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“Today it's me 
Tomorrow someone else 

It's me and you 
We've got to stand up and fight 

We'll shed a light in the fight against AIDS 
Let's come on out 

Let's stand together and fight AIDS” 

Lyrics to ‘Alone and Frightened’ by Philly Bongoley Lutaaya 

 
 
 

It is the glory of God to conceal a thing: but the honor of kings is to search out a matter. 
Proverbs 25:2, The Bible, King James Version 

 
 

 





 

 

ABSTRACT 

The global epidemic of HIV has resulted in more than 34 million deaths and currently 36.9 

million HIV-infected people worldwide. Uganda has an HIV prevalence of 7.3%, equating to 

about 1.6 million people. This has placed enormous pressure on the social, economic and 

medical structure of society. HIV is phylogenetically diverse, with HIV-1 subtypes A, B and 

C accounting for ≥70% of infections globally. While HIV-1 subtype C confers the worst 

prognosis for a patient, it is closely followed by subtype D which, together with subtype A, 

accounts for ≥90% of HIV infections in Uganda. HIV infection is associated with rapid viral 

replication, concomitant inflammation and immune activation, and massive CD4 T cell loss, 

which all together contribute to morbidity and eventual death. Although antiretroviral therapy 

lowers viral load and improves CD4 T cell recovery in chronic infection, it does not fully 

eliminate chronic immune activation nor restore immune function, resulting in non-AIDS 

related morbidity. Additionally, despite great effort, a preventive or therapeutic vaccine is yet 

to be developed. 

Studies in chronic untreated HIV-1 infection may shed more light on correlates of immune 

protection that may be utilized to develop effective preventive or therapeutic vaccines or 

drugs. The innate immune system, as the first to encounter the HIV virus upon exposure and 

infection may be critical in directing immune responses that can prevent, attenuate or cure 

infection. In this thesis I aimed to study the role of the innate cellular immunity in the 

immunopathogenesis of HIV-1 subtype A and D infection in Uganda. In Paper I, using 

whole blood from healthy blood bank donors, we established normal lymphocyte reference 

ranges for Ugandans and showed demographic differences that may influence immune 

responses to disease and vaccination. Additionally, utilizing cryopreserved peripheral 

mononuclear blood cells from chronic untreated HIV-1 infected persons we studied the 

phenotypes and function of natural killer cells, unconventional T cells and regulatory T cells 

plus their roles in HIV-1 infection (Papers II-IV). Here we found both HIV-associated 

immune dysregulation of multiple cellular subsets and expansion of a previously little 

described innate-like terminally differentiated CD8 T cell subset. Furthermore, in Paper V 

we describe demographic differences in biomarkers of inflammation that not only associate 

with disease progression, but also expand our knowledge of HIV-related gut dysbiosis. Thus, 

the data presented here provides more insight into HIV-driven immune dysfunction, subtype-

related immunopathogenesis, and demographic differences that add to the body of knowledge 

concerning HIV infection.   
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1 HIV-1/AIDS 

1.1 Overview 

It is now close to 35 years since the first cases of the acquired immune deficiency syndrome 

(AIDS) were first described in five homosexual men in the United States 1. In the beginning, 

doctors from different parts of the world described patients presenting with aggressive and 

rare infections and cancers that resisted most forms of medication. Within a few years it had 

become clear that these were a collection of syndromes that resulted from generalized 

immune deficiency arising from infection with a yet to be identified agent. In 1983, 

Francoise Barré-Sinoussi and Luc Montagnier identified the causative agent of AIDS 2 that 

was later described to preferentially infect 3, 4 and cause loss of CD4 T cells 5, and was 

named human immunodeficiency virus (HIV) 6.  

 

Uganda is an East African country with a population of over 34 million people 7, of whom 

approximately 1.6 million are living with HIV 8. Here, the first cases of AIDS were noticed in 

the south western district of Rakai (Figure 1) in 1982, and fully described by Serwadda et al. 

in 1985 9. These were atypical in that rather than the generalized lymphadenopathy and 

aggressive Kaposi’s Sarcoma seen in patients in western countries, Ugandans presented with 

extreme weight loss and diarrhoea occasioning the local name ‘Slim disease’, but with the 

immune deficiency recognised by anergy to most skin tests. Epidemiological comparisons 

later showed that this was the presentation of AIDS among Africans 10. In 1986, Clavel and 

co-workers isolated another retrovirus from West African patients with symptoms similar to 

Slim disease that was different from the HIV virus 11; through molecular cloning it was 

shown to be related to HIV, but with a different genomic sequence 12. This led to the 

designation of the virus causing most infections globally as HIV-1, and the less prevalent 

West African type HIV-2. 



 

 

Figure 1
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losses in productivity, and disruption of family structure. The effects on the economy led to a 

cycle of poverty that increased risky behaviour such as prostitution and cross-generational 

sex, thus increasing the risk of acquiring the infection. Health systems were ill-equipped to 

handle the influx of severely ill patients, both by numbers and complexity of the disease. 

Amid all this it became clear that HIV infection in Africans, while sharing many similarities 

with that in the western world, had significant differences that accentuated the effects of the 

disease at the individual and population level. 

 

1.3 HIV virology 

Phylogenetic studies have shown that HIV, a retrovirus of the lentivirus family 41, originated 

from several zoonotic events between non-human primates (NHPs) and humans, in 

Cameroon and the Democratic Republic of Congo (reviewed extensively in 42, 43). The two 

major lineages of HIV, HIV-1 and HIV-2, originated from independent transmission events 

to humans, have multiple groups within each, and have undergone further rapid gene 

mutation and recombination in the human population due to extensive virus-host interaction 

(reviewed in 44). Based on sequence similarity HIV-1 strains are classified into groups M 

(which is responsible for the HIV pandemic), N, O and P. HIV-2 has groups A-H, and is 

largely restricted to West Africa. HIV-1 group M is subdivided into subtypes A, B, C, D, F, 

G, H, J and K, and is widely distributed thorughout the world (Figure 2), particularly in 

Africa where subtypes A, C, D and CRF02-AG account for over 80% of infections (reviewed 

in 45). Globally, the most prevalent HIV subtypes are A, B, and C with subtype C most 

predominant. In addition, there are a large number of circulating recombinant forms (CRFs) 

and unique recombinant forms of HIV-1.  

