
From DEPARTMENT OF CELL AND MOLECULAR BIOLOGY 

Karolinska Institutet, Stockholm, Sweden 

CELL CYCLE REGULATION AND DNA 
DAMAGE RESPONSE: A RECORD OF 

POLO-LIKE KINASE 1 ACTIVITY 

Elvira Hukasova 

 

Stockholm 2017 
 



 

All previously published papers were reproduced with permission from the publisher 

Published by Karolinska Institutet. 

Printed by E-print AB 

© Elvira Hukasova, 2017 

ISBN 978-91-7676-864-8 



Cell cycle regulation and DNA damage response: a 
record of Polo-like kinase 1 activity 
THESIS FOR DOCTORAL DEGREE (Ph.D.) 

By 

Elvira Hukasova 

Principal Supervisor: 

Arne Lindqvist 

Karolinska Institutet 

Department of Cell and Molecular Biology 

 

Co-supervisor(s): 

Christer Höög 

Karolinska Institutet 

Department of Cell and Molecular Biology 

 

 

Opponent: 

Anna Santamaria 

Vall Hebron Research Institute 

Biomedical Research Unit in Gynecology 

 

Examination Board: 

Maria Alvarado-Kristensson  

Lund University 

Department of Molecular Pathology Malmö 

 

Sonia Lain 

Karolinska Institutet 

Department of Microbiology, Tumor and Cell 

Biology 

 

Olle Sangfelt 

Karolinska Institutet 

Department of Cell and Molecular Biology 

 

 

 





 

 

 

 

 

 

 

Дорогій бабці Ліді 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An meine liebe Oma Lydia 



 

 

 

 

 

 

 

та моїй родині 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and to my family



 

 

ABSTRACT 

Division and cell proliferation is an essence of life. A human cell has in its core a very 

simple yet a very complex machinery to coordinate cell cycle activities and events. A 

somatic human cell has as a base four different cell cycle stages: a preparatory cell 

growth stage (G1) a synthetic stage where genomic material is replicated (S) a second 

growth and preparation stage (G2) and a mitotic stage, where genetic material is 

segregated in two new cells (M). The main driver of these phase shifts is the oscillatory 

behavior of cell cycle proteins called Cyclins, which are being produced and degraded in 

a periodic manner. Cyclins steer kinase activity, and function together with other cell-

cycle kinases as Polo-like kinase 1 (Plk1). On top of the cell cycle regulation a cell has 

important mechanisms to sense and repair DNA damage, a so-called DNA damage 

response. DNA damage occurs regularly because of intrinsic factors related to cellular 

activities e.g. genome replication, metabolism or exogenous factors like solar radiation. 

Therefore, the response to DNA damage is an inherent part of the cell cycle and its main 

action is to halt cell cycle progression and establish a checkpoint. A cell has several 

checkpoints throughout the cell cycle: a G1/S checkpoint, an intra-S checkpoint, a G2/M 

checkpoint and a M-checkpoint. At these positions a cell can stop or slow down in case 

of unfavorable conditions, stress or DNA damage. To take care of DNA damage, repair 

mechanisms are put in place and if possible, a cell eventually continues proliferation 

(checkpoint recovery) or exits the cell cycle. 

In this thesis I focused on the regulation that precedes mitotic entry – the regulation of 

G2 phase during both normal mitotic entry and after checkpoint activation. I further 

focused on the activity of the protein Plk1 that is important but not essential to enter 

mitosis in a normal cell cycle, but becomes indispensable for mitotic entry after DNA 

damage.  

For this study I employed a biosensor for Plk1 activity, Plk1-FRET, and developed a 

setup that allows to follow single cells expressing the sensor over several cell cycles and 

later quantify the signals. To study protein behaviors we further developed a technique 

that allows to elucidate dynamics of the cell cycle proteins from fixed cells growing on 

micropatterns. Using this approach combined with endogenously tagged Cyclin A and 

Cyclin B cell lines and a Plk1-FRET biosensor, we find that activities that precede mitotic 

entry are in place several hours before mitosis, at the completion of S phase, contrary to 

the previous belief that the mitotic entry network is activated less than an hour before 

mitosis. We further employed two different model systems and find that Cdk1 and 

Plk1/Plx1 coordinate degradation of Bora, a protein important for Plk1 activation. We 

find that in human cells Plk1-induced Bora degradation starts about two hours before 

mitosis, at the time when Plk1 activity reaches the cytoplasm. Moreover, a small pool of 

Bora is not degraded and is stabilized in mitosis, providing the possibility to keep Plk1 

active in mitosis. 



Lastly, using a micropatterning approach and Plk1-FRET biosensor in combination with 

a probe for APC/C activation I show that upon checkpoint activation in G2 there is a 

decision point marked by a threshold of Plk1 activity. Activity above this threshold 

correlates with progression to mitosis, whereas activity below it correlates with cell 

cycle exit. Furthermore, cells damaged in S phase can exit the cell cycle in two positions 

in G2, with and without upregulating Plk1 activity, indicating that Plk1 activity is not 

required for cell cycle exit. Likewise, G1 cells that crossed the G1/S border after 

receiving DNA damage can exit the cell cycle in G2 phase, in a similar manner as cells 

receiving DNA damage in S-phase. 

Taken together our results shed light on the activities underlying the G2/M transition 

both in an unperturbed cell cycle and after DNA damage. 
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1 INTRODUCTION 

1.1 THE CELL CYCLE 

Cell cycle as we define it today is an order of events that lead to cell division. These 

events include cell growth, replication of genetic material and organelles, segregation of 

genetic material and organelles and separation of two daughter cells1. Dependent on the 

context of cell cycle it can occur in a “fast mode” and alternate only between replication 

and division cycles like in early embryonic cycles of fertilized egg1,2. Here a cell is of a 

big size at start and has all the nutrients to skip growth phases and focus on cell 

division, resulting in many small daughter cells from one big mother cell. In somatic 

cells, however, cells are of a standard size at the start of each cycle and therefore need 

time to grow and accumulate proteins to enter replication and division, thus event 

occur in a “slow mode”1,2.  

Every event in the cell cycle constitutes a corresponding phase: G1, S, G2 and M. G1-

preparation for division, S-replication of chromosomes, G2-preparation for mitosis, M-

mitosis, segregation and separation of chromosomes to two daughter cells (Figure1)1. 

In early days G-phase was standing for Gap phase, periods where visually nothing 

happened, and a cell rested from active division. Later G-phases were renamed Growth 

phases, as we learned that cells use this time for growth. However, what exactly 

happens in G-phases is not very obvious. Why coming from embryonic cycles, a cell 

evolves such long gap phases? Somatic cells can remain in G1 stage for a half of the cell 

cycle time in favorable conditions1. In stress conditions this time is even longer, and 

some cells remain outside active division for a long time, entering so-called G0.1 

G1 phase is finished once a cell initiates replication of its genetic material. In case of G2 

phase the definition is more vague, as it is defined as a time between completion of DNA 

synthesis and initiation of mitosis. For a long time this stage has been overlooked and 

its importance emerged at the event of genotoxic stress. G1 and G2 stages are places 

where cells arrest after damage occurs to the genetic material3. Besides, for many 

transformed cells G2 is the only possible stop point before mitosis4,5. In epithelial cells 

G2 phase is estimated to last approximately 4-6 hours. So why is G2 phase necessary, 

when does it start and why does it take so long? The author hopes that her work 

presented in this thesis contributed to a better understanding of the regulation and 

importance of G2 phase in a somatic cell. 
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Figure 1: A schematic of the cell cycle progression (from nobelprize.org) 

 

1.1.1 REGULATORS OF THE CELL CYCLE 

Since cell proliferation is an essence and a definition of life, it must be regulated by a 

fundamental and well-conserved mechanism. In fact, it is. In 2001 a Nobel prize was 

awarded for the discovery of key regulators of the cell cycle in three different species: a 

bakers yeast Saccharomyces cerevisiae, a fission yeast Schizosaccharomyces pombe and a 

sea urchin Arbacia6. Together these discoveries brought to the identification of a protein 

Cyclin and a Cyclin dependent kinase (Cdk) as main regulators of the cell cycle. Today 

we identify several Cyclin-Cdk complexes as regulators of distinct stages of the cell 

cycle. Moreover, over a dozen of cyclins and Cdks were identified over the years7.  

