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POPULAR SCIENCE SUMMARY  

The blood- and lymphatic vasculatures together compose the circulatory system of the 

human body. Our physiology depends on proper vascular function, as evidenced by the 

impact of vascular dysmorphogenesis or dysfunction in multiple diseases. To understand 

mechanisms in regulation of vascular development and function would open new 

possibilities for vascular targeting in patients. The vascular wall is composed of endothelial 

cells (ECs) that enclose the blood, as well as perivascular cells closely attached to the ECs 

on the abluminal side. The interaction of these two cell types is critical to regulate vessel 

generation and functional maintenance in the context of neonatal development, wound 

healing, cancer and cardiovascular diseases etc. This thesis aims to understand molecular 

mechanisms controlling the interaction of these two cell types, with the focus on PDGFRβ 

signalling, a molecular machinery that is highly involved in endothelial-mural cell 

interplay. We revealed that PDGFRβ signalling regulates the interaction of the lymphatic 

endothelium with perivascular smooth muscle cells (SMC). We also showed that SMC 

directly controls lymphatic vessel contraction. Furthermore, we revealed the interaction of 

PDGFRβ with PDGFB and other molecules including PDGFD and neuropilin1 in a 

coordinated manner that together regulate endothelial cell and perivascular cell interplay in 

growing blood vessels.  From a technical perspective, we developed a novel imaging model 

in high resolution using the cornea of living mice that enables detailed analysis of the 

migrating motions of these two cell types during vascular network formation. Together, this 

thesis extended the understanding of endothelial and perivascular cells interplay that may 

contribute to the discovery of future treatment of cardiovascular diseases. 

血管系统和淋巴管系统共同构成了人体的循环系统。受损伤的血管或淋巴管功能是许多相

关疾病的根本原因。因此，探索血管以及淋巴管系统的发育规律将为发现新的心血管疾病

治疗靶点和开发新的治疗方法作出基础性的贡献。血管壁由构建血管腔的“内皮细胞”和血

管周围紧密包裹的“血管周细胞”组成。两种细胞类型之间的相互作用对于新生儿循环系统

发育，成年人伤口愈合，以及在癌症和心血管疾中调节血管生成和维持功能维持有重要作

用。这篇博士论文旨在探索控制这两种细胞类型相互作用的分子机制，并重点探究血小板

衍生生长因子受体 B（PDGFRβ）在血管和淋巴管发育水平的信号通路。我们首先应用多

种经过基因编辑的小鼠作为动物模型，揭示了 PDGFRβ 信号直接控制淋巴管平滑肌细胞

（一种淋巴管特异型周细胞）的生成，以及淋巴管平滑肌细胞在皮肤淋巴管节律性收缩中

的重要作用。此外，我们还发现了 PDGFRβ 与其他分子（包括血小板衍生生长因子 D

（PDGFD）和神经纤毛蛋白 1（neuropilin1）协同调节内皮细胞和血管周细胞在血管生长

中的相互作用。从技术创新的角度，我们开发了一种新的高分辨率活体显微镜成像技术：

利用麻醉小鼠的眼角膜分析炎症诱导的血管网络发育的动态过程。亚细胞水平的分辨率使

得该技术可以清晰的记录并分析血管内皮细胞与血管周细胞的迁移运动以及相互作用。综

上，这篇博士论文拓展了对内皮细胞和血管周细胞相互作用机制的理解，并为发现心血管

疾病的药物靶点和治疗方法开辟了新方向。 



 

ABSTRACT 

Blood- and lymphatic vascular development and homeostasis depend on correct 

endothelial- mural cell interaction, and dysregulation thereof is apparent in multiple human 

diseases. However the mechanisms controlling the formation of these respective vascular 

systems are not fully understood. Previously, the binding of EC-derived Platelet derived 

growth factor B (PDGFB) to its receptor, PDGFRβ on mural cells, was shown to play an 

important role in recruitment of mural cells to blood capillaries. Whether PDGFB carries 

similar functions in the lymphatic vasculature is still unclear. In addition, potential 

regulation of PDGFRβ signalling by other PDGFs, in the context of endothelial - mural cell 

interaction, is not fully understood.  

This thesis focuses on PDGFRβ signalling, mediated by PDGFB and PDGFD, in regulation 

of endothelial - mural cell interplay in blood and lymphatic vessel development. By 

generation of several genetic modified mouse models, including inducible targeting of 

PDGFB in the lymphatic endothelium, we reveal that PDGFB is required for recruitment of 

smooth muscle cells (SMCs) to collecting lymphatic vessels. In addition we show that 

SMCs play no major role in the establishment of lymphatic vessel identities but that these 

cells are responsible for the recorded pulsatile contraction of dermal collecting vessels. 

Furthermore, our data suggest that it is unlikely that pathological SMC recruitment to 

capillaries is caused by altered PDGFB expression alone, but that it also relies on extra 

cellular matrix composition. Besides PDGFB, we also demonstrated a potential 

involvement of PDGFD in regulation of EC-pericyte interplay. We found that, although 

PDGFB and PDGFD evoked similar PDGFRβ activation, these ligands promoted 

differential pericyte behavioural responses in 3-dimesional angiogenesis assays. This may 

be related to our discovery of an interaction between PDGFD and Neuropilin-1 (NRP1).   

A part of this thesis was also dedicated to record vascular development from a new level of 

both imaging and time resolution. By using the wounded mouse cornea as a live imaging 

site, we developed an in vivo imaging approach that allows for documentation of vascular 

morphogenesis over time, at subcellular resolution. We used this method to analyse EC 

migratory behaviour and highlighted directional migration against blood flow. We also 

characterized vessel patterning with respect to mural cell distribution during sprouting 

angiogenesis in the inflamed cornea. Furthermore, we recorded temporal and spatial aspects 

of VEGFA-induced vessel permeability by intra vital live imaging and revealed distinct 

artery-venous properties.  

Taken together, this thesis contributes to the understanding of the roles of endothelial- and 

mural cells in the context of blood and lymphatic vascular development. Our findings shed 

new light on mechanisms regulating cardiovascular homeostasis in development and 

disease.  
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1 INTRODUCTION 

 

The complex mammalian bodies require a sophisticated transportation system to sustain 

oxygenation, nutrition, maintenance of liquid balance and immune surveillance. This is 

achieved mainly via the network of blood and lymphatic vessels. The blood flows from 

the heart, via arteries and arterioles to the capillaries, where liquid, gas and nutrients are 

exchanged between blood and tissue. The metabolic products are accordingly 

transferred from tissue to the capillary blood, and via venules and veins back to the 

heart. In addition to the blood vasculature, the lymphatic vasculature is crucial in 

maintaining tissue liquid homeostasis. Tissue liquid drains through blind-ended 

capillaries into larger, smooth muscle covered collecting vessels that merge and connect 

to the subclavian vein, thereby entering the blood circulation.   

 

1.1 Development of the blood vasculature  

In early embryonic development, the formation of the blood vasculature is initiated by a 

process denoted vasculogenesis, where a subpopulation of cells within the mesoderm 

differentiates into endothelial precursor cells which assemble into the primary blood 

vessel plexus in the yolk sac (Carmeliet 2005). Formation of the dorsal aorta and the 

cardinal vein were directly via assembly of endothelial precursor cells (Cleaver and 

Melton 2003, Adams and Alitalo 2007). In addition circulating bone-marrow-derived 

endothelial precursor cells are also suggested to contribute to enlargement of vessels 

(Rafii, Lyden et al. 2002, Grunewald, Avraham et al. 2006, Shibuya 2006, Adams and 

Alitalo 2007). Circulation of blood is established in the primary plexus upon vessel 

loop formation with the contribution of cardiac contraction and entry of erythrocytes 

(Jones 2011). The vessel network is further developed into a more complex vasculature 

composed of endothelial cells (EC) and closely associated mural cells: pericytes and 

smooth muscle cells (SMCs). The mechanisms of vasculogenesis not only play a key 

role in early vessel development, but also contribute to pathological vessel generation 

e.g. tumour formation in adulthood (Rafii, Lyden et al. 2002, Adams and Alitalo 2007). 
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However, a large proportion of blood vessels, e.g. in the central nervous system, extend 

and develop into a network via the process of angiogenesis, where ECs migrate out 

from the pre-existing vasculature forming a new vessel structure. One important 

regulatory factor that promotes EC activation and migration is vascular endothelial 

growth factor A (VEGFA), which together with VEGFB, VEGFC, VEGFD and 

placental growth factor (PlGF) composes the VEGF family. Binding of VEGFs to their 

receptors: vascular endothelial growth factor receptor 1, -2, and -3 (VEGFR1, -2, and -

3), activates multiple downstream pathways that regulate various cellular functions 

(Adams and Alitalo 2007).  

 

1.2 Development of the lymphatic vasculature  

The development of lymphatic vessels initiates 6 to 7 weeks post fertilisation in humans 

and at embryonic days (E) 9.0 to 9.5 in mice (Alitalo, Tammela et al. 2005). At this 

stage, a group of ECs within the anterior cardinal vein start to express lymphatic vessel 

hyaluronan receptor 1 (LYVE-1) (Oliver 2004). From E9.5 to E11, a subpopulation of 

LYVE-1+ ECs start to express several key transcription factors e.g. prospero related 

homeobox-1 (PROX1), podoplanin and neuropilin 2 (NRP-2) that were established to 

be major regulators for lymphatic vascular development (Breiteneder-Geleff, Soleiman 

et al. 1999, Yuan, Moyon et al. 2002, Oliver 2004). By expression of VEGFR3, the 

subpopulation of LYVE-1+, PROX1+, podoplanin+, NRP2+, VEGFR3+ ECs respond 

to VEGFC, and migrates out from the cardinal vein to form the primary lymphatic sac. 

Notably, platelet aggregation is suggested to be important to seal off the blood vessels 

during this process and defective platelet aggregation causes blood filled lymphatic 

vessels (reviewed in (Schulte-Merker, Sabine et al. 2011)). Until E14.5, lymphatic 

endothelial cells (LECs) accordingly proliferate and migrate out from the primary 

lymphatic sac, and establish the lymphatic vascular network via budding and sprouting 

(Tammela and Alitalo 2010, Yang and Oliver 2014).  

Although a major part of the mammalian lymphatic tree originates from veins, a large 

proportion of superficial dermal lymphatic vessels and part of the mesenteric lymphatic 

vasculature are derived from progenitors of a non-venous origin (Martinez-Corral, 

Ulvmar et al. 2015, Stanczuk, Martinez-Corral et al. 2015). These LECs express typical 
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lymphatic markers including PROX1, VEGFR3 and NRP-2 but not LYVE-1 and 

contribute to the establishment of lymphatic vasculature via assembly into isolated 

endothelial clusters that develop into a network. This alternative mode of lymphatic 

vessel establishment is defined as a lymphvasculogenesis. This knowledge sheds new 

light on the complexity of lymphatic vasculature origin and may provide novel targets 

for treatments of cancer, lymphedema or tissue trauma.  

 

1.3 Key factors/signalling pathways regulating vascular development 

1.3.1 VEGF / VEGFR signalling 

VEGF/VEGFR signalling regulates essential pathways during the process of 

angiogenesis. In blood endothelial cells (BECs), binding of VEGFA to its membrane 

receptor tyrosine kinase VEGFR2 results in BEC proliferation, migration and vessel 

sprouting. However, the pro-angiogenic effect of VEGFA-VEGFR2 interaction is 

counteracted by VEGFA binding to VEGFR1, which has higher VEGF affinity but less 

tyrosine-kinase activity and in turn considered as an inhibitory control of angiogenesis 

(Jakobsson, Franco et al. 2010, Krueger, Liu et al. 2011, Boucher, Clark et al. 2017, 

Pitulescu, Schmidt et al. 2017). Interestingly, a recent study also showed the 

involvement of pericytes in regulating VEGFA/VEGFR2 signalling via expression of 

soluble VEGFR1 functioning as a VEGFR2 antagonist (Eilken, Dieguez-Hurtado et al. 

2017). In the process of sprouting angiogenesis, VEGFA regulates EC migration, 

promoted by their extending filopodia (Gerhardt, Golding et al. 2003). In addition to the 

impact of differential VEGFR2 levels and degree of activation, several other EC 

signalling cascades have been shown to be central in the establishment and extension of 

new sprouts, including Delta-like 4/Notch and CXCL12/CXCR4 (Hellstrom, Phng et al. 

2007, Jakobsson, Franco et al. 2010, Nakayama, Nakayama et al. 2013, Xu, Hasan et al. 

2014, Hasan, Tsaryk et al. 2017, Jin, Muhl et al. 2017, Pitulescu, Schmidt et al. 2017). 

The precise involvement of these cascades in the dynamic process of angiogenesis has 

been challenging to dissect. Recent studies, using lineage tracing and live imaging in 

zebrafish, clearly indicate that leading tip cells contribute to artery formation, a process 

that in turn relies on Notch activation (Hasan, Tsaryk et al. 2017, Pitulescu, Schmidt et 

al. 2017). 
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In the lymphatic vasculature, VEGFC/VEGFR3 signalling is essential for LEC 

migration and sprouting formation. The binding of receptor tyrosine kinase VEGFR3 

and VEGFR2, predominantly as homodimers, to their ligands VEGFC and VEGFD 

activates downstream signalling pathways controlling LEC proliferation, migration and 

survival. LECs of mice lacking expression of VEGFC fail to migrate from veins to 

develop the primary lymph sac (Karkkainen, Haiko et al. 2004, Coso, Bovay et al. 

2014). The importance of VEGFC for human physiology is also reflected by the fact 

that a point mutation in VEGFC causes lymphedema in patients (Gordon, Schulte et al. 

2013). In contrast, VEGFD deletion does not affect lymphangiogenesis, while VEGFD 

is able to compensate the loss of VEGFC during lymphatic vessel sprouting in zebra 

fish (Astin, Haggerty et al. 2014). Mice lacking VEGFR3 has early cardiovascular 

defects and die at (E) 9.5 (Dumont, Jussila et al. 1998). However, transgenic mice 

expressing a soluble form of VEGFR3, functioning as a blocker of VEGFC/VEGFR3 

signalling display inhibited lymphangiogenesis and lymphedema-like phenotypes, 

highlighting the functional importance of VEGFC/VEGFR3 signalling (Makinen, 

Jussila et al. 2001).  Unlike other VEGFs, both VEGFC and VEGFD require post-

secretion proteolytic processing to potentiate receptor binding (Joukov, Sorsa et al. 

