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Abstract

Breast cancer is either the number one or the second most common cause of cancer
death in women in the world, depending on region1. It is a cancer heterogeneous
in many aspects related to the aggressiveness, such as proliferation rate, metastatic
capacity and survival. This thesis is seeking to increase our understanding of aggressive
breast cancer, and how risk factors may be related to it.

In study I, we compared interval cancers (IC) to cancers detected at screening (SC)
and found the group of IC to be characterized by higher frequency of BRCA mutations,
family history of breast cancer and use of hormonal therapy (HRT) as compared to SC.
IC in non-dense breasts were enriched for aggressive tumour features, and in this group
the estimates for family history and BRCA mutations were increased.

In study II, we studied if predictors intended to identify healthy women’s risk
of breast cancer in future prevention efforts were skewed towards certain tumour
characteristics. A 77-SNP breast cancer polygenic risk score appeared to underestimate
risk in women with high grade and Oestrogen receptor (ER) negative tumours, as it
was on average higher in women with low grade, ER positive tumours. The Tyrer-
Cuzic model of breast cancer risk also appeared to underestimate risk in ER negative,
high grade tumours but this was restricted to early onset cases. Only mammographic
density appeared to be a general risk factor/predictor for all tumours independent of
prognosticators.

Study III was a case-control study where we estimated odds ratios for each of
four breast cancer molecular subtypes separately in multinomial logistic regression.
We found subtype heterogeneity in the odds ratios for genetic risk factors and for
breastfeeding. The 77-SNP polygenic risk score was associated with all subtypes except
for the basal-like subtype, which showed no association with the score. Although
breastfeeding was protective for both luminal and basal-like subtypes, the magnitude
and underlying mechanism appeared to differ across subtypes.

In Study IV we assessed the concordance between PAM50 gene expression-based
and immunohistochemistry-based molecular subtypes. No proxy showed more than
moderate concordance with PAM50, however if luminal A and B subtypes were collapsed
into one category, substantial concordance was achieved. Sensitivity for HER2-enriched
breast cancer as defined by PAM50 was low, at 0.36 for all proxies investigated, whereas
sensitivity and specificity was high for classifying basal-like breast cancer.

1According to Cancer facts sheets, GLOBOCAN 2012, [IARC]
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List of abbreviations

The following abbreviations are used throughout the thesis

BC
ASR
AUC
hCG
TNM
TNBC
TCRS
SNP
GWAS
PRS
MD
IC
SC
IHC
HRT
ER
PR
HER2
ErbB2
Ki-67

PCR
WHO
SEER
SNOMED
UICC

Breast Cancer
Age-Standardised incidence Rate
Are Under the Curve
Human Chorionic Gonadotropin
Tumour - Node - Metastasis: TNM staging
Triple-Negative Breast Cancer
Tyrer-Cuzick Risk Score
Short Nucleotide Polymorphism
Genome-Wide Association Study
Polygenic Risk Score
Mammographic Density
Interval Cancer (here assumed interval breast cancer)
Screening-detected Cancer (here assumed screening detected breast cancer)
ImmunoHistoChemistry
Hormone Replacement Therapy
Estrogen Receptor(s)
Progesterone Receptor(s)
HER2/neu oncoprotein, also known as Erb-B2
Gene encoding for HER2/neu, alternative name for HER2/neu oncoprotein
Protein marker of cell proliferation. Named after site (Kiel) and well number
(in a 96-well plate) of discovery
Polymerase Chain Reaction
World Health Organization
Surveillance, Epidemiology, and End Results program
Systemized NOMenclature of MEDicine
Union of International Cancer Control



"However, it is true that statistics cannot provide proofs. They can find out if
correlations exist, and in this way point to some possibilities and exclude others."

Johannes Clemmesen, 1948.



1 Introduction

The mammary gland is a common denominator of all animals of the class Mammalia. In
fact the name ’Mammal’ is taken from the Latin word for breast, ’mamma’. This choice of
name and classification has been debated [Schiebinger, 1993, Vaughan et al., 2013], but it
certainly highlights the biology of the mammary glands. The mammary glands make up
a remarkably plastic organ [Lteif and Javed, 2013, Russo and Russo, 2011]. Sadly, it is also
one particularly prone to carcinogenesis [Lakhani and IARC, 2012].

The term ’aggressive cancer’ refers to a tumour that "forms, grows, or spreads quickly"
[National Cancer Institute, 2017]. It has long been appreciated that breast cancer exhibits
substantial heterogeneity in an array of aspects, including proliferation markers and stage at di-
agnosis [Fisher et al., 2008]. In the same manner, it has long been known that the disease has
a high variation in patient survival and a continued risk for lethal recurrence decades after diag-
nosis, despite the 5-year survival generally being considered high [Adami and Killander, 1984].
Some breast cancers exhibit metastatic spread already at diagnosis, whereas others metasta-
sise decades after diagnosis and treatment, yet others will never establish metastatic clones
during the lifetime of the host. It is still an area of active research how to accurately predict
which patients could be considered cured after treatment and what patients will experience
recurrence or metastasis years after initial diagnosis [Pan et al., 2017]. Predicting short term
prognosis, i.e. separating aggressive breast cancers from those primarily at risk of metastasis
in the long term, is more readily achievable.

There is considerable variation in tumour biology that can account for the varied level of
aggression between cases [Sorlie et al., 2001, Sorlie et al., 2003, Fisher et al., 2008]. Given
the complexity of factors explaining breast cancer outcomes and the molecular heterogeneity
of the disease, it is of importance that research about risk factors also take into account the
subtypes of the disease present [Anderson and Matsuno, 2006]. In recent years, there has
been a surge in the field of epidemiological studies assessing characteristics by breast cancer
subtypes [Barnard et al., 2015]. There is also a move towards individualising prevention
efforts [Howell et al., 2014]. Before embarking on such journeys, it is important to understand
more about subtype heterogeneity in predictors. Whether aggressive subtypes of breast cancer
share aetiology with the majority of cases with good 5-year survival is essentially unknown.
Nor is it fully understood if factors used to predict risk of breast cancer apply equally to
aggressive cases, although evidence to suggest there are differences have been presented in
recent years [Anderson et al., 2014, Barnard et al., 2015], motivating further work.
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2 Aims

The overarching aim of this thesis is to increase our understanding of aggressive breast cancer,
with a focus on how risk factors identified for the disease in general relate to aggressive
subtypes. The specific aims are:

• To assess if aggressive tumour characteristics are enriched among interval cancers
diagnosed in women with low mammographic density

• To assess whether standard breast cancer risk factors are equally dispersed between

– Screening-detected and interval breast cancers

– Molecular subtypes of breast cancer

• To assess if variables used in risk prediction models are associated with tumour prog-
nosticators and survival

• To assess the concordance between immunohistochemistry marker based classification
and gene expression based classification of breast cancer

2



3 Background

3.1 Biology of the mammary glands

Anatomy of the breast in view of breast cancer

The breast is composed of mainly three types of tissues; the glandular epithelium of the lobes
and ducts, the connective tissue that supports the glands, and the adipose tissue that embeds
the other two. Breast cancer is an umbrella term for primary tumours diagnosed in the
breast. The WHO histological classification of tumours details at least 20 different histological
subtypes of breast cancer, with the dominating types being ’invasive carcinoma of no special
type’ (formerly known as invasive ductal carcinoma, not otherwise specified), varying from 40-
70% of diagnoses, and invasive lobular carcinoma, around 5-15% [Lakhani and IARC, 2012].
Thus, with some exceptions, most invasive breast cancers are found in the epithelium of the
milk ducts, or in the lobular glands that produce the milk (Figure 1).

Figure 1 – Cartoon depiction of a human breast in sagittal section, with the location of main
histological types of breast cancer outlined

Development and plasticity of the human breast

Breast formation is initiated in utero, but the development of the organ is continued throughout
the reproductive life, with major structural changes being associated with menarche and
puberty, as well as parity and menopause. At birth, a basic mammary gland with about
20 lobes and a certain degree of branching is present. During the first two years of life
further branching and nipple maturation occurs, but the tissue remains dormant from the
age of two until the onset of puberty and menarche. During puberty a complex growth phase

3



Figure 2 – Cartoon depiction of (from left to right) a human breast in sagittal section, a
terminal duct lobular unit, and a cross-sectional view of a milk duct. Terminal duct lobular
units are the functional units of the glands, responsible for milk production. The milk ducts
drain into the nipple area and thus transport the milk during lactation. The epithelial cell
types consist of myoepithelial cells and luminal cells.

occur in the female breasts under the control of oestrogen, pituitary hormone and IGF-1
[Lteif and Javed, 2013]. Ducts elongate and branch further, and on a macro level the breasts
enlarges. It is also during puberty that the glands develop the characteristic bilayered cellular
structure, with an outer layer of basal myoepithelial cells close to the basement membrane,
and an inner layer of luminal cells towards the lumen (Figure 2, cross-sectional image of milk
duct) [Lteif and Javed, 2013]. However, in contrast to other organs it is not fully developed
in nulliparous women. The mammary glands reach their highest level of tissue differentiation
only under the hormonal influence of the first full-term pregnancy [Russo and Russo, 2004].

The lobules within the breast are classified according to their degree of differentiation, as
types 1-4, with type 1 being the least differentiated and type 4 the most [Russo and Russo, 2004,
Russo et al., 2005, Lteif and Javed, 2013]. The breast in nulliparous women is mainly com-
posed of lobules of type 1, of the lowest degree of differentiation, and occasionally develop into
lobule type 2 during successive menstrual cycles. During pregnancy, the lobules differentiate
under the control of a number of hormones. Luteinizing hormone, progesterone and human
chorionic gonadotropin (hCG) initiate the substantial tissue growth associated with the
first trimester, whereas prolactin stimulates differentiation into the terminally differentiated,
lactation-capable type 4 lobules in the very last weeks of pregnancy [Russo and Russo, 2011].

4



The process of reducing the amount of mammary glands in the breast is termed involution.
Two distinct involution processes occur that either inactivates or shrinks the tissue, one at
the post-lactational stage and one in connection to the menopausal. During post-lactational
involution, tissue remodelling and wound healing processes regress the type 4 lobules into
pregnancy-induced type 3 lobules that remain until menopausal, but there is little reduction of
glandular tissue at this stage. During perimenopause, the process denoted lobular involution
gradually reduces the size and structures of the lobules until they essentially have been re-
placed by connective tissue and fat by the end of menopause [Radisky and Hartmann, 2009].

Figure 3 – Kernel density plot of the distribution of percent mammographic density among
breast cancer cases, shown by menopausal status. Top panel shows examples of mammography
films of breasts with increasing mammographic density. Mammographic density represents
the amount of stromal and glandular tissue in the breast. Data and images from the cohorts
included in the thesis. Image inspired by [Howell et al., 2014].
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Breast tissue and mammographic density

The term ’mammographic density’ refers to the radio-density shown on a mammography
image. Depending on the amount of stromal and glandular tissue in the breast, the appearance
on a roentgen image will vary from largely translucent to largely dense. Due to the changes
in breast tissue composition over the lifetime of a woman, premenopausal women tend
to have high mammographic density and postmenopausal women have progressively lower
mammographic density as they age (See figure 3). Mammographic density is often calculated
as percent dense tissue of the total breast area, or as absolute area of dense tissue.

3.2 Prevention

3.2.1 Primary prevention

The scope for primary prevention of breast cancer in Sweden today is mainly restricted to
informing the public about modifiable risk factors. Public authorities provide information
online on risk factors for the disease, such as overweight, excessive alcohol intake, and physical
inactivity. Treatment with hormone replacement therapy (HRT) for extended periods is also
stated as a risk factor [Vårdguiden, 2017]. Reproductive and hormonal factors influencing
the risk are also mentioned, but stated as non-intervenable risk factors. Actual interventions
are limited to women at particularly high risk of breast cancer, by offering mastectomies,
hysterectomies and increased screening of women with confirmed inherited mutations of a
substantially high penetrance (BRCA1/2 mutations). Pending new evidence from ongoing
trials of preventative therapy, primary prevention may however be expanded in the future
[Karma, 2017, Howell et al., 2014].

3.2.2 Mammography screening

Following the results of 31 % reduced mortality in the Two-County trial [Tabár et al., 1985],
in 1986 the Swedish National Board of Health and Welfare issued recommendations to all
county councils in Sweden to initiate population-based mammography screening programs.
Initially, the recommendations were to screen all women aged 40-74, but in 1989, when the
Malmö mammography trials published a lack of benefit in the youngest age groups, the
recommendations were changed to focus resources primarily on screening women 50-69 years
of age [Lind et al., 2010]. The introduction of mammography screening was implemented at
different time points across the counties, from 1976 to 1997 [Olsson et al., 2000]. Of relevance
for this thesis is the fact that Stockholm introduced screening in 1989, inviting all women
50-69 years of age to mammography every 24 months. Starting in July 2005, women 40-49
years of age were invited at 18 month intervals. A participation rate at around 70 % of
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invited women has remained steady throughout the years. Since 2013, invitations are also
issued to women aged 70-74 [Lind et al., 2010]. In Southern Sweden, screening intervals
as well as age groups called for screening initally varied over time by local screening unit
[Olsson et al., 2000]. Following standardisation in 2009, women 40 to 54 were called every 18
months, and women above 55 every 24 months (Personal communication, Boel Heddson).
Participation is generally around 70-80 % [Olsson et al., 2000, Lagerlund et al., 2015].

3.3 Aggressive breast cancer

The term ’aggressive breast cancer’ implies breast cancers that metastasise early on in the
lifespan of the tumour, and/or grows quickly [National Cancer Institute, 2017]. For the
purpose of observational epidemiological studies, fast-growing tumours can only be studied
indirectly, as we cannot for ethical reasons passively observe tumours growth over time
without intervening in the process. Nor can we be absolutely certain about how early a
metastatic process occurs, as we never observe the tumour initiation and tumours progress
at different rates. It is therefore necessary to make use of indirect definitions of fast-growing
and early metastasising disease.

3.3.1 Interval cancer

A general feature of any screening program, including mammography screening, is the implicit
tendency to preferentially detect slowly progressing disease, a phenomena known as length
bias (Figure 4). Rapidly progressing cases are more likely to become detected in the interval
between two screening visits, i.e. they become interval cancers. The tendency of interval
cancers to contain rapidly progressing disease makes them not only a challenge for screening
program designs but also provides means for studying rapidly progressing cases without
prior in-depth molecular characterisation. This imbalance in growth rate between interval
and screening cancers was used in the first project of this thesis as a proxy for studying
characteristics of aggressive breast cancer. Interval cancers are a mix of false-negatives
from the last screen and true, fast-growing interval cancers. In either case, they consist a
failure of the screening program to detect the cancer and interval cancer rates are part of the
evaluation of the quality of a screening program [Törnberg et al., 2010]. In study I, we built
on the hypothesis that true interval cancers are enriched among interval cancers diagnosed in
women with low mammographic density, i.e. the group with highest screening test sensitivity
[Eriksson et al., 2013].
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Figure 4 – Illustration of the principle of length bias. Each line represents a tumour, the slope
indicates the growth rate as increase in size over time; the steeper the line, the more aggressive
the growth. Inevitable, tumours growing at a faster rate are more likely to be detected in the
interval between screening rounds than slow growing tumours, as they take less time to reach
the size required for giving symptoms. In this hypothetical example, three out of seven tumours
would be interval cancers (red circles) and three would be screening-detected (blue circles),
however, in a real setting these proportions would vary by e.g. prevalence of fast growing
tumours, screening test sensitivity and vigilance for clinical symptoms in screening-attenders.

3.3.2 Prognosticators

Aggressive breast cancer can naturally also be defined by prognosticators of the disease.
Among the available prognosticators clinically used today, presence of lymph node metastasis
has been shown to have long-term prognostic abilities [Colzani et al., 2011, Fisher et al., 1993].
Additionally, both ER status and tumour size can predict five-year prognosis [Colzani et al., 2011,
Thorpe et al., 1986, Fisher et al., 1993]. Tumour grade [Elston and Ellis, 1991] and HER2-
status [Paik et al., 1990] are also independent prognostic factors useful in identifying aggres-
sive breast cancer. HER2-positive breast cancer has a much improved prognosis today thanks
to targeted therapies, but in the absence of targeted therapy, the nature of the tumour is
such that it is prone to early metastasis.
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3.3.3 Intrinsic or molecular subtypes

Around the turn of the millennium, Charles Perou, Therese Sørlie and colleagues established
four molecular subtypes of breast cancer based on hierarchical clustering of gene expression
of an ’intrinsic’ set of 496 genes [Perou et al., 2000]. The main branch clustered tumours
according to ER status through differences observed in oestrogen-driven gene expression2,
denoting them ’luminal’ vs. ’non-luminal’ clusters. In the non-luminal, ER negative cluster,
further subdivision into clusters was seen, denoted ’basal epithelial-like’, ’normal breast-like’
and ’ErbB2-overexpressing’ (In this thesis work, ’ErbB2-overexpressing’ will from here on be
denoted ’HER2-enriched’ and ’basal-epithelial-like’ denoted ’basal-like’). These molecular
subtypes were corroborated in a larger sample size which also enables further division of the
ER+/luminal group into three types, luminal A, B and C [Sorlie et al., 2001].

Table 1 – Overview of (PAM50) molecular subtypes

Molecular subtype Characteristics Recommended treatments

Luminal A ER+, low grade,
luminal epithelial genes. Anti-oestrogen therapy.

Luminal B ER+, proliferative, high grade,
luminal epithelial genes.

Anti-oestrogen therapy,
chemotherapy,
anti-HER2 if HER2 +.

HER2-enriched ER-, most show HER2-amplification
proliferative.

Anti-HER2 therapy,
chemotherapy.

Basal-like ER-, HER2-, basal keratines
and EGFR, highly proliferative. Chemotherapy.

Normal-like Basal and myoepithelial genes,
adipose tissue specific genes.

The division of luminal types into three groups was however not robust enough in
sensitivity analysis, with luminal B samples moving into the HER2-enriched group rather
than remaining within the main luminal cluster. Luminal B and C tumours were therefore
collapsed into one category. These five subtypes (luminal A, luminal B, HER2-enriched, basal
epithelial-like and normal breast-like) were robustly confirmed and found to also possess
prognostic value in two independent cohorts [Sorlie et al., 2003]. In addition, they have also
been independently validated in a Swedish material [Calza et al., 2006]. An overview of these
so called molecular subtypes is found in table 1.

In 2009, Joel Parker and colleagues shrank the list of intrinsic genes to 50, with the aim
of making it more robust and feasible to classify tumours into molecular subtypes in clinical

2The oestrogen receptors are soluble transcription factor regulating the expression of many genes
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practice using PCR technology [Parker et al., 2009]. The subtypes determined using their
classifier are typically denoted "PAM50-subtypes", after the name of the classifier.