In mammalian cells at least two Cyclins are present in G2 phase: Cyclin A2, its 

expression is induced at the start of S phase and Cyclin B1, production of which is 

induced in G2 preceding mitotic entry. At the same time there are two Cdks that can 

form complexes with either of the cyclins: Cdk2, essential for S phase progression as 

Cdk2-Cyclin A complex and Cdk1, essential for triggering mitosis as Cdk1-Cyclin B 

complex. Although in some organisms Cdk-Cyclin A is essential to promote mitosis8, its 

importance in human cells is still debated. 

A key feature of the cell cycle regulation is that it needs to occur in a periodic manner. 

One cycle has to end for another one to start. One phase needs to precede the other and 

progression has to be unidirectional. This is achieved by cycles of production and 

degradation of Cyclins, creating an oscillator of Cdk activity – a cell cycle oscillator9. 
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This mechanism puts timely protein degradation on important place in regulation of cell 

cycle exit and re-start of the cell cycle. It is achieved through the function of anaphase-

promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that is activated and 

targeted to its substrates by the specific subunits Cdc20 and Cdh1 and by SCF 

(Skp1/cullin/F-box protein)-related complexes10. In early Xenopus embryos the system 

works as a simple oscillator: Cyclin-Cdks at the peak of their activity phosphorylate and 

activate APC, which after short delay degrades cyclins and resets the system11. Thus, 

Cdks regulate their own degradation. 

However, in somatic cells introduction of a G1-phase and a presence of several Cyclin-

Cdks require additional level of regulation. Here mitotic Cdk activation has to be 

prevented during G1 phase, therefore APC/C regulated by the Cdh1 subunit is active 

from the end of mitosis and throughout G111. Additionally, APC/C-Cdc20 degrades 

distinct Cyclins at defined times during mitosis12. Moreover, a large number of mitotic 

substrates are degraded in mitosis in somatic cells. 

However, Cyclin-Cdk complexes do not regulate the cell cycle on their own. Today more 

cell cycle regulators have emerged that play crucial functions in mitosis and interphase 

and further regulate, boost or repress the activity of Cyclin-Cdk complexes. All of cell 

cycle regulators are highly interconnected by feed-forward and feedback loops that 

make a robust system with a certain level of redundancy13. In particular two recently 

identified kinase families are essential to cell cycle regulation: Polo-like kinases and 

Aurora kinases. Both of them received names from mutant phenotypes in mitosis and 

will be discussed in more detail below. Further, a protein Aurora Borealis has important 

function in the cell cycle. 

 

1.1.2 REGULATION OF THE MITOTIC ENTRY 

Whereas timely Cyclin/protein degradation is important for cell cycle exit and for 

switching between cell cycle phases, regulated Cyclin/protein production is important 

for entry into distinctive phases. The Cyclin B-Cdk complex was identified in Xenopus 

eggs as a factor that drives G2 cells to mitosis (Mitosis Promoting Factor)14. 

Mechanistically, rapid accumulation of cyclins triggers Cdk activation and mitotic 

entry15. Similarly, in somatic cells mitotic entry from G2 is induced by a rapid increase 

in Cyclin B/Cdk1 activity16. However, to control mitotic entry, a crucial balance between 

activation and inhibition of Cdk has to be reached. 

The Cdk1-Cyclin B complex is inhibitory phosphorylated by Wee1 and Myt1 kinases on 

T14 and Y15 residues and is re-activated through dephosphorylation by Cdc25 

phosphatases13. Interestingly, Cdk1 activity itself can regulate these feedback loops; 

active Cyclin B-Cdk1 complexes can phosphorylate Wee1 and Myt1 to inactivate them, 

and can activate Cdc25 phosphatases to further boost its own activity (Figure 2)13. Once 

triggered, this mechanism creates a self-amplifying loop of Cdk activity that leads to 

mitosis. Moreover, there is another level of Cdk activity regulation; Polo-like kinase 1 

(Plk1) is involved in feedback loops contributing to Cdk1 activation by targeting Wee1 
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and Myt1 for degradation and by activating Cdk-activating Cdc25C phosphatase17,18,19. 

Further, Aurora A kinase promotes recruitment of Cdk1 to centrosomes in late G2 and 

phosphorylates Cdk-activating Cdc25B20. 

Interestingly, Plk1 can further boost Cdk1 

and Plk1 activity by directly activating 

FoxM1, a transcription factor that 

regulates multiple genes in mitotic entry 

among others Cyclin B, Cdc25 

phosphatases and Plk121. 

Thus, accumulation of Cdk1 activity is 

supported by multiple redundant feedback 

loops to ensure a robust mechanism for 

mitotic entry. 

Rapid increase in Cyclin B/Cdk1 activity 

occurs shortly before mitosis, however 

low levels of Cyclin B/Cdk1 activity can already be detected in early G216,22. Therefore, 

mitotic entry activation is most likely a gradual process. Mechanistically, it is possible 

that S-phase activities, e.g. DNA replication and S phase Cyclins actively repress Cdk1 

activity and delay accumulation of Cyclin B. Theoretically, in human cells this 

mechanism would allow a sufficient time for repair of replication-induced DNA damage 

and therefore would prevent mitotic errors caused by untimely mitotic entry. 

 

1.1.3 POLO-LIKE KINASE FAMILY: STRUCTURE AND FUNCTIONS 

Human Polo-like kinase 1 was first characterized by Erich Niggs group in 199423. Plk1 

exhibited homology to the previously described polo from Drosophila melanogaster24,25 

and Cdc5 in Saccharomyces cerevisiae26,27. In Drosophila lack of polo produced mutants 

with defective spindle orientation24. Similarly, in S. cerevisiae CDC5 mutants showed 

mitotic spindle anomalies. Golsteyn and colleagues have noticed that Plk1 levels 

fluctuate in a cell cycle dependent manner similarly to Cyclin A and are highest in 

mitosis; moreover Plk1 levels are high in tissues with dividing cells23. Ever since Plk1 

has been recognized as a kinase important in cell division for timely mitotic entry, 

mitosis and cytokinesis28. However, our understanding of Plk1 functions in interphase 

is still limited. Since 2004 Plk1 has emerged as a kinase that is indispensable for mitotic 

entry after DNA damage in G229. And in 2011 Plk1 was suggested to have functions in 

regulation of S phase under stress30. These findings challenge a long-standing view of 

Plk1 as exclusively mitotic kinase. 

Plk1 belongs to the family of serine-threonine kinases that includes four other members 

Plk2, Plk3, Plk4 and latest discovered Plk531.  A special feature of these kinases is the 

presence of two polo box regions that form a polo box domain (PBD) with exception of 

Plk4, that has only one polo box32,33 and Plk5 that lacks kinase domain34. Plk1 consists 

of a N-terminal kinase domain and a C-terminal PBD (Figure3). PBD is an important 

Figure 2. Activation and inhibition of Cyclin-

Cdk1 complex 
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regulatory domain that mediates Plk1 localization to different substrates and allows 

Plk1 to perform its function in the cell cycle19,32. Despite structural similarity between 

polo-like kinase family members, they all have mostly non-redundant functions in cell 

cycle and differentiation31,35. 