 



 

 

Figure 2
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1.4 HIV-1 disease, treatment and prevention 

During acute infection the HIV virus infects and replicates in a cell over a period of up to 48 

hours 52, producing over 104 virions per cell 53. New virions and infected cells spread 

systemically from mucosal layers to lymphoid tissues 54 (reviewed in 55). This is accompanied 

by an exponential increase in viral replication to peak viremia, that decreases to a steady-state 

viral load, also called set point viral load 56, which signifies the end of acute and beginning of 

chronic infection and is a prognostic marker for AIDS (reviewed in 57). Concomitantly with 

the first rise towards peak viremia there is rapid increase in innate proinflammatory cytokines 

such as interferon alpha (IFNα), interleukin-15 (IL-15), tumor necrosis factor (TNF), IFNγ, 

IL-6 and IL-18, and chemokines such as monocyte chemotactic protein (MCP-1) and 

inducible protein 10 (IP-10), to stimulate immune responses 58. This is followed by an 

increase in the immunoregulatory cytokine IL-10, in an attempt to dampen the immune 

response. Acute HIV infection is also characterized by a massive loss of CD4 T cells that 

begins within days of infection 59, particularly from the gut-associated lymphoid tissue 60, by 

NK cell-mediated killing 61, HIV-driven up-regulation of apoptotic molecules and subsequent 

apoptosis 62-64 (reviewed in 65), and directly through DNA-dependent protein kinase 66; and 

increasing and persistent direct and bystander immune activation 67, 68, known to be one of the 

major causes of HIV pathogenesis (reviewed in 69, 70). This leads to a generalized 

immunodeficiency 2, 5 manifest particularly in low CD4 T cell counts 3, 4, and impaired host 

immunity to a variety of opportunistic infections 20. The quantity of HIV-1 RNA in plasma, 

reflective of ongoing viral replication, has been found to correlate inversely with the CD4 T 

cell counts and directly correlates to HIV-1 disease 71. The quantitative competitive 

polymerase chain reaction (QC-PCR) is a sensitive and accurate assay for the monitoring of 

plasma viral load in patients at all stages of infection 72. Plasma viral load is now routinely 

used in the healthcare and clinical management of HIV infection. 

 

The description of the HIV-1 replication cycle inspired scientists to develop antiretroviral 

drugs to block or counteract specific aspects of viral entry and replication. The first 

successful drug, azidothymidine (zidovudine), was associated with significant decreases in 

mortality and frequency of opportunistic infections 38, reduction in viral load, and 

improvement in CD4 T cell counts, but with significant toxicity 73 and incomplete viral 

clearance. It quickly became clear that the virus mutates rapidly to become drug resistant 74 

and suggestions were made to develop a multiple-drug strategy 75. Approaches utilizing a 
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combination of at least three drugs, each targeting a different aspect of the replication cycle, 

revolutionalized HIV treatment by lowering viral load to undetectable levels and markedly 

improving life expectancy 76, 77. This is known as highly active antiretroviral therapy 

(HAART).  

 

Further studies showed that initiating antiretroviral therapy (ART) earlier improves prognosis 

by preventing CD4 T cell loss, preserving gut and lymph node structure, as well as arresting 

aberrant immune activation 60, 78-80. Thus the latest WHO treatment guidelines recommend 

ART for all HIV-1 infected persons with a CD4 T cell count ≤500 cells/mm3 of blood 

regardless of plasma viral load 13. In addition to improving quality of life of HIV-1 infected 

persons, the WHO has recommended the use of ART to reduce the risk of HIV transmission 

from an infected person to an uninfected individual, as well as pre-exposure prophylaxis 

(PrEP) to protect most at risk vulnerable populations from HIV acquisition 13. When taken 

within 72 hours of exposure ART protects against establishment of infection (termed post-

exposure prophylaxis – PEP). ART is also successfully used to prevent transmission of HIV 

from mother to child (eMTCT). 

 

Despite all this progress, there are still hurdles to overcome. Only about 50% of HIV-infected 

people eligible for ART are on treatment 81; by 2013, only 40% of HIV-infected Ugandans 

eligible for ART were on treatment 8, and yet this is one of the three countries contributing up 

to 48% of new infections in sub-Saharan Africa 82. It is noteworthy that immunopathogenesis 

differs according to infecting HIV type. Much fewer people infected with HIV-2 go on to 

develop AIDS when compared to HIV-1 83 (reviewed in 84), despite up to 60% homology in 

amino acid sequence of the viral genome 84. Within HIV-1 group M, subtype C (globally 

most prevalent strain) and D (prevalent in East Africa) appear to confer worse prognosis as 

regards time to development of AIDS and death 85-87, CD4 T cell loss (reviewed in 88, 89) and 

treatment failure 90, yet it is not clear why. In addition, the immune system does not fully 

restore to its pre-HIV state even after long-term HAART, thus patients go on to develop non-

AIDS related comorbidities that compromise their well-being and life expectancy (reviewed 

in 91-93). 

 

The ultimate solution would be to totally prevent/protect from acquisition of HIV. 

Behavioural interventions such as abstinence, being faithful to one partner and use of 

condoms, while having significant effects in reducing HIV incidence, can for various reasons 
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not totally eliminate transmission. Other strategies, such as medical male circumcision, while 

successful in preventing HIV acquisition in up to 66% of males 94, have faced many 

challenges particularly due to resource constraints in the most affected countries 95. Several 

HIV vaccine products and microbicides have been tested globally with little to no success 

(reviewed in 96 97). The exception is the RV144 phase III vaccine trial conducted in Thailand 

that showed a modest protection of 31% in the HIV-uninfected who received the vaccine 98, 

though that was not good enough for public health purposes. The biggest challenge to these 

efforts has been lack of clarity on an immune correlate of protection 97, although indepth 

analysis of data from the RV144 trial have begun to provide important clues 99. It is 

increasingly believed that a single program may not prove effective, and that a combination 

of prevention strategies will be needed to radically reduce or eliminate HIV transmission in 

the human population 100. In the meantime though, it is important that research on both 

treated and untreated HIV infection continues so as to identify ways of improving the 

prognosis of patients, and better understanding of correlates of protection that can guide 

vaccine design. 
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2 THE IMMUNE SYSTEM 

2.1 Overview 

The earth houses approximately 7.3 billion people 101 as of 2015, in addition to other forms of 

life such as plants, animals and, importantly, microorganisms such as bacteria, viruses and 

fungi. This ecosystem requires that organisms form relationships so as to efficiently utilize 

resources, although some (relationships) end up being detrimental to one of the organisms. 

The immune system is a network of cells, tissues, chemicals or proteins designed to protect 

living organisms from microbial attack from microorganisms, while at the same time 

maintaining self-tolerance to avoid autoimmunity. It is bimodal in nature, having an innate 

and adaptive arm, with both cellular and humoral (antibody) components and, as a basic 

principle, distinguishes foreign antigen from self.  