3.3.4 Immunohistochemistry subtypes

Parallel to the development of the PAM50-classifier, there was still a need to further simplify
the classification of cases according to molecular subtype. With the motivation that not
all clinics worldwide have means to assign molecular subtypes to tumours, Maggie Cheang
and colleagues developed an immunohistochemistry (IHC) proxy for molecular subtypes
based on the staining of ER, PR, HER2 (the protein product encoded by the ErbB2 gene)
and proliferation marker Ki-67 [Cheang et al., 2009]. Their initial proxy was adapted by
the St Gallen international expert consensus on the primary therapy of early breast Cancer
[Goldhirsch, A. et al., 2013] as a useful way of determining which node-negative, ER positive
breast cancers to treat with adjuvant chemotherapy. Prat, Cheang, Parker and colleagues
further modified the proxy in 2012 [Prat et al., 2013] to include a criteria of high PR positivity
for classifying luminal A tumours. The modified proxy was adapted by the sequential 2015
St Gallen consensus statement [Coates et al., 2015]. The agreement between the PAM50
molecular subtypes and the St Gallen IHC proxy has been evaluated once and found to be
moderate (kappa = 0.55) [Romero et al., 2013]. Other IHC proxies for the molecular subtypes
of breast cancer exist. A three-marker proxy of ER, PR and HER2 status has been found to
provide reasonable accuracy for classifying luminal cases as well as basal-like cases, but low
ability to discriminate between luminal A and B, and between the HER2-enriched and luminal
B types [Allott et al., 2016]. A six-marker proxy which additionally included IHC stainings
for EGFR and for basal-like markers cytokeratin 5/6 has also been used in epidemiological
studies of molecular subtypes [Millikan et al., 2008]. To distinguish between gene-expression
based and IHC based breast cancer subtypes, ’luminal A’, ’luminal B’, ’HER2-enriched’
and ’basal-like’ will be used in the background of this work to denote subtypes defined by
gene-expression, and ’luminal A-like’, ’luminal B-like’, ’HER2-positive’ and ’TNBC’3 will be
used to denote IHC based groupings. Distribution of IHC markers for each PAM50 subtype
is shown in figure 5 on page 11.

3.4 Epidemiology of breast cancer

Age-related incidence of breast cancer

While the incidence rate of most epithelial cancer increases linearly with age on the log-log-
scale [Armitage and Doll, 1954], breast, cervical, uterine and ovarian cancer has a charac-

3Unless more markers than ER,PR and HER2 were used, in which case the term "basal-like" will be used
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Figure 5 – IHC markers verses PAM50 subtypes in breast tumours. Top panels, and lower
left panel: Beeswarm plots of observed values of IHC markers ER, PR and Ki-67 for PAM50
subtypes in Clinseq. Each bee (dot) in the swarm represents one observation. Lower right panel:
Bar plots of frequencies of HER2 positive and negative status in Clinseq by PAM50 subtypes.

teristic bend around the (peri)menopausal age, see Figure 6 for the appearance for breast
cancer. This bend is denoted "Clemmesens hook"4, and distinguishes breast cancer from
most other epithelial cancers [Kamangar et al., 2006]. As such, Clemmesen’s hook has puz-
zled epidemiologists for over half a Century [Clemmesen, 1948, Lilienfeld and Johnson, 1955,
Anderson and Matsuno, 2006]. Pioneering reports speculated that the change of hormonal mi-
lieu in the body during menopause could cause the apparent plateau by pausing cancer progres-
sion temporarily [Clemmesen, 1948], or alternatively that it represented a post-menopausal
decline in women susceptible to mammary carcinogenesis [Lilienfeld and Johnson, 1955]. Dur-
ing recent years a third interpretation has been added, namely that the pattern corresponds
to a bimodal distribution of age at diagnosis, representing two distinct, superimposed distri-
butions of essentially two types of breast cancer; ER positive vs. negative, or premenopausal
vs. postmenopausal [Anderson et al., 2002, Anderson and Matsuno, 2006]. ER status of the
tumour is correlated with age, with ER positive tumours being more frequent at older ages
[Johansson et al., 1984, Mccarty et al., 1983, Pujol et al., 1998]. Consequently, ER status is

4 After Johannes Clemmesen, Danish epidemiologist and founder of the Danish cancer register
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Figure 6 – Age-specific breast cancer incidence rates in diagnoses 1993-2001 from Cancer
Incidence in Five Continents database (CI5VIII), showing Clemmesen’s hook. Open circles
denote "all regions of Europe, Australia, New Zealand, North America and Japan", filled circles
denote "all regions of Africa, Central America, South America, and all regions of Asia except
Japan" available in CI5VIII. Image modified from [Kamangar et al., 2006] with permission from
the publisher. c©American Society of Clinical Oncology.

also correlated with menopausal status. However, pre- and postmenopausal breast cancer are
not synonyms for ER negative and ER positive disease, as shown in figure 7 A and B. In
Swedish data for 2001-2008 included in this thesis, the bimodal distribution appears for both
ER negative and ER positive cancers (Figure 7). This is similar to results shown from SEER
database [Anderson et al., 2002, Anderson et al., 2006] (although our material only includes
women below age 80 at diagnosis, cutting our distributions slightly shorter to the right).

The impact of genes and environment on breast cancer

With the exception of monogenic diseases with complete penetrance, most non-infectious
diseases are causally attributed to a combination of both genes and environment. This
is certainly true also for breast cancer. Statistical modelling of the level of breast cancer
concordance by degree of relatedness in cohorts of twins or other relatives, have provided
estimates of 25-27% heritable contribution to the disease at a population level (in Scandi-
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(a) By ER status (b) By menopausal status

Figure 7 – Distribution of age at diagnosis in (a), all BC diagnoses made in women under 80
years of age 2001-2008 Stockholm-Gotland, by ER status (b), all BC diagnoses made in Libro-1
2001-2008, by menopausal status before diagnosis

navia) [Lichtenstein et al., 2000, Czene et al., 2002]. Indications of the strong environmental
contribution to breast cancer came early from descriptive epidemiological studies of migrant
populations. Typically, incidence rates for migrant populations alters over generations ap-
proaching those of the new country. For instance, in 1960’s Okayama in Japan, the BC
incidence rates (age-adjusted to the world standard population) for Japanese women were
31.8 and 21.8 for age-groups 35-64, and 65-74 respectively. For the first-generation Japanese
immigrants (Issei) in San Francisco, the corresponding incidence rates were 93.6 and 163.4,
while for the second-generation (Nisei) the rate was 116.5 (data available for the younger
cohort only). By comparison, the rates for San Francisco white Caucasians were 179.4 and
293.4 [Buell, 1973]. This remarkable increase in incidence reproduced in numerous studies
[Shimizu et al., 1991, Ziegler et al., 1993], cannot be explained by means other than change
of environment as it is present already in the Issei. However the exact causal nature(s) of
said environment has remained elusive. For the Japanese migrants, there is also a substantial
decrease in the incidence of stomach cancer, with rates approaching that of the U.S. popula-
tion at large, such that it is unlikely that the changes in breast cancer incidence would be
fully explained by potential differences in cancer detection [Maskarinec G, Noh JJ., 2004].
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Table 2 – Selected list of established risk factors for breast cancer

Risk factor Direction Comment

Female sex Increases risk

Age Increases risk

Mammographic density Increases risk

Family history Increases risk
Increases with number of affected relatives,

stronger effect for early-onset disease

HRT Increases risk

Age at menarche Decreases risk Early menarche is a risk factor

Age at first birth Increases risk Higher risk for aafb >30 compared to 20

Parity Decreases risk Long-term protective effect of parity

Breastfeeding Decreases risk Especially for premenopausal breast cancer

Age at menopaus Increases risk Late menopause is a risk factor

Hysterectomy Decreases risk

Chest irradiation Increases risk Chest irradiation in early ages

Alcohol intake Increases risk

Oral contraceptives Increases risk Slight risk increase with current use

Physical activity Decreases risk

BMI Depends
Postmenopausal high BMI increases risk,

high BMI early in life lowers risk

Identified risk factors

Increasing age and female sex are the strongest risk factors for breast cancer, together with
rare but high-penetrance mutations in the BRCA1 and 2 genes [Clamp et al., 2003]. High
mammographic density is also among the stronger risk factors, with a 4 to to 7 times increased
risk for women in the top percentiles of density relative to the lowest percentiles. Increasing
number of menstrual cycles is also related to risk of breast cancer, as evidenced by risk
increases with early menarche and late menopause. A summary of reproductive, hormonal
and lifestyle risk factors is given in table 2 on page 14. In addition, a number of genetic
variants have been found to associate with risk for breast cancer, identified either through
genetic linkage studies of breast cancer families or through large genome wide associations
studies (GWAS). These can chiefly be divided into
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1. Rare variants with high penetrance, such as mutations in BRCA 1 and 2, PTEN, and
TP53

2. Rare variants with medium penetrance, such as mutations in PALB2, ATM, and
CHECK2

3. Common variants with low penetrance, i.e. short nucleotide polymorphisms (SNPs)

3.5 Risk factors by breast cancer subtypes

In recent years, studies of risk factors for breast cancer as assessed by molecular markers have
been performed. Most have typically analysed risk factors by ER status or combined ER, PR
and HER2 status [Barnard et al., 2015]. The earliest established findings for heterogeneity
were seen for age and menopausal status, BRCA1 mutations, and ethnicity/race [Boyle, 2012].
Young women tend to have more aggressive subtypes, such as ER negative and triple-
negative (TNBC) tumours, i.e. tumours negative for tumour markers ER, PR and HER2.
Similarly, mutations in the BRCA1, but not BRCA2 gene, tend to yield basal-like and TNBC
tumours more than any other type. In the U.S., Non-Hispanic black women have higher
age-standardised incidence rates (ASR) of TNBC than Non-Hispanic white women, and
Hispanic and Asian/Pacific islander women have the lowest TNBC rates. Non-Hispanic white
women have the highest ASR of ER+/HER2- BC, followed by Non-Hispanic black, Hispanic
and Asian/Pacific Islander [Kohler et al., 2015]. In countries with high incidence of breast
cancer the predominating subtype is postmenopausal breast cancer, meaning low-incidence
countries tend to have higher proportion of premenopausal, aggressive breast cancer (although
the age-standardized incidence rates for premenopausal breast cancer may not be as dissimilar
to those in high-incidence countries) [Ghiasvand et al., 2014]. Here below will follow a review
of the literature on subtype heterogeneity, restricted to risk factors assessed in this thesis.

Hereditary risk

In 2014 and 2015, two literature reviews of cohort and case-control studies assessing risk factors
by IHC subtypes of breast cancer were published [Anderson et al., 2014, Barnard et al., 2015].
Most published studies investigating family history as a risk factor by subtype of breast
cancer have found positive associations to all subtypes, with odds ratios in the range of 1.5
to 2 [Barnard et al., 2015]. However, although the magnitude of association is similar for
all subtypes, the genetic variants underpinning the associations may still vary. It is well
known that the rare but high-risk BRCA1 mutations tend to give rise to triple negative and
basal-like breast cancer in carriers [Boyle, 2012, Perou et al., 2000]. Additionally, there are
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several indications that individual risk SNPs may confer risk of breast cancer by a certain ER
status only. An early study of individual SNPs found heterogeneity by ER status for all five
investigated loci [Garcia-Closas, M. et al., 2008]. Two years later, this finding was expanded
on when Reeves and colleagues found heterogeneity by ER status for a polygenic risk score
comprising of 14 SNPs. Additionally, they saw heterogeneity for three of the individual SNPs
[Reeves et al., 2010]. Four years later, a large international genome-wide association study
(GWAS) of triple-negative breast cancer (TNBC) could identify 30 SNPs at 25 loci predicting
risk for TNBC [Purrington, K. S. et al., 2014].

Age at menarche

Age at menarche appears to be a risk factor for all types of breast cancer. The literature is
consistent in reporting early age at menarche as a risk factor for both ER positive breast
cancer as well as for TNBC [Anderson et al., 2014, Barnard et al., 2015]. The limited number
of studies performed suggest no evidence of heterogeneity for HER2-positive type and luminal
B-like. However, the estimates are less precise and there is some uncertainty for the role of
age at menarche for both these subtypes at present [Barnard et al., 2015].

Parity

According to the Anderson review, there was evidence of a protective effect of parity for ER
positive BC in 19 out of 22 included studies, but for TNBC, a protective effect was seen
only in 3 out of 12 studies [Anderson et al., 2014]. These conclusions were corroborated in
the Barnard review, in which the authors considered good evidence for a protective effect
of parity for luminal A-like cancers. Protective effect of parity on risk for basal-like breast
cancer was less evident, with an increased risk or null association in more than half of the
included studies. Conflicting results were seen for luminal B-like and HER2-positive subtypes
[Barnard et al., 2015].

Age at first birth

The evidence of effects of age at first birth is unclear for all subtypes with great variation
of estimates between studies, except for luminal A-like where a protective effect has been
consistently reported [Anderson et al., 2014, Barnard et al., 2015].

Breastfeeding

The most consistent observation of heterogeneity in reproductive risk factors for molecular
subtypes is a stronger protective effect of breastfeeding as compared to luminal cancers
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[Barnard et al., 2015, Anderson et al., 2014]. Breastfeeding was long seen as non-influential
or controversial as a risk factor for breast cancer. A literature review of the field up until 2000
concluded that there was little evidence of any effect of lactation on the risk of breast cancer,
if any it was confined to premenopausal cases [Lipworth, 2000]. However, in the same year
the first systematic review with a meta-analysis was published, which included 23 case-control
studies. The meta-analysis concluded that there was evidence of a protective albeit modest
effect, not only found to be strongest for risk of premenopausal breast cancer (OR 0.77
(95 % CI 0.72 to 0.84), but also evident in postmenopausal BC (OR 0.92 (95% CI 0.85 to
0.98)). The authors concluded "a slight but significant protective effect of breastfeeding
on the risk of breast cancer in premenopausal women" [Bernier, 2000]. Two years later, a
re-analysis of data from 47 studies from 30 countries concluded that there was a slight risk
reduction conferred by prolonged lactation, observed both in cohort studies as well as case-
control studies [The Collaborative Group on Hormonal Factors in Breast Cancer, 2002]. In
recent years, studies of breast cancer by ER status have found the largest protective effects
of breastfeeding in ER negative disease. A 2015 meta-analysis of studies assessing the
associations between breastfeeding and breast cancer by ER status found evidence for a
negative association only in triple-negative or ER/PR negative breast cancer (OR in cohort
studies 0.84 (0.72, 0.97), OR in case-control studies 0.76 (0.67, 0.86)) [Islami et al., 2015].

Hormone replacement therapy

The risk for breast cancer by molecular subtype from use of hormone replacement ther-
apy (HRT) has been very sparsely reported as compared to reproductive variables. In
the prospective cohort Nurse’s Health Study, increased risk for use of HRT was seen for
luminal A-like and TNBC, but no clear trend was observed for luminal B-like and HER2-
positive [Tamimi et al., 2011]. In contrast, a pooling of two case-control studies found
increased risk of luminal subtypes for current use of HRT, but no effect on the risk of TNBC
[Phipps et al., 2008]. There are further studies examining the risk by ER and PR status. In
the European EPIC cohort, another prospective cohort study, the risk of both ER+/PR+ and
ER-/PR- breast cancer was found to be increased for current users of HRT, but the magnitude
of increase was larger for ER+/PR+ BC [Ritte, R. et al., 2012]. In the prospective California
Teachers Study, evidence for increased risk with HRT use was only seen for ER+/PR+ BC,
and possibly HER2+, but not for TNBC [Saxena et al., 2010]. In the AMBER consortium,
use of HRT was only associated with risk for ER positive BC [Rosenberg et al., 2015]. There
is thus disagreement between studies on the presence of an increased risk for TNBC or ER
negative BC from HRT use, and evidence by molecular subtypes is scarce.
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BMI in young ages

High BMI at a young age has been found to be negatively associated with breast cancer,
but limited results are available from analysis of subtype heterogeneity. The Nurse’s Health
Study found a trend of inverse association of BMI at 18 and risk for basal-like breast
cancer [Tamimi et al., 2011]. The AMBER consortium assessed associations between young-
adult BMI and risk of breast cancer by ER status and menopausal status at diagnosis. In
premenopausal women, they saw null associations for risk of TNBC but a negative association
to ER+ breast cancer. Additionally, they found a protective effect for all postmenopausal
breast cancer, irrespective of ER, PR and HER2 status [Bandera et al., 2015]. Studies
assessing adult premenopausal BMI have generally found negative associations to luminal
sutypes, but null associations to TNBC [Barnard et al., 2015]. However, it is unclear at
what age BMI was assessed in these studies. One study saw a positive association between
premenopausal BMI and risk of TNBC [Gaudet et al., 2011, Barnard et al., 2015].

Mammographic density

A meta-analysis in 2013 of studies analysing mammographic density by receptor status
concluded no evidence of heterogeneity by ER status or HER2 status [Antoni et al., 2013].
Our group has previously investigated mammographic density by molecular subtypes in
a analysis of 111 cases of breast cancer, without finding any indication of heterogeneity
[Eriksson et al., 2012]. In the Carolina Breast Cancer Study, no difference in associations
to luminal A-like and basal-like breast cancer was found [Razzaghi et al., 2013]. Similarly,
no heterogeneity by IHC subtype was found in the Breast Cancer Surveillance Consortium
[Phipps et al., 2012].

3.6 Risk factors by mode of detection

Risk factors for interval cancer is of interest to identify, as women diagnosed with IC have
had no benefit from participation in the mammography screening. If individualised screening
will be implemented in the future [Shieh et al., 2017], knowledge of factors predisposing to
interval cancer could prove useful in screening program designs.

Studies comparing risk factors for breast cancer between interval and screening-detected
cancers have generally been low in case numbers. First and foremost, by its influence
on mammography screening sensitivity, high mammographic density is overrepresented
among interval cancers [Domingo et al., 2014]. Findings are additionally consistent for a
higher frequency of current users of HRT among IC [Kirsh et al., 2011, Domingo et al., 2010,
Wang et al., 2001, Gilliland et al., 2000]. Studies disagree on whether family history is
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more common among IC. Four studies found a trend for over-representation among IC
[Mandelson et al., 2000, Kirsh et al., 2011, Lowery et al., 2011, Domingo et al., 2010]. In
contrast, three studies
found either no difference or the opposite pattern [Gilliland et al., 2000, Musolino et al., 2012,
Brekelmans et al., 1994]. The parametrisation of family history varied across these studies,
from comparing any history verses none, to analysis by number of affected relatives but no
clear patterns related to categorisations are evident.

