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ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a loss of

motor neurons in the brain and spinal cord, leading to progressive muscle weakness in multiple regions

of the body. No effective treatment is available and the disease progresses rapidly to death with an

average survival time of 3-5 years after symptom onset. The etiology of ALS is unknown for the majority

of the patients. Alterations in the carbohydrate and lipid metabolisms, together with hypermetabolism,

are features of ALS patients that are not yet well characterized. Understanding the early metabolic

symptoms of the disease might be a necessary step for the identification of an effective treatment.

Paper I describes a nested case-control study on the association between diabetes and the future

risk of ALS in the Swedish population. A total of 5,108 new ALS cases among the Swedish residents

between 1991 and 2010 were identified from the National Patient Register. Through linkages to several

nationwide Swedish registers five controls per case were selected from the entire Swedish population

using incidence density sampling and diabetes diagnoses were identified for both cases and controls

from hospital admission records, outpatient care records, prescription of antidiabetics, or a combination

of the three. An overall inverse association between diabetes and risk of ALS was found. There was

however a positive association between insulin-dependent diabetes before age 30 and ALS risk.

Paper II describes the association between body mass index (BMI), BMI change and ALS risk and

survival in the GENEVA study, a case-control study of United States military veterans. Self-reported

BMI at age 25, 40 and at time of ALS diagnosis (interview for controls) was compared. Low BMI at

age 40 was associated with increased risk of developing ALS and the association was stronger for cases

with diagnostic delay shorter than one year. Stable or decreasing BMI between age 25 and 40 was also

associated with higher risk of ALS compared to an increasing BMI. However, premorbid BMI and BMI

change did not predict survival of ALS patients.

Paper III describes the association between ALS risk and serum glucose, total cholesterol, LDL-C,

HDL-C, triglycerides, apolipoprotein B (apoB), and apolipoprotein A-I (apoA-I) in a Swedish population-

based cohort study. High LDL-C, apoB and the LDL-C/HDL-C and apoB/apoA-I ratios were associated

with a higher incidence of ALS. These associations seemed to be mainly due to a strong association of

apoB with ALS risk. High glucose level (≥6.11 mmol/L) was associated with a lower incidence of ALS.

During the 10 years before diagnosis, ALS patients had increasing levels of LDL-C, HDL-C, apoB and

apoA-I, whereas gradually decreasing levels of LDL-C/HDL-C and apoB/apoA-I ratios.

Paper IV describes a population-based nested case-control study of 2,475 Swedish residents diag-

nosed with ALS during July 2006-December 2013, and 12,375 population controls. Information on filled

prescriptions of antidiabetics and statins were extracted from the Swedish Prescribed Drug Register.

Antidiabetics were associated with a lower ALS risk, the association was stronger for men, for individuals

above age 65, and for ALS with longer disease duration. Statins were not associated with ALS risk overall,

though a positive association was noted among women. The latter association was mostly explained by

increased statins use during the year before ALS diagnosis.

The studies presented in this thesis have taken advantage of different study designs and populations

to systematically investigate the relationship between metabolic disorders and ALS risk and, to a lesser

extent, progression. Therefore, they contributed substantially to fill the knowledge gap about the asso-

ciation between metabolic disorders and neurodegeneration in ALS. Furthermore, Paper I and Paper

IV serve as excellent examples of the unique possibilities offered by the nationwide health registers in

Sweden that can, when equipped with modern analytical methods, contribute to the understanding of

complex diseases.
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Chapter 1

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rather rare though highly feared neurodegenerative

disease. The rapid and irreversible progression to full body paralysis is devastating for the

patients and causes high psychological stress also for caregivers [1].

Since Jean-Martin Charcot first described the disease in 1869 a massive research effort has

been made. However, current treatment affects the disease progression only marginally and

the etiological mechanisms are still largely unclear.

The answer to the questions "Who develops ALS?", "Why?" and "When?" would indicate

the most promising targets for therapeutic intervention. ALS is likely a complex multifactorial

disease and epidemiological investigations of premorbid disease represent an important tool

to study its etiological process and suggest possible molecular pathways.

Metabolic alterations have often been reported in patients with ALS [2], as well as in studies

focusing on antecedent conditions [3]. Metabolic disorders like diabetes, dyslipidemias and

obesity may comprise resistance to neurodegenerative processes occurring in ALS. Most of

the associations linking metabolic factors to ALS are, however, still controversial and poorly

understood [4]. Studying the metabolic features of ALS can expand and refine the current

knowledge on both risk factors and prognostic indicators for ALS. Metabolic diseases may share

environmental risk factors or genetic predisposition with ALS and, furthermore, the treatments

of these diseases may alter future risk of ALS development.

In this thesis, I present four epidemiological studies that focus on different aspects of the

relationship between metabolic alterations and ALS. The factors investigated include metabolic

disorders such as diabetes, anthropometric measures such as body mass index (BMI), blood

biomarkers, and medications. The background section provides a short introduction limited to

the topics of main relevance for the presentation of the four studies. To summarize the joint

contribution of these studies, the main results, some discussion points, and thoughts on future

directions are also presented.



Chapter 2

BACKGROUND

2.1 ALS

2.1.1 Disease characteristics

ALS is characterized by a loss of motor neurons in the brain and spinal cord, leading to progres-

sive muscle weakness in multiple regions of the body [5]. The disease most commonly presents

focal symptom onset and progresses rapidly leading to fatal respiratory failure.

In all patients with ALS the disease spreads to both upper motor neurons and lower motor

neurons even if only upper of lower motor neurons may be affected at motor symptoms onset.

Degeneration of upper motor neurons causes muscle weakness, hyperreflexia, and spasticity. De-

generation of lower motor neurons in the brainstem and spinal cord results in muscle weakness,

atrophy or amyotrophy, and muscle fasciculation. Evidence is accumulating that the disease

process in ALS involves not only motor neurons but also interneurons and non-neuronal cells

such as astrocytes and microglia [6].

Spinal symptoms include difficulties in walking and in performing other body movements.

Bulbar symptoms include dysphagia and dysarthria. Recently, increasing attention has been

paid to cognitive symptoms. Some extent of cognitive impairment is nowadays recognized in

the majority of the ALS patients. The overlap between ALS and frontotemporal dementia (FTD)

is established and heterogeneous neuropsychological deficits have been reported [7, 8].

Diagnosis

There is no single confirmatory test for a suspected diagnosis of ALS. The diagnosis is usually

based both on the assessment of signs and symptoms and on the exclusion of other conditions.

The symptoms are sometimes misinterpreted and different specialists may be consulted

before referring to a neurologist. Despite muscle fasciculation, typically in the limbs or in

the tongue, is a clear sign of the disease to a specialist, establishing an ALS diagnosis most

often requires a meticulous diagnostic workup. The consequent diagnostic delay (i.e. the time

interval between symptom onset and clinical diagnosis) is on average one year [9] and is often

cause of distress to the patient.
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The current international guidelines for diagnosing ALS are the El Escorial criteria. These

criteria were first proposed by the committee on motor neuron diseases of World Federation

of Neurology in 1990 and were revised in 1998 [10].

The diagnostic work-up may consist in a neurological examination looking for upper and

lower motor neuron signs, collection of detailed family history, neuroimaging including brain

CT and MRI of the brain and spine, blood test, lumbar puncture (also to evaluate neurofilament

levels), neurophysiological examinations, neurography measuring electrical conduction in the

limbs, and electromyography examining the lower motor neurons.

Neuroimaging is used to rule out disorders such as multiple sclerosis or brain tumor. Elec-

trodiagnostic investigations are helpful in evaluating weakness, muscle wasting, and sensory

symptoms. Both upper and lower motor neuron involvement needs to be present to exclude

other even rarer motor neuron diseases such as primary lateral sclerosis, which affects the

upper motor neurons, progressive bulbar palsy, which affects the lower motor neurons in the

brain stem, and progressive muscular atrophy, which affects the lower motor neurons in the

spinal cord.

Etiopathology

Important advances have been made since Jean-Martin Charcot first described ALS in 1869.

Indeed, the identification of some genetic causal variants has led to a number of animal models

of the disease. The causes of the disease however are likely diverse, remain unknown for the

majority of the patients, and none is yet fully understood at a cellular level.

The general belief is that ALS is a complex multifactorial disease [11]. This hypothesis is

supported by the observed variation of ALS incidence with age [12].

Furthermore, it is likely that multiple different upstream mechanisms result in a final com-

mon pathway leading to the peculiar pathology of ALS [13, 14]. The cascade of pathological

events may start many years before the overt disease [15].

Some mechanisms involved in the disease include protein misfolding and aggregation,

microglial activation, oxidative stress, excitotoxicity, and impaired axonal transport (Figure

2.1) [16, 17].