1997, Vaahtomeri, Karaman et al. 2017). Upon ligand binding, phosphorylated 

VEGFR3 recruits signal transduction protein kinases extracellular signal–regulated 

kinases 1/2 (ERK1/2), protein kinase B (AKT), protein tyrosine kinase 2 beta (PYK-2), 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), c-Jun N-

terminal kinase 1/2 (JNK1/2) and activate their downstream signalling (Dixelius, 

Makinen et al. 2003, Alitalo, Tammela et al. 2005, Salameh, Galvagni et al. 2005). 

Notably, the binding affinity of VEGFC to VEGFR3 is enhanced by the co receptor 

NRP-2 which contributes to VEGFR3 internalization (Xu, Yuan et al. 2010). 

 

1.3.2 Mural cell – Endothelial cell interaction 

Vascular function and integrity relies on the interaction between mural cells and the 

endothelium. Mural cells can be divided into pericytes and vascular smooth muscle 

cells (vSMCs). Pericytes, which are mainly recruited to the capillaries of the blood 

vasculature, serve as the major cell type in regulation of blood vessel integrity and 

morphogenesis. Although pericytes are described in different tissues with variable 
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morphologies, they are mainly defined as vascular mural cells that make focal contact 

with the ECs and share their basement membrane (BM) (Armulik, Abramsson et al. 

2005). Pericytes can be characterized by several markers including neural/glial antigen 

2 (NG2), platelet derived growth factor receptor beta (PDGFRβ), anabyl 

aminopeptidase N (CD13) and desmin (Armulik, Genove et al. 2011). During 

embryonic development, pericytes in the central nervous system are derived from 

ectoderm whereas non-CNS pericytes in different organs have distinct origins (Armulik, 

Genove et al. 2011). Loss of pericytes in the micro vessel wall results in blood brain 

barrier leakage, severe retinal deterioration, glomerulosclerosis and proteinuria etc. 

(Lindblom, Gerhardt et al. 2003, Armulik, Genove et al. 2010, Daneman, Zhou et al. 

2010).  

Besides pericytes, vSMCs are also specialized mural cells recruited mainly to arteries 

and veins in the blood vasculature and the collecting vessels in the lymphatic 

vasculature (Figure1). Their contractility enables vSMCs to regulate blood pressure and 

distribution, however their contractility in the lymphatic vessels are tissue type 

dependent (Muthuchamy, Gashev et al. 2003). In addition to vessel physiology, vSMCs 

contribute to the production of extra cellular matrix (ECM) (Rensen, Doevendans et al. 

2007). Typically vSMCs are characterized by the expression of smooth muscle actin, 

CD13, PDGFRβ, desmin etc. although the expression of markers for vSMCs varies 

depending on developmental stages and environmental cues (Rensen, Doevendans et al. 

2007). vSMCs have multiple origins during different developmental stages. In the 

central nervous system (CNS), a major source of vSMCs, similar to pericytes, is from 

the neural crest. The mesoderm and mesothelium give rise to the vSMCs at coelomic 

vasculature. In addition, dorsal aorta contains vSMCs derived from the secondary heart 

field, neural crest and somite (Armulik, Genove et al. 2011). Alterations in vSMCs 

morphology and function result in cardiovascular diseases including systemic 

hypertension, asthma, obstructive bladder disease etc (Owens, Kumar et al. 2004).  
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Figure1. PDGFRβ expressing mural cells of blood- and lymphatic vessels. Immunostaining of 

dermal dorsal ear skin of a Pdgfrβ-GFP mouse with antibodies against Podocalyxin (red), α-

SMA (grey). PDGFRβ+ (GFP, green);α-SMA+ (grey) double positive SMCs (asterisk) are found 

on the lymphatic vessel (identified by the lymphatic valve (LV), arrow) and the arteriole while 

PDGFRβ+;α-SMA ̶  pericytes are located on the blood capillaries. Scale bar indicates 20µm. 

 

1.3.3 PDGFB / PDGFRβ 

In the blood vasculature, mural cells are recruited to the vasculature via binding of 

platelet derived growth factor B (PDGFB) to the cell surface receptor platelet derived 

growth factor receptor β (PDGFRβ) (Hellstrom, Kalen et al. 1999, Tallquist, French et 

al. 2003). PDGFRs are important tyrosine kinase receptors that form homodimers –αα, 

–ββ or heterodimers –αβ on the cell membrane. The interaction of PDGFs and PDGF 

receptors mediates autophosphorylation of the receptors and activate downstream 

pathways, typically janus tyrosine kinase (JAK)/ signal transducer and activator of 
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transcription (STAT), phosphoinositide 3-kinase (PI3K), phosphoinositide 

phospholipase C-γ (PLC-γ) or mitogen-activated protein kinase (MAPK), which 

subsequently lead to mural cell migration, proliferation and ECM synthesis (Figure2) 

(Boor, Ostendorf et al. 2010). The PDGF family is composed of four gene products 

PDGFA, -B, -C, and –D together forming five combinations of homodimers or 

heterodimers PDGF-AA, PDGF-BB, PDGF-AB, PDGF-CC and PDGF-DD 

(Fredriksson, Li et al. 2004). The dimerization of ligands of PDGF receptors provides 

PDGF signalling with high flexibility in controlling mural cell and EC interaction since 

binding affinity of ligands to the PDGF receptors vary depending on the forms of 

dimers e.g. all forms except PDGF-DD activate PDGFRα while PDGFRβ are 

specifically activated by PDGF-BB and PDGF-DD (Fredriksson, Li et al. 2004).  

 

 

Figure2. An overview of mural cell recruitment mediated by PDGFB/PDGFRβ signalling.  

 

In mammalian tissues, PDGFB is produced by many cells including ECs, 

megakaryocytes, and neurons (Heldin and Westermark 1999, Andrae, Gallini et al. 

2008). PDGFB gene promotor contains several regulatory elements (e.g. Sis proximal 
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element(SPE)) that bind to multiple transcription factors such as Sp1, Sp3 transcription 

factors, AP-1-like and Ets like transcription factors etc., suggesting a wide range of 

regulatory mechanisms (Heldin and Westermark 1999). Regulation of PDGFB 

secretion is believed to be constitutive whereas the transcriptional regulation of the 

PDGFB gene is affected by growth factors, oxygen tension, thrombin and cytokines 

(Makela, Alitalo et al. 1987, Abboud 1995, Heldin and Westermark 1999, Fruttiger, 

Calver et al. 2000, Nishishita and Lin 2004, Andrae, Gallini et al. 2008).  Moreover, 

PDGFB production in cultured ECs was shown to be promoted by fluid shear stress 

(Mitsumata, Fishel et al. 1993). PDGFB deletion in mouse causes mural cell loss from 

the vasculature during embryonic development, which leads to severe haemorrhage and 

perinatal lethality (Leveen, Pekny et al. 1994). Via binding to heparan sulfate 

proteoglycans (HSPGs), PDGFB is retained to the ECM and this is suggested to be 

highly involved in mural cell recruitment (Lindblom, Gerhardt et al. 2003). By 

knocking out the binding motif of PDGFB to heparan sulfate that enables the retention 

of PDGFB to the basement membrane, pericytes are partially dissociated from the 

vascular bed, leading to long term vessel defects including increased permeability of 

mouse blood brain barrier, severe retinal deterioration, glomerulosclerosis, and 

proteinuria (Lindblom, Gerhardt et al. 2003, Armulik, Genove et al. 2010). Other than 

the vasculature, e.g. in human dermal fibroblasts, PDGFB was shown to potentiate 

production of hyaluronan, which is a glycosaminoglycan normally found in soft 

connective tissues and its accumulation implicates the phase of rapid tissue 

development during embryonic stage (Laurent and Fraser 1992, Li, Asteriou et al. 

2007). These observations highlight the contribution of PDGFB signalling in regulation 

of endothelial-pericyte interaction and its importance in vascular development and 

homeostasis.  

 

1.3.4 Angiopoietins / TIE2 

The angiopoietin (ANG)/TIE signalling axis is crucial for regulation of angiogenesis 

and vascular homeostasis. It consists of two tyrosine kinase receptors, TIE1 and TIE2, 

expressed by the endothelium, and three secreted ligands ANG1, ANG2, and ANG4 

(mouse orthologue of human ANG4 is denoted Ang3), among which ANG1 is secreted 

by various cell types including vascular mural cells and fibroblasts, whereas ANG2 is 
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primarily produced by ECs (Huang, Bhat et al. 2010). Previous studies suggested that 

ANG1 serves as a TIE2 agonist while ANG2 normally serves as an ANG1 antagonist 

however in lymphatic vessels, ANG2 is considered as a TIE2 agonist (Maisonpierre, 

Suri et al. 1997, Gale, Thurston et al. 2002, Dellinger, Hunter et al. 2008, Huang, Bhat 

et al. 2010). Deletion of either ANG1 or TIE2 in mice is embryonically lethal (Dumont, 

Gradwohl et al. 1994, Sato, Tozawa et al. 1995, Suri, Jones et al. 1996). Overexpression 

of Ang1 or injection of recombinant ANG1 in mice showed increased blood vessel 

branching and remodelling, highlighting the role of mural cell-derived ANG1 in 

regulating vessel development (Thurston, Suri et al. 1999, Uemura, Ogawa et al. 2002, 

Armulik, Genove et al. 2011). Cardiac specific knockout of ANG1 demonstrated that 

the failure of vascular development also related to defective flow (Jeansson, Gawlik et 

al. 2011). However, ANG1 seems not to be involved in pericyte maintenance in the 

quiescent vasculature by conditional knockout of ANG1 (Armulik, Genove et al. 2011, 

Jeansson, Gawlik et al. 2011).  

Transgenic overexpression of ANG2 reproduces the phenotype of ANG1 knockout 

mice, highlighting its inhibitory role on ANG1/TIE signalling (Maisonpierre, Suri et al. 

1997). Ang2-null mice displayed defective remodelling of both the blood vasculature 

and the lymphatic vasculature. The mice had peripheral lymphedema and hypoplasia, 

which may be a consequence of prematurely recruited vSMCs, insufficient 

downregulation of LYVE-1 in collecting vessels or reduced capillary density and 

branching (Gale, Thurston et al. 2002, Dellinger, Hunter et al. 2008). However, the 

major defects of lymphatic vessel, but not the blood vessels, could be rescued by the 

Ang1 knock-in mice, suggesting a differential role for ANG2 in blood versus lymphatic 

vessel (Gale, Thurston et al. 2002). By using Ang2 knockout mice and treatment with 

anti-ANG2 antibodies, recent studies showed that ANG2 also affects vascular 

endothelial cadherin (VE-cadherin) phosphorylation, and accordingly impacts button-

like junction formation, valve formation, and lymphatic vessel permeability (Zheng, 

Nurmi et al. 2014). Although the antibody treated mice showed deregulated SMC 

recruited to lymphatic vessels, PDGFB expression levels were not affected. The 

mechanisms of regulation of SMC recruitment via ANG2 therefore remain unclear. 
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1.3.5 Transforming growth factor beta (TGF-β) 

Transforming growth factor beta (TGF-β) is expressed by both ECs and mural cells but 

the activation of TGF-β is suggested to require participation of both cell types (Sato and 

Rifkin 1989). Via binding to TGF-β receptors e.g. activin receptor-like kinase (ALK)-1 

or -5, it promotes proliferation and differentiation of both ECs and mural cells. 

Activated Alk-5 results in phosphorylation of downstream Sma mothers against 

decapentaplegic (SMAD) 2/3 and promotes mesenchymal cell differentiating into 

vSMCs while ALK-1 activation triggers SMAD1/5 that results in cell proliferation and 

migration (Ota, Fujii et al. 2002, Chen, Kulik et al. 2003, Armulik, Genove et al. 2011). 

In ECs, ALK-1 and ALK-5 show sophisticated interplay upon activation by TGF-β or 

bone morphogenetic proteins (BMPs). 

TGF-β plays a complex but generally inhibitory role in regulating lymphangiogenesis. 

LEC specific conditional knockout of TGF-β causes severe defects in lymphatic vessel 

sprouting and branching in a Neuropilin2 dependent manner and at the same time 

causes an increase in LEC proliferation during vessel patterning (James, Nalbandian et 

al. 2013). TGF-β signalling prevents lymphangiogenesis during wound healing in mice 

and it inhibits LEC migration towards VEGFC in vitro (Oka, Iwata et al. 2008, 

Avraham, Daluvoy et al. 2010). TGF-β also exhibits an anti-inflammatory role as 

suggested by the fact that TGF-β knockout mice display inflammatory complications 

with organ failure and death (Shull, Ormsby et al. 1992, Tammela and Alitalo 2010). 

However, how TGF-β signalling affects mural cell recruitment and differentiation in the 

lymphatic system is not fully understood.  

 

1.3.6 Neuropilin 

Neuropilins (NRP), including NRP1 and NRP2, are widely expressed none-tyrosine 

kinase transmembrane co-receptors that play multiple roles in both neural and vascular 

systems (Klagsbrun, Takashima et al. 2002, Fantin, Lampropoulou et al. 2015). As co-

receptors of Plexins, NRP1 and NRP2 bind to several classes of semaphorins (SEMA) 

that are key regulators of neuronal guidance and axon growth (Pellet-Many, Frankel et 

al. 2008, Fantin, Lampropoulou et al. 2015). In the vascular system, NRP1 and NRP2 
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are found in both blood and lymphatic vessels, however the expression of NRP1 and 

NRP2 is enriched at arteries and veins respectively (Stalmans, Ng et al. 2002, Yuan, 

Moyon et al. 2002, Gu, Rodriguez et al. 2003, Adams and Alitalo 2007, Bouvree, 

Brunet et al. 2012, Jurisic, Maby-El Hajjami et al. 2012, Zachary 2014). Nrp1 knockout 

mice die between E10.5 and E13.5, from severe defects in both blood and nervous 

systems (Kitsukawa, Shimizu et al. 1997, Kawasaki, Kitsukawa et al. 1999). Although 

it was suggested that NRP1 interacts with VEGFR2 and enhances receptor 

phosphorylation and downstream signalling, NRP1 can also function in a VEGFA-

independent manner that does not require VEGFR2 activation (Fantin, Herzog et al. 

