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ABSTRACT 
Natural Killer (NK) cells are immune cells and important for the defense against virally infected 

and malignant cells. NK cells are regulated by germline encoded activating and inhibitory 

receptors. Activating receptors specifically recognize ligands which are either encoded by 

infectious agents, or induced upon infection or cellular stress. Inhibitory receptors interact with 

self-ligands expressed on healthy cells, among them MHC class I. NK cells inspect the host 

cells by screening for alterations in activating and inhibitory ligand expression. The balance 

between input from activating and inhibitory receptors determines the NK cell response. NK 

cells undergo a process of functional maturation and acquisition of self-tolerance via sensing of 

the steady-state input through their receptors. This process is known as education. The cytotoxic 

activity of NK cells can be further increased by cytokines produced by other immune cells. 

The aim of this thesis was to characterize the differences in receptor dynamics and localization 

between NK cells based on either cytokine activation or educational status. Fluorescence based 

advanced microscopy techniques were used to quantitate receptor dynamics and spatial 

organization. 

In paper I, we investigated the influence of cytokine stimulation on the lateral diffusion of the 

inhibitory receptor Ly49A and its ligand MHC class I on NK cells within the cell membrane. 

The response to cytokine stimulation was heterogeneous among the NK cells. We characterized 

a subpopulation of NK cells with faster diffusion of both MHC class I and Ly49A. The receptor 

diffusion was established on primary NK cells using Fluorescence Correlation Spectroscopy. In 

paper II, a practical protocol for utilizing FCS on primary lymphocytes was presented. In Paper 

III, we showed that NKp46 and Ly49A were confined within microdomains on NK cells. The 

actin cytoskeleton and cholesterol composition of NK cells played important roles in initiating 

activating cell signaling. In Paper IV, we investigated the organization and clustering of 

activating and inhibitory receptors on educated and uneducated NK cells. We found that 

clusters of NKp46 and Ly49A were larger on uneducated NK cells. The nearest neighbour 

distances from activating to inhibitory receptors were not significantly different between 

educated and uneducated NK cells, thus the organization of inhibitory receptors in relation to 

the activating receptors do not seem to be of importance for the educational process. In 

summary, the findings in this thesis enlightens the importance of altered receptor dynamics and 

organization on NK cells depending on the state of activation and education. Furthermore, 

receptor dynamics could be an important aspect for understanding NK cell function.    
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1 INTRODUCTION 

1.1 NATURAL KILLER CELLS 

In the 1970’s, the standard assay for T cell cytotoxicity showed a persistently high 

background level in killing of tumor cells. This “background” killing was further 

characterized by Kiessling et al., who concluded that this killing was mediated by a 

lymphocytic cell other than T or B cells [1, 2]. At the same time, a similar study by 

Herberman et al showed that mouse non-T, non-B lymphocytes were reactive against 

syngeneic and allogenic tumors [3]. The above new subset of lymphoid cells with potent 

cytotoxic function was termed as “Natural killer” (NK) cells [1, 2]. Nowadays, NK cells are 

well defined by their ability to kill tumor cells and virally infected cells. NK cells are bone 

marrow derived lymphocytes possessing lytic granules and an array of receptors. They 

constitute around 3-5 % of murine splenocytes, and are also present in other lymphoid organs 

and tissues. NK cells have been characterized as being part of both the innate and adaptive 

immune system, mainly because: 1) NK cell receptors recognize healthy and unhealthy cells 

through their germline encoded receptors (discussed further below) which is a characteristic 

of the innate immune system, and 2) NK cells have been shown to mount better responses 

against recurrent infections by the same virus, reviewed in [4, 5], typically a feature of the 

adaptive immune system. NK cells respond to interferon-a and -b (IFN-a/b) and several 

other cytokines that are secreted e.g. during infections [6, 7]. Upon activation, NK cells 

secrete cytokines, chemokines and growth factors [5].  

1.2 NK CELL MISSING-SELF RECOGNITION 

George Snell in 1958 for the first time observed that tumor cells of parental origin were 

rejected to a higher extent than the native tumors, and showed that this was controlled by 

MHC class I linked genes [8]. This was puzzling since all the antigens of both the inbred 

parents should be present in the F1 hybrid off-spring, and there should thus not be anything 

“foreign” for T cells to react against. Since T and B cells were the only characterized 

lymphocytes at the time, it was unclear why an immune response was mounted against the 

parental cells. Later, subsequent studies from Cudkowicz and his associates demonstrated that 

transplants of paternal bone marrow into F1 hybrids were rejected [9]. The allograft reactivity 

was at the time hypothesized to be due to the presence of recessive tissue specific antigens. 

However, the rejection was independent of proliferation of host lymphoid cells and the 

thymus, which suggested it was independent of T cells [10]. The above two observations 

paved the way to a phenomenon termed Hybrid resistance. A few years later, after the 



 4 

discovery of the NK cells, Kissling et al showed that NK cell activity and the rejection of 

tumors were associated with the H2 gene locus (which is the MHC in mice) correlating it to 

hybrid resistance [11]. However, the specificity of NK cell cytotoxicity was still undefined.  

The puzzle of selective cytotoxicity was finally solved by the “missing-self” hypothesis that 

was proposed by Klas Kärre in 1981 [12, 13]. The hypothesis postulated that “absence or 

incomplete expression of host MHC class I molecules in a normal cell is sufficient to render 

it susceptible to NK cells” [14, 15]. 

Thus, NK cells recognize target cells by the lack or altered expression of MHC class I 

molecules. As was later delineated, this so-called missing-self rejection is based on a family 

of MHC class I specific inhibitory receptors, called Ly49 receptors in mice [16]. They 

mediate protection from NK cell killing to self MHC class I expressing cells, while cells 

without, or with a lower level of, MHC class I are killed [13, 15]. NK cells whose inhibitory 

receptors lack a specific ligand, either due to the allelic specificity of these receptors or that 

they develop in MHC deficient mice, are hyporesponsive [17-19]. This shows that other self-

tolerance mechanisms, besides inhibitory receptors for MHC class I, exist as well.  

1.3 NK CELL RECEPTORS  

NK cell responses are mediated by cell surface receptors which can be broadly divided into 

activating and inhibitory receptors. Each category contains receptors with a large number of 

different specificities, to permit activating or inhibitory signals from a broad array of aberrant 

cells. The NK cell response is determined based on the balance between activating and 

inhibitory signals [20, 21].  

1.3.1 MHC class I specific inhibitory receptors  

There are three main families of inhibitory receptors which recognize MHC class I. They are 

the murine Ly49 receptors (Ly49r), the human KIR (killer immunoglobulin-like receptors), 

and the NKG2 inhibitory receptors which exist in both humans and mice. Inhibitory receptors 

signal through intracellular immunoreceptor tyrosine based inhibitory motifs (ITIM’s), which 

are located at the cytoplasmic tail of the receptors. When tyrosine’s in this motif are 

phosphorylated, SHP-1 or -2 is recruited and conveys the inhibitory signals further 

downstream [22]. 

