfunctional organelles and proteins in particular α-synuclein by the autophagy-lysosome 

pathway creates a negative feedback loop influencing progression of PD.  

 

1.5.4 Calcium Homeostasis 

 

Dopamine neurons have an autonomous pacemaking activity which is calcium dependent and 

which helps maintaining a constant basal dopamine innervation/tone of the striatum. Thus, 

proper functioning of dopamine neurons is partly dependent on regulated levels of calcium as 

both lower or higher levels of calcium than the physiological level can be crucial to normal 

rhythmic activity of these neurons. To maintain these rhythmic activity dopamine neurons, 

sustain an elevated intracellular concentration of calcium through L-type voltage-dependent 

Ca
2+

 channels. Dopamine neurons have low calcium buffering capacity and small elevation in 

cytosolic calcium levels can cause a metabolic demand and intersects with mitochondrial 

oxidative stress. Thus, calcium levels are constantly kept under regulated concentration using 

ATP dependent pumps to pump back calcium across plasma membrane (Chan, Gertler et al. 

2009). L-type Ca
2+

 channels (specifically Cav1.2 and Cav 1.3) are considered to be the main 

source of elevated calcium levels in dopamine neurons and hence blockers of these receptors 

such as Isradipine have shown to be protective against mitochondrial stress and helpful in PD 

(Michel, Hirsch et al. 2016). Also, different mutations in proteins involved in PD and 

dopamine neurons may lead to enhanced pacemaking activity in DA neurons and thereby 

increased Ca
2+

 influx and demand on mitochondria and ER. Overexpression of A53T mutant 

α-Synuclein and mutation in DJ-1 both result in over activity of dopamine neurons. Also, 

mutation to PINK1 has shown to cause overload of calcium in mitochondria due to 

dysfunction of calcium efflux mechanism from mitochondria due to the mutation. One other 

speculated route to increased levels of calcium is through increased activity of N-methyl-D-

aspartate (NMDA) receptors due to increased glutamatergic inputs and over activity of 

subthalamic nucleus (Michel, Hirsch et al. 2016). In conclusion disruption in levels of 

calcium entry into dopamine neurons or efflux or  increased activity of dopamine neurons 

result in enhanced levels of calcium and higher energy demand and thereby stress on 

mitochondria capacity which may trigger mechanisms involved in cell death pathway and 

hence dopamine neurodegeneration (Michel, Hirsch et al. 2016). 
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Figure 1: Molecular pathways involved in pathogenesis of Parkinson’s disease. Modified from 

(Poewe, Seppi et al. 2017).  

 

1.6 TREATMENT OF PD 

 

Treatment of Parkinson's disease is unfortunately limited to symptomatic relief and currently 

there is no treatment halting or slowing the progress of the disease and neurodegeneration. 

One of the key treatments of PD since its discovery to date is the dopamine replacement 

therapy using L-3, 4-dihydroxyphenylalanine (L-DOPA). L-DOPA was first discovered by 

Arvid Carlsson and colleagues back in 1950’s (Schulz, Hausmann et al. 2016). L-DOPA is 

the precursor of dopamine and which can be taken orally and cross the blood-brain barrier. 

Once in the brain, L-DOPA is decarboxylated to dopamine and mediates its action through 

postsynaptic dopamine receptors (Dorszewska, Prendecki et al. 2014). Efficacy of L-DOPA 

treatment is achieved in a greater extend together with using enzyme inhibitors such as 

inhibitors of the peripheral aromatic amino acid decarboxylase (AADC) to prevent 

breakdown of L-DOPA before reaching the brain (Dorszewska, Prendecki et al. 2014, 

Taddei, Spinnato et al. 2017). This golden standard treatment of motor symptoms of PD over 

long-term normally causes side effects such as increased toxicity and inflammatory responses 

and most importantly dyskinesia as the therapeutic effect of it is lost (Dorszewska, Prendecki 

et al. 2014). Mechanisms leading to L-DOPA induced dyskinesia are not known and thus 

alternative or combinational therapies are necessary to reduce both motor and non-motor 

symptoms of PD. One such alternative approach is using dopamine agonists acting directly 

on dopamine receptors. Dopamine agonist, Apomorphine (D1 and D2- like agonist) was the 

first agonist demonstrating positive effects on PD symptoms (Brooks 2000). Other dopamine 

agonist developed are mostly D2-like receptor agonist but commonly show beneficial effect 
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in early stages of PD with less motor complications which allows L-DOPA treatment to be 

started at the later stages of the disease (You, Mariani et al. 2018).   

Deep brain stimulation (DBS) of subthalamic nucleus is used as a non-pharmacological 

treatment at the later stages of the disease for reducing tremors associated with PD (Schulz, 

Hausmann et al. 2016). Using this method, a continuous high frequency electric stimulation is 

delivered to SNc were the activity is increased, however the exact mechanism in which DMS 

inserts its positive effects is still not known (Pires, Teixeira et al. 2017). Nevertheless as the 

disease progress life quality of PD patients are highly affected due to non-motor symptoms 

associated with progression of the disease and thus needs to be combated with combination of 

different pharmacological treatments (Masilamoni and Smith 2018). Non-dopaminergic 

treatments, targeting glutamatergic neurotransmission through NMDA and mGlu receptors 

and the cholinergic system are other targets which together with dopamine replacement 

therapy can combat some of the symptoms of PD (Finlay and Duty 2014). 

 

1.7 ANIMAL MODELS OF PARKINSON’S DISEASE 

 

The exact disease processes and molecular mechanisms of cell death are still not clear and 

under investigation, but thanks to various animal models, we have now greater insight into 

PD pathogenesis. Animal models of PD can be divided into two groups. One is the classical  

neuro-toxin based or pathogenic models and the other is the more modern genetic models or 

etiologic models (Bezard, Yue et al. 2013). The ideal PD model should reflect the core 

pathology hallmarks of the disease as well as progressive developmental and behavioral 

phenotypes of the disease. Unfortunately none of the different models recapitulate all aspects 

of the disease and each may reflect a mechanism or pathway involved in the progression of 

the disease. Thus studying multiple models can give a better understanding of the disease 

(Bezard, Yue et al. 2013). 

 

1.7.1 Neurotoxin model 

 

6-hydroxydopamine (6-OHDA) is the hydroxylated analogue of the neurotransmitter 

dopamine. 6-OHDA does not cross the blood-brain barrier and therefore is injected 

unilaterally into the brain in the nigro-striatal tract (Duty and Jenner 2011). Following its 

injection, 6-OHDA is taken up into the dopaminergic neurons via the dopamine transporter, 

DAT. Although the exact mechanism underlying 6-OHDA-toxicity is still not clear, current 

understanding is that, once inside dopaminergic neurons, 6-OHDA initiates degeneration 

through a combination of oxidative stress and mitochondrial respiratory dysfunction (Duty 

and Jenner 2011). As a result of the injection, a70% striatal dopamine depletion is detected 

within 2 weeks. To confirm DA-loss, the levels of the enzyme tyrosine hydroxylase (TH; 
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rate-limiting step of DA biosynthesis) are measured in the postmortem brains. 6-OHDA 

model is an acute model thereby it does not reflect the progressive development of the disease 

and also no Lewy-bodies are developed (Bezard, Yue et al. 2013). However it does reflect 

biochemical, neurochemical and neurophysiological features of the disease as the nigro-

striatal tract is degenerated by the lesion. 

 

1.7.2 Leucine-rich repeat kinase 2 (LRRK2) 

 

Autosomal transmissions of mutations in LRRK2 gene is both linked to familial form of PD 

and even sporadic PD. LRRK2 is a large multidomain-containing protein that is localized to 

membranous structures (Biskup, Moore et al. 2006). LRRK2 is involved in several cellular 

functions such as neurotransmission, endocytosis and neuronal outgrowth and guidance. 