2014, Zachary 2014). Besides its role in VEGF signalling, NRP1 also mediates PDGFR 

signalling in vitro. NRP1 is suggested to physically interact with PDGFB and 

knockdown of Nrp1 in aortic SMCs prevents PDGF mediated SMC migration 

(Banerjee, Sengupta et al. 2006, Pellet-Many, Frankel et al. 2011). In human hepatic 

stellate cells (hHSC), NRP1 enhances PDGFRβ autophosphorylation on Tyr857 kinase 

domain and accordingly promotes downstream Rac1 activation (Cao, Yaqoob et al. 

2010). However, the functional evidence of this interaction in vivo is currently limited. 

In the lymphatic vasculature, correct interaction of SEMA3a/NRP1 is required during 

vessel maturation and function. Mice either lacking SEMA3a or exposed to antibody-

mediated inhibition of SEMA3a/NRP1 binding, showed defective lymphatic valve 

formation (Bouvree, Brunet et al. 2012, Jurisic, Maby-El Hajjami et al. 2012). These 

studies highlighted the diverse role of NRP1 in regulation of both blood and lymphatic 

vessel development. 

Less is known about the function and signalling of NRP2. Nrp2 knock out mice lacked 

an obvious vascular phenotype, but displayed reduced number of lymphatic capillaries 

in the heart and lungs at birth (Yuan, Moyon et al. 2002). Mechanistically this may be 

explained by the interaction between NRP2 and VEGFC thereby contributing to 

VEGFR3 internalization and lymphatic vessel sprouting (Xu, Yuan et al. 2010). The 

relatively modest involvement of NRP2 in lymphangiogenesis compared to that of 

VEGFR3, points to a partial impact on downstream signalling pathways (Vaahtomeri, 

Karaman et al. 2017).  
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1.4 Transcriptional regulation, identities and function of the lymphatic 

vasculature 

1.4.1 PROX1  

PROX1 is one of the first transcription factors that distinguishes LEC identity from that 

of blood EC identity at around E9.5 to E10 in mice and its activation is directly 

controlled by upstream SOX18 (SRY(sex determining region Y) box 18) (Francois, 

Caprini et al. 2008). Prox1 knockout mouse embryos display LEC migrational arrest, 

failure to further express LEC specific markers e.g. VEGFR3, LYVE-1 and have a 

blood vessel phenotype (Wigle, Harvey et al. 2002). In addition to determining the LEC 

fate, PROX1 together with the transcription factor forkhead box protein C2 (FOXC2) 

contribute to lymphatic valve development by promoting expression of gap junction 

proteins connexin37 and activation of calcenurin/ nuclear factor of activated T-cells 

(NFAT) signalling (Sabine, Agalarov et al. 2012). During lymphatic vessel maturation, 

PROX1 expression is gradually reduced and only maintained at valve regions during 

postnatal development (Norrmen, Ivanov et al. 2009).  

 

1.4.2 FOXC2  

FOXC2 is highly involved in controlling remodelling and maturation of lymphatic 

vessels. FOXC2, together with PROX1 and VEGFR3 are highly expressed in LECs of 

developing collecting vessels but are downregulated postnatally, leaving only high 

expression at lymphatic valve regions (Norrmen, Ivanov et al. 2009). Lymphedema-

distichiasis (LD) patients harbour FOXC2 loss of function mutations. Most of the 

patients are diagnosed with distichiasis and develop normal or more lymphatic vessels, 

but with lymph backflow (Brice, Mansour et al. 2002). This mutation was also 

suggested to be highly associated with defective valve function of superficial and deep 

veins of the lower limb (Mellor, Brice et al. 2007). Foxc2 knockout mice appear to have 

a normal initiation of lymphatic vessels but display lymphatic defects including SMC 

recruitment to the capillaries, increased overall expression of Pdgfb mRNA and 

capillaries being surrounded with a thick layer of collagen IV, altogether causing 

abnormal lymphatic drainage (Petrova, Karpanen et al. 2004). FOXC2 was also shown 
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to physically interact with NFATc1 and to be involved in maintenance of LEC 

quiescence via stabilization of intercellular junction and cytoskeleton in collaboration 

with shear stress (Norrmen, Ivanov et al. 2009, Sabine, Bovay et al. 2015). These 

studies indicate a major role of FOXC2 in defining and maintaining collecting vessel 

and capillary identity.  

 

1.4.3 Junction proteins and lymphatic vessel identities 

To certify resorption of interstitial fluid, lymphatic collecting vessels and capillaries 

(alternatively denoted initial lymphatic vessels) display unique identities. In capillaries, 

discontinuous button like junctions enable entry of fluid and cells, mediated by a 

pressure gradient from interstitium (high) to the capillaries (low) (Schulte-Merker, 

Sabine et al. 2011). The binding of anchoring filaments within LECs to the molecules 

of the ECM assures persistent vessel lumen structure even upon increased interstitial 

tissue pressure (Leak and Burke 1968, Schulte-Merker, Sabine et al. 2011). Lymph (the 

liquid inside the lymphatic vessel) enters so called precollectors, with mixed identities 

of capillary and collecting vessel. These vessels in turn connect to the collecting vessels, 

which are composed of LECs connected by zipper-like cell junctions that prevent liquid 

exchange between vessels and surrounding tissue. Interestingly, although button-like 

and zipper like junctions display distinct morphology, both contain the same 

components, including VE-cadherin, occludin, claudin-5, zonula occludens-1, etc. 

(Baluk, Fuxe et al. 2007). Moreover, lymphatic capillaries can be distinguished from 

collecting vessels by their expression of LYVE-1 and chemokine ligand 21 (CCL21). 

The role of LYVE-1 in capillary function is not yet understood. LYVE-1 deficiency in 

mice does not cause defects of either lymphatic vessel development or dendritic cell 

(DC) migration to lymph nodes (Gale, Prevo et al. 2007). CCL21 on the other hand 

serves as a guidance molecule for DC migration and is secreted and immobilized in 

interaction with heparan sulfate within the ECM (Weber, Hauschild et al. 2013, Ulvmar 

and Makinen 2016). This highlights the importance of the lymphatic vasculature for 

immune surveillance.  
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1.4.4 Valve development and Basement Membrane proteins of collecting vessels 

Lymphatic collecting vessels have bi-leaflet luminal valve structures that prevent lymph 

backflow of liquid leading to uni-direction flow that is critical for tissue drainage. The 

development of lymphatic valves of mesenteric collecting vessels is initiated between 

E15 to E16 through the assembly of a subgroup of LECs expressing high levels of 

FOXC2 and PROX1, that together with flow control the transcription of 

connexin37/calceneurin, in turn defining the valve territory (Sabine, Agalarov et al. 

2012). During valve development LECs reorient and migrate along the vessel wall, 

controlled by planar cell polarity (PCP) signalling core proteins cadherin EGF LAG 

seven-pass G-type receptor 1 (CELSR1), Van Gogh-like (VANGL2) as well as integrin 

α9, to form the bi-leaflet structure during E17 to E18 (Bazigou, Xie et al. 2009, Tatin, 

Taddei et al. 2013).  

In the blood vasculature, ECM proteins are relatively equally deposited around the 

arteries, veins and capillaries. However, ECM proteins are predominantly present 

around collecting vessels with only scattered appearance in capillaries. Several ECM 

proteins (e.g. collagen IV, laminins, EMILIN1, fibronectin (FN), HPSGs, reelin etc.) 

are expressed by LECs of valves and collecting vessels. So far, two BM proteins are 

indicated to be directly involved in signalling that controls lymphatic valve 

development. The interaction of FN-EIIIA with integrin α9 regulates FN fibril assembly 

during valve formation (Bazigou, Xie et al. 2009). EMILIN1 also interacts with integrin 

α9 and lack of EMILIN1 results in reduced valve number and compromised lymphatic 

function due to defective LEC proliferation and migration (Danussi, Del Bel Belluz et 

al. 2013). Together, these studies suggest an indispensable role of ECM proteins in 

activating integrin α9 signalling in control of lymphatic valve formation.  

Mechanisms controlling ECM deposition, and its impact on lymphatic endothelial 

biology, other than valve formation, is less studied. One example of a well understood 

factor is reelin, an ECM glycoprotein. reelin is suggested to regulate collecting vessel 

maturation and patterning in an autocrine fashion, where reelin secretion is mediated by 

direct contact between SMCs and the lymphatic endothelium. Reelin in turn triggers 

production of monocyte chemotactic protein 1 (MCP-1), a factor that promotes SMC 

migration and proliferation (Lutter, Xie et al. 2012).  The involvement of other ECM 

components and their functional roles in lymphangiogenesis remain to be clarified. 
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1.4.5 Lymphatic function, drainage and contribution of SMCs  

The lymph vasculature returns 20%-50% of the plasma volume and 50-200% of plasma 

protein daily from peripheral tissue to circulation (Taylor 1990, von der Weid and 

Muthuchamy 2010). Muscle contraction and tissue/body movement promote drainage 

but the relative contribution of collecting vessel SMC contraction is still not clarified. 

The contractility of SMCs depends on the different combination of muscle specific- and 

non-muscle specific myosin heavy chains (MHC) and myosin light chains (MLC) that 

together allow distinct contractile properties (von der Weid and Muthuchamy 2010).  

For example, thoracic ducts in rats display weaker and more irregular phasic 

contraction than mesenteric lymphatic vessels (Muthuchamy, Gashev et al. 2003). This 

is probably due to higher expression level of SMB, a MHC isoform with higher ATPase 

activity, in the mesenteric vessels than in the thoracic ducts (Eddinger 1998, Babu, 

Warshaw et al. 2000).  

Although the origin of lymphatic SMCs remains unclear, the SMCs contain both 

smooth and striated muscle contractile proteins and provide pumping forces for lymph 

drainage (Muthuchamy, Gashev et al. 2003, Schulte-Merker, Sabine et al. 2011). The 

phasic contraction of SMCs is strictly regulated by oscillation of nitric oxide (NO) 

production from the endothelium and calcium ion influx into SMCs (Karaki, Ozaki et al. 

1997, Kunert, Baish et al. 2015). Opening of the valve and a previous contraction 

allows lymph flow which increases shear stress and vessel stretching that activates NO 

production. Accumulation of NO leads to relaxation of the vessel wall and increased 

vessel diameter, which leads to gradually decreased shear stress. Filling with lymph and 

local degradation of NO stretches the vessel wall, which results in opening of  voltage-, 

stretch-, ion- activated Ca2+ channels in the SMCs and the rapid Ca2+ influx leads to 

SMC contraction to mediate the lymph flow (Wang, Nepiyushchikh et al. 2009, Kunert, 

Baish et al. 2015). These physiological processes highlight the important functional role 

of SMCs in lymphatic contraction and drainage. Under inflammatory conditions, vessel 

contractility might also be affected by external factors e.g. prostanoids, histamine, and 

serotonin etc.  
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1.5 An in vivo live imaging approach to study angiogenesis 

Angiogenesis is a highly dynamic process and studies thereof therefore benefit from 

live imaging technologies. In vivo live imaging provides several challenges in addition 

to those of in vitro live imaging but also allow more relevant analysis of angiogenic 

processes, due to the preserved microenvironment, growth factors, cellular interactions 

etc. Current animal models, frequently used for the study of angiogenesis and 

lymphangiogenesis, usually require genetic modification to introduce expression of 

endogenous fluorescent reporters. Such models include zebrafish and several tissues in 

rodents, e.g. cornea, cranium, and skin (Staton, Reed et al. 2009).  

Among these imaging models, the mouse cornea has been used as a live imaging site in 

many studies of developmental biology, tumour biology and drug testing. The cornea is 

composed of several layers including the epithelium, Bowman’s layer, stroma, Dua’s 

layer, Descemet’s membrane and the endothelial layer (Navaratnam, Utheim et al. 

2015). The cornea is transparent and non-vascularized but vessels can be recruited from 

the vasculature of the limbus, via angiogenesis. This response can be triggered 

following various types of stimuli, e.g. micropellet transplantation, suture implantation, 

cornea transplantation and alkali burn (Jo, Mailhos et al. 2006, Rogers, Birsner et al. 

2007, Kilarski, Samolov et al. 2009, Staton, Reed et al. 2009, Yuen, Wu et al. 2011, 

Kang, Ecoiffier et al. 2016). Injury-induced corneal neovascularization can be 

categorized into superficial vascularization, vascular pannus, and deep stromal 

vascularization, depending on the severity and duration of the inflammation (Lee, Wang 

et al. 1998). Using the mouse cornea as a live imaging site has several obvious 

advantages. The newly formed vessels are quantifiable and easily treated with drugs. 

The method can also be applied to different transgenic mouse lines. Some of the 

methods, e.g. suture implantation, allow for the study of vessel regression, particularly 

apparent upon suture removal. The overall challenges include reaching single cell 

resolution, sufficiency and specificity of endogenous reporting constructs, surgical 

precision, and other technical difficulties to acquire high quality longitudinal images 

and overcoming breathing motions.  
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2 AIMS OF THIS THESIS 

 

Mural cell–blood endothelial cell interaction involves PDGFB/PDGFRβ signalling during 

angiogenesis. SMCs of lymphatic collecting vessels contribute to vessel function however 

to what extent their recruitment is regulated by PDGFB/PDGFRβ signalling in 

physiological and pathological conditions is not fully understood. This thesis aims to 

investigate the mechanism controlling mural cell-EC contact in the vasculature from a 

developmental as well as technical perspective. The specific aims include: 

 

1. To describe the mechanisms and functional relevance of SMC recruitment to the 

lymphatic vasculature (Paper I). 

 

2. To develop a method that allows for characterization of dynamic aspects of vascular 

morphogenesis and function in the living mouse. Utilize this method to describe 

EC/mural cell behaviour during angiogenesis and vascular remodelling in vivo 

(Paper II).  

 

3. To investigate the interaction of PDGFD and NRP1 and its role in PDGFRβ 

mediated EC-pericyte interplay (Paper III). 