The polo box domain of Plk1 is a functional domain that binds phosphorylated peptides. 

The sites recognized by PBD are those phosphorylated by Cdk1 and Plk1 itself19,32. 

Hence through prime-phosphorylation of substrates Cdk1 is involved in spatio-

temporal regulation of Plk1 activity.  Interestingly, the polo-box domain of Plk1 in a 

basal state is thought to inhibit the kinase domain leaving the kinase in an inactive 

conformation (Figure 4). Upon phosphorylation in the T-loop, the PBD is dissociated 

from the kinase domain bringing the kinase into an open active conformation19. 

Therefore, activation of Plk1 is essential to allow Plk1 recruitment to different sub-

cellular localizations to phosphorylate distinct substrates. It is worth a notice that Plk1 

does not interact through its PDB with all substrates. In particular, association with the 

mitotic spindle can occur through direct protein interaction with Map20536. 

Plk1 is recruited in a timely manner to different substrates within the cell (Figure 5). In 

S phase Plk1 is localized to centrosomes37 and is involved in centriole duplication37,38. In 

G2 Plk1 is detected on kinetochores, centrosomes and in cytoplasm in late G222. Plk1 is 

recruited to kinetochores by pre-phosphorylating centromeric protein PBIP1 and 

regulates kinetochore function until anaphase39. Plk1 is involved in centrosome 

maturation and is recruited to pericentrin together with Aurora A, g-tubulin and 

CEP19240; as well as centrosome separation mediated by Eg5 in accordance with 

Cdk141–43; and microtubule nucleation by phosphorylating Nlp44. Further, Plk1 is 

involved in feedback loops boosting Cdk1 activity to promote mitotic entry13.  

Plk1 has prominent functions in mitosis that led to its discovery in the first place. In 

mitosis Plk1 is localized to kinetochores, mitotic spindle, and mitotic poles. As the cell 

approaches cytokinesis Plk1 is localized to the mid-body.  

Figure 3. Structure of Polo-like kinase 1. 

Figure 4. Interaction between a kinase domain and a polo box domain of Plk1. 
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After early recruitment Plk1 targets PBIP1 for degradation39 and further remains on 

kinetochores through interactions with Bub1, Bubr1 and INCENP to regulate 

kinetochore-microtubule attachments45–47. Further Plk1 is involved in activation of the 

anaphase-promoting complex/cyclosome by phosphorylating its inhibitor Emi1 and 

targeting it for SCF-bTrCP-dependent degradation48. Plk1 has functions in positioning of 

the mitotic spindle by controlling switching of dynein/dynactin and phosphorylation of 

LGN/NuMa proteins49. For regulation of cytokinesis and abscission Plk1 translocate to 

the spindle midzone through interaction with PRC150.  

First substrate phosphorylation by Plk1 can be recorded as early as 5 hours before 

mitosis, at the completion of S-phase22,51. Plk1 is activated in G2 through 

phosphorylation of its T-loop on threonine 210 (T210)51,52. This action is performed by 

the mitotic kinase Aurora A in complex with a co-factor scaffolding protein Bora51,53. 

Mechanistically it is thought that Bora binds to the PBD of Plk1 and provides a platform 

for the interaction between Plk1 and Aurora A53. In the absence of Bora, Plk1 T210 is 

phosphorylated by Aurora A very inefficiently, but addition of Bora greatly enhanced 

the activity of Aurora A towards Plk151,53. Cdk1 is found to phosphorylate Bora to 

promote its binding to Plk1 through PBD and facilitate Aurora A–dependent activation 

of Plk154,55. Therefore, Cdk1 activity is underlying Plk1 activation. It is unclear whether 

Cdk1 in complex with Cyclin B is responsible for pre-phosphorylation leading to Plk1 

activation, as new evidence emerges showing that Cyclin A-Cdk1 complex could be 

involved in it 56,57. 

1.1.4 AURORA BOREALIS (BORA) 

Aurora Borealis or Bora was first identified in D. melanogaster as a binding partner and 

activator of Aurora A58. Aurora A mutants similarly to polo mutants exhibited 

centrosome maturation effects and asymmetric spindles. Overexpression of Bora 

rescued these phenotypes to some extend58. Bora levels fluctuate throughout the cell 

Figure 5. A schematic of Polo-like kinase 1 localization during the cell cycle. 
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cycle: low at G1/S border, increase in S phase, peak in G2 and then drop in mitosis. 

Structurally Bora is a protein that does not possess any known regulatory domains58. 

Bora is regulated through post-translational modifications by among others Cdk1, 

Aurora A and Plk153,58–60 and recently three new functional Cdk1 sites on Bora were 

discovered54. 

Bora is essential for Plk1 activation in G2, however once Plk1 is activated it 

phosphorylates Bora and targets it for b-TrCP dependent proteasomal 

degradation55,60,61. Interestingly, experiments with overexpressed Bora in human cells 

show that Bora needs to be downregulated in mitosis, as overexpression leads to 

significant mitotic delay55,60. Since Plk1 degrades its activator at the entry in mitosis it 

has long remained unclear what kept Plk1 active. One possibility was suggested that 

TP2AX, a different co-factor of Aurora A could be involved. Recently we and others have 

shown that a small pool of Bora remains present in mitosis and continues to activate 

Plk160,61. Bora presence in mitosis is in agreement with a requirement for its function, 

since Bora depletion also leads to metaphase arrest due to presence of unaligned 

chromosomes55. Thus, Bora functions in mitosis to regulate Plk1 and Aurora A kinases. 
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1.2 DNA DAMAGE RESPONSE 

We are surrounded by endogenous and exogenous factors that can and do inflict 

damage to our DNA on everyday basis.  Reactive oxygen species, replicative errors along 

with UV-radiation, tobacco, IR-radiation just to name a few62,63. However most of the 

damage occurring on a cellular level goes by unnoticed for an organism as a whole for 

many years. The reason for this is that organisms, both eukaryotic and prokaryotic, 

possess mechanisms that detect and process DNA damage and constantly repair it. 

However, DNA damage although a threat is also a part of a healthy functioning 

organism, as it is a crucial part of the immune response (e.g. lymphocyte maturation and 

antibody production) and meiotic recombination63. The importance of DNA damage and 

repair pathways is highlighted when some of the components don’t work. Patients 

carrying mutations in the essential proteins in these pathways have higher sensitivity to 

DNA- damaging agents and higher incidence of cancer63–65.   

DNA damage response (DDR) is a collective term that describe sensing, processing and 

eventual repair of the DNA damage lesion. Dependent on the type of the lesion there are 

differences in processing and a choice of repair mechanisms. However, the overall DNA 

damage response pathway is thought to look the same: a signal is sensed by a sensor, 

transduced by a transducer and appropriate measures are put in place by effectors65,66.  

To sense the DNA damage different sensors are recruited to different lesions. By 

homology to S. pombe and S. cerevisiae Rad1, Rad9, Hus1, Rad17 are involved in sensor 

complexes in human cells65. Double strand breaks (DSB) are sensed by Mre11-Rad50-

Nbs1 (MRN) complex that further activates and rapidly recruits a transducer to the sites 

of damage. Whereas the border of single and double stranded DNA (ssDNA/dsDNA) at 

breaks can be sensed by Rad17-RFC2-5 clamp loader that further recruits a Rad9-Rad1-

Hus1 complex. Further, the RPA protein that coats ssDNA can also act as a sensor and 

recruit transducer to the site of DNA damage or to a stalled replication fork66. 