3.7 Risk prediction

A number of statistical models have been developed in the last thirty years, aimed at predicting
an individual woman’s risk of breast cancer. Such models are or can be employed for selection
of high-risk women, based on a predefined cut-off, for chemo-prevention trials, increased
screening practices or other means of prevention [Shieh et al., 2017, Howell et al., 2014]. In
1989, Mitchell Gail et al developed one of the earliest and probably most wide-spread models,
known as the Breast Cancer Risk Assessment Tool or popularly, the Gail model. The original
Gail model was based on age, age at menarche, age at first live birth, number of previous
breast biopsies, and the number of first degree relatives with breast cancer [Gail et al., 1989],
but has since then been extended. The Gail model is also the model with the most validation
reported. The discriminatory capacity has been found to vary from AUC of near 0.50 (i.e. no
better than random guesses) to 0.67 in different validation populations [Rockhill et al., 2001,
Tice et al., 2005, Adams-Campbell et al., 2007, Mealiffe et al., 2010]. In a cohort study of
postmenopausal women, the model was found to be useful only for predicting ER positive BC
(AUC = 0.60), as the AUC for ER negative disease was 0.50 [Chlebowski et al., 2007]. Nor has
the Gail model shown any value for predicting breast cancer in a cohort of African-American
women, with an AUC near 0.50 [Adams-Campbell et al., 2007]. The model has also been
found to overestimate breast cancer risk in a Singaporean population [Chay et al., 2012].
Later models have also focused on more detailed information about family history, such as
degree of relatedness and age at onset in the relations. Some models are restricted to modelling
genetic susceptibility based on information on family history, such as the BOADICEA model
[Antoniou, A.C. et. al., 2008]. Evaluated in this thesis, the Tyrer-Cuzick model attempts to
estimate the contribution of family history separated into two components of low-penetrance
and high-penetrance (BRCA) gene mutations, respectively. It further includes parameters
age, parity, age at first birth, height, BMI, age at menopause, use of hormone replacement
therapy, presence of lobular carcinoma in situ as well as history of atypical hyperplasia
[Tyrer et al., 2004]. The Tyrer-Cuzic model has shown comparatively better discriminatory
capacity than the Gail model in at least two studies [Powell et al., 2014, Quante et al., 2012].
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In a Californian population high in nulliparous women, it was found to have an AUC of
0.65, slightly outperforming the Gail model which showed AUC of 0.62 in this population
[Powell et al., 2014]. Similarly, in a study performed in the New York City Breast Cancer
Family Registry, the Tyrer-Cuzic model showed an AUC of 0.69, compared to the Gail models
AUC of 0.62 in this population [Quante et al., 2012]. However, the Tyrer-Cuzic model has
been shown to overestimate BC risk in a population of women with atypical hyperplasia
[Boughey et al., 2010]. The added predictive value of information on mammographic density
to risk prediction has been evaluated [Tice et al., 2005, Chen et al., 2006], including for the
Tyrer-Cuzic model [Warwick et al., 2014]. Synthesised genetic information in the form of
polygenic risk scores associated with risk for breast cancer have also been tested, with the aim
to predict risk of breast cancer [Mavaddat, N. et al., 2015]. In a Swedish case-control study,
the AUC for an extension of the Gail model with added information on BMI, mammographic
density and 18 breast cancer risk SNPs was found to be 0.62, as compared to and AUC of
0.56 when using the original Gail model [Darabi et al., 2012].
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4 Data material

4.1 Breast cancer cohorts (Papers I-IV)

This thesis is based on three breast cancer cohorts, two from Stockholm (Libro-1, STO-3),
and one from Stockholm and southern Sweden (KARMA)(Figure 8). Study I and II are built
solely on cases from Libro-1 whereas, in addition study III and IV includes cases and controls
from KARMA, and study IV also includes cases from the STO-3 trial. A graph comparing
the recruitment period for each study is given in figure 9 on page 22.

Figure 8 – Map over origin of cohorts included in the thesis. Libro1 and STO-3 are diagnoses
made in Stockholm County. Half of Karma is recruited from Skåne County and half from
Stockholm.

The Libro-1 study

Libro-1 is a case-only cohort of 5,715 breast cancer cases from the Stockholm-Gotland region
of Sweden diagnosed during the years 2001 to 2008. All women diagnosed during these years
still alive in 2009 were invited to take part of the study. Starting from the diagnoses listed
in the Stockholm-Gotland regional breast cancer quality register (described in a subsection
below), all unique breast cancer diagnoses made between 1st of January 2001 and 31st of
December 2008 were identified (n = 11,707). Cases diagnosed after age 79 (n = 1,249) or
among male patients (n=11) were excluded, and addresses for the remaining 10,447 individuals
were accessed from the Swedish Tax Agency, who holds addresses to all Swedish residents.
After excluding deceased cases (n = 645) as well as those for whom no address could be
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identified (n = 454), 9,348 cases were invited by letter to participate in the Libro-1 study.
Several attempts were made to contact non-responders, and the final number of consenting
cases amounted to 5,715 (consent rate = 61%).

The KARMA study

KARMA, or KARolinska MAmmography project for risk prediction of breast cancer, is a
large, prospective cohort study that invited all women who underwent population-based
mammography screening or clinical radiology examinations at Stockholm South General
Hospital, Helsingborg Hospital, Skåne University Hospital, Lund, and Landskrona Hospital
between January 2011 and March 2013. In total 210,233 women were invited and 70,877
consented (consent rate = 34 %). The cohort profile of KARMA has recently been published
[Gabrielson et al., 2017].

The STO-3 trial

The STO-3 is a subgroup of the Stockholm trial on adjuvant tamoxifen in early breast
cancer, a randomized trial comparing the survival benefit of adjuvant tamoxifen to no
tamoxifen [Rutqvist and and, 2007]. The trial enrolled postmenopausal women < age 71
with histologically verified invasive breast cancer diagnosed in Stockholm. Recruitment began
in 1976 and the trial remained open until 1990, when evidence of a survival benefit from
adjuvant tamoxifen emerged, rendering continued randomization unethical. STO-3, the
material included in this thesis, consisted of the subgroup of 891 trial participants (63% of
the full trial) classified as "low-risk", defined as lymph node negative (N0), with tumour size
(pT) < 30 mm.

Figure 9 – Overview of cohorts included in the thesis. STO-3, recruitment 1976-1990. Libro-1,
diagnosis 2001-2008 in Stockholm county. Karma, enrollment 2011-2013. Prevalent and incident
Karma cases diagnosed 2005-2015 used in studies iii-iv.
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4.2 Population-based registers (Papers I-IV)

In addition to study-specific data collected in each cohort, the studies have been merged
to official registers for information on cancer diagnosis, follow-up and detailed information
regarding the tumours.

A short note on population registers in Sweden

The practise of registering the population has a long tradition in Sweden, originating from
the church books kept by each local parish, enforced nation wide by law in 1686. The first
attempt at centralized record keeping was made in 1749 when "Office of Tables"5, Tabellverket,
was launched to provide population-based statistics for knowledge-based governance and
research [Wannerdt, 1982]. Tabellverket was eventually re-launched as Statistics Sweden,
the government authority still responsible for official statistics. Today, anyone born in or
intending to live in Sweden more than a year is required to be included in the Swedish
Population Register6 [Ludvigsson et al., 2009]. For this purpose, a unique ten-digit Swedish
personal identity number (PNR) is assigned to each individual by the Swedish Tax agency7.
Having a PNR ensures both the individuals right to voting and social benefits, as well as their
duties, such as paying taxes. The Tax Agency’s population register is updated and transferred
daily to the government agency Statistics Sweden, which keeps the Total Population Register
[Ludvigsson et al., 2016]. Through the PNR, record keeping and linkages are made possible
for several beneficial purposes, including tracking individual medical records across different
health care institutions, keeping health care registers for evaluation of health care as well as
enabling population-based epidemiological research [Ludvigsson et al., 2009]. Of relevance for
this thesis, the National Board of Health and Welfare8 is the governmental agency responsible
for official statistics concerning health and disease including health care and causes of death.

The Swedish Cancer Register

All Swedish physicians irrespective of health care provider are obliged to report their di-
agnoses of malignant tumours, as well as certain benign tumours, to the Swedish Cancer
Register. In addition, pathologists and cytologists are also obliged to report all tumours
diagnosed from excised specimens, aspirates and autopsies. The register was initiated in 1958.
Since mid-1980’s, cancer registration is made to the six Regional Cancer Centres9 (RCC),

5Fantastic name
6Swedish: Folkbokföringsregistret
7Swedish: Skatteverket
8Swedish: Socialstyrelsen
9Swedish: Regionala cancercentrum
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which are locally responsible for coordinating, coding and ensuring quality of the reporting.
The RCCs in turn report cancer statistics annually to the National Board of Health and
Welfare, holder of the Swedish Cancer Register [Talbäck, 2011, Barlow et al., 2009]. The
completeness of reporting to the Swedish Cancer Register has been evaluated twice, showing
to be 95.5 % for all cancer-sites in 1978 [Mattsson and Wallgren, 1984] and 96.4 % in 1998
[Barlow et al., 2009]. Breast cancer was reported at 98.1 % in 1978, and evidenced the highest
level of completeness of all cancer sites reported in 1998. Most under-reporting was seen in
patients older than 70 at diagnosis and in cases lacking histological confirmation of the cancer
[Mattsson and Wallgren, 1984, Barlow et al., 2009]. Information available for each tumour
diagnosed includes;

• Date of diagnosis (defined as earliest health care contact made, most often the date
when the cytology/biopsy referral was written to pathology)

• Invasive, yes or no (malign/benign)

• TNM stage variables from clinical examination (Available from 2003-09-15), according
to UICC version 6

• SNOMED coding of histological type

The Breast Cancer Quality Register

The Cancer Register includes all types of tumours diagnosed, and as such, the scope for
detailed information for specific cancers is limited. Instead, detailed information for breast
cancer tumours and their treatment is available through the Breast Cancer Quality Register
(BCQR). From 1976 to 2006, a regional quality register was kept at each of the six RCC
units, but in 2007 a national breast cancer quality register named INCA was launched. Our
study participants have been diagnosed both before and after the launch of INCA, and thus
both versions of the BCQR have been used in this thesis. Variables derived from the BCQR
for use in the thesis include:

• Date of diagnosis (defined as earliest health care contact made, most often the date
when the cytology/biopsy referral was written to pathology)

• Invasive, yes/no

• Tumour size in mm, pT and clinical T

• Lymph node involvement, pN and clinical N

• Distant metastasis at diagnosis, pM and clinical M
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• ER status, positive or negative (Available from 2001)

• ER percent staining (Available from 2007)

• PR status, positive or negative (Available from 2001)

• PR percent staining (Available from 2007)

• Nottingham Histological Grade, 1 to 3 (Available from 2004)

• HER2/neu status (Available from 2007)

The reporting to the register has not been validated overall in any independent publication,
but the registry-reported treatment has been validated against medical records and found to
have a high degree of accuracy [Wennman-Larsen et al., 2016]. Additionally, comparisons of
data collected for this thesis on ER and PR staining from medical records was compared to
information reported to the register and found to be of high concordance (Lin’s concordance
correlation coefficient 0.92 (0.91 - 0.93), unpublished data). As mentioned above, the reporting
of a cancer diagnoses is made to the RCC quality register and through RCC further reported
to the National Cancer Register. In order to harmonize the data between the BCQR and the
Cancer Register, the staff at RCC performs quality checks of the reporting and curates any
discrepancies in reporting of diagnosis date etc. Thus, if the date of diagnosis differs between
the BCQR and the cancer register, the earliest date is entered for both registers 10.

The Cause of Death Register

The Cause of Death register was used to gain information on follow-up of survival outcomes
in study II and IV. Since 1952, cause of death for anyone with a Swedish PNR is available
for research electronically through the Swedish Cause of Death Register. The register
has recently been described fully in an international publication by Brooke and colleagues
[Brooke et al., 2017]. Cause of death is ascertained by physicians in accordance with WHO
standards and coded using the International Statistical Classification of Diseases and Related
Health Problems (ICD) codes. Before 1991, the register is essentially complete as the issuing
of a death certificate was legally required for a burial up until 1991. Since 1991, the number
of deaths is essentially complete, but 0.9 % of deaths are registers as missing death certificate.
96 % of all entries have a specific cause of death noted [Brooke et al., 2017]. In two studies,
the quality of the reporting to the register was found to be high for malignancies, with
90% accuracy for malignancies overall [Johansson et al., 2009], and 93 % accuracy found

10Personal communication, Annette Asterkvist, administrator of the National Cancer Register and BCQR
at RCC Stockholm-Gotland
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specifically for breast cancer as compared to reviewed case summaries from patient records
[Nyström et al., 1995].

4.3 Questionnaire data (Papers I-III)

In studies I, II and IV we made use of questionnaire data filled out by the study participants
in Libro-1 and KARMA at time of enrolment. Web-based questionnaires were used as the
main format. However, in Libro-1 women could also opt to have a paper questionnaire mailed
to them at their home address and 30 % of women chose this option. The questionnaires
share a large proportion of the questions posed, but the KARMA questionnaire, which
builds on the Libro-1 questionnaire, is more extensive and detailed on questions regarding
family history, parity and breastfeeding, and also covers aspects such as diet which was not
included in Libro-1. However for this thesis, only questions regarding areas covered in both
questionnaires have been included. Whenever depth of information varied across cohorts for
a variable, the information was truncated to the lowest common level of information.

4.4 Mammography screening attendance and outcomes (Paper I)

Data collection

Individual-level data on mammography screening attendance underlined the study outcome
definition in study I. In the Stockholm-Gotland region, data on participation and outcome
of the population-based mammography screening program is transferred from each mam-
mography clinic to a database kept at the regional cancer centre (RCC). Stockholm-Gotland
was the only RCC unit that kept centralized records of the mammography screening, for all
other regions raw data must be retrieved from each mammography clinic. By linkage through
the PNR, for each individual the date of mammography visit, initial outcome (’selected for
follow-up’ vs. ’healthy’) and follow up of abnormal findings all the way to a potential confir-
mation of a cancer diagnosis is retrievable. We obtained data from the RCC mammography
screening database of all visits undertaken by women diagnosed in 2001-2008 and alive in
2009 (n= 10,447), including all Libro-1 participants, and the associated screening outcomes.

4.5 Mammography images (Papers I-III)

Data collection

In studies I, II and IV, measurements on mammographic density were included in analysis.
These measurement were derived from mammography radiology images collected in the Libro-
1 and KARMA studies. For Libro-1, analogue mammograms were collected in 2011-2012
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from hospital archives at the four major mammography clinics in the Stockholm region, and
all digital mammograms were retrieved electronically and stored in house. Historically, clinics
performed analogue imaging in the radiology department, but during the period 2006-2008,
all four Stockholm clinics converted to digital imaging. South Hospital was first to go digital
in April 2006, followed by St Göran hospital in August 2007, Karolinska hospital in May
2008 and Danderyd hospital in August 2008. The proportion of women with radiology films
identified and collected from treating clinic was 68 %, range from 63 - 95 % across clinics,
after the initial collection. To increase completeness of the data a second phase of collection
of analogue films was carried out in 2013-2014. The image archives at all four clinics were
revisited, this time seeking images for all study participants at all clinics, and films which had
been sent for long-term archiving outside of the clinics were retrieved. The final proportion
of Libro-1 women with at least one analogue film collected was 84 %. All analogue films were
digitized using an Array 2905HD Laser Film Digitizer (Array Corporation, Tokyo, Japan)
before being returned to the clinics.

Figure 10 – Example of MLO view mammography images from one of the study populations

Measurement of mammographic density

Mammographic density was measured using a fully automated approach previously developed
by our group in 2011 [Li et al., 2012]. Briefly, the approach was as follows: Image pixel
features (n = 772) were extracted using ImageJ software, from analogue mammography images
from an independent case-control cohort. The dimensionality of the features was reduced in
two steps to avoid over-fitting: Firstly, principal components analysis was applied reducing
the information into 93 principal components (PCs). Secondly, by using penalized linear
regression with the lasso method, variable selection was performed under cross-validation.
Specifically, the 93 PCs were entered as covariates into two separate lasso regression models
to predict total area of the breast and total dense breast area respectively, as annotated by
Cumulus. Using the resulting regression models, total breast area and total dense breast area
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could then be predicted on unseen images, given their image features. Percent mammographic
density (PD) could then simply be calculated as dense area/total area. The method showed a
Pearson correlation coefficient of 0.88 with Cumulus, and the mean difference in PD between
the two methods was 0.019 (95% CI, -1.66 to 1.69)[Li et al., 2012]. This model was applied
to the analogue images for the Libro-1 and KARMA study participants, predicting percent
and absolute area of mammographic density. In paper IV, an updated version of the above
method was used in order to also predict accurately PD on digital images in KARMA. This
was achieved by repeating the algorithm outlined above with a new training dataset that
also including digital images. With the amount of mammography images available in Libro-1
and KARMA (> 1,000,000), a high-throughput approach of analysing images is preferred
over manual or semi-automated approaches such as Cumulus, for reasons of both time and
cost, as well as precision of the measurement.

4.6 Genotype data (Papers II and III)

Data collection

In studies II and IV, data on individual genetic markers (SNPs) analysed in DNA extracted
from blood was included in the analysis. Libro-1 participants had been provided 2x10ml
EDTA-buffered blood-sampling tubes with transportation kits at study invitation and were
instructed to donate blood through phlebotomy by staff at their local clinic. Instructions
on blood sampling protocols for the study were also provided as a separate letter addressed
to the medical professionals. Through phlebotomy performed by trained research nurses
belonging to the study, KARMA participants donated 24 ml of blood at the KARMA study
centres. Samples collected from LIBRO-1 and KARMA participants were sent to the UK
and genotyped using the Illumina iSelect SNP Array (iCOGS) of 211,155 SNPs. Missing
information on genotypes were imputed using 1000 Genomes [specifically phase I integrated
variant set release (v3) in National Center for Biotechnology Information build 37 (hg19)
coordinates].

Calculation of polygenic risk scores

Polygenic risk scores used in this thesis were calculated as described in [Li et al., 2015].
Briefly, each score was based on the same 77 SNPs, namely all SNPs discovered to date of
construction of the PRS, in either the COGS GWAS consortia or previous discovery GWAS
[Mavaddat, N. et al., 2015]. A complete list of SNPs included is given in [Li et al., 2015].
The polygenic risk scores were calculated by summing the number of risk alleles for each of
the 77 SNPs (0, 1 or 2 alleles), weighted by the per-allele log odds ratio for the minor alleles
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reported by Mavaddat and colleagues [Mavaddat, N. et al., 2015]. The formula for the PRS
was thus calculated as follows for each individual

PRS = β1x1 + β2x2...βnxn

where 1-n is the respective SNP, βn is the per-allele log odds ratio of SNPn, and x is the
number of alleles (0, 1 or 2) for SNPn. Three PRS were calculated, one for log-odds ratios
for associations to breast cancer in general, and one each for associations to ER positive and
ER negative breast cancer respectively.

4.7 Medical records (Papers III and IV)

Data collection

In studies III and IV, data collected from medical records and pathology reports on im-
munohistochemical analysis of tumour specimens was included in the analysis. Although the
BCQR nowadays includes variables on percentage staining of the estrogen and progesteron
receptors (ER, PR), this was not the case before year 2007. In addition, information on
HER2 status was not registered prior to 2007, and information on Ki-67 staining was only
included in 2013, reported as "low" or "high". To obtain information on percentage staining
and status of the IHC variables, the thesis author or a research nurse instructed by the
author, extracted raw information from digitized and/or digital pathology reports and medical
journals. After having performed a pilot data extraction on 100 individuals, data was entered
into a study-specific data sheet. Quality control of the collection was assessed by the author
by random re-assessment of data entries made by the research nurse, as well as of 5 % of
the data collected each day by the author. Additional checks were made by comparing the
cleaned data to the data reported to the Breast Cancer Quality Register for Libro-1 cases
with overlapping information. Completeness of continuous data on ER and PR staining was
higher in the study-collected data, but the agreement of staining according to both sources
was high (Lin’s CCC 0.92 (0.91 - 0.93)).
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5 Statistical methodology

5.1 Statistical models used throughout the thesis

5.1.1 Logistic regression

In regression analysis, it is possible to control for several variables at once when the regressing
an exposures on the outcome. For this reason regression models are some of the most used
tools in analytical epidemiology. For many of our study questions, we have been dealing
with categorical study outcomes of a binary nature, and hence logistic regression was used in
studies I-II. The logistic regression model is a linear predictor function given by

logit(p) = ln

(
p

1− p

)
= α + β1x1 + β2x2 + ...+ βnxn

The logistic transformation of (p) is necessary because the right hand side of the equation
may take on values greater than 1 or less than 0, which are not defined for a probability. By
taking the logarithm we arrive at β expressed as log-odds. By exponentiating the β’s we get
the odds ratio (OR) for the exposures in question.

