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“The function of the expert reviewer is not to be more right than other people,
but to be wrong for more sophisticated reasons.”
—Iain Chalmers and Douglas G. Altman

Systematic Reviews, 1995






Abstract

Dose-response meta-analysis is a statistical procedure for combining and contrasting the evidence
on the association between a continuous exposure and the risk of a health outcome. Different papers
refined selected aspects of the methodology, such as implementation of flexible strategies and extensions
to multivariate meta-analysis. However, there were still several relevant questions that needed to be
addressed. This thesis aims to address these issues by developing and implementing new strategies
and ad-hoc measures (Paper I), including tools for evaluating the goodness-of-fit (Paper II), a new
measure for quantifying the impact of heterogeneity (Paper III), a strategy to deal with differences in
the exposure range across studies (Paper IV)), and a one-stage approach to estimate complex models
without excluding relevant studies (Paper V).

In Paper I, we described the implementation of the main aspects of the methodology in the dosres-
meta R package available on CRAN. Dedicated functions were written to facilitate specific tasks such
as definition of the design matrix and prediction of the pooled results. We illustrated how to estimate
both linear and non-linear curves, conduct test of hypotheses, and present the results in a tabular and
graphical format reanalyzing published aggregated dose-response data.

In [Paper II, we discussed how to evaluate the goodness-of-fit. The proposed solutions consist of
descriptive measures to summarize the agreement between fitted and observed data (the deviance and
the coefficient of determination), and graphical tools to visualize the fit of the model (decorrelated
residuals-versus-exposure plot). A reanalysis of two published meta-analyses exemplified how these
tools can improve the practice of quantitative synthesis of aggregated dose-response data.

In [Paper III, we proposed and characterized a new measure, R;, to quantify the proportion of
the variance of the pooled estimate attributable to the between-study heterogeneity. Contrary to the
available measures of heterogeneity, R, does not make any assumption about the distribution of the
within-study error variances, nor does it require specification of a typical value for these quantities. The
performance of the proposed measure was evaluated in an extensive simulation study. We demonstrated
how to present and interpret the R, re-analyzing three published meta-analyses.

In [Paper 1V, we extended a point-wise approach to dose-response meta-analysis of aggregated
data. The strategy consists of combining predicted relative risks for a fine grid of exposure values based
on potentially different dose-response models. A point-wise approach can improve the flexibility in
modeling the study-specific curves and may limit the impact of extrapolation by predicting the study-
specific relative risks based on the observe exposure range. We illustrated the methodology using both
individual and aggregated participant data.

In [Paper V|, we formalized a one-stage approach for dose-response meta-analysis in terms of a
linear mixed model. We explained the main aspects of the methodology and how to address the same
questions frequently answered in a two-stage analysis. Using both hypothetical and real data, we showed
how the one-stage approach can facilitate the assessment of heterogeneity over the exposure range,
model comparison, and prediction of individual dose-response associations. The main advantage is that
flexible curves can be estimated regardless of the number of data-points in the individual analyses.

In conclusion, the methods presented in this thesis enrich the set of tools available for applying
dose-response meta-analyses and for addressing specific questions including goodness-of-fit evaluation
(Paper II) and quantification of heterogeneity (Paper III). In addition, we presented alternative models
for pooling results in case of heterogeneous exposure range (Paper IV) and for estimating complex
models without excluding relevant studies (Paper V). The proposed methods have been illustrated
using real data and implemented in user-friendly R packages available on CRAN (Paper I).






Sammanfattning

Dos-respons metaanalys &r ett statistiskt forfarande for att kombinera och jamfora resultat fran
epidemiologiska studier dar sambandet mellan en kontinuerlig variabel och en hélsorisk har undersokts.
Tidigare studier har forfinat delar av metoden, till exempel genom inférande av flexibla strategier
och utékning till multivariata modeller; men trots detta kvarstér flera relevanta metodologiska fragor.
Denna avhandling syftar till att besvara ett antal av dessa fragor genom att utveckla och presentera:
nya strategier och ad hoc-modeller (Artikel 1); nya metoder for att bedoma goodness-of-fit (Artikel 2);
ett nytt métt for att kvantifiera padverkan av heterogenitet (Artikel 3); en ny strategi for att hantera
storleksskillnader i exponering mellan studier (Artikel 4); och en ny enstegsmetod for att estimera
komplexa modeller utan att exkludera relevanta studier (Artikel 5).

Artikel 1 beskriver hur huvuddelarna av ovanstdende metoder har inforts i R-paketet dosresmeta,
tillgdngligt via CRAN. De nya funktioner implementerades for att forenkla vissa uppgifter, sa som att
definiera en designmatris och prediktera sammanslagna resultat. Artikeln illustrerar 4ven berdkningen
av linjara och icke-linjéra kurvor och utférandet av hypotestester. Utdver detta presenteras resultat fran
ateranalyserade metaanalyser med sammanslagen dos-responsdata.

Artikel 2 utvdrderar bedomningen av goodness-of-fit-testet. Den foreslagna metoden bestar dels av
berdkning av deskriptiva métvédrden for att summera likheter och skillnader mellan predikterade och
observerade data (avvikelse- och bestimningskoefficient), och dels av grafiska verktyg for att visualisera
den predikterade modellen. En ater analys av publicerade metaanalyser exemplifierar hur metoden kan
anvéndas for att forbéttra kvantitativ syntes av sammanslagen dos-responsdata.

Artikel 3 presenterar ett nytt matt (R,) for att kvantifiera andelen varians i den sammanslagna
skattningen som kan foérklaras av heterogeniteten mellan olika studier. I motsats till tidigare matt
pa heterogenitet kriver R, varken nigot antagande om fordelningen av inom-studiefelvariationer eller
nagon specifikation av deras viarden. Resultatet av det féreslagna méttet har utvirderats i en omfattande
simuleringsstudie samt genom ateranalys av publicerade metaanalyser.

Artikel 4 beskriver hur vi har vidareutvecklat ett punktvist tillvigagdngssétt for metaanalys med
sammanslagen dos-responsdata. Metoden kombinerar predikterade relativa risker for finférdelade
exponeringsviarden baserat pé potentiellt olika dos-responsmodeller. Ett punktvist tillvigagangssatt kan
forbattra flexibiliteten i modelleringen av studiespecifika kurvor, och minska paverkan fran extrapolering,
genom att prediktera studiespecifika relativa risker baserat pd observerad exponeringsstorlek.

Artikel 5 presenterar en enstegsmetod for att estimera dos-respons metaanalys for linjdra mixade
modeller, vilket vanligtvis utférs som en tvastegsmetod. Férdelarna med en enstegsmetod 4r ménga, sé
som underlattad bedémning av exponeringsheterogenitet och modellskillnader samt forbattrad predik-
tion av individuella dos-responssamband.

Sammanfattningsvis utokar och forbéttrar metoderna i denna avhandling de tillgdngliga verktygen
for dos-respons metaanalys. Metoderna har illustrerats med hjilp av befintlig data och ar implementer-
ade i det lattillgdngliga R-paket.
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Chapter 1

Introduction

A single experiment can hardly provide a definitive answer to a scientific question. Science is
oftentimes referred to as a cumulative process where results from many studies, aiming to ad-
dress a common question of interest, contribute to create and update the scientific evidence. In
the cumulative paradigm, meta-analysis is the statistical methodology to combine and compare
the current evidence in the field. This process lies at the heart of the concept of evidence-based

medicine and plays a major role in policy and decision making.

Epidemiological studies often assess whether the occurrence of a health outcome (e.g.
mortality, incidence of a disease) varies according to a quantitative exposure (e.g. amount of
physical activity, alcohol intake). The quantitative exposure is frequently divided in intervals
and the results are expressed in a tabular format as relative risks for different exposure groups.
A high-versus-low meta-analysis contrasts the outcome risk in the highest exposure category
relative to the lowest. This common approach, however, discards the results for intermediate
categories and thus provides only a partial picture. The rich information of the quantitative

exposure is lost and the contrasts may be related to different exposure intervals.

A dose-response meta-analysis, instead, has the potential to be more informative and pow-
erful since it uses the whole available information to estimate the dose-response association.
Because the estimates are computed using a common reference group, it might not be appro-
priate to regress the relative risks on the assigned dose using ordinary least squares. |Greenland
and Longnecker| (1992) described in their seminal paper how to reconstruct the correlation
within set of relative risks and incorporate it in the dose-response analysis using generalized
least squares regression. Since then, the number of published dose-response meta-analyses has
rapidly increased in many fields of application including oncology, public health, environmental
sciences, nutrition, endocrinology, and internal medicine. Additional papers refined selected
aspects of the proposed methodology, mainly focusing on the implementation of flexible strate-
gies in modeling non-linear associations and incorporating the advancements of multivariate
meta-analysis. However, there were still several relevant questions that needed to be addressed
including how to assess the goodness-of-fit, how to quantify the impact of heterogeneity, how
to deal with differences in the exposure range across studies, and how to estimate complex

models without excluding relevant studies.
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This thesis aims to address these issues by developing and implementing new strategies
and ad-hoc measures. The proposed methodologies are demonstrated reanalyzing published
meta-analyses and are implemented in user friendly packages written in the free and open

source R language, in order to bridge the gap between theory and application.



Chapter 2

Background

2.1 Meta-analysis

Relevant research questions are typically addressed by independent investigators in multiple
studies. Sampling error and possibly differences in the investigations will inevitably produce
diverse results, sometimes even conflicting. Evidence-based medicine requires a synthesis of
the available evidence to optimize the decision-making process (Haidichl [2010).

Meta-analysis, or more generally quantitative review synthesis, is the statistical methodol-
ogy for integrating and synthetizing the information arising from multiple studies (Borenstein
et al.,|2009). Using appropriate statistical models, quantitative reviews contrast and pool results
in the hope of identifying similarities and explaining differences across study findings. Meta-
analysis represents the state of the art for systematically reviewing the evidence, as indicated
by the increasing number of published meta-analyses over the last 40 years (Figure [2.T).

The classical approach for meta-analysis consists of an inverse variance weighted aver-
age of the study-specific results or estimates. A fixed-effect model for meta-analysis assumes
that all the studies estimate a single common parameter (Rice et al.,|2017). The hypothesis
of homogeneity of the estimates is rarely applicable in biomedical and social sciences where
studies typically differ in terms of design, disease classification, exposure measurement, and
implemented statistical analyses (Colditz et al.,[1995). In such cases, heterogeneity across esti-
mates is expected and should be considered in the analysis (Higgins, [2008). If the parameters
estimated in the studies are not identical but related, a random-effects models can be used to

identify those similarities or to explain the observed heterogeneity (Higgins et al.,|2009).

2.1.1 Random-effects meta-analysis

In a meta-analysis of I studies indexed byi =1,...,1, we denote [31- the estimate of an effect of
interest (effect size) in the i-th study. A random-effects model for meta-analysis can be written
as

A

ﬁi:ﬁ+bi+8i (21)

where f is the underlying mean effect, oftentimes the main parameter of interest. The random-



4 2. Background

» 15000
(2
>
©
C
¥
8
(0]
S
S 10000
o
o)
©
(2]
c
i)
S
©
S
32 5000
—
(@]
@
Q
IS
=}
pd
0
o 5 o o S © o &
) Q& ) ) N Q M N
3 $ $ $ o s S S
Year

Figure 2.1: Number of publications about meta-analysis (results from Medline search using text "meta-
analysis" until January 2018).

effects b; represent the study-specific deviations from the mean effect  and is assumed to
follow a generic distribution f with mean 0 and variance equal to 72, the between-studies
heterogeneity. The within-study error components ¢; have also mean 0 and variance equal
to V;, an estimate of the sampling variance of /31'- Because the sample size in the individual
investigations is often large, the uncertainty around the estimates of the sampling variance is
negligible. Therefore, ¥; can be considered fixed and denoted as v;. In addition, for the central
limit theorem, &; ~ A (0, v;), or alternatively, [§l~|bi ~ AN (B +b;,v).

An inverse variance-weighted approach for meta-analysis estimates the mean effect § as a
weighted average of the study-specific effects /31- (Whitehead and Whitehead, 1991 DerSimo+{
nian and Laird, |1986)

I A A
[3 — Zizll ﬁl/\wl (22)
2121 w;
I -1
Var (f8) = (Z wi) (2.3)

. . A A2\~ 1 A . . .
with weights w; = (vl- + 1'2) and 12 being an estimate of the between-study heterogeneity.
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2.1.2 Test and estimates of heterogeneity

A second parameter of interest, often overlooked, is the between-study heterogeneity, 72. Fo-
cusing on the mean effect alone may provide only a limited piece of information, especially
in case of heterogeneous effects (Borenstein et al.,[2010). Indeed, an evaluation of the extent
of heterogeneity is a crucial step in determining the appropriateness of presenting a summary
measure of the observed effect sizes.

Presence of heterogeneity is frequently defined as the excess in the variability of /31‘ above
that expected alone by chance. A summary measure of the observed variability is represented
by the Q statistic

1
Q=3 (hi—Fr) v (24)
i=1

where ﬁfe = Zle [JA’ivl._l/ Zle vl._1 is the estimate of 3 in a fixed-effect model. Based on this
statistic, (Cochran| (1954) developed a test for assessing the hypothesis of homogeneity of the
study-specific estimates. Under the null hypothesis of no heterogeneity (H, : 72 = 0) the
Q statistic follows a y2 distribution with I — 1 degrees of freedom (df). A p value less than
0.10 is often used as a cut point for testing presence of between-studies variability. It is known,
however, that the test is sensitive to the number of studies, failing to reject the null hypothe-
sis even for high value of 72 when I is small and rejecting H,, for negligible between-studies
variation when I is big (Higgins and Thompson, 2002} Takkouche et al., |1999). Therefore,
failing to reject the null hypothesis does not provide evidence supporting homogeneity in
the effect sizes (Biggerstaff and Tweediel [1997). In addition, the dichotomization heteroge-
neous/homogeneous is not very informative, especially because heterogeneity is almost always
present (Higgins, [2008).

An estimate of 72, instead, directly provides information about the amount of heterogeneity
and is thus the most natural measure of between-studies variability. Based on the expectation
of Q, DerSimonian and Laird| (1986) proposed the following estimator for 72 using the method
of moments

£2 Q-(-1 } (2.5)

= max
o {0’ PHENAED WD YA
The moment-based estimator is one of the most popular estimators of T2 because it has a
simple non-iterative formulation and does not require any distributional assumption for the
random-effects. This estimator only assumes a finite first order moment. Other common non-
iterative alternatives include estimators based on the variance components (Hedges,[1983) and
on methods for estimating the error variance in weighted linear models (Sidik and Jonkman,
2005)). Iterative methods based on maximizing the likelihood or restricted likelihood can also
be used by specifying a distributional form for the random-effects. The more conventional
choice is typically a normal distribution b; ~ A (0, Tz), which implies f3; ~ A (/5, Tz) and
ﬂAi ~ ,/V([i +b;, T2+ vi).

Although 72 is the more natural and appropriate measure of between-study variability, the

actual value is difficult to interpret because it depends on type of effect size (e.g. log relative
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risk, standardized mean difference) and has no upper limit. Therefore, both evaluation of the
degree (or levels) and the comparison of heterogeneity in different meta-analyses can hardly
be based on the estimate of 72 alone.

2.1.3 Measures of heterogeneity

To complement the test-based approach and the information provided by %2, measures that
quantify the impact of heterogeneity have been proposed (Higgins and Thompson, 2002).
Higgins and Thompson| (2002) presented several possibilities in the simpler case where all the

sampling variances v; are equal to a fixed and known value o2

Two measures aim to estimate the ratio 02/(c? + 72), namely the H? = Q/(I — 1) that rep-
resents the excess in Q statistic relative to its degrees of freedom, and R? = Var(ﬁ) / Var (ﬁfe)
which describes the inflation in the variability of the mean effect in a random-effects model
compared with a fixed-effect analysis. Other measures, instead, relate the between-studies
heterogeneity, 72, to the marginal or unconditional variability T2 + v;, which is defined by the
sum of within- and between-study components. These measures can be more easily interpreted
as the percentage of the total variability due to heterogeneity, similar to the Intraclass Corre-
lation Coefficient (ICC) defined for random intercept linear models. These measures directly
involve the within-terms v; that generally varies across the studies. The most popular measures,
namely the R; (Takkouche et al.,|1999) and the I? (Higgins and Thompson, |2002), replaced
v; with a statistic in order to summarize the observed distribution.

Takkouche et al.| (1999) chose

I
2= ——— (2.6)

I -1
-1V,
that is the harmonic mean of the inverse of the sampling variances. Higgins and Thompson
(2002)), instead, described the “typical” within-study variance as

-3 vt
2ot ) 21, 2.7)

I _1)2 I
(Zizl Vi 1) — i1 Vi 2

that provided a direct relationship with the Q statistic when 72 is estimated using the method
of moments: I? = (Q — (I —1))/Q. Both statistics can be expressed as a percentage where 0%
corresponds to no heterogeneity and increasing values imply higher levels of heterogeneity.
It is known that these measures depend on the precision of the study-specific estimates and
tend to increase to 100% when the v; are much smaller than the estimated 72 (Takkouche
et al.,[1999; Higgins and Thompson, [2002). A complementary measure is the between-studies
coefficient of variation, defined as 72/ |[§ |, that does not directly depend on the within-study

variances. However, it increases quickly as 8 becomes smaller, and is not defined for = 0.
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2.2 Categorical models for dose-response analysis

Epidemiological studies often assess the strength and direction of the association between
exposures and the occurrence of a health outcome. When the exposure of interest is measured
on a continuous scale, the additional information on the shape of the relationship is mostly of
interest. Investigating how the outcome risk varies throughout the exposure range can provide
insights on the causal mechanism (Hill, [1965). Different patterns can be identified such as an
increased/decreased outcome risk for increasing values of the exposure or a threshold effect.
A common approach in epidemiology is to include the continuous variable as covariate in
an appropriate statistical model. By doing so, the outcome risk is assumed to linearly depend
on the covariate. A frequent alternative is to divide the quantitative exposure in categories.
Possible advantages of such a categorical approach is that it relaxes the linearity assumption and
facilitates the interpretation of the estimated regression coefficients. In addition, the results
can be easily presented in a tabular format (Orsini et al., 2011a).
A recent survey among top medical and epidemiological journals estimated that categorization
occurred 86% of the times while a linear trend was reported 56% of the times (Turner et al.,
2010).