 

 

 

 



18 
 

3 RESULTS AND DISCUSSION 

 

3.1 Smooth muscle cell recruitment to lymphatic vessels requires PDGFB 

and impacts vessel size but not identity (Paper I) 

3.1.1 PDGFB/PDGFRβ signalling in the lymphatic vasculature 

To characterize the expression of Pdgfb in lymphatic endothelium, we used a transgenic 

mouse line (Pdgfb-CreERT2-IRES-egfp;R26-mTmG) expressing an inducible variant of 

the Cre recombinase under the control of the Pdgfb promoter, a Pdgfb promoter driven 

GFP, and the conditional allele for inducible expression of membrane bound GFP under 

control of the R26 promoter. We showed that LECs of collecting vessels but not 

capillaries express Pdgfb as indicated by GFP expression. We also showed that 

perivascular SMCs express Pdgfrb. This was evident by the presence of GFP in 

transgenic mice carrying a Pdgfrb-GFP construct. Together, these data suggest that 

PDGFB/PDGFRβ signalling is involved in spatial recruitment of SMCs to the collecting 

lymphatic vessels. 

3.1.2 LEC specific deletion of PDGFB causes defective SMC recruitment and vessel 

dilation of the lymphatic vasculature 

To further examine the role of PDGFB in regulation of SMC recruitment to the lymphatic 

vessels, we generated the mouse line Prox1-CreERT2;Pdgfbflox/flox;R26R-eYFP (herein 

denoted PdgfbiLECKO) that allows for inducible LEC specific deletion of PDGFB in the 

lymphatic endothelium, together with YFP expression indicating Cre-mediated 

recombination. In dermal ear vasculature, we showed that LEC specific deletion of 

PDGFB (induced P4-P7, analysed at P21) causes severe reduction of collecting vessels 

covered by perivascular SMC in the PdgfbiLECKO (1.5%) versus the control (44.2%) and 

enlarged vessel diameter. Similar observation was also found in large diameter lymphatic 

vessels in the mesentery with increased vessel diameter and reduced SMC coverage when 

inducing PDGFB deletion before initial SMC recruitment. Interestingly, although deletion 

of PDGFB caused reduced SMC coverage in the hind limb, it did not affect vessel 

diameter, suggesting tissue specific regulation of collecting vessel diameter. To 

investigate whether PDGFB is required also for the maintenance of SMC coverage and if 
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SMC coverage in turn affects vessel morphology, we deleted PDGFB after initial SMCs 

had been recruited to the hind limb vessels (at P1 and P2). Also in this case SMC 

coverage of collecting vessels were reduced but without altered diameter, suggesting at 

least a partial role for PDGFB in maintenance of SMC coverage. The data in Paper I 

provide direct genetic evidence for the requirement of LEC-derived PDGFB in 

recruitment of SMCs to collecting vessels, in turn restricting their diameter. 

 3.1.3 SMCs are required for collecting vessel contraction but do not affect main 

capillary or collecting vessel identities  

To further understand the involvement of SMCs in establishment of vessel identities, we 

examined the dermal ear lymphatic endothelium in absence of SMCs in PdgfbiLECKO mice. 

We showed that deposition of BM proteins, including collagen IV and laminins, was 

unchanged comparing the PdgfbiLECKO and control. Collecting vessels of PdgfbiLECKO mice 

also displayed normal valve formation. Furthermore, the expression level of VEGFR3, 

VE-cadherin, LYVE-1, CCL21 and ECM proteins were not changed in the PdgfbiLECKO 

compared to control. However, the LECs of PdgfbiLECKO mice were larger than those of 

control. Several studies have reported a link between SMC recruitment and LYVE-1 

downregulation, however without ruling out possible systemic or secondary effects 

(Petrova, Karpanen et al. 2004, Dellinger, Hunter et al. 2008, Lutter, Xie et al. 2012, 

Meinecke, Nagy et al. 2012). In Paper I we show that SMCs are not directly involved in 

establishing collecting vessel- capillary hierarchy and that the contribution by 

perivascular SMCs to the BM is only minor. Previous studies have shown that 

perivascular SMCs assist vessel contraction in large diameter vessels such as popliteal 

and mesenteric vessels, and that this contraction promotes function. The contractility of 

dermal collecting vessels and the contribution of SMCs to their function were less 

understood. By subcutaneous injection of fluorescent tracers that perfuse the lymphatic 

vasculature, followed by live imaging, we revealed that dermal collecting vessels contract 

with variable amplitude and frequency. PdgfbiLECKO mice showed defective contraction of 

the ear skin vasculature highlighting the contribution of perivascular SMCs to lymphatic 

vessel function. 

3.1.4 LEC-specific overexpression of PDGFB is not sufficient for ectopic SMC investment 

to the capillaries 
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Aberrant SMC recruitment to the lymphatic capillaries was previously linked to 

upregulation of PDGFB and considered one of the causes of lymphedema (Petrova, 

Karpanen et al. 2004, Meinecke, Nagy et al. 2012). To examine whether PDGFB is 

sufficient to drive SMC recruitment to the lymphatic vessels, we generated the mouse line 

Prox1CreERT2;R26-hPDGFB that allows for inducible LEC specific overexpression of 

human PDGFB. Surprisingly, we found no PDGFRβ+, αSMA+ mural cells recruited to 

the capillaries besides the increased SMC coverage at collecting vessels upon Cre induced 

hPDGFB overexpression. Our observation therefore suggests that other mechanisms, in 

addition to differential regulation of PDGFB expression, are involved in mediating 

ectopic SMC recruitment to the capillaries under pathological conditions.  

3.1.5 Recruitment of SMCs to collecting vessels is promoted by binding of PDGFB to 

ECM proteins 

In blood vessels, perivascular mural cell recruitment relies on the presence of PDGFB and 

its binding to heparan sulfate chains of ECM molecules. This was demonstrated by gene 

targeting of the heparan sulfate binding motif within PDGFB in mice (denoted Pdgfb ret/ret 

mice) causing defective pericyte investment to the vasculature, increased permeability in 

the CNS, severe retinal deterioration, and proteinuria (Lindblom, Gerhardt et al. 2003, 

Armulik, Genove et al. 2010).  We therefore looked into whether correct retention of 

PDGFB to the ECM proteins was required for SMC recruitment to lymphatic vessels. 

Indeed, Pdgfb ret/ret mice at 10 weeks of age displayed decreased SMC investment to the 

collecting vessels and enlarged vessel diameter, suggesting a requirement for ECM 

retention of PDGFB for SMC recruitment to the lymphatic vasculature. Further analyses 

of ECM composition in collecting vessels and capillaries, showed a more abundant 

deposition of collagen IV, laminins, and perlecan in the endothelium of collecting vessels 

compared to capillaries. Interestingly, it has been demonstrated that domain III-2 of 

perlecan can directly bind PDGFB but not PDGFRβ in vitro. This suggests that perlecan 

may act to retain PDGFB in the ECM (Gohring, Sasaki et al. 1998). Taken together, our 

data in Paper I suggest that binding of PDGFB to ECM proteins serve to restrict SMC 

recruitment to collecting vessels and not capillaries (Figure3). 
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Figure3. An overview of PDGFB mediated EC/SMC interaction within lymphatic vessels in wild-

type and three genetic modified mouse models. 
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3.2 Characterization of multi-cellular dynamics of angiogenesis and 

vascular remodelling by intravital imaging of the wounded mouse 

cornea (Paper II) 

3.2.1 Establishment of an in vivo live imaging model to assess vascular morphogenesis. 

As the only non-vascularized tissue, the cornea provides a unique site for in vivo live 

imaging with several benefits, including high transparency and ease of access, both for 

the microscope objective and for local application of drugs. Upon surgical silk knot 

implantation, as previously described, vessels start to sprout from the limbus towards the 

suture location (Kilarski, Samolov et al. 2009, Yuen, Wu et al. 2011). We first tested the 

in vivo live imaging approach on a reporter mouse line, Cdh5(PAC)CreERT2;R26R-eYFP, 

that allows for inducible EC-specific YFP expression.  Delivery of Tamoxifen (20mg/ml) 

by gavage one week before suture implantation enables YFP expression in almost all ECs 

in the neovasculature of the cornea. This can also be achieved by direct application of 5µl 

4-hydroxytamoxifen (4-OHT) (20mg/ml) to the cornea during suture implantation, which 

provides a local Cre-driven recombination that limits systemic consequences of induced 

gene deletion. By using a 25x water immersion objective, the same vascular bed within an 

area of 0.98mm x 0.73mm could be recorded with Z stacks daily under short anaesthesia 

(1 hour) for up to 5 days. To examine rapid processes such as filopodia dynamics, mice 

were anaesthetized for up to 6 hours allowing for continuous recording of Z stacks.  

3.2.2 Analysis of EC migratory behaviour in perfused vessels at single cell resolution. 

To investigate the migratory behaviours of ECs in lumenized, blood perfused vessels, we 

used double transgenic mice (herein denoted Claudin5-GFP;Ng2DsRED) with EC-

specific expression of GFP and pericyte-specific expression of DsRED. The condensed 

GFP localization in the EC soma allows for recognition of individual ECs in the vessel 

wall of lumenized vessels. By combining epi-fluorescence and bright field imaging, EC 

migration in relation to blood flow direction could be identified and analysed. We found 

that 67.3% of ECs within lumenized vessels did not move. However although 32.7% of 

the cells did change location 13.7% demonstrated clear migration while 19.0% were 

unmeasurable due to proliferation, overlap with neighbouring cells or apoptosis. When 

analysing EC migration in relation to blood flow, 84.6% out of the migrating ECs 

migrated against flow direction compared to 15.4% ECs migrating with flow. 
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Interestingly, further characterizing the migration speed we found that out of the ECs 

migrating with the flow, they did so faster in venules than in arterioles. These 

observations suggest vessel specific EC behaviour, at least in this model of inflammation 

induced angiogenesis  

Vessel pruning is a critical step during vascular remodelling. Benefitting from the single 

cell level resolution in this model, we studied vessel pruning from day 6 to day 8 post 

suture implantation in Cdh5(PAC)-CreERT2;R26R-eYFP mice that also received a 

fluorescent tracer administered via the tail vein. The observed EC migratory behaviours at 

the pruning sites reminded of those previously described in zebra fish (Lenard, Daetwyler 

et al. 2015). Altogether, these observations in Paper II highlight the potential of this 

model to study details of vessel morphogenesis in vivo. 

3.2.3 Mural cells of sprouting vessels of the sutured mouse cornea. 

To examine the morphology of angiogenic vessels in the wounded mouse cornea, we used 

Cdh5(PAC)CreERT2;R26R-eYFP;Ng2DsRED mice to simultaneously visualize the 

endothelium and its perivascular mural cells. Similar to the NG2+ pericyte coverage 

described previously in other tissues in development (Murfee, Skalak et al. 2005, Murfee, 

Rehorn et al. 2006), we found a more abundant NG2+ pericyte recruitment to arterioles 

than to venules in the wounded mouse cornea, indicated by live imaging and 

immunofluorescence staining. We also confirmed that pericytes expressed PDGFRβ by 

utilizing Pdgfrβ-GFP mice. Furthermore, by using the Claudin5-GFP;Ng2DsRED mice, 

we recorded vascular expansion from day 6 to day 9 post suture implantation and 

revealed an intensive pericyte coverage in the established capillary network compared to 

the sprouting tips that were devoid of pericytes. Interestingly, fluorescent tracer injection 

into the tail vein indicated that sprouting vessel tips lumenize prior to pericyte coverage. 

Together, these observations expose that mural cell recruitment is relatively conserved, 

comparing inflammation-induced vessel morphogenesis and developmental vascular 

morphogenesis.  

3.2.4 Permeability of the remodelling vasculature. 

To investigate permeability of the newly formed vasculature in the wounded mouse 

cornea, we injected fluorescent tracer into the tail vein, followed by direct application of 

300ng VEGFA (100ng/µl) or PBS as control to the mouse cornea at post suture 
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implantation day 8. The vasculature was then continuously imaged with high resolution Z 

stacks every 5 minutes. Live imaging revealed tracer leakage from vessels initiating at 15 

minutes post VEGFA application with progression to severe multifocal leakage at 50 

minutes. Interestingly, measurement of intravascular tracer intensity indicated a more 

severe leakage at the venules compared to the arterioles. These data highlight a vessel 

type specific permeability of newly formed vascular beds and the potential of this method 

in providing a spatial temporal resolution of vessel permeability. 
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3.3 Neuropilin 1 binds PDGFD and may function as co-receptor in PDGFD–

PDGFRβ signaling (Paper III) 

3.3.1 Distinct binding of PDGFD to NRP1 requires its C-terminal Arg370 residue and is 

assisted by heparin. 

The interaction of NRP1 to PDGFs was previously reported however the specific binding 

site was not known (Banerjee, Sengupta et al. 2006, Ball, Bayley et al. 2010, Cao, 

Yaqoob et al. 2010). Herein by alignment the amino acid sequence, we revealed a 

common C-terminal arginine residue of PDGFD that is shared by VEGFA121, VEGFA165 

and VEGFE but not by PDGFB. This motif of VEGF isoforms was previously reported to 

be involved in binding to NRP1 (Cebe-Suarez, Grunewald et al. 2008, Delcombel, 

Janssen et al. 2013). Furthermore, we mapped the binding site of NRP1 to PDGFD at b1 

and b2 domain, and showed the dosage dependent binding of NRP1 to PDGFD, which is 

similar to the binding of NRP1 to VEGFs. On the other hand PDGFB did not bind NRP1. 

By analysis of the binding abilities of recombinant NRP1 with the supernatant from 

fibroblast cells overexpressing mutated PDGFD (lacking the C-terminal), we confirmed 

the requirement of the C-terminal residue on PDGFD in its binding to NRP1. Together, 

these results suggested a distinct role of PDGFD comparing to PDGFB in the interaction 

with NRP1, mediated by its C-terminal arginine residue. Previously heparin or HSPGs 

were reported to be involved as a co-factor for the binding of VEGFA to NRP1 (Mamluk, 

Gechtman et al. 2002). Here we show that heparin also enhances the binding of VEGF-

A165 and VEGF-A189 to NRP1 as well as the PDGFD core protein (the activated form) but 

not full length PDGFD or PDGFB, suggesting the requirement of protein cleavage to 

reveal the heparin binding site for activation of PDGFD.  

3.3.2 Co-localisation of NRP1 with PDGFRβ signalling is mediated by C-terminal Arg370 

of PDGFD. 