Mutations associated with PD correspond to the GTPase and kinase domains (Biskup and 

West 2009). Studies have demonstrated an increase in the activity of the kinase domain upon 

LRRK2 mutation, causing neurotoxicity in PD. Most of the current LRRK2 transgenic mice 

have abnormalities in the nigrostriatal system; such as decreased DA release and uptake or 

late behavioral deficits, which are DA responsive. DA neurons, however, do not 

neurodegenerate. These abnormalities probably represent some of the earliest neuronal 

dysfunctions caused by LRRK2 mutation, making animal models with mutations in the 

LRRK2 gene ideal for studying early pathogenic events in PD. Indeed, one advantage of 

these models is the age-dependent decrease in striatal DA content (Schirinzi, Madeo et al. 

2016). 

 

1.7.3 Orphan nuclear receptor Nurr-1 

 

Nurr-1 belongs to the family of ligand-activated transcription factors called nuclear receptors 

(Decressac, Volakakis et al. 2013). Studies have reported an involvement of Nurr1 in the 

development of midbrain DA neurons. Nurr-1 is also highly expressed in mature DA neurons 

in the adult brain and deficiency is associated with cellular changes that resemble early stages 

of PD. Nurr-1 function seems to be perturbed in patients with PD and in rodents. 

Interestingly, Nurr1 expression is down regulated in postmortem human brain tissue; this 

decreased Nurr1 expression might underlie decreased production of DA, and DA-neuron 

degeneration (Decressac, Volakakis et al. 2013, Kadkhodaei, Alvarsson et al. 2013). Nurr-1 

knockout mice display age-dependent morphological, biochemical, and behavioral 

phenotypes that resemble the progressive degeneration observed in early stages of PD 

(Decressac, Volakakis et al. 2013). 
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1.8 BASAL GANGLIA 

 

Basal ganglia (BG) are composed of four main nuclei which are interposed between the 

cortex and the thalamus. The main task of this group of nuclei is to modulate movement 

execution by processing the signals that arise from the cortex, and producing an output signal 

that returns to the cortex, through thalamus. BG is also involved in non-motor functions, 

including cognition (Bar-Gad and Bergman 2001). The BG is divided along a 

dorsolateral/ventromedial axis into two functionally different divisions. The dorsal part of BG 

is composed of four different, interconnected nuclei: the neostriatum, the globus pallidus 

(GP), the substantia nigra (SN) and the subthalamic nucleus (STN). In higher vertebrates the 

neostriatum is divided by the internal capsule to putamen and caudate nucleus. GP is also 

composed of two major units, the external (GPe) and internal (GPi, also called 

entopeduncular nucleus). Also SN is composed of two-subunits: the pars compacta (SNc) and 

pars reticulata (SNr). These sections are part of the dorsal BG and are responsible for the 

motor and associative functions. The ventral part of BG is associated with limbic functions 

and is composed of two different nuclei (nucleus accumbens and ventral pallidum) and VTA 

and parts of the dorsal BG (medial part of STN and SN) (Tepper, Abercrombie et al. 2007).  

 

1.8.1 Macrocircuit of the basal ganglia 

 

The striatum receives inputs from different brain regions but most importantly from cortex, 

thalamus and SN. Excitatory/glutamatergic inputs arrive from somatosensory and motor 

cortex and from anterior and ventral lateral thalamic nuclei (Wilson 2007). In addition 

striatum receives projection from other brain regions, which are important for modulation of 

the glutamatergic inputs to the striatum. Midbrain projections to striatum arise from 

dopaminergic neurons of SNc. Moreover some smaller projections from raphe nucleus and 

locus coeruleus account for the serotonergic and noradrenergic innervation of striatum, 

respectively(Afifi 2003). According to the standard model of BG, these converged inputs are 

passed through the two principal pathways (direct and indirect) from striatum to the two 

output nuclei: GPi and SNr. The direct pathway transmits the information as an inhibitory 

signal directly to SNr /GPi. However in the indirect pathway, information is sent to the output 

nuclei via GPe and STN. Neurons of the output nuclei are also GABAergic, thus the net 

effect of projections through direct pathway is inhibition of the output nuclei and 

disinhibition by the indirect pathway (Bolam, Hanley et al. 2000, Bar-Gad and Bergman 

2001, Shipp 2017). The functional outcome of the direct pathway is an increase in 

movements as the thalamus is disinhibited for initiation of appropriate movement. 

Conversely, the indirect pathway increases the excitatory effects of STN neurons on the SNr, 

thereby inhibiting thalamus and reducing locomotion or suppressing competing movements 

(Kravitz, Freeze et al. 2010). In Parkinson’s disease, over activity in the indirect pathway and 

inhibition of the direct pathway are associated with hypokinesia (Shipp 2017). A third route 
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of entry to the basal ganglia has been described but much less studied; the hyperdirect 

pathway of the corticosubthalamic projections. According to this system, STNreceives   

direct excitatory cortical and thalamic inputs, which further are transmitted to GPi/SNr 

(Mathai and Smith 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Simplified model of macrocircuit of the basal ganglia. Glutamatergic inputs to the striatum 

from cortex and thalamus are sent to the output nuclei; GPi/SNr, through the direct and indirect 

pathways and from there back to cortex via thalamus. Dopaminergic inputs to the striatum arrive from 

SNc. Modified from (Cerovic, d'Isa et al. 2013).  

 

1.8.2 The Striatum 

 

Striatum is mainly composed of GABAergic neurons and interneurons and is the main 

recipient of cortical and thalamic inputs to the basal ganglia (Cheatwood, Corwin et al. 2005). 

The principal projection neurons of the striatum are the GABAergic medium spiny neurons 

(MSNs). MSNs account for around 90-95% of the total neuronal population of the striatum, 

receiving the excitatory inputs to basal ganglia on their dendritic spines (Afifi 2003, Tepper, 

Abercrombie et al. 2007). MSNs fire sparsely and require coordinated excitatory synaptic 

inputs to spike. In vivo, MSNs have two states of excitability. In the up state, MSNs rest at a 

depolarized membrane potential (-70 to -40 mV); thereby it is more likely that they fire action 

potentials upon increased activity of many convergent corticostriatal inputs, compared to the 

hyperpolarized down state (-61 to -94mV) (Stern, Jaeger et al. 1998, Mallet, Le Moine et al. 

2005, Wilson 2007). MSNs have extensive local axon collaterals that project to other MSNs 
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as well as interneurons of the striatum (Tepper, Koos et al. 2004, Venance, Glowinski et al. 

2004). MSNs give rise to the two principal pathways (direct/indirect MSNs), which are 

important for action selection. These different subpopulations express different dopamine 

receptors and neuropeptides (Kita and Kitai 1988). Direct pathway MSNs, express low 

affinity dopamine type 1 receptors (D1R) and also express substance P and dynorphin. 

Indirect pathway MSNs, express high affinity dopamine type 2 receptor (D2R) and the 

neuropeptide encephalin (Izzo, Graybiel et al. 1987). However recent studies have confirmed 

co-expression of both type 1 and 2 dopamine receptors in a proportion of MSNs (Gittis and 

Kreitzer 2012, Calabresi, Picconi et al. 2014, Lim, Kang et al. 2014). MSNs are also 

innervated by the dopaminergic inputs from SNc and ventral tegmental area (VTA). 