Treatment

Although several compounds have shown promising results in preclinical studies, their transla-

tion into clinical trials has failed. True lack of efficacy may not be the only reason that has led

to the failure of many clinical studies [18].

The only routinely administered drug that improves survival time is riluzole (Rilutek; Aven-

tis Pharma, Antony, France)[19]. Riluzole prolongs the survival time on average by a few

months but this medication does not stop the disease course. The beneficial effect on survival

is thought to be the result of preventing glutamate-induced excitotoxicity. Adverse reactions

include asthenia, nausea, vomiting, diarrhea, abdominal pain, anorexia, dizziness, and liver dam-

age. The potentially neuroprotective Endaravone has started to be administered more recently
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Figure 2.1: Mechanisms of disease implicated in ALS. (a) Familial ALS-associated mutations frequently
affect genes that are components of the cellular protein quality control system. Other mutations, such as
those in SOD1, affect protein folding. (b) Hyperactivation of microglia produces extracellular superoxide,
which triggers inflammation and degeneration in motor neurons. (c) A reduction in the levels of the
lactate transporter MCT1 diminishes energy supplied by oligodendrocytes to motor neurons. (d) A
failure of astrocytes to clear synaptic glutamate via the transporter EAAT2 triggers repetitive firing of
motor neurons and excitotoxicity. (e) Disruption of the cytoskeleton and impaired axonal transport limits
the exchange of essential macromolecules and organelles between the neuronal cell body and distal
compartments. (f) Disturbances in aspects of RNA metabolism, including RNA processing, transport and
utilization, are largely the result of impaired hnRNP function. Reproduced with permission from Taylor
et al. (2016).

and other pharmacological treatments are under study [20, 21]. An animal study targeting

simultaneously motor neurons, astrocytes and microglia in ALS mice suggested that targeting

different pathogenic mechanisms in independent cell types may be an effective therapeutic

strategy for ALS [22].

Because ALS is progressive and incurable most current treatments for ALS are inevitably

consisting in either multidisciplinary care, to improve quality of life, or palliative care, to relieve

signs and symptoms throughout each stage of the disease. Physical and occupational therapy

is aimed to delay loss of strength, maintain endurance, prevent complications, reduce pain,

and promote functional independence. Patients can benefit from exercising which may help

improve cardiovascular health, fatigue, and depression. Speech-language pathologists can also

help patients. Placement of percutaneous gastrostomy tube for nutritional support is common
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and can prolong the survival [23]. Nearly all patients develop signs and symptoms of respiratory

insufficiency that may require mechanical ventilation. When mechanical ventilation is consid-

ered, patients can be offered either noninvasive positive-pressure ventilation or tracheostomy.

Pharmacotherapy may be indicated to treat depression and pain as well as other symptoms

like dyspnea, muscle spasm, spasticity, sialorrhea, fatigue, dysphagia, and sleeping problems.

2.1.2 Epidemiology of ALS

Incidence and prevalence

ALS is the most common motor neuron disease. About two individuals in each 100,000 develop

ALS every year [24]. The mean age at onset ranges between 60 and 70 years of age [25].

Though ALS incidence is thought to be rather similar across countries some differences

are present (Figure 2.2) [24]. Higher incidence rates have been reported consistently for older

populations, among males, and among whites [26, 27]. ALS incidence seems to be quite ho-

mogeneous in Europe though age-standardized incidence may be higher in Northern Europe

[24, 27].

With the aging of the population the yearly incidence of ALS is estimated to increase in the

Western countries to almost 4 per 100,000 in 2050 [25].

The disease progresses rapidly with an average survival time of 3–5 years after the first

symptom onset. Therefore, the disease prevalence is lower than 10 per 100,000 [28, 29]. The

prevalence is increasing as a result of the increasing incidence and the efforts for prolonging

patient survival [29].

Genetic risk factors

About 5-10% of the patients with ALS cases have a clear family history [30], while for the

other 90-95% of the patients (i.e. sporadic ALS cases), the etiology is largely unknown. The

heritability of sporadic ALS is estimated to be high [31] but attempts to establish the complex

genetic basis for sporadic ALS have had only little success.

Cytosolic copper-zinc superoxide dismutase (SOD1) was the first ALS gene to be identified

in 1993 [32]. The gene expresses the SOD1 protein which acts as an enzyme in the degradation

of reactive oxygen species. Therefore, the identification of SOD1 mutations in ALS patients

provided the first genetic basis for the oxidative damage reported in ALS. Many useful mutant

SOD1 models have been developed in different species and the mutant SOD1 mouse models

are still the most common animal model of ALS [33].

The most common known cause of ALS has been identified in 2011 as an expansion of a

hexanucleotide intronic repeat within the first intron of the chromosome 9 open reading frame

72 (C9orf72) gene [34–36]. The exact mechanism has not been elucidated yet but the toxicity

of this mutation may be due to deleterious intranuclear deposition of RNA. The recognition of

the C9orf72 mutation also provided a strong genetic common basis for the ALS-FTD spectrum

[8].
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Figure 2.2: Distribution of ALS worldwide: crude incidence and age- and sex-standardized incidence on
USA 2010 population. Reproduced with permission from Marin et al. (2016).
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To date, more than 100 gene mutations have been linked to ALS[14, 37]. Both rare and more

common genetic variants have been identified and different levels of penetrance have been

observed (Figure 2.3). The TARDBP gene expressing the Transactive Response DNA-Binding

Protein 43 (TDP-43) and the Fused in Sarcoma (FUS) gene are among the most studied ALS

genes and they are both implicated in RNA metabolism [38, 39].

Figure 2.3: Certain traits and conditions, such as height, BMI and schizophrenia, are influenced by the
cumulative effect of tens or hundreds of gene variants, each only contributing a small amount to overall
risk. Owing to the small effect of each variant, removal of these variants from the population by natural
selection is weak, and they can become common. Diseases such as cystic fibrosis or Huntington disease
result from single gene mutations that greatly increase the risk of disease. Owing to their large effects,
such variants tend to be removed from the population by natural selection and remain rare, unless,
as is the case for cystic fibrosis, they confer some selective advantage in certain environments. Genes
associated with amyotrophic lateral sclerosis (ALS) include both types, but the majority of associated
variants have an intermediate effect size. In the figure, blue areas indicate genetic variants implicated in
phenotypes other than ALS, and grey areas indicate genetic variants implicated in ALS, with the name of
the corresponding gene listed. The x-axis shows the number of genetic variants involved in a phenotype,
ranging from Mendelian (single gene variant) to polygenic (multiple gene variants). Reproduced with
permission from Al-Chalabi et al. (2017).

Some ALS genes, among which SOD1, C9orf72 and FUS, influence also factors such as ALS

phenotype (e.g. age or site of onset) and survival time. Moreover, genetic variants that are not

primary causes of ALS have been found to influence susceptibility, ALS phenotype, and survival

[14].
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Environmental risk factors

Many environmental risk factors for ALS have been studied [40, 41]. Exposure to pesticides,

pollutants and lead is recognized to increase the risk of ALS [42]. Head trauma is likely also a

risk factor [43–45].

The variation of ALS risk across occupations has been largely studied but the actual risk

factors driving the suggested associations are still uncertain [46]. One of the mechanisms sug-

gested by the higher risk associated with occupations requiring contact with public is infections

[47]. Exposures related to military service may also be dangerous but ALS risk was not found

to be increased among military personnel overall [48, 49].

Lifestyle may also play a role. For instance, following the development of ALS in well-known

athletes, extreme physical activity has been recognized as associated with an increased risk

of ALS [50–53]. Genetic variants related to energy metabolism have recently been found to

be involved in this association [54]. Moderate physical activity has however been associated

with reduced risk [53, 55, 56]. A SOD1 mouse study suggested a neuroprotective effect of

exercise via modulation of glial cells [57]. A reduced incidence of premorbid cardiovascular

disease has also been reported among ALS patients [58–60]. This association may however

be partially due to the confounding effect of healthy diet [61, 62] and smoking [63]. Indeed,

consumption of foods high in carotenoids and omega-3 long-chain polyunsaturated fatty acids

has been associated to reduced ALS risk, while smoking is likely a risk factor for ALS.

Prognostic factors

The rate of progression of ALS is difficult to predict [64]. Though treatment has a rather limited

effect, both genetic and non-genetic factors have been associated to the rate of progression of

the disease [65].

Among the markers of the disease advancement serum levels of albumin and creatinine

at the time of diagnosis were found to be inversely related to survival [66]. BMI [2, 67–70],

subcutaneous body fat [71], and lipid levels [72] all positively correlate with survival. Dietary

guidelines are not established but high fat diet is believed to extend survival [73], and intake of

fruits and vegetables has recently been suggested to slow the progression of the disease [74].

Interestingly, premorbid habits such as cigarette smoking seem to be also associated with

ALS survival after diagnosis [63, 75].