Ly49r belong to C-type lectin family of receptors. They inhibit NK cells by binding to MHC 

class I molecules on target cells [16, 23]. Ly49r are expressed in a stochastic manner so that 
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individual NK cells may express none, one, or several receptors, in different combinations 

[24-26]. Individual Ly49r can also recognize more than one MHC class I allele [23, 27]. At 

least ten Ly49r have been found in the mouse population, although the number may vary in 

different individuals, typically between 5-8. The strength of these inhibitory receptor 

interactions with different MHC class I vary [23, 28].  Ly49A, which is the most well studied 

Ly49 receptor, interacts strongly with H2-Dd [23]. The majority of Ly49r are inhibitory, 

however, Ly49-D/-H/-P are activating receptors that signal through the adaptor molecule 

DAP12 [29, 30]. Recognition of MHC class I by Ly49r requires a peptide bound to the 

peptide-binding groove, but, with a few exceptions, the peptide specificity is not the main 

basis for specific interactions with Ly49r [31, 32]. Ly49A, and most likely other Ly49r as 

well, not only recognize MHC class I in trans but also binds in cis (interacting on the same 

cell) and that in turn reduces the activation threshold of the NK cell [33, 34].  

CD94-NKG2/A/C/E receptors are heterodimers that are also C-type lectin receptors. They 

recognize non-classical MHC class I molecules. Their expression is variegated, as with the 

Ly49r [35]. NKG2A is the only inhibitory receptor in the NKG2 family. It binds to Qa-1b in 

the mouse, a non-classical MHC class I molecule [36]. NKG2A is the earliest inhibitory 

receptor expressed by NK cells during their development [37].  

1.3.2 Non-MHC class I specific inhibitory receptors  

Killer cell Lectin like Receptor G1(KLRG1) is an adhesion molecule, and an inhibitory 

receptor which binds to classical cadherins (E-, N- and R-) that are expressed on epithelial 

cells. Blocking of KLRG1 reinstates the killing of E-cadherin expressing target cells and 

crosslinking of KLRG1 inhibits IFN-g production [38, 39]. 

NKRP1 is a C-type lectin receptor family. There are five receptors: NKRP1-A, -B/D, -C, -F 

and G (NKRP1-C discussed in activating receptors below). NKRP1-B/D is an inhibitory 

receptor that recognize a C-type lectin related ligand (clr-b) [40]. This was one of the first 

receptors with other specificity than MHC class I shown to initiate a missing-self response [5, 

41, 42]. 

T cell immunoreceptor with Ig and ITIM domain (TIGIT), is an inhibitory receptor that 

recognize CD155 (Ig superfamily ligand) and inhibit NK cell responsiveness [43].  

2B4 (CD244) belongs to the Signaling Lymphocytic Activation Molecule (SLAM) family of 

CD2 related receptors. They are composed of two extracellular Ig like domains and contain a 

cytoplasmic tail with multiple signaling motifs. 2B4 recognize the cognate SLAM molecule 
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CD48. Initially 2B4 was found to be an activating receptor on NK cells [44]. However, in the 

absence of the signaling adaptor SAP, 2B4 acts as an inhibitory receptor [45]. Thus, in resting 

NK cells, it is a non-MHC dependent inhibitory receptor [46], and associates with SHP-2 

[47]. Tumors with high expression of CD48 are protected from NK cell killing [46]. SLAM6 

is another family of the SLAM family, which also mediates both activating and inhibitory 

signals to NK cells. It mainly recognizes hematopoietic target cells [48]. 

1.3.3 Activating receptors 

NK cells express different types of activating receptors. Their ligands are either induced or 

upregulated due to stress, e.g. during viral infections, or are virally encoded antigens. Most of 

these receptors signal through immunoreceptor tyrosine activating motifs (ITAM:s), either 

expressed in their own cytoplasmic tail, or by associating with adapter molecules. Natural 

cytotoxicity by resting NK cells require synergy of multiple receptors [49],  however co-

binding of adhesion molecules like LFA-1 may be sufficient for activation [50].  

Natural cytotoxicity receptors (NCRs) is a family of receptors with a broad range of ligands. 

Apart from cellular ligands, which may be upregulated on tumor cells, they also interact with 

ligands from bacterial, viral, and parasite origin [51]. NKp46 is the only activating receptor in 

this family found in both humans and mice. In humans, along with NKp46, NKp44 and 

NKp30 are expressed on resting NK cells. Several virally induced ligands of NKp46 have 

been identified, for instance in refs [52-54]. 

NKRP1-A/-C/-F are the activating receptors in the NKRP1 family. NKRP1-C is a 

prototypical activating receptor in murine NK cells which is commonly cross-linked in in 

vitro functional assays (the most commonly used antibody against NKRP1-C is known as 

NK1.1). It associates with ITAM containing FceRI-g [55]. 

Like the Ly49r receptors, the activating receptors of the NKG2 family also signal through 

DAP-12 [56]. NKG2C, as NKG2A, binds to the non-classical MHC class I Qa-1 [57]. 

The NKG2D receptor mainly recognizes stress induced ligands and it is one of the most 

important receptors used by NK cells in their surveillance of tumorigenic cells [58]. NKG2D 

is known to stimulate macrophages, be co-stimulatory on CD8 T cells and have a significant 

role in NK cell killing [58, 59]. NKG2D signals via DAP-10 and DAP-12 in mice, but only 

via DAP-10 in humans [60-62]. There are two isoforms of NKG2D in the mouse, NKG2D-L 

with long N-terminal that can only bind to DAP-10 and NKG2D-S with short N terminal can 

bind to both DAP-10 and DAP-12 [63]. DAP-12 is capable of initiating both cytotoxicity and 
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cytokine release whereas DAP-10 can activate only cytotoxicity [64]. DAP-10 do not signal 

through ITAM, instead an SH2 domain in the cytoplasmic tail recruits the p85 subunit of 

PI(3) kinase for signaling [62]. The identified ligands of NKG2D include Mult-1, Rae-1 and 

H6 in the mouse, and MICA/B and ULBP1-6 in humans [61].  

Ly49-D/-P/-H are the identified activating receptors of the Ly49 receptor family. Ly49H 

recognizes the mCMV-derived MHC class I like molecule m157. This interaction is 

sufficient to activate NK cells and eliminate mCMV [65-67]. Ly49P recognizes H2-Dk in 

combination with the mCMV-derived protein m04 [30]. Similarly, Ly49D binds to H2-Dd 

and induce rejection of allogenic (H2-Dd expressing) bone marrow transplants [68]. 

Interestingly, no autoimmune reaction mediated by Ly49D+ was reported in H2-Dd mice [68, 

69]. 

DNAM-1 (also known as CD226) is a co-stimulatory activating receptor and adhesion 

molecule that is expressed on murine NK cells [70, 71]. It interacts with the ligands CD155 

and CD112 and activates NK cells via ITAM [72]. DNAM-1 is actively involved in synapse 

formation and co-localize with another adhesion molecule, LFA-1, to facilitate contacts with 

interacting cells [73]. Engagement of DNAM-1 to its ligands mediate cytotoxicity against 

tumors[74-76]. 

CD16, also known as the FcgRIIIa receptor, enables NK cells to eliminate antibody coated 

cells by ADCC (Antibody-dependent cellular cytotoxicity). CD16 may thus not be regarded 

as a “natural” cytotoxic receptor, since the specificity in its reactivity is in fact determined by 

B cells, which are part of the adaptive immune system [22]. CD16, in contrast to the natural 

cytotoxicity receptors, is sufficient to trigger NK cell degranulation on its own, and do not 

need additional co-stimulation [49].  

1.4 NK CELL ACTIVATION  

NK cell effector functions can be triggered without any prior sensitization, but the activation 

can be mediated in different ways depending on the maturation and activation status of NK 

cell [77]. Since some activating ligands are present on many normal cells, the lack or reduced 

expression of MHC class I on targets can be sufficient to trigger effector cell function [15, 

78]. In other situations, effector function is triggered despite normal expression of MHC class 

I molecules, because target cells express abnormal levels of activating ligands, which can be 

pathogen encoded, stress induced, or tumor antigens expressed on unhealthy cells [79]. Most 

of the tumor induced ligands activate NK cells through the NKG2D receptor, while the NCRs 
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predominantly recognize pathogen associated ligands and cellular stress ligands [79]. 

