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ABSTRACT 
 

To decipher neural circuits anatomy is the central basis for all kinds of neurobiological 

studies. Here in this thesis, I will start with extensive overview of the current methods that 

have been intensively employed in labeling and mapping neurons and neuronal activities, 

including tracing techniques, imaging/recording systems and manipulation tools. This will 

be followed by the introduction of the two model systems that are being studied in this 

thesis.  

Specifically, the ultimate goal of this thesis is to examine the anatomical neural circuits of 

involving median prefrontal cortex and the serotonergic nuclei, by developing a 

standardized brain atlas for automatic processing and analyzing anatomical image data, 

which facilitate functional studies of the serotonergic neurons in rats. 

In paper I, we characterized the inputs to two major serotonergic nuclei using a retrograde 

trans-synaptic virus. We reconstructed a whole brain input map with customized software, 

and found previously undefined inputs. We also confirmed the existence of the functional 

connection from basal ganglia, lateral habenula, and prefrontal cortex to the raphe nuclei 

serotonergic neurons. In paper II, we developed a versatile interactive framework for 

automatic detection, registration, and analysis. In paper III, we characterized both the local 

and long-range inputs to four cell types in the mouse medial prefrontal cortex. A new viral 

strategy for tracing both local and long-range inputs at the same time was developed. We 

have confirmed the findings by other tracing techniques, and rebuilt our own connectivity 

map. In paper IV, we explored the roles of serotonergic neurons in impulsive behavior by 

manipulating and recording the neurons.  

In summary, we have developed new methods for neural circuitry study, added our 

knowledge of the serotonergic and median prefrontal cortex circuitry, and gained deeper 

insights of functional roles of serotonergic neurons. 
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1 INTRODUCTION 

The ultimate goal for neuroscience study is to understand the principles of the brain. It can be 

studied at different levels, including subcellular (i.e., intracellular molecular, chemical or 

electrical signaling), cellular (i.e., synapse and extracellular messengers from glia), circuit 

(neurons projecting to neurons), and even higher levels. One of the most fascinating and 

unique features of the nervous system is its ability to recruit billions of intertwined neurons to 

coordinate together in a sophisticated manner for one single behavior. In this complicated 

process, information are transferred, processed, and storage by neural circuits. As it is only 

until the neural circuit level that makes the nervous system particularly special compared with 

other systems in biology, studying neuroscience at the neural circuits level is of great 

importance. 

1.1 HOW TO STUDY NEURAL CIRCUITS? 

Two important physiological properties that distinguish the nervous system from other 

cellular systems are the ability for neurons 1) to generate action potentials (i.e., the electrical 

signals within the neuron), and 2) to communicate with each other through electrical and 

chemical synapses. The biological fundament of both properties is anatomy. In detail, the first 

one depends on the innate biological properties, including the shape, distributions of certain 

ion channels, and expression level of certain proteins in the neuron. The second is built on 

how the neurons are connected with each other (i.e., who to whom, and in what way). The 

study of neural circuits cannot be achieved without either part.  

More importantly, the functions of specific neural circuits must be studied ex vivo with 

electrophysiology or in vivo under a behavior paradigm.  

1.1.1 How to approach? 

Neurons can be grouped based on numbers of different factors alone or combined, 

including electrophysiology parameters, morphology, location of the neuron, projection 

pattern, connecting properties and their molecular identities (expression of different ion 

channels, neurotransmitters, receptors, or other proteins). The molecular profile of the 

neuron serves as the physiological basis of most other features, so in theory it should be 

possible to target any type of neurons based on different combinations of the molecular 

profile. However, current technique only allows the targeting to be based on a limited 

numbers of molecular properties. Besides, projection dependent targeting is also frequently 

used. 
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1.1.1.1 Genetic targeting (molecular identity) 

Modern genetic tools allow scientists to approach neurons based on their known molecular 

identities, and it is mostly done with the help of Cre recombinase (Sternberg & Hamilton, 

1981). Cre recombinase is a protein that recognizes the loxP (Locus of crossing (x) over, 

P1) sites, and causes the recombination of it. Cre is usually inserted inside or close to 

certain regulatory elements (i.e., promoter region) of the gene of interest, so that Cre can be 

driven when that gene is expressed. For example, in the cortex, the principal pyramidal 

neurons are the glutamatergic neurons, and they all use glutamate as their neurotransmitter. 

For targeting pyramidal neurons in the cortex, one can utilize the genes involved in 

glutamate synthesis, transport (vesicular glutamate transporter 1(VGLUT1)), or re-

uptaking. Taken the VGLUT1-Cre mouse as an example here, it can be used for knock-out, 

or over-expressing of genes of interest in pyramidal neurons by breeding with another 

transgenic animal (Figure 1a, b). For local manipulations in the brain, viruses containing 

loxP sites is mostly used under a similar mechanism. One thing has to be kept in mind is 

that some of the genes may only be transiently expressed during development which would 

lead to an ectopic recombination of the loxP sites, and using virus would solve this 

problem. 

 

Figure 1a VGLUT1-CRE breeding with an animal flanking with loxP sites for Gene X, 
resulting in loss of Gene X expression in offspring cortical pyramidal neurons.  
Figure 1b VGLUT1-CRE breeding with an animal that has a stop cassette flanking with 
loxP sites before Gene Y, resulting in over-expressing of Gene Y in offspring cortical 
pyramidal neurons. 

1.1.1.2 Projection dependent targeting 

The recent development of a series of genetically engineered viruses including retrograde 

Adeno-Associated Virus (retro-AAV) (Tervo et al., 2016), Herpes Simplex 1 (HSV-1), 

Canine adenovirus type 2 (CAV-2) (Soudais et al., 2001), and Rabies Virus (RV) 

a b 
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(Wickersham et al., 2007a) have expanded the field to target neurons in a projection-

specific manner. For instance, neurons sending their exon projections to area A can be 

targeted by injecting a retrograde spreading virus in that area.  

RV is a retrograde neurotropic virus. It is a rod shaped, enveloped, single stranded, 

negative-sense RNA virus, with an encoded genome of 12 kb carrying five genes. The virus 

infects neurons through axonal terminals, replicates in the hosting neurons, buds out from 

dendrites, and spreads to presynaptic neurons though the synapse (Baer, 1991). The five 

encoded genes are nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein 

(G) and the RNA polymerase (L) (Finke & Conzelmann, 2005). 