To investigate whether PDGFD alters in PDGFRβ downstream signalling in a different 

manner in comparison to PDGFB, we stimulate fibroblasts with PDGFB and PDGFD 

respectively. Immunofluorescence of fibroblast cells showed PDGFRβ internalization by 

both growth factors. However the co-localization of PDGFRβ with NRP1 as well as 

NRP1 internalization were only found in PDGFD but not PDGFB treated cells. We 

further confirmed the requirement of PDGFD in mediating NRP1-PDGFRβ interaction 
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via co-immunoprecipitation, although PDGFD and PDGFB showed no difference in 

PDGFRβ phosphorylation as well as downstream signalling. Together, our results suggest 

that NRP1 can be involved in PDGFD-PDGFRβ signalling.     

We then investigated whether the interaction of NRP1 with PDGFRβ requires C-terminal 

Arg370 of PDGFD by comparing the PDGFRβ-NRP1 co-clustering in fibroblast cells upon 

treatment with mutate PDGFD or wildtype PDGFD (supernatant of PDGFD 

overexpressing fibroblast cells). Our results showed the requirement of C-terminal Arg370 

of PDGFD in mediating NRP1-PDGFRβ co-localisation. However siRNA knockdown of 

either PDGFRB or NRP1 in fibroblasts suggested that although PDGFRβ is required for 

NRP1 internalisation upon interaction with PDGFD, the activation of PDGFRβ was 

independent of NRP1. 

3.3.3 PDGFD mediated NRP1 translocation modulates VEGFA-VEGFR2 signalling. 

To investigate the involvement of PDGFD mediated NRP1 activation in modulating 

VEGFR2 signalling, we stimulate human umbilical vein endothelial cells (HUVECs) with 

PDGFB or PDGFD to interfere NRP1-VEGFR2 interaction in the presence of VEGFA. 

We showed that PDGFD but not PDGFB inhibits NRP1-VEGFR2 co-clustering and 

translocate NRP1 to EC junctions, comparing to VEGFA that only mediates NRP1 

internalization. Other studies suggested the importance of the availability of NRP1 pool 

in regulation of VEGFR2 or TGF-β signalling (Koch 2012, Aspalter, Gordon et al. 2015, 

Kofler and Simons 2016). Our data in the same line suggests a direct role of PDGFD in 

modulating VEGFR2 signalling via interfering NRP1distribution. 

3.3.4 PDGFD enhances pericyte-EC interaction via assisting intercellular interaction of 

NRP1 and PDGFRβ. 

To understand the functional role of PDGFD in regulating PDGFRβ signalling, we 

performed ex vivo sprouting assay using mouse embryo explant or aortic ring cultures 

containing endogenous reporters for EC (GFP) and pericytes (DsRed) respectively. We 

found that although both PDGFB and PDGFD stimulation increased vessel sprouting 

speed as well as pericytes detachment, PDGFD retains a higher number of pericytes at the 

endothelium comparing to PDGFB. Interestingly, by measuring the migration speed of 

pericytes that retained or detached to the endothelium, we found an increased migration 

speed of pericytes when detaching from the sprouts than those retained at the sprouts 
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upon stimulation of PDGFD. However PDGFB stimulation showed similar migration 

speed of pericytes in both situations. These observations suggest a potential transcellular 

activation of PDGFRβ signalling of pericytes via NRP1 expressesd by neighbouring ECs 

in presence of PDGFD but not PDGFB.  

To further dissect the mechanisms of differential effect of pericytes-EC interaction upon 

PDGFD and PDGFB, we performed co-culture of ECs and an EC cell line (porcine aortic 

EC (PAE)) that overexpresses PDGFRβ in stimulation of PDGFB or PDGFD, followed 

by NRP1 immunoprecipitation. We showed that PDGFD but not PDGFB enables co-

immunoprecipitation of PDGFRβ with NRP1 although both growth factors activate 

PDGFRβ. Importantly this is a process that requires participation of NRP1 since the co-

immunoprecipitation of NRP1 and PDGFRβ were only observed in co-cultured PDGFRβ-

expressing cells and ECS but not in pericytes culture alone. We also showed co-

localisation of NRP1 and PDGFRβ via immunofluorescence staining in HUVEC/human 

pericytes co-culture upon PDGFD stimulation. These observations point to a different 

signal transduction of NRP1 mediated PDGFD-PDGFRβ in the context of pericyte-EC 

interaction in comparison to PDGFB-PDGFRβ signalling. 

Taken together, our study in Paper III reveals the direct binding of NRP1 to PDGFD that 

modulates the distribution and availability of NRP1 possibly in mediating other signalling 

pathways where NRP1 is involved. We also demonstrat the role of NRP1 as a co-receptor 

that mediates PDGFD-PDGFRβ signalling that is involved in intercellular communication 

between endothelial cells and pericytes. 
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4 FUTURE PERSPECTIVES 

Compromised regulation of endothelial – mural cell interaction is evident in many 

diseases. The present thesis extended the understanding of endothelial – mural cell 

interaction in the context of both blood and lymphatic vasculature, with a specific focus 

on the role of PDGF/PDGFRβ signalling. It opens up new directions and technical 

possibilities to explore the regulatory mechanisms of vascular development and function. 

The results from Paper I revealed the regulatory role of PDGFB in mediating smooth 

muscle cell recruitment to certain part of lymphatic vessels. Interestingly, we also 

observed that PDGFB-mediated smooth muscle cell recruitment was tissue type 

dependent. Considering that the perivascular muscle cells are composed of different sub 

types, it would be of great interest to investigate the heterogeneity of perivascular muscle 

cells in the lymphatic system via screening of muscle specific marker expression via 

immunofluorescence, or single cell sequencing in different tissues. This would provide 

essential contributions to understand the initiation and progression of lymphedema, 

displaying pathological thickening of lymph vessel walls, in turn potentially linked to 

altered perivascular muscle cell populations (Ogata, Fujiu et al. 2015).  

To understand the requirement of PDGFB in recruitment of SMCs to the lymphatic 

endothelium, we generated the mouse model (PdgfbiLECKO) that permits inducible LEC 

specific deletion of PDGFB. We did not observe any obvious phenotype of lymphedema 

in these mice even under severe loss of SMCs and enlarged vessel diameter. However we 

only kept the mice until one month’s age, while the development of lymphedema in 

humans may take years even after acute condition e.g. surgery or radio therapy etc. It is 

therefore of interest to stretch the endpoint of analysis to evaluate the lymphatic function 

in this model. In that case the altered morphogenesis of collecting vessels might challenge 

the plasticity of the lymphatic system. Furthermore, it would be beneficial to characterize 

the long-term impact of loss of SMCs on LEC biology since perivascular SMCs not only 

serve as motors for contraction but also provide signalling cues to the endothelium.  

Paper II of the thesis described an in vivo live imaging approach using the wounded 

mouse cornea to study vascular development and EC behaviour. The unique features of 

this method allows longitudinal documentation of vessel patterning, detailed analysis of 

EC migration, quantified at individual cell level and quantitative measurement of vessel 
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permeability at spatial temporal resolution. In our recently published study, this method 

was used to investigate directional migration of BECs lacking endoglin and revealed their 

defective directional migration against blood flow. Since we also showed the possibilities 

to induce local Cre-mediated recombination, this tool would be beneficial for studies 

using mice with conditional gene deletion, to minimize systemic effect.  

In Paper III we showed that PDGFD could mediate intercellular interaction of NRP1 and 

PDGFRβ that in turn could assist pericyte-EC communication during sprouting 

angiogenesis. Although PDGFD is not generally required for mural cell recruitment the 

degree of its pathophysiological contribution is not fully clarified. Considering the 

previously reported disorganized NG2+ pericytes in the vasculature of the developing 

heart in Pdgfd-/- mice, it will be interesting to perform similar ex vivo sprouting assays 

(Paper III, figure 6) using antibodies blocking PDGFD in mice and evaluate the impact on 

pericyte and EC communication.  

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

5 ACKNOWLEDGEMENTS 

One important pursuit of my life is to understand how things work. My doctoral 

education at Karolinska Institutet provided a great opportunity to achieve this aim 

specifically in the field of Biology. It was a journey that cannot be done without the 

leadership, inspiration and support that kindly and thoroughly provided by many people. 

I would like to express my gratefulness to my main supervisor, Lars Jakobsson. I feel 

extremely lucky to be your first Ph.D student and my four years of study has been an 

amazing journey in your group. To me, you are first of all a brilliant scientist. Your 

endless passion on scientific questions, your boundless knowledge in biology, your 

criticizing attitude towards new observations, your persistent pursuit on highest quality of 

science and your determination when facing challenges have had great influences on me. 

During these four years of scientific training, you kept creating breakthrough ideas that 

overcome the huddles and carried our projects again and again to better levels. You 

required the group as well as yourself to always do the right things, and it impresses me 

as a person with tough principles. Four years just seem not enough to learn from you. As 

a supervisor, you created opportunities for me to test ideas. You allowed me to make 

mistakes that enable me to learn from them. You also fully encouraged an all-rounded 

Ph.D. training on me: drafting every single paragraph of my manuscripts, applying for 

grants, intensive oral presentations, taking care of mouse colonies, and participation in 

seminars, retreats, international courses and conferences etc. Although some of the tasks 

started being struggling, your solid support has always been available when needed. As a 

friend, you are someone that I can talk to and get advices from. My Ph.D. education under 

your supervision becomes one luxury gift that I can probably never get anything 

comparable in the future. I am and will always be very proud for being your student.  

I would also like to express my thankfulness to my co-supervisor Ulf Eriksson. Taking 

me as your student was a rescue mission. Your trust and support lead me through the 

tough time. Besides your role as a leading scientist in the field, you as head of the 

vascular biology division have set up a standard for always being an extremely kind, 

warm-hearted, open-minded supervisor to me and the people around. Thanks for your 

encouragements and concerns during my Ph.D. The fantastic atmosphere at the division 

with all the open scientific discussions, the never-stopped sharing of ideas, the pure 



31 
 

assistance to each other in everyday work would be very different without your leadership 

and management as the backbone. I feel truly grateful and proud to have been one of your 

students.    

I want to thank my mentor Stefan Jacob for being extremely supportive during my Ph.D. 

studies. I cannot have a better mentor than you are for that strong heart, the sharp mind, 

and the delicate hands. You with your fearless personality stands as a role model and 

made a major impact on me. Also your dedication, experience and skills on imaging 

techniques, and your suggestions on my imaging experiments were highly appreciated for 

my studies.  

My projects received strong support from many collaborators, whom together brought it 

to a level that I am very proud of. I would like to thank Taija Mäkinen at Uppsala 

University for the un-replaceable input in our lymphatic project. I started to know the 

field by reading your publications and I have heard many times from Lars how good a 

scientist you are. However, I got to really feel it until we started the collaboration and I 

was fully impressed by your sharp mind at our discussions, your efficient management on 

resources, and your kindness for arranging the wonderful retreat. Importantly, our project 

will be totally different without the mouse line you created that worked like magic. I also 

want to thank Maarja Andaloussi Mäe at Uppsala University for your constant support 

from the very beginning of the project to the very end. It was a tremendous amount of 

time and work that you have devoted to this project. Thanks for those weekends traveling 

to the lab helping with the mouse injections. Thanks for kindly providing the mouse 

models as the fundamental resources for our study. Thanks to Christer Betsholtz at 

Uppsala University for providing animal resources, suggestions and comments for the 

project. Your scientific findings served as a solid background that allows our study to 

extend further on the role mural cells. Many thanks to Yang Zhang, Henrik Ortsäter, 

Bàrbara Laviña, Maria Ulvmar, Yan Zhang at Uppsala University for your solid 

experimental support, comments on the papers that published and in submission. 

Especially thank Yang, that you are so kind that I still owe you a meal. Thanks for the 

beautiful figure from you. And thanks to Henrik for your technical input at during a 

tough time of revision. Thanks for Sofie and Carina for taking care of the mice for us 

that allows for high quality research. 



32 
 

As the only Ph.D. student at the lab, I have been the princess for four years, taking cared 

by our group members. Our postdoc Yi Jin has been guided me from all perspectives 

during my Ph.D study. Sometimes lab work could have gone wrong but ended up being 

correct because of your input, assistance and surveillance. Your direct support has made 

my projects and my daily work much easier. I am very jealous of your beautiful scientific 

thinking, solid knowledge in biology, critical attitude on results and conclusions. I truly 

thank you for all the super helpful comments on results and ideas. Besides lab works, you 

and Yan Xiong are my family in Stockholm. You two fed me wonderful food, offered me 

bed when I was stupid enough to leave my keys in China, and talked to me when I was 

not in a good shape. Thanks to you two for always being honest and supportive and for 

accepting all sides of me. Thanks for being truly wonderful friends and as I always said to 

Yan: Yi you are steady like the mountain. The life in Stockholm will be completely 

different without you. I would also like to express my “anger” to our lab manager 

Mikhail Burmakin. You are a difficult one, who stops me being the princess of the 

group! Our office is always too warm for you and the oxygen is always too few for you 

and my project is too un-interesting to you…I am the one whom you can test all your 

pranking and mocking skills on. However in the end, you still can manage to be a close 

friend at work! Until you handed in the mouse list and genotyping responsibilities to me 

that I realized how much work and effort you have input into this for me and the group to 

get things moving smoothly. Until I opened up and talked to you that I realized you are a 

person that listens and understands. Until I met troubles that I realized your tricks work 

and your help is there whenever I need it. With you in the lab, it’s annoying but fun. I 

guess I can live with the annoying parts of you just for the fun. Big thanks to you for 

being you, which I will miss a lot in the future when you are in Uppsala. I would also like 

to thank David Kaluza for the fun, the discussions, the knowledge and experiences I 

learned from you during you time in the lab. Your iconic sense of humor blows my mind 

and your personality of being straight forward, honest, but also understanding and 

reasonable makes you a wonderful person that I feel fortunate to know. I am sure you are 

having a great family time now and I wish you and your family all well. Thanks to our 

previous lab members Leonie for being a great student and a wonderful friend. Thanks to 

Ann-claire, Zacharias, Oguzhan and Yan for the great time and work we had. Big 

thanks to Hong Li for your solid advices and help, without which I might not end up 

having my Ph.D. here. Your kindness, trust and understanding mean a lot to me! Thanks 

to Mirela and Joanna as the part of the united live imaging team. Not many others 



33 
 

understand how we walked through the new microscope systems and got them working, 

especially thanks to Mirela for your solid skills and fully dedicated attitude towards 

challenges of this system that carried it through all the problems. Thanks to Rik for your 

strong support and advices when I need them the most! Many thanks to Lars Muhl for 

great discussions and work together on the PDGFD story and your solid comments on my 

thesis. Thanks to Linda Fredriksson and Daniel Nyqvist for the inspiring discussions 

and constructive comments on my projects. Big thanks to Gizella for being extremely 

helpful and supportive and creating a home-like atmosphere in the corridor. Many thanks 

to Alessandra and Ann-Britt for helping me a lot with the paper works, guidance and 

registrations. Many thanks to the wonderful community created by brilliant members of 

the division of vascular biology whom I really appreciated to have shared the 

unforgettable time with: Hanna, Isolde, Karin, Sofia, Manuel, Sebastian, Aranzazu, 

Annika, Annelie, Ingrid, Erika, Jongwook, Christine, Maryam, Marta, Christina, 

Natalie, Nina, Hannes, Jiarui, Benjamin. Thank you for all the division meetings we 

had with fantastic science and breakfast, and the happy time at the vascular biology 

division! 