2.2.1 Aggregated dose-response data

In a categorical approach the quantitative exposure is divided in J + 1 categories. The cor-
responding indicator or dummy variables index by j = 1,...,J are included in the model in
place of the exposure variable. The results from such a categorical dose-response analysis are
expressed as relative measures of association using one category (corresponding to the omitted
dummy variable) as referent. Depending on the study-design and on the statistical model,
the results consist of estimated odds ratios, rate ratios, or risk ratios (generally referred to as
relative risks (RRs)) for the different exposure categories, possibly adjusted for potential con-
founders. The corresponding 95% confidence intervals (CI) R/I\{L, R/RU provide information on
the uncertainty related to the estimated regression coefficients. Additional information about
the assigned dose (mean or median within exposure intervals), the number of cases and the
total number of subjects or person-time usually complements the reported results. The general
structure and notation for aggregated or summarized dose-response data are presented for a
generic i-th study in Table The subscript i in J; highlights that independent studies may
categorize the continuous exposure using different number of categories.

The effect sizes considered in a meta-analysis of multiple aggregated dose-response data
consist of the estimated log RRs and the corresponding standard errors that can be easily derived
from the data available in Table

log (I/R\RU) —log (}/{\RL)

SE (log R/I\{) = 221 (2.8)
—Qa

where z;_, /5 is the 1 —a/2 quantile of a standard normal distribution, usually approximated



8 2. Background

Table 2.1: Aggregated results from a categorical dose-response analysis.

Exposure level Assigned dose Cases n*® RR 95% CI
0 Xio Co Mo 1 —
1 Xi1 ¢1 ni1 RRy RRp, RRyp
Ji Xy, ¢y, Ju, RRy, RRpy, RRyyy,

8 Depending on the study design, this column reports either total number of subjects
or amount of person-time.

to 1.96 for the common a = 5% level.

A distinctive feature of aggregated dose-response data is the correlation among the (log)
RRs, which arises from the fact that they are estimated using a common reference group.
Each RR has the same baseline risk as denominator that works as comparator. If the observed
baseline risk happens to be high or low just by chance, the estimated RRs will be also higher or
lower than expected (Schmid et al.l,[1998). This adds complexity in evaluating a trend from a
categorical dose-response analysis or in directly comparing results based on different baseline
categories.

2.2.2 High vs. low and categorical meta-analysis

A common approach for synthetizing the information from multiple aggregated dose-response
data is to limit the analysis to a subset of the available results. In particular, a high- versus-low
meta-analysis focuses on the results for the extreme exposure categories (Yu et al., 2013). By
selecting only the last row of the aggregated dose-response data, the meta-analytic models
discussed in sectionare used for combining and contrasting the results, with [3i =log R/I\{l- g

The major limitation of a high- versus-low approach is that only a subset of the data is
analyzed, while the remaining information about intermediate exposure categories is excluded
from the analysis. As a consequence, much of the information about the shape of the dose—
response is lost and the power of detecting an association may dramatically decrease. For
example, in cases where only moderate exposure values have a lower or higher outcome risk,
e.g. U-shaped associations, a high- versus-low approach would wrongly conclude that there is
no relationship between the exposure and the health outcome.

In addition, in a high- versus-low analysis, the highest and the lowest category may be
associated to a different exposure value in the studies included in the meta-analysis. To limit the
impact of heterogeneous category definitions, practitioners should carefully plan the analysis
by selecting the RRs for exposure categories whose definition is more consistent across studies.
If the choice of baseline category also substantially differs, the RRs can be re-expressed using an
alternative reference category implementing dedicated methodologies (Hamling et al.,|2008).

An alternative remedy, although less common, is to conduct a categorical meta-analysis,

which consists of separate univariate meta-analyses pooling the results from comparable expo-
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sure categories. A dose-response association is then deducted from observing the combined
RRs for increasing dose levels. Apart from evident difficulties in identifying RRs for homo-
geneous exposure intervals in applied works, this approach does not take into account the
correlations across set of log RRs and suffers from the same problem of guessing a trend from

a categorical dose-response analysis.

2.3 Dose-response meta-analysis

The aim of a dose-response meta-analysis is to make inference about the shape of the associa-
tion from multiple aggregated dose-response data. As compared to the previous strategies, it
has the advantages of using all the information available and the potential to be more informa-
tive. By describing the variation of the outcome over the entire exposure range, a dose-response

meta-analysis allows one to answer the following questions:

* Is there any association between increasing dose levels and the outcome? If so, what is

the shape of the relationship?
* Which exposure values are associated with the minimum or maximum response?

* Is there any difference in the study-specific dose-response associations across studies?

Which factors can explain the observed heterogeneity?

The statistical problems for modelling sets of correlated relative risks in a dose-response anal-
ysis were first presented by |Greenland and Longnecker| (1992). Their seminal paper is now a
standard reference for applied works. The number of published dose-response meta-analyses
increased exponentially from 9 in 2000 to 172 in 2016 (Figure[2.2)). The most popular research
fields of application include oncology, environmental and public health, nutrition epidemiology,
and general internal medicine. Dose-response meta-analyses are published in many leading
medical and epidemiological journals, including JAMA, Lancet, Stroke, Gastroenterology, Amer-
ican J of Medicine, American J of Clinical Nutrition, American J Epidemiology, International J
Epidemiology, Journal National Cancer Institute, International J of Cancer, Statistics in Medicine
and many others. The method is also routinely used by international organizations such as
the World Cancer Research Fund and American Institute for Cancer Research for reviewing the
evidence on the relations between life-style factors (e.g. diet and physical activity) and cancer.
Guidelines based on these quantitative reviews are central to promote the overall health and
prevent many chronic diseases.

The common approach for dose-response meta-analysis consists of a two-stage procedure,
where the regression coefficients for the study-specific trends are first estimated separately
within each study, and then combined using meta-analysis. In the next sections I cover the

main methodological aspects related to each stage of the analysis.
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Figure 2.2: Number of citations of the paper by Greenland and Longnecker (1992) obtained from Google
Scholar 1992-2017 (until January 2018).

2.3.1 First stage: study-specific trends

If we had access to the individual participant data (IPD), the dose-response model for a simple

linear trend could be written as
log(A(x,0))=Po+Pix+71'c (2.9)

where x is the quantitative exposure and c the set of possible confounders. The outcome vari-
able is the log transformation of the mean outcome (e.g. odds, risk, or rate). Transformations
of the exposure variable can be included to relax the linearity assumption, such as a quadratic
term

log(A(x,¢)) = Bo+ Brx + fox®+7'c (2.10)

This thesis focuses on methods for estimating a dose-response relationship from a summary of
the initial individual participant data. In particular, aggregated data from a categorical analysis
can be often retrieved from published articles. The aim of the first stage of a dose-response
meta-analysis is to estimate the f3 coefficients in Equation[2.9)and using aggregated dose—
response data. We consider the notation presented in Table 2.I|with i = 1,...,I indexing the
studies and j = 1,...,J; the non-referent dose levels of a generic i-th study. The corresponding
two models can be written as

log (R/Rij) =log ()AL (x = xl-j)) —log(?AL (x= xio)) =B (xij —Xio) (2.11)
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log (R/\Rij) =log (QAL (x = xl-j)) —log (JAL (x= Xio)) =0 (xl-j —Xio) + B4 (xlzj — xl.zo) (2.12)

More generally, the i-th dose-response model is defined as
Vi =XiB; + ¢ (2.13)

The outcome y; is the J; length vector of the non-referent log RRs while X; the J; x p design
matrix containing the p transformations of the assigned dose used to model the dose-response
association
g1(xi1) — g1(xi0) .. gp(xip) - gp(xiO)
X; = : : (2.14)

g1(xiy) — &1(xi0) - &p(xiy,) — &p(xi0)

In the linear trend analysis (model [2.11]), X; includes only the dose levels, p = 1, g;(x) = x
(identity function)

Xi1 — Xio
Xi =

Xig, — Xio0

L

while p = 2 columns are needed in the quadratic model [2.12} g;(x) = x and g,(x) = x?

2 _ 2
Xi1 —Xio X33 T X

Xi =
2 2
Xiy. — Xio xiJi —xio

4

A distinctive feature of the models is the absence of the intercept term. The reference row
in Table |2.1]is not actually used for the estimation of the regression coefficients but introduces

the constraint on the predicted log RR, which needs to be 0 (RR = 1) for the reference dose

value x;q, as is explicit in models and

Approximation of the covariance between log relative risks

A particular characteristic of summarized dose-response data is that the log RRs are reported
with different precision and are constructed using the same baseline group. Thus, the error
terms ¢; in Equation[2.13]are heterogeneous and correlated, with a covariance matrix structured
as

Oi11

COV(Ei):Si = O-ilj Ul]] (215)

| o-ilJi aiJij O-Ui']i ]
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with the variance of the log RRs on the diagonal (oj;) and the pairwise covariances as non-
diagonal elements (o; i)

Two methods have been proposed to approximate the covariances o;; (Greenland and Long

ijj
necker, |1992; |[Hamling et al., |2008)). Greenland and Longnecker described an algorithm to
construct a table of pseudo or effective counts (number of cases and participants or person-
time) that would produce the adjusted log RRs as those published. A unique solution for
the algorithm is ensured by keeping the margins of the pseudo-counts equal to the observed
ones. Alternatively, Hamling et al. modified the previous algorithm in such a way that the

pseudo-counts would also match the standard errors of the log RRs.

Estimation

The dose-response coefficients f3; can be efficiently estimated using generalized least squares
estimator (GLS), which minimizes the quadratic loss function (yi -X; ﬂi)T Si_1 (yi — Xl-[ii) with

respect to f3; assuming the covariance matrix S; known

A Tely y1ywT o
ﬁi = (Xi Si 1Xi) 1Xi Si 1Yi (2 16)
Var (B;) = (X[ s7'x)™ '
The GLS estimates in Equation do not require any distributional assumption for the error
terms. However, for the central limit theory, the error terms follow approximately a normal
distribution €; ~ A4 (0, S;). Using this additional assumption, the log-likelihood of model
is

£(p)=—1og2m)— Sloglsi — 2 [ —%B) 87 (v-xp)] @17

Interestingly, the maximum likelihood (ML) estimates that maximize the log-likelihood
coincides with the GLS estimates in[2.16] Introducing the normality distribution for the random
errors facilitates the inference, i.e. test of hypothesis and confidence intervals, on the f;
coefficients. The estimates in [2.16] are a linear combination of normal distributions, y; ~
N (Xi[il-, Si), and therefore are also normally distributed ﬁi ~N (ﬂi,Var(ﬁi)).

The ML and GLS estimators give unbiased estimates of 3; regardless of the specification
of S; (Orsini et al., 2006). As a consequence, a weighted least squares estimator (WLS) that
assumes independence of the log RRs will also produce unbiased estimates. However, taking
into account the correlation will improve the efficiency of the estimator. I investigated the
differences between the GLS and WLS estimators using a simulation study of 5000 aggregated
dose-response data where the true trends were linear (Brryg = —0.014). As expected, both
the estimators were unbiased but the empirical distribution of the GLS estimator was more
concentrated around the true 3 value The empirical distributions of the estimated standard
errors were shifted, with the mean standard error for the WLS estimates being 10% lower than
the corresponding GLS value. This had a direct effect on the inference for the estimated
linear trend. For instance, it may be interesting to fit a quadratic curve as in and test

the hypothesis H, : 3, = 0, i.e. departure from a linear trend. Using inference based on
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WLS estimators the null hypothesis were wrongly rejected 3.96% of the time, lower than the
nominal level a = 5%. The corresponding number for the GLS estimator was instead closer to
the specified rejection rate (4.8%).

I also implemented simulations assuming a quadratic curve with the true coefficients gy =
(—0.092,0.003). The empirical bivariate distributions of ﬁi were centered around the true
parameter, with levels curve more concentrated for the GLS estimates (Figure[2.4)). Similarly
to the linear trend simulations, the distributions of the estimates of the standard errors for the
two estimators where shifted, with the mean of SE ([31) and SE (ﬁAz) being 7 % lower and 6%
higher, respectively, when comparing WLS to GLS estimates.

A ; B
20
600
15
2 > 400
= £
c c
o 10 [
° °
200
5
0 : 0
-0.05 0.00 0.05 0.016 0.018 0.020 0.022
N A
B SE(P)
Method — Greenland-Longnecker — Independence

Figure 2.3: Empirical distribution of the ﬁ (panel A) and SE (/31) (panel B) for a linear trend assuming
independence of the log RR and reconstructing the covariances using the Greenland and Longnecker’s
method. Results are based on simulations with 5000 replications and a true linear trend § = —0.014.

2.3.2 Second stage: multivariate meta-analysis

The study-specific dose-response curves are defined by the p transformations, g;(x),..., g,(x),
and the estimated regression coefficients /31- A pooled dose-response can be obtained by
combining the ﬁi coefficients. For that purpose, the same functional relationship needs to be
defined across the studies. Therefore, the transformations of the exposure were not subscripted
by the study index i.

The p length vector of the ﬁi parameters and the accompanying p X p covariances matrices
\7a\r(ﬁAl-) serve as outcome in the meta-analytic model. We consider the setting with p > 2 and

relate the univariate case as a simpler instance of the more general multivariate case. Since the
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Figure 2.4: Empirical bivariate distribution of the beta coefficients (panel A) and their standard errors
(panel B) for a quadratic trend assuming independence of the log RRand reconstructing the covariances
using the Greenland and Longnecker’s method. Results are based on simulations with 5000 replications
and a true quadratic trend 3; =—0.092, 3, = 0.003.

dimension of the outcome is no longer univariate, extensions of models to the multivariate
settings can be implemented for accommodating the synthesis of correlated estimates (Berkey
et al., 1998} \Gasparrini et al., 2012} [Ritz et al.} [2008).

Model definition

A multivariate random-effects model has a similar formulation as in the univariate case

S

p;=p+b;+eg (2.18)

The unobserved random effects b; are now of dimension p, still representing study-specific
deviation from the mean 3 parameter. As before, E[b;] = 0 and Var[b;] = ¥, the p x p between-
study variance matrix. Specification of a parametric distribution for the random-effects may
facilitate the inference (especially confidence intervals) and improve the prediction of marginal
and conditional dose-response associations. Typically a multivariate normal distribution is
assumed b; ~ 4 (0, ¥). Hence, we can write the marginal model of as

Bi~N(B,Z) (2.19)

where the marginal variance %; = \7a\r([31) + W is defined by the sum of the within-study and
between-studies variance components. The model implies a two-stage sampling procedure
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where the study-specific f3; parameters are assumed to be sampled from a multivariate normal
distribution centered around the population average parameter 3. The study-specific estimates

A

f; are themselves sampled from a multivariate distribution with zero mean and error variance.

The multivariate random-effects model can be extended to meta-regression models by
including study-levels covariates that might change the shape of the dose-response relationship.
The dose-response coefficients are then modeled as a linear combination of the m study-level

covariates u; = (u;1,...,U;y), With u;; = 1 representing the intercept term
B~ W(iiﬂazi) (2.20)

The p x pm design matrix X; is constructed taking the Kronecker product between the u; and
the identity matrix of dimension p, I

1 uy -+ Uy - 0 0 -+ 0
X=1peuf=|: (221)
0 0 - 0 - 1 up - Upy

For example, the X; matrix relating the effect of a binary variable u; to the dose-response
coefficients for a quadratic trend is

- + [1 0 1 4 0 0
Xi=I(2)®ui = 0 1 ®(1,ui)= 00 1 u
L

The dimension of f is now p x m. The coefficients related to the intercept terms are interpreted
as the mean dose-response coefficients when all the study-level covariates u are equal to zero.
The remaining coefficients indicate how the mean dose-response association varies with respect

to the corresponding study-level covariate.

Estimation

Several methods are available for estimating the parameters of interest, namely the p x m
dose-response coefficients in  and the p(p + 1)/2 length vector & containing the elements
on or above the diagonal of the between-studies covariance ¥. There is generally no reason to
assume a specific covariance structure (White et al., 2011)). We consider here likelihood-based
estimators (Verbekel |1997; |Pinheiro and Bates|, 2010). In particular, ML estimators estimate
simultaneously  and & by maximizing the log-likelihood of the marginal model

I

I
£(B.£) =~ Tplogm)—5 > loglml 5 [ (B~%ip) = (B -%p)] 222
i=1

i=1

ML estimators, however, don’t take into account the loss of degrees of freedom due to the f8

estimation (Harville, [1977). Alternatively, restricted maximum likelihood methods (REML)
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maximizes a set of contrasts defined as a function of the only covariance parameters

1 RN 19, jere o
fR(i)=—E(Ip—pm)—Ezloglﬁil—izlogwﬂixih
i=1 i=1
(2.23)

IS [(B-%p) 3 (Bi-%0)]

i=1

[\Jln—\

Both estimation methods require iterative algorithms, where conditional estimates of [3 are
plugged into either or | regarded as function of & only, until convergence. More
details on the 1rnp1ernentat1on of iterative methods for maximizing Equations[2.22]and [2.23]
are described by |Gasparrini et al.| (2012).