Logistic regression assumes that the observations are independent of each other, and
that collinearity between the exposure variables is low. Further, it assumes that continuous
variables are linear in the logit, and that there are no strong outliers.

5.1.2 Multinomial logistic regression

Multinomial logistic regression (MLR) was used in studies I-III to estimate adjusted odds
ratios. MLR is an extension to the logistic regression, and is for unknown reasons further
known by many English names, such as polytomous logistic regression, polychotomous logistic
regression and multiclass logistic regression. It is useful when we have a n > 2 categorical
outcome variable which in addition is nominal, such as subtypes of breast cancer. Multinomial
logistic regression estimates OR’s separately for each outcome category by fitting k-1 models,
where the kth equation is relative to the referent outcome group and k is the number of
outcome categories 11.

11Technically, the estimates from a MLR are not odds ratios, but a ratio of two relative risks, denoted
relative risk ratios (RRR’s). When there are only two categories in an MLR, the RRR is equivalent to
the corresponding OR from a binary logistic regression. The RRR is commonly interpreted as odds ratios
and have been denoted as OR’s throughout all studies included in this thesis. For more information see
https://www.stata.com/statalist/archive/2005-04/msg00678.html
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5.1.3 Proportional-Hazards regression

Proportional-Hazards regression, popularly known as the Cox model after its initiator, was
used to model survival in study II. With it, the hazard h(t) of an event at time t is modelled
as a function of a baseline hazard and the independent variables, given by

h(t) = h0(t)exp(β1x1 + β2x2 + ...+ βkxk)

where h0(t) is the baseline hazard at time = t, for a person with the value 0 for all the
independent variables. The advantage of this model is that no assumption about the shape
of the underlying hazard is needed. A key assumption of the Proportional–hazards model is
that censoring is non-informative, i.e. the mechanism behind an observation being censored
should not be related to the probability of the event of interest occurring. Furthermore, the
hazards for different strata must be proportional over time. This can in some settings be a
strong assumption, and it must always be checked by i.e. inspecting the plot of Schoenfeldt
residuals against time.

5.1.4 Random forest

Random forest classifiers were used in studies III and IV. A random forest belongs to the
category of supervised machine learning algorithms, i.e. statistical classifiers or predictors that
learn to classify unseen observations by teaching themselves decision rules for classification in
a training data set. The term ’supervised’ refers to the use of an annotated training data
with "correct" answers, which serves as a guide or supervisor to the algorithm. This can
be contrasted against unsupervised learning, for example the clustering algorithms used to
investigate the patterns of different gene expression clusters between breast cancer tumours
[Perou et al., 2000].

The name ’Random forest’ describes in two words the essential components of the
algorithm. ’Forest’ hints that the algorithm builds multiple decision trees, which together
forms a forest of trees. Rather than relying on a single tree, increased robustness is achieved
by consulting an ensemble of trees12. ’Random’ refers to the statistical process of constructing
the trees in the forest: For each tree construction, the algorithm is handed a randomly
drawn-with-replacement sample (a bootstrapped sample) of the same size n as the training
data. In addition, the algorithm is for every tree handed a random subset of the features (also
known as predictors, or variables) available for classification. Thus, the resulting forest of
decision trees consist of trees built from random representations from the underlying training
data on both the observation and the feature level. This diversity of trees generally intends

12Random forest is thus an example of ensemble learning methods
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to ensure robustness of the resulting forest, whereas isolated decision trees tend to over-fit
to the training data resulting in low external validity. The decision on how to classify an
unseen observation is taken by a majority vote of the decisions reached by each individual
tree in the forest. For example: An illustration of three decision trees is provided in Figure
11 on page 38. Together, they make up a small forest, albeit not a random forest. Given
an observation classified as ER positive, HER2 negative, PR positive, Ki-67 high, each tree
would classify this as luminal B (tree (a) and tree (b)) or luminal A (tree (c)). The majority
vote by this forest would classify that observation as luminal B.

5.1.5 Measures of concordance and performance of classifiers

In study IV, we evaluated several IHC proxies in their ability to classify tumours by PAM50
status. Several metric for evaluating classifiers exist [Hossin and Sulaiman, 2015], however
we settled on Cohen’s kappa metric and accuracy. Additionally, we calculated class-wise
sensitivity and specificity. The metrics are described in table 3 below. Accuracy is essentially
the percentage agreement, i.e. the fraction of observations that are classified correctly out
of the total number of observations. Kappa estimates the excess in agreement observed
above that expected from random guesses. It is usually interpreted as values ≤ 0 indicating
no agreement beyond random guessing, 0.01 to 0.20 as slight, 0.21 to 0.40 as fair, 0.41 to
0.60 as moderate, 0.61 to 0.80 as substantial, and 0.81 to 1.00 as near perfect agreement
[McHugh, 2012].

Table 3 – Metrics used for evaluations of IHC proxies in study IV. TP = true positive. TN =
true negative. FP = false positive. FN = false negative. Pr(o) = observed agreement (defined
the same as Accuracy). Pr(e) = expected agreement if random guessing.

Metric Formula Interpretation

Accuracy tp+tn
tp+tn+fp+fn

The percentage agreement, or fraction of

correct decision of all decision made

Kappa P r(o)−P r(e)
1−P r(e)

The excess agreement observed,

above that from random guessing

Sensitivity tp
tp+fn The fraction of true positives correctly identified

Specificity tn
tn+fp The fraction of true negatives correctly identified

5.1.6 Kaplan-Meier, or Product–limit estimator

Kaplan-Meier plots were used in study IV. With large enough sample sizes, the Kaplan-Meier
estimator attempts to estimate the survival function over time for a population. If the status
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at the last observations (either right-censored or having the event) and the time from start
of follow-up to the last observation is known for all subjects, the curves of said estimates
can be plotted overall or by groups of interest. The curve will be displayed as a step-wise
declining function, which declines as events occur. Censored observations are denoted by a
small vertical tick on the line at time of censoring. A limitation of the Kaplan-Meier method
is that it cannot take into account the influence of other covariates; for adjusting, other
methods such as the Cox model has to be used. Moreover, due to the declining number of
observations over time, the estimated probability of survival is more precise immediately
after start of follow-up than towards the end.

5.2 Study designs

5.2.1 Paper I

Paper I was a case-only study with the aim of comparing interval breast cancers (IC) to
screening detected breast cancers (SC) with respect to tumour characteristics and risk factors,
overall and stratified by mammographic density quartiles. All invasive breast cancer diagnoses
made 2001-2008 in Stockholm-Gotland region in females aged 40-71 at diagnosis were eligible
for analysis regarding tumour characteristics. Diagnoses where mode of detection was not IC
or SC were excluded. In analysis stratified by mammographic density, and in all assessments
of risk factors, analysis was by necessity restricted to participants in the Libro-1 study, which
had been recruited from the aforementioned population.

Classification of outcome: Mode of detection

Starting from the diagnosis date as entered in the BCQR, the closest preceding date of
mammography screening was identified for each individual (denoted "index screen"). In the
absence of any record of a pre-diagnostic screening visit, the individual was classified as a
symptomatically detected cancer in a non-attender, and thus not included in study I. For the
remaining cases, the time between index screen and diagnosis was calculated and compared to
a normal screening interval, which for the region and time period corresponded to 18 months
for women ages 40-49 at diagnosis, and 24 months for women ages 50 or above. If the time in
days between the index screen and cancer diagnosis exceeded the normal screening interval,
the individual was excluded from the study and classified as symptomatically detected cancer
in a former screening-attendant. By definition, for all remaining cases, the mode of detection
must either be screening-detected (SC) cancer or interval cancer (IC).

Screening-detected cancer was defined as having a diagnosis of cancer within the normal
screening interval after the index screen, where the individual had been selected for follow-up
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of a suspicious mammography finding and had a PAD code confirming a diagnosis of breast
cancer following the index screen follow-up. Interval cancer was defined as having a diagnosis
of cancer within the normal screening interval, for individuals declared healthy and not
selected for further follow-up at index screen. A special category were individuals who had
been selected for follow-up at the index screen but lacked a PAD code confirming the diagnosis
(n = 173, whereof invasive n=143, whereof Libro-1 participants n = 99). Approximately
50 % of these cases (48 Libro-1 cases) were diagnosed within 3 months of the index screen
and therefore likely true SC’s despite missing PAD code. Moreover, approximately 50 %
(51 Libro-1 cases) were diagnosed >= 180 days after the index screen, thus likely interval
cancers which were false negatives from the index screen. For the sake of having a clean
study definition, all 173 cases selected for follow-up at index screen that lacked PAD-code
were excluded from analysis.

5.2.2 Paper II

Study II was designed as a case-only study. All Libro-1 women with a primary breast cancer
diagnosis were eligible for inclusion. For this study question, non-invasive tumours were
included in analysis. The aim of the study was to assess whether scores from the Tyrer-Cuzick
model, the PRS for breast cancer and percent mammographic density were equally dispersed
between ER negative and ER positive cases, between tumours of high and low grade, between
lymph node positive and negative tumours, as well as tumours of different size. This was
achieved by regression analysis of the scores against outcome variables tumour prognosticators.
Additionally, proportional hazards regression was performed to compare hazard rates of
distant metastasis for cases with high and low scores of the risk prediction tools respectively.
Cases were followed from date of diagnosis until either censoring (at date of death from any
cause or end of follow-up in September 2014) or the event of interest occurred.

Classification of outcome variables:
prognosticators and date of distant metastasis

Information on tumour prognosticators was obtained from the BCQR. ER, PR and HER2
status was used exactly as coded (positive or negative) in the BCQR. Survival analysis was
performed with distant metastasis-free survival as the outcome. Information on date of
distant metastasis was obtained from the BCQR, and date of death was obtained from the
Cause of Death Register.
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Calculation of Tyrer-Cuzic Risk Score

For study II, the 10-year individual risk of breast cancer was calculated for each participant,
using the Tyrer-Cuzic risk prediction model. The resulting risk was denoted "Tyrer-Cuzic
Risk Score" (TCRS). Information on variables included in the TCRS calculation was obtained
from the study questionnaire and the TCRS was calculated using the online tool IBIS from
the developers of the Tyrer-Cuzic model [Tyrer et al., 2004].

5.2.3 Paper III

The aim of study III was to assess heterogeneity in risk factors for breast cancer across
molecular subtypes of the disease. The material was analysed with a case-control design,
as well as case-only analysis restricted to the cases. Cases were combined from Libro-1
and KARMA studies, and controls were drawn from breast cancer-free women in KARMA.
Inclusion criteria for cases were;

1. Invasive cancers only

2. Primary breast cancer diagnosis made 2005-2015

3. Full information on ER, PR, HER2 and Ki-67 staining of the tumour available in
medical records.

The motivation behind the second criteria was two-fold; Firstly, the practice of staining
for HER2 and Ki-67 was not widespread in clinical pathology practice before those years.
Secondly, as we aimed to assess risk factors by molecular subtypes, we wanted to minimize
the survivor bias as certain subtypes have a higher risk of metastasis the first years after
diagnosis.

Classification of outcome variables: Molecular subtypes

Starting from information on IHC markers, we used a random forest classifier to assign
molecular subtypes to cases. The classifier was trained on a subset of the data (n=258) which
was annotated with PAM50 subtypes. Input variables to the classifier were ER, PR, HER2
(all binary), Ki-67 and age (continuous). After training, the random forest predicted subtype
for the remained of observations.

PAM50 subtypes had been assigned previously based on RNA-sequencing of gene ex-
pression of the tumours as described in detail in [Wang et al., 2016], and was used as such
for the present study. Briefly, RNA was extracted from fresh-frozen bio banked tumours
and sequenced on the Illumina HiSeq 2500 platform. After quality control and data pre-
processing detailed in [Wang et al., 2016], molecular subtype was assigned using the Nearest
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Shrunken Centroid Classifier for the PAM50 gene set, with parameters estimated from
the publicly available dataset The Cancer Genome Atlas (TCGA) breast cancer study
(http://cancergenome.nih.gov/).

Data regarding ER, PR, HER2 and Ki-67 was obtained directly from medical records
and cleaned and coded by the author.

• ER and PR were coded as positive or negative, by (1), applying a cutoff at 10% percent
immunohistochemistry staining and (2), if percent staining was unavailable, as noted
"positive" or "negative" in the records.

• HER2 was coded from two variables, IHC staining of 0+ to 3+, and FISH analysis of
gene amplification of the ErbB2 (HER2) gene. HER2 was coded as negative if IHC was
below 2+, or 2+ to 3+ with no FISH amplification. Confirmed amplification through
FISH was required for coding positive HER2 status.

• Ki-67 was used as percentage cells stained. According to Swedish guidelines for pathology
of breast cancer, Ki-67 should be measured in hot spot regions of the slides and entered
as percentage cells positive [Grabau, 2014].

As sensitivity analysis, the St Gallen IHC proxy was used an alternative approach for
assigning molecular subtypes. The proxy is described in figure 11 A, page 38.

5.2.4 Paper IV

Study IV was performed in two separate cohorts and was largely cross-sectional, with the
exception for the survival analysis. The aim of the study was to assess the concordance of
three distinct IHC proxies to the PAM50 method of classifying breast cancer into molecular
subtypes. The first cohort, denoted "Clinseq", used a subset of the cases included in study
III, namely those 258 with RNA-sequencing and PAM50 subtyping available through the
Clinseq project. The second cohort was STO-3, tumours diagnosed 1976-1990. The STO3
included only node negative, <30 mm tumours.

Analysis was performed separately for each cohort. All cases were classified according to
each IHC proxy, and classifications were compared to their previously ascertained PAM50
status. For each proxy, Cohen’s kappa statistic and the overall accuracy were calculated with
95 % confidence intervals. Sensitivity and specificity were calculated for each subtype against
all other subtypes. Additionally, the datasets were restricted to PAM50 luminal subtypes,
calculating sensitivity and specificity for classifying luminal A vs B.
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Classification of outcome variables: IHC proxies

Cases were classified according to three different IHC based proxies. One proxy (denoted
’IHC3’) was based on ER, PR and HER2, and two additionally included Ki-67 (denoted ’St
Gallen’ and ’Prolif’). In figure 11 on page 38, each IHC proxy is depicted in the form of
a decision tree. The IHC proxies were based on information on ER, PR, HER2 and Ki-67
staining for the tumours.

• For the Libro-1 and KARMA materials, ICH markers were based on the material
collected and coded as described for study III above.

• For STO-3, tumours were retrospectively stained for immunohistochemistry of ER,
PR, HER2 and Ki-67 status centrally. FFPE tissue blocks were sliced, randomly
annotated with an ID and shipped to the University of California Davis Medical Centre
for pathology.

– ER and PR were coded as positive or negative by applying a cutoff at 10% percent
immunohistochemistry staining for ER, and 10 or 20 % for PR.

– HER2 was coded as positive if IHC was 3+, and negative for 0 to 2+.

– Ki-67 was measured as percentage cells stained in whole-slide sections, not hot-
spots.

Assignment of PAM50 subtypes

In Clinseq, PAM50 subtypes were assigned as described for study III above. In STO-3,
PAM50 subtypes were assigned from RNA gene expression data hybridized onto Agilent
microarray platforms as described earlier [Esserman et al., 2017], and used for the study. As
described earlier [Esserman et al., 2017], assignment of PAM50 subtypes using the PAM50
classifier was done after centering the gene expression values to the median expression level
for each gene by ER status calculated in a sub-sample of all ER negative tumours and an
equal number of randomly selected ER positive tumours.
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(a) St Gallen proxy

(b) Prolif proxy

(c) IHC3 proxy

Figure 11 – Decision trees for the IHC proxies. The use of ’?’ for St Gallen and Prolif proxies
denotes unclassifiable combinations of markers.
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6 Main results and interpretations

Interval cancers are more aggressive than screening-detected cancers, but only
in women with low mammographic density

In study I, we found support for our hypothesis that interval cancers are particularly enriched
for true, fast-growing breast cancer in women with non-dense breasts. In the strata of low
mammographic density, interval cancer were more commonly lymph node positive, high grade,
ER and PR negative, HER2 positive, and triple negative as compared to screening-detected
cancers. In dense breasts, only tumour size and ER status differed between groups (Figure
12).

(a) Low mammographic density (<20%) (b) High mammographic density (>41%)

Figure 12 – Forestplot of odds ratios for assessed tumour characteristics in study I, comparing
interval detected verses screening-detected breast cancer

These observations are consistent with the idea that true interval cancers (i.e. aggressive,
fast-progressing disease) are more common in the group of women with high screening test
sensitivity. If a tumour of a detectable size had been present at the previous screen, it is
much more likely to have been found in a woman whose breast had low mammographic
density. Likewise, the interval cancers among women with high mammographic density are
more likely to have been masked at the previous screen (false negatives), due to the lower
sensitivity of the screening test in this group [Domingo et al., 2014].

Current users of HRT were overrepresented among interval cancers

The investigation into the distribution of risk factors across IC and SC revealed differences pri-
marily in family history, current use of hormone replacement therapy (HRT) and BMI. Higher
frequency of BRCA mutation carriers and lower frequency of high parity was also observed in
IC [Holm et al., 2015]. The finding of HRT has consistently been observed in previous works
[Kirsh et al., 2011, Domingo et al., 2010, Wang et al., 2001, Gilliland et al., 2000], but the
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impact of mammographic density in explaining this observation was not known. It has
been argued that the association between IC and HRT is mediated through increasing the
mammographic density which leads to lowered screening sensitivity and higher probability of
IC [Laya et al., 1996, Kavanagh et al., 2000, Wang et al., 2001]. If this was the only expla-
nation, we would expect the association to be present mainly among dense breasts. However
we saw similar associations in both strata. This is not necessarily indicative of HRT giving a
more aggressive phenotype. Likely explanations would also include a surveillance-bias, as
women undergoing current HRT treatment during the period were advised to be vigilant
for symptoms of breast cancer and to attend sporadic screening outside of the screening
program. In study III we evaluated HRT use as a risk factor by molecular subtypes and saw
no indication of HRT use being a risk factor for the more aggressive subtypes. This would
indicate that surveillance bias, rather than aggressive biology, is a more probable explanation
for the observed association with current HRT use and IC diagnosis.

Family history was more common among interval cancers - especially in the low
mammographic density strata

We saw a higher frequency of family history among diagnoses of IC, especially in the non-dense
strata with aggressive IC. Family history has been found to be more common in IC than SC in
some [Mandelson et al., 2000, Kirsh et al., 2011, Lowery et al., 2011, Domingo et al., 2010],
but not all [Gilliland et al., 2000, Musolino et al., 2012, Brekelmans et al., 1994] previous
studies. Definition of family history has varied across studies, and most of these works were of
low sample sizes (100 to 700 IC and SC total) additionally with few hypothesis test performed,
making conclusions hard to reach. Our study was the largest to date to investigate family
history and IC. The association with family history and IC has been confirmed in a Spanish
study (HR for true IC, 2.11, 95% CI 1.60 to 2.78) [Domingo et al., 2014]. It could be that
the observed association for family history is due to a higher vigilance for symptoms and
checking up symptoms among relatives to breast cancer cases, however the larger estimate in
the non-dense strata could speak against that as sole explanation. Associations for BRCA
mutations could possibly also be the effect of a surveillance bias, if the mutation status
or a strong heredity in the family was known before the diagnosis and caused the woman
to be under increased clinical surveillance. We did not have information on the timing of
BRCA testing to evaluate this. Part of the association for BRCA could be due to the known
enrichment of basal-like breast cancer for BRCA1 mutation carriers [Boyle, 2012], as we
found that TNBC, a proxy for basal-like BC, were approx. 5-fold more common in true
IC. Recent work in our group has also found a higher prevalence of rare, high penetrance
mutations beyond BRCA among interval cancers in low dense breasts [Li 2018, unpublished

40



work]. These genes were typically not tested for clinically during the study period, and it
is thus unlikely that those associations are due to surveillance bias. Instead, they could be
explained by association between these genes and an aggressive phenotype.