Because of its neurotropic feature, RV has become widely utilized in neuroscience for 

characterization of anatomical connections. In the beginning, when RV’s pathogen (i.e., 

how they enter and spread in the neurons) was not well identified, non-modified, wild type 

RV was used for circuit studies. Early studies controlled the spread of RV in a time-

dependent manner (Ugolini, 1995). Unmodified RV is able to infect presynaptic axons 

widely, as it has a wide tropism and does not require a specific receptor to be taken up. This 

feature can be useful for revealing series of synaptically linked neurons. As the 

transsynaptic passes is not precisely controlled, it was hard to know exactly how many 

synapses the RV had crossed.  

1.1.2 How to study connectivity? 

Neural connectivity can be divided into the architectural connectivity (i.e., neuroanatomy), 

the functional connectivity (i.e., connections through synapses), and effective connectivity. 

Different approaches for studying neural circuits can sometimes cover two aspects. Because 

the spread of the RV is through synapses, the labeling does not only represent 

neuroanatomy, it also shows functional connectivity. However, the effective connectivity, 

meaning which connectivity has how much influence on what behavior in what way at 

which time point has to be studied under certain behavior paradigm in combined with 

methods that have fine special and temporal resolutions such as electrophysiology or 

calcium imaging. 

1.1.2.1 G-deleted RV (RVdG) 

Engineering the RV for monosynaptic spread takes advantage of the RV glycoprotein (G), a 

protein expressed in the envelope of the virus which mediates the budding of viral particles 

from the host cell. With the knowledge that the protein G is responsible for the propagation 
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of RV (Finke & Conzelmann, 2005), researchers started to engineer RVdG for retrograde 

circuit tracing in a controllable manner. Deletion of the G protein from the RV genome 

makes the virus unable to cross synapses (Mebatsion et al., 1996; Etessami et al., 2000). 

Trans-complementation with G, introduced separately, allows for monosynaptic spread of 

the RVdG. For visualization of both the presynaptic input population and the starting 

neurons, the deleted G is replaced in the RV genome by a fluorescent maker (e.g., GFP or 

mCherry). The most recent development of RV as a retrograde tracer includes a system 

which limits the transsynaptic spread to a single synapse passing (Wickersham et al., 

2007b).  

Compared to conventional tracers, the RVdG system has a lot of advantages. The most 

prominent advantageous feature is the ability to target and trace the input populations to 

specific cell types, rather than roughly mapping connectivity between brain regions in a 

broader spectrum (Kobbert et al., 2000). Non-viral tracers, such as Phytohaemagglutinin-

Leucoagglutinin (Gerfen & Sawchenko, 1984), biocytin (King et al., 1989), Horseradish 

Peroxidase (Kristensson & Olsson, 1971), and a few others, lack the ability for cell type 

specific targeting, and they also label axons passing through the injection regions. Other 

tracers, such as Tetanus Toxin C fragment (Schwab & Agid, 1979), Wheat Germ 

Agglutinin (WGA; (Gonatas, 1979)) can be used in a Cre-dependent manner and thereby 

allow for transneuronal tracing to/from specific neuronal types. However, these methods do 

not have very strong signals, and therefore make it difficult to detect and to quantify weak 

connectivity. Most importantly, unlike the rabies virus, which passes over synaptic 

connections between neurons, these tracers cannot distinguish between directly connected 

neurons and passing through projections. In summary, the development of RVdG marks a 

significant advancement in methodology and genetically modified rabies viruses have 

proven to be powerful biological tools for neural mapping, and manipulation.  

A further modification to restrict the initial transduction of RVdG to a specific population is 

to pseudotype the virus with an envelope protein from a separate avian virus, the avian 

sarcoma and leucosis virus (ASLV-A) envelope protein EnvA. This protein can only bind 

to the complementary TVA receptor and therefore leads to the taken-up of the virus by the 

TVA-expressing cells. Mammalian cells lack the TVA receptor, and therefore only target 

cell populations engineered to express this receptor will be susceptible to RV transduction, 

leaving neighboring cells unaffected (Wickersham et al., 2007b) (Figure 2). 
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Several approaches have been developed to target specific cell types, including viral and 

transgenic strategies. A commonly used approach to deliver TVA and G into desired neural 

populations takes advantage of the Cre-loxP system and can be achieved by both viral and 

transgenic approaches. The first step is to define the primary (starter) population, most 

often a specific neuron by cell type in a specific brain region, and identify a specific Cre-

driver mouse line targeting the primary population. TVA and G are delivered virally using 

an AAV with expression under the control of Cre. TVA and G can be carried into the cell 

by either one single virus (Haubensak et al., 2010; Wall et al., 2010) or by several viruses 

(Watabe-Uchida et al., 2012; Miyamichi et al., 2013). After a period of approximately 14-

21 days, necessary for sufficient TVA and G expression, RVdG is injected into the same 

location. The Cre starter cells are now expressing TVA, allowing binding and entry of the 

RVdG, and the expression of G in the starter neurons allows for monosynaptic retrograde 

spread of the RVdG to neurons giving input to the starter neurons. 

It is possible to use the transactivation-based tetracycline (TET)-system combined with the 

Cre-loxP system to label the primary population in a temporal dependent manner. 

Expression of the tetracycline transactivator tTA2 can be engineered to be CreER-

dependent, and when the ligand for CreER (i.e., tamoxifen) is administered, tTA2 is 

Figure 2 Illustration of the RVdG system for restricted, 
monosynaptic transduction 
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expressed and binds to the TET Response Element (TRE) to initiate the expression of TVA 

and G (Miyamichi et al., 2011).  

Other recombination-based systems (e.g., Flp-frt or Dre-rox) can also be introduced in 

combination with the Cre-loxP system for more precise targeting, as for most neurons, they 

are identified best by combining two or more features (i.e., active promoters or enhancer 

elements) together. For example, in the Flp-frt combined with Cre-loxP intersection 

approach, TVA and G expression are only expressed when both Flp and Cre are present 

(Fenno et al., 2014). 

TVA can also be delivered by crossing of a Cre-dependent TVA mouse line (Seidler et al., 

2008) with a cell-type specific Cre line, followed by Cre-dependent viral G delivery. This 

strategy has been used in the hippocampus (Sun et al., 2014) and somatosensory brainstem 

(Bechara et al., 2015). However, as the RVdG travels in a retrograde manner, long-range 

TVA/Cre-expressing neurons projecting to the injection area holding the ‘true’ TVA/Cre-

expressing starter cells can also be transduced by the RVdG, and function as starter 

neurons. Inputs to these neurons can thereafter be retrogradely labeled, rendering this 

strategy susceptible to false positive labeling. 