Hypothesis testing, heterogeneity, and model comparison

There are two main domains of interest for making inference that relate either to the fixed-
effects 5 or the variance components in ¥. Using the normality assumption for the random-
effects, inference is based on the approximated normal distribution for [3, with mean and
covariance matrix defined similarly as in Equation
Since the mean dose-response association is defined by the f3, the hypothesis of no association
can be evaluated by testing H, : p = 0. Alternatively, a subset or linear combinations of
the elements in  may be of interest. For example, in a quadratic trend the non-linearity is
introduced by the quadratic term x2. Thus, testing H, : 3, = 0 is a possible way for evaluating
departure from a linear dose-response relationship.

As previously presented in section[2.1.2] the coefficients defining ¥ are not nuisance param-
eters rather they are useful for quantifying the variation of the study-specific associations f3;.
Similar measures for testing and quantifying the impact of heterogeneity have been extended

to the multivariate setting (Berkey et al.,|1996)). In particular, the Q statistic

1
Q=> (i —Xibr) Var(h,) " (b —Xibs) 2.24)

i=1

~.

with f3;, estimated under a fixed-effect model is used to test H, : ¥ = 0. Under the null
hypothesis, the Q statistic follow a y? distribution with Ip — pm degrees of freedom. When
p = 1 the formulations andcoincide. The multivariate extension of the I? was derived
relating the Q statistics to its degrees of freedom I? = max {0, %} (Jackson et al.;,|2012).

The fit of alternative non-nested meta-analytical models can be compared using informa-
tion criteria indices such the Akaike information criterion (AIC), which is defined as AIC =
—2/ ([5, 3 ) + 2k, a descriptive measure depending on the maximum log-likelihood and k, the
number of estimated parameters. It is worth to note that the AIC can be used for comparing
the fit of different analyses such as alternative meta-regression models. However, it is not clear
if these indices can be used for comparing different dose-response models, such as linear vs

non-linear.
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Prediction

Interpretation of a single regression coefficient of 5 may be difficult. The dose-response
findings are best communicated in a graphical form as predicted (log) relative risk for selected
exposure levels using one value as referent. Obtaining predictions and presenting them either
in a graphical or tabular form is an important step following the estimation of the model. Based
on the model the predicted logRR for a dose level x, relative to the level x, can be
calculated as

log RR(x, VS Xyef) = X, (2.25)
Var (logR/}\?(xv Vs xref)) =X, Var (ﬁ)XI (2.26)

where X, is the design matrix evaluated in x,, as defined in the first-stage analysis (Equa-
tion [2.14). For example, the predicted logRR for the quadratic model comparing x,,

Versus Xef is

logR/}\Q(xv VS Xpof) = /31 (%) — Xref) + /32 (xf - xrzef)

Of note, the referent dose x ¢ is an arbitrary value and thus does not need to correspond to
any of the study-specific reference values x;;.

A confidence interval for the predicted log RR(x = x, ) is based on the normal distribution of [3
1
log RR(x,, VS Xyef) F 21_q/2 Var (logRR(xv Vs xref))2

Formulas and can be extended to meta-regression models. The predicted logRR

conditional on a specific study-level covariate pattern u =u, is

logRR (x, VS X, u=1,) =X, (I(p) ® UI) p (2.27)
Var (logR/}\{(xV VS Xpef, W= uv)) = (X,U,) Var [3) (XVU‘,)T (2.28)

Inference on study-specific dose-response associations can be enhanced by exploiting the
information from the multivariate distribution for the random-effects. The best linear unbiased

prediction (BLUP) for the study-specific regression coefficients b; is defined as

b=wz (B, —X:B) (2.29)
Study-specific predicted log relative risks can be obtained as in Equations and by
replacing the mean parameter [3 with the individual dose-response coefficients /3 + f)i

2.3.3 History of previous methodological research

Dose-response meta-analysis has received attention not only in applied works but also in theo-
retical articles that covered different aspects of the methodology. |Greenland and Longnecker

(1992) originally presented the two-stage approach for efficiently estimating a linear trend
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in a fixed-effect analysis. An alternative model for estimating curvilinear model, referred to
as “pool first”, was also presented. The technique consists of a one-stage approach where the
aggregated data are considered altogether and a single model as in Equation is fitted.
By first combining the data, more flexible curve parametrized by multiple parameters (p > 2)
can be estimated. The study-specific dose-response analyses are limited by the minimum
number of non-referent log RRs across the studies. For example, if the aggregated data for
a study consists of only one non referent log RR, only a univariate model with p = 1 can be
estimated. The authors refined the methodology by extending the two-stage approach to allow

for heterogeneity limited to a linear trend analysis (Berlin et al.,|1993).

Flexible dose-response models

The primary interest of the methodological research was in presenting alternative strategies
for estimating non-linear curves. Bagnardi et al.| (2004) described the use of fractional polyno-
mials and restricted cubic splines using aggregated dose-response data. Based on a practical
example on the association between alcohol consumption and all-cause mortality, the authors
showed how implementation of these flexible techniques may prevent misleading results from
conventional polynomials (e.g. quadratic) curves. Second-degree fractional polynomials (FP2)

consist of a large family of curves defined in the general form of
FP2(x) = ByxP1 + ByxP2 (2.30)

where p; and p, are chosen in the set of power coefficients {—2,—1,—0.5,0,0.5, 1, 2,3} (Roys-
ton and Altman, 1994; [Royston, [2000). When p = 0, x? becomes log(x), while if p; = p,
the second transformation of x becomes xP2 log(x). The advantage of FP2 models is that dif-
ferent shapes, including U- and J-shapes, can be estimated by only two coefficients chosen
using different combinations for the power terms (py, p»). Typically, the best fitting fractional
polynomial is chosen in such a way that the (p;, p,) corresponds to the model with the highest
likelihood, or equivalently, lowest deviance (Royston, [2001)).

A popular alternative to flexibly model the dose-response association is represented by the
use of splines (De Boor et al.,(1978), largely presented by |Orsini et al.| (2011b) using data from
the Pooling Project of Prospective Studies of Diet and Cancer (http://www.hsph.harvard.
edu/poolingproject). Spline functions consist of consecutive polynomials connected at
specific points of the exposure range called knots. Choosing k = (ky, ..., kx) knots and third

order polynomials, the model, also known as cubic splines (CS), is defined as

K-1
CS(x) = Prx + Pox? + Pax® + D Praa(x —k;)2 (2.31)
=1

where the ‘4+’ notation has been used (u, = u if u > 0 and u, = 0 otherwise). To avoid strange
behaviors at the extremes of the exposure range, the model is constrained to be linear

before and after the first and last knots, respectively. For example, using the minimum number
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of three knots a restricted cubic spline model (RCS) can be specified in terms of two coefficients

ks — k
ks — k

ks
ks

—k
RCS(x) = f1x + 3, [(X - kl)i - L(x— kz)i + kl (x— kg)i] (2.32)
2 — K
The second transformation is generally divided by (k; —k;)? to improve the numerical behavior
and to put the spline transformations on the same scale (Harrell Jr, [2015) (see Appendix [A]for

the derivation of a RCS model).

The previous strategies have been often presented for exposures where 0 was the natural
reference categories (e.g. alcohol consumption). Liu et al.| (2009) extended the methodology
for handling non-zero reference categories, as in the case of Body Mass Index. In particular,
they first described how to construct the design matrix in terms of contrasts, as clarified in
Equation Misspecification of the design matrix (e.g. log RR = f31(x1 — x¢) + B5(x; — x¢)?
instead of logRR = f3; (31 —xq) + ﬂz(xf —x(z))) may increase the risk of generating artifacts and
misleading conclusions. Note that for zero exposure categories the problem is generally not

relevant since many functions return zero for x =0 (g(0) = 0).

Multivariate meta-analysis

The major contribution for estimating non-linear curves in a random-effects analysis came
with the extension of univariate meta-analytic models to the multivariate case. The formaliza-
tion and implementation of multivariate meta-analysis enabled the extension of a two-stage
dose-response meta-analysis to the more complex case of multiple parameters association (Gas{
parrini et al.,|2012). The multivariate framework can accommodate the synthesis of correlated
outcomes or estimates, as those derived in the first stage of a dose-response meta-analyses. The
application of the strategies presented in and in a random-effects setting has been
easily facilitated by the implementation of dedicated packages for multivariate meta-analysis
(White et al.,|2011; Jackson et al.,|2011). This is probably the reason why a one-stage approach

for dose-response meta-analysis was no further extended.

The methodological advancements for meta-analysis were diverse and numerous (see [Sutton
and Higgins (2008) for an overview). Important improvements that directly affected how
results are presented related mainly to the quantification and assessment of heterogeneity,
with the definition of the measures presented in section In addition, many other articles
enriched the set of tools for pooling study-specific effects, with a direct application to the
second stage of a dose-response meta-analysis. Among the many, it is worth to mention the
implementation of several estimation methods for the between-study variability (see|Langan
et al. (2017) for a comparison based on simulation studies); advancement in performing meta-
regression (Van Houwelingen et al., [2002); proposal of sequential approaches (Pogue and
Yusuf}, [1997) and statistical power (Sutton et al., 2007); and introduction of Bayesian methods
(Sutton and Abrams),[2001]).
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Covariance and sensitivity analysis

Orsini et al.| (2006) refined the initial formulas presented by Greenland and Longnecker for
approximating the study-specific covariance matrices depending on the study-design. Berring;
ton and Cox (2003) described an alternative method that avoids the reconstruction of the
covariance matrices. Instead, upper and lower bounds for the covariance matrix are used in
a sensitivity analysis of the dose-response coefficients, adopting a range of plausible values
for the covariances. While the alternative algorithm proposed by |[Hamling et al.| (2008) was
presented in section Easton et al.| (1991) proposed the implementation of the floating
absolute risks where the parameters and their standard errors can be estimated without speci-
fying a baseline group and thus can be regarded as independent. Using individual participant
data from the Pooling Project of Prospective Studies of Diet and Cancer, negligible differences
in the reconstructed covariance matrices were found comparing the three approaches (Orsini
et al., [2011b)). Of note, none of the methods would be needed if the authors of the original
articles provided the covariance matrix along with the estimated coefficients, as it is usually
done in consortia projects.

Berlin et al.| (1993) presented alternatives for assigning the dose levels within exposure
categories and illustrated the use of meta-regression models for investigating the possible effect
of study-level characteristics on the estimated linear trends. |Shi and Copas| (2004) further
discussed the issue of dose assignment in grouped measures allowing for arbitrary dose levels.
In addition, they investigated the effect of heterogeneity and publication bias by means of
sensitivity analyses. A similar problem of dose assignment was addressed by using a likelihood
approach limited to a linear trend analysis (Takahashi and Tangol [2010). This idea has been

further extended to the case of restricted cubic splines (Takahashi et al., 2013).

2.3.4 Description of current practice

There were still many open research questions that need to be addressed to improve the synthe-
sis of aggregated dose-response data. In order to identify the most relevant questions, I began
by observing current practice in applied works. I searched the PubMed database for articles
published between January 1, 2013 and April 1, 2013 using the research query (“meta-analysis”
[Title] and “dose-response” [Title]) and, after excluding irrelevant articles, I found a total of
42 applied dose-response meta-analyses. The authors of the select articles conducted a linear
trend analysis most of the times (25 times, 60%) while only 17 (40%) articles considered
non-linear associations by means of restricted cubic splines (15) and fractional polynomials
(2). All the papers modelling non-linear curves reported a graphical presentation of the pooled
dose-response association.

Interestingly, none of the retrieved articles evaluated the goodness-of-fit of the selected
dose-response model. The assessment of how the estimated curve fits the aggregated data
should be a natural and important step in a dose-response analysis. We address this important

issue by presenting relevant measures and graphical tools to help the assessment of goodness-
of-fit.
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The majority of the screened papers (39, 93%) quantify the impact of heterogeneity by
reporting results for the Q test and the value of I2. While the limitations of the Q test approach
are widely known, little emphasis is placed on the assumptions underneath the definition
of the established measures of heterogeneity, i.e. all the estimates being reported with the
same precision, which is unlikely to be met in almost all the applications. A measure of the
impact of heterogeneity that does not require such an assumption would be desirable. We
overcome this limitation by proposing an alternative measure of heterogeneity and comparing
the performance of the new and available measures.

None of the surveyed meta-analyses discussed the sensitivity of the overall dose-response
relationship to differences in study-specific exposure distributions. This analysis can be relevant
in case of studies reporting results for heterogeneous exposure range. Application of a point-
wise average approach originally presented by [Sauerbrei and Royston| (2011) in the context
of individual participant data may represent an interesting alternative to the averaging of
regression coefficients.

In all the meta-analyses assessing departure from linearity, the authors excluded those stud-
ies reporting less than two non-referent RRs. Indeed, a two-stage dose-response meta-analysis
requires that all the models in the dose-response analysis are identifiable (p < min(J;)). A
one-stage approach would avoid that requirement. Such an approach is conceptually easier to
understand, and more elegant from a statistical point of view. In addition, it allows investiga-
tion of much more flexible dose-response curves, that are not possible within the context of a

traditional two-stage analysis.

2.4 Software

Dissemination of new statistical methodologies is certainly facilitated by the development and
implementation of statistical software components. Many theoretical papers have not been
considered in applied works because of lack of user-friendly software.

Orsini et al.| (2006) described the glst command in Stata, the first publicly available
procedure dedicated for dose-response meta-analysis. The command implements both the
one- and two-stage approaches limited, in case of a random-effects analysis, to a linear trend.
A two-stage random-effects meta-analysis of non-linear relationships can be performed with
the aid of the mvmeta command for multivariate meta-analysis (White et al., 2011). Several
worked examples and codes are available at http://stats4life.se/drm. Later on, Li and
Spiegelman| (2010) wrote %metadose, a two-steps macro for dose-response meta-analysis,
where estimation of non-linear relationships is restricted to a fixed-effect analysis.

The majority of the applied meta-analyses retrieved in our survey were performed using
the glst procedure in Stata (36, 87%), while 2 used the metadose macro in SAS, and 2
studies used functions in RevMan. No dedicated package was available in the free software

programming language R (R Core Team, 2017).
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Chapter 3

Aims of the thesis

The overall aims of this thesis were to develop and implement new methods for dose-response
meta-analysis, in order to deal with the methodological aspects that have not yet been ad-
dressed.

More specifically, the aims were:

* To develop, maintain, and share a package for dose-response meta-analysis in the open
source and free R software.

* To present and discuss relevant measures and graphical tools to assess the goodness-of-fit

in dose-response meta-analytical models, which is often neglected.

* To develop a new measure of between-study heterogeneity in the broader context of meta-
analysis that does not make any assumption about the distribution of the within-study

error variances.

* To move beyond the specification of a unique model across the studies exploring possible
advantages of a point-wise approach, especially in case of dose-response meta-analysis
where the exposure range varies substantially across the studies.

* To avoid exclusion of studies in order to fit more complex and informative models in an

alternative one-stage approach for dose-response meta-analysis.
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Methods

4.1 The dosresmeta R package

The first version of the dosresmeta R package was released on the Comprehensive R Archive
Network (CRAN) on September 2013. It is listed in the CRAN task view Meta-Analysis (https:
//CRAN.R-project.org/view=MetaAnalysis), a guide that covers the vast collection of
R packages for facilitating meta-analysis of summary statistics.

2000
1500

1000

500 l

Number of downloads of dosresmeta per month

Figure 4.1: Monthly number of downloads of the dosresmeta R package from the RStudio CRAN mirror
September 2013 - December 2017.

The dosresmeta package is now available in the updated version 2.0.1 and new features are
being implemented in the version under development on GitHub (https://github.com/

alecri/dosresmeta)). Currently, the dosresmeta package is downloaded and used world-
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wide, with a median number of 260 downloads/month (Figure[4.1)). The countries where it has
been downloaded most are Great Britain (4005), United States (3905), and China (1605) (Fig-
ure[4.2)). Working examples, codes, and data are available athttp://alecri.github.io/
software to fully reproduce figures and numbers presented in both applied and theoretical
papers.

: gl o3
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100-500
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B >1500

Figure 4.2: Total number of downloads of the dosresmeta R package worldwide from the RStudio
CRAN mirror September 2013 - December 2017.

The implementation of the package is presented in[Paper I, which is also offered as a free guide
for the package in a vignette accessible by typing browseVignettes("dosresmeta") from
the R console.

