

Karolinska Institutet

http://openarchive.ki.se

This is a Peer Reviewed Accepted version of the following article, accepted for publication in Twin Research and Human Genetics.

2017-03-17

Exposure to air pollution from traffic and neurodevelopmental disorders in Swedish twins

Gong, Tong; Almqvist, Catarina; Bölte, Sven; Lichtenstein, Paul; Anckarsäter, Henrik; Lind, Tomas; Lundholm, Cecilia; Pershagen, Göran

Twin Res Hum Genet. 2014 Dec;17(6):553-62.

http://doi.org/10.1017/thg.2014.58 http://hdl.handle.net/10616/45603

If not otherwise stated by the Publisher's Terms and conditions, the manuscript is deposited under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

Copyright © 2014 The Author(s). This manuscript version is published under a Creative Commons CC-BY-NC-ND licence https://creativecommons.org/licenses/by-nc-nd/4.0/. No commercial re-distribution or re-use allowed. Derivative works cannot be distributed. For permission to reuse article outside of license, see Cambridge University Press' Rights and Permissions.

Supplemental Materials regarding to the article submitted to Twin Research and Human Genetics

Exposure to air pollution from traffic and neurodevelopmental disorders in Swedish Twins

Tong Gong¹, Catarina Almqvist^{1, 2}, Sven Bölte³, Paul Lichtenstein¹, Henrik Anckarsäter⁴, Tomas Lind⁵, Cecilia Lundholm¹, Göran Pershagen^{5,6}

Karolinska Institutet, Stockholm Sweden

Corresponding author:

Tong Gong Department of Medical Epidemiology and Biostatistics Karolinska Institutet SE-171 77 Stockholm, Sweden T. +46 8 524 84450

F. +46 8 31 11 01

E. tong.gong@ki.se

¹ Department of Medical Epidemiology and Biostatistics

² Department of Women's and Children's Health, Lung and Allergy unit, Astrid Lindgren Children's Hospital

³ Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND),

⁴ Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

⁵ Institute of Environmental Medicine, Karolinska Institutet, Stockholm Sweden

⁶ Center for Occupational and Environmental Medicine, Stockholm County Council, Sweden

Table of Contents

- Figure S1a. Correlation between NO_x and PM_{10} levels ($\mu g/m^3$) measured during different study periods
- 4 Figure S1b. Correlation of each pollutant (NO_x and PM₁₀ in μg/m³) over different study periods
- Table S1. Codes based on the 9th and 10th edition of International Classification of Diseases (ICD-9 and ICD-10) used to identify cases with chromosome abnormalities and neural tube defects and other neurological diseases from the National Patient Register and the telephone interview
- 6-7 Table S2. Distribution of NO_x and PM₁₀ exposure levels for different trimesters during pregnancy
- Table S3a. Crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to NO_x in each trimester
- Table S3b. Crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to PM₁₀ in each trimester
- Table S4a. Sensitivity analyses: crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to NO_x in each trimester with seasonal variation
- Table S4b. Sensitivity analyses: crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to PM₁₀ in each trimester with seasonal variation
- Table S5. Sensitivity analyses: crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to NO_x and PM_{10} in their 9^{th} year of lives
- Table S6. Sensitivity analyses: crude and adjusted ORs of ASD and ADHD comorbid with brain damage and chromosome abnormalities for twins born in Stockholm
- Table S7. Sub-analysis: crude and adjusted ORs of neurodevelopmental disorders (using validated cut-off values) for twins (n=2,960) whose mothers answered the telephone interview

Figure S1a. Correlation between NO_x and PM₁₀ levels (μ g/m³) measured during different study periods (n = 3,299 for mother's pregnancy; n=3,408 for child's first year of life; n=3,041 for child's 9th year of life)