 

2.2 The innate immune system 

The innate immune system is tasked with initial identification, protection and/or 

neutralization of antigen, as it recognizes a vast array of molecular patterns quickly and is 

highly developed in its ability to discriminate self from non-self. The simplest form of 

defense is the anatomical barrier, akin to a wall around a city, meant to define the perimeter 

of the individual and block foreign organisms from entering. The skin is the biggest of 

these organs but others include the mucosal surfaces in the mouth, airways, intestines, and 

genital tracts, which secrete antimicrobial peptides and chemicals plus mucus for defense. 

The innate immune system involves a complex recognition system where cells and tissues 

have germ line-encoded pattern recognition receptors (PRRs) that detect (1) foreign antigen 

in the form of pathogen associated molecular patterns (PAMPs) that are conserved through 

evolution of classes of bacteria, viruses, and some fungi and parasites, and (2) self-antigen 

in the form of stress molecules, misplaced proteins and chemicals, otherwise known as 

damage-associated molecular patterns (DAMPs) (reviewed in 102 103). The PRR-

PAMP/DAMP complex activates intracellular signaling pathways that trigger 

proinflammatory and antimicrobial responses, involving molecules such as phosphatases, 

kinases and transcription factors (reviewed in 102). This in turn leads to rapid production of 

molecules such as cytokines and chemokines, and the expression of receptors and cell 

adhesion molecules required to present and neutralize the antigen through activation of the 

complement cascade, phagocytosis, cytotoxic killing and/or activation of the adaptive 

immune system. Note that some innate immune cells display memory generated by 
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epigenetic reprogramming during the initial response, and that results in a heightened 

response that is nonspecific and antigen independent 104 – known as trained memory. 

Typical innate immune cells include granulocytes (neutrophils, eosinophils and basophils), 

antigen-presenting cells (APCs) such as dendritic cells, macrophages and innate lymphoid 

cells that include natural killer (NK) cells. NK cells are one of two major focuses of this 

thesis. 

 

2.2.1 Natural killer cells 

NK cells are innate lymphoid cells first described for their killing of tumor and virus-infected 

cells 105, 106. They develop from a common lymphoid progenitor into large granular 

lymphocytes constituting up to 15% of all peripheral blood lymphocytes and have two main 

subsets, classified according to their expression levels of CD56 (neural cell adhesion 

molecule 1; NCAM): CD56bright immature NK cell subset 107 and the CD56dim mature subset 

that constitutes about 10% and 90% of peripheral blood NK cells, respectively (reviewed in 
108-111). CD56bright NK cells mature and differentiate towards CD56dim through a sequential 

loss and gain of multiple surface receptors 112, 113 in an IL-15 dependent manner, through the 

action of the transcription factors nuclear factor, interleukin 3 regulated (NFIL3), T-box 

expressed in T cells (T-bet) and eomesodermin (Eomes) (reviewed in 114). It should be noted 

that NK cells can also develop in both secondary lymphoid and non-lymphoid tissues 

(reviewed in 115), and that IL-15 is required for their maintenance 116. 

 

NK cells utilize germ-line encoded killer-cell immunoglobulin-like receptors (KIR) to 

recognize targets, some of which are activating and others inhibitory (reviewed in 117). Other 

activating NK receptors include natural cytotoxicity receptors (NCRs: NKp30, NKp44, 

NKp46, NKp80), C-type lectin receptors (NKG2C, NKG2D, NKG2E), adhesion molecules 

(DNAM-1), PRRs (Toll-like receptors – TLRs), while NKG2A is inhibitory. The major KIR 

ligands are MHC class I molecules, expressed by majority of cells in the host, and act to 

inhibit NK cell cytotoxicity. Absence of MHC class I – known as ‘missing self’ and often 

observed in virus-infected or cancerous cells – abrogates inhibition and thus results in NK 

cell activation (reviewed in 118). The expression of NK cell receptors is dependent on antigen 

experience 119 and tissue environment 120 and varies from cell to cell. The strength of 

activation induced by binding of receptors also varies from cell to cell, a feature that is 

utilized in NK cell education: inhibitory receptor binding to self MHC during development is 
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used to tune the NK cell against auto-reactivity while maintaining recognition and reactivity 

to infected or malignant cells (reviewed in 108, 109, 121). This is important, as NK cells are 

constitutively primed to kill targets without prior engagement through (1) exocytosis of 

cytolytic granules (perforin perforates the target cell and granzymes induce apoptosis) or (2) 

death receptors. They also modulate immune responses through the production of cytokines 

such as interferon gamma (IFNγ) and tumour necrosis factor (TNF), and β chemokines such 

as macrophage inflammatory protein (MIP)-1 alpha (MIP-1α; CCL3), MIP-1β (CCL4) and 

RANTES (CCL5) 122. These cytokines and chemokines are crucial in directing the adaptive 

immune response to viral infection 123, 124. On the other hand some chronic viral infections 

such as cytomegalovirus (CMV) epigenetically modulate NK cell expression of activating 

and inhibitory receptors, and signaling molecules, and thus alter the immune response 125, 126 

(reviewed in 127). It should be noted that NK cells may directly recognize pathogens through 

PRRs and kill them 128. 

 

NK cells also express a variety of cytokine and chemokine receptors and can thus be 

activated by the proinflammatory cytokines (IFNα, IL-2, IL-12, IL-15 and IL-18 129, 130, 

reviewed in 131) and ‘called’ to sites of infection and secondary lymphoid tissues by 

chemokines (CX3CL1, MIP-1α, MIP-1β, RANTES 132, 133), respectively, released by APCs. 

Through crosstalk between NK cells and DCs, this activation induces the mammalian target 

of rapamycin complex 1 (mTORC1) pathway 134(up regulating metabolic processes) leading 

to release of the antiviral cytokine, like IFNγ, that stimulates an antiviral state and activates 

dendritic cells to mature and present viral antigens (reviewed in 123, 135, 136). In addition, 

activation of NK cells leads to generation of a long-lived memory NK cell pool 137, 138 104, 139 

(reviewed in 140). Furthermore, IFNγ from NK cells mobilizes T cells to the appropriate areas 

of the lymph node for activation 141. 

 

CD56dim NK cells express FcγRIIIa, the activating low affinity type I Fc receptor (CD16) 

whose ligation to an antigen specific IgG that then binds antigen on target cell results in 

antibody-dependent cellular cytotoxicity (ADCC 142, 143). CD56bright NK cells do not express 

this receptor. In chronic viral infections a third NK cell subset, the CD56neg CD16+ NK cells, 

barely visible in the peripheral blood of healthy persons, expand 144. This subset is believed to 

represent exhausted CD56dim NK cells although the direct subset relationships and 

mechanisms involved are still not firmly established. Interestingly, although CD56neg NK 
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cells are less functional than CD56dim NK cells, they retain the ability to express chemokines 
145. It should be noted that in vivo activation of NK cells involves ligation of multiple of the 

aforementioned receptors, both activating and inhibitory plus chemokine receptors, adhesion 

molecules and TLRs, and requires a stronger activating than inhibitory signal to occur 110, 146. 