4.1.1 Architecture and design of the package

The initial version 1.0 of the dosresmeta R package implemented the two-stage approach
for dose-response meta-analysis described in Sections and The package included
some facilities for efficiently estimating the dose-response associations across the included
studies and used the mvmeta package for combining the study-specific regression coefficients
(Gasparrini et al., 2012). The main novelty of the version 1.0 was the implementation of gl
and hamling functions for reconstructing the covariance matrices among sets of log relative
risks using the methods developed by |Greenland and Longnecker| (1992) and Hamling et al.
(2008) (Figure [4.3). In version 1.3, dedicated functions were written for summarizing and
displaying results, and for predicting the pooled dose-response association as described in
Section Compared to other routines, the predict function offers the possibility of
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deriving the predicted curve also for dose levels that are not observed in the analyzed data. The
same applies for the choice of the reference dose value. The main advantage is that publication
quality curves and tables (i.e. combined results for desired dose values) can be easily obtained
with a few lines of code. Practical examples are available at https://alecri.github.io/
software/dosresmeta.html. Furthermore, the center argument was added in the main
function for centering the design matrix as described by Liu et al.| (2009). The argument has
been set to TRUE by default for preventing possible errors when modelling non-linear curves,
especially in case of non-zero exposure reference categories. Finally, additional arguments
were introduced for allowing the specification of a list of covariance matrices directly by the
user. This can be useful in pooling projects where the principle investigators share the results
of harmonized analyses.

New capabilities and functions were written in the version under development available on
GitHub and were finally included in the major release version 2.0 on CRAN. The dosresmeta
package was largely redesigned in the internal functions but kept unchanged the external form
and arguments for backward compatibility. Three main features were introduced: the extension
of the two-stage approach for dose-response meta-analysis of differences in means (rather
than log relative risks) (Crippa and Orsini, [2016a)), the possibility of fitting meta-regression
models and the implementation of an alternative one-stage approach. The first was achieved
by extending the choices of the covariance argument for results presented in terms of mean
and standardized mean differences, which related to the covar . smd function. The alternative
covariance == "indep" can be specified for assuming independence of the log relative risks
or differences in means. This is particularly useful when the information for reconstructing
the covariances is not available (see additional (useful) code section on the referenced site for
examples).

First development version on GitHub

2015-08-06
Major release (v 2.0)
First release (v 1.0) one-stage, meta-regression,
‘gl and 'hamling' functions differences in means
2013-09-09 2017-08-17
! !

I I I I I I I I
2012 2013 2014 2015 2016 2017 2018 2019

Introduction of S3 methods
and documentation in roxygen2 Shiny app
2014-01-17 2017-07-31

Figure 4.3: Development of the dosresmeta R package over time.

The implementation of the one-stage approach and related functions is discussed in more detail
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in the methods for Paper V. The updated dosresmeta package also implements functions to
facilitate specific aspects of a dose-response meta-analysis. These includes the assessment of
goodness-of-fit discussed in Paper II, tests for fixed- and random-effects coefficients, conditional
and marginal predictions, and the use of fractional polynomials.

Based on the last version of the dosresmeta package, an interactive interface is also avail-
able athttp://alessiocrippa.com/shiny/dosresmeta. The web-app can be useful for
introducing the concepts of dose-response meta-analysis to those researchers who are not
familiar with the R software.

4.1.2 Description of the package

The dosresmeta package can be downloaded from CRAN by typing directly in R

R> install.packages("dosresmeta")

The version under development is instead available from GitHub

R> install.packages("devtools")
R> devtools::install_github("alecri/dosresmeta")

The package consists of a main function dosresmeta with the following arguments

R> str(dosresmeta)

function (formula, id, v, type, cases, n, sd, data, mod = “1, intercept = F,
center = T, se, 1b, ub, covariance = "gl", method = "reml", proc = "2stage",
Slist, method.smd = "cohen", control = list())

The dose-response model is specified in the formula argument in a symbolic representation.
For example, if logrr and dose are the variable names for the log relative risk and assigned
doses, a linear trend is specified as logrr ~ dose while a quadratic curve as logrr ~ dose
+ I(dose”2). The variables are defined in a data.frame whose name is specified in the
data argument. By default intercept = FALSE does not include the intercept term in the
covariance matrix, which is constructed in terms of contrasts unless center = FALSE. The
id argument specifies the name for the study id variable (can be omitted for single study
analysis). The standard errors for the log relative risks are specified in the se argument, or
alternatively, either the variances (v) or the lower (1b) and upper bounds (ub) of the relative
risks need to be specified. The additional information about the study-design (type), the num-
ber of cases (cases), and participants or amount of person-time (n) is used for reconstructing
the covariance of the log relative risk (or mean differences) using the method specified in
the covariance argument (default is the Greenland and Longnecker’s method). A list of
covariance matrices can be passed to the S1ist argument when covariance = "user". A
two-stage procedure with REML estimation method is the default. A one-stage procedure (proc
= "1stage") and either ML estimator method = "ml" or a fixed-effect analysis method =

"fixed" can be adopted. Residual heterogeneity can be modeled in a meta-regression analysis


http://alessiocrippa.com/shiny/dosresmeta

4. Methods 27

by specifying covariates in the mods argument. For example, a different curve depending on
the study design can be specified with mods = ~ type. Finally, a list of parameters can be
passed to the control argument to control the fitting process.

The dosresmeta function returns an object of class “dosresmeta” with the information
from the dose-response meta-analytic model. The print and summary methods display and
produce a summary of the content of a dosresmeta object. The predict method facilitates

the presentation of the results of a dose-response meta-analysis

R> str(dosresmeta:::predict.dosresmeta)
function (object, newdata, xref, expo = FALSE, xref_vec, ci.incl = TRUE,
se.incl = FALSE, xref_pos = 1, delta, order = FALSE, ci.level = 0.95,
)

where object contains the results of the dosresmeta function. A new data.frame with
the desired doses can be passed to the newdata argument for obtaining the corresponding
predicted log relative risks. If not provided, the predictions will be calculated for the assigned
dose values available from the studies. The expo argument can be set to TRUE to predict log
relative risk and confidence intervals (unless ci.incl = FALSE) on the exponential scale.
The reference value can be specified with the xref argument, or better, specifying the line
of the newdata which serves as referent (xref_pos argument). For non-linear models, a
vector needs to be provided in xref_vec instead of xref. The delta argument is useful for
predicting the linear increase in the outcome for a delta increase in the exposure, and is thus
only appropriate in a linear trend analysis. In the updated version of the dosresmeta package,
a blup method has also been implemented for predicting the study-specific random-effects
and hence the conditional curves.

Additional functions can be listed

R> 1ls("package:dosresmeta")

[1] "covar.logrr" "covar.smd" "dosresmeta"
[4] "dosresmeta.control" "dosresmeta.fit" "fpgrid"

[7] "fracpol" "gof n Ilgrlll

[10] "hamling" "vpc" "waldtest"

Use 1s(getNamespace ("dosresmeta"), all.names=TRUE) for a complete list including

hidden auxiliary functions.

4.1.3 Datasets

Several datasets from published dose-response meta-analyses and methodological articles have
been included in the dosresmeta package. To get a list as in Table with the names and
description type

R> data(package = "dosresmeta")
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Table 4.1: Data sets available in the dosresmeta R package.

Name

Description

alcohol crc
alcohol _cvd
alcohol esoph
alcohol Ic

ari

bmi_rc

cc_ex

ci ex
coffee_cancer

coffee_cvd

coffee_mort
coffee_mort_add
coffee_stroke
fish ra

ir ex

milk_mort
milk ov
oc_breast
process_bc
red bc

sim_os

Eight published studies on the relation between alcohol intake and
colorectal cancer (Orsini et al., [2011b)

Six published studies on the relation between alcohol intake and
cardiovascular disease risk (Liu et al., 2009)

Fourteen case-control studies on the relation between alcohol
consumption and esophageal cancer (Rota et al.| [2010)

Four published studies on the relation between alcohol intake and lung
cancer (Orsini et al., 2011b)

Five clinical trials on the relation between aripiprazole and schizophrenia
(Crippa and Orsinil, [20164a)

Four case-control studies on the relation between Body Mass Index and
renal cell cancer (Liu et al., [2009)

Case-control data on alcohol and breast cancer risk (Greenland and
Longnecker;, [1992)

Cumulative incidence data on high-fat dairy food and colorectal cancer
risk (Orsini et al.l,|2006])

Eight prospective studies on the relation between coffee consumption and
cancer mortality (Crippa et al.,[2014)

Thirteen prospective studies on the relation between coffee consumption
and cardiovascular mortality (Crippa et al.,|2014)

Twenty-one prospective studies on the relation between coffee
consumption and all-cause mortality (Crippa et al.,|2014)

Additional two prospective studies on the relation between coffee
consumption and all-cause mortality (Nilsson et al.,|2012)

Eleven prospective studies on the relation between coffee consumption
and stroke risk (Larsson and Orsinil, 2011

Six studies on the relation between fish consumption and rheumatoid
arthritis risk (Di Giuseppe et al.,|2014)

Incidence-rate data on fiber intake and coronary heart disease risk (Orsini
et al., |2006)

Eleven prospective studies on the relation between milk consumption and
all-cause mortality (Larsson et al., 2015])

Nine studies on the relation between milk consumption and ovarian
cancer (Larsson et al., 2006)

Twenty-two case-control studies on the relation between oral
contraceptives use and breast cancer (Berlin et al., [1993)

Ten studies on the relation between processed meat and bladder cancer
(Crippa et al., 2016b)

Twelve studies on the relation between red meat and bladder cancer
(Crippa et al., 2016b)

Simulated data for one-stage dose-response meta-analysis (Crippa et al.,
2018a)
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4.2 Goodness-of-fit

The aim of [Paper I was to address how to evaluate the goodness-of-fit in dose-response meta-
analysis. The distance between observed and predicted data is often at the heart of model
checking. Although we are working with linear regression models, features of aggregated
dose-response data can complicate this comparison. The predicted curve is presented using
a referent, x,.¢, which may differ from the study-specific reference values. Thus the predicted
and observed log relative risks can no longer be directly compared because their baseline group
is not the same. Even in the case where the reference values are all the same and equal to
X.ef, the covariance among the study-specific RRs and the heterogeneity across the studies
adds further difficulties in evaluating if the chosen model provides a good summary of the
observed data. The proposed tools for assessing the goodness-of-fit are presented in a fixed-
effect analysis where meta-regression models as in [2.20| are typically employed to explain the
observed heterogeneity. We consider relevant measures, tests, and graphical tools that take
into account the correlation of the observed data.

4.2.1 Deviance

The first natural measure of goodness-of-fit is a comparison between the predicted and observed
data points, i.e. the non-referent log relative risks. This can be done by analyzing the residual
term errors, which are defined by the difference between the observed log RRs, y;, and the
marginal prediction

& =y — X X;p (4.1)

A summary for the error terms is the deviance
I - I
~ AT ~ A N Teln
D= Z(Yi -XXp) ;' (vi—XX;p) = Zei S é; (4.2)
i=1 i=1

The deviance D measures the total squared deviation between observed and predicted data
taking into account the covariance matrices S; of the error terms. It is usually referred to as
generalized residual sum of squares (GRSS) (Draper and Smith| 2014). Decreasing values of
D indicate a better agreement between reported and fitted log RRs, with 0 being the lower

bound that corresponds to perfect agreement (saturated model).

The D statistic can be used as a test for model specification. Under the null hypothesis that
the model is correctly specified, D follows a y? distribution with df = Zl{zl J; —pm. This is
equivalent to test if the residual variance, corrected for the correlation of the error terms, is
larger than expected assuming that the dose-response model is correct. A small p value can
be interpreted as evidence that the fitted model fails in accounting the observed variation in
the log relative risks. As for the Q test, the deviance has no upper bound and is thus difficult
to interpret the absolute value of D.
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4.2.2 Coefficient of determination

To complement the D statistic (and the corresponding test), the coefficient of determination,
R?, can be used as a descriptive measure of goodness-of-fit (Hagquist and Stenbeck, [1998;
Kvalseth, 1985). The R? is the complement to the unit of the ratio between the GRSS and
the generalized sum of squares, GTSS = Zle yiT Si_lyi. Because dose-response models do not
have the intercept term, the R? can be defined as in (Buse, 11973; Theil, 1958)

GRSS 1_ Zle (vi _Xiiiﬁ)—r S (v: _Xiiiﬁ)

RR=1——C—=
I _
GTSS Zi:1 y;I'Si 1Yi

(4.3)

R? is a dimensionless number that is bounded between 0 and 1 and can be generally interpreted
as the proportion of the generalized total sum of squares explained by the dose-response
model and study-level covariates. The lower bound 0 corresponds to the case where all the f3
coefficients are equal to 0 and therefore the model is not able to explain the variability in the
observed log relative risks. Contrary, the upper bound 1 indicates a perfect agreement between
reported and fitted data.
By construction the R? can not decrease as the number of regression coefficients increases.
A penalized, or adjusted, version that takes into account this behavior can be defined
S,
Ry=1— Z[l;;_lm (1—R?) (4.4)
i=17i
Possibly, a low R? may indicate that more flexible transformations of the exposure are
needed, or that there is considerable residual variability that might be explained by study-level

covariates.

4.2.3 Visual tools

The visual assessment of the goodness-of-fit may reveal specific patterns in the data that might
otherwise go undetected by only looking at summary measures such as the deviance and the
coefficient of variation (Kvalseth, 1985). The graphical comparison can sometimes be cumber-
some because different factors may affect such analysis. The aggregated dose-response data
are presented using one group as comparison. This feature has two important consequences
when deducing an overall trend from the reported (log) relative risks. The first is that different
parameterizations, or models, can be graphically compared only if the predicted risk for the
reference category is similar. The second involves the correlation of the modelled data points,
which makes it difficult to evaluate if a specific model fits the reported data.

To illustrate both problems, I consider IPD from one of the registers involved in the Surveil-
lance, Epidemiology, and End Results (SEER) Program (https://seer.cancer.gov), and
focus on the association between age at diagnosis and breast cancer mortality. Using 35, 60,
70 years as cut points, I modelled age using 5 categories in a Poisson model adjusting for

potential confounders and produced aggregated dose-response results in Table where the
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first category served as referent.

Table 4.2: Aggregated dose-response data on the adjusted association between age and breast cancer
mortality based on one registry from the SEER program using the first age category as referent.

Age category Mean age Cases Person-years IRR 95% CI logIRR SE

[20,35] 32.4 56 2099.3 1.00 — 0.00 0.00
(35,60] 49.7 451 37585.3 0.68 (0.51,0.90) -0.39 0.14
(60,70] 65.6 220 20590.7 0.71 (0.53,0.96) -0.34 0.15
(70,971 77.0 215 17896.5 0.77 (0.57,1.04) -0.27 0.15

Using the methodology presented in Section I estimated a linear trend and graphically
compared the predicted curve and the modelled data (left panel of Figure [4.4). While the
empirical log RRs may suggest an inverse association between age and breast cancer mortality,
the estimated linear trend indicates opposite conclusions (a 0.17% increase in mortality for
every 5-year increase of age at diagnosis). The linear trend does not seem to properly fit the
data since the fitted line doesn’t event pass through the reported log RRs. The problem is that
there are few cases in the reference age category and so the log RRs are typically larger. By
changing the group comparison to the second age category, this issue is partially solved (right
panel of Figure [4.4). To address the further issue of the covariance, we proposed graphical

tools based on the analysis of the decorrelated residuals.
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Figure 4.4: Comparison between observed and fitted data, changing the comparison group from the
first age category (left panel) to the second one (right panel), based on the aggregated data on the
association between age and breast cancer mortality presented in Table

The residuals can be decorrelated using the Cholesky factorization of the covariance matri-

ces S; = CiCiT, with C; being a lower J; x J; triangular matrix. The decorrelated residuals é;*
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are then calculated as
& =c! (v: _Xiiiﬁ) =C'¢ (4.5)

and plotted against the exposure. Such a graphical analysis is the equivalent to a residual
vs. predictors/predicted outcome plot after a model estimated through ordinary least squares.
Since the variables in the plot are transformed, the actual value of the decorrelated residuals is
not directly interpretable. However, it is still possible to detect specific patterns for the residuals
over the exposure range. In such a case, the plot can indicate lack of fit of the chosen model
for select exposure values. Overlaying a locally weighted scatterplot smoothing (LOWESS)
may help to visualize possible patterns, while a different shape or color for the residuals can

distinguish them according to study-level covariates in case of meta-regression models.

4.3 A new measure of heterogeneity

One of the possible reasons for large values of D or similarly small values of R? is the presence
of heterogeneity in the dose-response associations. The measures of heterogeneity presented
in Section namely R; and I? were derived based on the assumption of homogeneity for
the error variance terms v;, which is unlikely to be met in applications. To illustrate this point,
let us consider the two hypothetical distributions for the within-study error terms in Table
The distribution of v; in the first example (Analysis A) is much more homogeneous compared to
the second scenario (Analysis B). The coefficient of variation for the v; in the second example is
20 times higher than the corresponding number in the first scenario. While it seems reasonable
to assume homogeneity of the v; for the Analysis A, in the second case this hypothesis is not
appropriate. Nonetheless, both R; and I? would summarize the two distributions with a single

common number.

Table 4.3: Hypothetical distributions of within-study errors in two meta-analyses of 5 studies.

Analysis ViyensVs CV, s} s5
A 5,5.2,49,53,48 0.04 50 5.0
B 4,17, 15,2, 3.8 0.84 5.0 44

4.3.1 Definition and properties

The available measures relate the between-study heterogeneity to the overall variability, whose
definition also varies across studies. A different approach consists of measuring the impact of
heterogeneity in determining the variance of the combined effect in a random-effects analysis.
This quantity depends on the 72 and on the variance of the mean [3, quantities that don’t
require the assumption of homogeneity for the within-study error terms.