Key signaling transducers in mammalian cells are protein kinases ATM (ataxia-

telangiectasia mutated), ATR (ataxia telangiectasia and Rad3-related protein) and DNA-

PK (DNA-dependent protein kinase catalytic subunit)62. ATM and DNA-PK are activated 

and recruited to double-strand breaks (DSBs) after e.g. exposure to genotoxic agents. 

ATR is activated and recruited to RPA-coated single-stranded DNA, which can occur at 

stalled replication forks or as a result of processing of DSBs62. ATM and ATR kinases 

upon activation phosphorylate hundreds of substrates and facilitate rapid signal 

transduction either direct to the effectors or through the downstream signaling 

pathways62,63. One of the best-studied downstream targets of ATM and ATR are Chk2 

and Chk1 kinases. ATM activates Chk2 through direct phosphorylation. Similarly, ATR 

phosphorylates Chk1, stimulated by the adaptor protein Claspin67. Activation of these 

kinases aims to decrease the activity of the cyclin-dependent kinases (Cdks) and other 

mitotic kinases of the cell cycle and impose a checkpoint63,68.  

Checkpoint activation is thought to give a cell time to repair DNA damage69. In parallel 

ATM-, DNA-PK- and ATR-mediated chromatin remodeling of histone H2AX at Ser139 

(gH2AX) at and around the site of damage promotes DNA repair and further signal 
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amplification62,70. Once activated, a cell cycle checkpoint can be sustained by ATM, ATR, 

and Chk2-mediated phosphorylation of the transcription factor p53. P53 

transcriptionally regulates the CDK inhibitor p21 and proapoptotic proteins e.g. BAX 

and Puma and can therefore induce cell cycle arrest, senescence or cell death62,71. DDR 

is a very rigid and robust response, at the same time as it is a dynamic process; since not 

only DNA damage signaling can modify cell cycle proteins, but cell cycle proteins can 

modify the DNA damage signaling. 

 

1.2.1 REPAIR OF DSBs 

DSBs are considered one of the most toxic DNA lesions as they can cause large 

chromosome re-arrangements and require immediate attention72. DSBs can be repaired 

by four different mechanisms: homologous recombination (HR), non-homologous end 

joining (NHEJ), alternative-NHEJ (alt-NHEJ), and single-strand annealing (SSA)72. 

Dependent on the cell cycle stage and DNA end processing requirement different 

mechanisms can be employed. The most common repair mechanisms are HR and NHEJ. 

NHEJ is an error-prone but effective mechanism that can be employed in any stage of 

the cell cycle, with preference towards G1 and M phases. At the same time HR is a more 

complex repair mechanism, but less error prone. It is limited to S and G2 phases of the 

cell cycle, as it requires a homologous chromosome. 

 

1.2.2 CHECKPOINT CONTROL: CELL CYCLE CHECKPOINTS 

Cells respond to DNA damage by activating cell cycle checkpoints69,73. This mechanism 

allows cells to halt the cell cycle progression, evaluate damage and eventually repair it 

or initiate cell death. Checkpoints are important to avoid propagation of lethal 

mutations and avoid genome instability, which is a hallmark of cancer74. Moreover 

checkpoint control is often compromised in a series of hereditary diseases, which 

further underlines the importance of cell cycle control75–77. Dependent on when DNA 

damage was inflicted during the cell cycle, cells pull different types of breaks. Therefore, 

we distinguish G1/S checkpoint, intra-S checkpoint, G2/M checkpoint and M checkpoint 

(spindle assembly checkpoint) (Figure 6). 

Although the DDR response to the DNA damage is in essence the same, the checkpoint is 

established differently in different cell cycle phases. As different protein complexes and 

activities drive distinct stages of the cell cycle78.   
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When DNA damage occurs in G2, cells need to inhibit quickly rising levels of Cyclin-Cdk 

activities, in particular Cyclin B-Cdk1, to prevent mitotic entry79,80. The immediate 

checkpoint break targets feedback loops that keep Cdk1 activity: Cdc25 phosphatases 

are inactivated while Wee1 kinase is activated81,82. At the same time Plk1 and its 

activator Aurora A are inhibited83,84. Further, the immediate checkpoint is sustained by 

slower transcriptional regulation through activation and stabilization of p5371. P53 

promotes transcription and accumulation of p21, which binds Cyclin/Cdk complexes 

and continues cell cycle arrest85,86. Furthermore, although ATM/Chk2 signaling is 

essential in establishing a G2 response, ATR/Chk1 signaling is an essential contributor 

to maintain a G2 arrest. Since it is involved in degradation of Plk1, Bora, Cyclin B, 

Cdc25A for the sake of repair or cell cycle exit81,87–89. 

1.2.3 CHECKPOINT RECOVERY COMPETENCE 

Once DDR has been established and a cell has repaired the damage it can continue the 

cell cycle. However, in order to resume the cell cycle a cell needs to maintain a certain 

level of Cdk activity (Figure 7)90. Failure to keep the Cdk activity leads to inability to re-

enter the cell cycle after the damage was repaired and checkpoint silenced90. At the 

same time, failure to establish a checkpoint and repress Cdk activity after damage leads 

to mitotic entry with unrepaired DNA, a so-called checkpoint adaptation or checkpoint 

override91. Therefore, to keep the checkpoint recovery competence, an ability to 

continue the cell cycle after arrest, a cell needs to maintain a low level expression of G2-

specific genes90. This is achieved by juggling the transcriptional repression and 

continuous expression of the mitotic entry proteins. 

Figure 6. Cell cycle checkpoints: G1/S, S, G2/M and M (spindle assembly checkpoint). 
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A way to keep this tricky balance is provided by the intrinsic nature of the DNA-damage 

response. It is not linear or switch-like, but instead is non-linear and provides pulses of 

DNA damage activity92–94. The tumor suppressor p53 that is a main transcriptional 

repressor in G2 is in the heart of these pulses. P53 pulses are sustained through a 

feedback mechanism, by cycles of Mdm2 activation and de-activation regulated by p53 

itself92. Further, wild-type p53 induced phosphatase 1 (Wip1) regulates the pulses by 

timely dephosphorylation of p53 targets and de-phosphorylation of p53 at S15. Wip1 

depletion results in stable transcriptional repression of the cell cycle regulators Cyclin B 

and Plk1, which leads to G2 arrest and inability to recover after the checkpoint 

silencing95. Moreover, ATM, an upstream regulator of p53 has been shown to display 

oscillations in the activity93,94. 

The pulses of p53 activity after DSBs are suggested to be a mechanism that determines 

cells fate after damage. In particular, cells that exhibit pulses are more likely to enter 

mitosis after arrest than those that don’t96. However, how these pulses are 

mechanistically coupled to the cell cycle regulators is not explicitly shown. One prospect 

is that they provide a possibility for a checkpoint-arrested cell to continue transcription 

of G2-specific proteins to maintain G2-identitity97. 

To continue transcription of pro-mitotic genes as Cyclin B and Plk1 a cell relies on the 

transcription factors FoxM1 and B-Myb90,98. In a feedback manner, Cdk and Plk1 activity 

promote expression of FoxM1 and B-Myb to further boost their own activity21,99,100. 

Therefore, functions of FoxM1 and B-Myb are essential to maintain checkpoint recovery 

competence. 

However, as mentioned earlier regulation of protein expression is only one part of the 

DDR. Equally important is regulation of protein degradation after DNA damage. Upon 

DNA damage APC/C is prematurely activated and targets several proteins including 

Plk1, Cyclin B and Cyclin A for degradation87,101,102. To perform its function after DNA 

damage APC/C depends on its co-activator Cdh1. 