The breast cancer polygenic risk score of 77 SNPs is primarily a score for iden-
tifying risk of ER positive tumours

Figure 13 – Distribution of the polygenic risk score for controls and cases in study III, scores
separated by ER status among cases.

Two of the included works investigated heterogeneity of polygenic risk score between
subtypes of breast cancer. In both studies, we observed a pattern where subtypes with
favourable prognosis tended to have the highest values in the score. In study II, the score
was found to be on average lower in ER negative tumours (20 % decrease in odds of ER
negative tumour per standard deviation increase in the score), tumours above 40 mm (14%
decrease) and grade 3 tumours (14% decrease vs grade 1) [Holm et al., 2016]. In study
III, the score was associated with a linear increase in odds per standard deviation of the
score for luminal A (74% increase), luminal B (43%) and HER2-enriched subtypes (36%),
but not for the basal-like subtype (15%, n.s.) as compared to controls [Holm et al., 2017].
The dose-response appeared strongest for the luminal subtypes (Figure 14, page 43). The
above findings are understandable if one considers the distribution of the score among ER
negative cases, which was hardly distinguishable from the distribution among controls, see
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figure 13 on page 41. Better separation for ER negative cases verses controls is unlikely
to be achieved unless more SNPs specific for predicting ER negative BC can be included.
The majority of cases included in large GWAS discovery datasets have been ER positive
[Mavaddat, N. et al., 2015, Pharoah et al., 2002]. Individual SNPs have recently been found
to differ in associations to molecular subtypes, in both the Carolina Breast Cancer Study
and among Chinese Han women [O’Brien et al., 2013, Xu et al., 2017]. Encouragingly, recent
GWAS efforts focusing on associations to ER negative or TNBC specifically have advanced
knowledge on risk variants for this aggressive subtype [Purrington, K. S. et al., 2014, Li, 2014,
Ruiz-Narváez et al., 2016].

The Tyrer-Cuzic risk model may under-perform for identifying early-onset, ag-
gressive breast cancer

In study II, the TCRS was higher in cases with ER positive and grade 1 tumours as compared
to cases with aggressive features (ER negative and grade 3). This finding was restricted to
early-onset, pre-menopausal cases, below age 40 at diagnosis. These results may indicate
that young women at risk for aggressive tumours do not share the set of reproductive risk
factors underpinning the TCRS. The estimates of association increased when analysis was
restricted to women without a family history of breast cancer. Moreover, depending on the
degree of contrast in TCRS between young women with aggressive breast cancers and healthy
controls, the TCRS may not prospectively identify these women as being at risk of breast
cancer. However, we did not compare the scores to a distribution of scores in controls, as this
was a case only design. It should be noted that we did not include information on history
of atypical hyperplasia in calculating the score, as we did not have access to such data at
the time. It would probably had little impact on our estimates, as the number of women
with atypical hyperplasia was found to be too low for analysis in study III where we had
information on previous benign breast diseases available, but should be kept in mind.

Reproductive risk factors appear differently associated with risk of basal-like and
non-basal like breast cancer

We saw in study III, that the pattern of associations to parity, breastfeeding and age at first
birth appeared to differ for the molecular subtypes:

• Parity was protective for all subtypes except basal-like. ORs for having more than
two children vs. nulliparity were 0.61 - 0.63 for luminal and HER2 subtypes but no
difference was seen for basal-like (Table 3, [Holm et al., 2017]).

• Having the first child after age 30, as compared to before 30, was associated with an
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increase in odds of luminal A, B and HER2 subtypes (ORs 1.32 and 1.42 respectively),
but a lower OR of 1.16 for basal-like. These differences did not yield statistically
significant heterogeneity, but agreed with the overall pattern.

• Breastfeeding did show heterogeneity, with odds ratios of luminal A and B subtypes of
1.49 and 1.74 respectively, null effect for HER2-enriched, and 4-fold increased odds for
basal-like disease (OR 4.2, 95 % CI 2.20 to 7.99).

A composite variable of parity and breastfeeding revealed that, relative to nulliparous women,
the added effect of breastfeeding to parity varied for basal-like and non-basal like subtypes,
with no increased risk for never breastfeeding for non-basal like types, but an increased risk
for the basal-like subtype in women never breastfeeding (OR 4.17; 95% CI 1.89 to 9.21, see
forestplot in figure 14). Corresponding estimate for triple negative breast cancer was OR
2.95; 95% CI 1.47 to 5.90) (Supplementary table 6, [Holm et al., 2017].

Figure 14 – Summary of findings from Study III: Forest plot of associations to risk factors
where heterogeneity was observed, as estimated by odds ratios, for each subtype of breast cancer
examined.

Results for breastfeeding in light of previous works

The numbers of parous women who never breastfed were low (367 controls, 88 cases), and
therefore our reported estimates are imprecise and need further replication. Our findings of
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an increased risk of basal-like breast cancer among parous women who never breastfed, is
corroborated by the one previous report in the literature assessing a similar parametrisation
[Millikan et al., 2008]. In the Carolina Breast Cancer Study, a population-based case-control
study, an odds ratio for basal-like breast cancer of 1.9 (95% CI 1.1 to 3.3) was seen for
parous women who never breastfed, relative to nulliparous women [Millikan et al., 2008].
They defined basal-like breast cancer as ER/PR/HER negative, Cytokeratin5/6 and EGFR
positive, and thus differed to our definition. Recently a population-based, prospective study
of Norwegian women born between 1886 and 1928 investigated breastfeeding, using the same
definition of basal-like BC as Millikan and colleagues [Horn et al., 2014]. They reported an
odds ratio for never vs. ever breastfeeding (n.b. restricted to parous women) to be 1.06
for basal-like cancer, thus not confirming the results in Millikan et al. Intriguingly, the
same study also assessed cases that were five-marker negative (ER/PR/HER2/Cyt5/EGFR
negative) and for this group the OR for never breastfeeding was 3.85 (95% CI 1.10 to
13.56) [Horn et al., 2014]. This estimate is similar to the results for basal-like breast cancer
reported in our study. Different results using varying definitions of basal-like disease, and the
relatively low number of cases who never breastfed in these studies, merits caution in the
interpretations at this stage. It appears more studies are required before we may know if the
association between never breastfeeding and TNBC truly differs by cytokeratin and EGFR
markers. Although for TNBC as a whole, there is robust evidence of a negative association
to breastfeeding [Islami et al., 2015, Anderson et al., 2014].

Mammographic density increases the risk of interval cancer, but not by increas-
ing the risk of aggressive phenotypes

In study I, we saw that mammographic density is higher on average among interval cancers
compared to screening-detected cancers. This is explained by breast density’s influence on
the screening test [Domingo et al., 2014]. Consistently in both study II and III, mammo-
graphic density was associated with all types of the disease, irrespective of aggressiveness
in phenotype. Our results thus agree with the consensus understanding from the literature
that mammographic density is a general risk factor for all breast cancers [Antoni et al., 2013].
They are also consistent with the hypothesis that the risk conferred through high breast
density is due to increased mammary gland mass at risk for malignant transformation,
i.e., mammographic density is a surrogacy measure for underlying number of cells at risk
[Trichopoulos et al., 2007].
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IHC proxies show moderate agreement with PAM50 gene expression based sub-
types

In study IV, we compared several methods used in the literature to determine molecular
subtype. We found that IHC based subtypes had fair to moderate agreement with PAM50
gene expression based subtyping. The kappa values were higher in the Clinseq material for all
comparisons, likely due to a wider spread of the Ki-67 distribution in this cohort, achieving
better separation. Nevertheless, there was not a large difference between the kappa values in
STO-3 and Clinseq, and the best agreement to PAM50 was seen with the simplistic Prolif
IHC proxy in both cohorts.

IHC proxies and PAM50 classification often disagree on classification of luminal
A and B subtypes

One reason that the agreement to PAM50 was only moderate, was the challenge of dis-
tinguishing between luminal A and B. When these classes were collapsed into one luminal
category, the kappa increased to 0.71 (95% CI 0.65 to 0.78) in STO-3 and 0.69 (95% CI
0.58 to 0.80) in Clinseq, indicating substantial agreement, and accuracy rose to at around 90
% in both cohorts. Important information may also lie in the direction of re-classification.
Inspection of cross-tabulations of proxy vs PAM50 revealed a pattern of the St Gallen proxy
over declaring luminal A as luminal B, and the reverse of over declaring luminal B as luminal
A using the Prolif proxy. The IHC3 proxy declared almost all of the luminal B as luminal A
in our material.

Sensitivity was low for the HER2-enriched subtype

When collapsing luminal A and B into one luminal category, sensitivity and specificity for
luminal breast cancer was very high, at 0.98-0.99 and 0.77-0.66 respectively in STO-3 as
well as Clinseq. Similarly, sensitivity and specificity was high for the basal-like subtype, at
0.83-0.85 and 0.96-0.98, respectively. However, although HER2-enriched subtype had a very
high specificity at 0.99, sensitivity was only around 0.36 in both cohorts. HER2-enriched
subtype as defined by PAM50 were misclassified as basal-like, luminal B and even luminal A
by the IHC proxies, but the most common confusion was with luminal B.
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7 Methodological considerations

Our studies have all been observational in nature, and therefore suffer from the curse
common to all observational designs: Claims of causality can never be made. Nevertheless,
observational studies are sometimes the only means to address scientific questions in human
populations, as not all exposures are permissible to randomization for either ethical or
practical reasons. Just as caution must be made in extrapolating findings from experiments
in cell lines or a specific animal model to other settings, so must caution be exercised in
interpreting observational data.

Selection bias

Study I

The analysis of tumour characteristics between IC and SC has little selection bias, as it
essentially consists of the entire source population for Libro-1 that were active screening
participants. All registered breast tumour diagnoses in females below age 80 during 2001-2008
that were found to be either SC or IC were included in our analysis, and cancer registration
in Sweden has high completeness [Barlow et al., 2009]. However, the analysis stratified by
mammographic density and analysis which included information on risk factors had two levels
of potential selection biases:

1. Cases had to be participants in the Libro-1 study in order to consent to collection of
images and questionnaire data, so non-responder bias applies by definition.

2. There is a survivor bias build into Libro-1. As the study was initiated in 2009, only
cases surviving until 2009 could be included.

To address these concerns, sensitivity analysis was performed. For concern (1), we assessed
whether the associations between mode of detection and tumour characteristics were similar
when restricting analysis to Libro-1 participants. For concern (2), we assessed the findings in
analysis restricted to the most recent diagnoses made, in 2005-2009. The same conclusions
were reached in both cases.

Study II

In study II, the same general concerns related to selection bias for participating in Libro-1
apply as for study I. To address the issue of survivor bias, sensitivity analysis restricted to
diagnoses 2005-2008 was performed, yielded same conclusions regarding analysis of TCRS,
PRS and MD with near identical estimates for PRS and MD, and slightly attenuated estimates
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for TCRS with ER status as outcome. Similarly, in survival analysis restricted to diagnoses
made 2005-2008, same conclusions were reached (HR above median TCRS/PRS 0.60, 95 %
CI 0.37 to 0.97 all women, HR 0.17 (95 % CI 0.02 to 1.34) in young women).

Study III

In study III, the survivor bias in Libro-1 was less of an issue, as we only included diagnoses
from 2005. However, participation bias still applied. The main concern for study III lies in
the unusual case-control design. Although the participants in Libro-1 were recruited from
the same regions as half of the Karma study and during approximately the same calendar
period, there are likely differences between Libro-1 and Karma participants on group level
due to differences in recruitment approaches. This is a potential issue as control women
were exclusively from Karma. Libro-1 can be considered a population-based cohort in that
all diagnoses made for a certain period as well as region were invited. Karma on the other
hand recruited participants mainly through the population-based mammography screening
program, thus technically limiting inclusion to women willing to partake in screening. Non-
attendance has been linked to levels of physical activity, adhering to a vegetarian- or vegan
diet, low self-rated health, stress, alcohol abstinence and smoking [Lagerlund et al., 2015].
Social factors such as employment, income, marital status, immigration from a non-Nordic
country and having five or more children have also been linked to non-attendance of screening
in Sweden [Zidar et al., 2015, Lagerlund et al., 2002]. Some of the potential bias is likely
lessened by the fact that both studies rely on women willing to partake in scientific studies.
To address the potential differences between studies, all estimates were adjusted for education
level and being born in Sweden or not. However, unmeasured confounding was likely still an
issue. For this reason, we assessed also OR’s for breast cancer in general, to ascertain whether
estimates obtained with our design mirror expected magnitude and direction of associations
to risk factors. Additionally, we restricted analysis to a case-only design where imbalance
between Karma and Libro-1 was not a potential issue, and could draw the same conclusions
about heterogeneity from this analysis.

Study IV

In study IV, the tumours included were on average larger than the underlying population of
tumours. This was inevitable as availability of tumour materials for analysis was a requirement
for performing the study, and very small tumours had to be excluded. We do however believe
that the inference regarding concordance between IHC and PAM50 is valid for breast cancers
in general.
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Handling of missing data

Throughout the thesis work, in final analysis, missing data was handled by complete case
analysis. However, in Study I, complementary data collection was made to ensure as high as
possible completeness of the data on mammographic images. In study III and IV, we opted
for using data on IHC markers collected by us from medical records rather than using data
from the BCQR. This was motivated by the fact that data on Ki-67 was not available the
BCQR, but also since data on HER2 and percent ER/PR staining was incomplete or absent
in the BCQR for the first years of the study period.

Confounding

One of the greatest challenges in making inference from observational data (and in some
circumstances, randomised trials [Rothman, 2014]) is the presence of confounding. This was
mainly a challenge for studies I and III. For study II, we did not attempt to draw any causal
conclusions, instead the inference was concerned with prediction. Study IV was a descriptive
study in nature, and inference was limited to concordance measures. For study I and III,
we chose to include potential confounders in our statistical models based on the concept of
directed acyclic graphs (Figure 15) [Schisterman et al., 2009]. By blindly including every
variable available to the researcher, over-fitting is achieved. However it is also possible to
create biased models already when adjusting for a limited number of variables, for instance
by adjusting for a mediator when assessing an overall effect, or adjusting for a collider, or by
introducing collinearity [Schisterman et al., 2009].

Figure 15 – Directed acyclic graph of the relationship between an exposure, outcome, mediator,
confounder and collider

There is thus never an easy answer to the question of what variables to include in a model;
we have tried to make these judgements based on subject matter knowledge on known or
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suspected confounders. We have however been limited to the variables available through
registers and questionnaires, and there is the ever present risk of unmeasured confounding
affecting the reported associations, as subject matter knowledge is limited to our current
understanding of the subject of study.

Additionally, when adjusting for BMI in study III we should note that BMI was only
available for post-diagnosis measurements in Libro-1. The estimates of interest did not change
after adjusting for BMI. However, it is possible adjustment for pre-diagnostic BMI would have
resulted in altered estimates. For some women, weight changes as a result of breast cancer
diagnosis and/or treatment, and this is likely not random [Playdon et al., 2015]. For this
reason, we chose not to evaluate BMI as a risk factor in study III. BMI can be investigated as
a risk factor by subtype in these cohorts in the future, when the KARMA study has gathered
more follow-up time and cases. Post-diagnostic BMI was however evaluated in study I, and
found to be negatively associated with interval cancer. The results for BMI in study I thus
merit some caution in interpretation.
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8 Ethical considerations

Sadly, medical history is not short of examples of abuse of other humans and unethical study
protocols [Abbott, 2008, Nature, 2012, Nature, 2017]. It should be with great responsibility
and deep sense of respect for the other human being that we continue to practice medical
research to this day. History has taught us that we are always running the risk of putting
our own goals and needs above those of others - especially when we are considering other
humans far removed from us, such as study subjects. Observational studies are certainly
no exception. Throughout the analysis, we have handled highly sensitive and personal data
about our study participants. This would not have been legal without their consent, obtained
after informing each participants of the study scope, goal, data types to obtain, personal
risks and rights. Furthermore, before the recruitment into each study could begin, the study
protocols and study questions, weighing the potential benefits of the study against potential
risks of harm for the participants, had to be approved by an independent ethical committee.

When analysing collected data or data from national registers, a researcher never has
access to the raw personal information such as name and personal registration number.
However, it was necessary for the data collection from medical records that the author, in
role of data collector, had access to such information during the actual collection. As soon as
data was entered into the study, this information was removed and not kept for any part of
the analysis. All study participants had given their consent to withdraw data from journals
and the responsible at each clinic approved the extraction which was carried out with a
temporary licence for access to each electronic journal system, logging the collectors every
move.

The main issue for our studies using sensitive personal data lies in the handling of
data in a secure, and pseudomised manner. ’Pseudomised’ refers to de-identication of the
personal registration numbers into an assigned study-ID. Although this may seem identical
to ’anonymised’, it is at least theoretically possible to identify a certain individual based
on the combination matrix of data at hand, especially in small studies with low frequencies
within strata - although this is strictly prohibited by law -, hence the term ’pseudomisation’.
Every PhD student at our department must undergo a mandatory education in good data
management, which includes information on the legislation relating to handling sensitive
data. This could be compared to the clinical practice, where caregivers are legally obliged
to maintain patient confidentiality [Vårdguiden, 2018]. Perhaps there is scope for a similar,
code of conduct more formally sworn in by each data analyst, too?
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9 Concluding remarks

The final verdict on whether we have come any closer to answering the questions posed in this
thesis can only come with time and in retrospect. In the scientific method lies the willingness
and aptitude to correct hypotheses which does not hold up in light of new data. However,
at this point in time, and with the data at hand from this thesis, a few conclusions may be
noted.

In study I, we could establish that there are clear differences in aggressiveness between
IC diagnosed in dense and non-dense breasts. This is an important difference to account for
when re-thinking screening program designs, as neither of these IC groups currently benefit
from their participation in screening but for separate reasons. In dense breasts, the issue is
mainly the low sensitivity of the screening modality being used. Among women at risk for
aggressive IC, it would be more important to consider modifying screening intervals, if this
group of women can be prospectively identified.

Our approach of stratifying IC by mammographic density has been used in later studies
not included in this thesis, to disentangle molecular differences between IC and SC. We have
shown that relative to SC, IC in non-dense breast have lower polygenic risk score values
[Li et al., 2015], in line with what we found for aggressive cancer as defined by receptor status
in studies II and III. We have also seen an over-representation of the aggressive basal-like
and HER2-enriched molecular subtypes in this category of women [Li et al., 2017]. Ongoing
work in our group has began to evaluate the impact of high risk, rare germline mutations
beyond BRCA1/2 in the risk for IC, with preliminary findings of higher prevalence of such
variants in non-dense IC. Future studies of risk factors for interval cancer may make use of
mammographic density to separate false negative SC from true IC.