2.2 METABOLIC DISORDERS

The metabolism of an organism is defined as the sum of the physical and chemical processes

by which the material substance of the organism is produced, maintained, and destroyed, and

by which energy is made available.

When any of these processes is chronically disrupted the energy metabolism is altered and

a metabolic disorder develops. Both genetic and lifestyle factors influence the risk of metabolic

disorders and some common examples are diabetes mellitus, dyslipidemia, and obesity.
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Given the change in lifestyle, the incidence and prevalence of metabolic disorders, especially

type 2 diabetes and obesity, have been raising in the developed countries over the past decades.

Accordingly, treatment for metabolic conditions is prevalent in the Western countries and may

introduce potential unforeseen effects at the population level.

2.2.1 Diabetes

Diabetes mellitus, or simply diabetes, is one of the most common chronic diseases, with a great

impact on the individual patient and the society. Different types of diabetes have different

etiologies, all of which result in detrimental accumulation of glucose in the blood stream.

Type 1 diabetes is mainly an autoimmune disease affecting and destroying the pancreatic

beta-cells which produce insulin. This form of diabetes is usually hereditary and diagnosed

before 30 years of age.

Type 2 diabetes is characterized by insulin resistance. The large majority of patients with

diabetes suffer from type 2 diabetes which is an aging-associated disease. Other than genetic

predisposition, an unbalanced diet and a sedentary lifestyle predispose to this condition.

Treatment

A diagnosis of diabetes is always followed by lifelong treatment to prevent the deleterious

effect of high blood glucose.

While insulin is the routine treatment for type 1 diabetes, oral antidiabetics are the initial

treatment option for type 2 diabetes. Nevertheless, patients with type 1 diabetes can be pre-

scribed with other antidiabetic medications and insulin therapy is often beneficial to patients

with severe type 2 diabetes.

2.2.2 Dyslipidemia

Perturbations of lipid metabolism result in dyslipidemias, i.e. abnormal lipid levels in the blood.

The large majority of patients with dyslipidemias have a form of hyperlipidemia. The most

common forms are hypercholesterolemia and hypertriglyceridemia.

Treatment

Lipid-modifying agents are largely used as pharmacological treatment of hyperlipidemia. Statins

are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors used to treat hypercholes-

terolemia and represent one of the most commonly prescribed medications worldwide [76].



10 2. BACKGROUND

2.3 METABOLISM AND ALS

2.3.1 Metabolism before motor symptom onset

Epidemiological studies investigating the biological processes occurring before the overt dis-

ease are difficult to perform. However, some successful attempts of assessing in humans the

hypotheses generated by preclinical studies have been made.

Epidemiological studies

Several studies reported an association between lower BMI and increased risk of developing

ALS [77, 78]. This association may exist also for BMI during youth, i.e. decades before the

onset of motor symptoms [78]. Increased resting energy expenditure before clinical onset of

ALS was reported by a Dutch study [79].

Premorbid type 2 diabetes was found to be associated with a 4-year later onset of ALS [80]

whereas type 1 diabetes may be associated with increased risk of ALS [81].

Animal studies

Mutant SOD1 mice present presymptomatic hypermetabolism and reduced adipose tissue ac-

cumulation [82]. Hypolipidemia [83] and inhibition in the capacity of glycolytic muscle to use

glucose [84] were also observed in mutant SOD1 mice.

2.3.2 Metabolism after motor symptom onset

Metabolic alterations among patients with ALS have been reported for decades [85].

Hypermetabolism is generally recognized as an established and early feature among ALS

patients [2, 86–89]. The causes underlying this accelerated metabolism have however not

been completely understood. One of the contributing mechanisms may be the presence of

fasciculation which contributes to the increased energy expenditure [90].

Alterations in both carbohydrate (e.g. impaired glucose tolerance) and lipid (e.g. dyslipi-

demias) metabolisms have been reported [91].

Insulin resistance and possibly hypermetabolism are features appearing consistently across

the ALS-FTD spectrum [92]. However, ALS and FTD show opposite trends for BMI [93]. Despite

the common genetic predisposition of ALS and FTD, weight loss is typical of ALS and the

presence of cognitive deficits is associated with a tendency towards weight gain. Interestingly,

ALS progression has been suggested to impair responsiveness to classical drugs leading to

weight gain [94].

More insights on metabolic alterations occurring in ALS have been suggested by animal

studies. For instance, the mutant SOD1 mouse exhibits increased peripheral lipid clearance

[95]. Further, lipid accumulation in neurons was found in Spg11 knockout mice that have been

proposed as a model for ALS [96].
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2.3.3 Metabolic disorders as risk factors

Risk of ALS

Different hypotheses have been formulated for the association of physical activity and bene-

ficial cardiovascular profile with ALS [59]. The common belief has been shifting towards the

hypothesis that the metabolic profile may be a common cause of ALS and cardiovascular health

(Figure 2.4). Indeed, preclinical studies have suggested a causative effect of defective energy

metabolism on the peripheral nervous system. Muscle-restricted mitochondrial defect which

results in energy deficiency has been shown to cause the destruction of the neuromuscular

junction and subsequently induce motor neuron death [97, 98].

Medications used for treatments of metabolic disorders may be associated with the devel-

opment of ALS independently. For example, analyses of surveillance databases have suggested

that statin use might be associated with the occurrence of an ALS-like syndrome [99, 100].

However, other studies have reported a null association between statins and ALS risk [101].

Figure 2.4: Proposed concept shift in the pathogenic mechanisms of ALS. From (A) a genetically deter-
mined fitness profile, by means of increased physical activity, increases the risk of ALS and decreases the
risk of cardiovascular diseases and risk factors; via (B) where both increased ALS risk and cardiovascular
fitness are the result of a common genetic predisposition; towards (C) where an increased ALS risk, and
fewer cardiovascular risk factors are the result of a specific pathway, modified by genetic predisposi-
tion, possibly in combination with exogenous risk factors (such as physical activity). Reproduced with
permission from Visser et al. (2017).
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ALS progression and survival

Rate of progression of motor symptoms correlates with weight loss [102]. Low lipid levels were

a negative prognostic factor in some studies but not in others [72, 103, 104]. The associations

between ALS progression or survival and diabetes (permorbid or during the course of the

disease) have rarely been studied in population-based studies. However, a recent study reported

a null association between premorbid type 2 diabetes and survival in a large sample of ALS

patients that had participated in clinical trials [105].

The recognition of the interrelation between metabolism and disease progression has al-

lowed the identification of therapeutic targets [106]. Some therapies that target the metabolism

have shown encouraging effects in animal models but evidence from clinical trials supporting

the efficacy of these therapies in slowing the disease progression is still limited [106].



Chapter 3

AIMS

This thesis sought to provide insight into pre-diagnosis metabolic features of ALS patients with

the purpose of identifying high-risk groups and elucidating the etiopathogenesis of the disease.

The specific aims of the thesis are as follows:

• To evaluate whether diabetes is associated with future risk of ALS and the temporal

pattern of this association (Paper I).

• To confirm the epidemiological evidence of an inverse association between BMI, weight

gain and ALS risk, and investigate if pre-diagnosis BMI predicts ALS survival (Paper II).

• To assess the associations of several blood biomarkers of carbohydrate, lipid and apolipopro-

tein metabolisms with the future risk of ALS (Paper III).

• To describe whether the prescriptions of antidiabetics and statins are associated with

future risk of ALS in Sweden (Paper IV).



Chapter 4

MATERIALS

All the papers presented in this thesis are based, entirely or partially, on register data. Addi-

tionally, Paper II is based on the data collected for the GENEVA study and Paper III is based on

the data collected for the AMORIS study.

4.1 REGISTER DATA

The systematic collection of information in registers is a cornerstone for epidemiological re-

search. In Sweden, local population registers started to be compiled back in the 17th century.

However, it is since 1947, when Swedish National Registration Numbers identifying each and

all Swedish residents were introduced, that a number of registers developed [107]. This early

resolution to register information results nowadays in a unique opportunity of linking high-

quality individual-level data with national coverage, as shown in Paper I, Paper III and Paper

IV.

Paper II would have not been possible without the effort by the US Department of Veterans

affairs to establish the National Registry of Veterans with Amyotrophic Lateral Sclerosis that

aimed to identify and monitor veterans with ALS.