Being a Ph.D student at KI gets me knowing many brilliant people that we also become 

good friends and companies after work. Big thanks to Frank Chenfei Ning for being a 

solid company with your brilliant mind! Your attitude, passion and knowledge in 

medicine is simply impressive. And your style of life is something I personally admire. 

Big thanks to Xiao Tang for being a persistent, reliable friend and colleague! Your highly 

responsible personality for taking care of people around and your sense of humor makes 

me feel fortunate and proud to have shared with you the same university in China, and the 

same institute for our PhD in Sweden.  I wish you and Chang Liu to live a happy life 

forever just like you are now. Big thanks to Huan Song, Jianwei Zhu, Dong Yang, Kai 

Du, Qin Xiao, Jianren Song, Na Guan, Tianwei Gu, Chao Sun for our unforgettable 

friendship. Your guidance, kindness, passion, understanding and being constant 

supportive carried me through difficulties and make me feel the grateful and comfortable 

life in Sweden. Thanks to Eva for being very kind and understanding to me. Things are so 

taken cared when you are around! Thanks to Robin, Ana, Mihaela for being very good 

companies at the course in Canada and afterwards in Stockholm. Thanks to Yuan Xu for 

lots of consulting about Stockholm. Thanks to Tian Li for sharing your experience and 

being a good friend around. Wish you and John a happy life in Stockholm. Big thanks to 



34 
 

Min Wan, Changrong Ge, Qing Cheng, Yang Xuan, Ying Qu, Meiqiongzi Zhang, 

Zheng Chang, Ci Song, Xinming Wang, Yang Xu, Qiang Zhang, Yuning Zhang, 

Menghan Gao, Jiaqi Huang, Xun Wang, Ran Ma, Xinsong Chen, Yiqiao Wang, 

Xiaofei Li, Xiaoyuan Ren, Jiangrong Wang, Jing Guo, Ying Lei, Chen Suo for all the 

wonderful weekends, dinners, happy times we shared together. It was real pleasure to 

know you all. 

And to Danyang, that part of my heart belongs to you. I am extremely happy and proud 

of what you have achieved now and hope you are proud of mine too. We have been 

growing together and it has been a time that I will never forget. Having you as part of this 

life feels worth it! My wishes are and will always be with you. 

To my dearest families: 谢谢我的家人对我一如既往的支持。不管遇到什么困难，你们的

存在和鼓励给了我巨大的力量。 谢谢妈妈对我的培养和严格要求，这也许是我学业得以

完成的根本保证。谢谢爷爷对我的培养与教导，我会永远记得您说的“人这一辈子就是要

和懒惰作斗争”。谢谢我的爸爸对我的坚定支持和鼓励，谢谢你做我的朋友并以我为傲。

谢谢我的两个奶奶对我的无限宠爱，已经把我惯坏了。 谢谢我在西安，南宁，青岛，浙

江的家人们对我的关心和支持，我的博士学业同样离不开你们的牵挂与鼓励。谢谢我的妹

妹赫婧婷一直以来都为我骄傲。我会永远记得我小时候挨揍时你为我掉的眼泪。看着你长

大并取得今天的成绩，我很为你骄傲！ 

 



35 
 

6 REFERENCES 

Abboud, S. L. (1995). "Regulation of platelet-derived growth factor A and B chain gene 
expression in bone marrow stromal cells." J Cell Physiol 164(2): 434-440. 

Adams, R. H. and K. Alitalo (2007). "Molecular regulation of angiogenesis and 
lymphangiogenesis." Nat Rev Mol Cell Biol 8(6): 464-478. 

Alitalo, K., T. Tammela and T. V. Petrova (2005). "Lymphangiogenesis in development 
and human disease." Nature 438(7070): 946-953. 

Andrae, J., R. Gallini and C. Betsholtz (2008). "Role of platelet-derived growth factors in 
physiology and medicine." Genes Dev 22(10): 1276-1312. 

Armulik, A., A. Abramsson and C. Betsholtz (2005). "Endothelial/pericyte interactions." 
Circ Res 97(6): 512-523. 

Armulik, A., G. Genove and C. Betsholtz (2011). "Pericytes: developmental, physiological, 
and pathological perspectives, problems, and promises." Dev Cell 21(2): 193-215. 

Armulik, A., G. Genove, M. Mae, M. H. Nisancioglu, E. Wallgard, C. Niaudet, L. He, J. 
Norlin, P. Lindblom, K. Strittmatter, B. R. Johansson and C. Betsholtz (2010). "Pericytes 
regulate the blood-brain barrier." Nature 468(7323): 557-561. 

Aspalter, I. M., E. Gordon, A. Dubrac, A. Ragab, J. Narloch, P. Vizan, I. Geudens, R. T. 
Collins, C. A. Franco, C. L. Abrahams, G. Thurston, M. Fruttiger, I. Rosewell, A. 
Eichmann and H. Gerhardt (2015). "Alk1 and Alk5 inhibition by Nrp1 controls vascular 
sprouting downstream of Notch." Nat Commun 6: 7264. 

Astin, J. W., M. J. Haggerty, K. S. Okuda, L. Le Guen, J. P. Misa, A. Tromp, B. M. Hogan, 
K. E. Crosier and P. S. Crosier (2014). "Vegfd can compensate for loss of Vegfc in 
zebrafish facial lymphatic sprouting." Development 141(13): 2680-2690. 

Avraham, T., S. Daluvoy, J. Zampell, A. Yan, Y. S. Haviv, S. G. Rockson and B. J. 
Mehrara (2010). "Blockade of transforming growth factor-beta1 accelerates lymphatic 
regeneration during wound repair." Am J Pathol 177(6): 3202-3214. 

Babu, G. J., D. M. Warshaw and M. Periasamy (2000). "Smooth muscle myosin heavy 
chain isoforms and their role in muscle physiology." Microsc Res Tech 50(6): 532-540. 

Ball, S. G., C. Bayley, C. A. Shuttleworth and C. M. Kielty (2010). "Neuropilin-1 regulates 
platelet-derived growth factor receptor signalling in mesenchymal stem cells." Biochem J 
427(1): 29-40. 

Baluk, P., J. Fuxe, H. Hashizume, T. Romano, E. Lashnits, S. Butz, D. Vestweber, M. 
Corada, C. Molendini, E. Dejana and D. M. McDonald (2007). "Functionally specialized 
junctions between endothelial cells of lymphatic vessels." J Exp Med 204(10): 2349-2362. 

Banerjee, S., K. Sengupta, K. Dhar, S. Mehta, P. A. D'Amore, G. Dhar and S. K. Banerjee 
(2006). "Breast cancer cells secreted platelet-derived growth factor-induced motility of 
vascular smooth muscle cells is mediated through neuropilin-1." Mol Carcinog 45(11): 871-
880. 



 
 

36 
 

Bazigou, E., S. Xie, C. Chen, A. Weston, N. Miura, L. Sorokin, R. Adams, A. F. Muro, D. 
Sheppard and T. Makinen (2009). "Integrin-alpha9 is required for fibronectin matrix 
assembly during lymphatic valve morphogenesis." Dev Cell 17(2): 175-186. 

Boor, P., T. Ostendorf and J. Floege (2010). "Renal fibrosis: novel insights into 
mechanisms and therapeutic targets." Nat Rev Nephrol 6(11): 643-656. 

Boucher, J. M., R. P. Clark, D. C. Chong, K. M. Citrin, L. A. Wylie and V. L. Bautch 
(2017). "Dynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesis." 
Nat Commun 8: 15699. 

Bouvree, K., I. Brunet, R. Del Toro, E. Gordon, C. Prahst, B. Cristofaro, T. Mathivet, Y. 
Xu, J. Soueid, V. Fortuna, N. Miura, M. S. Aigrot, C. H. Maden, C. Ruhrberg, J. L. Thomas 
and A. Eichmann (2012). "Semaphorin3A, Neuropilin-1, and PlexinA1 are required for 
lymphatic valve formation." Circ Res 111(4): 437-445. 

Breiteneder-Geleff, S., A. Soleiman, H. Kowalski, R. Horvat, G. Amann, E. Kriehuber, K. 
Diem, W. Weninger, E. Tschachler, K. Alitalo and D. Kerjaschki (1999). "Angiosarcomas 
express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a 
specific marker for lymphatic endothelium." Am J Pathol 154(2): 385-394. 

Brice, G., S. Mansour, R. Bell, J. R. Collin, A. H. Child, A. F. Brady, M. Sarfarazi, K. G. 
Burnand, S. Jeffery, P. Mortimer and V. A. Murday (2002). "Analysis of the phenotypic 
abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations 
or linkage to 16q24." J Med Genet 39(7): 478-483. 

Cao, S., U. Yaqoob, A. Das, U. Shergill, K. Jagavelu, R. C. Huebert, C. Routray, S. 
Abdelmoneim, M. Vasdev, E. Leof, M. Charlton, R. J. Watts, D. Mukhopadhyay and V. H. 
Shah (2010). "Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing 
PDGF/TGF-beta signaling in hepatic stellate cells." J Clin Invest 120(7): 2379-2394. 

Carmeliet, P. (2005). "Angiogenesis in life, disease and medicine." Nature 438(7070): 932-
936. 

Cebe-Suarez, S., F. S. Grunewald, R. Jaussi, X. Li, L. Claesson-Welsh, D. Spillmann, A. A. 
Mercer, A. E. Prota and K. Ballmer-Hofer (2008). "Orf virus VEGF-E NZ2 promotes 
paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR." FASEB J 22(8): 
3078-3086. 

Chen, S., M. Kulik and R. J. Lechleider (2003). "Smad proteins regulate transcriptional 
induction of the SM22alpha gene by TGF-beta." Nucleic Acids Res 31(4): 1302-1310. 

Cleaver, O. and D. A. Melton (2003). "Endothelial signaling during development." Nat 
Med 9(6): 661-668. 

Coso, S., E. Bovay and T. V. Petrova (2014). "Pressing the right buttons: signaling in 
lymphangiogenesis." Blood 123(17): 2614-2624. 

Daneman, R., L. Zhou, A. A. Kebede and B. A. Barres (2010). "Pericytes are required for 
blood-brain barrier integrity during embryogenesis." Nature 468(7323): 562-566. 

Danussi, C., L. Del Bel Belluz, E. Pivetta, T. M. Modica, A. Muro, B. Wassermann, R. 
Doliana, P. Sabatelli, A. Colombatti and P. Spessotto (2013). "EMILIN1/alpha9beta1 
integrin interaction is crucial in lymphatic valve formation and maintenance." Mol Cell Biol 
33(22): 4381-4394. 



37 
 

Delcombel, R., L. Janssen, R. Vassy, M. Gammons, O. Haddad, B. Richard, D. Letourneur, 
D. Bates, C. Hendricks, J. Waltenberger, A. Starzec, N. E. Sounni, A. Noel, C. Deroanne, 
C. Lambert and A. Colige (2013). "New prospects in the roles of the C-terminal domains of 
VEGF-A and their cooperation for ligand binding, cellular signaling and vessels 
formation." Angiogenesis 16(2): 353-371. 

Dellinger, M., R. Hunter, M. Bernas, N. Gale, G. Yancopoulos, R. Erickson and M. Witte 
(2008). "Defective remodeling and maturation of the lymphatic vasculature in 
Angiopoietin-2 deficient mice." Dev Biol 319(2): 309-320. 

Dixelius, J., T. Makinen, M. Wirzenius, M. J. Karkkainen, C. Wernstedt, K. Alitalo and L. 
Claesson-Welsh (2003). "Ligand-induced vascular endothelial growth factor receptor-3 
(VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells 
regulates tyrosine phosphorylation sites." J Biol Chem 278(42): 40973-40979. 

Dumont, D. J., G. Gradwohl, G. H. Fong, M. C. Puri, M. Gertsenstein, A. Auerbach and M. 
L. Breitman (1994). "Dominant-negative and targeted null mutations in the endothelial 
receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo." Genes 
Dev 8(16): 1897-1909. 

Dumont, D. J., L. Jussila, J. Taipale, A. Lymboussaki, T. Mustonen, K. Pajusola, M. 
Breitman and K. Alitalo (1998). "Cardiovascular failure in mouse embryos deficient in 
VEGF receptor-3." Science 282(5390): 946-949. 

Eddinger, T. J. (1998). "Myosin heavy chain isoforms and dynamic contractile properties: 
skeletal versus smooth muscle." Comp Biochem Physiol B Biochem Mol Biol 119(3): 425-
434. 

Eilken, H. M., R. Dieguez-Hurtado, I. Schmidt, M. Nakayama, H. W. Jeong, H. Arf, S. 
Adams, N. Ferrara and R. H. Adams (2017). "Pericytes regulate VEGF-induced endothelial 
sprouting through VEGFR1." Nat Commun 8(1): 1574. 

Fantin, A., B. Herzog, M. Mahmoud, M. Yamaji, A. Plein, L. Denti, C. Ruhrberg and I. 
Zachary (2014). "Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A 
binding reveals novel roles for NRP1 in developmental and pathological angiogenesis." 
Development 141(3): 556-562. 

Fantin, A., A. Lampropoulou, G. Gestri, C. Raimondi, V. Senatore, I. Zachary and C. 
Ruhrberg (2015). "NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in 
Endothelial Tip Cells." Cell Rep 11(10): 1577-1590. 