To limit the amount of spread of pseudotyped RV outside of targeted area, as well as to 

spatially restrict the neurons transduced, at least one element (either TVA or G) is delivered 

virally in all of the studies mentioned above. 

Engineering the tropism of rabies virus can also limit the expression pattern. A recent study 

screened different avian-derived receptors and avian sarcoma leukosis virus (ASLV) 

envelopes pairs with pseudotyped lentiviruses in vivo. Three pairs (EnvA-TVA950, EnvB-

TVBS3, and EnvE-DR-46TVB) have shown high infectious efficacy with no observed 

cross-activity between each other in vivo. In combination with any of the systems 

mentioned above, this approach could also be applied to a rabies virus system to 

simultaneously trace the inputs to diverse neuronal circuits independently (Matsuyama et 

al., 2015). 

Like other neurotropic viruses, RV eventually causes neurotoxicity and leads to the death of 

infected cells. Several studies have attempted to determine viability of RVdG transduced 

cells. Normal electrophysiological responses for up to 12 days post-infection are seen 

(Wickersham et al., 2007a), and normal neural activity measured by calcium-imagining in 

vivo up to 11 days post-infection (Osakada & Cui, 2011) are seen.  After 16 days, the 
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number of fluorescent cells decreases and morphological changes related to cytotoxicity 

appear (Wickersham et al., 2007a). 

For short-term use (up to two weeks) and anatomical studies, first generation RVdG (both 

G coated and EnvA coated) is more than enough because of its high efficiency of labeling 

presynaptic neurons and its ability to selectivity target certain neuron types (EnvA coated 

system) or even in a projection-specific manner. But to be able to manipulate neuronal 

pathways in a transsynaptic-based manner, it is necessary to develop a non-toxic rabies 

system. Several modifications and new approaches have been developed to reduce or 

overcome the toxicity problem.  

The first approach is to modify the existing RV system (using the same Street-Alabama-

Dufferin (SAD)B19 strain) by deleting or modulate the “toxic” components. The deletion 

of both the viral RNA polymerase L and the Glycoprotein in the genome of the RV made 

the virus to survive for at least 4 months with non-detectable morphological changes 

(Chatterjee et al., 2018). Ex vivo electrophysiological recordings of the infected neurons 

showed normal electrical properties up to 8 weeks, and in vivo two-photon calcium imaging 

experiments showed stable visual responses after 4 months. It also has a wider tropism 

compared to other retrograde viruses such as CAV2 and retro-AAV. However, it has a 

reduced viral expression level, and this feature allows the second-generation SADB19 G-

RVdGL only for delivering genes that do not need much expression levels to be functional, 

such as cre and flpase. It is not compatible with transsynaptic tracing system yet, and this 

property made the virus more like other retrograde viruses with a less bias of infection 

(Chatterjee et al., 2018). Future direction would be to make the virus compatible for 

transsynaptic labeling. 

The second strategy is to go back to nature and use another RV strain or even other viruses. 

Screening from other laboratory RV strains apart from the commonly used SADB19 strain, 

the glycoprotein-deficient Challenge Virus Standard (CVS)N2c was shown to have reduced 

cytotoxicity, showing optically induced neural activity of cortical cells in vitro for up to 28 

days, and calcium responses in vivo for up to 17 days post-infection (Reardon et al., 2016). 

This improved viability comes at a cost of reduced virus expression and lower fluorescent 

signal (in part due to lower titer), perhaps making the strain better suited for neuronal 

modulation such as optogenetic manipulation rather than detailed anatomical tracing.  

The third one is to conditionally inactivate the virus after infection, creating a manageable 

time window before the virus terms to uncontrollable toxicity. As the transient expression 
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of recombinase (e.g., cre or flpase) carried by the modified rabies is sufficient to drive 

certain gene expressions, it would leave a marker of infection, which also shows the 

labeling of the synaptical-based connection (Ciabatti et al., 2017). 

1.1.2.2 Visualization of connectivity 

Several projects including the Allen Mouse Brain Connectivity Atlas (Oh et al., 2014), 

Mouse Brain Architecture project (Bohland et al., 2009) and Mouse Connectome project 

(Zingg et al., 2014) are using several different multidisciplinary methods to understand the 

brain connectivity. One crucial step to put all those massive efforts together and to start 

comprehending the complicity of the brain is to visualize the data in a computational and 

standardized way. That is, we need tools to automatically detect the object (e.g., neurons, 

processes, different markers labeled by antibody staining, ect…), to register it onto the 

brain atlas, to annotate the position, to represent it digitally and to analyze the whole brain 

datasets.  

A lot of individual labs have also initiated whole-brain mapping projects with semi-

automated or automated pipelines for transforming images obtained from different imaging 

methods to standardized brain datasets. For example, ClearMap is used for intact cleared 

tissue with light-sheet microscope data (Renier et al., 2016). Other brain mapping 

approaches using different algorithms have been invented for processing the images from 

serial two-photon microscope (Kim et al., 2015; Vousden et al., 2015) or wide-field 

microscopes (Hunnicutt et al., 2014).  A detailed comparison of recent developed pipelines 

for brain atlases can be seen in Paper II, supplementary Table 1. 

1.1.3 Effective connectivity of circuits 

Two fundamental issues to study the function of circuits are how to observe the circuits and 

how to manipulate it. For the first one, intracellular (e.g., patch clamp, voltage clamp, 

ect…) and extracellular (e.g., silicon probes) electrophysiological recordings remain the 

mainstay in the neuroscience field. In this thesis, we used a calcium indicator that can be 

visualized by microscope in vivo and therefore will discuss about it in this chapter.  

Like the general strategy for studying other biological questions, one can use gain-of-

function (i.e., activation of neurons) and loss-of-function (i.e., inhibition of neurons) to 

study neural circuits. This can be achieved by the injections of various reagents including 

pharmacological drugs (e.g., ion channel agonists or antagonists), chemicals, and virus 

systematically through the circulation system or locally in the brain. However, they do not 
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have a cell type specific resolution and cannot control the neurons in a millisecond time 

scale. In this thesis, we used optogenetics to manipulate the firing of different types of 

neurons.   

1.1.3.1 Visualization of neuron activity 

GCaMP protein is a single fluorophore based Genetically Encoded Calcium Indicator 

(GECI). It consists of a circular permutated Green Fluorescent Protein (cpGFP) in the 

middle, and is flanked by Calmodulin (CaM) on the C terminal and myosin light chain 

kinase peptide (M13) on the N terminal (Figure 3a (Nakai et al., 2001)). Without calcium, 

the cpGFP in GCaMP is in a poorly fluorescent status. In the presence of calcium, CaM 

changes its conformation and is able to bind to the CaM binding peptide, M13. This results 

in bringing the cpGFP to a brighter fluorescent status (Figure 3b (Nakai et al., 2001)). 