4.1.1 The Swedish Multi-Generation Register

During 1947 and 1948 personal and parental information (i.e. biological mother and father)

of all children and teenagers 15 years or younger was collected from all parish registries in

Sweden [108]. The Swedish National Registration Numbers were used as the unique identifiers

to link mother and child, or father and child [107]. Since then and until 1991, all babies born

in Sweden and all individuals immigrating to Sweden have been registered at local level for

national registration. The Swedish Multi-Generation Register was based on this information

and was computerized in 1991. The first computerized version, however, included the persons

that have been included in a census (that started in 1961) and that were still alive on June

30, 1991, or born in 1920 or after, if they had emigrated. In 2000, additional information

concerning data on the biological parents of deceased or emigrated individuals and adoptive

parents was retrieved and added to the database.
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4.1.2 The Swedish Patient Register

The Swedish National Board of Health and Welfare started collecting clinical information on

hospital admissions in the Swedish Patient Register in 1964 [109]. The information collected

includes for instance the dates of admission and discharge, the main diagnosis at discharge, and

up to 21 secondary diagnoses. All diagnoses are coded according to the Swedish Revisions of

the International Classification of Diseases (ICD). First, ICD-7 codes were used (before 1969),

then ICD-8 codes were in use from 1969 to 1986, ICD-9 codes from 1987 to 1996, and ICD-10

codes have been employed since 1997 (except for the county of Skåne that used ICD-9 in 1997

and switched to ICD-10 only in 1998) [109]. The register has full national coverage since 1987.

The collection of hospital-based outpatient physician visits of non-admitted patients, which

started in January 2001, constituted an important development of the register.

4.1.3 The Swedish Prescribed Drug Register

Since the 1st July 2005 the Swedish Prescribed Drug Register includes the Swedish National

Registration Numbers allowing individual-level information [110]. Detailed information on

drugs dispensed in all Swedish pharmacies is collected. During the first 10 years 891 million

prescriptions were recorded [111].

The recorded information includes the substance, brand name, formulation, package, dis-

pensed amount, dosage, and drug classification code according to the Anatomical Therapeutic

Chemical (ATC) classification system. Both date of prescription (a useful proxy for date of

diagnosis of the underlying medical condition) and date of dispense (a useful proxy for date

of medication use) are collected in the register.

Medicines that are prescribed but never dispensed, medicines that can be purchased without

a prescription (i.e. over-the-counter drugs), and drug treatment in clinics are not recorded in

the register.

4.1.4 The Swedish Cause of Death Register

The National Board of Health and Welfare compiles the Swedish Cause of Death Register. The

Register carries detailed information about deaths of all individuals registered in Sweden at

the time of death. Mortality data are available since 1961, regardless of whether the death

occurred in Sweden or abroad.

4.1.5 The National Registry of Veterans with Amyotrophic Lateral Sclerosis

The US Department of Veterans affairs established the National Registry of Veterans with ALS

in 2003 [112]. The Registry was established to address a growing concern about an increased

risk of ALS among military veterans, especially after the reports of a potential excess risk of

ALS among the veterans of the 1990–1991 Persian Gulf War [113]. Between April 1, 2003 and

September 30, 2007 potential patients with ALS among the military veterans were recruited and

their medical record were reviewed by neurologists to confirm the diagnosis before enrollment
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in the register. A total of 2,122 patients were enrolled in the Registry and were contacted every

6 months for follow-up interviews until September 30, 2009. Both incident and prevalent ALS

cases were included.

Veterans with ALS were identified by searching the national electronic medical record

databases of the Department of Veterans Affairs and with active recruitment through nationwide

publicity efforts. The medical record review was conducted by collecting information from all

healthcare providers and facilities in which patients had received care.

At baseline, the Registry collected the diagnosis date and type (clinically definite ALS,

clinically probable ALS, clinically possible ALS, progressive muscular atrophy, progressive bulbar

palsy), family history, onset date and site, ALS Functional Rating Scale (ALSFRS-R), and other

clinical features.

4.2 OTHER SOURCES

4.2.1 The GENEVA study

A potentially increased risk of ALS after deployment prompted the Department of Veterans

Affairs not only to establish the National Registry of Veterans with ALS but also to conduct the

Genes and Environmental Exposures in Veterans with ALS (GENEVA) case-control study [114].

From 2005 to 2010, GENEVA recruited 630 neurologist-confirmed ALS cases among the patients

that were enrolled in the National Registry of Veterans with Amyotrophic Lateral Sclerosis

between 2003 and 2007, as well as a representative sample of 975 veteran controls from the

database of all US veterans with a release of active duty [114]. The controls were frequency-

matched to the ALS patients by age and use of the Veteran Affairs system for health care (before

ALS diagnosis for the cases) as a proxy for socioeconomic status. Sex and race/ethnicity could

not be used as matching factors because this information was not available in the databases of

the Department of Veterans Affairs.

For both ALS cases and controls, a detailed structured telephone interview was conducted

to ascertain in a retrospective fashion the exposure history before their reference date. The

reference date was defined as the date of ALS diagnosis for the ALS cases and the interview

date for the controls. In case of impairment (in communication or cognition) of the GENEVA

participant, the telephone interview was conducted with a person communicating with the

participant (138 ALS cases and one control). The GENEVA interview was conducted with a

proxy for 34 deceased cases. If preferred by the patient or by the proxy respondent the interview

was conducted over multiple phone calls.

The dates of death of the ALS cases were obtained both from the National Registry of

Veterans with ALS (until September 2009 only) and from the validated Austin Vital Status File,

which is also compiled by the Department of Veterans Affairs from several sources [115].



4. MATERIALS 17

4.2.2 The AMORIS study

With joint efforts Ingmar Jungner at the Central Automation Laboratory (CALAB) laboratory

(Stockholm, Sweden) and Göran Walldius at Karolinska Institutet (Stockholm, Sweden) started

the Apolipoprotein MOrtality RISk (AMORIS) study. The AMORIS cohort was established with

the aim of investigating common metabolic and inflammatory blood biomarkers in relation

to different chronic diseases [116]. This cohort consists of 812,073 Swedish men and women

that were living predominantly in Stockholm and that had at least one blood or urine test

between 1985 and 1996. None of the participants was admitted as inpatient at the time of the

sample. All samples were gathered through either general health check-ups or via referral from

outpatient visits.

All fresh samples were analyzed by one and the same CALAB laboratory. More than 500

different laboratory tests were performed for a total of more than 35 millions measurements.

Information on some biomarkers (e.g. serum glucose, total cholesterol and triglycerides) is

available for the majority of the participants whereas other parameters are available only for

a limited number of participants. The test results, including the levels of different biomarkers,

were recorded in the CALAB database. This database has been linked to 24 Swedish registries,

including the Swedish Patient Register.
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METHODS

5.1 STUDY DESIGNS

In medical research, the choice of the most suitable study design to answer a specific research

question depends on the feasibility of different approaches. Both ethical and practical aspects

limit the conduction of scientific studies. For instance conducting a clinical trial of a potentially

beneficial but potentially harmful treatment on healthy volunteers is unethical and interviewing

the global population is utopian, even if these approaches would provide desirable answers.

In epidemiology, some scientific questions are more suitable to be answered through obser-

vational studies, while other questions are better addressed by experimental studies. A careful

evaluation of the potential confounders should be undertaken before choosing a study design.

Directed acyclic graphs (DAGs) are helpful tools for the identification of factors that need to

be controlled for in order to estimate unbiased associations [117]. Both observational and

experimental studies are needed for scientific knowledge to advance efficiently. This thesis is

based on observational studies that had different study designs. In particular, Paper I and Paper

IV were based on nested case-control studies, Paper II was based on a case-control study and

on a cohort study, and Paper III was based on a cohort study and on a nested case-control study.

5.1.1 Cohort studies

An epidemiological cohort study enrolls a group of individuals, i.e. a cohort, and follows them for

a defined time interval to ascertain an outcome of interest. Following the cohort prospectively

allows the collection of the desired information before the outcome of interest takes place.

Sometimes the same information may be collected retrospectively, though recall bias often

affects the quality of data collected retrospectively. Some information cannot be collected

retrospectively. This is for instance the case of tissue specimens for the quantification of a

biomarkers that change over time.

Under certain conditions conducting a cohort study may not be efficient. Obviously, a long

follow-up is needed for investigating exposures occurring many years before the outcome.

Furthermore, if the outcome of interest is a rare disease such as ALS, a large cohort is needed to

include a relevant number of individuals that will develop the outcomes. The desirable cohort
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sample size should be planned with care because it depends not only on the outcome but also

on the distribution of the exposure and on the distribution of the confounders in the cohort.

5.1.2 Case-control studies

Traditionally, an epidemiological case-control study enrolles a group of individuals with a

specific condition, i.e. the cases, and a group of individuals without the specific condition, i.e.

the controls, and aims to ascertain the exposure of interest for each of these individuals that

constitute the study sample. This study design is more efficient than a cohort study when the

condition of interest is rare in the population under study. The study efficiency can be enhanced

by matching the controls to the cases on known or potential confounders of the association

between the exposure and the outcome of interest, for instance age and sex. A smaller sample

size, compared to a cohort study design, facilitates the collection and management of detailed

information in case-control studies.