To determine how 72

contributes to \7a\r(/3), we consider the hypothetical case where all
the estimates /31' are reported with no error, i.e. v; =0 Vi = 1,...,I. The weights used in
the meta-analytic model depends only on 72, and following Equationthe variance of the

A -1
combined effect is Var(/S) = (Zle %2) = %2/I. In the more realistic case where v; > 0,
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the variance of /3 will increase to incorporate the uncertainty in the reported estimates. The
contribution of the heterogeneity is still defined by £2/I. The new measure of heterogeneity,

R,, can be written as

.2 22 1§ #
Rpy=——= = (4.6)
IVar () 1/(2 1v+1T2) 1 & 82 4y,

The R, is a dimensionless number that can be expressed as a percentage, ranging from 0%
(corresponding to 2 = 0, i.e. no observed heterogeneity) to 100%, for the hypothetical case
where all the effects are estimated with no error. The proposed measure is defined as a function
of the estimated heterogeneity (2), the number of studies (I), and the within-study error terms
(v;). It satisfies the criteria required for a measure of heterogeneity (Higgins and Thompson,
2002): it is a non-decreasing function of %2, it is invariant to scale transformation of the
estimates, and is not intrinsically affected by the number of studies included in the analysis.
Similarly to R; and I?, the proposed measure is a function on the within-error terms v; and so it
tends to 1 in case of meta-analysis of very precise estimates, even for relative small values of £2.
As already mentioned in Section the use of the between-studies coefficient of variation
can complement these measures (Takkouche et al., [1999). The right hand of Equation
expresses R, as an average of the ratios of the £2 to the study-specific overall variance v; + £2.
It is easy to derive that R, coincides with the definition of R; and I? in case of homogeneity of
the v;. When the within-errors vary across study, the difference between R, and I? will depend

on the actual values of v;, while it can be proven that R, <R;.

An estimate of the between-study heterogeneity is required for the computation of R,
as well for the alternative measures R; and I2. The moment-based estimator presented in
Equation [2.5]is a standard choice in many applied meta-analyses and it has the advantage of
having a closed formulation. In addition, the estimator is consistent (Jackson et al., [2010).

Using this estimation method, R, can be expressed as a function of the Q statistic

s 1 Q-U-1)
Ry = Q+a Q+a,—(I—1) 4.7

with a; = v, (Z i Wi— Z{ w2/ S W ) The asymptotic variance for R, can be derived by
using the delta method on the relation

2
\/kﬁ*(ﬁb)w( Z Qra (1 1))2) Var(Q) (4.8)

The formula for Var(Q) =2(I—1)+4 (51 ) T+ 2 (Sz — 2
first presented by Biggerstaff and Tweedie (1997).

SZ),WlthS = _,wi, was

When the number of studies is large, R, is asymptotically normally distributed and thus Wald-
type confidence interval can be constructed R, F z7_, /2 \/\E(Rb).
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4.4 A point-wise approach

Measures of heterogeneity are frequently employed in applied works. In a dose-response
meta-analysis, however, there are two aspects of heterogeneity that can not be captured using
standard methods. More specifically, in a two-stage analysis the same functional transforma-
tions gy, ..., g, need to be defined for all the studies so that the regression coefficients can be
properly combined by meta-analysis. This may have important consequences in case the chosen
dose-response model adequately fits only a subset of the analyzed studies. To illustrate this as-
pect, I considered a subset of 4 studies on the association between milk consumption (ml/day)
and all-cause mortality (Larsson et al., 2015). I modelled the individual curves using FP2 and
selected in each study the combination of power terms which maximized the log likelihood (or
equivalently with the minimum AIC). The chosen power terms in the individual analyses differ
although the predicted curves describe a similar association (Figure 4.5)). Forcing a unique set
of power terms may decrease the fit of some of the study-specific analyses and thus produce
more unstable estimates for the dose-response parameters.

Another difficulty may be encountered in uniformly defining the g transformations across
the studies. For instance, we might decide to model the previous association between milk
consumption and mortality using RCS. A percentile approach is commonly adopted for choosing
where to place the k in Equation (Harrell, |2013). The first and third knots are located
at fixed percentiles, generally at the 10-th and 90-th percentiles of the exposure distribution,
while the median exposure value is chosen for the remaining knot. If the exposure distributions
largely vary (especially in terms of range definition), as it is in this case, it may not be possible
to equally locate the knots in all the studies. Indeed, in our example only one study considered
dose levels higher than the upper knot (433 ml/day). As a consequence, the second spline
transformation for the other studies will be equal 0 and the model is not estimable (the design
matrix is not invertible).

A related problem directly affects the prediction of the pooled log relative risks. The
maximum dose levels varies largely across studies, with values 715, 441, 369, 146 ml/day.
The predictions from the second stage analysis, however, are obtained using the combined [3,
which disregards the information about the exposure. All the studies contribute in predicting
the log relative risks, even if some of them only reported results for low exposure values. In
such a way, the combined curve may be severely affected by these extrapolations.

A point-wise approach for meta-analysis of aggregated dose-response data may properly
address the described issues. A point-wise approach was first presented by [Sauerbrei and
Royston| (2011) for meta-analysis of continuous covariates based on IPD. The strategy consists
of separately estimating the study-specific curves and, based on them, calculating the predicted
log relative risks for selected exposure values. The combined curve is obtained by averaging the
predicted relative risks instead of calculating them from the combined regression coefficients.
The described methodology has the advantage of fitting potential diverse curves across the
studies, and limiting the study-specific predicted log relative risks to the observed exposure

range.
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Figure 4.5: Dose-response associations between milk consumption (ml/day) and all-cause mortality in
4 studies. The curves are modelled using fractional polynomials with the sets of power terms p (reported
in the title) chosen by maximizing the study-specific likelihoods. The results are presented on the log
scale using the observed reference values as comparators.

4.4.1 Estimation and prediction of study-specific curves

The first step of a point-wise approach is similar to the methodology presented in Section[2.3.1]
with the difference that the g transformations in the design matrices|2.14|are subscripted by
the study index i, to highlight that they may differ across the studies, also in terms of number

(pi)

gi1(xi1) — gi1(x0)

gi(xiy,) — &i1(xi0)

gipi(xip)_gipi(xiO)

(4.9

ip,(Xiy.) — &ip,(Xi0)
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For example, different power terms for FP2 can be chosen or, for a RCS analysis, the knots can
be located separately in each study. Potentially, a mixture of curves could be also estimated
across the study in order to improve the fit of the individual dose-response analyses. The
regression coefficients are then estimated using GLS estimators presented in Equation [2.16]
Once the curves have been estimated, the results of the first step analysis are presented in
terms of predicted log relative risks for a set of n; exposure values x,, using a suitable common
value x,.f as comparator. The index i is used to highlight that the chosen dose values may differ
across the studies. In particular, the predictions in each study can be limited to the observed

exposure range: max( ) < max (x;).

Vi =X, Bi (4.10)
= diag (X, Var (f;)X] ) (4.11)

with formulas similar to those presented in Equation and [2.26] with the notable difference

that the predictions are based on the study-specific ﬁi rather than the mean [3 coefficients.

4.4.2 Averaging of dose—-response predictions

In a point-wise strategy, the combined dose-response curve is derived by pooling the study-
specific predicted log RRs derived in Equation The second step consists of n = max(n;)
univariate meta-analyses where the effect sizes are the elements in y; with the within-error
variances V;. The combined predicted (log) relative risks are estimated using the weighted
average presented in Equation

As a final result, the combined dose-response curve is graphically presented as a smooth
function of the combined predicted relative risks for the chosen n dose levels. In addition, all the
results of the univariate meta-analyses can be pointwisely presented, such as estimates of the
heterogeneity 72 and related measures (Rb, I?, and Ri), the Q statistic, and the study-specific
weights, with the potential of a much richer set of results.

4.5 A one-stage model

The study-specific dose-response analyses in a standard two-stage or alternative point-wise
approach suffer from the limited number of data points. Most of the individual studies present
results for 2 to 4 non-referent exposure categories, but cases where dichotomization of the
exposure occurred are not rare (Turner et al.l, [2010). In the latter case, only dose-response
models parameterized by p = 1 coefficient can be estimated (e.g. linear trend). Indeed, a
standard requirement for meta-analysis of non-linear curves is that the studies provide at least
two non-referent relative risks.

The extension of the one-stage approach to a random-effects meta-analysis may overcome
the exclusions of studies with limited number of individual data points. A one-stage approach

is conceptually easier since the entire analysis can be formulated in a single statistical model.
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Flexible curves characterized by multiple parameters (p > 3) can also be easily accommodated,
so that more elaborate research questions can be answered, without losing the information
from those studies usually excluded in a two-stage analysis.

4.5.1 Model definition

A one-stage dose-response meta-analysis can be written in the form of a linear mixed-effects
model
Yi :Xlﬁ +Zibi+€i (412)

where the terms y;, X;, and ¢; are defined exactly as those presented in the first step of a two-
stage analysis (Equation[2.13). The quantities § and b;, instead, are the population average
parameter and unobserved random-effects as defined in the second step (Equation [2.18). The
additional Z,; is the n; x p design matrix for the random-effects and coincides with X;. Assuming
a multivariate distribution for the random-effects terms, the marginal model for a one-stage
analysis is

yi ~ N (XiB,Z,YZ +S;) (4.13)

Similarly, the conditional model is defined as

Vi | bi~ N (Xip +Z;b;,S;) (4.14)

Note that the conditional and marginal models are now defined for the log relative risks rather
than the dose-response coefficients. In particular, the definition of the marginal variance
3= Zi\I'Zl.T +S; is quite different. It depends not only on the within and between components

but also on the corresponding dose value x;; (or equivalently z;;) associated with y;;.

Meta-regression models can be estimated by including in X; the interaction terms between
the p transformations of the exposure variable and study-level covariates, while leaving un-
changed the definition of the Z; matrix for the random-effects. Assuming a quadratic curve and
a binary study-level covariate u;, for example, the design matrices for the fixed- and random-
effects can be written as

2 2 2 2
Xi1—Xio X5 — X (xin—Xi0)y; (xil _xio)ui

v w2 2 e Y (2 —v2),,
Xig, = Xio Xi5, —Xjo (xas, = xi0) s (xiJi xio)ul

2 2
Xi1—Xjo X i0

17X

e 2 2
Xig; —Xio Xz~ Xig
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4.5.2 Estimation, hypothesis testing, and model comparison

The parameters to be estimated are the m x p fixed effects and the p x (p + 1)/2 elements of
the between-study variance matrix. We consider likelihood-based estimators that maximize
either the log-likelihood of model

I

I
£(p,€) = —3nloglam)—2 > logl%, (&) -5 > [ =% (%:(8))” = X)) (4.15)
i=1

i=1

or the corresponding restricted version

Zx: (=)' x|+

I
tr(§)=— %(n—p)log@ﬂ:) —%Zloglzi (&)- % log
i=1

(4.16)

—~

[ x) ) (- x)]

i=1

As in case of multivariate meta-analysis, likelihood estimators requires iterative algorithms to
optimize the functions and In particular, the Nelder-Mead method can be employed
to find the maximum for the parameters in the multidimensional domain. For ease of compu-
tation, both likelihoods are expressed as function of only the & parameters, which corresponds
to the elements of the lower triangular Cholesky decomposition of ¥. The algorithms start
with an initial guess for ¥, obtain an estimate for 8 using GLS estimators and maximize the
objective function in terms of §. The steps are iterated until convergence is achieved.

Test of hypothesis and confidence intervals are based on the established theory for mixed

models. Inference on the fixed-effects coefficients is conducted in a similar way as presented
in Section using the asymptotic normal distribution for the estimator of 3. Tests for the
variance components, instead, generally require a mixture of y2 because the coefficients to
be tested can only be positive. When p > 2, however, the distribution of the test statistic is
difficult to implement, so that alternative measures can be instead applied.
Following the idea behind the definition of the ICC, the marginal variance in[4.13]can also be de-
composed in the within-study and between-study components. The dose-response model
is a mixed model with random-effects for the slope terms and with no intercept. Thus, the
between-study variance is a quadratic function of the assigned dose values. For this setting
Goldstein et al.| (2002) defined the Variance Partition Coefficient (VPC) as the ratio of the
between-studies component by the total residual variability

-
zi]-\Ilzij

Zij‘I’lel; + Si2j
The VPC is indexed by both i and j because it depends both on the observed dose value z;;
and the variance for the log relative risk slzj Values for VPC can be expressed as percentage to
quantify the proportion of residual variance attributable to heterogeneity. Because the VPC will
typically vary for different doses, overlaying a LOWESS smother in a scatter plot VPC versus
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dose levels may help to examine the impact of heterogeneity over the exposure range.
Information criteria based on the log-likelihood can be used to compared the fit
of alternative models. As opposed to the corresponding measure from a two-stage analysis,
the AIC from a one-stage model is not limited to the comparison of meta-regression models
assuming the same functional relationship. Instead, the fit of different dose-response analyses
can be properly compared using these fit indices since the log-likelihood is conditional on the

modelled log relative risks rather than the study-specific regression coefficients.

4.5.3 Prediction

Predictions for the combined, or marginal, curve are obtained as in Equation [2.25] where now
the /3 coefficients were estimated using the log relative risks as outcome variables rather than
the study-specific ﬁi.
Predictions are also available for study-specific curves. Using the normality distribution for the
random-effects, Henderson et al.| (1959) computed the asymptotic BLUP of the random-effects
b as

b, =9z 3" (v, —x:B) (4.18)

The conditional dose-response coefficients are defined as X; B+ IA)i. Of note, individual
curves defined by p parameters can be predicted for those studies reporting J; < p non-referent
relative risks. The BLUP employ the information of the entire distribution of the random-effects

to make the best possible prediction.

4.5.4 Comparison with two-stage analysis

Previous methodological articles have oftentimes implemented new methods using the two-
stage approach, mainly because of computation reasons. The alternative one-stage approach
has been frequently referred to as equivalent and was not further investigated. The tools
to assess the goodness-of-fit in [Paper II| were established using the one-stage framework. We
proved in the supplementary material of the original paper that the two techniques give identical
results in a fixed-effects analysis of non-linear curves, not only for the simpler case of a linear
trend. In the appendix of [Paper V|, we extended the equivalence to the setting of non-linear
curves for a random-effects model. In order to provide the same point and interval estimates,
the study-specific models in the two-stage analysis need to be estimable, i.e. p < min(J;). In
practical examples, small discrepancies in /3 and \//zﬁ(ﬁ“) may be related to differences in the

optimization methods for the objective functions of the two techniques.
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Resulis

We illustrated the usage of the developed methodologies and measures by reanalyzing data

from published dose-response meta-analyses.

5.1 Paper |

We demonstrated the main aspects of the methodology reanalyzing aggregated dose-response
data from 21 prospective studies on the association between coffee consumption (cups/day)
and all-cause mortality (Crippa et al., 2014). The data set coffee_mort is included in the
package, with the first six lines printed below.

R> library(dosresmeta)
R> data("coffee_mort")
R> head(coffee_mort)

id author year type dose cases n logrr se gender area

1 1 LeGrady et al. 1987 «ci 0.5 57 249 0.0000000 0.0000000 M USA
2 1 LeGrady et al. 1987 ci 2.5 136 655 -0.2876821 0.1391187 M UsSA
3 1 LeGrady et al. 1987 «ci 4.5 144 619 -0.1743534 0.1373198 M USA
4 1 LeGrady et al. 1987 «ci 6.5 115 387 0.0861777 0.1401409 M USA
5 2 Rosengren et al. 1991 ci 0.0 17 192 0.0000000 0.0000000 M Europe
6 2 Rosengren et al. 1991 ci 1.5 88 1121 -0.1203576 0.2531537 M Europe

5.1.1 Single study analysis

We showed how to estimate the dose-response association in a single study. For that purpose,
we selected the first study ID 1 consisting of 3 non-referent log relative risks (Legrady et al.,
1987). One relevant feature of aggregated dose-response data is the correlation arising from
having a common comparator. The covar.logrr function can be used to reconstruct the
covariance matrix accordingly to the method by |Greenland and Longnecker| (1992).

R> legrady <- subset(coffee_mort, id == 1)
R> covar.logrr(cases = cases, n = n, y = logrr, v = se”2, type = type,
+ data = legrady)
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[,1] [,2] [,3]
[1,] 0.01935402 0.01279718 0.01259433
[2,] 0.01279718 0.01885673 0.01254856
[3,] 0.01259433 0.01254856 0.01963947

The alternative method by |[Hamling et al.| (2008)) can be used by specifying covariance =
"h" in the covar.logrr function. The reconstructed covariance matrix is used to efficiently
estimate the dose-response association. For example, a linear trend y; = f31(x1; — X10) + &1
can be estimated with

R> lin_le <- dosresmeta(logrr ~ dose, se = se, type = type, cases = cases, n = n,
+ data = legrady)
R> 1lin_le
Call: dosresmeta(formula = logrr ~ dose, type = type, cases = cases,
n = n, data = legrady, se = se)

Fixed-effects coefficients:
dose
0.0328

1 study 3 values, 1 fixed and O random-effects parameters
logLik AIC BIC
-0.7914  3.5827 2.6813

The change in the log relative risk of all-cause mortality associated with a 1 cup/day increase
in coffee consumption was 0.033. That is, the increment of 1 cup/day of coffee was associated
with a 3.4% (exp(0.033) = 1.034) higher mortality risk. The predict method facilitates the
computation for the predicted linear increase for any arbitrary amount of coffee consumption.
For example, setting delta = 3

R> predict(lin_le, delta = 3, expo = TRUE)
delta pred ci.lb ci.ub
3 1.103507 0.9744976 1.249596

In the study by Legrady et al.| (1987), 3 cups/day increase in coffee consumption was associate

with a 10% (95% CI 0.97, 1.25) higher mortality risk.
Alternative curves can be specified in the formula argument. For example, a quadratic
trend y1; = fB1(x1; —x10) + ﬁz(xfj — xfo) + £1; can be estimated.