As far as prediction of breast cancer risk is concerned, we have found reasons to believe
that polygenic risk scores based on the SNPs known to date of study II, are less likely
to identify women at risk of ER negative breast cancer, particularly breast cancer of the
basal-like type. If SNPs are to be used in predicting risk of TNBC and basal-like BC, they
should probably be the SNPs identified in GWAS with a high proportion of cases with ER
negative disease. Concerns regarding the validity of the Tyrer-Cuzic model for predicting risk
of early onset ER-negative breast cancer are also raised from our results, although we have
only performed case-only analysis for TCRS. Ideally these analysis should be performed in
independent cohorts, and contrasting the effects to controls, ideally in a prospective setting.
Continued caution in generalizing the validity of a prediction model to other populations
than the intended target population in which it was developed is warranted. It is however
reassuring that mammographic density genuinely appears to be associated with risk of breast
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cancer independent of subtype, as observed both in studies II and III. If risk-prediction
models are to be used to identify women at medium- or high risk of breast cancer for targeted
screening, such models should take into account the different profile in risk factor of TNBC
and basal-like breast cancer. These cancers are otherwise potentially double-cursed to evade
screening detection: First at the invitation level due to the low prediction level for basal-like
breast cancer in the PRS and other potentially other risk prediction models, and secondly by
their tendency to surface in screening intervals, because of their aggressive nature.

The challenge of the IHC proxies to agree with PAM50 subtyping on what constitutes an
HER2-enriched, a luminal A and a luminal B tumour introduces some question marks as to
what these gene-expression clusters represent. When Calza and colleagues used two separate
statistical approaches to cluster tumours into molecular subtypes from their gene-expression,
they too found the highest rate of discordance to be between luminal A and B, and between lu-
minal B and HER2 [Calza et al., 2006]. Given that the original papers on molecular subtypes
also struggled to settle on one, two or three luminal subtypes and that tumours typically re-
classified between luminal and HER2-enriched groups [Perou et al., 2000, Sorlie et al., 2001],
it is not that surprising that IHC proxies struggle to mimic these classifications.

If no distinction between luminal subtype is needed, IHC proxies do well compared to
the PAM50. However, the St Gallen IHC proxy was developed for the very purpose of
distinguishing between luminal A and B. For this purpose, it should be noted that we saw a
high degree of misclassification for all proxies investigated. Moreover, the confusion between
luminal A and B tumours by classifiers may hamper discovery of differences in risk factors, if
such differences do exist.

The high specificity for identification of HER2-enriched and basal-like subtypes is reassur-
ing when drawing conclusions regarding their respective risk factors, in our studies as well
as others. The low sensitivity for the HER2-enriched type means IHC proxy definitions of
luminal cancers are diluted by HER2-enriched cancer to various extents. If HER2-enriched
and luminal tumours truly have different risk factors, this would attenuate estimates for
luminal cases.

One question which has lingered in my mind (and many other’s) for some time, is whether
there exists separate aetiology for breast cancer by subtypes - be it by pre and post-menopausal,
by ER status, or by PAM50 subtypes. The finding that PRS is not associated with risk
for basal-like BC, and the strong preference for BRCA1 mutations to result in basal-like
BC seems to indicate that there may be some merit to such a hypothesis. Associations
seen between germ line mutations and phenotype are less likely to be due to confounding,
compared to exposures encountered later on in a lifetime. Additionally, with the exception of
breastfeeding, there appears to be weak if any relationships with reproductive risk factors and
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risk of basal-like breast cancer. Observations from stem cell research suggest that basal-like
breast cancer most closely resembles luminal progenitor cells, whereas all other subtypes are
more similar to mature, differentiated mammary epithelial cells [Visvader and Stingl, 2014].
Whether this is explained by distinct cell-of-origins for these breast cancers, or by other
means of differences in aetiology is unclear. Until experiments such as careful lineage-tracing
can be done in breast cancer (stem) cells, this question will remain to be answered.
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10 Future perspectives

As is often the case, when trying to answer one question we end up generating many new
ones to answer. A few such questions which spring to my mind for the future are,

• How would the identified differences in associations between reproductive risk factors,
genetic risk factors and BC subtypes hold up in a large, prospective study with gene-
expression based definitions of subtypes?

• What would the conclusion of another methodological study comparing several statistical
methods to assign molecular subtype of breast cancer be?

• Why do we see a preference for BRCA1 mutations to yield basal-like tumours?

• How would the observed associations between TCRS and prognosticators translate into
differences in absolute risk in a prospective setting? Are they clinically relevant?

• Is breastfeeding (or lack thereof) truly causal in its association to basal-like breast
cancer, or are the observations we see due to unmeasured confounding? Alternatively,
are they in some cases the result of early signs of the disease manifesting itself?

• It would be valuable to see larger studies investigate reasons for cessation of breastfeeding
in the context of risk for TNBC, to see if voluntary and involuntary early cessation of
breastfeeding affects risk of basal-like breast cancer equally. This was after all the case
in the Carolina Breast Cancer Study [Millikan et al., 2008], and it would be interesting
to see it expanded upon.

• Should we develop separate risk prediction models aimed at predicting risk of basal-like
and non-basal-like breast cancer?

• Will models such as the Tyrer-Cuzic be useful to predict women at risk of breast
cancers that are diagnosed as interval cancers? Or will it skewed towards predicting
screening-detectable disease, through its associations to grade and ER status?

• What will the conclusions of the recently started ATHENA trial [Shieh et al., 2017] of
risk-prediction based mammography screening verses age-based screening be? Will it
be the same for all subtypes? This trial will be very interesting to follow up on in the
future.

Some of the questions pertaining to causality and aetiology must clearly be answered by
a combination of laboratory experimental studies in cell lines, animal model and patient
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derived tissue samples as well as epidemiology. However, there is a lot to do still in the field of
breast cancer epidemiology, specifically with regards to analysing more data on tumour and
patient biological markers and coupling this to national and regional health registers. This is
especially so beyond Scandinavia and other high-incidence countries in general. Gathering
information on reasons for not breastfeeding would be informative in future cohorts, as
would information on PAM50 available in larger sample sizes be. Additionally, to achieve
less selected, more population based studies on interval cancer and molecular subtypes,
information collected in the quality registers on e.g. mammographic density and PAM50
subtype would also enable better scope for future research. This must however be contrasted
to administrative burdens for clinicians entering the data at clinic level, and the security and
integrity for the patients and participants.

55



11 Acknowledgements

None of these works would have been possible without the availability of data. For this I wish
to acknowledge:

The principal investigators, original data collectors and data base ppl Thank you
for your efforts to create STO-3, KARMA and Libro-1.

All the participants in the included study cohorts As a scientist working with these
projects I hope we will however slowly, piece by piece, turn the trust you have put in
us into contributions to improved practice of medicine.

Funding Libro-1 and KARMA projects were funded by the Swedish research council, as
part of the translational research umbrella environment CRisP. KARMA was mainly
funded by a substantial donation from the Märta and Hans Rausing initiative against
breast cancer. The STO-3 trial was funded originally by King Gustav V jubilee fund
and the Swedish Cancer Society. Further funding for this PhD has come from the
Swedish research council and the Swedish Cancer Society.

Writing my PhD thesis would not have been possible without the support and insight shared
with and provided for me by a large number of people. I am indebted to, among others:

Kamila Czene, Main supervisor For always being there to support every project when
you sit down and methodologically devote your time and presence to the question at
hand. Thank you also for the opportunity and trust to be involved in planning and
carrying out data collection, which has been truly educational. Your sharp intellect
and problem-solving skills are truly inspirational. I have learnt so much during these
years and under your guidance, and I am forever grateful to you for taking me on as a
student.

Per Hall, Co-supervisor For providing a glimpse of the real world outside of researcher
corridors when giving clinical perspectives on our studies, which is invaluable, but also
for being a pillar of combined optimism and realism. Thank you also for initiating the
study cohorts we used. Without data, what are we?

Keith Humphreys, Co-supervisor For being a source of thoughtful scepticism to learn
from, but also a friendly face in the forest of PhD studies, and for many an interesting

56



discussions about life in general. I have always enjoyed every conversation we have had,
both over a coffee as well as over data. If co-supervisors were decades, please feel free
to call yourself the seventies.

In addition to my thesis advisors, two people have had more or less formal roles as well
as contributed to the education of the author.

Mats Hamberg External mentor, chemistry professor. You have been a constant inspiration
for many of your students, your enthusiasm for discovery and mechanisms combined
with your stringent logic and way of science sets the standard against which I tend to
evaluate my work. Thank you for believing in me as a student and recognizing life’s
various struggles. Thank you also for pushing me out of my comfort zone when needed
and for convincing me I could belong in research.

Alexander Ploner Statistician, teacher, self-acknowledged professional pessimist (I beg to
differ) and, I may add, language diversifier. For statistical teaching since Anno 2009,
study guidance, discussions, endless moral support and humour along the way, and for
always sharing your truly genuine enthusiasm for data, statistics, science, programming
and curiosity with your colleagues - thank you. ’Magic numbers’ still annoys me. And
hopefully one day I will understand this whole ’degrees of freedom’ concept... Any
day now. A day with a meeting with Alex is a happy day at work, I know so many
colleagues that can agree to that.

My co-authors not previously mentioned, in alphabetical order: Abbas Cheddad,
Hatef Darabi, Martin Eklund, Louise Eriksson, Mikael Eriksson, Jingmei
Li, Linda Lindström, Mattias Rantalainen, Sven Törnberg, Nancy Yu. For
making each study better than it was before. Special thanks to Sven Törnberg, head
of screening at RCC, for facilitating my visits to the regional cancer centre, always
making me feel so welcome. Hatef, for warning me about the perils of trusting data
whatever the source, "Even if it is from me", and for being so reliable and generous
with sharing your knowledge. Abbas, for your understanding and warm spirit and
for all your help in my chasing after understanding the structure of our imaging data.
Nancy, for helping me put together the analysis for our manuscript so effortlessly,
despite working in separate campi. Linda, I still remember when we first met and
discussed Ki-67! Thank you for enabling study IV to happen, and for all the interesting
discussions we have had. I have so much to learn from you. Mikael, You have been
instrumental as Keeper of The Data and all things related to Karma and Libro1. Thank

57



you for the endless help I have received upon every email or spontaneous knock on
your door (and there were MANY visits - sorry!). Thank you for being the professional
problem-solver never making me feel out of place.

Additionally, a number of people have contributed to my education and understanding
of the thesis subject. I am indebted to:

Dr Eduard Azavedo Dedicated head of the Karolinska mammography unit, for his gener-
ous time and help in tracing lost mammographic images, always taking time to explain
the details of radiological work stations and daily proceedings of the mammography
clinic so that the quality of the science on interval cancer and screening is ensured. Dr
Azavedo also played an important role in solving some issues with my Study 1. In
this context, I also wish to thank Fredrik Strand for putting me in contact with Dr
Azavedo.

The staff at the KS mammography unit Who showed me the workings of an examina-
tion and answered my questions regarding the process of image aquisation.

Sini Kilpeläinen, Agneta Lissmats, Ulla Johansson and Anette Asterkvist at the
Regional Cancer Center Stockholm-Gotland, who helped me understand the breast
cancer quality registers and whose collaboration was essential in disentangling the
mammography database.

Hanna Fredholm for letting me to shadow you during your clinical work. These experiences
added much value to my understanding of breast cancer, and it was incredibly kind of
you to invite me. Thank you for being so dedicated to the patient care and quality of
science.

Martin Malmberg, Cecilia Arnesson & Boel Heddson For all your help with access-
ing and understanding pathology and mammography data in Southern Sweden.

Agneta Lönn & Erik Olason Thank you for great efforts made in the complementary
data collection in Libro-1, and for being so kind to me throughout the process.

Aki Tuuliainen & Michael Broms For helping me dig deeper into the origins of Libro-1.

Ola Steinberg For helpful suggestions on the handling of collaborations.

Marike Gabrielsson, Fredrik Strand, Judith Brandt For stimulating discussions on
the topic of breast cancer biology. Marike, also a thank you (swe-english) for letting
me assist with teaching in the medical program.

58



Of course, I owe a lot to the Department of MEB. In particular, I wish to thank:

The MEB Biostat group, especially (in approximate order of encounter) Arvid Sjö-
lander, Alex Ploner, Therese Andersson, Yudi Pawitan, Cecilia Lundholm,
Henrik Olsson, Mark Clements, Paul Dickman, Anna Johansson, Caroline
Weibull, Sandra Eloranta, Marie Reilly. Thank you for sharing your knowledge
with the department during many interesting meetings, seminars and teachings. You
are a big reason for why MEB is a great department to work at. I would also like to
make yet another acknowledgment to Paul Dickman, Anna Johansson and Gustaf
Edgren for sharing your teaching of SAS programming with the world. Without your
web page, I would never have achieved my masters thesis within the time allowed, and
the doctoral thesis would have been slow from the beginning.

Jonas Ludvigsson and Fang Fang Thank you for frequently sharing your knowledge and
experiences with the doctoral students. It has been inspirational and humbling and
inspirational again!

Camilla Ahlqvist, Erika Nordenhagen, Frank Pettersson, Marie Jansson And
the rerst of MEB’s TA staff: For always welcoming questions, always being one step
ahead and always figuring out the solution, with a kind, reassuring attitude: Thank
you.

My growing list of office mates, past and present: Robert Karlsson, Robert
Szulkin, Adina Feldman, Dounya Schoormans, Camilla Sjörs, Emilio Ugalde
Morales, Andreas Jangmo Thank you for all the company and fun throughout the
years! Extra thanks to Robert K and Ndegwa Gichora for generously sharing with me
(and others) the LATEXtemplate for this thesis.

Vilhelmina Ullemar - For your constant peership and support on and off for now more
than 10 years at KI. Thank you not the least for the constant intellectual challenge
and creative exchanging of ideas, high or low, in academia or related to life as we know
it. To me, it is and has been, invaluable. I am so blessed to have been at MEB during
your years here. I agree, let us not end there.

The entire open cohort of PhD students at MEB For offering invaluable moral sup-
port, teaching and fun at work. I am afraid of forgetting names, so I want to thank
everyone in one go! Thank you for all the lunches and coffee breaks, especially the sunny
days at the roof terrace I will never forget. Plus, extra thanks to everyone engaged in
the PhD group and arranging of seminars. Good stuff.

59



Family and friends

"Glitter, sparkles, and rainbows doctors" Haris, Teresa, Luisa, Milind, Joanna,
Sus and everything granny cooked and baked for us - Even the food deserves
an acknowledgement of its own. A special thank you to Susann for making my Lund
data collection trips whilst pregnant a bit more dignifient and fed.

Morfar I hope I don’t run in the opposite direction when I see numbers - I have you and
the many afternoons spent with games and marble bags to thank for that. I wish we
had had more time with you, but only because you were so dear to us. We miss you.

My family Your love means everything, and I am so, so grateful for having you. For
long-distance, long term, and close-up support as well as fresh perspectives: Tack,
Asante, Kiitos, Thank you & ευχαριδτω. Särskilt tack till Mamma, Pappa och
Ndegwa, for caring a little extra for Hedvig during these last weeks of thesis writing
during Christmas and New Years. And to Eva and Ndegwa, for proof-reading my
thesis despite writing your own. Jag hade aldrig blivit klar i tid om det inte vore för er.
Mume wangu, Karl and Hedvig. You are my everything. I cannot believe how
lucky I am to have you. Niwakupenda sana ♥.

60



References

[Abbott, 2008] Abbott, A. (2008). Lessons from the dark side. Nature, 451(7180):755–755.

[Adami and Killander, 1984] Adami, H. O. and Killander, D. (1984). Prediction of survival
in breast cancer. principles and current status of hormone receptors and dna content as
prognostic factors. Acta Chirurgica Scandinavica Suppl, 519:25–34.

[Adams-Campbell et al., 2007] Adams-Campbell, L. L., Makambi, K. H., Palmer, J. R., and
Rosenberg, L. (2007). Diagnostic Accuracy of the Gail Model in the Black Women’s Health
Study. The Breast Journal, 13(4):332–336.

[Allott et al., 2016] Allott, E. H., Cohen, S. M., Geradts, J., Sun, X., Khoury, T., Bshara,
W., Zirpoli, G. R., Miller, C. R., Hwang, H., Thorne, L. B., O’Connor, S., Tse, C.-K., Bell,
M. B., Hu, Z., Li, Y., Kirk, E. L., Bethea, T. N., Perou, C. M., Palmer, J. R., Ambrosone,
C. B., Olshan, A. F., and Troester, M. A. (2016). Performance of Three-Biomarker
Immunohistochemistry for Intrinsic Breast Cancer Subtyping in the AMBER Consortium.
Cancer Epidemiol. Biomarkers Prev., 25(3):470–478.

[Anderson et al., 2014] Anderson, K. N., Schwab, R. B., and Martinez, M. E. (2014). Repro-
ductive risk factors and breast cancer subtypes: A review of the literature.

[Anderson et al., 2002] Anderson, W. F., Chatterjee, N., Ershler, W. B., and Brawley, O. W.
(2002). Estrogen receptor breast cancer phenotypes in the surveillance, epidemiology, and
end results database. Breast Cancer Research and Treatment, 76(1):27–36.

[Anderson and Matsuno, 2006] Anderson, W. F. and Matsuno, R. (2006). Breast cancer
heterogeneity: A mixture of at least two main types? JNCI: Journal of the National
Cancer Institute, 98(14):948–951.

[Anderson et al., 2006] Anderson, W. F., Pfeiffer, R. M., Dores, G. M., and Sherman, M. E.
(2006). Comparison of age distribution patterns for different histopathologic types of breast
carcinoma. Cancer Epidemiology Biomarkers & Prevention, 15(10):1899–1905.

[Antoni et al., 2013] Antoni, S., Sasco, A. J., dos Santos Silva, I., and McCormack, V. (2013).
Is mammographic density differentially associated with breast cancer according to receptor
status? A meta-analysis. Breast Cancer Res. Treat., 137(2):337–47.

[Antoniou, A.C. et. al., 2008] Antoniou, A.C. et. al. (2008). The BOADICEA model of
genetic susceptibility to breast and ovarian cancers: updates and extensions. British
Journal of Cancer, 98(8):1457–1466.

61



[Armitage and Doll, 1954] Armitage, P. and Doll, R. (1954). The age distribution of cancer
and a multi-stage theory of carcinogenesis. British Journal of Cancer, 8(1):1–12.

[Bandera et al., 2015] Bandera, E. V., Chandran, U., Hong, C.-C., Troester, M. A., Bethea,
T. N., Adams-Campbell, L. L., Haiman, C. a., Park, S.-Y., Olshan, A. F., Ambrosone,
C. B., Palmer, J. R., and Rosenberg, L. (2015). Obesity, body fat distribution, and
risk of breast cancer subtypes in African American women participating in the AMBER
Consortium. Breast Cancer Res. Treat., 150(3):655–666.

[Barlow et al., 2009] Barlow, L., Westergren, K., Holmberg, L., and Talbäck, M. (2009). The
completeness of the Swedish Cancer Register: a sample survey for year 1998. Acta Oncol.,
48(1):27–33.

[Barnard et al., 2015] Barnard, M. E., Boeke, C. E., and Tamimi, R. M. (2015). Established
breast cancer risk factors and risk of intrinsic tumor subtypes.

[Bernier, 2000] Bernier, M. O. (2000). Breastfeeding and risk of breast cancer: a meta-analysis
of published studies. Human Reproduction Update, 6(4):374–386.