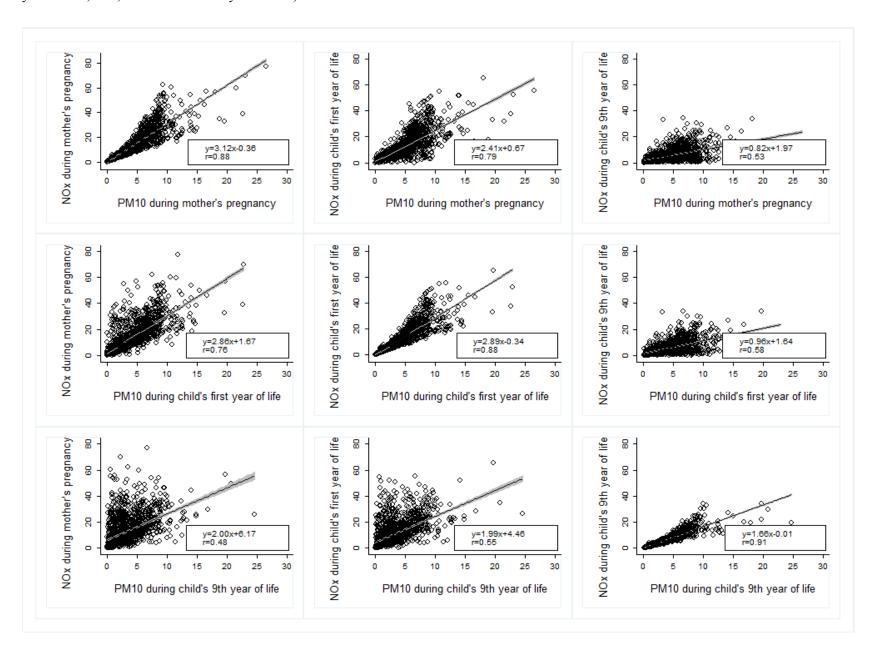


Figure S1b. Correlation of each pollutant (NO_x and PM₁₀ in μ g/m³) over different study periods (n=3,408 for child's first year of life; n=3,041 for child's 9th year of life)

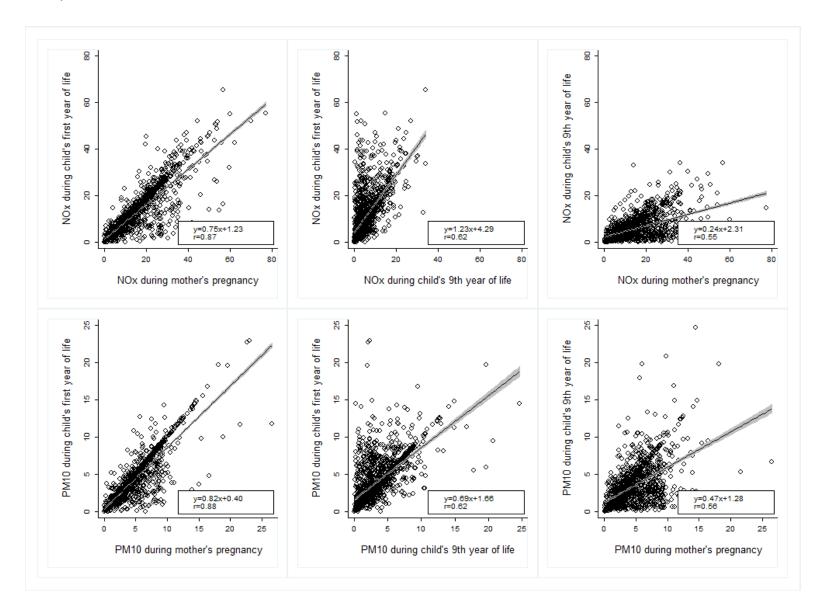


Table S1. Codes based on the 9th and 10th edition of International Classification of Diseases (ICD-9 and ICD-10) used to identify cases with chromosome abnormalities, neural tube defects and other neurological diseases from the National Patient Register and the telephone interview.