Figure 7. Cell cycle outcomes after checkpoint activation.  
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Degradation of Plk1 by APC/C-Cdh1 is essential to maintain an efficient G2/M 

checkpoint, suggesting that Plk1 degradation in G2 can be associated with loss of 

checkpoint recovery competence87. However, induction of APC/C-Cdh1 does not 

happen immediately after damage, but rather in the later stage of a DDR and marks cell 

cycle exit. In G2, extended p21 induction leads to either irreversible cell cycle exit 

several hours past damage (through nuclear Cyclin B degradation by APC/C-Cdh1) or 

reversible G2 arrest (without Cyclin B degradation and APC/C-Cdh1 activation)86,103. 

Therefore, APC/C activation in G2 marks loss of recovery competence. 

 

1.2.4 APC/C-Cdh1 ACTIVATION UPON DNA DAMAGE 

In a normal cell cycle expression and degradation of proteins in a timely manner 

guarantees unidirectionality of the cycle. Activity of Cyclin-dependent kinases inhibits 

APC/C and vice versa APC/C inhibits Cdk activity by degrading Cyclins104. Additionally, 

Emi1, an inhibitor of APC/C that is expressed from late G1 to mitosis, is essential for 

regulation of APC/C activity. Emi1 allows for accumulation of S phase-specific proteins 

and initiation of S phase. In normal conditions APC/C Cdh1 is inactivated upon entry 

into S phase and becomes active during mitotic exit. In the event of DNA damage there 

are several pre-requisites for ACP/C Cdh1 activation. The DNA damage response, in 

particular p53 activity preconditions APC/C activation by a) enforcing decrease in Cdk 

activity102 b) down-regulating APC/C inhibitor Emi1102. Next, phosphatases involved in 

mitotic exit become active at DNA damage. In particular, Cdc14 phosphatase is released 

from the nucleolus to nucleoplasm and removes inhibitory phosphorylation on Cdh1 

leading to APC/C activation87. 

1.2.5 PLK1 ACTIVATION AFTER DNA DAMAGE 

Similarly as in an unperturbed condition, Plk1 is activated by phosphorylation on T210 

by Aurora A kinase in a complex with Bora to promote G2/M checkpoint recovery51. 

Cdk1 activity is the pre-requisite for this activation by enabling Aurora A/Bora complex 

formation through pre-phosphorylation of Bora54,59. In unperturbed mitotic entry Plk1 

activity is redundant and cells are able to enter mitosis in the absence of Plk1 activity. 

However, upon DNA damage in G2 Plk1-depleted or Plk1-inhibited cells are unable to 

enter mitosis51,105. 

1.2.6 PLK1 AS A TARGET OF DNA DAMAGE SIGNALING 

Upon DNA damage Plk1 is inhibited by several mechanisms. As discussed earlier APC/C 

Cdh1 is activated upon DNA damage in G2 and degrades Plk187. However, early upon 

checkpoint activation Plk1 is not degraded, but its further activation by phosphorylation 

at T210 is prevented. This is achieved by inhibition of Aurora A phosphorylation on 

Plk1/Bora106. Further mechanism of Plk1 inhibition upon DNA damage is SCF-bTrCP 

dependent-degradation of Bora by ATR upon UV-damage88. 

DNA damage signaling inhibits Plk1 to prevent untimely mitotic entry.  In response, 

Plk1 inhibits DNA damage signaling to keep the checkpoint recovery competence and 
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promote the recovery. In relation to cell cycle DNA damage response is established 

throughout several independent axes. First, is immediate activation of Wee1 kinase to 

inhibit Cdk activity, then ATM-Chk2 axis, ATR-Chk1 and direct p53 axis (Figure 8). 

Wee1 kinase axis: Cdk1 together with Plk1 target Wee1 for SCF-bTrCP dependent 

proteasomal degradation17,107. Interference with this degradation leads to inability to 

silence the checkpoint105. 

ATR-Chk1 axis: Active ATR requires adaptor protein Claspin to efficiently 

phosphorylate Chk1 together with Rad9-Rad1-Hus1 complex108,109. Claspin is a cell-cycle 

regulated protein which levels peak in S and G2 phases. Upon DNA damage Claspin is 

transiently stabilized110. Active Plk1 phosphorylates Claspin and targets it for 

degradation by SCF-bTrCP, preventing full Chk1 activation in response to DNA 

damage110–112. Plk1-dependent Claspin degradation is an important step towards 

checkpoint recovery since expression of non-degradable Claspin inhibits mitotic entry. 

ATM-Chk2 axis: Plk1 further counteracts DDR signaling by inactivating Chk2 and 

preventing further activation of 53BP1113. Plk1 phosphorylation of 53BP1 appears to 

cause its dissociation from chromatin and failure to localize to DNA breaks. Plk1 

phosphorylation of Chk2 occurs in its phospho-binding domain and deactivates the 

kinase113. 

P53 axis: Plk1 phosphorylates GTSE1, an Mdm2-dependent negative regulator of p53, 

and causes its translocation to the nucleus114. In the nucleus GTSE1 binds p53 and 

shuttles it out of the nucleus, thereby inhibiting its function114. Furthermore, Plk1 

destabilizes p53 through phosphorylation of Topors, causing increased ubiquitination 

of p53115. Thus, Plk1 modifies and is modified by DNA damage signaling during DNA 

damage arrest in G2. 

  

Figure 8. A schematic of Plk1 counteracting the DNA damage response signaling. 
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1.3 PLK1 AND CANCER 

Plk1 function in checkpoint recovery after DNA damage would suggest that it has an 

oncogenic potential. However, its position on the chromosome has no recorded 

amplifications and the only gene mutation reported leads to Plk1 instability116. And 

several studies, except for one, have shown that its overexpression does not lead to cell 

transformation117–119. Nevertheless, Plk1 is well exploited by proliferating cancers. Plk1 

overexpression has been reported in tumors of colon120–123, lung124, breast125,126, 

ovary127,128 as well as in leukemia129 and this correlates with poor prognosis. In normal 

conditions Plk1 is expressed only in highly proliferative tissues like testis and bone 

marrow (https://www.proteinatlas.org/ENSG00000166851-PLK1/tissue) suggesting 

that its high levels in various cancer tissues is a sign of proliferation.  

Since Plk1 function can contribute to tumorigenesis, it is likely that high Plk1 levels in 

tumors are not just attributed to high proliferation index, but rather reflects 

deregulation of its activity. Something that supports this idea is that Plk1 in cancer cells 

is already expressed at the G1/S border130. Furthermore AURKA, the gene for Aurora A, 

an activator of Plk1, is found to be amplified in human cancers and is associated with 

poor prognosis131. High levels of Aurora A could be contributing to increased Plk1 

activity in malignancies. On the other hand, Plk1 needs to be actively inhibited by DNA 

damage signaling to halt cell cycle progression. A majority of tumors are compromised 

in the DNA damage response through mutations in key proteins e.g. p53, p21, BRCA1 or 

BRCA2 and through failures in signal transduction132,133. This can in turn lead to 

inability to establish or sustain a checkpoint. 

Plk1 is an attractive anticancer target, especially supported by the fact that it has unique 

functions in DNA damaged cells. Several Plk1 kinase inhibitors, among others BI-2536, 

Volasertib, Rigosertib, and GSK461364 were developed and their anti-cancer potential 

was confirmed in pre-clinical studies130,134. However, as a common theme for small 

molecule kinase inhibitors, most of them performed poorly in clinical studies, with 

exception for Rigosertib130,134. First problem encountered is the lack of specificity, that 

leads to off target effects and toxicity. Another issue is that one inhibitor as a 

monotherapy is rarely enough. Cancer cells quickly adapt and find another way to 

proliferate, relapsing in new, usually more resistant tumors.  