Case-control studies should be planned carefully to reduce the sources of bias. The selection

of controls may result in selection bias [118]. This occurs if the controls do not represent the

general population giving rise to the cases. For instance if all patients hospitalized for a certain

medical condition represent the cases, randomly recruiting the controls among the hospital

personnel is likely unsuitable to study the relationship between socioeconomic status and the

disease of interest, whereas it may be more suitable for the investigation of other factors, such as

the presence of a genetic variant. Retrospective ascertainment of exposure and confounders may

result in information bias. For example, either non-differential or differential misclassification

often occurs when the participants are asked to recall their past behaviours. It is not unexpected

that ALS patients may reflect on their past habits more than healthy controls, which may tend

to report lower frequency of many exposures only because less likely to recall correctly [119].

5.1.3 Nested case-control studies

The nested case-control design is a peculiar type of case-control design that is characterized by

some of the advantages of both cohort and traditional case-control designs. The study design

consists in conducting a case-control study based on a parent cohort. All cases that arise from

the cohort are included in the study sample. Further, a pre-defined number of controls (usually

not more than 5) are randomly selected from the cohort and individually matched to each

case. These controls must be free of the condition of interest at the time of the development

of such condition by the index case. Additional matching for potential confounders can also

be performed easily by restricting the sampling to a matched subcohort. When the population

itself is the parent cohort a population-based nested case-control study is performed. The use

of a nested case-control study is an especially efficient choice when the outcome of interest is

rare and the parent cohort is large. Indeed, not including all members of the parent cohort save

additional work or computational time. In case of a population-based study this design also

provides the ideal framework to sample the controls at random because the parent population

is known. Therefore, selection bias is less of a concern compared to the traditional case-control



20 5. METHODS

design.

However, selection bias is a possible source of bias also in nested case-control studies. As in

any matched study design, the selection bias could also be due to overmatching if the matching

precludes the representativeness of the controls [120].

5.2 STATISTICAL METHODS

5.2.1 Paper I

A population-based nested case-control study was conducted using national register data. The

Swedish population at risk of developing ALS on 1st January 1991 was identified through the

1990 Census. A total of 5,108 new diagnoses of ALS were identified in this population during

1991–2010. The ALS diagnoses were extracted from the Swedish Patient Register and both the

ICD-9 code 335.2 (between 1987 and 1997) and the ICD-10 code G12.2 (from 1997) were used

for defining ALS. Each ALS patient with first diagnosis of ALS after 1990 was included as a case

and the first date of diagnosis was defined as the index date. Subsequently five individually

matched population controls per case were sampled using incidence density sampling and

further matching on year of birth, sex, and area of residence. Area of residence was defined as

Northern, Central, or Southern Sweden as a proxy for lifestyle-related exposures. Information

on diabetes was retrieved from both the Swedish Patient Register (ICD-7 code 260, ICD-8 and

ICD-9 codes 250, and ICD-10 codes E10–E11) and the Swedish Prescribed Drug Register (ATC

codes A10A-A10B).

To specifically study differences between insulin-dependent diabetes (ICD-10 code E10)

and non-insulin-dependent diabetes (ICD-10 code E11) a three-level variable was defined (no

diabetes, insulin-dependent diabetes, or non-insulin-dependent diabetes). The time interval

between first diabetes diagnosis and index date (i.e. duration of diabetes) was computed to

study the variation of the association between diabetes and ALS risk with duration of diabetes.

Conditional logistic models were used to compute adjusted odds ratios (ORs) and corre-

sponding 95% confidence intervals (CIs) for the association between history of diabetes and

subsequent risk of ALS. The presence of interaction between diabetes and other factors was

tested not only by introducing interaction terms in the models but also by computing the rela-

tive excess risk for interaction (RERI) [121, 122]. The presence of an association for different

time windows before ALS diagnosis was first tested by introducing in the multivariable models

an arbitrarily chosen categorical variable (no diabetes, 0–2, 2–4, 4–6, 6–8, 8–10, 10+ years)

and then by introducing cubic regression splines with 5 knots, instead of the categorical variable

[123, 124].

To evaluate whether the results were likely to suffer from selection bias due to chance

sampling of non-representative controls, the sampling was repeated 100 times and the main

result was computed in all these samples for comparison.
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5.2.2 Paper II

From the total GENEVA sample patients with diagnosis of motor neuron disease other than ALS

or clinically possible ALS were excluded because the evidence for ALS diagnosis was deemed

insufficient. Two ALS patients that were younger than 25 years of age at their ALS diagnosis

were also excluded.

Logistic regression was used to estimate ORs and 95% CIs for the association of pre-

diagnosis BMI at ages 25 and 40 and BMI change with risk of ALS in the GENEVA case-control

study. Multinomial logistic regression was used to study whether the associations were compa-

rable for ALS with spinal and bulbar site of symptom onset, or for ALS with different diagnostic

delay (short: 1 year or less; moderate: 1–3 years; long: >3 years). The hypothesis underlying

the grouping of patients with ALS by diagnostic delay is that forms of ALS that tend to be

diagnosed with different delay, as well as ALS with spinal compared to bulbar site of symptom

onset, may be differently associated with premorbid BMI.

Further, the cohort of 467 patients with definite or probable ALS was followed from the

GENEVA interview to investigate the association of BMI at ages 25 and 40 with survival after

ALS diagnosis. Time since symptom onset would have been an alternative time-scale but this

information was self-reported and therefore less complete and potentially less accurate. Hazard

ratios (HRs) and corresponding 95% CIs were obtained from Cox proportional hazards regres-

sion models with time since diagnosis as the underlying time scale and closing the follow-up

on the date of death or July 25, 2013, whichever occurred first. Because only patients that

were still alive at the GENEVA interview were included in this analysis, the survival data are

left truncated at the GENEVA interview. Therefore, the patients entered the risk set (i.e. were

considered at risk of dying) only at the date of the interview. Indeed, if the patients contributed

survival time since their diagnosis immortal time bias would be introduced. The assumption

of proportional hazards over time was investigated using the χ2 test based on Schoenfeld

residuals and flexible parametric survival models [125]. To better understand the relationship

between BMI and ALS, adjusted linear regression models were estimated to investigate the

variation of the age at ALS diagnosis in function of BMI and BMI change.

A sensitivity analysis restricted to cases diagnosed within two years before the GENEVA

interview was conducted. Indeed the patients interviewed more than two years after diagnosis

were not only more likely to be long-surviving patients but they were also more likely to

recall faultily (during the GENEVA interview) episodes that occurred before diagnosis and to

misreport their past BMI or related exposures.

5.2.3 Paper III

First, a cohort study was conducted using the information collected in the AMORIS study to

investigate the future risk of ALS associated with serum levels of glucose, fructosamine, choles-

terol, HDL-C, LDL-C, triglycerides, apolipoprotein A-I, and apolipoprotein B. The AMORIS par-

ticipants with measurements of these biomarkers of interest during 1985-1996 were followed

from the date of their first blood sampling until 2011 to identify the newly diagnosed patients
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Figure 5.1: Flow chart of the selection process, a more than 20 year follow-up of the Swedish AMORIS
Study.
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with ALS according to the Swedish Patient Register (ICD-8 code 348,00, ICD-9 code 335.2, and

ICD-10 code G12.2). The participants that had emigrated or were diagnosed with ALS before

the blood sampling of the biomarker of interest were excluded (Figure 5.1) and the follow-up

time was censored at death, emigration, and December 31, 2011, whichever occurred first. HRs

and corresponding 95% CIs were estimated using adjusted Cox models with attained age as

the underlying time scale. The assumption of proportional hazards over different ages was

investigated using the χ2 test based on Schoenfeld residuals and flexible parametric survival

models [125].

Secondly, a nested case-control study based on this subcohort of the AMORIS cohort was

performed to further investigate how the concentrations of the biomarkers varied during the

20 years before ALS diagnosis (Figure 5.1). Using incidence density sampling 25 controls for

each of the 623 ALS cases were randomly chosen from the participants of the cohort study

with same sex, year of birth, and similar time of enrollment in the AMORIS cohort (within

one year before or after the index case). All repeated measurements of the biomarkers before

index date (i.e. ALS diagnosis for cases and ALS diagnosis of the index case for controls) were

considered in this analysis. For the cases and the controls the mean concentrations of different

biomarkers by time to index date were plotted using locally weighted scatterplot smoothing as

a graphical summary of the biomarker levels in these two groups. Adjusted linear mixed-effect

models were fitted to formally test differences in the variation of the biomarkers level during

the 20 years before index date between ALS cases and controls.