Diseases	ICD-9 codes	ICD-10 codes	N
Down's syndrome	758A	Q90	4
Fragile X syndrome	759.8 or 759W	Q99.2	0
Other chromosome aberrations	758B,C,D,E,F,G,H,W, X	Q91-Q92	0
Epilepsy	345	G40-G41	25
Spina bifida and other congenital anomalities of nervous system	741,742	Q01-Q07	4
Mental retardation	317, 318, 319	F70-F79, F88-F89	74
Cerebral paresis and plegias	342, 343, 344	G80, G81-G83	24
Other neurological disorders	330, 333-337, 348-349, 434, 436- 437	G90-G99	9

Table S2. Distribution of NO_x and PM_{10} exposure levels for different trimesters during pregnancy

	10 th percentile	25 th percentile	Mean	Median	75 th percentile	90 th percentile	Missing (n)
irst trimester							
NO _x exposure (μg/m ³)							
Dispersion model	2.53	4.94	13.27	9.25	18.78	29.76	105
Dispersion model with seasonal variation but no imputation	2.50	4.61	12.33	8.59	17.62	27.83	1,035
Dispersion model with seasonal variation and imputation	2.62	5.02	13.26	9.33	18.61	30.21	105
PM ₁₀ exposure (µg/m ³)							
Dispersion model	0.95	1.94	4.28	3.42	6.15	8.50	105
Dispersion model with seasonal variation but no imputation	0.19	1.62	4.29	3.62	6.48	9.18	1,196
Dispersion model with seasonal variation and imputation	0.18	1.58	4.32	3.78	6.62	9.18	1,001
econd trimester							
NO_x exposure $(\mu g/m^3)$							
Dispersion model	2.49	4.74	12.76	9.00	18.01	28.42	80
Dispersion model with seasonal variation but no imputation	2.20	4.46	11.95	8.65	16.81	26.86	865
Dispersion model with seasonal variation and imputation	2.31	4.72	12.73	8.99	17.68	28.38	80
PM_{10} exposure $(\mu g/m^3)$							
Dispersion model	0.95	1.90	4.22	3.36	5.98	8.45	80
Dispersion model with seasonal variation but no imputation	0.28	1.75	4.22	3.66	6.24	8.81	994

Dispersion model with seasonal variation and imputation	0.48	1.73	4.26	3.68	6.23	8.80	834
Third trimester							
NO_x exposure (µg/m ³)							
Dispersion model	2.42	4.67	12.03	8.38	16.37	26.95	100
Dispersion model with seasonal variation but no imputation	2.06	4.24	11.37	8.06	15.57	25.18	812
Dispersion model with seasonal variation and imputation	2.11	4.59	12.03	8.60	16.55	26.73	100
PM_{10} exposure ($\mu g/m^3$)							
Dispersion model	0.92	1.86	4.09	3.24	5.80	8.32	100
Dispersion model with seasonal variation but no imputation	-0.19	1.54	4.14	3.67	6.27	8.91	1,000
Dispersion model with seasonal variation and imputation	0.03	1.57	4.19	3.69	6.29	8.87	794

Table S3a. Crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to NO_x in each trimester