Activation of NK cells by activating receptors require synergistic co-activation by more than 

one receptor [49].  

NK cells can be pre-activated by cytokines which upregulates the cytotoxic potential [80, 81]. 

For instance, dendritic cells (DC) secrete cytokines which activate NK cells and stimulate 

IFN-g secretion [82, 83]. NK cells can also be activated through direct interactions with 

antigen presenting cells [77, 80]. Priming by IL-15 that is trans-presented by DC is an 

important route of NK cell pre-activation [84]. Trans presentation of IL-15 is also important 

for NK responsiveness during inflammation [85]. 

A classical method for activation of NK cells in vitro is by culturing with IL-2. In vivo IL-2 is 

produced by activated T cells and boost NK cell responses, and regulatory T cells restrain NK 

cell cytotoxicity by limiting the IL-2 [86, 87]. In the mouse, bacterially activated DC’s 

produce IL-2 and this increase NK cell activation [88, 89].  

NK cells can also mediate antiviral defense in response to endogenous IFN-a/b that is 

secreted during viral infections and act either directly or indirectly on NK cells [90, 91]. 

During mCMV infection, CD11b+ myeloid DCs mediate IFN-a/b dependent NK cell 

activation [92]. Chemokines are also known to activate NK cells, apart from inducing 

chemotaxis [93].  

As described earlier in this thesis, NK cell activation can also occur via missing-self 

recognition. The final outcome in each target cell encounter is based on the combination of 

pre-activation stimuli, together with the sum of signals from activating and inhibitory ligands 

expressed by the specific target cell. All different ways of NK cell activation are 

schematically represented below in Figure 1. 
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Figure 1: Schematic overview of NK cell activation. Described clock-wise from top right: activating ligand 

interactions with activating receptors, either pathogen-induced or on tumor target cells; soluble factors or direct 

interactions with antigen presenting or other bystander cells (pre-activation); activation triggered by ADCC; and 

missing self-recognition, both MHC class I and non-MHC class I mediated. 

 

1.5 NK CELL EDUCATION  

NK cells undergo a process of functional maturation which is known as education. The 

educational process also ensures that self-tolerance is maintained. According to the classical 

description of NK cell education, NK cells which express inhibitory receptors specific for self 

MHC class I after the educational process have full functional competence (they are 

responsive through missing-self recognition). However, in each individual, a subset of NK 

cells exists which either only express inhibitory receptors that lack MHC class I ligands in 

that host, or express no inhibitory receptors [18, 19]. Likewise, NK cells in mice lacking 

MHC class I altogether, and in Tap-/- humans exist in the host at a normal population size [17, 

94, 95]. Thus, in these NK cells self-tolerance is obtained by other means [17, 19, 94, 95]. 

These NK cells are unable to kill cells via missing-self recognition of MHC class I, and are 

also generally more hyporesponsive, at least in the resting state (without pre-activation) [18, 

19, 96]. 
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The educational process, and its outcomes, has not yet been fully characterized at the 

molecular level. At least four different models have been put forward in order to explain the 

education phenomenon. The arming (licensing) model was proposed by Wayne Yokoyama. 

He proposed that NK cells by default are hyporesponsive and acquire responsiveness upon 

specific inhibitory receptor-MHC class I interactions [18]. The “disarming model”, proposed 

by David Raulet, instead postulates that NK cells are by default functionally responsive and 

become hyporesponsive in the absence of inhibitory signals, in cases where overstimulation 

through activating receptors occurs [19]. According to the “cis model”, proposed by Werner 

Held, NK cells acquire a fully functional phenotype by the interaction of Ly49r with MHC 

class I expressed on the same cell [97, 98]. Our group proposed the “rheostat model” that 

states that NK cells are not just in an ‘on or off’ state, but in a continuous state with different 

degree of responsiveness that depends on the qualitative and quantitative inhibitory input 

received via different NK cell receptors from the host environment [28, 99, 100]. This model 

was tested by experimental models allowing fine tuning of the responsiveness of mature NK 

cells by changing the inhibitory input in the environment [101]. It is important to note that the 

models are not necessarily mutually exclusive, the rheostat model is for instance compatible 

with both the licensing and the disarming model, since it does not address the specific 

mechanism, but rather address the temporal and quantitative aspect of education. 

In the past few years, missing self-recognition based on non-classical MHC class I has also 

been shown to regulate NK cell education and function (reviewed in He., et al, [102]). 

NKG2A recognition of Qa-1 in the host enables the NKG2A positive cells to become 

efficient killers of target cells that lack this molecule [103]. Ly49A recognizes both the 

classical MHC class I molecule H2-Dd and the non-classical MHC class Ib molecule H2-M3. 

The latter interaction has been shown inhibit the effector function of Ly49A+ NK cells. 

However, the strength of the H2-M3 education is low compared to classical education but 

still detectable [104]. 

MHC class I independent (non-MHC class I) mediated education has been demonstrated for 

several inhibitory receptor ligands. The first one was 2B4. Mice with either 2B4 or the ligand 

CD48 knocked out failed to reject CD48 deficient tumor cells [105, 106]. SLAM6, another 

receptor from the same family also confer enhanced responsiveness to non-hematopoietic 

targets by a process similar to classical NK cell education [48, 107]. Recently, TIGIT has 

been shown to play a key role in a classical education assay, TIGIT-/- NK cells had impaired 

recognition and killing of CD155 deficient targets [108]. Figure 2 summarizes the education 
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of NK cells mediated by MHC class I, non-classical MHC class I and non-MHC class I 

molecules. 

 

Figure 2 NK cell educating receptors with their cognate ligand for mice: MHC class I dependent, non-classical 

dependent and MHC class I independent interactions. Adapted from He. et al.,[102]. 

Furthermore, even though NK cell education has traditionally been regarded as mediated 

primarily through inhibitory receptors, more recent research has shown that NK cell 

education is regulated by a coordination of both activating and inhibitory signals. The total 

activation signal also sets the threshold for NK cell education, as continuous exposure to 

activating ligand leads to a down-modulation of response against this ligand [109-111].   

It has also been shown that there is a difference in the threshold set for inhibition and 

education through inhibitory receptors, as the threshold for education is higher than the 

threshold for inhibition [112]. 

1.5.1 Signaling molecules in NK cell education  

The arming model stated that education was mediated through inhibitory receptors. This 

hypothesis was further investigated by elucidating the importance of ITIM. ITIM deficient 

NK cells cannot be educated [18]. In addition, the lack of SHP-1 in NK cells alters the 

inhibitory receptor repertoire and impairs the NK cell function, which are both signs of an 

altered educational status of the NK cells [113, 114]. Thus, education seem to be dependent 

on the inhibitory signaling of Ly49r. Also, the absence of SHIP alters the NK receptor 

repertoire and cause hyporesponsiveness and failure to educate NK cells [115, 116]. 

However, this does not resolve the question of whether the licensing or the disarming model 

is the most physiologically relevant, since the absence of inhibitory signaling would lead to 
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hyporesponsiveness also according to the disarming model. It was also shown that educated 

NK cells are associated with a higher basal activity of the mTOR/Akt pathway [117]. 