R> quadr_le <- dosresmeta(logrr ~ dose + I(dose~2), se = se, type = type,

+ cases = cases, n = n, data = legrady)

R> quadr_le

Call: dosresmeta(formula = logrr ~ dose + I(dose~2), type = type, cases = cases,
n = n, data = legrady, se = se)

Fixed-effects coefficients:
dose I(dose~2)
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-0.2135 0.0334
1 study 3 values, 2 fixed and O random-effects parameters

logLik AIC BIC
3.5738 -3.1475 -4.9503

The coefficients of the quadratic model are not directly interpretable. The results can be instead
presented in terms of predicted relative risks for selected values of coffee consumption.

R> predict(quadr_le, newdata = data.frame(dose = 0:6), expo = TRUE)

dose I(dose~2) pred ci.1lb ci.ub
1 0 0 1.0000000 1.0000000 1.0000000
2 1 1 0.8352219 0.7209175 0.9676497
3 2 4 0.7458585 0.5796705 0.9596916
4 3 9 0.7121374 0.5191844 0.9768005
5 4 16 0.7269823 0.5166453 1.0229519
6 5 25 0.7934812 0.5680037 1.1084654
7 6 36 0.9259812 0.6805480 1.2599276

The quadratic model suggested a U-shaped inverse association, with the maximum risk reduc-
tion, 29 % (95% CI 0.52, 0.98), observed for 3 cups/day of coffee compared.

5.1.2 Multiple studies

The chosen curves can be estimated also for the other studies. One possibility is to use the
tidyverse package (Wickham, [2017) in order to obtain the linear trends and corresponding

variances.

R> library(tidyverse)
R> 1lin_i <- coffee_mort %>
split(.$id) %>%
map(~ dosresmeta(logrr ~ dose, se = se, type = type,

cases = cases, n = n, data = .x))

R> lin_bi <- map_dbl(lin_i, ~ coef(.x))
R> lin_vi <- map_dbl(lin_i, ~ vcov(.x))
R> head(cbind(bi = lin_bi, vi = lin_vi))

bi vi
1 0.03283124 4.470869e-04
2 -0.02360445 3.561441e-04
3 -0.01430817 5.833618e-05
4 -0.04777017 6.194806e-04
5 -0.04736154 1.219069e-03
6 -0.02027627 1.127937e-04

The mean linear trend can be calculated with standard packages for meta-analysis such as the
mvmeta package (Gasparrini et al., 2012)).
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R> mvmeta(lin_bi, lin_vi)
Call: mvmeta(formula = lin_bi ~ 1, S = lin_vi)

Fixed-effects coefficients:
(Intercept)
-0.0326

22 studies, 22 observations, 1 fixed and 1 random-effects parameters
logLik AIC BIC
36.0221 -68.0442 -65.9551

Alternatively, the two steps of a two-stage analysis (dose-response and pooling) are unified
and simplified in the dosresmeta function. In a single call, the study-specific linear trends
are estimated and combined with the results being stored in the 1in object.

R> lin <- dosresmeta(logrr ~ dose, id = id, se = se, type = type,
+ cases = cases, n = n, data = coffee_mort)

The summary method displays the measures and tests of interest.

R> summary(lin)
Call: dosresmeta(formula = logrr ~ dose, id = id, type = type, cases = cases,

n = n, data = coffee_mort, se = se)

Two-stage random-effects meta-analysis
Estimation method: REML
Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 41.8314 (df = 1), p-value = 0.0000

Fixed-effects coefficients
Estimate Std. Error z Pr(>lzl|) 95%ci.lb 95%ci.ub
(Intercept) -0.0326 0.0050 -6.4677 0.0000 -0.0424  -0.0227

Between-study random-effects (co)variance components
Std. Dev
0.0172

Univariate Cochran Q-test for residual heterogeneity:
Q = 77.0088 (df = 21), p-value = 0.0000
I-square statistic = 72.7%

22 studies, 22 values, 1 fixed and 1 random-effects parameters
logLik AIC BIC
36.0221 -68.0442 -65.9551

There was an inverse association between increasing levels of coffee consumption and all-
cause mortality risk, with a mean relative risk of exp(—0.03) = 0.97 for a 1 cup/day increase.
Similarly to the single study analysis, the predict function returns the combined result for
any amount of coffee consumption.
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R> predict(lin, delta = 3, expo = T)
delta pred ci.lb ci.ub
3 0.9069412 0.8804891 0.9341879

The linear trend appeared to be heterogeneous as indicated by both the Q test (Q = 77, p value
< 0.01) and I? = 73%. A possible alternative for both reducing the observed heterogeneity
and relaxing the linearity assumption is to model the dose-response as a quadratic curve.

R> quadr <- dosresmeta(logrr ~ dose + I(dose~2), id = id, se = se, type = type,
+ cases = cases, n = n, data = coffee_mort)

R> summary(quadr)

Call: dosresmeta(formula = logrr ~ dose + I(dose~2), id = id, type = type,

cases = cases, n = n, data = coffee_mort, se = se)
Two-stage random-effects meta-analysis
Estimation method: REML
Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 75.9675 (df = 2), p-value = 0.0000

Fixed-effects coefficients

Estimate Std. Error z Pr(>lzl) 95%ci.lb 95%ci.ub
dose. (Intercept) -0.0847 0.0138 -6.1315 0.0000 -0.1118 -0.0576
I(dose~2).(Intercept) 0.0095 0.0023 4.1751 0.0000 0.0050 0.0139

Between-study random-effects (co)variance components
Std. Dev Corr

dose 0.0491 dose

I(dose~2) 0.0081 -0.9811

Univariate Cochran Q-test for residual heterogeneity:
Q = 113.4826 (df = 42), p-value = 0.0000
I-square statistic = 63.0%

22 studies, 44 values, 2 fixed and 3 random-effects parameters
loglik AIC BIC
96.2340 -182.4680 -173.7796

The overall test Hy : 81 = 85 = 0 (Chi2 model) indicated that the mortality risk significantly
varied according to coffee consumption levels ( x% = 76, p value < 0.001). The quadratic
model reduces to the simpler linear trend analysis when f3, = 0. Thus, the univariate test for
Bo (z = 4.18, p value < 0.001) suggested that the all-cause mortality risk was related in a
non-linear fashion with coffee consumption. The heterogeneity in the study-specific regression
coefficients was reduced but its impact was still important, with the multivariate 12 = 63%.

The predicted log relative risks from the linear and quadratic analyses can be presented in a

graphical format using x,.; = 0 cups/day as referent (Figure [5.1)).
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R> xref <- 0
R> pred <- data.frame(dose = c(xref, seq(0, 8, .1))) »>%
+ predict(quadr, newdata = ., expo = T) %>%

+ cbind(lin = predict(lin, newdata ., expo = T))
R> ggplot(pred, aes(dose, pred, ymin = ci.lb, ymax = ci.ub)) +
geom_line() + geom_ribbon(alpha = .1) +

+

geom_line(aes(y = lin.pred), linetype = "dashed") +

+

scale_y_continuous(trans = "log", breaks = scales::pretty_breaks()) +

+

labs(x = "Coffee consumption (cups/day)", y = "Relative Risk")

1.00
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0.90

Relative Risk
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0 2 4 6 8
Coffee consumption (cups/day)

Figure 5.1: Combined dose-response association between coffee consumption and all-cause mortality
(solid line) with 95% confidence intervals (shaded area). Coffee consumption was modelled with a
quadratic curve in a two-stage random-effects meta-analysis. The dashed line represents the combined
linear trend. The value 0 cups/day served as referent. The relative risks are plotted on the log scale.

Alternatively, the predicted relative risks for desired exposure values, say from O to 5 cups/day

can be presented in a table.

R> filter(pred, dose %inj, 0:5) %>%
+ select(-"I(dose~2)", -lin.dose) %>%
+ unique() %>% round(3)
dose pred ci.lb ci.ub lin.pred lin.ci.lb lin.ci.ub

1 0 1.000 1.000 1.000 1.000 1.000 1.000
3 1 0.928 0.907 0.949 0.968 0.958 0.978
4 2 0.877 0.845 0.910 0.937 0.919 0.956
5 3 0.845 0.808 0.883 0.907 0.880 0.934
6 4 0.829 0.793 0.867 0.878 0.844 0.913
7 5 0.829 0.795 0.865 0.850 0.809 0.893
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The previous predictions can be easily re-expressed using a different exposure value as referent,
e.g. 1.5 cup/day, by changing xref <- 1.5 and rerunning the previous code to produce a
new figure or table.

The study-specific dose-response coefficients and related covariance matrices are stored
in the results and can be easily accessed. For example, the ﬁi and Var (ﬁl) for the quadratic
model in the first two studies are

R> quadr$pbil[l:2, ]

dose I(dose~2)
1 -0.213506072 0.033448197
2 -0.008546787 -0.001605319
R> quadr$Si[1:2]
[[1]1]

[,1] [,2]

[1,] 0.0073978648 -0.0009437912
[2,] -0.0009437912 0.0001281500

[[2]1]

[,1] [,2]
[1,] 0.0043603384 -4.268928e-04
[2,] -0.0004268928 4.551165e-05

and can be used to plot the individual curves in Figure

R> newd <- data.frame(dose = c(xref, seq(0, 6, .1)))

R> p_indiv <- cbind(newd, map(array_branch(quadr$bi, 1),

+ ~ exp(.x[1]*newd$dose + .x[2]*newd$dose~2))) %>V
gather (study, pred, -dose) %>%

ggplot (aes(dose, pred, group = study)) + geom_line() +
scale_y_continuous("Relative Risk", trans = "log", breaks = c(.5, 1, 2, 5, 10),

+ o+ o+ o+

limits = c(.25, 10)) + labs(x = "Coffee consumption (cups/day)")

The previous analyses suggested that coffee consumption may be inversely associated with
all-cause mortality in a non-linear fashion. The highest risk reduction, 17% (95% CI 0.79,

0.87), was observed for 4 cups/day of coffee consumption.

5.2 Paper i

We used the tools presented in Section to evaluate the goodness-of-fit of the previous
analyses. The gof function returns a display of the quantities of interest, namely the deviance
test and the adjusted and unadjusted R?. We started with the simpler linear trend estimated in
a fixed-effect analysis.

R> gof(lin, fixed = TRUE)
Goodness-of-fit statistics:

Deviance test:
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D = 225.244 (df = 78), p-value = 0.000

Coefficient of determination R-squared: 0.488
Adjusted R-squared: 0.482

The fit for the model assuming a linear relationship was poor (Analysis A in Table[5.1)). In
particular, the deviance test rejected the null hypothesis that the model was properly specified
(D = 225.2, p value < 0.001) while the percentage of the accounted variation by the analysis
was 49%. In addition, the decorrelated residuals vs exposure plot in panel A of Figure
indicated a specific pattern with negative residuals for low values of the exposure (before 5
cups/day) and positive ones for high levels of coffee consumption.

A possible solution for addressing the lack of fit of the previous analysis is to consider a non-
linear example such as a quadratic curve (Analysis B). The fit slightly improved as indicated by
R? which increased to 65% (Ri 4= 0.64). The deviance test, however, still showed evidence of
lack of fit (D = 155.1, p value < 0.001). Furthermore, even if the variability of the residuals
reduced (panel B of Figure[5.2)), the LOWESS smoother showed a tendency for the residuals

to be more likely negative for low and very high exposure values.

>
w
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o
Decorellated residuals
o

-2 -2
-4 -4
0.0 2.5 5.0 75 0.0 2.5 5.0 75
Coffee consumption (cups/day) Coffee consumption (cups/day)
C RCS D RCS + interaction
4 4

Decorellated residuals
o
Decorellated residuals
o

° [ ]
-4 -4
0.0 25 5.0 75 0.0 25 5.0 75
Coffee consumption (cups/day) Coffee consumption (cups/day)

Figure 5.2: Decorrelated residuals versus exposure plots with LOWESS smother for different modelling
strategies in a dose-response meta-analysis between coffee consumption and all-cause mortality (Crippa
et al.,2014).
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An alternative strategy (Analysis C) was to model coffee consumption using RCS with 3 knots
located at the fixed quantiles 0.10, 0.5, and 0.9 corresponding to 0, 2, 6.5 cups/day. Since the
number of parameters is the same as in the Analysis B (p = 2), the R? can be used to compare
the fit of the two strategies. In particular, the RCS analysis had a better fit, as indicated by
the higher R? =0.68 (Rﬁ1 4= 0.67). The pattern in the residuals also leveled off around zero
with the exception for the 3 highest dose levels. The deviance test, however, rejected again the
null hypothesis for model specification, possibly because of the heterogeneity in the individual
curves.

Coffee consumption varies substantially across countries both in terms of coffee powder,
methods of preparation, and amount of cup size. In addition, the effect of coffee on all-cause
mortality may have a different impact depending on the sex of participants. To address this
variability, we employed meta-regression models to explain differences across the studies (Anal-
ysis D). We included two study-level covariates indicating the geographical area where the
study was conducted (Europa, USA, and Japan) and the sex of the participants (only men, only
women, and both sexes). Both the decorrelated vs exposure plot and Ridj = 0.74 indicated
an improvement in the overall fit of the analysis even if the p value for the deviance test was
below the nominal value (D = 100.4, p value = 0.008).

Table 5.1: Goodness-of-fit tests and measures for dose-response meta-analysis of coffee consumption
and all-cause mortality (Crippa et al.,|2014)

Analysis Model Deviance df p value R? Ri di
A Linear 225.244 78 0.000 0.488 0.482
B Quadratic 155.093 77 0.000 0.648 0.638
C RCS? 141.332 77 0.000 0.679 0.671
D RCS + interaction ° 100.372 69 0.008 0.772 0.739

2 3 knots located at the 10th, 50th, and 90th percentiles of the distribution of coffee.
b As in ¢) + interaction with gender of participants (only men, only women, both sexes) and geo-
graphical area (Europe, USA, Japan) included as categorical study-level covariates.

5.3 Paper il

We illustrated how to employ the new measure of heterogeneity, R, reanalyzing aggregated
dose-response data on the association between meat and bladder cancer (Crippa et al., 2016b).
Five cohort and 8 case-control studies reported results for either red or processed meat and
bladder cancer risk including a total of 10,271 cases and 1,066,027 participants. The data for
both the associations are also included in the dosresmeta package.

5.3.1 Processed meat and bladder cancer

We started by considering a linear trend analysis for the association between processed meat
and bladder cancer risk. The effect sizes for the meta-analysis in the second part of a two-stage

dose-response meta-analysis were the linear trends for a 50 g per day increase in processed
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meat consumption (Figure . The combined relative risk was 1.2 (95% CI 1.06, 1.37). The
Q test detected statistical heterogeneity (Q = 17.2, p value = 0.07). The flb = 38% (95%
CI 37, 40) indicated that the contribution of heterogeneity in the pooled analysis was limited
(Table , as also suggested by the alternative measures I? = 42% (95% CI 40, 43) and R;
= 43% (95% CI 41, 44). Because the within-study variances were substantially homogenous,
the differences between the alternative measures were negligible.

No evidence of non-linearity was observed using either a quadratic curve (p value = 0.96) or

a RCS model with 3 knots located at fixed percentiles (p value = 0.92).

processed meat and bladder cancer
for every 50 g per day increment

Author(s), Year Weight RR [95% CI]
Catsburg et al., 2014 — 14.02% 1.05 [0.84, 1.31]
Wu et al., 2012 s - : 6.07% 1.68 [1.06, 2.65]
Lin et al., 2012 - A | 3.20% 1.22[0.62, 2.41]
Aune et al., 2009 — - | 9.23% 1.31[0.93, 1.83]
Hu et al., 2008 — . 12.17% 1.82 [1.40, 2.37]
Closas et al., 2007 — 11.64% 1.06 [0.81, 1.40]
Ferrucci et al., 2010 ——— 11.08% 1.1310.85, 1.51]
Larsson et al., 2010 — 12.53% 1.07 [0.83, 1.38]
Michaud et al., 2006 —.— 11.87% 1.19[0.91, 1.56]
Michaud et al., 2006 <« & 7.49% 0.96 [0.65, 1.43]
Nagano et al., 2000 - , 0.71% 0.60[0.13, 2.75]
Overall (Rb = 38%, p = 0.07) e 100.00% 1.20 [1.06, 1.37]
[ [ I I |
0.7 1 15 2 3

Figure 5.3: Relative risks of bladder cancer for every 50 g increase per day in processed meat consump-
tion.

5.3.2 Red meat and bladder cancer

An analogous analysis was conducted for the association between red meat consumption and
bladder cancer risk, with the estimated linear trends expressed for a 100 g per day increase
(Crippa et al.,|2016b). The pooled relative risk was 1.22 (95% CI 1.05, 1.41). The study-specific
associations in Figure however, appeared to be heterogeneous (Q = 60, p value < 0.01).
In particular, the contribution of the heterogeneity in determining the variance of the combined
effect was R, = 67%, indicating a moderate impact. Given that the distribution of within-error

terms was higher as compared to the previous analysis (Figure B.2), the differences with the
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alternative measures were higher: I? = 80% (95% CI 79, 81) and R; = 89% (95% CI 88, 89),

which suggested a larger heterogeneity across the study specific trends.