Therefore, by monitoring the fluorescent level change, one can measure the intracellular 

calcium signal change.  

As neuronal activity changes result in dramatic changes in intracellular calcium level, 

GCaMP serves as a very good candidate for measuring neuronal activities. Compared with 

other calcium indicators such as small synthetic chemical dyes, GCaMP is less toxic and 

can be delivered into desired neuronal populations. Both features make it possible to do less 

invasive and chronic imaging recordings combined with more complicated behavior 

experiments. However, it is not as sensitive and dynamic as chemical dyes. Since the 

invention of GCaMP (Nakai et al., 2001), it has been genetically engineered to be adapted 

to in vivo neuroscience studies by increasing the sensitivity, stability, and kinetics (Nakai et 

al., 2001; Tian et al., 2009; Akerboom et al., 2012; Chen et al., 2013). The widely used 

GCaMP6 series have significant increased the sensitivity of detecting, and the accuracy of 

following action potentials. Furthermore, their fine spatial resolutions made it possible for 

multiple applications usages, ranging from synaptic compartments recordings to 

population-based neuronal activity recordings (Chen et al., 2013). 

To monitor calcium signal changes (indicated by GCaMP fluorescent signal changes here) 

in neurons of active animals, different imaging recording systems with resolutions at 

subcellular, individual neuron, and population neuron levels have been developed 

accordingly with the development of calcium indicators.  

At the subcellular level (i.e., for visualizing dendritic spines or axonal boutons), the laser 

scanning based two-photon microscope is very widely used (Dombeck et al., 2007; Petreanu 

et al., 2012). The conventional desktop two-photon microscope is huge in size and needs a 
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heavy air table to reduce vibration-induced artifacts. Consequently, all the applications with 

this system are built in a head-fixed format. Although it may increase the stress level of the 

animal under such setups, it also gives a unique opportunity for using other behavior 

paradigms such as virtual reality based sensory manipulations, which are difficult to approach 

in non-head-restrained animals. However, the two-photon microscope based system can 

only be used for superficial brain areas (approximately 800-900 µm from the skull) such as 

the primary visual cortex (Andermann et al., 2013) or folded brain structures such as the 

entorhinal cortex with the help of an angled microprism (Low et al., 2014), mainly due to 

light scattering through the brain tissue. Moreover, the drawbacks of head-fixed animal 

experiments include elevated stress level of the animal due to constrained physical activity 

and the incompatibility for complicated natural behavior setups such as social behavior 

study (Jercog et al., 2016). A recent break through innovation is a high-resolution, 

miniature two-photon microscope that can be used in freely moving and behaving mouse 

with a comparable performance level to a normal two-photon microscope (Zong et al., 

2017). Future directions of the two-photon system would be to find non-invasive ways for 

deep brain structure imaging, perhaps by using less scattered red-shifted calcium indicators 

(i.e., mRuby based jRCaMP1a, b, and mApple based jRGECO1a (Dana et al., 2016)) or 

combining the system with the miniature gradient refractive index (GRIN) lens based 

microendoscopic lenses (Jung et al., 2004). 

At individual neuron level, the head-mounted miniature single-photon wide field 

microscope is commonly used. As it is light in weight (1.9 grams), it is often used for 

imaging in freely moving and behaving animals (Ghosh et al., 2011). This system covers a 

large brain area (approximately 0.5 mm2), making the observation of hundreds of neurons 

at the same time possible. It is fast in acquisition and does not have many artifacts from 

animal movement. By combining the miniature microscope with GRIN lens based 

microendoscope probes (Jung et al., 2004), deeper brain structures such as lateral 

hypothalamus are also approachable even for chronic recordings (Jennings et al., 2015).  

At population neuron activity level, Frame-projected Independent-fiber Photometry (FIP) 

(Figure 3c, 3d) (Kim et al., 2016a) for recordings from several brain areas is a recent 

development of the fiber photometry system (Lutcke et al., 2010; Schulz et al., 2012; 

Lerner et al., 2015). The system has a fast cMOS camera mounted directly to a single-

photon wide field microscope with a 20x/0.75NA objective. A series of dichroic mirrors are 

also integrated into the platform for allowing the excitation from different wavelengths 

(470nm blue light for excitation of GCaMPs and 410nm purple light for baseline 
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reference). The front of the objective is connected to a patchcord at a working distance for 

imaging. The other end of the patchcord terminates with several individual metal ferrules, 

which can be connected with brain-implanted optic fibers via metal sleeves. Unlike the 

miniature one-photon or two-photon microscope setups that need docking platforms for the 

camera to be mounted, it is much more practical in this system to image from multiple brain 

areas simultaneously as the optic fibers implanted in the animals are only 400µm in 

diameter. Moreover, the capability for imaging from deep brain structures in a freely 

moving animal manner is also a plus. Although it is also possible to do dual cortical 

recordings in mice with a dual-axis two-photon microscope (Lecoq et al., 2014), FIP still 

serves as one of the most popular neuron ensemble activity imaging system due to its 

simplicity. In paper IV, we also used FIP to image from the Tryptophan hydroxylase 2 

(TPH2) population in Dorsal Raphe Nucleus (DRN) in the rats. However, based on 

comparison between FIP and electrophysiological recordings, whether calcium signal from 

FIP recordings represent population neuronal activity are still debatable (London et al., 

2018).  

 

Figure 3a Schematic representation showing GCaMP protein structure. 
Figure 3b Illustration showing GCaMP functions as a calcium indicator 
Figure 3c Fiber photometry setup 
Figure 3d Schematic drawing showing fiber photometry implant in dorsal raphe 
nucleus in rats for populational neuron activity measurement 

a 

b 

c 
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1.1.3.2 Manipulation of neuron activity 

Optogenetics is the technique to control neuron activities by utilizing light-activated 

microbial opsins. The opsins are usually delivered to the neurons by viruses or by genetically 

engineered into the genome. Combining with recombinase dependent viral vectors or mouse 

lines, the opsins can be delivered in a cell type specific manner. Depending on the viral 

tropism, they can also be delivered in a projection specific manner. 