 

2.3 The adaptive immune system 

The adaptive immune response is delayed compared to the innate immune response and is 

triggered by recognition of antigen presented on major histocompatibility complex (MHC) 

receptors by APCs or target cells (reviewed in 147). Secondary stimuli that amplify the signal 

include either ligation of costimulatory receptors on T cells with their ligands on APCs, or 

cytokine activation, leading to activation, differentiation and proliferation of antigen-specific 

effector cells (reviewed in 148), and establishment of a life-long memory pool of cells that will 

respond very quickly and strongly to subsequent exposure. The adaptive immune system 

consists of two major cell types: T cells which develop in the thymus and B cells that develop 

in the bone marrow. T cells use a transmembrane protein T cell receptor (TCR) while B cells 

use a transmembrane B cell receptor (BCR) to recognize cognate antigen. Engagement of 

these receptors triggers intracellular signaling pathways and transcription factors that activate 

gene expression leading to maturation, differentiation and proliferation of the naïve cell. This 

process also leads to down-stream activation of effector programs in T cells with production 

of cytokines and chemokines, and killing of target cells. In B cells the major effector response 

is production of antigen-specific antibodies. The specificity of adaptive effector cells is 

dependent on gene-rearrangement by somatic recombination of the V, D and J segments of 

the β chain of the T cell receptor (reviewed in 149), and the heavy and light chains of the B 

cell immunoglobulin (B cell receptor) to create millions of unique possibilities of cell 

receptor specificities needed to detect a variety of potential antigens. Thus, the adaptive 

antimicrobial response is tailored towards a specific pathogen. T cells are a major focus of 

this thesis. 

 

2.3.1 Conventional T cells 

Naïve T cells are generated in the thymus and circulate between secondary lymphoid tissues 

and the periphery on the lookout for cognate antigen. They express the TCR in association 

with two other membrane-spanning receptors, the CD3 – a signal transduction complex 
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universally expressed on T cells – and glycoprotein co-receptor that can either be CD4 or 

CD8. CD4 and CD8 receptors bind extracellular portions of MHC class II or MHC class I 

respectively, recruit tyrosine kinases to the TCR complex and thus amplify the signal. MHC 

class I molecules present short peptides derived and processed from intracellular pathogens or 

stress molecules while MHC class II presents longer peptides processed from exogenous 

pathogens. The formation of CD3-TCR-CD4 or CD8 complex with cognate peptide-MHC 

complex presented by APCs leads to phosphorylation of the intracellular domains of the 

TCR/CD3 complex and activation of kinases such as SYK, LCK and ZAP70 that lead to 

downstream signaling and activation of transcription factors that result in activation of the T 

cell 150. This process is energy intensive and requires upregulation of metabolism to support 

the increased demand 151. It primes the T cell for differentiation into an effector cell in an IL-

2 dependent manner leading to clonal expansion and differential expression of chemokine 

and homing receptors that target cells in and out of peripheral compartments and secondary 

lymphatics. Once the infection has been cleared, the pool of effector cells contracts leaving 

some few that differentiate into long-lived memory cells that will be called upon on 

secondary challenge or antigen re-encounter 152, 153. Naïve T cells can also proliferate by way 

of homeostasis in response to the cytokines IL-7 and IL-15 (reviewed in 154) with the latter 

being important for maintenance of effector T cells 116, 155, thus ensuring a continuous supply 

even when the thymus contracts with age.  

 

T cell differentiation phenotypes are described by the expression patterns of multiple 

molecules such as cytokine, chemokine, integrin, homing and adhesion receptors, and are 

important in denoting localization and function of a particular cell (reviewed in 156). CD4 and 

CD8 T cells can be categorized according to the surface expression of CD45RA and CCR7 
157 (reviewed in 158-160), a receptor-linked protein tyrosine phosphatase crucial for signal 

transduction and thus cell activation (reviewed in 161), and a CC-chemokine receptor 

necessary for the homing of T cells to lymphoid organs and tissue, and motility therein, in 

response to chemokines CCL19 and CCL21 (reviewed in 141, 162), respectively. Naïve T cells 

are CD45RA+CCR7+, central memory T cells (TCM) are CD45RA-CCR7+, effector memory 

T cells (TEM) are CD45RA-CCR7-, terminally differentiated effector memory T cells 

(TEMRA) are CD45RA+CCR7-, while tissue-resident memory T cells (TRM) are CD45RA-

CCR7- that are CD69-/+CD103-/+ depending on location 157 (reviewed in 160). The T cell 

costimulatory molecule, Traf-linked tumor necrosis factor receptor family member CD27 is 

important for the generation of memory T cells (reviewed in 163, 164) as it amplifies 
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proliferation and enhances cell survival of antigen-specific T cells. It is therefore, together 

with CD45RA, also used to classify T cell subsets. 

 

It should be noted that the chemokines CCL3, CCL4 and CCL5 are important for recruiting T 

cells through ligands such as CCR5 into lymph nodes draining sites of inflammation for 

antigen-specific activation and differentiation into memory T cells 165, 166 (reviewed in 156). 

Beyond recruitment, CCR5 ligation influences T cell production of IL-2 and its dependent 

function inclusive of T cell proliferation 167. TCM circulate between blood and lymphoid 

tissue, TEM between blood and peripheral tissue, TRM remain in specific tissues, while 

TEMRA are found mainly in circulation. Naïve CD4 T cells, once activated in lymphoid 

tissue, differentiate into TCM, then into TEM that are thought to differentiate into TRM in 

mucosal, peripheral and lymphoid tissue by homeostasis or upon secondary stimulation. On 

the other hand, naïve CD8 T cells, once activated in lymphoid tissue, are thought to 

differentiate directly into either TEMRA or TEM, with the latter differentiating into TRM in 

mucosal, peripheral and lymphoid tissue by homeostasis or upon secondary stimulation. This 

provides a lifelong pool of polyfunctional antigen-specific rapid responders to infection. CD8 

T cells have recently been shown to differentiate, in the elderly, into a new subset of cells 

retaining a naïve phenotype but as polyfunctional as memory T cells (TMNP cells) in response 

to persistent infections 168. It should be noted that terminally differentiated cells undergo 

replicative senescence whereby they cease to proliferate but express high amounts of 

proinflammatory cytokines 169 due to the shortening of telomeres, in a bid to protect the host 

from cells that become increasingly dysfunctional (reviewed in 170). 