		NO _x during	1 st trimester	NO _x during	2 nd trimester	NO _x during	3 rd trimester
Outcomes	Case	OR^a	OR^b	OR^a	OR^b	OR^a	OR^b
		(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
ASD							
$\mathrm{ASD}_{\mathrm{low}}$	109	0.96	0.96	0.91	0.88	0.90	0.99
ASD _{low}	109	(0.48, 1.95)	(0.47, 1.99)	(0.43, 1.95)	(0.40, 1.93)	(0.41, 1.99)	(0.46, 2.14)
$\mathrm{ASD}_{\mathrm{high}}$	33	0.58	0.72	0.33	0.43	0.37	0.47
ASDhigh	33	(0.21, 1.62)	(0.25, 2.10)	(0.10, 1.02)	(0.13, 1.41)	(0.12, 1.13)	(0.13, 1.74)
$\mathrm{ASD}_{\mathrm{DSM ext{-}IV}}$	47	0.78	0.85	0.58	0.61	0.67	0.74
ASD _{DSM-IV}	4/	(0.30, 2.06)	(0.33, 2.22)	(0.19, 1.75)	(0.20, 1.83)	(0.22, 2.05)	(0.23, 2.38)
ADHD							
$\mathrm{ADHD}_{\mathrm{low}}$	328	0.70	0.84	0.76	0.89	0.86	1.03
ADIIDlow	326	(0.46, 1.06)	(0.54, 1.29)	(0.49, 1.18)	(0.57, 1.39)	(0.56, 1.34)	(0.67, 1.60)
$\mathrm{ADHD}_{\mathrm{high}}$	62	0.59	0.74	0.49	0.61	0.57	0.68
ADIIDhigh	02	(0.21, 1.61)	(0.30, 1.84)	(0.17, 1.45)	(0.23, 1.63)	(0.19, 1.69)	(0.25, 1.88)
$\mathrm{ADHD}_{\mathrm{DSM-IV}}$	152	0.52	0.59	0.58	0.62	0.67	0.77
TOTTO DSM-IV	132	(0.27, 1.00)	(0.31, 1.13)	(0.30, 1.13)	(0.33, 1.19)	(0.35, 1.29)	(0.41, 1.45)
Any neurodevelopmenta	l outcomes						
ASD or ADHD	355	0.75	0.88	0.81	0.92	0.90	1.07
1100 01 110110	333	(0.50, 1.13)	(0.58, 1.33)	(0.54, 1.23)	(0.60, 1.41)	(0.60, 1.37)	(0.70, 1.62)

^a Estimates based on crude models.

^b Models adjusted for parity, gender, maternal age during pregnancy, maternal smoking during pregnancy, maternal marital status at birth year, parental education, family income, and neighborhood deprivation at birth year.

Table S3b. Crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to PM₁₀ in each trimester

		PM ₁₀ during	1 st trimester	PM ₁₀ during	2 nd trimester	PM ₁₀ during 3 rd trimester		
Outcomes	Case	OR^a	OR^b	OR^a	OR^b	OR^a	OR^b	
		(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	
ASD								
$\mathrm{ASD}_{\mathrm{low}}$	109	0.96	1.05	0.93	0.96	1.02	1.11	
ASD_{low}	109	(0.49, 1.89)	(0.54, 2.01)	(0.45, 1.92)	(0.49, 1.90)	(0.48, 2.13)	(0.57, 2.17)	
$\mathrm{ASD}_{\mathrm{high}}$	33	0.71	0.88	0.48	0.62	0.55	0.70	
ASDhigh	33	(0.30, 1.72)	(0.36, 2.16)	(0.17, 1.39)	(0.22, 1.71)	(0.18, 1.65)	(0.23, 2.20)	
$\mathrm{ASD}_{\mathrm{DSM-IV}}$	47	0.83	0.85	0.66	0.65	0.74	0.73	
ASDDSM-IV	4/	(0.39, 1.78)	(0.43, 1.69)	(0.28, 1.56)	(0.31, 1.39)	(0.31, 1.78)	(0.33, 1.62)	
ADHD								
$\mathrm{ADHD}_{\mathrm{low}}$	328	0.77	0.93	0.84	0.97	0.93	1.12	
ADIIDlow	320	(0.52, 1.14)	(0.63, 1.38)	(0.56, 1.24)	(0.66, 1.43)	(0.63, 1.38)	(0.77, 1.63)	
$\mathrm{ADHD}_{\mathrm{high}}$	62	0.55	0.70	0.49	0.62	0.52	0.62	
7 IDTID high	02	(0.25, 1.22)	(0.35, 1.41)	(0.21, 1.15)	(0.30, 1.28)	(0.22,1.25)	(0.29, 1.36)	
$\mathrm{ADHD}_{\mathrm{DSM-IV}}$	152	0.70	0.78	0.80	0.85	0.86	0.97	
TIDITID DSM-IV	132	(0.38, 1.26)	(0.45, 1.36)	(0.43, 1.47)	(0.49, 1.49)	(0.47, 1.57)	(0.56, 1.68)	
Any neurodevelopmenta	al outcomes							
ASD or ADHD	355	0.81	0.96	0.86	0.99	0.96	1.13	
	200	(0.56, 1.17)	(0.66, 1.40)	(0.59, 1.25)	(0.68, 1.43)	(0.66, 1.39)	(0.79, 1.63)	