However, Plk1 inhibitors are still attractive for cancer treatment, especially in 

combination with other small molecule inhibitors e.g. Aurora A to achieve synergistic 

effects or with classical cancer therapies like irradiation and chemotherapy130,131,134. To 

battle the kinase specificity issues, new PBD inhibitors are in pre-clinical trials (e.g. 

poloxin and purpurogallin)130. Moreover, Plk1 inhibitors can be used as mitotic poisons 

where resistance to traditional cell cycle toxins like vinca alcaloids has been acquired. 
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1.4 METHODS 

Since establishment of the cell cycle field multiple experiments were performed in a 

variety of organisms to elucidate components and mechanisms. Classical examples of 

the cell cycle model systems are simple eukaryotes like yeast S. cerevisiae, S. pombe, a 

sea urchin A. punctulata, a fly D. melanogaster, eggs from a frog Xenopus laevis and 

immortalized human cell lines1.  

Lower eukaryotes and Drosophila revealed through functional mutagenesis new 

proteins and their functions. Xenopus eggs provided a biochemical test tube, a simple 

yet elegant system for understanding protein interactions1. Main components were 

elucidated, purified, enzymatic interactions were tested and phenotypes verified by 

microscopy. Further, diversity of cell cycle phases in population of human cells brought 

the development of synchronization techniques to elucidate averages of protein 

behaviors. Thus, we have learned a lot about cell cycle components from simple 

organisms and translated these findings to humans where system got more complex 

and single discovered proteins were replaced by families of proteins.  

The study of biochemical reactions in a test tube constitutes a complex but very 

controlled process, however chemical reactions inside of living cells are even more 

complex. Availability of compartments and subcellular structures in combination with a 

multitude of substrates allows for difference in speed, dynamics and location of the 

interaction. Recent work in mammalian cell populations revealed the heterogeneity in 

cell cycle decisions and a need for more nuanced understanding of the cell cycle 

choices135. Thus, starting from averages of the cell populations we emerged to single cell 

approaches. A single cell approach would not be possible without the underlying 

technological advances in microscopy, in flow cytometry, in the field of fluorescence 

proteins and biosensors and in single-cell genomics and proteomics.  

 

1.4.1 FRET-BASED BIOSENSORS 

In this thesis I have broadly employed biosensor technology that with the help of a 

physical phenomenon allows measuring kinase activity directly inside a living cell. 

Biosensors for different kinases have been generated among others for ATM, Aurora B, 

Cdk1 and Plk116,51,136–138. 

The biosensor for Plk1 activity like most other kinase biosensors consists of two 

fluorophores, CFP and YFP, joined by a linker with a consensus sequence for the kinase 

and a phospho-binding domain139. In unphosphorylated state CFP and YFP are in close 

proximity and Förster resonance energy transfer (FRET) occurs between the two 

fluorophores. Upon phosphorylation, the probe changes its conformation, since the 

phospho-binding domain binds to the phosphorylated motif, and CFP and YFP lose close 

proximity making FRET very inefficient. With the help of fluorescence microscopy, the 

difference in FRET efficiency can be measured and quantified. 
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When it comes to the design of the probe there are several important aspects to 

consider. Fluorophores used in the design of the probe need to have overlapping 

spectra for energy transfer to occur, however they should not dimerize as it will 

influence the dynamics of the probe. The binding of the phospho-binding domain to the 

phosphosite should be optimized, so that the probe can be phosphorylated and 

dephosphorylated. Next important part is the consensus sequence itself, a difference in 

timing and strength of the signal can occur dependent on the target that is being 

phosphorylated by the kinase. Moreover, if specificity is important a sequence also 

needs to be unique for the kinase of interest, which sometimes can be difficult to 

achieve. Furthermore, a FRET biosensor is a sensor for both kinase and phosphatase 

activities, therefore phosphatase activity can influence the kinetics of the signal. Finally, 

the three-dimensional structure of the probe should allow a conformational change in 

the probe that should lead to as large as possible difference in FRET-efficiency upon 

phosphorylation. All these aspects need to be taken into consideration when using and 

interpreting results obtained by a FRET probe. 

In the Plk1-FRET probe, originally cloned by M. Lampson, the phospho-binding domain 

FHA2 derives from the S. cerevisiae Rad51 protein. Plk1 is a serine-threonine kinase, 

however the FHA2 domain binds phosphorylated threonine more strongly than 

serine140. The consensus sequence for Plk1 in the probe is present in Myt1, but modified 

so that a threonine replaces a serine as phospho-acceptor and an isoleucine is inserted 

at +3 position to enhance binding to FHA2138. This sequence is unique for Plk1 in G2, 

however in mitosis another kinase, Mps1, can marginally contribute to the 

phosphorylation of the probe, since it has a similar consensus site141. Therefore, a FRET 

signal needs to be carefully interpreted. In spite of their limitations, biosensors are 

powerful tools to study kinase activities in live cells with high spatial and temporal 

resolution. 

 

1.4.2 FLUORESCENCE LIVE CELL IMAGING 

Microscopy is an indispensable tool for cell biology as it allows to study events inside 

living cells. However, in live cell imaging a caution needs to be taken with microscopy 

conditions and exposures139,142. Since cell cycle wiring seems to be different in 

unperturbed and perturbed conditions, it is important to put an effort to minimize 

stress in live cell microscopy. The main sources of stress in live cell imaging are 

environmental factors e.g. temperature, media, CO2 supply and phototoxicity from live 

imaging itself. 

Long light exposures during acquisition can be damaging to cells. Even more so are free 

radicals and reactive compounds generated by fluorophore photobleaching. Moreover, 

prolonged exposure of the fluorophore to the light source causes fluorophore bleaching 

that diminishes the strength of the signal139,142. 

Thus, for an optimal signal-to-noise ratio, light and exposure conditions need to be 

adjusted, so that they would allow to study the process without creating a noticeable 
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stress response. The length of the cell cycle is among others a good indicator of stress 

conditions139. 

When it comes to image analysis, the property of light creates uneven background 

distribution further away from the source of light. Unless a cell is present in the precise 

angle straight under the objective, these differences in light distribution needs to be 

compensated by background subtraction. Furthermore, to get a precise quantification of 

the signal, a background subtraction is necessary to further remove autofluorescence 

signals and improve the signal-to-noise ratio22.  
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1.5 GENERAL DISCUSSION 

1.5.1 PLK1 IMPORTANCE FOR MITOTIC ENTRY 

Plk1 activation is necessary to perform its functions in the cell cycle. One main of these 

functions in G2 is boosting Cdk1 activity to facilitate entry into mitosis. Interestingly, 

however, depletion experiments performed for Plk1 in normal conditions resulted in 

cells entering mitosis, although with a delay29, indicating that Plk1 activity may speed 

up activation of Cdk1.  

However, recent data using a small molecule ATP-competitive inhibitor of Plk1 kinase 

show that acute inhibition of Plk1 with high dose of BI2536 in G2 abrogates mitotic 

entry in a majority of cells57. Further cells rely on regaining of Plk1 activity several 

hours after treatment to enter mitosis, since repeated inhibitor treatments decreased 

the resumption of mitotic entry. These data could indicate that once Plk1 gets engaged 

in feedback loops in G2, its activity cannot be easily replaced, since it takes time to 

rewire the network.   

Furthermore, since RNAi usually does not deplete all the protein, the small amount of 

Plk1 activity could be sufficient for the mitotic entry in unperturbed cell cycle. However, 

siRNA treatment blocks checkpoint recovery in the cells subjected to genotoxic stress 

showing a higher requirement for Plk1 activity after DNA damage than during 

unperturbed growth. 