 

CD4 T cells are primarily helpers as they direct adaptive immune responses by activating 

other immune cells; influence innate immune responses; and perform antiviral functions 

through production of cytokines such as IFNγ and TNF, in addition to direct cytotoxic killing 

through perforin and granzymes (reviewed in 171). The nature and load of pathogen CD4 T 

cells encounter, APC involved, and resulting inflammatory milieu stimulates distinct 

transcription factors, affects the phenotype and function the cells adopt 172 and determines the 

subset a naïve CD4 T cell differentiates into (reviewed in 171, 173). Type 1 helper T (TH1, 

transcription factor T-bet) cells develop in the presence of high levels of pro-inflammatory 

cytokines such as IFNγ, IL-12 and type I IFNs and primarily produce IFNγ. TH2 cells develop 

in the presence of IL-4 and primarily produce IL-4, IL-5 and IL-10 (transcription factor 
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GATA-3). TH17 cells develop in the presence of IL-6 and TGFβ and primarily produce IL-

10, IL-17 and IL-21 (transcription factor RORγt). TFH (T follicular helper, transcription factor 

BCL-6) cells develop within B cell follicles in the presence of IL-6 and IL-21 and primarily 

produce IL-4 and IL-21. Regulatory T cells (Tregs, transcription factor FOXP3) develop in 

the presence of TGFβ but without IFNγ, IL-4 and IL-6, and primarily produce the anti-

inflammatory cytokines IL-10, TGFβ and IL-35. 

 

Memory CD4 T cells enhance immune responses on secondary challenge or reinfection by 

rapidly activating innate immune responses through their production of proinflammatory 

cytokines, chemokine-driven recruitment of antigen-specific cells, providing help to B cells 

and CD8 T cells, and as effectors. For example, IL-2 from CD4 T cells helps tune NK cell 

proliferation, IFNγ secretion and recognition of MHC class I-devoid cells (reviewed in 174). 

On the other hand, licensed NK cells activate and augment CD4 T cell differentiation, 

proliferation and function through production of proinflammatory cytokines 175 and co-

stimulation 176 but can also kill infected and stressed T cells when they upregulate death 

receptors or ligands for NK cell activating receptors (reviewed in 177). 

 

Tregs are specialized CD4 T cells that counteract inflammatory processes to dampen immune 

responses and thus protect the host from immune-mediated pathology, although this 

sometimes leads to the persistence of pathogens (reviewed in 178, 179). Tregs also protect 

against autoimmunity as many of them express TCRs with high affinity for self-antigen. As 

such Tregs can be found in various tissues, both lymphoid and non-lymphoid, and 

particularly in sites of inflammation. There are two major subsets of Tregs: those that exit the 

thymus as Tregs (or natural Tregs; nTregs) and those that differentiate from CD4 T cells in 

the periphery in the presence of appropriate cytokines and antigen (peripheral/induced Tregs; 

pTregs/iTregs). Central Tregs (cTregs) circulate between blood and secondary lymphoid 

tissue where they actively block the priming of naïve CD4 T cells if self-antigen is present 

through the ligation of inhibitory receptors on dendritic cells. Homeostatic maintenance of 

Tregs is IL-2- and FOXP3-dependent, thus they highly express the high affinity IL-2 receptor 

α CD25 while only low amounts of the IL-7 receptor CD127 180. Once activated, cTregs 

differentiate into effector Tregs (eTregs) that are resident in non-lymphoid tissue and can be 

recruited to sites of inflammation where they act to counter inflammatory processes through 

production of cytokines like IL-10, activation of apoptosis, or interruption of metabolic 
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pathways. They express multiple homing and adhesion receptors/ligands that facilitate their 

entry into the periphery, and are maintained through IL-33, in addition to TCR and 

costimulatory molecule signals. It should be noted that proinflammatory cytokines such as 

IL-1 and type-1 IFN impede Treg function. On the other hand, Tregs can dampen NK cell 

function (reviewed in 174) and T cell expansion 181 by limiting the IL-2 available to them. 

 

T-bet and Eomes are the transcription factors governing the differentiation of naïve CD8 T 

cells to effector cells. Akin to NK cells, CD8 T cells are primarily cytotoxic, killing virus-

infected, malignant, and stressed cells through perforin and granzyme B (GrzB), but also 

produce cytokines. They require CD4 T cell help to function optimally (reviewed in 171, 182) 

Through the binding of CD40L on CD4 T cells to CD40 on DC, they license the DC to 

efficiently prime CD8 T cells to perform cytotoxic function 183. Antigen-stimulated naïve 

CD8 T cells that do not receive CD4 T cell help undergo activation-induced cell death 

when they encounter secondary stimulation. However, IL-15 expressed by licensed DCs 

can be sufficient to activate CD8 cytotoxic responses without CD4 T cell help. The 

cytokines IL-2 and IL-12 are necessary for antigen-specific CD8 T cell responses 184 as 

they stimulate clonal expansion and improved function. The need for IL-2 is tied to its 

effect on CD8 T cell metabolism and transcription through mTORC1, which affects 

differentiation into effector cells 185. IFNγ from CD4 T cells directs the recruitment and 

maintenance of tissue-resident memory CD8 T cells in a chemokine-dependent manner in 

response to mucosal infection. In addition, CD4 T cell derived IL-21 is necessary for the 

maintenance of effector CD8 T cell clones and activity in chronic viral infections, while IL-

10 from regulatory T cells dampens the pro-inflammatory response and thus allows CD8 T 

cell memory maturation while protecting from exhaustion. CD4 T cells can also directly co-

stimulate CD8 T cells through CD40 ligand – CD40 interactions, thus obviating the need 

for APC 186. Furthermore, direct T cell-to-T cell interactions during the priming phase in 

the lymph node contribute to the differentiation and generation of protective memory CD8 

T cells 187. Thus dysregulation of CD4 T cell frequency, phenotype and function affects the 

quality of CD8 T cell function. 

 

Activated T cells up-regulate a number of surface molecules including CD38 and HLA-DR, 

to mention but a few. CD38 is a transmembrane glycoprotein whose upregulation early 

during T-cell activation leads to changes in cell metabolism 188, cell-to-cell adhesion and 
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movement through the endothelial cell wall 189 and cytokine production 190 (reviewed in 191). 