Dopaminergic neurons project onto neck of the spines or dendritic shaft, in a close interaction 

with glutamatergic synapses (Calabresi, Pisani et al. 1997). Dopamine modulates the 

response and synaptic strength of corticostriatal projections to MSNs (Tepper, Abercrombie 

et al. 2007). As mentioned, direct and indirect MSNs express different classes of dopamine 

receptors. Dopamine receptors are G-protein coupled receptors, linked to different 

intracellular signaling pathways and thereby can produce different responses upon their 

activation (Girault 2012). Thus, dopamine has opposite modulatory effects on these neurons: 

dMSNs are activated and iMSNs inhibited by dopamine (Surmeier, Ding et al. 2007, 

Calabresi, Picconi et al. 2014).  

Cortical and thalamic inputs to the striatum also project onto striatal interneurons (Tepper, 

Abercrombie et al. 2007). Striatal interneurons comprise 5-10% of all striatal neurons. Most 

striatal interneurons are GABAergic and some are cholinergic. GABAergic interneurons can 

be divided into two groups: fast-spiking (FSI) and persistent and low-threshold spike 

interneurons (PLTS). Neurochemically FSIs can be identified by their expression of calcium-

binding protein parvalbumin. FSIs display brief action potentials with large, rapidly peaking 

spike afterhyperpolarization. Moreover FSIs are electrotonically coupled due their expression 

of gap junctions (Tepper, Koos et al. 2004). FSIs are considered to be important for a 

feedforward inhibition onto MSNs since they are activated earlier and at a lower threshold 

than MSNs (Koos and Tepper 2002). Thus FSIs create a GABAergic network to control spike 

timing in MSNs (Tepper, Koos et al. 2004, Wilson 2007). PLTS interneurons express 

somatostatin and neuropeptide Y. They also regulate MSNs through their inhibitory 

projections onto somata and dendrites of MSNs. However this projection onto MSNs was 

shown to be of much lower density than for example FSIs. But PLTS are considered 

important for providing neurotransmitters such as NPY, SOM and NO and thereby 

modulating striatal circuitry. Recently it was shown that PLTS interneurons might project 

onto and inhibit tonic firing of other interneurons such as cholinergic interneurons (Gittis, 

Nelson et al. 2010, Gittis and Kreitzer 2012). Cholinergic interneurons (Chl) have very large 

somata and are considered to be tonically active based on in-vivo recordings. They represent 

only  1-2%  of  the  total striatal  neuronal  population  and  provide  the  major  source  of  

acetylcholine (Ach). Despite being few in numbers, they greatly influence the local striatal 

circuit with their dense projections throughout the striatum (Kravitz, Freeze et al. 2010). They 
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also have the  characteristic  long- lasting after hyperpolarization phase, broad action 

potentials, fire single spikes and have a resting membrane potential around -60mV (Oswald, 

Oorschot et al. 2009). Chl interneurons receive direct excitatory inputs mainly from thalamus 

but also from cortex (Tepper, Abercrombie et al. 2007, Lim, Kang et al. 2014). Both classes 

of MSNs and other striatal interneurons express receptors for acetylcholine. MSNs express 

mainly postsynaptic M1 muscarinic receptors and thereby are excited upon activation by 

acetylcholine. In contrast presynaptic terminals of corticostriatal neurons express M2 

receptors, leading to inhibition of neurotransmitter release. This dual action of cholinergic 

interneurons can be explained by the burst-pause pattern, which is characteristic for these 

interneurons (Ding, Guzman et al. 2010). Thalamic inputs cause a burst of spikes in these 

interneurons, which leads to transient inhibition of the corticostriatal inputs. Meanwhile the 

pause phase creates a time window during which striatopallidal MSNs become more 

responsive to cortical inputs. This response pattern of the cholinergic interneurons is 

considered important for salient stimuli and suppression of ongoing motor activity (Ding, 

Guzman et al. 2010, Lim, Kang et al. 2014). GABA released by MSNs may also influence 

excitability of Chl interneurons. It has been shown by optogenetic studies that MSNs evoke 

inhibitory postsynaptic currents (IPSCs) in Chl interneurons, suggesting a direct synapse 

between MSNs and these interneurons. Also, dopamine acting through D2 and D5 receptors 

expressed on Chl interneurons inhibits autonomous spiking of Chl interneurons and thereby 

release of acetylcholine (Tritsch and Sabatini 2012, Lim, Kang et al. 2014, Wang, Zhang et 

al. 2014). 

 

 

 

 

Figure 3: Microcircuit of the 

Striatum. Modified from 

(Calabresi, Picconi et al. 2014) 
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1.9 SYNAPTIC PLASTICITY 

 

One of the most important and well-studied mechanisms for learning and memory is 

experience-dependent modification in the efficacy of synaptic connections, also referred to as 

synaptic plasticity. Plasticity can be short or long lasting and may either lead to suppression 

or potentiation of a synapse. In the striatum long-term potentiation (LTP) and long-term 

depression (LTD) are strongly associated with motor learning and associative memory 

processes. Plasticity at the excitatory corticostriatal synapses onto MSNs and striatal 

interneurons has been studied for many years but yet there is a great controversy regarding 

types of plasticity observed by different researchers. MSNs undergo both types of plasticity 

upon repetitive activation of the excitatory cortical inputs. Indeed striatal plasticity is 

dependent on excitatory inputs, but also nigrostriatal dopaminergic modulation of these 

inputs is a key player in induction of plasticity (Wickens 2009). 

LTD induced by high-frequency stimulation (HFS) of corticostriatal fibers onto MSNs was 

the first reported type of plasticity observed in-vitro in the striatum. This form of LTD is 

NMDA-receptor independent; however it requires activation of glutamate metabotropic 

receptors (particularly mGluR1) and co-activation of both D1 and D2 dopamine receptors. 

Sufficient levels of postsynaptic intracellular Ca
2+

 (influx through voltage sensitive calcium 

channels) and activation of Ca
2+

 dependent protein kinases are also necessary for LTD. Also, 

for LTD to be induced, HFS stimulation needs to be paired with membrane depolarization 

and action potential discharges of the postsynaptic neurons (Calabresi, Pisani et al. 1997). 

Endocannabinoids released postsynaptically have also been reported to act as retrograde 

messengers acting on presynaptic CB1-receptors to reduce glutamate release and thereby 

inducing LTD (Lerner and Kreitzer 2011). It is largely agreed that LTD does occur at 

synapses on iMSNs, however independent studies report differential results regarding LTD at 

dMSNs and it still remains a controversial topic, which needs further investigation (Wickens 

2009, Gardoni and Bellone 2015).  

On the other hand LTP at corticostriatal synapses is NMDA receptor dependent (Pisani, 

Centonze et al. 2005). However controversy regarding induction of LTP is great and also less 

characterized. Initially  based  on  brain  slice  recordings,  it  was  indicated  that  the  same  

induction protocol as used for LTD, induces LTP but in Mg
2+

 free extracellular solution 

allowing removal of voltage-dependent blockade of NMDA receptors channel (Calabresi, 

Pisani et al. 1997). Later, researchers could demonstrate presence of LTP in the in-vivo 

recordings thereby challenging the necessity of removal of Mg
2+

 from extracellular medium 

(Kreitzer and Malenka 2008, Lovinger 2010). What is commonly agreed on is that dopamine 

and D1 receptor activation and not D2 is necessary for LTP induction in dorsal striatum. This 

difference is mainly described by the postreceptor pathways, which are coupled to these 

receptors. Activation of D1 receptors exerts a positive modulation on the intracellular 

cascade, by acting on adenylate cyclase and cAMP formation that in turn activates protein 

kinase A and activation and phosphorylation of dopamine and cAMP-regulated 
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phosphoprotein of 32kDa (DARPP-32). Phosphorylation of DARPP-32 eventually leads to 

phosphorylation of  NMDA  receptors  and  hence  their  activation,  as  well  as  an  increase  

in  surface expression of AMPA and NMDA receptors (Cepeda and Levine 2012, Cerovic, 

d'Isa et al. 2013). In general, both LTD and LTP share a common process which involves 

modulation of the direction of plasticity by cAMP/PKA pathway but with opposite fashion. 