1.5.2  Cellular and molecular correlates of NK cell education   

Educated NK cells may be particularly important in certain clinical situations, e.g. in 

immunotherapy of cancer. It is therefore important to explore molecular markers or other 

cellular features that correlate with the educated state. A hallmark marker for NK cell 

education at the single cell level, other than the expression of a specific inhibitory receptor-

MHC class I pair, is however yet to be identified. Currently NK cell education can be 

measured only by readouts from in vivo rejection, cytotoxicity, in vitro stimulation assays and 

the NK cell inhibitory repertoire. The cytotoxic assays are cumbersome to perform. In 

addition, the NK cells are typically lost in the process, which means they cannot be used for 

subsequent clinical applications, or even further characterization [28]. Two adhesion 

molecules, KLRG1 and DNAM-1, are preferentially expressed on MHC class I educated NK 

cells, indicating their association with education [118, 119]. However, it is only the frequency 

of positive cells that increase, so they are not markers of education at the single cell level. 

One study elucidated the difference between educated and uneducated NK cells in terms of 

receptor organization. Activating receptors were confined in membrane nanodomains on 

educated NK cells, while in uneducated NK cells they were dispersed and only hindered by 

the actin meshwork [120]. In a microchip based single cell cytotoxic assay, it was shown that 

educated NK cells displayed higher dynamic migration and made more contacts with target 

cells [121].  

1.6 RECEPTOR CLUSTERING AND DYNAMICS IN IMMUNE CELLS 

Receptors have a natural tendency to form clusters on the cell membrane. Recent 

advancements in technology have increased our understanding of the mechanisms involved in 

immune cell functions, both at a large scale and the microscale level. In T cells, the TCR 

complex form microclusters both before and upon engagement with its ligand. This T cell 

receptor clustering is important for initiation of and sustained cell signaling, by recruiting 

ZAP-70 [122, 123]. Similarly, in B cells, the immunoglobulin IgG1-B cell receptor form 

microclusters which initiate cell signaling [124]. The NK cell receptors are organized in 

nanoscale clusters and the phosphorylation of the activating signaling molecule ZAP70 and 

the inhibitory SHP-1 is favored in larger sized clusters [125].  

Cytoskeleton networks and lipid rafts have been shown to play an important role during the 

immune synapse formation and modulate the spatiotemporal characteristics of receptors. The 
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role of the cytoskeleton in regulating receptor compartmentalization, dynamics and clustering 

have been discussed extensively [126]. It was shown in mature B cells that the diffusion of 

the BCR is highly restricted by the cytoskeleton. Alteration of the cytoskeleton in this case 

induces BCR mobility, which allowed formation of larger BCR clusters and hence induced 

activating signaling [127]. In another study, LFA-1 molecules on resting B cells were 

restricted, but after PMA (Phorbol 12-myristate 13-acetate) activation, the diffusion of LFA-1 

was increased 10-fold, which increased LFA-1 signaling [128]. But there are also actin 

independent cell surface receptors, for example the CD19 coreceptor of BCR was less 

affected by actin alterations [129]. Role of intact actin cytoskeleton was shown to be 

important for nanoscale clustering of inhibitory receptors on human NK cell line[130]. A 

small adaptor protein Crk associated with cytoskeleton scaffold complexes in NK cell 

signaling. Crk was also shown to be important for movement of activating 

microclusters[131]. Moreover, Actin has important roles in integration of inhibitory and 

activating signals of NK cells and also in micro to nano meter scale organization of 

receptors[132]. Dynamics and clustering which are predominantly modulated by the 

cytoskeleton and exploring the receptor dynamics could be beneficial in understanding NK 

cell education and stimulation. 

 

1.7 PRINCIPLES OF FLUORESCENCE MICROSCOPY TECHNIQUES USED IN 

THE THESIS  

1.7.1 Fluorescence microscopy  

Fluorescence microscopy is a sensitive and specific imaging technique, capable to resolve 

fine structures in biological specimens. Over the past years, several advanced fluorescence 

microscopy techniques have evolved, which have further extended the possibilities to 

characterize cellular features and mechanisms. To acquire data, the molecules of interest must 

typically be fluorescently labeled, although sometimes auto-fluorescent compounds can be 

used. Fluorescence is the emission of light from a fluorescent compound, which occurs 

within nanoseconds after light-induced electronic excitation of the compound. For excitation 

to occur, the photon energy of the excitation light should match the energy difference 

between the ground electronic state (S0) and the excited electronic state (S1). The return of the 

electron to the ground state can occur via different pathways. The most direct pathways give 

rise to emission of a fluorescence photon. Because of losses of vibrational energy upon 

excitation and de-excitation, the fluorescence photons have less energy than the excitation 
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light photons, and the wavelength of the emitted fluorescence light is therefore red-shifted, 

compared to the excitation light. The relaxation from S1 to S0 can also take place without 

emission of fluorescence. The excitation energy is then lost into heat. Another possible 

pathway is so-called intersystem crossing into a triplet state (T1), whereby one of the outer 

electrons in the fluorophore changes its spin direction. The T1 state has a lifetime of 

microseconds to milliseconds and has a very weak emission (phosphorescence). It can thus be 

considered as a non-fluorescent, dark state. The electronic state transitions within a 

fluorophore following excitation can be illustrated by a Jablonski energy diagram (Figure 

3A).  

 

 

Figure 3: Simple illustration of (A) Jablonski energy diagram (B) working principle of confocal fluorescence 

microscopy: black lines for excitation laser, blue lines represent emitted fluorescence. Dotted lines indicate out-

of-focus/scattered/fluorescent light.   

In Figure 3B, a simple depiction of the principle of fluorescence microscopy is illustrated. 

The beam of an excitation laser is reflected by a dichroic mirror (which reflects the shorter 

wavelength of the laser light) and is then focused by the objective so that the focal plane is 

within the sample. Electrons excited by the laser emit light (fluorescence) which is collected 

by the same objective, transmitted through the dichroic mirrors (which transmits the longer 

wavelength light of fluorescence), passes through a pinhole, an emission filter, and is 

captured by a detector.  
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1.7.2 Fluorescence Correlation Spectroscopy (FCS)  

FCS is based on correlation analysis of temporal fluctuations of the fluorescence intensity. 

It is a quantitative technique with single molecule sensitivity. It can measure the diffusion 

and concentration of molecules and protein complexes in absolute numbers. It is based on 

detecting the minute fluctuations in fluorescence intensity that occur when individual 

labelled molecules diffuse in and out of a small detection volume. By monitoring the 

amplitude of the fluctuations over time, the average number of fluorescent molecules 

residing within the focus can be determined. Also, the diffusion properties of these 

molecules can be determined from the duration of the fluorescence intensity fluctuations 

[133]. FCS can in principle be combined with any type of fluorescent microscope, one such 

recent combination was with STED microscopy, known as STED-FCS, where the molecule 

or lipid membrane dynamics can be observed in nanodomains [134]. 

1.7.3 STimulated Emission Depletion microscopy (STED)  

The resolution of regular confocal microscopy is restricted by the diffraction of light, to 

around 250-300 nm. In recent years this resolution limitation has been overcome by the 

development of several super-resolution techniques. One of them is STED microscopy, 

invented by professor S. Hell [135]. With STED microscopy, it is possible to resolve 

fluorescent structures in a sample which are less than 40 nm apart. This is achieved by using 

a pair of synchronized laser pulses. The first laser beam (the excitation pulse) excites the 

fluorescent probes in the sample (from S0 to S1), within a region that cannot be made smaller 

than 250-300 nm, given by the diffraction limit of light. After a few picoseconds, the 

excitation laser is followed by a second laser (depletion pulse) with a red-shifted wavelength. 