5.2.4 Paper IV

A population-based nested case-control study was designed similarly to the study conducted for

Paper I. This study investigated the association of antidiabetics and statins with the subsequent

risk of ALS using information on all 2,475 newly diagnosed patients with ALS between July 2006

and December 2013 in the Swedish Patient Register (ICD-10 code G12.2) and 5 individually-

matched population-controls per case. For each study participant all filled prescriptions of

antidiabetics drugs (ATC code A10) and statins (ATC code C10AA) between July 2005 and

December 2013 were extracted from the Swedish Prescribed Drug Register, as proxy for use of

these medications.

Index date was defined as the date of first ALS diagnosis for the cases and the date of ALS

diagnosis of the index case for the controls. Binary variables indicating ever use of antidiabetics

or statins before index date were computed for cases and controls.

If the first prescription of a medication was within one year from the date of the estab-

lishment of the Swedish Prescribed Drug Register (i.e. before July 1, 2006), the time of first

prescription was considered left-censored and the participant was defined as prevalent user,

irrespectively of the time interval between first prescription and index date. Conversely, if the

first prescription occurred on or after July 1, 2006, the participant was defined as new user. For

new users, a categorical variable for the number of years between first prescription and index

date (<1 year, 1-2, 2-3, 3-4, 4-5, or 5-8 years) was considered in the analysis as an alternative
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way to define medication use.

Additional linkages between registers allowed an attempt of grouping ALS patients in more

homogeneous subgroups. The Swedish Cause of Death Register was used to categorize the

patients that had not survived more than one year after diagnosis as with short ALS duration and

patients with slower disease course as with long ALS duration. The Swedish Multi-Generation

Register was used to identify first and second degree relatives of ALS patients. ALS patients

were defined as familial cases if at least one of the identified relatives was also diagnosed with

ALS according to the Swedish Patient Register.

Conditional logistic models were used to compute adjusted ORs and corresponding 95%

CIs for the association between the different medications and subsequent risk of ALS.
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MAIN RESULTS

6.1 RISK OF ALS

6.1.1 Diabetes (Paper I)

Among the 5,108 ALS cases 224 (4%) had diabetes before their ALS diagnosis and among

the 25,540 controls 1,437 (6%) had diabetes before the ALS diagnosis of their index case.

An inverse association between history of diabetes and risk of ALS was suggested also after

adjustment for sex, age, area of residence, years of education, and socioeconomic status (OR:

0.79; 95% CI: 0.68–0.91). Results were comparable for men and women (Table 2 in Paper I).

Results by age

This association between diabetes and subsequent ALS was highly age-specific. Compared to

matched controls, individuals with diabetes had a significantly higher risk of developing ALS

before age 50 (adjusted OR: 3.15; 95% CI: 1.40–7.08) but a lower risk of developing ALS after

age 70 (Table 2 in Paper I). When comparing diabetes with diagnosis before and after age 30,

diabetes before age 30 was positively associated with ALS risk (adjusted OR: 3.25; 95% CI

1.61–6.53) while diabetes later in life was inversely associated with ALS risk (adjusted OR:

0.74; 95% CI 0.63-–0.85).

Insulin dependence status

Insulin-dependent diabetes was not clearly associated with risk of ALS diagnosis at any age

(adjusted OR: 0.83; 95% CI: 0.60—1.15) but it was positively associated with risk of ALS

before age 50 (adjusted OR: 5.38; 95% CI: 1.87—15.51). Conversely, for non-insulin-dependent

diabetes the positive association with risk of ALS before age 50 was not as strong as for insulin-

dependent diabetes (adjusted OR: 2.12; 95% CI: 0.37—12.10) and inverse associations were

reported for all other age categories (Table 3 in Paper I).
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Diabetes duration

The spline curve modelling the variation of the OR of ALS by duration of diabetes suggested a

U-shaped trend (Figure 2B in Paper I). The model showed that the lowest risk of developing ALS

was about 6 years after the ascertainment of diabetes. Right after the diagnosis of diabetes and

more than 8 years after the diagnosis of diabetes the risk of ALS was higher but still decreased

compared to individuals without diabetes.

Because early onset diabetes was positively associated with ALS, it was not surprising that

the protective effect of long-standing diabetes was stronger after excluding the individuals

with diabetes onset before age 30 (Figure 2C in Paper I). The protective effect of long-standing

diabetes may be limited to type 2 diabetes but the statistical power to test this hypothesis

directly in the data was low.

6.1.2 BMI and BMI change (Paper II)

The analysis sample included 975 controls and 467 ALS cases from the GENEVA study with

non-missing information on BMI.

At ALS diagnosis the cases were thinner compared to their matched controls at the same

age, after adjustment for age, sex, race/ethnicity, use of the Department of Veterans Affairs

system for health care, cigarette smoking, and years of education (Table 2 in Paper II). A similar

trend was observed for BMI at age 40 but no clear association with ALS was found for BMI at

age 25. The results for BMI at age 40 did not seem to be highly influenced by reverse causation.

Only 27 (5%) of the veterans with ALS diagnosis after age 40 were younger than 45 years old

at diagnosis and the association was similar after excluding these patients from the analysis

(adjusted OR: 0.96; 95% CI: 0.92, 0.99).

Furthermore, BMI change between age 25 and age 40 seemed to differ between patients

with ALS and matched controls, also after additional adjustment for and BMI at age 40 (Table

3 in Paper II). ALS patients were more likely to experience weight loss or stable weight (weight

change less than 0.5 kg/m2) compared to the controls. Moderate increase in BMI (between

0.5 and 3.5 kg/m2) presented a similar decreased risk of ALS as substantial increase in BMI

(more than 3.5 kg/m2).

Results for ALS subgroups

The association between BMI and ALS with bulbar site of onset was similar to the association

between BMI and ALS with spinal site of onset (Table 4 and Web Table 1 in Paper II). Conversely,

the association of ALS with BMI seemed to vary by diagnostic delay (Figure 6.1). Indeed, the

patients with short diagnostic delay (1 year or less between symptom onset and diagnosis) were

thinner then controls both at date of diagnosis (adjusted OR: 0.89; 95% CI 0.85—0.92) and at

age 40 (adjusted OR: 0.91; 95% CI: 0.87–0.96), whereas the BMI of patients with diagnostic

delay longer than 3 years was similar to controls also at the date of diagnosis (adjusted OR:

0.95; 95% CI 0.85—1.00).
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Figure 6.1: ORs and 95% CIs for the association between BMI at age 40 (kg/m2) and ALS risk according
to site of onset and diagnostic delay, adjusted for age, sex, race/ethnicity, use of the Department of
Veterans Affairs system for health care, cigarette smoking, and years of education.

6.1.3 Carbohydrate, lipid and apolipoprotein metabolisms (Paper III)

During the follow-up of the 636,132 AMORIS participants that met the study inclusion crite-

ria, 623 individuals received a diagnosis of ALS. As older age and male gender are generally

associated with an increased ALS risk, ALS patients were on average 8 years older at the time

of first blood sampling and more likely to be male (63% versus 51%) compared to the rest of

the cohort.

The HRs of ALS for a unit increase of the biomarkers suggested a positive association with

ALS risk for LDL-C, apoB, and the apoB/apoA-I ratio after adjustment for sex, age at first blood

sampling, fasting status (overnight fasting versus non-fasting), occupation, and country of

birth (Table 3 in Paper III). When categorizing the biomarker levels according to published

guidelines in cardiovascular prevention, high glucose level (≥6.11 mmol/L) was associated

with decreased ALS risk (adjusted HR: 0.62; 95% CI: 0.42–0.93) whereas high LDL-C/HDL-C

ratio (≥3.5) and high apoB/apoA-I ratio (≥0.9 for men and ≥0.8 for women) were associated

with increased ALS risk (Table 4 in Paper III). The associations between the biomarkers and

ALS tended to be stronger among females compared to males (Supplementary Table 2 in Paper

III).

The comparison of the 623 AMORIS participants newly diagnosed with ALS during follow-

up with the 15,575 individually matched controls highlighted some differences in the biomark-

ers levels over time. During the 10 years before diagnosis, ALS patients had increasing levels

of LDL-C, HDL-C, apoB and apoA-I. Because the increases of HDL-C and apoA-I were more

marked compared to the increases in the LDL-C and apoB levels, the LDL-C/HDL-C ratio and

the apoB/apoA-I ratios were decreasing during the 10 years before diagnosis. The increase
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was statistically different for cases compared to controls for apoA-I (p-value for interaction =

0.02) after adjustment for fasting status and match-set and subject specific effects.

Results for ALS subgroups

The associations between the biomarkers and ALS were stronger both among individuals that

were 55 years and above at blood sampling (Supplementary Table 1 in Paper III) and for ALS

diagnosed at age 65 or above (Table 6.1).

Table 6.1: HRs and 95% CIs of ALS at age 65 or older for biomarkers of carbohydrate, lipid, and apolipoprotein
metabolism by attained age, after adjustment for sex, age at measurement, fasting status, occupation and country
of birth, a more than 20 year follow-up of the Swedish AMORIS Study.