Francois, M., A. Caprini, B. Hosking, F. Orsenigo, D. Wilhelm, C. Browne, K. Paavonen, 
T. Karnezis, R. Shayan, M. Downes, T. Davidson, D. Tutt, K. S. Cheah, S. A. Stacker, G. 
E. Muscat, M. G. Achen, E. Dejana and P. Koopman (2008). "Sox18 induces development 
of the lymphatic vasculature in mice." Nature 456(7222): 643-647. 

Fredriksson, L., H. Li and U. Eriksson (2004). "The PDGF family: four gene products form 
five dimeric isoforms." Cytokine Growth Factor Rev 15(4): 197-204. 

Fruttiger, M., A. R. Calver and W. D. Richardson (2000). "Platelet-derived growth factor is 
constitutively secreted from neuronal cell bodies but not from axons." Curr Biol 10(20): 
1283-1286. 

Gale, N. W., R. Prevo, J. Espinosa, D. J. Ferguson, M. G. Dominguez, G. D. Yancopoulos, 
G. Thurston and D. G. Jackson (2007). "Normal lymphatic development and function in 



 
 

38 
 

mice deficient for the lymphatic hyaluronan receptor LYVE-1." Mol Cell Biol 27(2): 595-
604. 

Gale, N. W., G. Thurston, S. F. Hackett, R. Renard, Q. Wang, J. McClain, C. Martin, C. 
Witte, M. H. Witte, D. Jackson, C. Suri, P. A. Campochiaro, S. J. Wiegand and G. D. 
Yancopoulos (2002). "Angiopoietin-2 is required for postnatal angiogenesis and lymphatic 
patterning, and only the latter role is rescued by Angiopoietin-1." Dev Cell 3(3): 411-423. 

Gerhardt, H., M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. 
Jeltsch, C. Mitchell, K. Alitalo, D. Shima and C. Betsholtz (2003). "VEGF guides 
angiogenic sprouting utilizing endothelial tip cell filopodia." J Cell Biol 161(6): 1163-1177. 

Gohring, W., T. Sasaki, C. H. Heldin and R. Timpl (1998). "Mapping of the binding of 
platelet-derived growth factor to distinct domains of the basement membrane proteins BM-
40 and perlecan and distinction from the BM-40 collagen-binding epitope." Eur J Biochem 
255(1): 60-66. 

Gordon, K., D. Schulte, G. Brice, M. A. Simpson, M. G. Roukens, A. van Impel, F. 
Connell, K. Kalidas, S. Jeffery, P. S. Mortimer, S. Mansour, S. Schulte-Merker and P. 
Ostergaard (2013). "Mutation in vascular endothelial growth factor-C, a ligand for vascular 
endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like 
primary lymphedema." Circ Res 112(6): 956-960. 

Grunewald, M., I. Avraham, Y. Dor, E. Bachar-Lustig, A. Itin, S. Jung, S. Chimenti, L. 
Landsman, R. Abramovitch and E. Keshet (2006). "VEGF-induced adult 
neovascularization: recruitment, retention, and role of accessory cells." Cell 124(1): 175-
189. 

Gu, C., E. R. Rodriguez, D. V. Reimert, T. Shu, B. Fritzsch, L. J. Richards, A. L. Kolodkin 
and D. D. Ginty (2003). "Neuropilin-1 conveys semaphorin and VEGF signaling during 
neural and cardiovascular development." Dev Cell 5(1): 45-57. 

Hasan, S. S., R. Tsaryk, M. Lange, L. Wisniewski, J. C. Moore, N. D. Lawson, K. 
Wojciechowska, H. Schnittler and A. F. Siekmann (2017). "Endothelial Notch signalling 
limits angiogenesis via control of artery formation." Nat Cell Biol 19(8): 928-940. 

Heldin, C. H. and B. Westermark (1999). "Mechanism of action and in vivo role of platelet-
derived growth factor." Physiol Rev 79(4): 1283-1316. 

Hellstrom, M., M. Kalen, P. Lindahl, A. Abramsson and C. Betsholtz (1999). "Role of 
PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes 
during embryonic blood vessel formation in the mouse." Development 126(14): 3047-3055. 

Hellstrom, M., L. K. Phng, J. J. Hofmann, E. Wallgard, L. Coultas, P. Lindblom, J. Alva, 
A. K. Nilsson, L. Karlsson, N. Gaiano, K. Yoon, J. Rossant, M. L. Iruela-Arispe, M. Kalen, 
H. Gerhardt and C. Betsholtz (2007). "Dll4 signalling through Notch1 regulates formation 
of tip cells during angiogenesis." Nature 445(7129): 776-780. 

Huang, H., A. Bhat, G. Woodnutt and R. Lappe (2010). "Targeting the ANGPT-TIE2 
pathway in malignancy." Nat Rev Cancer 10(8): 575-585. 

Jakobsson, L., C. A. Franco, K. Bentley, R. T. Collins, B. Ponsioen, I. M. Aspalter, I. 
Rosewell, M. Busse, G. Thurston, A. Medvinsky, S. Schulte-Merker and H. Gerhardt 
(2010). "Endothelial cells dynamically compete for the tip cell position during angiogenic 
sprouting." Nat Cell Biol 12(10): 943-953. 



39 
 

James, J. M., A. Nalbandian and Y. S. Mukouyama (2013). "TGFbeta signaling is required 
for sprouting lymphangiogenesis during lymphatic network development in the skin." 
Development 140(18): 3903-3914. 

Jeansson, M., A. Gawlik, G. Anderson, C. Li, D. Kerjaschki, M. Henkelman and S. E. 
Quaggin (2011). "Angiopoietin-1 is essential in mouse vasculature during development and 
in response to injury." J Clin Invest 121(6): 2278-2289. 

Jin, Y., L. Muhl, M. Burmakin, Y. Wang, A. C. Duchez, C. Betsholtz, H. M. Arthur and L. 
Jakobsson (2017). "Endoglin prevents vascular malformation by regulating flow-induced 
cell migration and specification through VEGFR2 signalling." Nat Cell Biol 19(6): 639-
652. 

Jo, N., C. Mailhos, M. Ju, E. Cheung, J. Bradley, K. Nishijima, G. S. Robinson, A. P. 
Adamis and D. T. Shima (2006). "Inhibition of platelet-derived growth factor B signaling 
enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models 
of ocular neovascularization." Am J Pathol 168(6): 2036-2053. 

Jones, E. A. (2011). "The initiation of blood flow and flow induced events in early vascular 
development." Semin Cell Dev Biol 22(9): 1028-1035. 

Joukov, V., T. Sorsa, V. Kumar, M. Jeltsch, L. Claesson-Welsh, Y. Cao, O. Saksela, N. 
Kalkkinen and K. Alitalo (1997). "Proteolytic processing regulates receptor specificity and 
activity of VEGF-C." EMBO J 16(13): 3898-3911. 

Jurisic, G., H. Maby-El Hajjami, S. Karaman, A. M. Ochsenbein, A. Alitalo, S. S. Siddiqui, 
C. Ochoa Pereira, T. V. Petrova and M. Detmar (2012). "An unexpected role of 
semaphorin3a-neuropilin-1 signaling in lymphatic vessel maturation and valve formation." 
Circ Res 111(4): 426-436. 

Kang, G. J., T. Ecoiffier, T. Truong, D. Yuen, G. Li, N. Lee, L. Zhang and L. Chen (2016). 
"Intravital Imaging Reveals Dynamics of Lymphangiogenesis and Valvulogenesis." Sci 
Rep 6: 19459. 

Karaki, H., H. Ozaki, M. Hori, M. Mitsui-Saito, K. Amano, K. Harada, S. Miyamoto, H. 
Nakazawa, K. J. Won and K. Sato (1997). "Calcium movements, distribution, and functions 
in smooth muscle." Pharmacol Rev 49(2): 157-230. 

Karkkainen, M. J., P. Haiko, K. Sainio, J. Partanen, J. Taipale, T. V. Petrova, M. Jeltsch, D. 
G. Jackson, M. Talikka, H. Rauvala, C. Betsholtz and K. Alitalo (2004). "Vascular 
endothelial growth factor C is required for sprouting of the first lymphatic vessels from 
embryonic veins." Nat Immunol 5(1): 74-80. 

Kawasaki, T., T. Kitsukawa, Y. Bekku, Y. Matsuda, M. Sanbo, T. Yagi and H. Fujisawa 
(1999). "A requirement for neuropilin-1 in embryonic vessel formation." Development 
126(21): 4895-4902. 

Kilarski, W. W., B. Samolov, L. Petersson, A. Kvanta and P. Gerwins (2009). 
"Biomechanical regulation of blood vessel growth during tissue vascularization." Nat Med 
15(6): 657-664. 

Kitsukawa, T., M. Shimizu, M. Sanbo, T. Hirata, M. Taniguchi, Y. Bekku, T. Yagi and H. 
Fujisawa (1997). "Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a 
crucial role in peripheral nerve projection in mice." Neuron 19(5): 995-1005. 



 
 

40 
 

Klagsbrun, M., S. Takashima and R. Mamluk (2002). "The role of neuropilin in vascular 
and tumor biology." Adv Exp Med Biol 515: 33-48. 

Koch, S. (2012). "Neuropilin signalling in angiogenesis." Biochem Soc Trans 40(1): 20-25. 

Kofler, N. and M. Simons (2016). "The expanding role of neuropilin: regulation of 
transforming growth factor-beta and platelet-derived growth factor signaling in the 
vasculature." Curr Opin Hematol 23(3): 260-267. 

Krueger, J., D. Liu, K. Scholz, A. Zimmer, Y. Shi, C. Klein, A. Siekmann, S. Schulte-
Merker, M. Cudmore, A. Ahmed and F. le Noble (2011). "Flt1 acts as a negative regulator 
of tip cell formation and branching morphogenesis in the zebrafish embryo." Development 
138(10): 2111-2120. 

Kunert, C., J. W. Baish, S. Liao, T. P. Padera and L. L. Munn (2015). "Mechanobiological 
oscillators control lymph flow." Proc Natl Acad Sci U S A 112(35): 10938-10943. 

Laurent, T. C. and J. R. Fraser (1992). "Hyaluronan." FASEB J 6(7): 2397-2404. 

Leak, L. V. and J. F. Burke (1968). "Ultrastructural studies on the lymphatic anchoring 
filaments." J Cell Biol 36(1): 129-149. 

Lee, P., C. C. Wang and A. P. Adamis (1998). "Ocular neovascularization: an 
epidemiologic review." Surv Ophthalmol 43(3): 245-269. 

Lenard, A., S. Daetwyler, C. Betz, E. Ellertsdottir, H. G. Belting, J. Huisken and M. 
Affolter (2015). "Endothelial cell self-fusion during vascular pruning." PLoS Biol 13(4): 
e1002126. 

Leveen, P., M. Pekny, S. Gebre-Medhin, B. Swolin, E. Larsson and C. Betsholtz (1994). 
"Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities." 
Genes Dev 8(16): 1875-1887. 

Li, L., T. Asteriou, B. Bernert, C. H. Heldin and P. Heldin (2007). "Growth factor 
regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: 
importance of hyaluronan for the mitogenic response of PDGF-BB." Biochem J 404(2): 
327-336. 

Lindblom, P., H. Gerhardt, S. Liebner, A. Abramsson, M. Enge, M. Hellstrom, G. 
Backstrom, S. Fredriksson, U. Landegren, H. C. Nystrom, G. Bergstrom, E. Dejana, A. 
Ostman, P. Lindahl and C. Betsholtz (2003). "Endothelial PDGF-B retention is required for 
proper investment of pericytes in the microvessel wall." Genes Dev 17(15): 1835-1840. 

Lutter, S., S. Xie, F. Tatin and T. Makinen (2012). "Smooth muscle-endothelial cell 
communication activates Reelin signaling and regulates lymphatic vessel formation." J Cell 
Biol 197(6): 837-849. 

Maisonpierre, P. C., C. Suri, P. F. Jones, S. Bartunkova, S. J. Wiegand, C. Radziejewski, D. 
Compton, J. McClain, T. H. Aldrich, N. Papadopoulos, T. J. Daly, S. Davis, T. N. Sato and 
G. D. Yancopoulos (1997). "Angiopoietin-2, a natural antagonist for Tie2 that disrupts in 
vivo angiogenesis." Science 277(5322): 55-60. 

Makela, T. P., R. Alitalo, Y. Paulsson, B. Westermark, C. H. Heldin and K. Alitalo (1987). 
"Regulation of platelet-derived growth factor gene expression by transforming growth 
factor beta and phorbol ester in human leukemia cell lines." Mol Cell Biol 7(10): 3656-
3662. 



41 
 

Makinen, T., L. Jussila, T. Veikkola, T. Karpanen, M. I. Kettunen, K. J. Pulkkanen, R. 
Kauppinen, D. G. Jackson, H. Kubo, S. Nishikawa, S. Yla-Herttuala and K. Alitalo (2001). 
"Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing 
soluble VEGF receptor-3." Nat Med 7(2): 199-205. 

Mamluk, R., Z. Gechtman, M. E. Kutcher, N. Gasiunas, J. Gallagher and M. Klagsbrun 
(2002). "Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-
2, and heparin via its b1b2 domain." J Biol Chem 277(27): 24818-24825. 

Martinez-Corral, I., M. H. Ulvmar, L. Stanczuk, F. Tatin, K. Kizhatil, S. W. John, K. 
Alitalo, S. Ortega and T. Makinen (2015). "Nonvenous origin of dermal lymphatic 
vasculature." Circ Res 116(10): 1649-1654. 

Meinecke, A. K., N. Nagy, G. D. Lago, S. Kirmse, R. Klose, K. Schrodter, A. 
Zimmermann, I. Helfrich, H. Rundqvist, D. Theegarten, O. Anhenn, V. Orian-Rousseau, R. 
S. Johnson, K. Alitalo, J. W. Fischer, J. Fandrey and C. Stockmann (2012). "Aberrant mural 
cell recruitment to lymphatic vessels and impaired lymphatic drainage in a murine model of 
pulmonary fibrosis." Blood 119(24): 5931-5942. 

Mellor, R. H., G. Brice, A. W. Stanton, J. French, A. Smith, S. Jeffery, J. R. Levick, K. G. 
Burnand, P. S. Mortimer and C. Lymphoedema Research (2007). "Mutations in FOXC2 are 
strongly associated with primary valve failure in veins of the lower limb." Circulation 
115(14): 1912-1920. 