^a Estimates based on crude models.

^b Models adjusted for parity, gender, maternal age during pregnancy, maternal smoking during pregnancy, maternal marital status at birth year, parental education, family income, and neighborhood deprivation at birth year.

Table S4a. Sensitivity analyses: crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to NO_x in each trimester with seasonal variation

		NO _x during	1 st trimester	NO _x during	2 nd trimester	NO _x during	3 rd trimester
Outcomes	Case*	OR^a	OR^b	OR^a	OR^b	OR^a	OR^b
		(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
ASD							
$\mathrm{ASD}_{\mathrm{low}}$	96	0.96	0.95	0.91	0.87	0.89	0.97
ASD_{low}	90	(0.47, 1.96)	(0.46, 1.98)	(0.43, 1.92)	(0.40, 1.89)	(0.40, 2.00)	(0.44, 2.17)
$\mathrm{ASD}_{\mathrm{high}}$	29	0.61	0.78	0.33	0.43	0.34	0.42
ASDhigh	2)	(0.23, 1.65)	(0.30, 2.05)	(0.11, 1.04)	(0.13, 1.37)	(0.10, 1.16)	(0.10, 1.84)
$\mathrm{ASD}_{\mathrm{DSM-IV}}$	43	0.81	0.89	0.55	0.57	0.64	0.68
ASDDSM-IV	73	(0.31, 2.10)	(0.35, 2.26)	(0.18, 1.67)	(0.19, 1.70)	(0.20, 2.06)	(0.19, 2.41)
ADHD							
ADIID	202	0.70	0.84	0.75	0.87	0.85	1.02
$\mathrm{ADHD}_{\mathrm{low}}$	303	(0.45, 1.07)	(0.54, 1.31)	(0.49, 1.16)	(0.56, 1.36)	(0.54, 1.33)	(0.65, 1.60)
V DHD	56	0.57	0.72	0.47	0.58	0.59	0.70
$\mathrm{ADHD}_{\mathrm{high}}$	30	(0.20, 1.59)	(0.28, 1.84)	(0.16, 1.40)	(0.21, 1.58)	(0.20, 1.74)	(0.25, 1.95)
$\mathrm{ADHD}_{\mathrm{DSM-IV}}$	140	0.50	0.57	0.57	0.61	0.69	0.79
ADIID _{DSM-IV}	140	(0.25, 0.98)	(0.29, 1.11)	(0.29, 1.11)	(0.32, 1.17)	(0.36, 1.33)	(0.42, 1.50)
Any neurodevelopmenta	al outcomes						
•		0.76	0.88	0.81	0.91	0.89	1.05
ASD or ADHD	328	(0.50, 1.14)	(0.58, 1.34)	(0.53, 1.22)	(0.60, 1.39)	(0.58, 1.36)	(0.68, 1.62)

^{*}Case: Number of cases identified among twins with non-missing values (after imputation) for NO_x exposure.

^a Estimates based on crude models.

^b Models adjusted for parity, gender, maternal age during pregnancy, maternal smoking during pregnancy, maternal marital status at birth year, parental education, family income, and neighborhood deprivation at birth year.