MSNs are biased towards LTD during low PKA activity levels and towards LTP with 

increased activity of PKA and thereby enhanced NMDA receptor signaling (Lerner and 

Kreitzer 2011). Additionally Ach, another modulatory neurotransmitter in striatum, is 

believed to contribute to induction of LTP. As during pause in the tonic firing of cholinergic 

interneurons, the inhibitory action of Ach on M2- muscarinic receptors on the presynaptic 

terminals of corticostriatal neurons is reduced and glutamate release is increased (Calabresi, 

Centonze et al. 2000, Pisani, Bernardi et al. 2007, Surmeier and Graybiel 2012, Gardoni and 

Bellone 2015). Also Ach acts directly on pre-synaptic nicotinic receptors on the axon 

terminals of the dopaminergic fibers in the striatum, causing an increase in DA release upon 

HFS, again favoring induction of LTP (Surmeier and Graybiel 2012). Importantly D1 

receptor activation per se also causes an increase in cAMP levels and activation of PKA and 

eventually through the action of DARPP-32 leads to increased opening of L-type Ca
2+

 

channels on MSNs, bringing MSNs to a more excitable state, favoring induction of LTP 

(Girault 2012, Gardoni and Bellone 2015). 

Variability in the ability to induce LTP at corticostriatal synapses by different researchers 

highlights the importance of other factors involved and contributing to this form of plasticity. 

Other G protein-coupled receptors such as A2A receptors expressed in dendritic spines of 

MSNs also regulate and influence the direction of plasticity in striatum through interaction 

with CB1 and dopamine receptors. As for LTP in the indirect pathway MSNs, many studies 

demonstrate the need of A2A receptor signaling for induction of LTP which was confirmed 

even in the absence of dopamine in dopamine-depleted mice (Lopez de Maturana and 

Sanchez-Pernaute 2010).  

Thus the final polarity of long-term modifications at these corticostriatal synapses may be 

influenced by: phasic activity (up and down state) of MSNs, other neurotransmitter systems 

(particularly Ach and dopamine), age of the animal, experimental conditions and precise 

striatal sub-region (Partridge, Tang et al. 2000, Calabresi, Galletti et al. 2007). As for sub-

divisions of striatum, most reports on adult mice indicate LTP in dorsomedial striatum and a 

developmental switch of plasticity in dorsolateral from LTP to LTD (Di Filippo, Picconi et al. 

2009, Wickens 2009, Girault 2012). Difference in type of synaptic plasticity observed in 

different sub-regions of dorsal striatum (medial and lateral portion), highlights the specific 

roles of each section. This because of receiving inputs from different areas of cortex and 

thalamus resulting in different learning and memory paradigms (Partridge, Tang et al. 2000).   
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1.10 NMDA RECEPTORS 

 

Glutamate is the most important and the main excitatory neurotransmitter in the nervous 

system. Glutamate acts on different classes of membrane receptors, including ionotropic   

(iGluRs) and metabotropic glutamate receptors (mGluRs). iGluRs are cation-permeable ion 

channels and can further be divided into three groups: N-methyl-D-aspartate (NMDA) 

receptors, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors and 

kainate receptors. Since the discovery of NMDA receptors and identification of their major 

functional roles in excitatory synaptic transmission, neuronal plasticity and in many 

neurological disorders; much attention has been focused on studying the exact role of these 

receptors based on their subunit composition both in physiological condition but also disease. 

NMDA receptors are plastic complexes, composed of several homologous subunits that 

depending on the CNS regions, cell type and development stage can vary greatly. Also, 

NMDA receptors are mobile, present both in the pre and postsynaptic sites and at 

extrasynaptic sites and therefore they can regulate synaptic strength (Furukawa, Singh et al. 

2005). NMDA receptors are heterotetrameric assemblies of the obligatory subunit GluN1 and 

a combination of GluN2 and/or GluN3 subunits. Due to alternative splicing of one single 

gene encoding GluN1, eight different GluN subunits exist. Additionally 4 different GluN2 

(A-D) and two different GluN3 (A and B) subunits exist; however these are encoded by six 

different genes. The expression pattern and distribution of the different subunits are highly 

regulated during development. The only subunit, which is ubiquitously expressed throughout 

the brain and both during embryonic stage and adulthood, is the GluN1. In the adult brain the 

expression of GluN2A and GluN2B are highest in brain structures such as Hippocampus, 

Striatum and Cortex, suggesting a role in synaptic function and plasticity. However as the 

GluN2A expression peaks the GluN2D decreases in the adult CNS and becomes restricted to 

the diencephalon and mesencephalon. GluN2C in the adult brain is mostly expressed in the 

cerebellum (Paoletti and Neyton 2007, Paoletti 2011) (Mullasseril, Hansen et al. 2010, 

Traynelis, Wollmuth et al. 2010).  

All NMDA receptor subunits share the same membrane topology with a large extracellular 

N-terminus, 3 transmembrane segments (pore domain) and a cytoplasmic C-terminus. The 

extracellular part is composed of two domains. First the N-terminal domain (NTD), which is 

important for subunit assembly and also serve as a binding site for allosteric modulators such 

as Zn
+
. The second domain is the agonist-binding domain (ABD). NMDA receptors require 

binding of both Glycine and Glutamate for activation. Glycine binds to ABD in GluN1 and 

GluN3. Glutamate binds to ABD in GluN2. The transmembrane domain makes the ion-

pore/channel and is important for ion- selectivity. Also characteristic for NMDA receptors is 

the voltage sensitive blockade of the ion-pore by Mg
2+

 ion when in the inactive state. The C-

terminal domain is involved in receptor trafficking and coupling of the receptor to 

intracellular signaling complexes (Paoletti 2011). Yet each subunit displays different 

properties thereby the subunit composition of each NMDA receptor subtype directly 

influences receptor biophysics. Single channel conductance, Mg
2+

 blockade and Ca
2+
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permeability are the three most important permeation properties, which are directly linked to 

the subunit composition. Different NMDA receptor ensembles with different subunit 

composition can be expressed in the same neuron with different levels of calcium 

permeability (Sucher, Awobuluyi et al. 1996). For example, NMDA receptors containing 

GluN2B and GluN2A display high sensitivity to Mg
2+

 blockade and also generate channels 

with large conductance. While GluN2D and GluN2C show the opposite. Also Ca
2+

 

permeability is higher in GluN2A and 2B than GluN2C or 2D. Gating property is also very 

much determined by the subunits. In the classical GluN1/GluN2 NMDA receptors, GluN1 is 

the Glycine sensitive subunit and GluN2 provides sensitivity to Glutamate. Also 

GluN1/GluN2A receptors have a higher open probability than GluN1/GluN2B and even 

GluN1/GluN2D.  Also GluN2C and GluN2D have a more instable open state, reflected by 

the weaker channel mean open time (Regan, Romero-Hernandez et al. 2015). The 

deactivation kinetic of the GluN2 subunits also are different, with GluN2A being the fastest 

and GluN2D having the slowest deactivation kinetic (Hackos and Hanson 2017). In brief 

NMDA receptors after a brief pulse of glutamate released into the synaptic cleft, following an 

action potential in the presynaptic terminal are slowly activated. NMDA receptor requires 

adequate depolarization of the postsynaptic membrane (AMPA receptor mediated) for 

removal of Mg
2+

ions (which block the receptor pore at resting membrane potential) from the 

pore and entry of cation ions. Thus, individual inputs do not activate NMDA receptors and 

several pulses in a short time window or high frequency inputs are required (Blanke and 

VanDongen 2009, Vyklicky, Korinek et al. 2014). 