Mitsumata, M., R. S. Fishel, R. M. Nerem, R. W. Alexander and B. C. Berk (1993). "Fluid 
shear stress stimulates platelet-derived growth factor expression in endothelial cells." Am J 
Physiol 265(1 Pt 2): H3-8. 

Murfee, W. L., M. R. Rehorn, S. M. Peirce and T. C. Skalak (2006). "Perivascular cells 
along venules upregulate NG2 expression during microvascular remodeling." 
Microcirculation 13(3): 261-273. 

Murfee, W. L., T. C. Skalak and S. M. Peirce (2005). "Differential arterial/venous 
expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a 
venule-specific phenotype." Microcirculation 12(2): 151-160. 

Muthuchamy, M., A. Gashev, N. Boswell, N. Dawson and D. Zawieja (2003). "Molecular 
and functional analyses of the contractile apparatus in lymphatic muscle." FASEB J 17(8): 
920-922. 

Nakayama, M., A. Nakayama, M. van Lessen, H. Yamamoto, S. Hoffmann, H. C. Drexler, 
N. Itoh, T. Hirose, G. Breier, D. Vestweber, J. A. Cooper, S. Ohno, K. Kaibuchi and R. H. 
Adams (2013). "Spatial regulation of VEGF receptor endocytosis in angiogenesis." Nat 
Cell Biol 15(3): 249-260. 

Navaratnam, J., T. P. Utheim, V. K. Rajasekhar and A. Shahdadfar (2015). "Substrates for 
Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal 
Endothelium." J Funct Biomater 6(3): 917-945. 

Nishishita, T. and P. C. Lin (2004). "Angiopoietin 1, PDGF-B, and TGF-beta gene 
regulation in endothelial cell and smooth muscle cell interaction." J Cell Biochem 91(3): 
584-593. 

Norrmen, C., K. I. Ivanov, J. Cheng, N. Zangger, M. Delorenzi, M. Jaquet, N. Miura, P. 
Puolakkainen, V. Horsley, J. Hu, H. G. Augustin, S. Yla-Herttuala, K. Alitalo and T. V. 



 
 

42 
 

Petrova (2009). "FOXC2 controls formation and maturation of lymphatic collecting vessels 
through cooperation with NFATc1." J Cell Biol 185(3): 439-457. 

Ogata, F., K. Fujiu, I. Koshima, R. Nagai and I. Manabe (2015). "Phenotypic modulation of 
smooth muscle cells in lymphoedema." Br J Dermatol 172(5): 1286-1293. 

Oka, M., C. Iwata, H. I. Suzuki, K. Kiyono, Y. Morishita, T. Watabe, A. Komuro, M. R. 
Kano and K. Miyazono (2008). "Inhibition of endogenous TGF-beta signaling enhances 
lymphangiogenesis." Blood 111(9): 4571-4579. 

Oliver, G. (2004). "Lymphatic vasculature development." Nat Rev Immunol 4(1): 35-45. 

Ota, T., M. Fujii, T. Sugizaki, M. Ishii, K. Miyazawa, H. Aburatani and K. Miyazono 
(2002). "Targets of transcriptional regulation by two distinct type I receptors for 
transforming growth factor-beta in human umbilical vein endothelial cells." J Cell Physiol 
193(3): 299-318. 

Owens, G. K., M. S. Kumar and B. R. Wamhoff (2004). "Molecular regulation of vascular 
smooth muscle cell differentiation in development and disease." Physiol Rev 84(3): 767-
801. 

Pellet-Many, C., P. Frankel, I. M. Evans, B. Herzog, M. Junemann-Ramirez and I. C. 
Zachary (2011). "Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell 
migration and signalling via p130Cas." Biochem J 435(3): 609-618. 

Pellet-Many, C., P. Frankel, H. Jia and I. Zachary (2008). "Neuropilins: structure, function 
and role in disease." Biochem J 411(2): 211-226. 

Petrova, T. V., T. Karpanen, C. Norrmen, R. Mellor, T. Tamakoshi, D. Finegold, R. Ferrell, 
D. Kerjaschki, P. Mortimer, S. Yla-Herttuala, N. Miura and K. Alitalo (2004). "Defective 
valves and abnormal mural cell recruitment underlie lymphatic vascular failure in 
lymphedema distichiasis." Nat Med 10(9): 974-981. 

Pitulescu, M. E., I. Schmidt, B. D. Giaimo, T. Antoine, F. Berkenfeld, F. Ferrante, H. Park, 
M. Ehling, D. Biljes, S. F. Rocha, U. H. Langen, M. Stehling, T. Nagasawa, N. Ferrara, T. 
Borggrefe and R. H. Adams (2017). "Dll4 and Notch signalling couples sprouting 
angiogenesis and artery formation." Nat Cell Biol 19(8): 915-927. 

Rafii, S., D. Lyden, R. Benezra, K. Hattori and B. Heissig (2002). "Vascular and 
haematopoietic stem cells: novel targets for anti-angiogenesis therapy?" Nat Rev Cancer 
2(11): 826-835. 

Rensen, S. S., P. A. Doevendans and G. J. van Eys (2007). "Regulation and characteristics 
of vascular smooth muscle cell phenotypic diversity." Neth Heart J 15(3): 100-108. 

Rogers, M. S., A. E. Birsner and R. J. D'Amato (2007). "The mouse cornea micropocket 
angiogenesis assay." Nat Protoc 2(10): 2545-2550. 

Sabine, A., Y. Agalarov, H. Maby-El Hajjami, M. Jaquet, R. Hagerling, C. Pollmann, D. 
Bebber, A. Pfenniger, N. Miura, O. Dormond, J. M. Calmes, R. H. Adams, T. Makinen, F. 
Kiefer, B. R. Kwak and T. V. Petrova (2012). "Mechanotransduction, PROX1, and FOXC2 
cooperate to control connexin37 and calcineurin during lymphatic-valve formation." Dev 
Cell 22(2): 430-445. 

Sabine, A., E. Bovay, C. S. Demir, W. Kimura, M. Jaquet, Y. Agalarov, N. Zangger, J. P. 
Scallan, W. Graber, E. Gulpinar, B. R. Kwak, T. Makinen, I. Martinez-Corral, S. Ortega, 



43 
 

M. Delorenzi, F. Kiefer, M. J. Davis, V. Djonov, N. Miura and T. V. Petrova (2015). 
"FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature." J Clin Invest 
125(10): 3861-3877. 

Salameh, A., F. Galvagni, M. Bardelli, F. Bussolino and S. Oliviero (2005). "Direct 
recruitment of CRK and GRB2 to VEGFR-3 induces proliferation, migration, and survival 
of endothelial cells through the activation of ERK, AKT, and JNK pathways." Blood 
106(10): 3423-3431. 

Sato, T. N., Y. Tozawa, U. Deutsch, K. Wolburg-Buchholz, Y. Fujiwara, M. Gendron-
Maguire, T. Gridley, H. Wolburg, W. Risau and Y. Qin (1995). "Distinct roles of the 
receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation." Nature 376(6535): 70-
74. 

Sato, Y. and D. B. Rifkin (1989). "Inhibition of endothelial cell movement by pericytes and 
smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule 
by plasmin during co-culture." J Cell Biol 109(1): 309-315. 

Schulte-Merker, S., A. Sabine and T. V. Petrova (2011). "Lymphatic vascular 
morphogenesis in development, physiology, and disease." J Cell Biol 193(4): 607-618. 

Shibuya, M. (2006). "Differential roles of vascular endothelial growth factor receptor-1 and 
receptor-2 in angiogenesis." J Biochem Mol Biol 39(5): 469-478. 

Shull, M. M., I. Ormsby, A. B. Kier, S. Pawlowski, R. J. Diebold, M. Yin, R. Allen, C. 
Sidman, G. Proetzel, D. Calvin and et al. (1992). "Targeted disruption of the mouse 
transforming growth factor-beta 1 gene results in multifocal inflammatory disease." Nature 
359(6397): 693-699. 

Stalmans, I., Y. S. Ng, R. Rohan, M. Fruttiger, A. Bouche, A. Yuce, H. Fujisawa, B. 
Hermans, M. Shani, S. Jansen, D. Hicklin, D. J. Anderson, T. Gardiner, H. P. Hammes, L. 
Moons, M. Dewerchin, D. Collen, P. Carmeliet and P. A. D'Amore (2002). "Arteriolar and 
venular patterning in retinas of mice selectively expressing VEGF isoforms." J Clin Invest 
109(3): 327-336. 

Stanczuk, L., I. Martinez-Corral, M. H. Ulvmar, Y. Zhang, B. Lavina, M. Fruttiger, R. H. 
Adams, D. Saur, C. Betsholtz, S. Ortega, K. Alitalo, M. Graupera and T. Makinen (2015). 
"cKit Lineage Hemogenic Endothelium-Derived Cells Contribute to Mesenteric Lymphatic 
Vessels." Cell Rep. 

Staton, C. A., M. W. Reed and N. J. Brown (2009). "A critical analysis of current in vitro 
and in vivo angiogenesis assays." Int J Exp Pathol 90(3): 195-221. 

Suri, C., P. F. Jones, S. Patan, S. Bartunkova, P. C. Maisonpierre, S. Davis, T. N. Sato and 
G. D. Yancopoulos (1996). "Requisite role of angiopoietin-1, a ligand for the TIE2 
receptor, during embryonic angiogenesis." Cell 87(7): 1171-1180. 

Tallquist, M. D., W. J. French and P. Soriano (2003). "Additive effects of PDGF receptor 
beta signaling pathways in vascular smooth muscle cell development." PLoS Biol 1(2): 
E52. 

Tammela, T. and K. Alitalo (2010). "Lymphangiogenesis: Molecular mechanisms and 
future promise." Cell 140(4): 460-476. 



 
 

44 
 

Tatin, F., A. Taddei, A. Weston, E. Fuchs, D. Devenport, F. Tissir and T. Makinen (2013). 
"Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed 
cell rearrangements during valve morphogenesis." Dev Cell 26(1): 31-44. 

Taylor, A. E. (1990). "The lymphatic edema safety factor: the role of edema dependent 
lymphatic factors (EDLF)." Lymphology 23(3): 111-123. 

Thurston, G., C. Suri, K. Smith, J. McClain, T. N. Sato, G. D. Yancopoulos and D. M. 
McDonald (1999). "Leakage-resistant blood vessels in mice transgenically overexpressing 
angiopoietin-1." Science 286(5449): 2511-2514. 

Uemura, A., M. Ogawa, M. Hirashima, T. Fujiwara, S. Koyama, H. Takagi, Y. Honda, S. J. 
Wiegand, G. D. Yancopoulos and S. Nishikawa (2002). "Recombinant angiopoietin-1 
restores higher-order architecture of growing blood vessels in mice in the absence of mural 
cells." J Clin Invest 110(11): 1619-1628. 

Ulvmar, M. H. and T. Makinen (2016). "Heterogeneity in the lymphatic vascular system 
and its origin." Cardiovasc Res 111(4): 310-321. 

Vaahtomeri, K., S. Karaman, T. Makinen and K. Alitalo (2017). "Lymphangiogenesis 
guidance by paracrine and pericellular factors." Genes Dev 31(16): 1615-1634. 

Wang, W., Z. Nepiyushchikh, D. C. Zawieja, S. Chakraborty, S. D. Zawieja, A. A. Gashev, 
M. J. Davis and M. Muthuchamy (2009). "Inhibition of myosin light chain phosphorylation 
decreases rat mesenteric lymphatic contractile activity." Am J Physiol Heart Circ Physiol 
297(2): H726-734. 

Weber, M., R. Hauschild, J. Schwarz, C. Moussion, I. de Vries, D. F. Legler, S. A. Luther, 
T. Bollenbach and M. Sixt (2013). "Interstitial dendritic cell guidance by haptotactic 
chemokine gradients." Science 339(6117): 328-332. 

Wigle, J. T., N. Harvey, M. Detmar, I. Lagutina, G. Grosveld, M. D. Gunn, D. G. Jackson 
and G. Oliver (2002). "An essential role for Prox1 in the induction of the lymphatic 
endothelial cell phenotype." EMBO J 21(7): 1505-1513. 

von der Weid, P. Y. and M. Muthuchamy (2010). "Regulatory mechanisms in lymphatic 
vessel contraction under normal and inflammatory conditions." Pathophysiology 17(4): 
263-276. 

Xu, C., S. S. Hasan, I. Schmidt, S. F. Rocha, M. E. Pitulescu, J. Bussmann, D. Meyen, E. 
Raz, R. H. Adams and A. F. Siekmann (2014). "Arteries are formed by vein-derived 
endothelial tip cells." Nat Commun 5: 5758. 

Xu, Y., L. Yuan, J. Mak, L. Pardanaud, M. Caunt, I. Kasman, B. Larrivee, R. Del Toro, S. 
Suchting, A. Medvinsky, J. Silva, J. Yang, J. L. Thomas, A. W. Koch, K. Alitalo, A. 
Eichmann and A. Bagri (2010). "Neuropilin-2 mediates VEGF-C-induced lymphatic 
sprouting together with VEGFR3." J Cell Biol 188(1): 115-130. 

Yang, Y. and G. Oliver (2014). "Development of the mammalian lymphatic vasculature." J 
Clin Invest 124(3): 888-897. 

Yuan, L., D. Moyon, L. Pardanaud, C. Breant, M. J. Karkkainen, K. Alitalo and A. 
Eichmann (2002). "Abnormal lymphatic vessel development in neuropilin 2 mutant mice." 
Development 129(20): 4797-4806. 



45 
 

Yuen, D., X. Wu, A. C. Kwan, J. Ledue, H. Zhang, T. Ecoiffier, B. Pytowski and L. Chen 
(2011). "Live imaging of newly formed lymphatic vessels in the cornea." Cell Res 21(12): 
1745-1749. 

Zachary, I. (2014). "Neuropilins: role in signalling, angiogenesis and disease." Chem 
Immunol Allergy 99: 37-70. 

Zheng, W., H. Nurmi, S. Appak, A. Sabine, E. Bovay, E. A. Korhonen, F. Orsenigo, M. 
Lohela, G. D'Amico, T. Holopainen, C. C. Leow, E. Dejana, T. V. Petrova, H. G. Augustin 
and K. Alitalo (2014). "Angiopoietin 2 regulates the transformation and integrity of 
lymphatic endothelial cell junctions." Genes Dev 28(14): 1592-1603. 

 


	1_new
	2_new