The most widely used opsin is Channelrhodosin 2 (ChR2), which is a light activated non-

selective positively charged ion channel taken from the algae Chlamydomonas reinhardtii 

(Nagel et al., 2002). It is the first microbial opsin used in mammalian cells (Boyden et al., 

2005). In neurons expressing ChR2, when ChR2 is activated by blue light, the channel opens 

which leads cation influx and triggers neuron depolarization. By controlling the blue light 

pulses, neurons can be controlled for firing in a millisecond timescale manner. Early 

inhibitory opsins (e.g., Halorhodopsin or Bacteriorhodopsin) are chloride or proton pumps. 

The progress in high-resolution crystal structure of ChR also helped for engineering the pore 

to get chloride channels (i.e., iC1C2) (Berndt et al., 2014). The red-shifted opsin such as 

ChrimsonR (activated by 590nm light) (Klapoetke et al., 2014) can be used in combining 

with GCaMP based brain imaging. 

1.2 PREFRONTAL CORTEX-ANATOMY  

The prefrontal cortex (PFC) is located in the forefront of the brain. It is involved in various 

aspects of cognition, including attention, memory and decision-making. Based on a lot of 

functional brain imagine studies in human, PFC can be divided into dorsolateral, 

dorsomedial, ventromedial and orbital frontal. In mouse, it consists of secondary motor, 

anterior cingulate, prelimbic, infralimbic, orbital, and agranular insular area (Carlen, 2017). 

1.2.1 Afferent projections to mPFC 

Anatomically, the mPFC is defined as the projection area of mediodorsal nucleus of the 

thalamus from early anatomical studies (Rose & Woolsey, 1948). Beside the thalamus, the 

mPFC is known to also get massive afferent inputs, most often identified with conventional 

retrograde tracer methodology, from diverse brain areas that are involved in cognitive 

functions (Hoover & Vertes, 2007). A recent study using the RVdG system, which limits 

the spread of the virus in a monosynaptic and cell type specific manner, showed that mPFC 

Layer 5 (L5) receives inputs mainly from other prefrontal areas, including the contralateral 
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mPFC, the agranular insula, and the motor cortex (DeNardo et al., 2015a). Other brain 

areas, such as hippocampus, claustrum, nucleus of the diagonal band, medial septum, and 

basolateral amygdala also project to mPFC L5.  

1.2.2 Efferent projections of mPFC 

Given that mPFC receives abundant local afferent input, it is interesting to note that the 

mPFC also reciprocally project back. The mPFC also send reciprocal projections to the 

horizontal diagonal band, substantia innominate, and the basolateral amygdala. The 

prelimbic subarea of the mPFC projects to the opiate receptor rich striatum striosomes, 

while the dorsomedial PFC terminates more diffusely throughout the striatum, preferably in 

the striatum matrix (Donoghue & Herkenham, 1986; Sesack et al., 1989). In the brainstem, 

mPFC sends massive efferent projections to the superior colliculus, ventral tegmental area, 

periaqueductal gray, and the mesencephalic reticular formation (Sesack et al., 1989).  

1.2.3 Layers and connectivity within mPFC 

Unlike other neocortical areas, the rodent mPFC does not have the granular layer IV. Layer 

IV is usually also the input-receiving layer. Nevertheless, all other layers in mPFC gets long-

range afferent projections from other brain areas, including both cortical and subcortical areas 

(Hoover & Vertes, 2007). The mPFC consists of excitatory principle pyramidal neurons and 

intertwined interneurons - fast spiking parvalbumin (PV), somatostatin (SOM) and 

vasointestinal peptide (VIP) being three major interneuron types. The perisomatic targeting 

PV neurons governs the outputs of the principle pyramidal neuron, as they employ rapid, 

dominant and uniformly suppression on principal pyramidal cell firing ( Sparta et al., 2014). 

The dendritic targeting SOM modulates the input the principle pyramidal neuron get, and the 

influence is weaker yet longer (Kvitsiani et al., 2013). 

1.3 INTERNEURONS  

Interneurons are the inhibitory γ-aminobutyric acid-realeasing (GABAergic) neurons. In 

cortex, it consists of about 20% of the whole neuron population. It coordinates together 

with the principal excitatory neurons and forms the highly organized neural network.  

Different approaches have been applied with the attempt to identify interneuron cell types 

in different brain areas. Using single cell RNA sequencing data, 16 types of interneurons 

have been clustered base on their molecular profile in adult mouse somatosensory cortex 

(S1) and hippocampus (Zeisel et al., 2015). In the primary visual cortex (VISp or V1), 23 

different types of interneurons were identified, of which 18 belongs to the three major types 
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(PV, SOM, VIP) (Tasic et al., 2016). Using simultaneous ex vivo octuple whole-cell 

electrophysiology recordings, 15 morphologically defined types of interneurons were 

characterized in V1 (Jiang et al., 2015). 

Developmentally, interneurons originate from the medial (MGE) and caudal (CGE) 

ganglionic eminence. It is also believed that these two areas give rise to different 

interneurons: VIP neurons are from CGE (Lee et al., 2010), while PV- (Butt et al., 2005) 

and SOM- (Fogarty et al., 2007) expressing interneurons derive from MGE. Single cell 

RNA sequencing analysis using E12.5 and E14.5 dissected mouse MGE and CGE samples 

identified 13 and 11 different interneuron progenitor types (Mi et al., 2018). By comparing 

the embryonic data with the adult data (Tasic et al., 2016), the analysis shows that the 

interneurons have a determined fate long time before they migrate into the right position 

(Mi et al., 2018).  

1.4 THE SEROTONERGIC SYSTEM AND IMPULSIVITY 

Serotonin (5-hydroxytryptamine, 5-HT) is a neurontransmitter first discovered in 1937 and 

later re-identified (Erspamer & Asero, 1952). 5-HT-expressing neurons are located in the 

caudal part of the brain, mainly in the midbrain and brainstem regions. The serotonin nuclei 

are divided into two groups, with one group having ascending projections and the other 

group projecting to the spinal cord (Dahlstrom & Fuxe, 1964). The serotonergic neurons 

belonging to ascending serotonergic group target mPFC, striatum, and the thalamus, which 

are also areas involved in decision-making.  

1.4.1 Anatomy of the raphe nuclei 

The major location of 5-HT neurons in the rostral raphe nuclei can be divided into the 

dorsal raphe nucleus (DRN) and median raphe nucleus (MRN). 

Serotonin also moderates the activity of a lot of different neurotransmitters, including the 

dopamine system. The interactions between the serotonin system and the reward system is 

believed to be important in different types of impulsivity (Dalley & Roiser, 2012). 