As mentioned NMDA receptors are mobile and plastic which makes them highly responsive 

to synaptic events and neuronal activity or sensory experiences. Changes in NMDA receptor 

composition and number of receptors are rapid and can have an overall effect on the neuronal 

networks/circuit. Also NMDA receptor composition and function are subjected to various 

disease pathology. Thus as the NMDAR-mediated transmission contributes to various aspects 

of neural circuit function, long-term changes of the NMDA receptors may have important 

functional implications for information processing and brain function (Picconi, Ghiglieri et al. 

2008, Paoletti 2011, Paoletti, Bellone et al. 2013). 

 

1.10.1 Modulators of NMDA receptors  

 

NMDA receptors are extensively studied due to their involvement in different 

neurodegenerative disorders as well as stroke and traumatic brain injury among others. 

Hypofunction and hyperfunction of NMDA receptors have been associated with 

Schizophrenia and stroke respectively (Ogden and Traynelis 2011, Hackos and Hanson 

2017). Targeting NMDA receptors using agonists and antagonist as therapeutic approach for 

many neurological conditions has many times failed due to severe side-effects and toxicity 

accompanying the beneficial outcomes. For example, antiparkinsonian drugs Amantadine and 
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its derivative Memantine, both antagonists of NMDA receptors have shown side-effects such 

as loss of appetite, blurred vision, dizziness, hallucination, insomnia, confusion and muscle 

pain (Olivares, Deshpande et al. 2012). Therefor subunit specific modulators and antagonists 

of these receptors are studied as they can act as therapeutic compounds to regulate NMDA 

receptor function and hence the downstream affected pathways or overall synaptic strength 

and transmission affected in various disorders of the nervous system. Subunit specific 

modulators of NMDA receptors can indirectly influence receptor function and activity with 

less side effects. This is since both negative and positive modulators bind to other regions 

than the ligand binding sites (Burnell, Irvine et al. 2018). Most relevant to this thesis are the 

positive allosteric modulators (PAMs) of NMDA receptors. PAMs are compounds which 

enhance receptor activity in presence of glutamate and glycine. One important advantage of 

PAMs in their selectivity is that they can enhance activity of weakly activated NMDA 

receptors in comparison to NMDAR agonists which target all receptors and thus might cause 

excitotoxicity (Burnell, Irvine et al. 2018). One such compound is CIQ ((3-chlorophenyl) (6, 

7-dimethoxy-1-((4-methoxyphenoxy) methyl)-3, 4-dihydroisoquinolin 2(1H)-yl) methanone) 

(Mullasseril, Hansen et al. 2010). 

CIQ is a newly identified selective positive allosteric modulator of NMDA receptors 

containing GluN2C or GluN2D subunits. To enhance receptor activity CIQ does not alter 

agonist EC50 or deactivation kinetic and does not have any agonist activity (Hackos and 

Hanson 2017). Instead CIQ increases the opening frequency of the NMDA receptor and thus 

giving a longer window for neurotransmission. CIQ acts through binding to the M1 

transmembrane helix domain of GluN2 subunit as mutations in this region of the NMDA 

receptor alters the regulatory effect of CIQ and channel open probability (Ogden and 

Traynelis 2013, Wang, Brown et al. 2017). Effect of CIQ in potentiating NMDA current 

responses is reversible as shown by patch-clamp recordings before and after wash-out of CIQ 

(Mullasseril, Hansen et al. 2010). There is little data available which have investigated the 

effect of CIQ on different brain functions and behavior. Ogden et al., studied involvement of 

NMDA receptors containing GluN2C subunit in amygdala in fear learning and extinction 

learning in mice. Based on their data they demonstrated involvement of GluN2C/D subunits 

in fear learning and a positive effect of CIQ on fear acquisition and retention (Ogden, Khatri 

et al. 2014). Additionally, another study investigated the role of NMDA receptors containing 

GluN2D subunit on synaptic activity in subthalamic nucleus. Based on their data it was 

suggested that NMDA receptors containing GluN2B and GluN2D mediated NMDA 

component of EPSCs recorded from neurons in this region and CIQ enhance spike rates 

(Swanger, Vance et al. 2015). The effect of systematic administration of CIQ on 

schizophrenia-like behavior was studied by another group, in which they could demonstrate 

reversal/attenuation of these phenotypes (prepulse inhibition) (Suryavanshi, Ugale et al. 

2014). Finally, by using CIQ researchers have shown presence of GluN2D in hippocampal 

CA interneurons and that NMDA component recorded from these interneurons is potentiated 

by using CIQ (Perszyk, DiRaddo et al. 2016). 
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1.11 SYNAPTIC ALTERATIONS IN AGING 

 

Aging is the main risk factor for developing many neurodegenerative disorders such as PD 

and Alzheimer’s disease. Normal aging alters molecular, morphological and hence functional 

biological processes of the brain. Alteration in neuronal volume, axonal degeneration, loss of 

synapses and synaptic plasticity are some of the consequences of normal, healthy aging but 

which can also become part of a cascade of events leading to pathological changes leading to 

development of various age-related disorders (Salvadores, Sanhueza et al. 2017). 

In dorsal striatum, processes such as synaptic plasticity necessary for regulating motor 

coordination and the overall information flow in basal ganglia is disturbed as an effect of 

aging (Wang 2008). As for PD in normal aging levels of dopamine are decreased even 

though the level of dopamine loss is much greater in PD but yet this loss inserts an alteration 

in nigrostriatal DA neuron function (Salvatore, Apparsundaram et al. 2003). Dopamine loss 

in PD is a consequence of dopamine neuron degeneration, however recent studies show that 

in normal aging dopamine depletion due to decline in synthesis is the major cause of 

reduction and not dopaminergic cell loss (Darbin 2012, Rodriguez, Rodriguez-Sabate et al. 

2015). Also, as a result of aging there is a reduction in expression levels of dopamine type 1 

(DA1) receptors hence direct effect on LTP (Magnusson 1998, Nouhi, Zhang et al. 2018). 

Interestingly it has been shown that healthy aged individuals are not responsive to dopamine 

replacement therapy in comparison to PD patients. This was demonstrated to be due to 

reduced activity in the DOPA-decarboxylase (DDC) enzyme converting the precursor L-

DOPA to dopamine (Darbin 2012). This loss of dopamine and its receptors directly affects 

the regulatory dopaminergic inputs to the direct and indirect MSNs and eventually imbalance 

in the two pathways controlling movements (Darbin 2012).  

Moreover, loss of LTP at corticostriatal synapses can be partly explained by age-related 

reduction in number of physical synapses, altered expression of NMDA receptors and the 

downstream intracellular signaling pathways being affected as a consequence of aging 

(Magnusson 1998). Changes in NMDA receptors numbers and/or function (lower level of 

glutamate in synaptic cleft, reduction in NMDAR binding sites and age-related reduction in 

neuronal excitability in CNS) and hence effect on modulating dopamine release may be of 

importance to be considered as factors influencing absence of LTP in aged striatum (Zhang 

and Chergui 2015). Thus, a change in the overall NMDA receptor expression level and 

change in the subunit composition of these receptors together with the altered modulatory 

effect of NMDA evoked dopamine release in striatum may be a reason for altered synaptic 

plasticity in this region. Also, overall in CNS there is a decreased neuronal excitability 

(Zhang and Chergui 2015). This is explained by the observation that aged neurons have a 

more hyperpolarized state due to enhanced activation of Ca
2+

-activated K
+
 channels and 

thereby in a state far from threshold for activation of NMDA receptors (Akopian and Walsh 

2006). Moreover, there is some evidence for alterations in the cholinergic neurotransmission, 

with a reduced activity of choline acetyltransferase and thus alteration in the cholinergic 
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system modulating the glutamatergic inputs on the medium spiny neurons (MSNs) of 

striatum (Bergado and Almaguer 2002).  