HLA-DR is an MHC class II receptor that is involved in antigen presentation, but that is also 

upregulated in response to activation 192, 193. As earlier mentioned T cells require a co-

stimulatory signal, in addition to the CD3-TCR-CD4/8 complex and cytokine signals. Some 

co-stimulatory receptors can deliver either activating or inhibitory signals depending on 

which ligand they bind (reviewed in 194). For example, either of the ligands CD80 and CD86 

on APCs can bind either of receptors CD28 or cytotoxic T lymphocyte antigen 4 (CTLA-4) 

on T cells, resulting in either an activation or inhibition signal respectively. Inhibition signals 

are utilized to modulate the activation signal, thus avoiding hyper activation whilst tuning cell 

differentiation and maturation. Another negative regulator of function is programmed death-1 

(PD-1) and its ligand PDL-1. It should be noted that in the case of persistent immune 

activation, such as happens with chronic viral infections, T cells up-regulate a number of 

these negative regulators of function in a bid to counteract chronic stimulation 195: this up-

regulation is associated with a state of exhaustion (that is, dysfunction seen in impaired 

proliferative ability and effector function) 196.  

 

2.4 Unconventional T cells 

The description of the human immune system as bimodal is in a number of ways an 

oversimplification, as the discovery of cell types displaying a hybrid innate-adaptive 

character has increased (reviewed in 197). In general these cells express surface receptors of 

restricted antigen specificity and constitutively display adaptive-like characteristics (for 

example memory), although highly specific cells displaying innate-like function (for 

example responding rapidly) have also been described (reviewed in 198, 199). Unconventional 

T cells include T cells displaying αβ TCRs that are semi-invariant and not MHC-restricted. 

Mucosal associated invariant T (MAIT) cells are a large innate-like T cell subset constituting 

up to 10% of T cells in peripheral blood, but are also found in liver and mucosal sites, and 

throughout the body. The semi-invariant TCR consists of a Vα7.2-Jα33 chain bound to an 

oligoclonal CDR3β-chain, which recognizes antigens presented on MR1 (reviewed in 200). 

MR1-presented antigens are intermediates of the riboflavin biosynthesis pathway, thus these 

cells are important in fighting bacterial and some fungal infections. They can also be 

activated by cytokines such as IL-12 and IL-18 resulting in the production of IFNγ.  
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Invariant natural killer T (iNKT) cells are innate-like T cells whose invariant TCR recognizes 

lipid and glycolipid antigens (reviewed in 201) presented by the non-classical CD1d molecule 

(reviewed in 202). They constitute only up to 1% of peripheral blood T cells although they are 

found more abundantly in tissue. Three subsets of iNKT cells have been described, namely 

type I, type II and type Ia NKT based on the composition of the TCR and antigens they 

recognize (reviewed in 203); this thesis shall focus on type I, hereafter referred to as iNKT 

cells. The lipid α-galactosylceramide is the archetypical antigen for the iNKT cell TCR that is 

composed of a Vα24 and Jα18-containing α-chain bound to Vβ11-containing β-chain. Both 

self and foreign lipid antigens (particularly from bacteria) are recognized for thymic selection 

and tuning, and immune activation respectively. They constitutively express a number of 

activating NK receptors in addition to cytokine and chemokine receptors (such as CCR5 and 

CXCR4) that help them home to inflamed tissues, where they are found more abundantly. 

Like conventional T cells, they require IL-15 for maintenance and express either CD4, CD8 

or none of them (double negative), although the majority express CD161 (reviewed in 204). 

Conversely, iNKT cells can be activated by either a TCR, cytokine (such as IL-12 and IL-18) 

or activating receptor signal 205. Activation results in rapid production of large amounts of 

both proinflammatory and immunoregulatory cytokines and chemokines (IFNγ, IL-4, IL-17, 

CCL3, CCL4, CCL5) and cytolysis (granzyme B and Fas-mediated apoptosis); thus iNKT 

cells are important in directing innate and adaptive immune responses to both PAMPs and 

DAMPs in a bidirectional manner (reviewed in 202 206). 
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3 HIV AND THE IMMUNE SYSTEM 
3.1 Overview 

The study of the interaction of HIV with the human immune system has dramatically 

accelerated our understanding of host-pathogen interactions. While there is a major 

immune bottleneck at the point of transmission 42, once HIV infection occurs, it 

utilizes the immune system to cause an infection, rapidly replicate and establish latent 

viral reservoirs. This results in persistent inflammation and loss of CD4 T cells that 

leads to chronic activation, and eventual disease and death particularly in the absence 

of control of viraemia (Figure 3). Interestingly, even when viral replication is 

controlled to levels below detection by conventional tests, there is still residual 

replication that is suspected to cause the residual inflammation and activation that has 

been associated with non-AIDS morbidity. The following section delineates the 

contribution of different cell types to the immune control of HIV.  

 

Figure 3. A simplified timeline of untreated HIV infection. 

 

3.2 NK cells 

At mucosal sites HIV-1 is recognized by epithelial cell TLRs triggering the release of 

cytokines such as IFNα and chemokines such as MIP-1α that attract and activate APCs 
124, 207. DCs process and present antigen, and release cytokines such as IL-12 and IL-18 

that activate innate immune cells including NK cells and other effector populations that 

mediate antiviral activity (reviewed in 208). 
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HIV-1 accessory proteins Nef and Vpu inhibit antigen presentation in infected cells by 

downregulation of surface MHC class I molecules. This allows the virus to evade 

detection and cytolysis of the infected cell by CD8 T cells, while modulating NK cell 

recognition of infected cells 209. This can lead to NK cell production of IFNγ 141, TNF 
210, β-chemokines and cytotoxic killing of autologous 211 and allogeneic 212 HIV-

infected CD4 T cells through direct recognition and cytolysis or ADCC (reviewed in 
213). The NK cell repertoire changes in response to HIV-1 infection, suggesting these 

cells become engaged in a systemic manner in fighting the virus 214-217 (reviewed in 
124). NK cells have been suggested to protect highly exposed seronegative injecting 

drug users 218 and women at high risk of HIV infection from acquiring the infection 219, 

220. Certain KIR-HLA genotypes are associated with protection from HIV acquisition, 

low viraemia and slow progression to AIDS (reviewed in 221). Conversely, poor 

function in activated NK cells pre-infection 222 and certain KIR-HLA combinations 223 

may be associated with higher risk of HIV acquisition. In rhesus macaques, SIV-

specific CD4 T cells activate NK cells in an IL-2 dependent manner leading to better 

control of infection 224. HIV vaccine induced NK cell ADCC has been associated with 

reduced HIV infection risk in the RV144 trial 225, 226, while high levels of passively 

acquired HIV-specific antibodies in infants were associated with reduced mortality risk 
227.  

 

HIV-1 uses many strategies to escape NK cell activity (reviewed in 228-230): Some HIV 

peptides can alter the binding ability of inhibitory KIRs to their HLA ligands towards 

greater NK cell inhibition 231. Infection is associated with altered expression of 

inhibitory and activating receptors 145, 232-236 (reviewed in 124) geared towards impairing 

cytolytic activity, and compromised ability to kill immature DCs and thus direct 

adaptive immune responses 237 (reviewed in 238). NK cells display impaired secretion 

of cytokines and chemokines 239, impaired ADCC 240, 241 and respond poorly to 

cytokine activation 242. In chronic infection a dysregulated CD56neg NK cell subset 

expands 144 (reviewed in 243). In vitro experiments also show impaired recruitment and 

activation of NK cells by dendritic cells exposed to complement-opsonized HIV 244. 