Similarly to the case of processed meat, no evidence of non-linearity was found (p value equal
to 0.73 and 0.74 for f3, in the quadratic and RCS model.)

Red meat and bladder cancer
for every 100 g per day increment

Author(s), Year Weight RR [95% CI]
Cohort :

Nagano et al., 2000 - : | 3.24% 0.84[0.42, 1.70]
Michaud et al., 2006 —.- 7.04% 0.94[0.67, 1.34]
Michaud et al., 2006 —— 8.56% 1.03[0.79, 1.33]
Larsson et al., 2010 —— 8.74% 0.91[0.71, 1.16]
Ferrucci et al., 2010 —— 9.07% 1.21[0.96, 1.52]
Jakszyn et al., 2011 i 11.37% 1.01[0.96, 1.06]
Subtotal (Rb=0%, p=0.62) @ 1.01[0.97, 1.06]
Case—control

Tavani et al., 2000 g —_—— 6.95% 2.13[1.50, 3.04]
Closas et al., 2007 —— 9.51% 0.84[0.68, 1.02]
Hu et al., 2008 D o—— 8.91% 1.40[1.10, 1.77]
Aune et al., 2009 D 9.02% 1.34[1.07, 1.69]
Lin etal., 2012 ; ———=—» 537% 2.85[1.79, 4.55]
Wu et al., 2012 — 7.36% 1.23[0.88, 1.71]
Isaetal., 2013 Do : 4.86% 1.94[1.16, 3.24]
Subtotal (Rb =81%, p < 0.01) @ ——— 1.51[1.13, 2.02]
Overall (Rb = 67%, p < 0.01) 100.00% 1.22[1.05, 1.41]

[ [ I I |
0.65 1 15 2 3.5

Figure 5.4: Relative risks of bladder cancer for every 100 g increase per day in red meat consumption,
separately for cohort and case-control studies.

The variability across the linear trends could be related to differences in the study design.
Figure[5.4]reports also the results separately for cohort and case-control studies. No association
was observed in the subset of the prospective studies (combined RR = 1.01 (95% CI 0.97, 1.06)).
The individual associations were homogenous (Q = 3.5, p value = 0.62), with ﬁb = 0%. The
results for case-control studies, instead, largely varied across studies Q = 39.8, p value < 0.01
and R, = 81%. A summary of the results for the alternative measures of heterogeneity in the
different analyses is presented in Table
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Table 5.2: Measures of heterogeneity for dose-response meta-analysis between processed and red meat
and bladder cancer risk (Crippa et al.,[2016b).

Analysis B (95% CI) Qtest,pvalues CV, R, (95%CD I? (95% CI) R, (95% CI)
Processed meat 1.2 (1.06, 1.37) 17, 0.07 0.33  38(37,40) 42(40,43) 43 (41, 44)
Red meat 1.22 (1.05, 1.41) 60, < 0.01 5.94 67 (66,68) 80 (79,81) 89 (88, 89)

Red meat, Prospective ~ 1.01 (0.97, 1.06) 4,06 3.51 0 (0, 4 0 (0, 8) 0 (0, 100)

Red meat, Case-control ~ 1.51 (1.13, 2.02) 40, < 0.01 0.36 81 (80, 82) 85 (84, 86) 86 (85, 86)

5.4 Paper IV

The proposed and alternative measures of between-studies variability cannot capture the het-
erogeneity related to differences in the exposure range distribution. We presented the imple-
mentation of a point-wise strategy as a possible remedy, reanalyzing the data between red meat
consumption and bladder cancer risk described in the previous section. The data consists of 13
independent studies where the exposure varied across studies not only in terms of definition
and measurement but also in terms of range of assessment. For example, the minimum red
meat consumption in one study (85.5 g per day in study ID 7) was higher then the maximum
exposure value in other studies (71.7 g per day in study ID 3). Furthermore, only 3 out 13
studies reported relative risks for meat consumption greater than 150 grams/day. Descriptive
measures of red meat consumption across studies are reported in Table and graphically
presented in Figure

We decided to model the association using FP2. To allow for differential dose-response
relationships, we fitted the FP2 models for different combination of power terms separately
in each studies and selected the study-specific best fitting polynomials as the model with the
lowest AIC. As expected, the best study-specific power terms varied across studies (Table[C.2)),
with the most common polynomial defined by p = (—2,—2) (8 out of 13 studies). Interestingly,
the corresponding analysis using the AIC from the a one-stage model selected p = (—1,—0.5)
as the best FP2, a combination of power terms that was not preferred in any of the individual
dose-response analyses. Figure(5.5|displays the predicted curves based on the best FP2 for each
study, limited to the observed exposure range (blue solid lines). Extrapolation are represented
by dashed lines while the red curves represent the predicted association from the one-stage
model, which imposed the common power terms p = (—1,—0.5) across the studies. While the
alternative strategies gave similar results in the observed exposure range, larger differences
were observed for high levels of red meat consumption. Taking study ID 5 as an example, the
predicted relative risks for 150 g compared to 15 g of red meat consumption per day were 2.14
(95% C10.81, 5.67) and 1.13 (95% CI 0.84, 1.53) for the FP2 with the study specific ps = (3, 3)

and the common power terms p = (—1,—0.5), respectively.
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Figure 5.5: Study-specific dose-response curve between red meat consumption and bladder cancer risk.
Blue and red solid lines are the predicted relative risks based, respectively, on the best fitting fractional
polynomial (FP2) and on a common FP2 with p = (-1, -.5) limited to the observed exposure range.
Dashed lines indicate extrapolated predicted relative risks. Confidence intervals for best fitting FP2 are
represented by shaded areas (lighter colors correspond to extrapolations). All predicted relative risks
are presented on the log scale using the study-specific reference values as comparators.
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In a point-wise dose-response meta-analysis, we chose to predict the study specific log
relative risks for a fine grid of exposure values ranging from 5 g to 300 g with step by 5 g,
using 85 g/day (median reference dose value) as referent. The study-specific predictions were
limited to the observed exposure range so that study ID 3, for example, predicted log RRs for
dose values up to 70 g/days. Thus, the number of study-specific predicted log RRs varies across

the selected red meat consumption levels.

3.0 T . .

55 _|—®— Point-wise average
' —&— Two-stage

2.0

15 —

Riskratio

Number of studies

Red meat consumption (g per day)

Figure 5.6: Comparison between pointwise and one-stage predicted relative risks for the association
between red meat consumption (g per day) and bladder cancer risk. The step function at the bottom
indicates the number of studies contributing to the prediction in the pointwise analysis. The relative
risks are presented on the log scale using 85 g per day as referent.

The combined results from the 59 meta-analyses can be presented pointwisely. Figure|[5.6]plots
the combined predicted relative risk from a point-wise strategy and compares them with the
corresponding one-stage analysis. In the reanalyzed data, the two strategies provided similar
point estimates. However, the confidence intervals from the point-wise analysis were larger
as compared to the corresponding one-stage model, reflecting the higher uncertainty in the
predictions. For example, for 100 g the predicted RRs were 0.92 (95% CI 0.80, 1.07) for the
point-wise strategy and 1.11 (95% CI 1.03, 1.19) for the one-stage model. Similarly, for 250 g
the two predictions were 1.27 (95% CI 0.71, 2.26) and 1.20 (95% CI 1.05, 1.38).

One advantage of a point-wise strategy is that additional statistics from the meta-analytic
models can be presented pointwisely (Figure[5.7). For example, the estimates for the between-
study heterogeneity, £2, were lower than 0.02 for red meat consumption between 20 g and
150 g per day, and rapidly increased for higher values (panel A). The weights of the individual

studies changed over the range of the exposure values. Panel B displays the standardized
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Figure 5.7: Point-wise results for a meta-analysis between red meat consumption (g per day) and bladder

cancer risk: estimates of 2% (A), random-effects weights for three studies (B), p value for ther Q test
(C), and R}, (D).

weights for three of the included studies. The percentage weight for study ID 5 was very large
for red meat consumption lower than 30 g, while it stabilized around 15% after that. For study
ID 10, the weight declined from 20% to 5% as the dose value increased, while it remained
constant around 3% for study ID 1. The results from the Q test in panel C indicated presence
of statistical heterogeneity for red meat consumption betwee 100 and 200 g. The impact of
heterogeneity quantified by the R, varied between 25% and 60% for exposure values below
75 g per day, while it reached 85% for higher dose levels.

5.5 PaperV

A common limitation of a two-stage and point-wise approach is that the dose-response analyses
are limited by the low number of data points in each study, usually J; < 3. We demonstrated
an alternative one-stage model for dose-response meta-analysis using a subset of the data on
coffee consumption and all-cause mortality presented in Sections[5.1]and[5.2] The data consists
of the results for 12 independent populations including 5508 cases and 750959 participants
(Crippa et al., [2014). The results for two cohorts (Nilsson et al., [2012) were excluded in
the initial analysis of a non-linear trend because they only reported 1 non-referent risk. We
performed a one-stage random-effects meta-analysis assuming a quadratic relationship on the
whole data set and compared the results with the corresponding two-stage analysis which
excluded the results by Nilsson et al.| (2012).
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Although both the analyses suggested a U-shaped association between increasing levels of
coffee consumption and mortality risk, the predicted curve from a two-stage model provided
lower relative risk estimates (Figure [5.8). Using O cups/day, the predicted RRs for 2 cups/day
were 0.86 (95% CI 0.81, 0.91) for the two-stage analysis, and 0.89 (95% CI 0.83, 0.96) for
the one-stage model. Similarly, for 5 cups/day the corresponding numbers were 0.78 (95%
CI 0.72, 0.84) and 0.82 (95% CI 0.76, 0.89). Interestingly, the standard errors for the beta
coefficients were lower in the two-stage analysis (SE (/31) =0.021,SE (/32) = 0.003), even if
the corresponding estimates from the one-stage analysis were based on a larger number of
data points (SE (/31) =0.027,SE (/32) = 0.004). As a consequence, the confidence intervals for
the reported predicted relative risks were larger in the one-stage analysis, while the p value
for non-linearity H, : 8, = 0 was lower in a two-stage analysis: p = 0.008 compared to p =

0.154 from the alternative one-stage model.
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Figure 5.8: Combined quadratic association between coffee consumption (cups/day) and all-cause
mortality estimated using a one-stage (blue line) and two-stage (red line) approach. The predicted
relative risks are plotted on the log scale using 0 cups/day as referent.

The exclusion of 2 studies affected also the estimation of the variance components in ¥. For
example, the variances of the random-effects based on 10 out of the 12 studies (two-stage)
were 0.0013 for b; and 5 x 10~ for b,, while they were 0.00544 and 1.5 x 104, respectively,
in the alternative model. The I? = 45% from the multivariate two-stage analysis indicated
a moderate impact of the heterogeneity. The same question can be addressed in a one-stage
analysis by looking at the variance partition coefficients for the observed dose values. The VPC
plot suggested a limited impact of heterogeneity between 20 and 40% for coffee consumption
below 7 cups/day, while it become substantial for higher exposure values (Figure[B.5).
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Oftentimes it can be informative to provide a graphical presentation not only of the marginal
association but also of the study-specific or conditional curves. The multivariate normal dis-
tribution for the random-effects is used to predict the study-specific regression coefficients,
exploiting the information from the between-studies heterogeneity matrix (Table [C.3). It is
worthwhile to notice that the non-linear curves in the one-stage approach can be predicted
also for those studies providing only one non-referent log RR (study ID 27 and 28), which were
instead excluded in the traditional approach. The predicted conditional curves are graphically
presented in Figure

Different strategies can be chosen to model the dose-response association of interest. A
one-stage approach, in particular, gives the opportunity to estimate a complex curve defined
by multiple parameters in order to answer more elaborate research questions. A model with
a spike at zero treats the low or unexposed participants as a separate group, and estimates
the dose-response association only for the exposed groups. For example, we can think of the
participants drinking a low amount coffee (less than 1 cup/day) as a separate group. The
rest of the association can be described by two lines with a different slope before and after 4

cups/day. The mixed of linear splines model can be specified as

¥i = (B1+bi1) (A(x; < 1) —I(xi0 < 1))+ (B + bio) ((x; — DIx; = 1) — (x30 — DI(xy0 = 1)) +
+ (B3 + bi3) ((x; —DI(x; = 4) — (x;0 — DI(x;0 = 4)) + €;

where the indicator function I takes on value 1 if the condition in the parenthesis is met, O
otherwise. Another possibility consists of considering homogeneous groups of exposure in
which the mortality risk can be considered constant. For instance, coffee consumption could
be divided in intervals < 1, [1, 3), [3,5), [5,7), and > 7 cups/day. The dose-response model is
specified by including 4 dummy variables (x;, X, x3, and x,) and using one level (e.g. [1,3))

as referent

¥i = (Bo + bio) + (B1 + bin)(Xq; — X10) + (B2 + bi2)(Xa; — X2:0)(Bs + biz)(X3; — X340+
+ (B4 + big)(Xa; — Xa50) + €;

The two models are parameterized, respectively, by p = 3 and p = 4 parameters. It is unlikely
to have enough data points (at least 4 non referent log RRs) for estimating the previous models
in a two-stage analysis. Using a one-stage approach, instead, the predicted curve from those
alternative analyses are presented graphically in Figure together with the quadratic model
described before. In the spike at 0 model, the predicted mortality risk for the unexposed
participants was 14% higher (95% CI 1.02, 1.28) as compared to participants drinking 1
cup/day. Every one cup per day increase in coffee consumption was associated with 2% (95%
CI 0.95, 1.01) reduction in all-risk mortality, whereas the same number was less pronounced
(B3 = 0.01) for coffee consumption higher than 4 cups/day, with a decreased risk of 1% (95%
CI 0.96, 1.02). The categorical model provided similar results with a 16% (95% CI 1.04, 1.28)

higher mortality risk for never drinkers compared to the category [1, 3) of coffee consumption.
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Figure 5.9: Conditional predicted quadratic curves for the association between coffee consumption and
all-cause mortality in a one-stage (blue lines) and two-stage (red lines) approach. The relative risks are
presented on the log scale using the study-specific reference categories as comparators.

Categories for coffee consumption greater or equal to 3 cup/day indicated a decreased mortality

risk. We can evaluate if this further decline is significant by testing H : f, = 83 = 84 = 0. The

multivariate Wald test did not provide enough evidence to reject the null hypothesis ( )(3? =
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5.08, p value = 0.17). The fit of the alternative analyses can be compared by looking at the
AIC. We selected the quadratic curve as the best fitting model since it had the lowest AIC (-29),
as compared to the spike at 0 (-28) and the categorical model (-11).

After choosing the quadratic curve as the basis for modelling the dose-response association,
we might try to relate the heterogeneity observed in the VPC plot to study-level covariates.
For example, we can investigate if the sex of the study participants (3 levels: only men, only
women, both sexes) substantially alter the combined quadratic association or partially explain
the observed heterogeneity. This can be done by fitting a meta-regression model which includes
in the fixed-effect matrix the interactions between the quadratic transformations (x and x?)

and the two dummy variables (u; and u,) for the sex of the participants

yi = (B1 + bi))(x; — x30) + (B2 + biz)(xiz - Xizo)+
+ B3 (X; — Xxi0) X uyg; + /34(Xi2 _Xizo) XUyt

2 2
+ Bs(X; — Xxi0) X uy; + B (X7 — Xxjp) X uy; +€;

The meta-regression model simplifies to the quadratic model when the coefficients for the
interaction terms are equal to 0. A test for Hy : 83 = B4 = b5 = B¢ = 0 is equivalent to test
if the dose-response associations differ according to sex of the participants. The multivariate
Wald test ( Xs% = 2.4, p value = 0.66) did not reject the null hypothesis. Furthermore, the meta-
regression model was not able to explain the observed residual heterogeneity (Figure B.5).



Chapter 6

Discussion

We have proposed and developed new strategies and ad-hoc measures for dose-response meta-
analysis, including tools for evaluating the goodness-of-fit, a new measure for quantifying the
impact of heterogeneity, a strategy to deal with differences in the exposure range across studies,
and a one-stage approach to estimate complex models without excluding relevant studies. The
developed methodologies have been implemented in user-friendly R packages freely available
on CRAN. Several codes for reproducing the results of this thesis and of the corresponding
papers can be found on my website https://alecri.github.io/softwareand on GitHub
athttps://github.com/alecri.

6.1 Goodness-of-fit

An evaluation of the goodness-of-fit should be a natural step in a dose-response meta-analysis.
In Paper I we discussed the relevant issue of how to evaluate the goodness-of-fit in a dose—
response meta-analysis. Flexible parametric curves are estimated in order to summarize and
represent the aggregated data in a synthetic format. It is important to check if the fitted
meta-analytical model actually provides an adequate description of the data at hand.

The evaluation of the goodness-of-fit is usually carried out in practice by measuring the
degree of agreement between the fitted and observed data. We have presented and discussed
three tools (deviance, coefficients of determination, and decorrelated residuals versus exposure
plot) specifically designed for assessing the goodness-of-fit in meta-analysis of aggregated
dose-response data. In particular, the deviance can be employed for testing if the chosen
meta-analytic model is properly specified, while the R? can be useful for quantifying from a
descriptive point of view the proportion of variability accounted by the dose-response model.
The fit of the dose-response analysis can be visually checked by inspecting the scatter plot of
the decorrelated residuals versus the quantitative exposure.