 

1.12 SYNAPTIC ALTERATIONS IN PD 

 

Studies performed in striatum of both 6-OHDA-lesion and genetic models of PD, where 

extend of the DA-neuronal loss is still small or ongoing demonstrate profound changes in 

striatal synaptic transmission. The alteration in synaptic transmission in turn leads to other 

more functional mechanisms of the basal ganglia circuit being affected. Eventually, the 

imbalance in this system, starting from DA-loss to which is believed to be the main trigger, 

will lead to development of PD and its symptoms (Gardoni and Bellone 2015). One 

hypothesis explaining early pathology in development of PD and dopamine degeneration is 

the retrograde degeneration of the distal dopaminergic axons before loss of cell bodies 

(Salvadores, Sanhueza et al. 2017).  

Dopamine depletion has a direct effect on both projection neurons of striatum but also 

interneurons, mainly cholinergic interneurons. Both dopamine from substantia nigra pars 

compacta and the glutamatergic inputs from cortex terminate onto the dendritic spines of 

MSNs. These co-localized inputs along with dopamine and NMDA receptor integration on 

spines of MSNs result in a direct cross-talk, information processing and modulation between 

the two signaling pathways. Thus, dopamine depletion has a direct effect on the glutamatergic 

signaling onto MSNs and downstream mechanisms (Vastagh, Gardoni et al. 2012). For 

example one major alteration is the imbalance in the firing rate of iMSNs and dMSNs and 

thereby imbalance in the two principal pathways of the basal ganglia (Gittis and Kreitzer 

2012). The result of this imbalance is enhanced activity and output of the indirect pathway. 

Also, an increased activity in the output nuclei of basal ganglia is also detected. This increase 

in the firing rate is also associated with a disruption of information processing in the basal 

ganglia circuit and the signal being sent back to the cortex to regulate movement. Also  in  the  

dorsal  striatum, there is a loss of dendritic spines on MSNs which is also directly correlated 

with the level of dopamine neurodegeneration (Villalba and Smith 2018). Moreover 

dopamine loss causes a change in the synapses between interneurons and MSNs and also 

within different neuronal population in the striatum (Surmeier and Graybiel 2012). As it has 

been shown there is a weakened collateral projection between MSNs in the striatum of PD 

models studied. Also both PLTS and FS interneurons tend to double their projections onto 

dMSNs and iMSNs respectively. Cholinergic interneurons are also less modulated by 

GABAergic tones and their firing and release of Ach is increased (Gittis and Kreitzer 2012). 

Another important alteration seen in different models of PD, is the subunit change in NMDA 

receptors and hence the consequent alteration in the glutamatergic neurotransmission 

mediated by these receptors (Gardoni, Ghiglieri et al. 2010). More specifically this alteration 

is observed in NMDA receptors on MSNs and cholinergic interneurons, which in turn has 
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shown to affect both dopamine release and synaptic transmission in striatum of the 6-OHDA 

model of PD (Gardoni and Bellone 2015). Loss of corticostriatal synaptic plasticity as a 

consequence of altered activity of different neuronal populations has also been observed in 

other models of PD.  And as this is a key mechanism regulating motor control, this loss may 

have a direct impact on the disease phenotypes observed in PD (Calabresi, Galletti et al. 

2007, Kreitzer and Malenka 2008, Bagetta, Ghiglieri et al. 2010).  
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2 AIMS 

 

Loss of dopamine neurons and thereby dopamine input to the striatum in Parkinson's disease 

have profound effects on the overall synaptic transmission, synaptic plasticity and different 

neurotransmitter systems in both striatum and basal ganglia as part of the brain modulating 

motor movements. The overall aim of this study has been to investigate whether 

glutamatergic neurotransmission and plasticity are affected in striatum of a mouse model of 

Parkinson's disease and with aging as aging is the main risk factor for developing Parkinson's 

disease. 

Specific aims of individual projects are listed below.  

 

Paper I: to study the mechanisms of induction of LTP in the striatum using different 

electrophysiological recording methods. 

 

Paper II: to investigate whether pharmacological manipulation of NMDA receptors 

containing GluN2D subunit can restore LTP in the striatum and behavioral deficits observed 

in a mouse model of Parkinson's disease.  

 

Paper III: to study how aging affects synaptic plasticity in the striatum of aged mice. 
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3 MATERIAL AND METHODS 

 

Animals  

Animals used in all experiments were male C57Bl/6 mice age 4-11 weeks from Janvier Labs, 

France or Envigo, Holland. Aged mice used in study III were 20 months old and from 

Charles River, Germany. Animals were acclimatized to the new environment for at least 5 

days upon arrival from the distributor before participating in experiments. All mice were 

maintained on a 12:12 hour’s light/dark cycle and had free access to food and water. All 

efforts were made to minimize animal suffering and number of animals used for each set of 

experiments. All experiments were approved by the local ethical committee (Stockholms 

norra djurförsöksetiska nämnd). 

 

6-OHDA lesion model of Parkinson's disease  

We used unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson's disease in 

study I and II. To generate this model, the neurotoxin 6-OHDA was stereotactically injected 

in the substantia nigra pars compacta to produce degeneration of dopaminergic neurons and 

dopamine depletion of the striatum. To do so mice were first anesthetized with a single 

intraperitoneal (i.p) injection of 80 mg/kg ketamine and 5 mg/kg xylazine. After placement in 

a stereotaxic frame, 3  g of 6-OHDA dissolved in 0.01% ascorbic acid solution was injected 

over 2 minutes into substantia pars compacta of the right hemisphere. The coordinates for 

injection were AP:  −3 mm; ML: −1.1 mm; and DV: −4.5 mm relative to bregma and the 

dural surface. Mice were allowed to recover from the surgery for 1- 3 weeks before they were 

used for electrophysiological or behavioral experiments. 

 

Brain slice preparation 

Mice underwent cervical dislocation followed by decapitation. Coronal corticostriatal brain 

slices (300 or 400 μm thick) were prepared with a microslicer (VT 1000S; Leica 

Microsystem, Heppenheim, Germany) in oxygenated (95% O2 + 5% CO2) artificial 

cerebrospinal fluid (aCSF) containing (in mM): NaCl (126), KCl (2.5), NaH2PO4 (1.2), 

MgCl2 (1.3), CaCl2 (2.4), glucose (10) and NaHCO3 (26) pH 7.4. For brain slices used in 

patch-clamp experiments the slices were prepared in a sucrose-based aCSF containing NaCl 

(15.9), KCl (2), NaH2PO4 (1), Sucrose (219.7), MgCl2 (5.2), CaCl2 (1.1), glucose (10) and 

NaHCO3 (26). 

Slices were incubated for at least 1 hour, at 32°C in oxygenated (95% O2 + 5% CO2) 

artificial cerebrospinal fluid (aCSF) containing (in mmol/L): (126) NaCl, (2.5) KCl, (1.2) 

NaH2PO4, (1.3) MgCl2, (2.4) CaCl2, (10) glucose, and (26) NaHCO3, pH 7.4. For patch-
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clamp experiments slices were incubated in a modified oxygenated aCSF containing (in 

mM): NaCl (126), KCl (2.5), NaH2PO4 (1.2), MgCl2 (4.7), CaCl2 (1), glucose (10) and 

NaHCO3 (23.4).Slices were transferred to a recording chamber and were continuously 

perfused with oxygenated aCSF at 28°C. 