The depletion pulse is designed in a doughnut shape, where at the center, the depletion 

intensity is zero. The depletion pulse induces stimulated emission (from S1 to S0), so that 

fluorescence emission is out-competed in the peripheral parts of the excitation beam. Thus, 

the fluorescence emission is confined to a smaller spot, thereby increasing the resolution.   

1.7.4 Transient state microscopy (TRAST) 

Transient state microscopy (TRAST) was developed in professor Jerker Widengren’s lab, 

KTH, Stockholm [136]. This method is based on recording the transition of fluorophores into 

transient dark states, upon excitation by a time-modulated laser beam. The intersystem 

crossing rate, or transit probability, of S1 into the triplet state is much lower than the de-

excitation from S1 to S0. However, the triplet state is relatively long-lived, and under 

continuous excitation the T1 population increases with time and finally reaches a level where 
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a steady-state population is established. The triplet relaxation rate (kt) from T1 to S0 is 

strongly dependent on the oxygen concentration. In most biological systems kt increases 

linearly with the oxygen concentration in the micro-environment: 

  

kt =k0+kQ*[O2] 

  

where kt is the triplet relaxation rate, k0 is a small intrinsic rate (not oxygen dependent), kQ 

is a quenching constant and [O2] is the oxygen concentration. The higher the oxygen 

concentration, the larger the quenching of the triplet state (i.e. triplet relaxation rate is 

higher) [137]. 
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2 AIM 

The overall aim of this thesis was to study the spatial organization and temporal dynamics of 

NK cell receptors, with focus on characteristics that can be studied and quantified using 

different fluorescence based techniques. The studies address comparisons of NK cell 

populations in steady-state, but with different intrinsic activity levels, based either on 

previous cytokine activation or education. 

 

Paper 1. To characterize the expression and membrane dynamics of an MHC class I 

molecule and a inhibitory receptor (Ly49A) after cytokine stimulation of NK cells.  

MHC class I molecules are known to be upregulated on the cell surface with cytokine 

stimulation. The impact of this on the dynamics of the inhibitory receptor (Ly49A) and MHC 

class I was assessed on activated NK cells.  

 

Paper 2. To develop a fluorescence correlation spectroscopy technique on primary NK cells 

for quantifying the molecular diffusion and concentration on the cell membrane. This 

technique could be easily adapted for other immune cells. 

  

Paper 3. To investigate if there is any difference in the molecular diffusion pattern of 

activating and inhibitory receptors on the cell membrane between educated and uneducated 

NK cells. 

A novel technique, TIRF-iMSD, was established to study the diffusion patterns of receptors. 

 

Paper 4. To investigate the correlation of activating and inhibitory receptor organization and 

clustering with NK cell education.  

 

 

 



 18 

3. MATERIALS AND METHODS 

3.1 MICE 

Mice were bred and maintained at the MTC animal facility and the Comparative Medicine 

Wallenberg laboratory animal facility according to governmental guidelines and 

regulations. Experimental procedures were approved by the local ethical committee, ethical 

permit number N70/15, N418/12 and N419/12 for all the studies. All the mice used in this 

thesis were from C57BL/6 background and usually from 8 to 12 weeks old. Two mouse 

strains were used as a model to study education, here called H2-Dd and MHC-/-mice. H2-Dd 

mice express only one of the MHC class I allelic products, the Dd allele molecule. This is 

an educating ligand for the inhibitory receptor Ly49A. The strength of Ly49A–H2-Dd 

binding is high and this interaction may thus have a high impact on education [28]. MHC-/- 

mice do not express any MHC class I molecules and thus none of the MHC class I specific 

inhibitory receptors expressed in these mice mediates education [17]. Study III and IV are 

focused on comparing the Ly49A positive subpopulation of NK cells from H2-Dd and 

MHC-/- mice, as a model to compare educated versus uneducated NK cells. 

 

3.2 IMMUNO-FLUORESCENT LABELING 

Most of the techniques used in the studies were based on advanced fluorescent microscopy 

and carried out on freshly isolated primary live or fixed NK cells. Due to the long exposure 

times involved in both live cell and super resolution imaging, it was a requirement for the 

probes to have high fluorescence quantum yield and photostability. In study I, II and III, 

due to the unavailability of antibodies with such suitable fluorescent tags, purified primary 

antibodies were conjugated to dyes by ourselves in the lab. The conjugation was based on 

the amino-reactive reagent N-hydroxysuccinimidyl (NHS)-esters. This reactive group forms 

chemically stable bonds between the probe and the antibody. For study IV, we employed 

secondary antibodies that were conjugated to recommended fluorescent probes for STED 

microscopy against primary antibody for activating and inhibitory receptors of NK cells. 

3.3 MICROSCOPY TECHNIQUES  

3.3.1 Fluorescence correlation spectroscopy (FCS) 

FCS facilitates quantification of concentrations and diffusion coefficients of proteins on 

live cell membranes. The technique was adapted to study freshly isolated primary cells. In 

study I, FCS was used to characterize MHC class I molecules and inhibitory Ly49A 
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receptors on the membrane of resting and cytokine stimulated NK cells. NK cells were 

enriched from freshly isolated splenocytes and cultured with IL-2 and IFN-a/b for 4 hours 

at 37 °C. A short time of stimulation was chosen to see whether cytokines already induced 

changes to the membrane protein dynamics at this time point, before extensive 

proliferation. MHC class I was present in abundance compared to Ly49A, so, MHC class I 

was chosen for the green channel (excitation at 488 nm, argon laser) and Ly49A was placed 

in the red channel (excitation at 633 nm, helium–neon laser). Cells were measured in 

suspension in a 1:1 mix of transparent RPMI (to avoid background from phenyl red) and 

PBS with 1 % fetal bovine serum. This mixture was found to minimize cell movement 

during the measurements. 

3.3.2 STED microscopy  

To quantitate the cluster density, size, and distance between activating and inhibitory receptor 

clusters, we opted for dual color super resolution STED microscopy, with a resolution as high 

as 35-40 nm. STED does not require any photoswitchable or photoactivated dyes, it simply 

works with high quantum yield dyes with good spectral separation. The organization of 

receptors were compared on educated and uneducated NK cells, hence the Ly49A positive 

subpopulation was sorted by flow cytometry from the two chosen mouse strains prior to 

imaging. Images were acquired on fixed cells that were mounted to the microscope slide. The 

tedious part of the STED experiments was optimization of sample preparation, to establish 

a working protocol with no unspecific binding of antibodies, low background and high 

signal for dual color STED images of activating and inhibitory receptors co-stained on NK 

cells. The two color STED images were established using two pulsed diode lasers for 

excitation at 532/590 nm and 640 nm for Alexa flour 594 and Abberior star 635p dyes, 

respectively. 