In accordance with Plk1 functions in mitosis, Plk1-inhbited cells do not complete 

mitosis. Instead they arrest in prometaphase with immature centrosomes and, if going 

through mitosis, display chromosome segregation defects 

 

1.5.2 WHERE IS PLK1 ACTIVATED? 

Although mechanistically and biochemically a model is suggested for Plk1 activation, 

the question remains unsolved where exactly Plk1 is activated. The predominantly 

cytoplasmic localization of Aurora A and Bora makes it apparent to suggest that Plk1 is 

activated in cytoplasm. Using a biochemical approach hBora has been detected only in 

the cytoplasmic fraction. Aurora A is known to localize to centrosomes in interphase as 

does Plk1, providing a place and time for Plk1 activation. However, something that 

doesn’t quite fit with the model is that Plk1 activity is first detected in the nucleus 5-6 

hours before mitosis using Plk1-FRET probe. At this point there is no activity detected 

in the cytoplasm and only after 2-3 hours the probe is also phosphorylated there. 

Since the dynamics of Plk1-FRET probe reflects the balance of phosphorylation and 

dephosphorylation, one possibility arises that the phosphatase activity for this 

particular Plk1 substrate is higher in the cytoplasm and therefore Plk1 activity cannot 

be detected there. 
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Another possibility is that Plk1 is indeed activated in the nucleus and a kinase to 

perform this function in the nucleus is Aurora B143. However, recent evidence supports 

the notion that Aurora B is not involved in Plk1 activation in human cells141. 

Alternatively, a small pool of Aurora A can localize to the nucleus in interphase, and 

overexpressed hBora can be also detected in the nucleus making it plausible that at 

least some level of Plk1 activation could occur there. 
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2 AIMS 

The overall goal of my thesis was to study Polo-like kinase 1 activity in G2 during 

unperturbed mitotic entry and after DNA damage. Plk1 is essential for checkpoint 

recovery and it means its activity lies on the crossroads of the DNA damage response 

and cell cycle regulation. Specifically, the respective studies aimed to: 

• develop conditions for using ratiometric imaging to follow a FRET-based 

biosensor for Plk1 activity over several cell cycles with minimal stress induction. 

• develop a setup to follow human cells on micropatterns to detect temporal 

information from both fixed and live cells. Use this setup to detect when mitotic 

kinases, in particular Plk1, is activated. 

• study how degradation of Bora is coordinated with Plk1 activation in nucleus 

and cytoplasm. 

• follow Plk1 activity during a checkpoint response to study possible involvement 

in cell fate decsisions.  

 

 





 

 23 

3 RESULTS AND DISCUSSION 

3.1 MONITORING KINASE AND PHOSPHATASE ACTIVITIES THROUGH THE CELL 
CYCLE BY RATIOMETRIC FRET (PAPER I) 

In this paper we describe and visually demonstrate a setup that allows to perform 

ratiometric imaging of a Förster Resonance Energy Transfer (FRET)-based biosensor 

throughout the cell cycle. We further show how to validate and quantify acquired FRET 

signals using microscopy software. A FRET sensor for kinase activity consists usually of 

two fluorophores, as CFP and YFP, joined by a linker with a consensus sequence and a 

phospho-binding domain. Upon phosphorylation, CFP and YFP lose close proximity, 

which results in loss of FRET. Due to the design, this kind of probe can be both 

phosphorylated by a kinase and dephosphorylated by a phosphatase, reflecting a 

balance of antagonizing activities. Since the cell cycle is likely to be regulated differently 

in unperturbed conditions and during recovery from stress, a caution needs to be taken 

when following the activity of cell cycle proteins by a FRET-probe over time. When it 

comes to stress in ratiometric imaging it can be caused by several factors. Firstly, the 

expression levels of the FRET-probe can interfere with the cell cycle progression by 

competing with a substrate and titrating away binding sites. Secondly, the exposure 

conditions and the nature of ratiometric imaging, that requires acquisition of two 

images at a time, can cause a stress response. Therefore, filming of a FRET-probe during 

at least one cell cycle and comparing cell cycle timings to the normal growing cells gives 

a good preliminary assessment of stress conditions. In case of deviating cell cycle 

timings, the expression level or exposure conditions need to be adjusted.  

With the help of microscopy, a difference in the efficiency of FRET can be measured by 

exciting a donor fluorophore and measuring emission from the acceptor fluorophore. 

This value is then compared to the excitation and emission ratio of the donor 

fluorophore itself. A FRET ratio is calculated between these two excitations-emissions 

with the help of microscopy software. During analysis, a special caution needs to be 

taken in estimating the background value and clipping value. To achieve desired 

visualization of the ratio, an inverted FRET ratio can be calculated. 

Here we discussed how to monitor a FRET-based probe without noticeably perturbing 

the cell cycle and still retain an acceptable signal-to-noise ratio. However, this may not 

be the issue for the probes that study fast responses and short-lived events, but mostly 

has implication for long-term imaging. In this article we have used a diffusible Plk1-

FRET probe, however in case of targeted biosensors, issues with photo-toxicity can have 

stronger impact. In case of H2B-coupled probes, close proximity to DNA can cause DNA 

damage upon excitation of fluorophores. 
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3.2 ASSESSING KINETICS FROM FIXED CELLS REVEALS ACTIVATION OF THE 
MITOTIC ENTRY NETWORK AT THE S/G2 TRANSITION (PAPER II) 

In this research paper we report a micropatterning method, that allows to extract 

kinetics of G2-proteins from fixed cells. Immunofluorescence is a powerful tool that 

allows to visualize the spatial distribution of cell cycle proteins, however it is limited by 

the lack of temporal resolution. Here we developed a method, that allows to extract 

temporal information from a large number of fixed cells, based on the knowledge of 

protein dynamics in the cell cycle. Assuming a gradual increase of the cell cycle 

components144 and having an estimate of the cell cycle duration, allows to assign 

timings to the cells based on strength of the cell cycle signal. Since precise signal 

quantification is essential for the accuracy of this approach, we have employed a system 

that allows to grow cells individually on fibronectin-coated micropatterns. This 

approach reduces cell-to-cell variation in shape and cell-to-cell contact and allows for 

optimal objective angle in image acquisition, which simplifies background subtraction. 

Using our quantitative immunofluorescence approach we find that early activation of 

the mitotic entry network occurs already at the S/G2 border. We detect Cdk1 target 

phosphorylation and a marker for Cdk1-Cyclin B1 activity as early as 5 hours before 

mitosis. We further verify our approach in live cells, by endogenous tagging and 

following of accumulation and degradation of Cyclin A and Cyclin B along with 

monitoring of Plk1 activity using a biosensor. Tracking of Plk1 activity together with the 

dynamics of PCNA foci reveals activation of Plk1 at the S/G2 border, 5 hours before 

mitosis. Similar to Cdk1 activity, Plk1 activity remained coupled to S-phase even after 

prolonged thymidine treatment. Thus, our results show that contrary to previous 
findings16, the mitotic entry network is activated at the S/G2 border, several hours 

before mitosis. Furthermore, our results indicate that S phase can play an important 

role in the regulation of G2 phase. 

In embryonic cycles G2 phase is mostly absent and mitotic entry can occur shortly after 

DNA replication. This would require a rapid activation of Cyclin-Cdk complexes that 

leads to mitosis. In somatic cells G2 phase is rather long, 5-6 hours, however a rapid 

increase in activation of Cyclin-Cdks is reserved for last 40 min before mitotic entry. 

Artificial extension of S phase leads to a delay in G2-specific target phosphorylation. 