 

Electrophysiology in brain slices 

 

Extracellular field potential recording 

Extracellular field potentials were recorded using a glass micropipette filled with aCSF 

positioned on the slice surface in the dorsolateral part of the striatum. These synaptic 

responses were evoked by stimulation pulses applied every 15 seconds to the brain slice 

through a concentric bipolar stimulating electrode (FHC, Bowdoinham, ME) placed near the 

recording electrode on the surface of the slice. Single stimuli (0.1 ms duration) were applied 

at an intensity yielding 50%- 60% maximal response as assessed by a stimulus/response 

curve established, by measuring the amplitude of the field excitatory postsynaptic 

potentials/population spikes (fEPSP/PSs) evoked by increasing stimulation intensities. These 

fEPSP/PSs were mediated by glutamate acting on AMPA receptors. After 20 minutes stable 

baseline recording, high frequency stimulation (HFS) was used to induce LTP of the 

fEPSP/PS. HFS consisted of 100- Hz trains of 1- second duration repeated 4 times with a 10- 

second inter- train interval. Signals were amplified 500 or 1000 times via an Axopatch 200B 

or a GeneClamp 500B amplifier (Axon Instruments), acquired at 10 kHz and filtered at 2 

kHz. Data were acquired and analyzed with the pClamp 9 or pClamp 10 software (Axon 

Instruments, Foster City CA, USA). Data are expressed as percent of the baseline response 

measured for each slice during the 10 minutes preceding the start of perfusion with drugs or 

HFS. 

 

Whole-cell patch clamp and cell attached recording 

Whole-cell patch-clamp and cell-attached recordings of medium spine neurons (MSNs) of the 

dorsolateral part of the striatum were made with patch electrodes (3-5 MΩ) filled with a 

potassium gluconate-based intracellular solution containing (in mM): D-gluconic acid 

potassium salt (120), KCl (20), HEPES (10), EGTA (10), MgCl2 (2), CaCl2 (1), ATP-Mg 

(2), GTPNa3 (0.3), pH = 7.3. AMPA receptor mediated excitatory postsynaptic currents 

(AMPAR-EPSCs) were evoked every 15s by electrical stimulation of the slice through a 

patch electrode filled with aCSF placed near the recorded neuron. Cell-attached recordings of 

MSNs were performed with patch electrodes (5-8 MΩ). A patch electrode filled with aCSF 

was placed near the recorded neuron. The position of this stimulation electrode and the 

stimulation intensity were adjusted to obtain stable synaptically-evoked spiking of a success 
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rate < 40% and a latency > 2.5 ms, evoked every 15s. HFS was applied with same protocol as 

for field recording after stable baseline.  

A slice or neuron was considered to show long term synaptic plasticity if we observed a 

change in the response, relative to baseline, which was > 25% (voltage-clamp), > 20% (field 

recording), and doubled (cell-attached) 30 min or 1 h after HFS. 

 

Behavioral test 

 

Cylinder test 

Forelimb-use asymmetry is one of the main motor impairments induced in the 6-OHDA 

lesion model of PD (Grealish, Mattsson et al. 2010, Glajch, Fleming et al. 2012). To assess 

this impairment and the effect of different treatments on this behavior the cylinder test was 

used in study II. One week after lesioning the mice with 6-OHDA, mice were injected with 

either vehicle or CIQ and, 90 minutes after the first (acute treatment) and the seventh 

injections (sub-chronic treatment), were placed in a transparent glass cylinder (13 cm 

diameter, 24 cm height) to examine forelimb-use asymmetry. When placed in the cylinder, 

mice explore the novel environment in the cylinder by standing on the hindlimbs and with 

forelimbs against the cylinder wall. We counted the number of times the mice touched the 

wall of the cylinder with their left forepaw (contralateral to the lesion) and right forepaw 

(ipsilateral to the lesion) during 5 minutes to evaluate forelimb- use asymmetry. Data were 

presented as the number of contralateral touches as a percentage of the total touches. 

 

Western immunoblotting 

Following 6-OHDA lesioning of mice the levels of tyrosine hydroxylase (TH) as a 

measurement of dopamine neuron loss were measured using western blot experiments (WB). 

Also, in study III levels of GluN2D and GluN1subunit of NMDA receptors and GluR1 

subunit of AMPA receptors were measured in slices collected from aged mice. The detail 

description of the experimental procedure is described in paper III. In brief, striatum was 

dissected from brain slices and frozen in -20°C. Samples were processed in 1% sodium 

dodecyl sulfate (SDS) and boiled. Protein concentration was measured using standard protein 

assay kit (bicnichoninic acid protein assay) and equal amounts of protein were separated by 

SDS-polyacrylamide gel electrophoresis. Proteins were transferred to a nitrocellulose 

membrane and blocked with 5% (w/v) dry milk followed by incubation with primary 

antibodies and later with secondary antibodies. After washing the membranes 

immunoreactive bands were detected with BIO-RAD ChemiDoc MP imaging system. The 

levels of proteins were normalized for the value of ß-actin.   
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4 PRESENT INVESTIGATIONS  

 

The constituent studies have focused on understanding the mechanism of long-term 

potentiation in the striatum of aged and parkinsonian mice. Also, by manipulating NMDA 

receptors, how normal levels of activity can be restored in the dopamine-denervated 

striatum.  

Paper I 

High frequency stimulation induces LTD of AMPA receptor-mediated postsynaptic 

responses and LTP of synaptically-evoked firing in the dorsolateral striatum 

The discrepancy in inducing synaptic plasticity in striatum using high frequency stimulation 

is in large due to different experimental settings such as different recording solutions, usage 

of pharmacological blockers and area of stimulation. We examined the ability of HFS to 

induce synaptic plasticity using same protocol but with three different electrophysiological 

recording methods: whole-cell voltage clamp of MSNs, cell attached recording of MSNs 

and extracellular recordings of fEPSP/PS. In this paper we could demonstrate that under 

physiological concentration of Mg
2+

 and without addition of pharmacological blockers, 

HFS induces two opposing forms of synaptic plasticity in the striatum, i.e. LTD of 

AMPAR-EPSCs and LTP of synaptically-evoked firing in MSNs as well as of the 

fEPSP/PS. Also, our results demonstrate that the intensity of stimulation applied during 

single pulses; recording baseline and post-HFS are important for induction of LTP of the 

fEPSP/PS. This was observed comparing different stimulation intensities in their ability to 

increase fEPSP/PS after HFS, and we found that only intermediate intensities potentiate 

fEPSP/PS. LTP is mediated by D1R which require higher levels of dopamine for activation 

compared to D2R. Data obtained from whole cell recordings show LTD of AMPAR-

mediated responses which may be explained by low stimulation intensities used in this type 

of recording and hence lower levels of dopamine released which are not sufficient to 

stimulate D1R and induce LTP. Based on our results cell attached recordings and field 

potential recordings are of advantage for studying LTP in striatum.   

 

Paper II 

CIQ, a positive allosteric modulator of GluN2C/D-containing N-methyl-d-aspartate 

receptors, rescues striatal synaptic plasticity deficit in a mouse model of Parkinson’s 

disease 

Physiological and pathophysiological processes involving NMDA receptors are highly 

dependent on the subunit composition of these receptors. The expression pattern of GluN2 

subunit in striatum is altered in mouse models of PD. We previously had reported that by 

enhancing the activity of NMDA receptors that contain the GluN2D subunit using positive 

allosteric modulator of this subunit dopamine release can be enhanced in the partially 
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dopamine-depleted striatum. In this study we examined the ability of CIQ, a positive 

allosteric modulator of NMDA receptors containing GluN2C/2D subunits to rescue loss of 

LTP and forelimb-use asymmetry in the 6-OHDA lesion mouse model of PD. Using field 

potential recordings in the dorsolateral striatum we observed rescue of the impaired LTP in 

lesion striatal slices after i.p injection of a single dose of CIQ. LTP was unaffected in 

control slices after single i.p CIQ injection. Lower dose of CIQ administrated daily for 7 

days (chronic) also restored LTP in the dopamine-depleted striatum. LTP was unaffected in 

the intact striatal slices. Forelimb-use asymmetry is a motor impairment observed in mice 

receiving a unilateral 6-OHDA lesion of the striatum. We tested the mice using a cylinder 

test and we demonstrated that mice receiving vehicle show a greater asymmetry after 

chronic treatment compared to mice receiving a chronic treatment with CIQ. Thus, CIQ 

acting on GluN2D subunit of NMDA receptors in striatum has the potential to reverse 

forelimb-use asymmetry in the 6-OHDA lesion mice. This effect of CIQ is likely mediated 

by acting and potentiating the upregulated levels of GluN2D expressed in the medium spiny 

neurons of the lesioned striatum. The shift from expression of GluN2B to GluN2D in 

MSNs in the lesion striatum results in a lower conductance and calcium permeability of 

NMDA receptors and hence lower excitability and loss of LTP. Therefore, CIQ 

administrated systematically enhances the activity of NMDA receptors in the lesion 

striatum back towards normal levels and thereby by applying HFS long term potentiation is 

rescued.   