1.4.2 Impulsivity  

Impulsivity can be grouped grossly into impulsive action and impulsive choice. The 

impulsive action is characterized as the failure to inhibit undesired action, and the 

impulsive choice means the preference of choosing small instant rewards over bigger 

postponed rewards. A large number of studies have implied that 5-HT is involved in 



 

 15 

impulsivity. Pharmacological depletion of 5-HT in projecting forebrains results in the 

chossing of a small immediate reward (increased impulsive choice). Moreover, 

administration of Serotonin Selective Reuptake Inhibitors (SSRIs), which increases 5-HT 

intracellular level, showed a declined impulsive choice (Bizot et al., 1999). (Also see 

review (Miyazaki et al., 2012)) 
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2 AIMS 

The general aim of this thesis is to study long-range and local circuits involving mPFC, the 5-

HT system in a neuron type specific manner, and the role of 5-HT in impulsive behavior. The 

specific aims are: 

1) To characterize the monosynaptic inputs to the serotonergic system in the raphe nuclei of 

the mice. (Paper I) 

2) To generate a framework for automatic registration, annotation, visualization of whole-

brain data on a standardized mouse brain atlas. (Paper II) 

3) To understand long-range and local circuitry in mPFC in mice by using a genetically 

modified rabies tracing system. (Paper III) 

4) To comprehend the roles of serotonergic neurons in impulsive behaviors (impulsive action 

and impulsive choice) in rats by using optogenetic manipulation and recordings with 

imaging. (Paper IV) 
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3 METHODS 

3.1 VIRUS 

3.1.1 AAV 

The AAV viruses used in this thesis were produced by Vector Core of University of North 

Carolina, Gene vector and virus core of Stanford University or Virovek. The titeration of 

ther virus is 1012-1013. 

3.1.2 RVdG 

The rabies virus used for Paper II, III, and I were produced under a modified protocol based 

on (Wickersham et al., 2010) paper. The main modification is at the pseudotying step to get 

rid of the contamination of G-RVdG-EGFP. Here is the detailed protocol. G-RVdG-EGFP 

virus was placed onto BHK-EnvA2 cells with one infection unit per cell on Day 1. After 24 

hours of infection, cells were treated with 15 mL trypsin (Sigma-Aldrich, USA) for at least 

10 minutes at 37 °C. Once the cells were all detached from a 175-cm2 flask (VWR, USA), 

they were collected into 50 mL tubes and dissociated by pipetting up and down. The cells 

were collected at 150*G for 10 minutes. Supernatants were discarded and replaced with 50 

mL DPBS (Thermo, USA). The cells were resuspended and dissociated by pipetting up and 

down for several times. The washing step was repeated for 3 times. At the end of the 

procedure, the cells were replated with DMEM (GE Healthcare, UK) onto a new 175-cm2 

flasks. Such procedures were repeated for two more days, and the supernatants were 

collected, filtered by 45µm filter (VWR, USA), and concentrated by ultracentrifugation on 

the final day.  

3.2 TRANSGENIC ANIMALS  

In this thesis, both mice and rats are used for anatomical or behavior studies. Compared 

with other model organisms, rodents are closer to human beings in evolution. In 

neuroscience studies, this closeness in evolution feature/ similarity is especially important, 

because researchers could implement complicated behavior paradigms that are derived 

from human studies. Rodents as a model organism has other benefits: 1) they are small and 

easy to handle; 2) they are prolific breeders with short life expectancies, so it takes shorter 

time to generate new rodent lines; 3) there are many well-characterized inbred and outbred 

rodent lines available, and their stable genetic status makes the experiment results 

unwavering and liable.  
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Genetically modified mouse models (knock-in and knock-out lines) are known to be well 

developed and widely used. As targeting certain neuronal population is essential for 

neuronal circuitry studies, several projects (Gong et al., 2003; Madisen et al., 2010) using 

Bacterial Artificial Chromosome (BAC) and knock-in technique have been initiated to 

generate CRE lines. In this thesis, both BAC and knock-in cre mouse lines were used (also 

see methods in Paper I, II, III).  

Genetically engineered rat models are poorly developed, because the successful derivation 

of rat embryonic stem (ES) cells is only available until quite recently (Buehr et al., 2008; Li 

et al., 2008) and techniques that did not necessarily require ES cells were not available 

back then. For a very long period of time, disease models using rats are driven by 

phenotype based breedings and selections. It has only been until recently that researchers 

are able to generate genetically modified rat lines using BAC (Gong et al., 2007; Witten et 

al., 2011) for multi-copy insertion, and using Zinc Finger Nucleases (ZFNs) (Geurts et al., 

2009; Cui et al., 2011), Transcription Activator-Like Effector Nucleases (TALENs) 

(Tesson et al., 2011), CRISPR-Cas (Ma et al., 2014) mediated approaches for site-specific 

knock-out and knock-in. Except for early technique barriers, rats have their own advantages 

over mice in neuroscience studies. First of all, they are bigger than mice in size, which 

makes it much more convenient to do microsurgeries and put implants on them. For 

example, it is more practical to implant multiple fibers or electrophysiological recording 

probes in rats if one needs to record from multiple brain areas simultaneously. Second, rats 

are known to be more capable of performing complicated cognitive behavior experiments 

than mice. In this thesis (Paper IV), the outbred strain Long-Evans rats were chosen over 

other rat strains as they are faster in learning tasks (Turner & Burne, 2014). As Tryptophan 

hydroxylase (TPH) serves as the enzyme for the rate-determining step of 5-HT synthesis, 

we chose BAC CH230-51G14 that carries TPH2 for targeting 5-HT neurons specifically.  

3.3 GCAMP AND FIP RECORDING 

In Paper IV, a total volume of 0.7µL AAV DJ/DIO-GCaMP6s virus is injected into each 

well-trained TPH2-CRE rats (also see methods in Paper IV), and fibers were implanted 

just above the Dorsal Raphe Nucleus with an angle of 20°. After 7-14 days of recovery, we 

used FIP to measure population neuron activity. 
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4 RESULTS & DISCUSSION 

4.1 PAPER I 

A WHOLE-BRAIN ATLAS OF INPUTS TO SEROTONERGIC 

NEURONS OF THE DORSAL AND MEDIAN RAPHE NUCLEI 

This project aims to characterize the circuitry controlling the serotonergic system in the 

raphe nuclei of the mice. To employ this, a genetically modified rabies virus system was 

used for tracing the monosynaptic inputs to DRN and MRN 5-HT neurons in mice. From 

the methodological aspect, we generated two AAVs (pAAV-DIO-TVA-mCherry and 

pAAV-DIO-Rabies Glycoprotein). One is to deliver the receptor for rabies virus infection 

(TVA) and the other is to bring the glycoprotein that is necessary for rabies virus 

transsynaptical labeling. Those two genes were cloned into a CRE dependent AAV vector 

so that their expression could be controlled in a CRE-dependent manner by using 

transgenic CRE animals.  