3.3.3 TIRF – iMSD 

Total internal reflection fluorescence (TIRF) microscopy is utilized to study proteins close 

to or at the cell membrane. This technique combined with Spatio-Temporal Image 

Correlation Spectroscopy (STICS)-image Mean Square Displacement (iMSD) analysis 

enables to identify the type of movement that is the most prominent among the labeled 

proteins on the cell membrane. The advantage of this method is that slow movements are 

also accounted for, unlike the FCS method. The fraction of receptors that are completely 

immobile during the whole measurement period is however removed also in TIRF-iMSD. 
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3.3.4 TRAST microscopy 

Transient state imaging was used to test whether educated and uneducated NK cells could 

be differentiated based on their metabolic states. Ly49A sorted NK cells from both mouse 

strains were labeled with CFSE at a very low concentration of 0.1 nM. Healthy and live 

cells were chosen for measurement using bright field view of the cells. The electrons were 

driven into a dark triplet state by using a 488nm excitation laser (210 mW). The duration of 

the excitation pulses was systematically changed via an acousto-optical modulator (AOM), 

which lead to different fractions of the fluorophores populating the triplet state, and in turn 

lead to systematic changes in the average fluorescence intensity recorded from the 

fluorophores. The changes in the average fluorescence intensity versus the duration of the 

excitation pulses were plotted, and fitted to electronic state models. Thereby, the transition 

rates into the dark state(s) can be calculated, including kt. Any photo-bleaching during 

measurement was taken into account by additional control measurements. The strong 

dependence of kt on the ambient oxygen concentration provide an indirect measure of the 

local oxygen concentration (and thus consumption) in the cell [138]. 

3.4 IMAGE ANALYSIS  

All microscopy data was analyzed by customized MATLAB scripts for efficient and 

standardized analysis. The scripts were written by software programmers. For study I and 

II, the script was based on fitting the experimental data to chosen mathematical models. For 

each fit, diffusion coefficients and counts per molecule are extracted for the moving 

entities. In study III, the images of 6000 frames were loaded into MATLAB and a square 

Region of Interest of 3.2 x 3.2 µm2 was selected and analyzed. The experimental data was 

fitted to all proposed models of movement and output parameters for each model was 

generated. In study IV, clusters were identified by setting a threshold. Above this threshold, 

the intensities were counted as a cluster. The size of a cluster intensity profile was set by the 

full width half maximum. That is, the border of the cluster is defined as being where the 

intensity has reached half of the maximum intensity within that cluster, moving outwards 

from the highest recorded intensity for each cluster. Since the activating and inhibitory 

receptors do not have direct contact but may communicate through signaling molecules, the 

nearest neighbor distance between receptors is calculated, rather than direct overlap. Due to 

steric hindrance of the secondary antibody labeling, it is also very difficult to detect direct 

fluorescent overlap using super resolution microscopy [139]. 
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4. RESULTS AND DISCUSSION 

The main aims of this thesis can be categorized into two parts. First, it was to elucidate the 

influence of cytokine stimulation on dynamics of NK cells receptors. Second, to investigate 

the temporal dynamics and spatial organization of receptors on educated and uneducated NK 

cells. We also investigated the metabolic state of NK cells and if it was altered depending on 

the educational status. 

Paper I 

This paper demonstrated that the molecular dynamics of the studied MHC class I molecule 

and the Ly49A inhibitory receptor were altered within a few hours of cytokine stimulation. 

Ly49A interacts with the MHC class I molecule H2-Dd in trans, as well as in cis, on the same 

NK cell [34]. It was shown in a transfected cell line system that the level of MHC class I 

expression influences the amount of cis interaction between Ly49A and H-2Dd [140]. During 

viral infections, type I interferons are produced, which mediates various immunostimulatory 

functions [141]. These interferons upregulate MHC class I expression on lymphoid cells 

[142]. On the other hand, for in vitro assays and clinical applications IL-2 is widely used for 

activating NK cells. Less was known about how IL-2 affects MHC class I expression levels. 

We thus started by investigating if these cytokines influence MHC class I expression levels 

on NK cells at different time points, and if this would lead to an alteration in the fraction of 

Ly49A receptors bound in cis. This was first addressed by stimulating splenocytes and by 

gating on NK cells they were analyzed for MHC class I and Ly49A expression levels at the 

cell surface, using flow cytometry. We observed upregulation of MHC class I with IL-2 and 

IFN-a/b stimulation already at the earliest time point of 4 hours (Figure 4). However, this 

stimulation effect could be either direct or indirect, since T cells and other cells in the culture 

could have mediated the cytokine effect on NK cells. Later, enriched NK cells were 

stimulated with the same concentrations of cytokines and we could still observe a similar 

effect (data not shown). 

We used two different antibodies to study how cytokine stimulation affected the total cellular 

expression level of Ly49A, as well as the amount of Ly49A which was “free” (not bound in 

cis) (Figure 4). Surprisingly, despite the dramatic upregulation of MHC class I in response to 

cytokines, the fraction of free Ly49A receptors compared to total Ly49A did not seem to 

change dramatically over the time period we studied. 
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Figure 4. Upregulation of MHC class I and Ly49A with cytokine stimulation. Splenocytes activated with IL-

2 and IFN-a/b cytokines at different time points. NK cells are gated on the NK1.1+CD3- lymphocyte population. 

Percentage difference was calculated with respect to control that was incubated at 37C without any cytokines (A) 

IL-2 activated NK cells (B) IFN-a/b activated NK cells. 

Since MHC class I was upregulated already at the earliest time point, we investigated if this 

short period of stimulation was enough to alter the molecular dynamics of H-2Dd and Ly49A 

using the FCS method. Data revealed that MHC class I molecules diffused significantly faster 

on stimulated NK cells with both IL-2 and IFN-a/b, while Ly49A diffused significantly 

faster only with IFN-a/b stimulated NK cells (Paper I). Ly49A diffusion was in general twice 

as fast as that of MHC class I. The IL-2 stimulation did not alter the diffusion rate of Ly49A 

in total Ly49A positive NK cells, but interestingly when performing a multivariate analysis, it 

was shown that a subpopulation of NK cells that displayed faster diffusion of MHC class I 

also exhibited faster diffusion also of Ly49A. The FCS data distribution indicates clearly, that 

upon cytokine stimulation the NK cells respond heterogeneously. That was evident from the 

spread of the stimulated cells in the diffusion coefficient and also in the brightness of the 

analyzed MHC class I and Ly49A. Thus, it was shown with multivariate analysis that there 

were around 29 % of IL-2 and 31 % of IFN-a/b stimulated cells which contributed to a 

distinct subpopulation among stimulated NK cells. Previously, in line with this it was shown 

that human NK cells react heterogeneously in their cytotoxic response and a subpopulation of 

IL-2 activated cells have increased their cell size and was able to kill several targets after a 

few days of activation [143]. This subpopulation of NK cells could be efficient in killing 

target cells. Thus, it would be interesting to further characterize the subpopulation of NK cells 

from our study, by combining FCS with microchip based method that is well established in 

professor Björn Önfelt’s group which could facilitate isolation of these distinct individual NK 

cells. Another possible speculation could be that this percentage of 29-31 % may indicate the 

percentage of Ly49A single positive subset from total Ly49A population in homozygous H2-

Dd mouse that would enable faster diffusion on the cell membrane due to less crowding. For a 

future direction, it would be interesting to characterize the molecular dynamics of adhesion 
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molecules on NK cells after cytokine stimulation which could give an insight on the role of 

faster molecular dynamics for better conjugation with target cells. In summary, a better 

understanding of how cytokines influence molecular expression and dynamics at the NK cell 

surface could be of potential importance in order to better understand target cell interaction 

for effective cytotoxic activity and cell trafficking. 