 

Paper III 

A positive allosteric modulator of GluN2C/D-containing NMDA receptors fails to 

rescue impaired striatal synaptic plasticity in aged mice 

Aging is the main risk factor for developing PD. As a consequence of aging many 

physiological processes are altered, which could become a risk factor for developing 

various diseases such as neurodegenerative disorders. PD and aging in many aspects share 

same pathophysiological pattern in the basal ganglia and striatum. Dopamine loss is 

observed upon aging and hence motor symptoms that are developed mimic the symptoms in 

PD. Thus, in this study we aimed to study LTP in striatum of aged mice as LTP is crucial in 

regulating the motor pathway in the basal ganglia. Also, we investigated whether CIQ can 

have the same positive effect as seen in PD in study II on plasticity in striatum of aged 

mice. We observed loss of LTP in dorsolateral portion of the striatum of aged mice 

compared to young mice and no effect of CIQ on LTP in aged striatum. The loss of LTP in 

striatal slices from aged mice is most likely due to significant loss of dopamine and also 

AMPA receptors as confirmed with western blot experiments. However, in contrast to 6-

OHDA lesion mice the levels of GluN2D subunit of NMDA receptors were not 

significantly different than aged mice as shown with our western blot experiments. This 

might explain why we observed no effect of CIQ on LTP in aged striatal slices.   
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5 GENERAL CONCLUSIONS 
 

 
This thesis has been aimed to better understand the mechanism of synaptic plasticity in the 

striatum as the brain region involved in modulating movements. Plasticity during 

development and later in life is necessary for organized nervous system circuitry, 

establishment of functional networks, functional and structural adaptation to external 

stimuli and learning and memory formation amongst others (96).  In PD and also as a result 

of normal aging synaptic plasticity in striatum is lost. Yet there is little known about 

mechanism of induction of synaptic plasticity in striatum and controversy regarding types 

of plasticity which are inducible under experimental settings are great. Both PD and aging 

result in motor impairments such as bradykinesia (slowness of movements). Manifestation 

of motor symptoms in PD and upon healthy aging are possibly due to loss of dopamine and 

altered neurotransmission and plasticity in basal ganglia. Loss of LTP in striatum can also 

be due to alteration in the glutamatergic neurotransmission and NMDA receptors upon 

dopaminergic neurodegeneration. This is of importance in attempts to identify 

alternative/complementary therapeutic targets to dopamine replacement therapy for PD. 

Results obtained from the studies included in this thesis have led to the following 

conclusions:       

 

 

I. Our findings described in paper I demonstrate that, a stimulation protocol, which is 

commonly used to induce synaptic plasticity in various brain regions, induces 

opposing forms of plasticity in striatum. HFS induces LTD of pure AMPA 

responses but induces LTP of the firing in projection neurons in corticostriatal brain 

slices. The polarity of plasticity therefore, depends on electrophysiological 

recording method used. Also we could demonstrate that stimulation intensity is of 

importance in the abbility of the different methods to induce LTP. Lower levels of 

dopamine are released under low stimulation intensities which is not sufficient for 

induction of LTP. Also importantely we could based on our results confirm that 

under normal levels (physiological) of Mg
2+

 and without blocking GABA, LTP can 

be induced as there is a great contreversy regarding these experimental conditions. 

Based on our results we conclude that methods that do not alter the intracellular 

milieu of the recorded neurons such as cell attached and field potential recordings 

that also induce LTP of synaptically evoked firing can be useful for future studies.   

 

 

 

II. GluN2 subunit of NMDA receptors determine the functional and pharmacological  

properties of NMDA receptors. Also, they are of terapeutic importance for 

managing motor symptoms of PD. We could confirm that by using a positive 

allosteric modulator of GluN2C/2D containing NMDA receptors which rescued lost 
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LTP in dopamine-depleted striatal slices. More importantely forelimb-use 

asymmetry the common motor phenotype upon 6-OHDA lesioning of striatum was 

reduced upon a chronic treatment with CIQ. The positive effect of CIQ on LTP and 

the behavioral impairment is most likely mediated due to upregulation of GluN2D 

in MSNs of the dopamine-depleted striatum. Based on our previous results and the 

current data obtained in this thesis we suggest GluN2D containing NMDA receptors 

as a potential target for developing antiparkinsonian drugs.  

 

 

 

III. As aging is the main risk factor for developing PD, there are similarities between 

phatogenesis of PD and normal aging. Based on our results glutamatergic synaptic 

transmission is increased in aged mice but this is not due to altered glutamate 

release from presynaptic terminals. CIQ did not have any effect on LTP in the aged 

striatum, this might be explained by our results showing that levels of GluN2D are 

not affected due to aging. Our findings demonstrate that loss of LTP in dorsolateral 

striatum in aged mice can be due to loss of domapine which was reduced in the aged 

striatal slices to same levels as in PD. The level of TH in our experiments were 

much more reduced than previous published studies. This is important when 

studying aging and its consequences since previous studies confim that aging is 

complex and diverse between and within individuals of the same species 

(Rodriguez, Rodriguez-Sabate et al. 2015). Even though DA levels were reduced to 

same levels as seen in PD models, NMDA receptor subunit composition were not 

altered as seen in 6-OHDA lesion model of PD. These results show that other 

mechanisms are responsible for the loss of LTP in aged striatum than alteration in 

NMDA receptors and transmission.  
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6 FUTURE PERSPECTIVES 

 

We are living in a world with growing population and ever increasing life expectancy. This 

will inevitably lead to a drastic increase in the incidence of many, universal age related 

neurological disorders such as Parkinson’s disease. So, every individual living in a country 

with high life expectancy will be in one way or another affected by the increasing risk of 

developing an age related disorder. If we put it this way, this is not just a number of  clinical 

diagnosis being made, this is you or a loved one losing basic functions like the ability to 

move or even remembering the most basic things. According to WHO Parkinson’s disease is 

the third most common neurological disorder after epilepsy and Alzheimer’s disease (and 

other dementias). PD results in long-term disability and significant loss of quality of life. It 

does not only affect the motor movements but also cognition and the mental health which are 

more devastating to some PD patients. The need for research in this field is hence enormous. 

The contributions that researchers do today are to understand and identify how the disease 

pathology is being triggered and developed as to date this is unknown. To be able to treat this 

disease and halt neurodegeneration the cause of the disease must be identified. Also a great 

effort and research is directed towards finding therapeutic targets and compounds which can 

help the patients in the different stages of the disease and symptoms. Research presented in 

this thesis is a miniscule contribution toward better understanding how PD affects the 

networks controlling movements and what/where to target to be able to rescue some of the 

lost mechanisms and functions within this network.       
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