Table S4b. Sensitivity analyses: crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to PM₁₀ in each trimester with seasonal variation

		PM ₁₀ during 1 st trimester		PM ₁₀ during	2 nd trimester	PM ₁₀ during 3 rd trimester		
Outcomes	Case*	OR^a	OR^b	OR^a	OR^b	OR^a	OR^b	
		(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	
ASD								
$\mathrm{ASD}_{\mathrm{low}}$	75	0.87	0.98	0.77	0.87	0.80	0.78	
ASD_{low}	73	(0.38, 2.01)	(0.46, 2.09)	(0.30, 1.97)	(0.37, 2.04)	(0.31, 2.10)	(0.31, 1.95)	
$\mathrm{ASD}_{\mathrm{high}}$	25	0.81	0.99	0.60	0.84	0.31		
ASDhigh	23	(0.37, 1.79)	(0.42, 2.36)	(0.23, 1.53)	(0.39, 1.78)	(0.10, 0.99)	-	
$\mathrm{ASD}_{\mathrm{DSM ext{-}IV}}$	33	0.87	0.98	0.65	0.66	0.47	0.29	
ASD _{DSM-IV}	33	(0.41, 1.87)	(0.45, 2.11)	(0.27, 1.55)	(0.31, 1.39)	(0.18, 1.19)	(0.10, 0.84)	
ADHD								
	225	0.81	0.92	0.84	1.12	0.96	1.02	
$\mathrm{ADHD}_{\mathrm{low}}$	225	(0.50, 1.31)	(0.58, 1.47)	(0.54, 1.32)	(0.72, 1.72)	(0.61, 1.52)	(0.65, 1.62)	
ADIID	47	0.36	0.48	0.37	0.54	0.28	0.32	
$\mathrm{ADHD}_{\mathrm{high}}$	47	(0.15, 0.88)	(0.20, 1.15)	(0.16, 0.89)	(0.24, 1.21)	(0.09, 0.91)	(0.10, 1.00)	
V DIID	106	0.58	0.67	0.67	0.87	0.83	0.87	
$\mathrm{ADHD}_{\mathrm{DSM-IV}}$	100	(0.28, 1.18)	(0.35, 1.29)	(0.34, 1.34)	(0.47, 1.60)	(0.40, 1.70)	(0.44, 1.72)	
Any neurodevelopmenta	al outcomes							
ACD on ADUD	242	0.83	0.95	0.85	1.11	0.97	1.02	
ASD or ADHD	242	(0.53, 1.30)	(0.61, 1.48)	(0.55, 1.31)	(0.73, 1.70)	(0.62, 1.50)	(0.65, 1.59)	

^{*}Case: Number of cases identified among twins with non-missing values (after imputation) for PM₁₀ exposure.

^a Estimates based on crude models.

^b Models adjusted for parity, gender, maternal age during pregnancy, maternal smoking during pregnancy, maternal marital status at birth year, parental education, family income, and neighborhood deprivation at birth year.

Table S5. Sensitivity analyses: crude and adjusted ORs of neurodevelopmental disorders for twins born in Stockholm, by exposure to NO_x and PM_{10} in their 9^{th} year of lives