Person-years No. of ALS cases HR (95%CI)
Biomarkers of carbohydrate metabolism
Glucose (mmol/L) 2 245 148 301 0.88 (0.78–0.99)
Biomarkers of lipid metabolism
HDL-C (mmol/L) 1 031 364 153 0.81 (0.56–1.16)
LDL-C (mmol/L) 1 031 715 153 1.25 (1.09–1.43)
LDL-C/HDL-C ratio 1 028 062 153 1.08 (1.00–1.15)
Biomarkers of apolipoprotein metabolism
ApoA-I (g/L) 941 893 133 0.60 (0.28–1.29)
ApoB (g/L) 884 589 130 2.03 (1.30–3.18)
ApoB/ApoA-I ratio 840 551 123 2.42 (1.48–3.96)

6.1.4 Antidiabetics and statins (Paper IV)

The assessment of drug prescriptions was left truncated because the Swedish Prescribed Drug

Register was established only in July 2005, and participants with prescriptions of antidiabetics

or lipid-lowering drugs only before this date were misclassified as never prescribed. However,

all participants had an interval of time when information on drug prescriptions was available

of at least one year and discontinuation from these medications is rather low. Indeed, 94% of

the participants that were prescribed with antidiabetics in 2006 and 81% of the participants

that were prescribed with statins in 2006 were also prescribed with antidiabetics and statins,

respectively, in 2007.

Only 7% of the 2,475 Swedish residents diagnosed with ALS had filled a prescription of

antidiabetics before the ALS diagnosis while 9% of the 12,375 population controls had filled

a prescription before their index case diagnosis. In this sample the prescription of antidia-

betics was associated with a lower future risk of ALS (OR: 0.76; 95% CI: 0.65–0.90) after

adjustment for age, sex, and area of residence. The association did not vary largely by sex, age,

and in presence of family history. However, a null association was found for first antidiabetic

prescription during the 8 years before ALS diagnosis (new users)(adjusted OR: 1.00, 95% CI:

0.77–1.30). The inverse association of antidiabetics with future ALS risk was therefore driven

by the decreased risk of ALS that was noted for the prevalent users (adjusted OR=0.66, 95% CI:

0.54-0.81), suggesting that less than 8 years of diabetes may not be enough to be protective.
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Among the ALS cases 29% had filled a prescription of statins before the ALS diagnosis

while 27% of the controls had filled a prescription before their index case diagnosis. A positive

association between the prescription of statins and ALS risk was limited to the year before ALS

diagnosis (Figure 1 in Paper IV). A stronger association was noted among women (adjusted OR:

2.54; 95% CI: 1.84–3.49), though an increased use of statins during the year before diagnosis

was present also in men (adjusted OR: 1.44; 95% CI: 1.04–1.98).

6.2 ALS SURVIVAL

6.2.1 BMI and BMI change (Paper II)

Among the 460 veterans with ALS that were still alive at the GENEVA interview, 72% died during

the follow-up and the average time at follow-up was 3 years. In this sample, the patients with

higher BMI at diagnosis tended to survive longer (Table 6 in Paper II), after adjustment for

age at diagnosis, diagnostic delay, riluzole use, and symptom onset site. There was however no

clear association between BMI at age 40 (before diagnosis) and survival (Table 6 in Paper II)

after adjustment for date of birth and diagnostic delay. The proportional hazards assumption

was not met for the categories of BMI at diagnosis, and the decreased risk for overweight and

obese seemed to be limited to the first 2 years after diagnosis (Figure 6.2).

Figure 6.2: Time-varying HRs for overweight (BMI between 25 and 30 kg/m2) and obesity (BMI above
30) compared to normal weight (BMI between 20 and 25) at time of ALS diagnosis, adjusted for age at
diagnosis, diagnostic delay, riluzole use, and symptom onset site.
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There was a positive association also between ALS survival and BMI increase between age

40 years and diagnosis. An higher increase in BMI was associated with delayed death (HR:

0.92; 95% CI: 0.88–0.97) after adjustment for age at diagnosis, diagnostic delay, riluzole use,

symptom onset site and BMI at diagnosis. No association between BMI change between ages

25 and 40 (before diagnosis) and ALS survival was noted (HR: 1.03; 95% CI: 0.98–1.08) after

adjustment for birth date and diagnostic delay.

6.2.2 Other findings

The study material for Paper III and Paper IV lacked data on important prognostic indicators of

ALS, such as site of onset, time interval between symptom onset and diagnosis, ALSFRS score,

etc. Despite information on survival time of the patients was available, without proper adjust-

ment for these important prognostic indicators any associations noted for the blood biomarkers

or the medication in a survival analysis would not be highly valuable and meaningful. However,

by categorizing the ALS patients as with short disease duration (patients that had died within

one year after diagnosis) or with long disease duration (patients that had survived at least one

year after diagnosis) it was interesting to report whether the noted associations varied for risk

of ALS with short duration compared to ALS with long duration. The choice of one year as the

cutoff for ALS duration was based on the median survival time given the lack of any clinically

relevant value.

Paper III states that 498 AMORIS participants were diagnosed with ALS and died during

the study follow-up (80% of the participants diagnosed with ALS during the study follow-up).

In this data the associations between the blood biomarkers and ALS risk were stronger for ALS

with short duration (Table 6.2).

Table 6.2: HRs and 95% CIs of ALS with short disease duration (≤1 year between date of ALS diagnosis and
date of death) for biomarkers of carbohydrate, lipid, and apolipoprotein metabolism, after adjustment for sex, age
at measurement, fasting status, occupation and country of birth, a more than 20 year follow-up of the Swedish
AMORIS Study.

Person-years No. of ALS cases HR (95%CI)
Biomarkers of carbohydrate metabolism
Glucose (mmol/L) 9 825 124 197 0.93 (0.82-1.06)
Biomarkers of lipid metabolism
HDL-C (mmol/L) 3 796 795 99 0.70 (0.44-1.11)
LDL-C (mmol/L) 3 799 069 100 1.29 (1.09-1.52)
LDL-C/HDL-C ratio 3 783 328 99 1.09 (1.00-1.18)
Biomarkers of apolipoprotein metabolism
ApoA-I (g/L) 3 392 838 88 0.59 (0.23-1.52)
ApoB (g/L) 3 124 499 83 2.63 (1.58-4.36)
ApoB/ApoA-I ratio 2 898 966 78 2.76 (1.66-4.60)

Paper IV states that 1,841 ALS cases (74% of total number of cases) died during the study

period. The inverse association between prescription of antidiabetics and ALS risk was more

evident for ALS with long disease duration, though antidiabetics may also reduce the risk of

ALS with short disease duration (Table 2 in Paper IV). Similar conclusions apply to the positive
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association between prescription of statins and ALS risk. The association seemed to be due to

ALS with long disease duration, though the results for long and short disease duration were

not statistically different (Table 3 in Paper IV).



Chapter 7

DISCUSSION

7.1 INTERPRETATION OF THE FINDINGS

7.1.1 Diabetes (Paper I)

The study described in Paper I confirmed that type 2 diabetes is associated with future risk

of ALS. A recent Danish study [126] has also supported this finding by suggesting that the

contradicting results on premorbid diabetes presented in earlier different studies [81, 127, 128]

can potentially be explained by type 1 and type 2 diabetes having different associations with

risk of ALS [129].

The reason underlying this association has not yet been clarified. Though lifestyle fac-

tors may partially confound this association it is likely that alterations in the carbohydrate

metabolism may have a beneficial effect on motor neurons survival.

The strongest inverse association of diabetes with ALS risk was reported more than 5

years before the ALS diagnosis. Several hypotheses could explain this finding. For instance,

long-lasting diabetes may involve more pronounced changes to the energy metabolism than

recently developed diabetes. Alternatively, given that medication use may result in assumption

of protective substances, long term use of antidiabetics provides a rather natural explanation

for the observed association. It is also possible that in the presymptomatic phase of the disease

the patients affected by ALS experience a increase of the blood glucose level and some develop

diabetes. Despite this hypothesis may seem conflicting with diabetes being protecting against

the development of ALS, the fact that a factor is associated with a reduced risk of a disease does

not exclude that the same factor may constitute a symptom during the course of the disease.

7.1.2 BMI and BMI change (Paper II)

Interest in studying BMI in relation to ALS started after noticing that a more rapid reduction

in BMI after ALS diagnosis was associated with faster rate of progression and shorter survival.

It is known that BMI at ALS diagnosis is positively associated with survival [2, 67–70] and

a couple of prospective studies have now suggested that low pre-diagnosis BMI is associated

with an increased risk of ALS [77, 78]. The relationship between premorbid BMI, premorbid
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BMI change and ALS survival has however not been studied extensively yet.