[Boughey et al., 2010] Boughey, J. C., Hartmann, L. C., Anderson, S. S., Degnim, A. C.,
Vierkant, R. A., Reynolds, C. A., Frost, M. H., and Pankratz, V. S. (2010). Evaluation of
the tyrer-cuzick (international breast cancer intervention study) model for breast cancer risk
prediction in women with atypical hyperplasia. Journal of Clinical Oncology, 28(22):3591–
3596.

[Boyle, 2012] Boyle, P. (2012). Triple-negative breast cancer: Epidemiological considerations
and recommendations. Ann. Oncol., 23(SUPPL. 6).

[Brekelmans et al., 1994] Brekelmans, C. T., Peeters, P. H., Faber, J. A., Deurenberg, J. J.,
and Collette, H. J. (1994). The epidemiological profile of women with an interval cancer in
the DOM screening programme. Breast Cancer Res. Treat., 30(3):223–32.

[Brooke et al., 2017] Brooke, H. L., Talbäck, M., Hörnblad, J., Johansson, L. A., Ludvigsson,
J. F., Druid, H., Feychting, M., and Ljung, R. (2017). The swedish cause of death register.
European Journal of Epidemiology, 32(9):765–773.

[Buell, 1973] Buell, P. (1973). Changing incidence of breast cancer in japanese-american
women. Journal of the National Cancer Institute, 51(5):1479–1483.

[Calza et al., 2006] Calza, S., Hall, P., Auer, G., Bjöhle, J., Klaar, S., Kronenwett, U., Liu,
E. T., Miller, L., Ploner, A., Smeds, J., Bergh, J., and Pawitan, Y. (2006). Intrinsic

62



molecular signature of breast cancer in a population-based cohort of 412 patients. Breast
Cancer Research, 8(4).

[Chay et al., 2012] Chay, W. Y., Ong, W. S., Tan, P. H., Leo, N. Q. J., Ho, G. H., Wong,
C. S., Chia, K. S., Chow, K. Y., Tan, M., and Ang, P. (2012). Validation of the gail model
for predicting individual breast cancer risk in a prospective nationwide study of 28, 104
singapore women. Breast Cancer Research, 14(1).

[Cheang et al., 2009] Cheang, M. C. U., Chia, S. K., Voduc, D., Gao, D., Leung, S., Snider,
J., Watson, M., Davies, S., Bernard, P. S., Parker, J. S., Perou, C. M., Ellis, M. J., and
Nielsen, T. O. (2009). Ki67 index, HER2 status, and prognosis of patients with luminal B
breast cancer. J. Natl. Cancer Inst., 101(10):736–750.

[Chen et al., 2006] Chen, J., Pee, D., Ayyagari, R., Graubard, B., Schairer, C., Byrne, C.,
Benichou, J., and Gail, M. H. (2006). Projecting absolute invasive breast cancer risk in
white women with a model that includes mammographic density. JNCI: Journal of the
National Cancer Institute, 98(17):1215–1226.

[Chlebowski et al., 2007] Chlebowski, R. T., Anderson, G. L., Lane, D. S., Aragaki, A. K.,
Rohan, T., Yasmeen, S., Sarto, G., Rosenberg, C. A., and and, F. A. H. (2007). Predicting
risk of breast cancer in postmenopausal women by hormone receptor status. JNCI Journal
of the National Cancer Institute, 99(22):1695–1705.

[Clamp et al., 2003] Clamp, A., Danson, S., and Clemons, M. (2003). Hormonal and genetic
risk factors for breast cancer. The Surgeon, 1(1):23–31.

[Clemmesen, 1948] Clemmesen, J. (1948). I. results from statistical research. The British
Journal of Radiology, 21(252):583–590.

[Coates et al., 2015] Coates, A. S., Winer, E. P., Goldhirsch, A., Gelber, R. D., Gnant,
M., Piccart-Gebhart, M., Thürlimann, B., and Senn, H.-J. (2015). Tailoring thera-
pies—improving the management of early breast cancer: St gallen international expert
consensus on the primary therapy of early breast cancer 2015. Annals of Oncology,
26(8):1533–1546.

[Colzani et al., 2011] Colzani, E., Liljegren, A., Johansson, A. L., Adolfsson, J., Hellborg,
H., Hall, P. F., and Czene, K. (2011). Prognosis of patients with breast cancer: Causes
of death and effects of time since diagnosis, age, and tumor characteristics. Journal of
Clinical Oncology, 29(30):4014–4021.

63



[Czene et al., 2002] Czene, K., Lichtenstein, P., and Hemminki, K. (2002). Environmental
and heritable causes of cancer among 9.6 million individuals in the swedish family-cancer
database. International Journal of Cancer, 99(2):260–266.

[Darabi et al., 2012] Darabi, H., Czene, K., Zhao, W., Liu, J., Hall, P., and Humphreys, K.
(2012). Breast cancer risk prediction and individualised screening based on common genetic
variation and breast density measurement. Breast Cancer Res., 14(1):R25.

[Domingo et al., 2010] Domingo, L., Sala, M., Servitja, S., Corominas, J. M., Ferrer, F.,
Martínez, J., Macià, F., Quintana, M. J., Albanell, J., and Castells, X. (2010). Phenotypic
characterization and risk factors for interval breast cancers in a population-based breast
cancer screening program in Barcelona, Spain. Cancer Causes Control, 21(8):1155–64.

[Domingo et al., 2014] Domingo, L., Salas, D., Zubizarreta, R., Baré, M., Sarriugarte, G. n.,
Barata, T., Ibáñez, J., Blanch, J., Puig-Vives, M., Fernández, A. B., Castells, X., and
Sala, M. (2014). Tumor phenotype and breast density in distinct categories of interval
cancer: results of population-based mammography screening in Spain. Breast Cancer Res.,
16(1):R3.

[Elston and Ellis, 1991] Elston, C. and Ellis, I. (1991). pathological prognostic factors in
breast cancer. i. the value of histological grade in breast cancer: experience from a large
study with long-term follow-up. Histopathology, 19(5):403–410.

[Eriksson et al., 2013] Eriksson, L., Czene, K., Rosenberg, L. U., Törnberg, S., Humphreys,
K., and Hall, P. (2013). Mammographic density and survival in interval breast cancers.
Breast Cancer Res., 15(3):R48.

[Eriksson et al., 2012] Eriksson, L., Hall, P., Czene, K., dos Santos Silva, I., McCormack,
V., Bergh, J., Bjohle, J., and Ploner, A. (2012). Mammographic density and molecular
subtypes of breast cancer. British Journal of Cancer, 107(1):18–23.

[Esserman et al., 2017] Esserman, L. J., Yau, C., Thompson, C. K., van ’t Veer, L. J.,
Borowsky, A. D., Hoadley, K. A., Tobin, N. P., Nordenskjöld, B., Fornander, T., Stå l, O.,
Benz, C. C., and Lindström, L. S. (2017). Use of Molecular Tools to Identify Patients
With Indolent Breast Cancers With Ultralow Risk Over 2 Decades. JAMA Oncol.

[Fisher et al., 2008] Fisher, B., Redmond, C. K., and Fisher, E. R. (2008). Evolution of
knowledge related to breast cancer heterogeneity: A 25-year retrospective. Journal of
Clinical Oncology, 26(13):2068–2071.

64



[Fisher et al., 1993] Fisher, E., Constantino, J., Fisher, B., and Redmond, C. (1993). Patho-
logical findings from the national surgical adjuvant breast project (Protocol-4) - Discrimi-
nants for 15-year survival. Cancer, 71(6, S):2141–2150. Workshop on prognostic indicators
in breast cancet,San Francisco, CA, Jan 17-19, 1992.

[Gabrielson et al., 2017] Gabrielson, M., Eriksson, M., Hammarström, M., Borgquist, S.,
Leifland, K., Czene, K., and Hall, P. (2017). Cohort profile: The Karolinska Mammography
Project for Risk Prediction of Breast Cancer (KARMA). Int. J. Epidemiol.

[Gail et al., 1989] Gail, M. H., Brinton, L. A., Byar, D. P., Corle, D. K., Green, S. B., Schairer,
C., and Mulvihill, J. J. (1989). Projecting individualized probabilities of developing breast
cancer for white females who are being examined annually. JNCI Journal of the National
Cancer Institute, 81(24):1879–1886.

[Garcia-Closas, M. et al., 2008] Garcia-Closas, M. et al. (2008). Heterogeneity of breast
cancer associations with five susceptibility loci by clinical and pathological characteristics.
PLoS Genetics, 4(4):e1000054.

[Gaudet et al., 2011] Gaudet, M. M., Press, M. F., Haile, R. W., Lynch, C. F., Glaser, S. L.,
Schildkraut, J., Gammon, M. D., Douglas Thompson, W., and Bernstein, J. L. (2011).
Risk factors by molecular subtypes of breast cancer across a population-based study of
women 56 years or younger. Breast Cancer Res. Treat., 130(2):587–97.

[Ghiasvand et al., 2014] Ghiasvand, R., Adami, H.-O., Harirchi, I., Akrami, R., and Zen-
dehdel, K. (2014). Higher incidence of premenopausal breast cancer in less developed
countries; myth or truth? BMC Cancer, 14(1).

[Gilliland et al., 2000] Gilliland, F. D., Joste, N., Stauber, P. M., Hunt, W. C., Rosenberg, R.,
Redlich, G., and Key, C. R. (2000). Biologic characteristics of interval and screen-detected
breast cancers. J. Natl. Cancer Inst., 92(9):743–9.

[Goldhirsch, A. et al., 2013] Goldhirsch, A. et al. (2013). Personalizing the treatment of
women with early breast cancer: Highlights of the st gallen international expert consensus
on the primary therapy of early breast Cancer 2013. Ann. Oncol., 24(9):2206–2223.

[Grabau, 2014] Grabau, D. (2014). KVAST dokument brösttumörer, volume 3.1.3. Svensk
förening fÃ¶r patologi - Svensk förening fÃ¶r klinisk cytologi.

[Holm et al., 2017] Holm, J., Eriksson, L., Ploner, A., Eriksson, M., Rantalainen, M., Li, J.,
Hall, P., and Czene, K. (2017). Assessment of breast cancer risk factors reveals subtype
heterogeneity. Cancer Research, 77(13):3708–3717.

65



[Holm et al., 2015] Holm, J., Humphreys, K., Li, J., Ploner, A., Cheddad, A., Eriksson, M.,
Hall, P., Czene, K., and Törnberg, S. (2015). Risk factors and tumor characteristics of
interval cancers by mammographic density. J. Clin. Oncol., 33(9):1030–1037.

[Holm et al., 2016] Holm, J., Li, J., Darabi, H., Eklund, M., Eriksson, M., Humphreys, K.,
Hall, P., and Czene, K. (2016). Associations of Breast Cancer Risk Prediction Tools With
Tumor Characteristics and Metastasis. J. Clin. Oncol., 34(3):251–258.

[Horn et al., 2014] Horn, J., Opdahl, S., Engstrøm, M. J., Romundstad, P. R., Tretli, S.,
Haugen, O. A., Bofin, A. M., Vatten, L. J., and Åsvold, B. O. (2014). Reproductive history
and the risk of molecular breast cancer subtypes in a prospective study of norwegian
women. Cancer Causes & Control, 25(7):881–889.

[Hossin and Sulaiman, 2015] Hossin, M. and Sulaiman, M. (2015). A review on evalua-
tion metrics for data classification evaluations. International Journal of Data Mining &
Knowledge Management Process, 5(2):01–11.

[Howell et al., 2014] Howell, A., Anderson, A. S., Clarke, R. B., Duffy, S. W., Evans, D. G.,
Garcia-Closas, M., Gescher, A. J., Key, T. J., Saxton, J. M., and Harvie, M. N. (2014).
Risk determination and prevention of breast cancer. Breast Cancer Res., 16(5):446.

[Islami et al., 2015] Islami, F., Liu, Y., Jemal, A., Zhou, J., Weiderpass, E., Colditz, G.,
Boffetta, P., and Weiss, M. (2015). Breastfeeding and breast cancer risk by receptor
status—a systematic review and meta-analysis. Annals of Oncology, page mdv379.

[Johansson et al., 2009] Johansson, L. A., Björkenstam, C., and Westerling, R. (2009). Un-
explained differences between hospital and mortality data indicated mistakes in death
certification: an investigation of 1, 094 deaths in sweden during 1995. Journal of Clinical
Epidemiology, 62(11):1202–1209.

[Johansson et al., 1984] Johansson, R., Vanharanta, R., and Soderholm, J. (1984). Estrogen
receptors in mammary cancer: Correlation with age, menopausal status, and response to
therapy. Journal of Cancer Research and Clinical Oncology, 107(3):221–224.

[Kamangar et al., 2006] Kamangar, F., Dores, G. M., and Anderson, W. F. (2006). Patterns
of cancer incidence, mortality, and prevalence across five continents: Defining priorities to
reduce cancer disparities in different geographic regions of the world. Journal of Clinical
Oncology, 24(14):2137–2150.

[Karma, 2017] Karma (2017). Karma Intervention Study - Karisma. Available from:
https://karmastudy.org/ongoing-research/.

66



[Kavanagh et al., 2000] Kavanagh, A. M., Mitchell, H., and Giles, G. G. (2000). Hormone
replacement therapy and accuracy of mammographic screening. The Lancet, 355(9200):270–
274.

[Kirsh et al., 2011] Kirsh, V. A., Chiarelli, A. M., Edwards, S. A., O&apos;Malley, F. P.,
Shumak, R. S., Yaffe, M. J., and Boyd, N. F. (2011). Tumor characteristics associated
with mammographic detection of breast cancer in the ontario breast screening program. J.
Natl. Cancer Inst., 103:942–950.

[Kohler et al., 2015] Kohler, B. A., Sherman, R. L., Howlader, N., Jemal, A., Ryerson, A. B.,
Henry, K. A., Boscoe, F. P., Cronin, K. A., Lake, A., Noone, A.-M., Henley, S. J., Eheman,
C. R., Anderson, R. N., and Penberthy, L. (2015). Annual report to the nation on the
status of cancer, 1975-2011, featuring incidence of breast cancer subtypes by race/ethnicity,
poverty, and state. JNCI: Journal of the National Cancer Institute, 107(6).

[Lagerlund et al., 2015] Lagerlund, M., Drake, I., Wirfält, E., Sontrop, J. M., and Zackrisson,
S. (2015). Health-related lifestyle factors and mammography screening attendance in a
swedish cohort study. European Journal of Cancer Prevention, 24(1):44–50.

[Lagerlund et al., 2002] Lagerlund, M., Maxwell, A. E., Bastani, R., Thurfjell, E., Ekbom,
A., and Lambe, M. (2002). Cancer Causes and Control, 13(1):73–82.

[Lakhani and IARC, 2012] Lakhani, S. R. and IARC (2012). IARC WHO Classification of
Tumours of the Breast (IARC WHO Classification of Tumours). World Health Organiza-
tion.

[Laya et al., 1996] Laya, M. B., Larson, E. B., Taplin, S. H., and White, E. (1996). Effect of
estrogen replacement therapy on the specificity and sensitivity of screening mammography.
JNCI Journal of the National Cancer Institute, 88(10):643–649.

[Li et al., 2015] Li, J., Holm, J., Bergh, J., Eriksson, M., Darabi, H., Lindström, L. S.,
Törnberg, S., Hall, P., and Czene, K. (2015). Breast cancer genetic risk profile is differentially
associated with interval and screen-detected breast cancers. Ann. Oncol., 26(3):517–22.

[Li et al., 2017] Li, J., Ivansson, E., Klevebring, D., Tobin, N. P., Lindström, L. S., Holm, J.,
Prochazka, G., Cristando, C., Palmgren, J., Törnberg, S., Humphreys, K., Hartman, J.,
Frisell, J., Rantalainen, M., Lindberg, J., Hall, P., Bergh, J., Grönberg, H., and Czene,
K. (2017). Molecular differences between screen-detected and interval breast cancers are
largely explained by pam50 subtypes. Clinical Cancer Research, 23(10):2584–2592.

67



[Li et al., 2012] Li, J., Szekely, L., Eriksson, L., Heddson, B., Sundbom, A., Czene, K., Hall,
P., and Humphreys, K. (2012). High-throughput mammographic density measurement: a
tool for risk prediction of breast cancer. Breast Cancer Res., 14(4):R114.

[Li, 2014] Li, J. e. a. (2014). 2Q36.3 Is Associated With Prognosis for Oestrogen
Receptor-Negative Breast Cancer Patients Treated With Chemotherapy. Nat. Commun.,
5(May):4051.

[Lichtenstein et al., 2000] Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio,
J., Koskenvuo, M., Pukkala, E., Skytthe, A., and Hemminki, K. (2000). Environmental
and heritable factors in the causation of cancer — analyses of cohorts of twins from sweden,
denmark, and finland. New England Journal of Medicine, 343(2):78–85.

[Lilienfeld and Johnson, 1955] Lilienfeld, A. M. and Johnson, E. A. (1955). The age distri-
bution in female breast and genital cancers. Cancer, 8(5):875–882.

[Lind et al., 2010] Lind, H., Svane, G., Kemetli, L., and Törnberg, S. (2010). Breast Cancer
Screening Program in Stockholm County, Sweden - Aspects of Organization and Quality
Assurance. Breast Care (Basel)., 5(5):353–357.

[Lipworth, 2000] Lipworth, L. (2000). History of Breast-Feeding in Relation to Breast Cancer
Risk: a Review of the Epidemiologic Literature. J. Natl. Cancer Inst., 92(4):302–312.

[Lowery et al., 2011] Lowery, J. T., Byers, T., Hokanson, J. E., Kittelson, J., Lewin, J.,
Risendal, B., Singh, M., and Mouchawar, J. (2011). Complementary approaches to
assessing risk factors for interval breast cancer. Cancer Causes Control, 22(1):23–31.

[Lteif and Javed, 2013] Lteif, A. and Javed, A. (2013). Development of the human breast.
Seminars in Plastic Surgery, 27(01):005–012.

[Ludvigsson et al., 2016] Ludvigsson, J. F., Almqvist, C., Bonamy, A.-K. E., Ljung, R.,
Michaëlsson, K., Neovius, M., Stephansson, O., and Ye, W. (2016). Registers of the swedish
total population and their use in medical research. European Journal of Epidemiology,
31(2):125–136.

[Ludvigsson et al., 2009] Ludvigsson, J. F., Otterblad-Olausson, P., Pettersson, B. U., and
Ekbom, A. (2009). The swedish personal identity number: possibilities and pitfalls in
healthcare and medical research. European Journal of Epidemiology, 24(11):659–667.

[Mandelson et al., 2000] Mandelson, M. T., Oestreicher, N., Porter, P. L., White, D., Finder,
C. A., Taplin, S. H., and White, E. (2000). Breast density as a predictor of mammographic

68



detection: comparison of interval- and screen-detected cancers. J. Natl. Cancer Inst.,
92(13):1081–7.

[Maskarinec G, Noh JJ., 2004] Maskarinec G, Noh JJ. (2004). The effect of migration on
cancer incidence among japanese in hawaii. Ethnicity & Disease, 4:431–439.

[Mattsson and Wallgren, 1984] Mattsson, B. and Wallgren, A. (1984). Completeness of the
Swedish Cancer Register. Non-notified cancer cases recorded on death certificates in 1978.
Acta Radiol Oncol, 23(5):305–313.

[Mavaddat, N. et al., 2015] Mavaddat, N. et al. (2015). Prediction of breast cancer risk based
on profiling with common genetic variants. J. Natl. Cancer Inst., 107(5).