Conversely, HIV utilizes NK cells to compromise the immune response by, for 

example, killing of CD4 T cells through NKp44-NKp44L 61. 
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3.3 Conventional adaptive T cell responses 

While it is not yet clear what role immune activation levels play in HIV acquisition 222, 

245, 246, the chronic immune activation that occurs subsequent to infection, particularly 

in T cells, is a hallmark of HIV infection and predicts morbidity and mortality 247, 248 

(reviewed in 249). As mentioned previously, HIV mainly infects CD4 T cells, directly 

and indirectly leading to their death, and thus compromises host immune responses. 

The HIV envelope protein gp120 binds both the CD4 receptor and either of the 

chemokine receptors CCR5 250 and CXCR4 251 to facilitate its entry into a target cell 

(reviewed in 49, 65). The gut contains a large proportion of HIV susceptible CD4 T cells 

and the intense viral replication depletes CD4 T cells and compromises the gut barrier 

already in acute infection, leading to increased translocation of microbial products into 

the tissues and circulation (reviewed in 252). Gut damage is associated with alterations 

in the microbiome, both local and systemic inflammation that in turn activates immune 

cells, and recruitment of immune cells (through CCR5) 253 thus increasing the pool of 

HIV targets. This, together with bystander activation 254 is a major contributor to 

chronic immune activation 67. The importance of CD4 T cells in the immune response 

to HIV infection is underscored by the discovery that polyfunctional CD4 T cell 

responses were a correlate of protection against HIV acquisition in the RV144 trial 255.  

 

CD4 T cell loss is associated with a marked increase in activated HIV-specific CD8 T 

cells that are poor at inhibiting HIV replication and predictive of disease progression 
256. This may be due to selection of escape variants of virus 257, 258 and results in an 

‘arms-race’ between CD8 T cells and the virus 259, 260 (reviewed in 261). Non-specific 

CD8 T cells also markedly expand: later on there is increased bystander activation 262 

and cycling of memory CD8 T cells that is associated with distortion of the structure of 

lymph nodes due to fibrosis 68. Furthermore, polyfunctional CD8 T cells are believed 

to be important for control of viral replication in acute HIV infection and for long-term 

non-progressive disease that occur in rare patients 263-265. Such efficient CD8 T cell 

responses also occur in elite controllers 266, 267 (more resistant to apoptosis 268), and also 

display a memory response to viral rebound of SIV in pig-tailed macaques 269. 
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Conversely, the HIV protein Tat activates CD8 T cells and may contribute to 

hyperactivation and exhaustion 270. 

 

3.4 Invariant NKT cells and Tregs 

Similarly, HIV can infect nTregs 271, 272 (reviewed in 273) and iNKT cells 204 that 

express both CD4 and either of CCR5 or CXCR4 leading to their depletion. 

Interestingly, the transcription factor FOXP3 found in nTregs has been reported to 

have anti-HIV properties, which, in addition to resistance to apoptosis and altered 

expression of CD25, may partly explain the disparate results of Treg frequency, 

number and function in HIV infection 274-276 (reviewed in 179, 273). However, although 

they play a protective role in highly exposed seronegative individuals, Treg 

preservation does not lead to better control of chronic immune activation 277 (reviewed 

in 179). On the other hand, iNKT cell depletion is associated with increased immune 

activation in SIV-infected macaques 278. In HIV the remaining iNKT cells express less 

cytokine and proliferate poorly to both cytokine and TCR stimulation in in vitro 

experiments. HIV proteins Nef and Vpu modulate activation of iNKT cells by 

inhibiting CD1d cell surface expression and antigen presentation 279-281, suggesting that 

iNKT cells do play a role in HIV immune control. Interestingly, recent findings 

indicate that iNKT cells can detect HIV infection if Nef and Vpu activity is abolished 
282. 

 

3.5 Role of chronic immune activation 

Persistent immune activation and inflammation is a hallmark of untreated HIV 

infection (reviewed in 283). Signs of chronic activation of immune cells in infected 

persons include elevated expression of activation markers such as CD38 and HLA-DR 
284-286, and inhibitory receptors such as PD-1 196, 287, 288 and TIM-3 277, 289(reviewed in 
290, 291). Persistent activation is also accompanied by altered expression of cytokine and 

chemokine receptors 292, altered production of cytokines 293 and chemokines plus 

aberrant killing ability 294, increased apoptosis 295, 296, skewing of populations of cell 

subsets 297, 298, impaired immune regulation 277, and immunosenescence (reviewed in 
299, 300). All these events and factors exhaust the immune response and predispose the 
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HIV-infected individual to opportunistic infections and cancers that are the typical 

causes of death. On the other hand, while ART preserves immune cell phenotype and 

function, gut integrity and lymph node structure, the residual low-level viral replication 

leads to residual immune activation that is suspected to be the cause of increased non-

AIDS defining illnesses and accelerated aging. It is clear that it is important to prevent 

the establishment of a hyper activation state that begins within days of infection 59 as 

natural SIV hosts (Sooty mangabeys and African green monkeys) arrest immune 

activation early and thus do not develop AIDS despite continuous viral replication 

(reviewed in 69, 249). Innate immune mechanisms, as the earliest responses to HIV 

infection may be the key to this. Pig-tailed macaques infected with a replication- and 

disease- competent mutant of SIVmac239 also control virus and maintain health 

through both innate and adaptive mechanisms 269. This thesis thus aimed to 

characterize innate cellular immunity in the immunopathogenesis of HIV infection in 

Uganda, in a bid to inform the development of better vaccines or therapies for HIV. 
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4. AIMS 

HIV-1 infection continues to be a major cause of morbidity and mortality in sub-

Saharan Africa. In Uganda, HIV-1 subtype A infection is associated with 

significantly slower progression to AIDS than subtype D infection. The main 

objective of this thesis was to significantly enhance our understanding of the role of 

innate cellular immunity in HIV-1 infection, and contribute to the body of knowledge 

leading to better vaccines and therapeutics. Thus the specific aims of this thesis were 

as follows: 

 

Specific Aim 1: Establish normal reference ranges for lymphocyte subsets in 

Ugandans, including NK cells. Thus far, no study with a sufficiently large sample size 

and good representation of urban and rural Ugandan populations had been done. 