Therefore, a mechanism can exist that allows for S phase to regulate the speed of 

accumulation of mitotic proteins and cyclins, by actively inhibiting them. Since S-phase 

progression in the absence of DNA damage requires ATR activity through Chk1 and its 

regulatory protein Claspin109, a possibility exists that ATR-Claspin-Chk1 could actively 

counteract Plk1 accumulation and activation in S phase. 
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3.3 PHOSPHORYLATION-MEDIATED STABILIZATION OF BORA IN MITOSIS 
COORDINATES PLX1/PLK1 AND CDK1 OSCILLATIONS (PAPER III) 

In this paper we and our collaborators have employed two different approaches in two 

different model organisms, Xenopus egg oocytes and human somatic cells, to study Bora 

degradation. In Xenopus oocytes periodical inactivation of Cdk1 through APC/C-

mediated degradation of Cyclins creates an oscillator. Plk1/Plx1 is an important cell 

cycle regulator that facilitates Cdk1 activation and entry into mitosis. In somatic cells 

Bora/Aurora A activate Plk1, which upon activation targets Bora for proteasomal 

degradation. This activation is coordinated by Cdk1, that initially pre-phosphorylates 

Bora and creates a docking site for Plk1/Aurora A interaction. Plk1 in somatic cells is 

degraded by APC/C-Cdh1 upon completion of mitosis. However, in Xenopus oocytes 

Plx1 levels are stable, but Plx1 activity is regulated by that phosphorylation oscillates. 

How these oscillations of Plx1 activity in early cycles were generated and how Plk1 

activity was sustained during mitosis remained unclear.  

Here we find that in oocytes, degradation of Bora regulates oscillations of Plx1 activity 

between mitosis and interphase. Embryonic Bora degradation, similar to in somatic 

cells, requires phosphorylation of Bora by Cdk1 and Plk1. In arrested oocyte extracts 

Bora is phosphorylated on the T52 consensus site of Cdk1. This phosphorylation 

stabilizes Bora by blocking its degradation. Calcineurin in a calcium-dependent manner 

dephosphorylates the T52 site and Bora can be degraded, thus the calcium surge that 

occurs at fertilization can trigger Plx1 oscillations.  

In somatic cells we have followed the dynamics of degradation of GFP-Bora. We record 

that GFP-Bora degradation slowly starts approximately 2 hours before mitosis when 

Plk1 activity monitored by Plk1-FRET probe begins to build up in the cytoplasm. 

Interestingly, this degradation stops as the cells enter mitosis, and GFP-Bora becomes 

stabilized in mitosis when Cdk1 is fully active. Taken together our results suggest that 

Cdk1 controls Bora degradation and stabilization in an incoherent feed-forward manner 

that coordinates Plk1/Plx1 and Cdk1 activity. 

With regard to Bora degradation and Plk1 activity it is tempting to speculate that 

spatio-temporal coordination of these events is not a coincidence. GFP-Bora localizes 

predominantly to the cytoplasm in human cells, and our results indicate that there is no 

active shuttling to the nucleus. Plk1 activity measured by a diffusible Plk1-FRET probe 

is first detected in the nucleus as early as 5 hours before mitosis, suggesting that this is 

where Plk1 phosphorylates its first substrates. However, the cytoplasmic activity of 

Plk1 becomes apparent later, approximately 2 hours before mitosis. Although it is not 

clear where Plk1 is activated, this spatial resolution could allow to preserve Bora in the 

cytoplasm after Plk1 activation and contribute to a delay for the Plk1-Bora negative 

feedback loop. 
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3.4 CELL CYCLE EXIT AFTER DNA DAMAGE CAN OCCUR AT TWO POSITIONS IN 
G2 PHASE (PAPER IV) 

In this manuscript we followed single RPE cells after infliction of DNA damage to 

checkpoint recovery or cell cycle exit. After DNA damage, activation of the checkpoint 

leads to two different outcomes: cell cycle resumption or cell cycle exit. However, the 

decision depends on the cell cycle stage when damage was inflicted and the amount of 

phase-specific activity. Moreover, a checkpoint is established differently in different cell 

cycle stages. Here we monitored Plk1 activity in live cells by the Plk1-FRET sensor to 

follow cell cycle activities and simultaneously followed a Geminin-RFP probe to monitor 

APC/C-Cdh1 activity. We find that cells damaged in all cell cycle stages can recover or 

exit cell cycle, however they do it with different dynamics. In case of G2, late G2 cells do 

not arrest after damage, but continue into mitosis, whereas early G2 cells exit the cell 

cycle by premature activation of APC/C-Cdh1. Interestingly, there is a point marked by a 

threshold level of Plk1 activity in G2, where a direct decision to enter or exit the cell 

cycle seem to be taken.  

Furthermore, cells damaged in S phase can exit the cell cycle with or without 

upregulation of Plk1 activity. Interestingly, both G2 damaged cells and S damaged cells 

that upregulated Plk1 activity could reach approximately the same threshold of Plk1 

activity. We conclude that cell cycle exit is possible at two positions in G2 and that Plk1 

activity is not required for cell cycle exit after damage in S phase. Moreover, cells 

damaged in G1 phase and overcoming the G1/S checkpoint do not necessary commit to 

mitosis, as we find that they can also exit the cell cycle after S phase in a similar manner 

as cells damaged in S phase.  

Interestingly, our results fit well with the observation that after genotoxic stress cells 

accumulate in G1 and G2 phases of the cell cycle. Moreover, a checkpoint can be 

efficiently established in G1 and G2 phases, but in S phase accumulation of p21 is 

inhibited by replication-coupled degradation78. The same might be true for late G2, 

where high Cdk and Plk1 activity inhibit the checkpoint. The fact that premature 

activation of APC/C-Cdh1 in G2 leads to cell cycle exit has been already reported86,103. 

Cyclin B translocation to the nucleus marks a point of no return for the cell cycle 

progression. P53 induction and p21 accumulation in the nucleus are mechanistical clues 

to cell cycle exit in G2. However, what triggers APC/C-Cdh1 activation after damage is 

unknown. Lowered Cdk1 activity and degradation of the APC/C inhibitor Emi1 could be 

contributing factors104. Plk1 is an established target for APC/C-Cdh1 activity, and 

several hours after DNA damage Plk1 can be degraded. 
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4 FUTURE OUTLOOK 

 

Life is simple and complex at the same time. Although, the life basics can be simple, the 

individual processes can evolve in complexity the more we learn about them. 

The more we learn about cell cycle networks the more complex they become.  Cell cycle 

regulations seems to be intertwined with the majority, if not all, essential processes 

within the cell. Cell cycle is connected to metabolic processes, various stress responses, 

DNA damage response, DNA repair and others. On one hand, some of these connections 

are expected e.g. those of metabolic processes that regulate cell growth145. On the other 

hand, they highlight how much is still there to explore.  

Cell cycle pathways are interlinked thought a plethora of feedback and feedforward 

loops that regulate signal transduction. However, the more we learn about contribution 

of the individual loops to the whole pathway, the less intuitive an understanding of the 

process becomes. Therefore, a mathematical modeling could be a future way to 

approach the rising complexity of the networks. A modelling approach could allow to 

incorporate single processes, characterized by single interaction loops into a model of 

the bigger process and predict behaviors for the whole network. 

Furthermore, advances in microcopy and other screening approaches allow for fast 

accumulation of a big number of data. However, the speed of data processing is limited. 

Thereof there is a need for efficient processing of the large data sets and a better way to 

present them. Computer learning and artificial intelligence could contribute to the 

solution in the future.  

Single cell approaches are essential in understanding of the somatic cell cycle networks. 

Since we are all individuals. However, we are also a system. Rules within a system could 

be different than those for single individuals, moreover, a signal transduction between 

cells may change the way individual cells respond to the stimuli. For example, cells can 

communicate DNA damage through bystander communication and the effects are 

increasingly obvious in cancers146. Therefore, it is important to extend the knowledge 

obtained in singe cells to the tissue or organ. These studies, could be really important in 

the understanding of complex processes like tumorigenesis. 
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