We then created a whole brain diagram of the inputs by using customized software 

developed in the lab. We found inputs onto 5-HT from cortical areas, basal ganglia, 

midbrain, and hypothalamus. We found similar long-range inputs to 5-HT neurons in DR 

and MR on a gross anatomical level. We also functionally confirmed some of the 

monosynaptic inputs by in vitro slice recordings (i.e., inputs from the frontal cortical areas 

and the lateral habenula). Based on our tracing results, we were able to modify the 

conventional raphe nuclei 5-HT afferent model by adding directly monosynaptic inputs 

from the frontal cortical areas, striatum, globuspallidus, lateral hypothalamus, and 

substantial nigra, reticular part. 

4.2 PAPER II 

AN INTERACTIVE FRAMEWORK FOR WHOLE-BRAIN MAPS AT 

CELLULAR RESOLUTION 

We developed an open source interactive platform for processing brain images obtained from 

different light microscope (i.e., light-sheet, confocal, wide-field) using different labelling 

techniques (i.e., fluorescent protein, in situ hybridization, immunohistochemistry) and 

mapping the marked neurons to a standardized brain atlas. This also allows researchers all 
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over the world to present, compare, and share neuroanatomical data under different 

experimental setups by standardizing and registering data onto the same brain atlas. 

We first created the reference atlas based on nonuniform rational B-splines (NURBS), and 

this feature also enables the images/data to be transformed into arbitrary angles other than 

coronal or sagittal sections, which is a huge advantage for visualizing certain projection 

pathways or brain areas as they might been observed better with other angles. For automated 

marking the features of interest (e.g., process, cell body, nuclei, staining of proteins) from the 

image, we applied a set of wavelet filters onto the image, and every output is stored. By 

playing with the intensity of fluorescence with the best stored outputs, we can extract the 

feature of interest (i.e., cell bodies). By grouping connected pixels and marking their borders, 

we easily labelled the feature of interest. The whole process is called segmentation. We also 

used the auto-fluorescent of the brain slice to locate the brain outline, and aligned the brain 

image with our standardized reference atlas by a set of reference points. Once this is done, the 

marked feature of interest from segmentation can be registered to the standardized atlas. 

Based on this basic feature, we further developed functions to reduce incorrect registration by 

removing and changing reference points manually.  

We applied the framework to different experimental setups for different needs as a proof of 

concept. We first tested it for detecting fibre tracts. We then tested our framework with innate 

EGFP-expression brain sections stained with other neuron markers (in other fluorescent 

channels) and used for mapping co-labelling. It is also compatible with RNA in situ 

hybridization data. We also applied our framework to monosynaptic rabies tracing images, 

which usually labels heavily both the cell bodies and the processes. We checked the inputs to 

different types of neurons in motor cortex (CamKIIa- and Gad2-expressing neurons) and 

striatum (D1R-, D2R- and ChAT-expressing neurons), and found the software was able to 

segment the cell bodies from the rest. We finally segmented the nuclei-located c-fos ( a 

marker for immediate early gene activity) expression (labelled by immunohistochemistry) 

and compared the expression levels before and after cocaine administration.  

4.3 PAPER III 

A WHOLE BRAIN ATLAS OF THE MONOSYNAPTIC INPUT 

TARGETING FOUR DIFFERENT CELL-TYPES IN THE MEDIAL 

PREFRONTAL CORTEX OF THE MOUSE 
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In this project, we aim to understand the circuitry within the median prefrontal cortex 

(mPFC) and the key players from other brain areas that controls it. We traced the 

monsynaptic inputs to three of the inhibitory (PV, SOM, VIP) and the excitatory neurons 

(Pyramidal neurons) in the median prefrontal cortex (mPFC) by using a modified rabies 

system. In order to look at the long-range and local inputs at the same time, we developed a 

single viral system by putting TVA and Glycoprotein into one CRE-dependent AAV vector 

(pAAV-DIO-TVA-V5-RG). By staining the V5 tag after TVA, the real primary infected 

populations can be distinguished from the input neurons.  

Based on our results, we have found that all of the four different types of neurons receive 

strikingly similar long-range inputs. The main input to both excitatory and inhibitory 

neurons in mPFC is from local, but all four types receive extensive long-range inputs from 

the rest of cortex. Basal forebrain and thalamus provide the most prominent inputs from 

subcortical areas. Within mPFC, SOM receive lots of inputs from PV and VIP, but they 

provide little inputs back. VIP and PV send reciprocal efforts to each other. 

4.4 PAPER IV 

SEROTONERGIC NEURONS DIRECTLY CONTROL IMPULSIVE 

BEHAVIORS IN RATS 

This study aims to comprehend the roles of serotonergic neurons in impulsive behaviors 

(impulsive action and impulsive choice) in rats. To target specifically the 5-HT neurons, we 

developed for the first time a transgenic rat strain. The CRE-recombinase gene is 

introduced right after the start codon (ATG) of the first exon in the TPH2 gene in the 

bacterial artificial chromosome (BAC), and this is to control CRE under the TPH2 

promotor. As TPH2 expresses in 5-HT neurons in the raphe nucleus, offsprings of this 

BAC inserted founders can be used for manipulating 5-HT neurons. 

The animals were trained using a modified behavioral paradigm(Staddon & Cerutti, 2003) 

to study the impulsive action. They were firstly trained to associate visual cues with reward 

delivery. The reward would be delivered in a fixed delay (FI) after the animal has poked to 

the reward port. Fully trained animals showed boosted nose-poking rates (NPR) at the end 

of the delay. Later, unrewarded probe trials (Peak Interval, PI) with longer delays were 

randomly introduced in between FIs. In FI trials, activation of 5-HT by optogenetic 

manipulations resulted in a decrease in impulsive actions in longer delays, while 

deactivation of 5-HT neurons showed an increase of impulsive actions in all different delay 
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length. In PI trials, activation of 5-HT neurons showed a decrease in impulsive action, 

while deactivation of 5-HT showed an increase of impulsive actions. With the same 

behavioral paradigm, in vivo fiber photometry recordings revealed an upregulation of the 

innate calcium signals in DR 5-HT neurons during reward consumption.  