The practical examples in [Paper II and Section [5.2]illustrated the use of the proposed tools
in evaluating the fit of the candidate dose-response models. In particular, we have shown
how they can be useful for identifying specific dose-response patterns, investigating possible

sources of heterogeneity, and generally evaluating if the combined dose-response association
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can be an adequate summary of the observed data. Implementation of the proposed tools in
applied works can strengthen the results or, on the contrary, raise doubts about the ability of
the selected model in summarizing the available evidence.

As in the general case for the use of summary measures, one should be aware of the possible
limitations of the developed tools. We have already seen that while a small p value for the
deviance test for model specification is an indication that the posited model failed in accounting
for the observed variation in the log relative risks, a large p value can not be interpreted as
evidence that the model adequately explains the observed variability. In addition, a test based
approach is generally unsatisfactory because it does not provide information about the actual
fit of the analysis and suffers from low power due to the typically small number of data points
in meta-analyses. Lastly, the p values for the global test of goodness-of-fit are not valid when
the meta-analytical dose-response models are estimated driven by the observed data.

Possible explanations for a low value of the R? may be multiple. In fact, an R? close to zero
may indicate that the selected model poorly fits the data, but also that there is no association
between the quantitative exposure and the relative risk for the health outcome, or again that
the model is correctly specified but the residual variability is still close to the overall variability.
Finally, the visual inspection of the goodness-of-fit can reveal dose-response patterns in the
modeled data but its judgment can be quite subjective. In case of sparse data, almost any
patterns can be detected in the decorrelated residuals-versus-exposure plot.

More generally, the tools have been presented in a fixed-effect framework. The decorrelated
residuals-versus-exposure plot can be directly extended to the case of a random-effects analysis
by including the covariance matrix of the random-effects in the Cholesky decomposition. The
other two measures do not have an explicit extension. Their usage as diagnostic tools, however,
should be independent from the inclusion of the random-effects in the final model.

6.2 A new measure of heterogeneity

Another relevant aspect in a quantitative review, which is also related the assessment of
goodness-of-fit, is the evaluation of the impact of heterogeneity. Indeed, a high variability
in the reported effect sizes may undermine the appropriateness of presenting the combined
effect as a summary measure. The common measures of heterogeneity have been developed
under the unrealistic assumption of constant error variances. In [Paper III we have proposed a
new measure of heterogeneity, R, that overcomes the limitation of the previous measures.
The R, quantifies the impact of heterogeneity as the proportion of the variance of the
combined effect due to the between-study variability. We have shown how R, satisfies the
properties required for a measure of heterogeneity without making any assumptions about
the distribution of the within-study error terms. It can be expressed as the average of the
study-specific intraclass correlation terms, i.e. the ratios of the 72 to the overall study-specific
variance 72 +v;. Like I? and R;, the proposed measure tends to its upper limit 1 in case of meta-
analysis of very precise estimates (small v;). The between-study coefficient of variation can give

additional information about the magnitude of heterogeneity compensating the shortcoming
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of the available measures. The proposed measure of heterogeneity requires an estimate of
72, the between-study variability. Thus, confidence intervals should accompany the point
estimates of R}, to reflect the uncertainty in the sample. We have proposed Wald type confidence
intervals using the delta methods based on the relation between R, and Q. The performances
of the confidence intervals were tested throughout an extensive simulation study presented in
Paper III.

We have shown how to present and interpret the new measure of heterogeneity by rean-
alyzing both univariate meta-analyses (in the illustrative examples of [Paper III) and, more
specifically, a dose-response meta-analysis (in Section. As expected, the R;, provided simi-
lar results as compared to both I? and R; in case of effect sizes with homogeneous distribution
for the within-error terms. On the contrary, differences were more evident as the variability of
the v; increased, with values of R, generally lower than the corresponding I? and R;.

6.3 A point-wise approach

In Paper IV|we have extended a point-wise approach originally presented for meta-analysis of
individual patient data to the case of meta-analysis of aggregated dose-response data. The
proposed strategy consists of combining the predicted log relative risks for a fine grid of exposure
values arising from different study-specific dose-response analyses instead of combining the
regression coefficients for a common dose-response model.

A point-wise approach has the potential advantage of improving the individual dose-
response analyses since the study-specific models can be defined separately across the studies.
Although the aim of a dose-response meta-analysis should be to estimate a common curve that
uniformly fits the study-specific results, estimation of a single functional form may lower the
fit of some individual analyses. We have illustrated in Section and the case of second
degree fractional polynomials. In a two-stage approach, a single couple of power terms needs
to be defined for all the studies so that the pooled dose-response curve can be derived by
pooling the study-specific regression coefficients. In a point-wise approach, each study can
choose a possibly different combination of power terms to better fit the observed data. In such
a way, the predicted log relative risks will be closer to the observed ones. The combined curve
can be then derived by pooling the individual predicted log relative risks pointwisely.

Another important advantage relates to the meta-analysis of heterogeneous exposure distri-
butions where the quantitative exposure may differ not only in the definition and measurement
but also in the range. The solution in a two-stage analysis could be to limit the prediction
of the pooled curve to a subset of the observed exposure values. Depending of the extent of
the diversity of the exposure ranges this might not be sufficient. We have illustrated this fea-
ture reanalyzing aggregated data on the association between milk consumption and all-cause
mortality in the results of Paper IV| and between red meat consumption and bladder cancer
in Section In the point-wise strategy, the predicted log relative risk can be limited to
the observed exposure range. The combined curve is thus obtained by combining pointwisely

a potential different number of log relative risks. Neglecting this type of heterogeneity may
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have important consequences both in terms of point and interval estimates for the combined
dose-response association. We have seen in Section [5.4/ how the results based on a two-stage
analysis may provide overconfident results for moderate to high values of red meat consumption,
whereas a point-wise strategy limited the number of studies participating in the corresponding
prediction and thus produced wider confident intervals, reflecting the uncertainty associated
with the lower number of results. Finally, additional results from the univariate meta-analytic
models can also be presented pointwisely, providing a richer description of the quantities of
interest over the exposure range.

A possible limitation of the proposed approach is that the combined curve is obtained by
means of separate univariate meta-analyses which are based on a set of common study-specifics
analyses. As a consequence, the standard errors and confidence intervals may no longer be
valid. A potential remedy would be to incorporate the covariance matrix for the study-specific
predictions in the multivariate meta-analytic model. However, the number and the nature of

the multivariate predictions are typically too high for the estimation algorithms to converge.

6.4 A one-stage model

In Paper V|we have formalized and presented a one-stage model for meta-analysis of heteroge-
neous non-linear curves. The two steps of a two-stage approach, dose-response and pooling,
can be written as a single procedure in terms of a linear mixed-effects model. The mixed-
effects framework is particularly suitable for inferential procedures, marginal and conditional
predictions, quantification of heterogeneity, goodness-of-fit and model comparison. The same
questions frequently answered in a two-stage approach can be similarly addressed using a
one-stage methodology.

The technique was initially presented in a fixed-effect analysis as a more flexible alternative
of the two-stage methodology. Extensions to random-effects meta-analysis of non-linear curves
have been typically framed into a two-stage framework because of the developments related to
multivariate meta-analysis and for simplicity in the implementation using common statistical
software. A one-stage model has oftentimes been regarded as equivalent. Even if we proved that
a one-stage and two-stage approach give the same point estimates and inference, the one-stage
methodology is more flexible and allows one to answer more elaborate research questions.
Flexible curves can also be estimated based on the results from studies reporting a limited
number of relative risks. In a two-stage meta-analysis, on the other hand, a typical requirement
is that each study provides enough data for the individual dose-response analyses. For example,
using either second order fractional polynomials or restricted cubic splines with 3 knots, p = 2
transformations are required for modeling non-linear associations. As a consequence, only
studies providing at least 2 non-referent relative risks can be included in the non-linear analysis.
The case where studies reported the results after dichotomizing the quantitative exposure
are not rare. The data for these studies will be excluded in a two-stage meta-analysis. One
important objective of a quantitative review, however, is to consider and analyze the whole

body of evidence for a research question of interest. Systematic exclusion of studies because of
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insufficient number of data points will necessarily discard useful information and thus provide
only a partial summary. Furthermore, the assessment and investigation of between-studies
variability will be also distorted, so that residual heterogeneity might be undetected.

Another advantage of a one-stage model is that many methodological aspects are greatly
facilitated by using a single linear mixed-effects model. The tools presented in [Paper II, for
instance, were developed using the equivalence between the one- and two-stage approach in
a fixed-effects analysis. The comparison of the fit in different dose-response analyses is also
greatly facilitated by using information criteria such as the AIC, which are based on a common
comparable likelihood.

Multiple routines implement linear mixed-effects models in different statistical packages.
However, several aspects are specific to dose-response meta-analysis and it may be cumber-
some to specify them using general commands for mixed-effects model. Therefore, we have
implemented the one-stage methodology in the updated version of the dosresmeta package.
Several example data sets and codes are available in order to facilitate applications of the

proposed methodology.



Chapter 7

Conclusions

The methods presented in this thesis enrich the set of tools available for applying dose-response
meta-analyses and for addressing specific questions, including how to evaluate the goodness-
of-fit and how to measure the impact of the between-studies heterogeneity. Furthermore, this
thesis describes alternative models for pooling results in case of heterogeneous exposure range
and for estimating complex models without excluding relevant studies. The proposed methods
have been illustrated using real data from published meta-analyses and implemented in user-
friendly R packages available on CRAN.

More specifically we conclude the following:

* The dosresmeta R package has been widely used throughout the world and applied
by practitioners in conducting dose-response meta-analyses. More recent developments
are available to apply the methods presented in this thesis. Dedicated functions have
been useful to avoid pitfalls frequently encountered in published meta-analyses, such as

definition of the design matrix and prediction of the pooled results (Paper I)).

* The proposed tools consist of descriptive measures to summarize the agreement between
fitted and observed data (the deviance and the coefficient of determination), and graph-
ical tools to visualize the fit of the model (decorrelated residuals-versus-exposure plot).
These tools can be employed to identify systematic dose-response patterns and possi-
ble sources of heterogeneity, and to support the conclusions. Goodness-of-fit should be

regularly evaluated in applied dose-response meta-analyses (Paper II).

* The new measure of heterogeneity, R;, quantifies the proportion of the variance of the
pooled estimate attributable to the between-study heterogeneity. Contrary to the avail-
able measures of heterogeneity, it does not require specification of a typical value for
these quantities. Therefore, we recommend the use of the R, as a preferred measure for

quantifying the impact of heterogeneity (Paper III).

* A point-wise strategy for dose-response meta-analysis does not require the specification
of a unique model as in the traditional approaches, and therefore allows for more flexibil-

ity in modeling the individual curves. In addition, the extent of extrapolation is limited
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by predicting the study-specific relative risk based on the observe exposure range. The
use of the described strategy may improve the robustness of the results, especially in case
of heterogeneous exposure range (Paper IV).

* The proposed one-stage approach for dose-response meta-analysis consists of a linear
mixed-effects model, offering useful tools for describing the impact of heterogeneity
over the exposure range, for comparing the fit of different models, and for predicting
individual dose-response associations. The main advantage is that flexible curves can be
estimated regardless of the number of data-points in the individual analyses (Paper V).



Chapter 8

Future research

Based on the conclusions presented in this thesis, future research includes:

* Implementing additive models as a smoother for dose-response meta-analysis. The
non-parametric regression models can be use to investigate and identify the shape of
the dose-response relationship. Formulae for estimation of additive models need to be
extended to take into account the correlation of the error terms and the lack of intercept

term.

* A limited set of tools is available for evaluating possible sources of bias for dose-response
meta-analysis. In particular, a set of tools including descriptive measures, tests, and
plots would be desirable for examining the likelihood of publication bias. Following this
direction, a similar application of the trim and fill method could provide some aid in

performing such a sensitivity analysis.

* Random-effects models for dose-response meta-analysis focus on estimating the popula-
tion average risk-exposure association. Methods for evaluating the influence of specific
data points and the effect of possible outliers are not available. A possibility could be
to switch the focus from the mean to selected percentiles such as the median, which is
generally less sensitive to extreme observations.

* Bayesian methods for dose-response meta-analysis have not yet been presented. A
Bayesian perspective has the advantages of incorporating pertinent information that
can be available from external sources. In addition, the uncertainty for all the parame-
ters can be directly specified in the model. More generally, communication of the results

can be enhanced by making probability statements about the quantities of interest.

* More generally, study selection is a frequent issue in meta-analyses of aggregated data.
On the other hand, sharing of individual participant data is oftentimes difficult because
of privacy agreements and costs involved in the data collection. A solution could be the
implementation of a platform where practitioners are allowed to upload aggregated data
without the need to have them published.



Appendix A

Restricted cubic splines

A Restricted Cubic Splines (RCS) model with 3 knots k = (ky,...,k3) can be derived from a
corresponding Cubic Splines (CS) model by forcing the curve to be linear at the extremes of

the exposure distribution.
The CS model with 3 knots k is defined as

CS(x) = Byx + Box? + P3x° + By (x — kl)i + Bs (x — kz)i + B (x — ks)i (A.1)

where the ‘4’ notation has been used (u, =u if u > 0 and u, = 0 otherwise).
A RCS model restricts the CS function in equation to be linear before the first knot (k;)
and after the last knot (k3). The first linearity constraint requires the model to be linear
for x < kq

CS(x) = B1x + Byx? + Byx

Hence, 5, =0A 83 =0.
The second linearity constraint requires the model[A.1]to be linear for x > k3
CS(x) =P1x + B4 (x® —3x2ky + 3xkZ —k3) + Bs (x> — 3x%ky + 3xk2 — k3 ) +
+ Pe (x3 —3x2%ky + 3xk§ — kg’) =
= —(BalS + Bsk3 + Bek3) + (B1 + 3P4k + 3Psks +3Bsk3) x+
—3(Baky + Bska + Beks) x> — (B4 + s + Ps) x°

Baky + Bsky + Peks =0 Baky + Bsky — Baks — Psks =0 Bs =—P4 i;:ﬁ

ks—k
B4+ PBs+Ps=0 Bs =—P4— Ps Be =—PB4+ Pax,
ks—k ky—k
/35 = _ﬁ4 kz_ki 5= _ﬂ4 kg—k; (A.2)
ka—k ko—k '
ﬁ6 = _ﬁ4 + ﬂ4 kg—k; /56 = ﬁ4 ki_k;

We can rewrite equation[A.I|with f, = 0 A 3 = 0 and equations
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ky—k ky—k
RCSC) = oo+ | =)l = 2= -kt 2 ekt | ad)
3 2 3 2

that is a function of two variables: the quantitative exposure x and a transformation of x.
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Supplementary figures

10.0

5.0

2.0

Relative Risk

1.0

0.5

0 2 4 6
Coffee consumption (cups/day)

Figure B.1: Study-specific quadratic associations between coffee consumption and all-cause mortality.
The relative risks are presented on a log scale using 0 cups/day as referent (Crippa et al., 2016b).
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Figure B.2: Empirical distributions for within-error terms for the study-specific linear trend in a dose—
response meta-analysis between processed and red meat and bladder cancer risk (Crippa et al.,|2016b).
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Figure B.3: Graphical visualization of the study-specific exposure distribution for 13 studies included
in a dose-response meta-analysis between red meat consumption (g per day) and bladder cancer risk.
The crosses and circles are, respectively, the referent and non-referent assigned doses of red meat
consumption.
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Figure B.4: Comparison of different strategies (quadratic, spike at 0, and categorical models) in a dose—
response meta-analysis of coffee consumption (cups/day) and all-cause mortality. The relative risks are
presented on the log scale using 1 cup/day as referent.
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Figure B.5: Variance Partition Coefficient, VPC;;, versus observed dose levels plot and LOWESS smoother
for dose-response meta-analysis between coffee consumption (cusp/day) and all-cause mortality using
a quadratic and meta-regression model.
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Supplementary tables

Table C.1: Descriptive statistics of the assigned dose levels for 13 studies included in a dose-response
meta-analysis between red meat consumption (g per day) and bladder cancer risk.

ID Referent Min P25 Median P75 Max

1 8.6 8.6 30.0 51.4 77.1 102.9
2 34.6 34.6 50.3 65.5 83.2 106.7
3 7.8 7.8 19.5 34.1 515 71.7
4 28.9 289 63.2 92.8 193.9 4427
5 17.3 17.3 38.0 55.8 76.6 112.1
6 6.0 6.0 244 42.9 77.1 111.4
7 85.5 85.5 1229 160.3 230.2 300.2
8 17.1 17.1  43.1 64.2 83.0 101.9
9 34.4 344 63.8 90.8 122.7 171.8
10 8.0 0.0 8.0 17.1 51.4 102.9
11 8.0 0.0 8.0 17.1 51.4 102.9
13 8.6 8.6 30.0 51.4 77.1 102.9
14 51.4 51.4 68.6 85.7 102.9 120.0
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Table C.3: Conditional predicted coefficients for quadratic curves in 12 studies on the association
between coffee consumption (cups/day) and all-cause mortality based on a one-stage (os) and two-
stage (ts) approach.

ID /5105 ﬂZOS fjlts /52ts

2 -0.043 0.002 -0.074 0.005
4 -0.125 0.015 -0.112 0.013
5 -0.077 0.007 -0.094 0.009
6
7

-0.060 0.005 -0.080 0.006

-0.012 -0.003 -0.050 0.000
10 -0.140 0.018 -0.115 0.013
11 -0.159 0.021 -0.118 0.014
16 -0.028 -0.001 -0.074 0.005
17 -0.134 0.017 -0.132 0.017
18 -0.082 0.008 -0.101 0.010
28 0.032 -0.011
29 -0.019 -0.002
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