Paper II 

Fluorescence correlation spectroscopy (FCS) has significantly contributed to our 

understanding of cell biology. It can provide information about concentration and diffusion of 

molecules, and even biomolecular interactions (if extended to Fluorescence Cross-Correlation 

Spectroscopy). Two important advantages of this technique compared to other methods for 

studying protein concentrations and diffusion rates are that it provides single molecule 

sensitivity and it works well for low concentrations. So far, the utmost majority of the 

applications of FCS were carried out on cell line systems [144]. Guia et al. however in a 

study on educated and uneducated NK cells using FCS revealed that the activating receptors 

are confined in microdomains on educated NK cells [120]. In paper II, we adapted the 

method and provided a protocol for measuring FCS on primary NK cells. There are earlier 

studies on MHC class I topographical distribution and mobility [145, 146]. In a previous 

study on cell lines, the diffusion rate of MHC class I molecules on the cell membrane was 0.9 

µm2/s [140], and in line with that, we also observed a similar diffusion coefficient of MHC 

class I (0.95 µm2/s) on primary NK cells (Paper I). By first verifying the sensitivity and 

specificity against fluorescently tagged versions of the protein of interest, as was done in ref 

[140], the use of antibodies for detection in primary cells can be validated. In paper I, we also 

utilized this method to find the binding affinity of YE1/48 clone antibody to Ly49A receptors 

on a Ly49A-GFP transfected cell line. By adapting our protocol of immunostaining and 

sample preparation, FCS can be implemented for any immune cells to study diffusion rates 

and concentration of the molecules. 

In extension to the published data, we applied this method to differentiate molecular 

dynamics of educated and uneducated NK cells by immunostaining an activating receptor, 

NKp46, on H2-Dd and MHC-/- NK cells. Autocorrelation curves were acquired on Ly49A 

positive NK cells (Ly49A was stained with another fluorophore, Ly49A+ cells were identified 

visually in the microscope). It was found that NKp46 diffused faster on educated NK cells 

(Figure 5). Interestingly, along with this difference in the diffusion rate of NKp46, there was 

also some speculation from the preliminary NKp46 STED images (paper IV) which gave rise 
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to the idea that NKp46 may follow some differential pattern in their organization on the cell 

membrane, depending on education (discussed further below). The faster diffusion of NKp46 

on educated NK cells may help the NK cell to screen more efficiently for activating ligands 

on target cells. 

 

 

Figure 5. Increased diffusion rate of NKp46 on educated NK cells. NK cells were enriched from H2-Dd and 
MHC-/- mice and immunostained for NKp46 and Ly49A receptors. Comparison between two unpaired groups by 
Mann-Whitney test, * p< 0.05. 

 

Paper III 

Having a basic understanding of NKp46 diffusion dynamics and its organization on NK cells 

from our FCS studies, we established a novel technique, TIRF-iMSD, which combined TIRF 

microscopy and spatio-temporal image correlation spectroscopy (STICS) with image mean 

square displacement (iMSD) analysis. The TIRF-iMSD analysis yields a quantitative 

description of the dynamics at each pixel and distinguishes different diffusion patterns 

exhibited by the molecule. To validate this new analysis approach, the images were also 

analyzed by another method, single particle tracking (SPT), which enables tracking of the 

diffusion pattern of individual molecules. With the SPT technique, it was observed that 

NKp46 and Ly49A were transiently confined in microdomains on the NK cell membrane, 

and that NKp46 diffused faster on educated NK cells. With TIRF-iMSD it was found that 

NKp46 resided in larger microdomains compared to uneducated NK cells (confirmed by 

SPT), and the transit time through domains were shorter. Ly49A on the other hand, were 

observed in smaller domains and diffused slower on educated NK cells, but still dwelled in 

domains for a shorter time. NKp46 residing in larger microdomains as well as exhibiting 

faster diffusion on educated NK cells could facilitate the formation of larger and thus more 

stable conjugates with target cells, since receptors during synapse formation are recruited to 

the synapse from other parts of the cell. These observations could be related to a study that 
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reported that NKG2A+ educated NK cells form more long-lasting target cell conjugates 

[121]. The observation that Ly49A diffuse faster on uneducated NK cells, may be interpreted 

as a way to effectively interrupt the conjugate formation with target cells. ITIM bearing 

receptors inhibit the adhesion of NK cells to target cells [147],  and it was also shown that 

uneducated NK cells form fewer stable conjugates [121, 148].  

The actin meshwork restricts the diffusion of activating receptors on uneducated NK cells 

[120], it however remained unclear if the restriction of activating receptors results in hypo-

responsivity. The role of the actin meshwork in educated NK cells also remained unclear. We 

disrupted the actin cytoskeleton and measured the diffusion of the activating receptor NKp46 

using TIRF-iMSD. It was observed that the actin cytoskeleton disruption abrogated the cell 

signaling in response to activating receptor crosslinking, which showed that the actin 

meshwork plays an important role in activating signal initiation. This is in line with what has 

been previously shown in T cells [149, 150] and it has also been discussed that actin 

cytoskeleton is the point for modulation of protein dynamics and clustering in B cells [126, 

129]. Next, we examined if the receptor diffusion could be altered by addition of cholesterol 

and thereby influence the NK cell response. The cholesterol addition decreased the dwell 

time of NKp46 in microdomains and also led to a decrease in the cell response to NKp46 

crosslinking. The cholesterol addition might have restricted the transition of activating 

receptors from one domain to another domain, which disturbed the cell signaling. Alteration 

of cholesterol and the actin composition on the NK cell membrane, leading to a perturbed cell 

signaling via the NKp46 receptor, indicates that NK cell receptors might be regulated by 

several topological factors of cell membrane. 

Paper IV 

For the past few years, more interest has been directed towards receptor organization in 

resolution down to the nanometer scale. We were interested in finding out if education of NK 

cells has altered the organization of activating and inhibitory receptors on their cell 

membrane. This was addressed with STED microscopy. We imaged inhibitory and activating 

receptors on murine educated and uneducated NK cells. Firstly, we measured the cluster 

density and size of the receptor clusters. Interestingly the cluster size of inhibitory receptor 

Ly49A and NKp46 was larger on uneducated NK cells (Paper IV). The cluster sizes of 

NKRP1C and NKG2D did on the other hand not change with educational status). It is shown 

that the size of activating and inhibitory clusters controls the recruitment of signaling 

molecules and thereby affect cell signaling [125]. The larger clusters could thus be an 

indication for different threshold levels for signaling between educated and uneducated NK 
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cells. The larger size of Ly49A clusters in uneducated MHC-/- NK cells could simply be due 

to the higher expression level. This does nevertheless not exclude that an educational effect is 

mediated through larger receptor clusters, since the two phenomena, receptor expression level 

and educational status, has not been studied in isolation. This is due to that the same factor, 

namely the presence of a specific MHC class I ligand, mediates both effects. It would have 

been interesting to measure the cluster size of two inhibitory receptors within the same mice, 

where one has an educating MHC class I ligand and the other does not. This comparison 

would however be connected with the same issue, that the expression level and education 

cannot be differentiated.  

Regarding the larger clusters of the activating NKp46 receptor, it has been shown that the 

clustering of TCR is important for cell signaling and activation leading to recruitment of 

ZAP-70 and further with multi-molecular complexes [122]. It is interesting to note that the 

clustering effect of activating receptors varied depending on their function. NKp46 is from 

the NCR family of activating receptors which recognize pathogen associated antigens and it 

is important for NK cells to respond to infection, which occurs irrespective of their 

educational status. It has even been shown in some circumstances of infection that 

uneducated NK cells respond better than educated, since the educated NK cells have some 

extent of inhibition via MHC class I expressed on target cells (reviewed in [151]).  