To study the impulsive choice, the animals were trained first to associate two different 

visual cues with either a short delay small reward (SS) or a long delay large reward (LL). 

Deactivation of 5-HT neurons by optogenetic modulations in DR showed an increased rate 

of correctness in different LL trial delay times. 

Taken results together, we have shown the direct involvement of DR 5-HT neurons in both 

impulsive action and impulsive choice.  
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5 DISSCUSSION & PERSPECTIVES 

5.1 RABIES VIRUS- CONTROVERSIAL ISSUES 

5.1.1 Is RV infection biased? 

This issue can be discussed under two situations: 1) direct and 2) trans-synaptic labeling. 

When injected in Anterior Cingulate Cortex in a reporter line, RVdGL-cre showed a 

labeling of all layers in V1, whereas CAV2-cre (Soudais et al., 2001) labeled mostly layer 5 

neurons. Retro-AAV (Tervo et al., 2016) had labelings in other layers but very few in layer 

5 (Chatterjee et al., 2018). In another direct labeling by RV study, Self-inactivated RV 

(SiR) and retro-AAV were both injected in Ventral Tegmental Area (VTA). SiR showed a 

better labeling of subcortical structures such as Lateral Hypothalamus (LH) and Nucleus 

Accumbens (NAc), whereas retro-AAV is better in labeling cortical areas such as mPFC 

(Ciabatti et al., 2017). In Dorsal Root Ganglia (DRG), Tyrosine Hydroxylase (TH)+ and 

nonpeptidergic (NP) neurons are highly resistant to direct infections from either SAD-G 

coated RVdG or CVS-G coated RVdG. When EnvA coated RVdG were injection into 

TVA-expressing mouse, NP neurons has a strong increase of labeling, but not TH+ neurons 

(Albisetti et al., 2017). 

Using the monosynaptic RVdG tracing system in the same study, TH+ neurons showed no 

trans-synaptic labeling with either SAD-G or optimized G (oG) (Kim et al., 2016b) coated 

RVdG, whereas NP showed slightly increase of trans-synaptic labeling in oG coated RVdG 

(Albisetti et al., 2017). In Paper III of this thesis, our RVdG system also failed to label the 

presynaptic but not the postsynaptic SOM+ neurons. Those results have indicated that the 

mechanisms of rabies virus initial infections and the trans-synaptic infection may be 

different.  

5.1.2 What is it actually labeling? 

One study for tracing monosynaptic inputs to Layer 2/3, 5 or 6 GluN1 (the essential subunit 

of N-methyl-D-aspartate (NMDA) receptors) deleted neurons with RVdG showed an 

increased fraction of labeling of Layer 5 to Layer 6 neurons and a decreased labeling of 

Layer 6 to Layer 6 neurons (DeNardo et al., 2015b). As lacking the functional NMDA 

receptors in the post-synaptic population results in drastically decreased GluN-mediated 

EPSCs at 40mV, it indicates the trans-synaptic labeling could be postsynaptic-population 

dependent. 
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Another study using RVdG for tracing monosynaptic inputs to dopaminergic VTA neurons 

after addictive cocaine administration have found an increased proportion of inputs from 

Globus Pallidus externus (GPe). Following experiments did not found any distinguishable 

changes in the number of synapses or the strength of the synapses. However, there was an 

increased spontaneous activity and excitability of the PV neurons in GPe. Activation of the 

Gpe showed an increased labeling with RVdG monosynaptic tracing in VTA, and 

inhibition showed the opposite (Beier et al., 2017). This study suggested that the trans-

synaptic labeling could be presynaptic-population activity dependent.  

5.1.3 The need of a better understanding of RV pathogenisis  

Since the day when RVdG system was invented (Wickersham et al., 2007a), it has been 

widely used in almost every field by the neuroscience community. It is the first time allowing 

tracing almost every input to one single neuron at the same time in a controlled manner. 

Nevertheless, we are still using the system without fully understanding it. For instance, we 

still don’t know much about the mechanisms of the initial infection, the transportation in the 

neuron, RV life cycle, its reassembly, budding out, trans-synaptic spreading, ect… 

The attempt for understanding RV pathogenisis has been progressed a lot (Sissoeff et al., 

2005; Albertini et al., 2012) and several proteins such as p75NTR/nerve growth factor 

receptor (Ngfr) (Tuffereau et al., 1998), neural cell adhesion molecule (NCAM) (Thoulouze 

et al., 1998), and nicotinic acetylcholine receptor (nAChR) (Lentz et al., 1982) are identified 

as the glycoprotein ligands for initial entry. Yet, it is still limited. For instance, none of the 

known ligand showed negative in RV-resistant TH+ or NP DRG neurons (Albisetti et al., 

2017) when being analyzed with the single cell transcriptomic data from sensory neurons 

(Usoskin et al., 2015). 

The crystal structure of glycoprotein pre- and post- fusion is known over a decade (Roche et 

al., 2006; Roche et al., 2007), and our understanding of the RV pathogenesis is still limited. It 

fails to answer many questions. There is a strong need for a better collaboration between 

virologists, biochemists, molecular biologists and neuroscientists to engineer and generate a 

more powerful RV based tool.  

5.2 THE NEED OF OTHER VIRAL TRACERS 

Given the fact that every virus has its own preference of infection, the results and conclusions 

drawn from studies using different viruses or tracers might differ even if they are using the 

same experiment setups. In fact, each method can serve as a complementary to one another. 
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There are always attempts to find the ‘perfect’ virus for different applications, even though it 

is sometimes strongly against the natural feature of the virus. For example, there are attempts 

to generate an anterograde trans-synaptic tracer using the glycoprotein deleted vesicular 

stomatitis virus (VSV) pseudotyped with lymphocytic choriomeningitis (LCMV) 

glycoprotein, and it turned out to be contaminated with a wild type VSV glycoprotein (Beier 

et al., 2011). However, such attempts should always be encouraged. 

5.3 THE NEED OF COMPUTATIONAL METHODS 

The study of neuroanatomy involves highly labor-intensive work, including sectioning, 

staining, imagine, and data analysis. With the emergence of global collaborative brain 

projects such as the BRAIN Initiative, more and more high-throughput data have been 

produced. Therefore the urge of powerful computational tools been implemented into every 

aspect of neuroscience studies is in strong need. Our second paper is trying to make such an 

attempt. Moreover, better computational methods are needed for combining high-throughput 

neuroanatomy data with other high-throughput techniques (e.g., single cell sequencing). 
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