		NO _x during 9	th year of life	PM ₁₀ during 9	Oth year of life
Outcomes	Case	OR^a	OR^b	OR^a	OR^b
		(95% CI)	(95% CI)	(95% CI)	(95% CI)
ASD					
$\mathrm{ASD}_{\mathrm{low}}$	109	0.75	0.93	0.93	1.14
ASD_{low}	109	(0.33, 1.71)	(0.42, 2.06)	(0.36, 2.40)	OR ^b (95% CI)
ASD_{high}	33	1.07	1.30	1.78	2.28
ASDhigh	55	(0.20, 5.63)	(0.27, 6.21)	(0.33, 9.66)	OR ^b (95% CI) 1.14 (0.48,2.71) 2.28 (0.50,10.35) 1.97 (0.58,6.76) 1.27 (0.83,1.93) 0.77 (0.33,1.79) 1.33 (0.73,2.41)
$\mathrm{ASD}_{\mathrm{DSM-IV}}$	47	1.11	1.23	1.73	
TODDSM-IV	7/	(0.33, 3.73)	(0.38, 3.97)	(0.49, 6.17)	(0.58, 6.76)
ADHD					
ADIID	220	0.94	1.14	1.08	1.27
$\mathrm{ADHD}_{\mathrm{low}}$	328	(0.59, 1.49)	(0.73, 1.77)	(0.67, 1.75)	(0.83, 1.93)
V DUD	62	0.88	1.04	0.67	0.77
$\mathrm{ADHD}_{\mathrm{high}}$	02	(0.28, 2.78)	(0.33, 3.21)	(0.27, 1.66)	(0.33,1.79)
$\mathrm{ADHD}_{\mathrm{DSM-IV}}$	152	0.94	1.15	1.12	1.33
ADIID _{DSM-IV}	132	(0.50, 1.76)	(0.62, 2.15)	(0.57, 2.20)	(0.73, 2.41)
Any neurodevelopmen	tal outcomes				
Thry ficultode velopinen		0.93	1.13	1.07	1 27
ASD or ADHD	355	(0.60, 1.44)	(0.74, 1.74)	(0.67, 1.70)	

^a Estimates based on crude models.

^b Models adjusted for parity, gender, maternal age during pregnancy, maternal smoking during pregnancy, maternal marital status at child's 9th year of life, parental education, family income, and neighborhood deprivation at child's 9th year of life.

Table S6. Sensitivity analyses: crude and adjusted ORs of ASD and ADHD comorbid with brain damage and chromosome abnormalities for twins born in Stockholm

		NO _x during	g pregnancy	NO _x durir	ng infancy	PM ₁₀ during	g pregnancy	PM ₁₀ duri	ng infancy
Outcomes	Case*	OR^a	OR^b	OR^a	OR^b	OR^a	OR^b	OR^a	OR^b
		(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
ASD									
A CD 44	44	0.56	0.42	0.72	0.50	0.65	0.57	0.90	0.76
$\mathrm{ASD}_{\mathrm{low}}$	D_{low} 44	(0.22, 1.46)	(0.17, 1.06)	(0.29, 1.78)	(0.20, 1.22)	(0.27, 1.60)	(0.24, 1.36)	(0.39, 2.11)	(0.33, 1.74)
ACD	24	0.59	0.69	0.67	0.80	0.84	0.89	1.07	1.02
$\mathrm{ASD}_{\mathrm{DSM-IV}}$	24	(0.19, 1.78)	(0.28, 1.68)	(0.23, 1.98)	(0.41, 1.54)	(0.27, 2.56)	(0.43, 1.87)	(0.35, 3.27)	(0.51, 2.01)
ADHD									
ADUD	40	0.49	0.55	0.65	0.65	0.55	0.68	0.67	0.71
$\mathrm{ADHD}_{\mathrm{low}}$	48	(0.19, 1.28)	(0.22, 1.40)	(0.25, 1.65)	(0.25, 1.69)	(0.22, 1.39)	(0.30, 1.55)	(0.27, 1.67)	(0.30, 1.65)
ADIID	2.4	0.43	0.50	0.59	0.61	0.53	0.59	0.67	0.64
$\mathrm{ADHD}_{\mathrm{DSM-IV}}$	34	(0.13, 1.44)	(0.16, 1.57)	(0.18, 1.88)	(0.18, 1.99)	(0.17, 1.70)	(0.22, 1.59)	(0.22, 2.05)	(0.22, 1.80)
Any neurodevelopm	nental outco	mes							
ACD on ADIID	50	0.59	0.55	0.78	0.66	0.66	0.71	0.66	0.71
ASD or ADHD	59	(0.26, 1.35)	(0.24, 1.23)	(0.35, 1.74)	(0.29, 1.51)	(0.30, 1.43)	(0.34, 1.48)	(0.30, 1.43)	(0.34, 1.48)

^{*}Cases comorbid with severe chromosome abnormality, malformations of the brain, epilepsy, cerebral palsy and other neurological disorders.