Next, we measured the nearest neighbor distance between activating and inhibitory receptors 

to investigate if this distance is an important factor in education. The “licensing” model of 

NK cell education implies that a licensing signal is transmitted from the inhibitory receptors, 

allowing activation to proceed upon encounters with target cells expressing activating 

ligands. It was thus interesting to investigate whether inhibitory receptors need to be in close 

contact with activating receptors for licensing to occur. Another hypothesis could be that 

inhibitory receptors need to be close to activating receptors in resting cells for an immediate 

inhibition of activation upon target cell encounter. In this case the inhibitory receptors would 

be closer to the activating receptors than expected from a random distribution in both 

educated and uneducated NK cells. To test these hypotheses, we wanted to measure the 

distance from each activating receptor cluster to its closest inhibitory receptor cluster (A to 

B), also known as the nearest neighbor (NN) distance. We also measured the NN distance 

from each inhibitory to its closest activating receptor (B to A). The distance from activating 

to inhibitory receptors was however not significantly different between educated and 

uneducated cells on average. The only difference observed was in the distance from Ly49A 

to NKp46 receptors, which was most likely due to the difference in cluster density. This 
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indicated that the distance from activating to inhibitory receptors is not important for the 

educational effect, nor is influenced by education. In the future, it would be important to 

study the localization of signaling molecules like SHP-1, 2 and SHIP and other activation 

associated molecules which are shown to be vital for NK cell activation. These signaling 

molecules might need be in closer proximity to induce an impact on activation or inhibition, 

rather the than distance between receptors. 

 

Table 1: Summary results of the nearest neighbor distance measured on dual color STED images. Table includes 
the median value and P value from Mann Whitney statistical test. 

 

Interestingly, the NKp46 receptor had shown a difference in the organization and diffusion on 

NK cells correlated with education (from study II and III). We thus wanted to investigate if 

the distribution of this receptor is random or organized differently. To address this, we 

generated simulated cells with the same cluster density and cell size, and then measured the 

Nearest Neighbor distance and compared with experimental (NK) cells (shown in Figure 6). 
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Figure 6: Nearest neighbor distance from the 1st receptor to the 2nd (mentioned from left to right in the 

table headings), plotted against the density of the 2nd receptor. Distance between receptors on simulated and 

experimental cells (a) NKp46 to NKp46 (b) Ly49A to Ly49A (c) Ly49A to NKp46 (d) NKp46 to Ly49A. The x 

axis show the density of NKp46 in (a) and (c), and of Ly49A in (b) and (d). The line indicates the curve fitting 

for the simulated cells (random distribution). 

The NKG2D and the NKRP1-C receptors followed a random distribution pattern in both 

mice (data not shown). But preliminary results indicated that the organization of NKp46 and 

Ly49A receptors did not simply follow a random distribution when taking the receptor 

density of each cell into account (Figure 6). The nearest neighbor distance between each 

NKp46 receptor cluster was similar in all cells, regardless of their density (Fig. 6a). The 

nearest neighbor distance between each Ly49A receptor have on the other hand a scattered 

pattern of distribution in H-2Dd single mice (Fig. 6b). Since all these NK cells were educated, 

this indicates that another factor than education affects the distribution of Ly49A in a non-

random fashion in H-2Dd mice, whereas it follows a more random pattern in MHC-/- mice. 

The distance between activating NKp46 receptors might on the other hand be kept at a 

relatively fixed distance, regardless of receptor density, although this deviation from random 

was weaker that the scattered pattern of Ly49A. 

Overall, our data indicated that the distance between activating and inhibitory receptors is not 

a major governing factor for education. To conclude, the organization of the different 

receptors were not completely random. The organization of Ly49A may be influenced by 

other molecules, for example it could be an adhesion molecules like LFA-1, or the expression 

of other inhibitory receptors, since our measurements were done on the total Ly49A+ 
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population. Rather than the distance between inhibitory and activating receptors the cluster 

size, especially of the inhibitory receptors, may be an important factor for NK cell education. 

Lastly, it is also important to elucidate whether the clustering of receptors lead to better 

signaling for NK cells. Results from our study have indicated the importance of the 

cytoskeleton for cell signaling. Based on these findings, it would be an interesting idea to 

differentiate the actin structure on educated and uneducated NK cells using STED. 

Metabolic state of NK cells  

Recent years has become an era of research on cellular metabolism and its association with 

diseases (e.g. cancer) and specialized (e.g. immune) cell functions. Upon activation, NK cells 

increase glucose metabolism through glycolysis (reviewed in [152]). We wanted to 

investigate if NK cells in the resting state can be in different metabolic states, depending on 

their educational status? This was addressed by measuring the oxygen consumption by cells 

using the TRAST microscopy method. As a control, IL-2 stimulated NK cells from H-2Dd 

and MHC-/- mice were also measured in the experimental setup. Interestingly, the metabolic 

rate of resting educated NK cells was higher compared to uneducated NK cells, whereas this 

effect was not seen in the cytokine stimulated NK cells. 

 

Figure 7. Kt rates measured per microseconds on educated (H2-Dd+/+) and uneducated MHC-/- NK cells. Data 

presented is a compilation from two individual experiments, n= 64 cells. Unpaired t test was performed, 

**p<0.01 

This difference in NK cell metabolism associated to education are well in line with recent 

findings that educated NK cells have higher basal activity of the mTOR pathway, a central 

coordinator of the metabolism. NK cells undergo metabolic reprogramming during activation 

[153]. CD56(bright) NK cells were shown to be more metabolically active than CD56(dim) 

NK cells and metabolic reprogramming supported the IFN-g production [154]. Using 
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transient state microscopy, we could easily distinguish the metabolic state of the NK cells at 

the single cell level. This is an advantage compared to alternative methods to measure oxygen 

consumption, which often require large numbers of cells. Furthermore, this technique can be 

used in combination with specific staining of certain cell organelles, to better distinguish the 

metabolic activity differences within different subcellular compartments. 
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5. CONCLUSION AND FUTURE DIRECTIONS  

In summary, this thesis aimed to explore how the receptor dynamics and clustering are 

influenced upon education and cytokine stimulation of NK cells. The results from the studies 

have indicated that the receptor spatiotemporal organization could be an influential factor for 

determining the effective response of NK cells.   

Conclusions from the studies are stated below: 

Cytokine stimulated NK cells were shown to have a heterogeneous membrane dynamics and 

exhibit a subpopulation with higher membrane dynamics. In addition, we also showed that a 

few hours of cytokine stimulation is sufficient to influence the receptor levels and dynamics 

of NK cells (Paper I). 

The activating and inhibitory receptors of NK cells were confined in microdomains. 

Activating and inhibitory receptors exhibit differential confinement and diffusion on educated 

NK cells. The actin and cholesterol composition of NK cells can influence the receptor 

dynamics and cell signaling (Paper III). 

Receptor clustering was different on educated and uneducated NK cells, NKp46 and Ly49A 

clusters were larger on uneducated NK cells. The inhibitory and activating receptors were not 

in closer proximity in educated NK cells compared to uneducated NK cells. The distribution 

of NKp46 and Ly49A clusters was nevertheless modulated on the NK cell membrane in a 

non-random fashion (Paper IV). 

Educated resting NK cells had a higher metabolic rate compared to uneducated NK cells, and 

this difference was not observed with cytokine stimulation of NK cells ‘activation overriding 

education’ effect (unpublished study). 

Based on the results, a few interesting thoughts that could be tested: 1) To differentiate actin 

and lipid structures on educated and uneducated NK cells, which could be a potential 

regulator of receptor clustering and dynamics. 2) Cytokine stimulated and educated NK cells 

may share similar receptor dynamic properties, which could be characterized using our 

experimental approaches. 3) Difference in metabolic state of NK cells and receptor 

expression on educated NK cells, there could be difference in protein turnover via autophagy. 

This could be tested using mouse models for education. 
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