[Mccarty et al., 1983] Mccarty, K. S., Silva, J. S., Cox, E. B., Leigth, G. S., Wells, S. A., and
McCarty, K. S. (1983). Relationship of age and menopausal status to estrogen receptor
content in primary carcinoma of the breast. Annals of Surgery, 197(2):123–127.

[McHugh, 2012] McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia
Medica, pages 276–282.

[Mealiffe et al., 2010] Mealiffe, M. E., Stokowski, R. P., Rhees, B. K., Prentice, R. L.,
Pettinger, M., and Hinds, D. A. (2010). Assessment of clinical validity of a breast cancer
risk model combining genetic and clinical information. JNCI Journal of the National
Cancer Institute, 102(21):1618–1627.

[Millikan et al., 2008] Millikan, R. C., Newman, B., Tse, C.-K., Moorman, P. G., Conway,
K., Dressler, L. G., Smith, L. V., Labbok, M. H., Geradts, J., Bensen, J. T., Jackson, S.,
Nyante, S., Livasy, C., Carey, L., Earp, H. S., and Perou, C. M. (2008). Epidemiology of
basal-like breast cancer. Breast Cancer Res. Treat., 109(1):123–39.

[Musolino et al., 2012] Musolino, A., Michiara, M., Conti, G. M., Boggiani, D., Zatelli, M.,
Palleschi, D., Bella, M. A., Sgargi, P., Di Blasio, B., and Ardizzoni, A. (2012). Human
epidermal growth factor receptor 2 status and interval breast cancer in a population-based
cancer registry study. J. Clin. Oncol., 30(19):2362–8.

[National Cancer Institute, 2017] National Cancer Institute (2017). NCI Dictionary of Cancer
Terms. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms.

[Nature, 2012] Nature (2012). Hypocritical oaths. Nature, 482(7384):132–132.

[Nature, 2017] Nature (2017). Science must acknowledge its past mistakes and crimes. Nature,
549(7670):5–6.

69



[Nyström et al., 1995] Nyström, L., Larsson, L.-G., Rutqvist, L. E., Lindgren, A., Lindqvist,
M., Rydén, S., Andersson, I., Bjurstam, N., Fagerberg, G., Frisell, J., and Tabár, L. (1995).
Determination of cause of death among breast cancer cases in the swedish randomized
mammography screening trials: A comparison between official statistics and validation by
an endpoint committee. Acta Oncologica, 34(2):145–152.

[O’Brien et al., 2013] O’Brien, K. M., Cole, S. R., Engel, L. S., Bensen, J. T., Poole, C.,
Herring, A. H., and Millikan, R. C. (2013). Breast cancer subtypes and previously
established genetic risk factors: A bayesian approach. Cancer Epidemiology Biomarkers
& Prevention, 23(1):84–97.

[Olsson et al., 2000] Olsson, S., Andersson, I., Karlberg, I., Bjurstam, N., Frodis, E., and
Håkansson, S. (2000). Implementation of service screening with mammography in sweden:
from pilot study to nationwide programme. Journal of Medical Screening, 7(1):14–18.

[Paik et al., 1990] Paik, S., Hazan, R., Fisher, E. R., Sass, R. E., Fisher, B., Redmond, C.,
Schlessinger, J., Lippman, M. E., and King, C. R. (1990). Pathologic findings from the
national surgical adjuvant breast and bowel project: prognostic significance of erbB-2
protein overexpression in primary breast cancer. Journal of Clinical Oncology, 8(1):103–
112.

[Pan et al., 2017] Pan, H., Gray, R., Braybrooke, J., Davies, C., Taylor, C., McGale, P.,
Peto, R., Pritchard, K. I., Bergh, J., Dowsett, M., and Hayes, D. F. (2017). 20-year risks
of breast-cancer recurrence after stopping endocrine therapy at 5 years. New England
Journal of Medicine, 377(19):1836–1846.

[Parker et al., 2009] Parker, J. S., Mullins, M., Cheang, M. C., Leung, S., Voduc, D., Vickery,
T., Davies, S., Fauron, C., He, X., Hu, Z., Quackenbush, J. F., Stijleman, I. J., Palazzo,
J., Marron, J., Nobel, A. B., Mardis, E., Nielsen, T. O., Ellis, M. J., Perou, C. M., and
Bernard, P. S. (2009). Supervised Risk Predictor of Breast Cancer Based on Intrinsic
Subtypes. J. Clin. Oncol., 27(8):1160–1167.

[Perou et al., 2000] Perou, C. M., Sø rlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S.,
Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O. y.,
Pergamenschikov, A., Williams, C., Zhu, S. X., Lø nning, P. E., Bø rresen Dale, A.-L.,
Brown, P. O., and Botstein, D. (2000). Molecular portraits of human breast tumours.
Nature, 406(6797):747–752.

70



[Pharoah et al., 2002] Pharoah, P. D., Antoniou, A., Bobrow, M., Zimmern, R. L., Easton,
D. F., and Ponder, B. A. (2002). Polygenic susceptibility to breast cancer and implications
for prevention. Nature Genetics, 31(1):33–36.

[Phipps et al., 2012] Phipps, A. I., Buist, D. S. M., Malone, K. E., Barlow, W. E., Porter,
P. L., Kerlikowske, K., O’Meara, E. S., and Li, C. I. (2012). Breast density, body mass
index, and risk of tumor marker-defined subtypes of breast cancer. Ann. Epidemiol.,
22(5):340–8.

[Phipps et al., 2008] Phipps, A. I., Malone, K. E., Porter, P. L., Daling, J. R., and Li, C. I.
(2008). Reproductive and hormonal risk factors for postmenopausal luminal, HER-2-
overexpressing, and triple-negative breast cancer. Cancer, 113(7):1521–6.

[Playdon et al., 2015] Playdon, M. C., Bracken, M. B., Sanft, T. B., Ligibel, J. A., Harrigan,
M., and Irwin, M. L. (2015). Weight gain after breast cancer diagnosis and all-cause
mortality: Systematic review and meta-analysis. Journal of the National Cancer Institute,
107(12):djv275.

[Powell et al., 2014] Powell, M., Jamshidian, F., Cheyne, K., Nititham, J., Prebil, L. A., and
Ereman, R. (2014). Assessing breast cancer risk models in marin county, a population
with high rates of delayed childbirth. Clinical Breast Cancer, 14(3):212–220.e1.

[Prat et al., 2013] Prat, A., Cheang, M. C. U., Martín, M., Parker, J. S., Carrasco, E.,
Caballero, R., Tyldesley, S., Gelmon, K., Bernard, P. S., Nielsen, T. O., and Perou,
C. M. (2013). Prognostic significance of progesterone receptor-positive tumor cells within
immunohistochemically defined luminal A breast cancer. J. Clin. Oncol., 31(2):203–9.

[Pujol et al., 1998] Pujol, P., Daures, J.-P., Thezenas, S., Guilleux, F., Rouanet, P., and
Grenier, J. (1998). Changing estrogen and progesterone receptor patterns in breast
carcinoma during the menstrual cycle and menopause. Cancer, 83(4):698–705.

[Purrington, K. S. et al., 2014] Purrington, K. S. et al. (2014). Genome-wide association
study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative
breast cancer. Carcinogenesis, 35(5):1012–9.

[Quante et al., 2012] Quante, A. S., Whittemore, A. S., Shriver, T., Strauch, K., and Terry,
M. B. (2012). Breast cancer risk assessment across the risk continuum: genetic and
nongenetic risk factors contributing to differential model performance. Breast Cancer
Research, 14(6).

71



[Radisky and Hartmann, 2009] Radisky, D. C. and Hartmann, L. C. (2009). Mammary
involution and breast cancer risk: Transgenic models and clinical studies. Journal of
Mammary Gland Biology and Neoplasia, 14(2):181–191.

[Razzaghi et al., 2013] Razzaghi, H., Troester, M. A., Gierach, G. L., Olshan, A. F.,
Yankaskas, B. C., and Millikan, R. C. (2013). Association between mammographic
density and basal-like and luminal a breast cancer subtypes. Breast Cancer Research,
15(5).

[Reeves et al., 2010] Reeves, G. K., Travis, R. C., Green, J., Bull, D., Tipper, S., Baker, K.,
Beral, V., Peto, R., Bell, J., Zelenika, D., and Lathrop, M. (2010). Incidence of breast
cancer and its subtypes in relation to individual and multiple low-penetrance genetic
susceptibility loci. JAMA, 304(4):426–34.

[Ritte, R. et al., 2012] Ritte, R. et al., title = Adiposity, hormone replacement therapy use
and breast cancer risk by age and hormone receptor status: a large prospective cohort
study, j. . B. (2012). 14(3).

[Rockhill et al., 2001] Rockhill, B., Spiegelman, D., Byrne, C., Hunter, D. J., and Colditz,
G. A. (2001). Validation of the gail et al. model of breast cancer risk prediction and
implications for chemoprevention. JNCI Journal of the National Cancer Institute, 93(5):358–
366.

[Romero et al., 2013] Romero, A., Prat, A., García-Sáenz, J. Á., del Prado, N., Pelayo, A.,
Furió, V., Román, J. M., de la Hoya, M., Díaz-Rubio, E., Perou, C. M., Cladés, T., and
Martín, M. (2013). Assignment of tumor subtype by genomic testing and pathologic-based
approximations: implications on patient’s management and therapy selection. Clinical and
Translational Oncology, 16(4):386–394.

[Rosenberg et al., 2015] Rosenberg, L., Bethea, T. N., Viscidi, E., Hong, C.-C., Troester,
M. A., Bandera, E. V., Haiman, C. A., Kolonel, L. N., Olshan, A. F., Ambrosone, C. B., and
Palmer, J. R. (2015). Postmenopausal female hormone use and estrogen receptor–positive
and –negative breast cancer in african american women. Journal of the National Cancer
Institute, 108(4):djv361.

[Rothman, 2014] Rothman, K. J. (2014). Six persistent research misconceptions. Journal of
General Internal Medicine, 29(7):1060–1064.

[Ruiz-Narváez et al., 2016] Ruiz-Narváez, E. A., Lunetta, K. L., Hong, C.-C., Haddad, S.,
Yao, S., Cheng, T.-Y. D., Bensen, J. T., Bandera, E. V., Haiman, C. A., Troester, M. A.,

72



Ambrosone, C. B., Rosenberg, L., and Palmer, J. R. (2016). Genetic variation in the
insulin, insulin-like growth factor, growth hormone, and leptin pathways in relation to
breast cancer in african-american women: the AMBER consortium. npj Breast Cancer,
2(1).

[Russo and Russo, 2011] Russo, I. H. and Russo, J. (2011). Pregnancy-induced changes in
breast cancer risk. J. Mammary Gland Biol. Neoplasia, 16(3):221–233.

[Russo et al., 2005] Russo, J., Moral, R., Balogh, G. A., Mailo, D., and Russo, I. H. (2005).
The protective role of pregnancy in breast cancer. Breast Cancer Res., 7(3):131–42.

[Russo and Russo, 2004] Russo, J. and Russo, I. H. (2004). Development of the human breast.
Maturitas, 49(1):2–15.

[Rutqvist and and, 2007] Rutqvist, L. E. and and, H. J. (2007). Long-term follow-up of the
randomized stockholm trial on adjuvant tamoxifen among postmenopausal patients with
early stage breast cancer. Acta Oncologica, 46(2):133–145.

[Saxena et al., 2010] Saxena, T., Lee, E., Henderson, K. D., Clarke, C. A., West, D., Marshall,
S. F., Deapen, D., Bernstein, L., and Ursin, G. (2010). Menopausal hormone therapy and
subsequent risk of specific invasive breast cancer subtypes in the california teachers study.
Cancer Epidemiology Biomarkers & Prevention, 19(9):2366–2378.

[Schiebinger, 1993] Schiebinger, L. (1993). Why mammals are called mammals: Gender
politics in eighteenth-century natural history. The American Historical Review.

[Schisterman et al., 2009] Schisterman, E. F., Cole, S. R., and Platt, R. W. (2009). Over-
adjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology,
20(4):488–495.

[Shieh et al., 2017] Shieh, Y., Eklund, M., Madlensky, L., Sawyer, S. D., Thompson, C. K.,
Fiscalini, A. S., Ziv, E., van’t Veer, L. J., Esserman, L. J., and Tice, J. A. (2017). Breast
cancer screening in the precision medicine era: Risk-based screening in a population-based
trial. Journal of the National Cancer Institute, 109(5):djw290.

[Shimizu et al., 1991] Shimizu, H., Ross, R. K., Bernstein, L., Yatani, R., Henderson, B. E.,
and Back, T. M. (1991). Changing incidence of breast cancer in japanese-american women.
Journal of the National Cancer Institute, 63(6):1479–1483.

[Sorlie et al., 2001] Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H.,
Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Thorsen, T., Quist, H., Matese,

73



J. C., Brown, P. O., Botstein, D., Lø nning, P. E., and Bø rresen Dale, A. L. (2001).
Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical
implications. Proc. Natl. Acad. Sci. U. S. A., 98(19):10869–74.

[Sorlie et al., 2003] Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A.,
Deng, S., Johnsen, H., Pesich, R., Geisler, S., Demeter, J., Perou, C. M., Lonning, P. E.,
Brown, P. O., Borresen-Dale, A.-L., and Botstein, D. (2003). Repeated observation of
breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci.,
100(14):8418–8423.

[Tabár et al., 1985] Tabár, L., Gad, A., Holmberg, L., Ljungquist, U., Fagerberg, C.,
Baldetorp, L., Gröntoft, O., Lundström, B., Månson, J., Eklund, G., Day, N., and
Pettersson, F. (1985). Reduction in mortality from breast cancer after mass screening with
mammography. The Lancet, 325(8433):829–832.

[Talbäck, 2011] Talbäck, M. (2011). Cancer Patient survival in Sweden - theory and
application. PhD thesis, Karolinska Institutet.

[Tamimi et al., 2011] Tamimi, R. M., Colditz, G. A., Hazra, A., Baer, H. J., Hankinson,
S. E., Rosner, B., Marotti, J., Connolly, J. L., Schnitt, S. J., and Collins, L. C. (2011).
Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer.
Breast Cancer Res. Treat., 131(1):159–167.

[The Collaborative Group on Hormonal Factors in Breast Cancer, 2002] The Collaborative
Group on Hormonal Factors in Breast Cancer (2002). Breast cancer and breastfeeding:
collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries,
including 50 302 women with breast cancer and 96 973 women without the disease. The
Lancet, 360(9328):187–195.

[Thorpe et al., 1986] Thorpe, S., Rose, C., Rasmussen, B., King, W., Desombre, E., Blough,
R., Mouridsen, H., Rossing, N., and Andersen, K. (1986). Steroid-hormone receptors as
prognostic indicators in primary breast-cancer. Breast Cancer Research and Treatment,
7(S):91–98.

[Tice et al., 2005] Tice, J. A., Cummings, S. R., Ziv, E., and Kerlikowske, K. (2005). Mam-
mographic breast density and the gail model for breast cancer risk prediction in a screening
population. Breast Cancer Research and Treatment, 94(2):115–122.

[Törnberg et al., 2010] Törnberg, S., Kemetli, L., Ascunce, N., Hofvind, S., Anttila, A.,
Sèradour, B., Paci, E., Guldenfels, C., Azavedo, E., Frigerio, A., Rodrigues, V., and Ponti,

74



A. (2010). A pooled analysis of interval cancer rates in six European countries. Eur. J.
Cancer Prev., 19:87–93.

[Trichopoulos et al., 2007] Trichopoulos, D., Adami, H.-O., Ekbom, A., Hsieh, C.-C., and
Lagiou, P. (2007). Early life events and conditions and breast cancer risk: From epidemiology
to etiology. International Journal of Cancer, 122(3):481–485.

[Tyrer et al., 2004] Tyrer, J., Duffy, S. W., and Cuzick, J. (2004). A breast cancer prediction
model incorporating familial and personal risk factors. Stat. Med., 23(7):1111–30.

[Vaughan et al., 2013] Vaughan, T. A., Ryan, J. M., and Czaplewski, N. J. (2013).
Mammalogy (Jones & Bartlett Learning Titles in Biological Science). Jones & Bartlett
Learning.

[Visvader and Stingl, 2014] Visvader, J. E. and Stingl, J. (2014). Mammary stem cells and
the differentiation hierarchy: current status and perspectives. Genes & Development,
28(11):1143–1158.

[Vårdguiden, 2017] Vårdguiden (2017). Vårdguiden. Available
from: https://www.1177.se/Stockholm/Tema/Cancer/Cancerformer-och-
fakta/Cancerformer/Brostcancer.

[Vårdguiden, 2018] Vårdguiden (2018). Vårdguiden. Available from:
https://www.1177.se/Stockholm/Regler-och-rattigheter/Tystnadsplikt-och-sekretess/.

[Wang et al., 2001] Wang, H., Bjurstam, N., Bjø rndal, H., Braaten, A., Eriksen, L., Skaane,
P., Vitak, B., Hofvind, S., and Thoresen, S. O. (2001). Interval cancers in the Norwegian
breast cancer screening program: frequency, characteristics and use of HRT. Int. J. Cancer,
94(4):594–8.

[Wang et al., 2016] Wang, M., Klevebring, D., Lindberg, J., Czene, K., Grönberg, H., and
Rantalainen, M. (2016). Determining breast cancer histological grade from RNA-sequencing
data. Breast Cancer Res., 18(1):48.

[Wannerdt, 1982] Wannerdt, A. (1982). Den svenska folkbokföringens historia under tre
sekler. Skatteförvaltningen.

[Warwick et al., 2014] Warwick, J., Birke, H., Stone, J., Warren, R. M. L., Pinney, E.,
Brentnall, A. R., Duffy, S. W., Howell, A., and Cuzick, J. (2014). Mammographic breast
density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings
from the placebo arm of the International Breast Cancer Intervention Study I. Breast
Cancer Res., 16(5):451.

75



[Wennman-Larsen et al., 2016] Wennman-Larsen, A., Nilsson, M. I., Saboonchi, F., Olsson,
M., Alexanderson, K., Fornander, T., Sandelin, K., and Petersson, L.-M. (2016). Can
breast cancer register data on recommended adjuvant treatment be used as a proxy for
actually given treatment? European Journal of Oncology Nursing, 22:1–7.

[Xu et al., 2017] Xu, Y., Chen, M., Liu, C., Zhang, X., Li, W., Cheng, H., Zhu, J., Zhang, M.,
Chen, Z., and Zhang, B. (2017). Association study confirmed three breast cancer-specific
molecular subtype-associated susceptibility loci in chinese han women. The Oncologist,
22(8):890–894.

[Zidar et al., 2015] Zidar, M. N., Larm, P., Tillgren, P., and Akhavan, S. (2015). Non-
attendance of mammographic screening: the roles of age and municipality in a population-
based swedish sample. International Journal for Equity in Health, 14(1).

[Ziegler et al., 1993] Ziegler, R., Hoover, Pike, M., Hildesheim, A., Nomura, A., West, D.,
Wu-Williams, A., Kolonel, L., Horn-Ross, P., JF, J. F. R., and Hyer, M. (1993). Migration
patterns and breast cancer risk in asian-american women. Journal of the National Cancer
Institute, 85(22):1819–1827.

Wisdom is like a baobab tree. No one individual can embrace it.13

13Akan proverb
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