^a Estimates based on crude models.

^b Models adjusted for parity, gender, maternal age during pregnancy, maternal smoking during pregnancy, maternal marital status at birth year, parental education, family income, and neighborhood deprivation at birth year.

Table S7. Sub-analysis: crude and adjusted ORs of neurodevelopmental disorders (using validated cut-off values) for twins (n=2,960) whose mothers answered the telephone interview

	NO _x during pregna		g pregnancy	NO _x durir	ng infancy	PM ₁₀ during	g pregnancy	PM ₁₀ duri	ng infancy
Outcomes	Case	OR^a	OR^b	OR^a	OR^b	OR^a	OR^b	OR^a	OR^b
		(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
ASD									
$\mathrm{ASD}_{\mathrm{low}}$	91	0.56	0.70	0.71	0.86	0.79	0.96	0.88	1.01
ADD_{low}	71	(0.22, 1.41)	(0.28, 1.75)	(0.34, 1.48)	(0.41, 1.79)	(0.33, 1.89)	(0.44, 2.09)	(0.46, 1.66)	(0.57, 1.77)
$\mathrm{ASD}_{\mathrm{high}}$	29	0.41	0.45	0.55	0.51	0.55	0.59	0.77	0.72
ASDhigh	29	(0.13, 1.26)	(0.13, 1.54)	(0.20, 1.55)	(0.18, 1.45)	(0.19, 1.58)	(0.21, 1.64)	(0.27, 2.18)	(0.28, 1.87)
$\mathrm{ASD}_{\mathrm{DSM-IV}}$	41	0.33	0.36	0.48	0.48	0.57	0.56	0.83	0.76
ASDDSM-IV	71	(0.13, 0.88)	(0.13, 1.00)	(0.21, 1.14)	(0.20, 1.11)	(0.22, 1.46)	(0.25, 1.24)	(0.34, 2.00)	(0.37, 1.57)
ADHD									
ADIID		0.66	0.87	0.91	1.16	0.78	1.01	0.91	1.13
$\mathrm{ADHD}_{\mathrm{low}}$	281	(0.41,1.06)	(0.54,1.39)	(0.60, 1.38)	(0.76, 1.78)	(0.50,1.20)	(0.66, 1.53)	(0.62, 1.33)	(0.78, 1.65)
		0.35	0.50	0.60	0.79	0.38	0.55	0.56	0.72
$\mathrm{ADHD}_{\mathrm{high}}$	53	(0.11,1.19)	(0.16,1.56)	(0.19,1.88)	(0.27, 2.34)	(0.15,0.99)	(0.24,1.23)	(0.23, 1.37)	(0.33, 1.54)
		0.49	0.63	0.75	1.00	0.71	0.89	0.85	1.11
$\mathrm{ADHD}_{\mathrm{DSM\text{-}IV}}$	132	(0.23, 1.04)	(0.30,1.31)	(0.39,1.43)	(0.53,1.92)	(0.36,1.41)	(0.48,1.63)	(0.47,1.57)	(0.63, 1.92)
		(0.25,1.0.)	(0.50,1.51)	(0.05,11.15)	(0.00,1.52)	(0.00,1.11)	(0.10,1.02)	(0.17,1.07)	(0.02,1.52)
Any neurodevelopme	ntal outcor	mes							
ASD or ADHD	303	0.66	0.85	0.90	1.13	0.78	0.99	0.92	1.12
ASD OF ADDD	303	(0.43, 1.04)	(0.54, 1.33)	(0.61, 1.34)	(0.75, 1.70)	(0.52, 1.19)	(0.66, 1.48)	(0.64, 1.32)	(0.78, 1.61)

^a Estimates based on crude models.

^b Models adjusted for parity, gender, maternal age during pregnancy, maternal smoking during pregnancy, maternal marital status at birth year, parental education, family income, and neighborhood deprivation at birth year.