The main novel results in Paper II were that low BMI at age 40 corresponded to an increased

risk of ALS and the association was stronger for cases with diagnostic delay shorter than 1 year.

Also, stable or decreasing BMI between age 25 and 40 was associated with a higher risk of ALS

compared to an increasing BMI, regardless of the achieved weight.

Premorbid BMI and BMI change did not seem to predict survival of ALS patients. However,

though a strong association is unlikely, true lack of association is not the only possible expla-

nation for these null findings. Indeed statistical power for these analysis may be limited by the

relatively lower variation of BMI among the veterans compared to other populations.

7.1.3 Carbohydrate, lipid and apolipoprotein metabolisms (Paper III)

Paper II provided the first evidence that high serum levels of apoB and the apoB/apoA-I ratio

are associated with increased risk of ALS. The results on serum LDL-C and the LDL-C/HDL-C

ratio also contribute more evidence about the previously reported inverse association between

ALS and antecedent dyslipidemia [3]. Despite several studies have assessed dyslipidemias in

ALS patients reporting contradicting results [58, 103, 130–133], the lipid profile before the

disease onset has been addressed more rarely [3]. Furthermore, the inverse association between

type 2 diabetes and ALS risk is supported by the finding that high levels of serum glucose are

associated with reduced ALS risk.

The observed trends over time of the biomarkers of lipid and apolipoprotein metabolisms

suggest that patients with ALS may differ from controls already during 20 years before diagnosis

and that something, likely secondary to ALS, happened during the 10 years before diagnosis.

Interestingly, the strongest deviation from the expected trend in a comparable population is

the marked increase in apoA-I levels during the 10 years before diagnosis.

Therefore, among the examined blood biomarkers of carbohydrate, lipid and apolipoprotein

metabolisms there might be both risk factors (e.g. apoB) and biomarkers indicating metabolic

alteration that occur early during the development of ALS (e.g. apoA-I).

7.1.4 Antidiabetics and statins (Paper IV)

Paper IV provided the first epidemiological evidence that different types of antidiabetics have a

similar inverse associations with ALS risk. Furthermore the suggestion that the inverse associa-

tion may be due to use of antidiabetics for more than 8 years is overlapping with the observed

inverse association between long-term diabetes and ALS risk. Diabetes is usually treated and

disentangling the effect of the disease from the effect of the medications is not trivial. However,

the similar associations found for different types of antidiabetics suggest that either diabetes

itself or a common feature across the options for treatment of diabetes is protective against

ALS.

Paper IV is also the first study to provide an extensive description of the prescription of

statins before ALS in a nationwide sample. An increase in prescriptions of statins was identified

during the year before diagnosis, but not during the previous years. The increase was more
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marked among women, possibly because they had a lower baseline risk of receiving a prescrip-

tion of statins. No clear difference was reported across different types of statins. Though statins

were found not to accelerate disease progression [134], these findings suggest that an increase

in lipid levels may be a symptom of the disease. Furthermore, the increased risk of myopathy

following the use of statins may aggravate or draw the attention to early ALS symptoms [135].

The study of both antidiabetics and statins in the same population is a strength. Indeed

patients using antidiabetics or statins may have similar contact with health care and comparable

risk of complications. Furthermore the combined use of antidiabetics and statins is rather

common in patients with type 2 diabetes. If the association observed for antidiabetic were due

to patients with diabetes being more likely to experience competing risk, a similar effect might

have been present also for statins. Conversely if the increase in prescriptions of statins during

the year before diagnosis were due entirely to surveillance bias, a similar effect might have been

expected also for antidiabetics. The different results observed confirm that the associations of

antidiabetics and statins with ALS risk deserve attention. The interpretation needs to be careful

because of the potential confounding by indication.

7.2 CONCLUSIONS AND IMPLICATIONS

The studies discussed in this thesis contribute important new knowledge about the metabolism

of ALS patients before the onset of motor symptoms. However, some limitations subsist and

some questions remain open.

7.2.1 Strengths

The studies included in this thesis represent a valuable contribution to the epidemiology of

ALS. All studies represent the largest of their kind and are based on high-quality data.

Register-based nationwide studies allowed high statistical power without introducing het-

erogeneity in terms of exposure assessment because it was possibly to include a large number

of relatively homogeneous patients over a short time interval. Paper I, Paper III, and Paper IV

share a portion of the patients with ALS included. This characteristic allowed a better compari-

son and interpretation of the findings, compared to the assessment of the different hypotheses

in distinct and heterogeneous populations.

Furthermore, high-quality data was used for the ascertainment of ALS. First, the medical

records of the patients in the National Registry of Veterans with Amyotrophic Lateral Sclerosis

have been reviewed by neurologists specialized in motor neuron diseases to validate the diagno-

sis of ALS. Secondly, the validation study included in Paper III confirmed that, although a very

small proportion of the motor neuron disease identified might have primary lateral sclerosis

or progressive muscular atrophy, the positive predictive value and therefore the specificity of

the diagnosis of ALS in the Swedish National Patient Register is very high.
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7.2.2 Limitations

Though in Paper II and Paper IV some information on family history of ALS was available, the

main limitation of the studies presented in this thesis is the lack of possibility to examine the

role of different ALS genes. Similarly, detailed information on the clinical features of the ALS

patients was only available for the US veterans, while the Swedish studies could not include

important aspects of the clinical history of the patients such as the date of symptom onset.

Furthermore, some of the definitions of exposures used may be prone to misclassification.

This is the case of diabetes diagnosis defined from hospital care or use of statins assessed over

a relative short time interval before index date. However, the misclassification introduced is

likely non-differential for ALS patients and other participants so that the reported associations

may represent conservative estimates of the real associations.

7.2.3 Implications

This work generates new scientific hypotheses. Alterations in the carbohydrate, lipid and

apolipoprotein metabolisms are associated with ALS risk and may serve as prodromal symptoms

decades before ALS diagnosis.

In particular, the novel results on the involvement of apolipoprotein metabolism indicates

that imbalance between apoB and apoA-I as well as between LDL-C and HDL-C may be an

etiologic mechanism for ALS and needs to be further studied.

Furthermore, the increase in statin prescriptions before ALS diagnosis and the protective

effect found in individuals with diabetes suggest that pharmacological treatment may have a

role in the etiology of ALS.

The observations that the association of BMI is stronger for ALS with short diagnostic

delay (Paper II) and the associations of blood biomarkers (Paper III) and drugs (Paper IV)

seem to be stronger for disease with longer survival highlight that ALS have likely different

etiologies. As previously suggested, susceptibility to certain risk factors may correlate with

disease characteristics.

All the studies indicate that patients with ALS may have already signs of abnormal energy

metabolism several years (or decades) before the onset of motor symptoms. The death of the

motor neurons in the nervous system and its devastating consequences on motor skills may be

only a rather late result of a number of preceding events taking place in the whole body. These

cascades of events seem to start earlier than previously believed.
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FUTURE PERSPECTIVES

The reasons for abnormalities in metabolism contributing to the disease need to be identified

and contrasted. Future studies aimed to clarify the potential modifiable effect of metabolic

changes in the course of ALS are warranted.

Current attempt of treatment indicates that targeting secondary pathological events may

not be able to stop the disease progression and understanding the early events in the disease

course may be a necessary step for effectively interrupting the cascade of pathological events.

The integration of quality registers, biological specimens, and cutting-edge technology and

analytical approaches is needed to characterize the diverse etiologies of ALS.

Whether weight loss or use of statins accelerate the development of ALS should be further

investigated. For instance more careful strategies to achieve a healthy weight and alternative

lipid-modulating approaches have the potential to prevent or delay the occurrence of this

disease in some individuals.

Why individuals with high apoB are at higher risk of developing ALS remains unclear.

Investigating whether alterations in the apolipoprotein metabolism have direct detrimental

effects leading to degeneration of motor neurons or whether this feature is a consequence of

other risk factors would provide further insight in the etiological process of ALS.

The studies described in this thesis also highlight the importance of considering that dif-

ferent subgroups of ALS patients may present different metabolic alterations or being more

susceptible to their effect. In particular age and sex differences deserve attention. Further-

more, the metabolic profile may correlate with other important factors such as diagnostic delay

and rate of disease progression. Disentangling the role of genetic predisposition and gene-

environment interactions will be an essential step to fully appreciate the nature of metabolic

changes in ALS.

Furthermore, as a neurodegenerative disease with a relatively strong clinical diagnostic

certainty, compared to Alzheimer’s and Parkinson’s diseases, ALS is an excellent model disease

for research. Therefore, the new hypotheses generated by studying ALS should be instrumental

for identifying common and peculiar features of these diseases and help disentangling the

complex mechanisms of neurodegeneration, which is becoming more and more of concern in

the developed countries.
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