Country-specific reference values are very important for the design and interpretation 

of both basic studies and intervention trials where immunological parameters are of 

importance. (Paper I) 

 

Specific Aim 2: Investigate the differential loss of regulatory subsets of T cells in 

HIV-1 subtype A and D infection. iNKT cells are innate-like T cells that direct innate 

and adaptive cell responses to an infection through their production of 

immunoregulatory and activating cytokines. Tregs modulate immune responses to 

infection to avoid immune activation-mediated pathology. We thus aimed to 

investigate if distribution of these cell subsets associated with the differential 

immunopathogenesis of subtype A and D infection. (Paper II) 

 

Specific Aim 3: Determine the basis for the functional impairment of NK cells to 

cytokine stimulation in HIV-1 infected subjects. IL-12 and IL-18 are major cytokines 

involved in NK cell activation during an infection. The IFNγ NK cells release after 

cytokine stimulation is important not only for the anti-viral activity of this cytokine, 

but also the immunomodulatory effects on dendritic cell maturation that influence 

antigen presentation and T cell priming. (Paper III) 

 

Specific Aim 4: Investigate the role of FcγRIIIA+ CD8 T cells in HIV-1 infection. 

CD16 is commonly expressed on innate immune cells like NK cells, monocytes and 
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neutrophils, and is involved in antibody-dependent cell-mediated cytotoxicity or 

phagocytosis. We sought to characterize the levels, characteristics and function of 

FcγRIIIA+ TCRαβ+ CD8 T cells and investigate their role in HIV-1 infection. (Paper 

IV) 

 

Specific Aim 5: Assess the contribution of markers of inflammation to immune 

activation. Recent data shows that, unlike what is seen in western cohorts, viral load, 

but not T cell activation levels, was an independent predictor of disease progression in 

rural Ugandans. We sought to characterize innate soluble markers of inflammation and 

immune activation and identify predictors of HIV disease progression in this 

population. (Paper V) 
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5. METHODS 

5.1 Flow Cytometry 

Whole blood collected from participants in a long-term community-based cohort of 

HIV surveillance 301 was processed and PBMCs cryopreserved according to 

previously established procedure 302. On the day of experimentation cryopreserved 

specimens were thawed and washed. Counts and viability were assessed on the 

Guava PCA (Guava Technologies, Hayward, CA, USA), using Guava ViaCount 

reagent. Standard flow cytometry phenotyping was performed as previously 

described 145. For assessment of transcription factors, cells were washed, 

permeabilized and fixed using an optimized kit (FoxP3 staining fix/perm, 

Ebiosciences) before intranuclear staining. Flow cytometry data were acquired with a 

BD LSR II instrument or a BD FACS Canto II instrument (BD Biosciences). Sorting 

was performed on a 4-laser special order BD FACS ARIA II SORP (BD 

Biosciences) contained in a biosafety cabinet. Clinical lymphocyte 

immunophenotyping was performed using the FACS MultiSET System and run on a 

FACSCalibur using the single platform Multi-test 4-color reagent in combination 

with TruCount tubes (BD Biosciences). The different panels studied are detailed in 

Table 1 and 2 below, although actual clone and manufacturer details can be found in 

the different papers. 

 

Table 1: Flow panels used in thesis research 

 

 

 

Laser Fluorochrome NK phenotype NK function NK function iNKT T cell function Treg T cell activation

FI TC/ AL488 CD57 CD57 CD57 Vα24 I L-2 FoxP3 HLA-DR

PE Ki67 Perforin I FNγ Vβ11 TNFα CD25 PD-1

PerCP-

Cy5.5/ PE-Cy5 CD3 CD3 CD3 CD3

PE-Cy7 CD56 CD56 CD56 CD8 CD8

Pac Blue/ V450/ B HLA-DR HLA-DR HLA-DR CD4 CD4 CD4 CD4

AmCyan/ V500

Aqua Live/ Dead Live/ Dead Live/ Dead Live/ Dead Live/ Dead Live/ Dead Live/ Dead

BV785

APC/ AL647 NKG2A NKG2A NKG2A CD161 I FNγ CD127 CD38

APC-Cy7/ APC-

H7

CD3/ CD14/ CD

19

CD3/ CD14/ CD

19

CD3/ CD14/ CD

19

Alexa700 

PE

PE-CF594

PE-Cy5

PE-Cy7

I I I I I I I I I I I I I I I V

BD Facs Canto I ICytometer used

Blue 
488nm

Violet 

405nm

Red 

640nm

Green 
532nm

Papers used in:
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Table 2: Flow panels used in thesis research 

 

 

5.2 Soluble factor analysis  

Soluble factors were measured either by a human inflammatory cytokine bead array, 

custom multiplex cytokine array or by enzyme-linked immunosorbent assays 

(ELISA) commercial kits as per manufacturer’s instructions. Optical density 

(ELISA) was determined using a BioTek ElX800 plate reader and final 

concentrations were calculated from standard curves using KC4 software (BioTek, 

Winooski, VT). All samples were run in triplicate and mean values were used for 

data analysis. Details of soluble factors studied can be found in the different papers. 

 

5.3 Gene expression analysis  

Stained cells were sorted into wells (~1000 cells/well) containing 10 μl of reaction 

buffer (SuperScript III Reverse Transcriptase / Platinum Taq Mix, Cells Direct 2X 

Reaction Mix, Invitrogen). Reverse transcription and specific transcript amplification 

were performed using a thermocycler (Applied Biosystems Gene Amp PCR System 

9700) as follows: 50°C for 15 min, 95°C for 2 min, then 95°C for 15 sec, 60°C for 30 

sec for 18 cycles. The amplified cDNA was loaded into Biomark 96.96 Dynamic 

Array chips using the Nanoflex IFC controller (Fluidigm). This microfluidic platform 

was then used to conduct qPCR in nl reaction volumes. Threshold cycle (CT), as a 

measurement of relative fluorescence intensity, was extracted from the BioMark 

Real-Time PCR Analysis software. Amplified genes were qualified according to 

Laser Fluorochrome

T cell 
activation

T cell 
differentiati

on I
T cell NK 
receptors T cell homing

T cell
differentiati

on I I

T cell
transcription 

factors
T cell 

phenotype

T cell
phenotype 
(Fluidigm)

T cell 
phenotype 

(ADCC) T cell function

FI TC/ AL488 TCRab CCR7 CD57 CXCR3 Perforin Tbet CD107a

PE PD-1 TRAI L NKp46 Eomes
PerCP-
Cy5.5/ PE-
Cy5 CD3 CD27 NKG2D CD16 CD161 CD8 KI R2DL1/ S1

PE-Cy7 CD8 CD8 CD8 CD8 CD8 CD56
Pac 
Blue/ V450/ B
V421/ eFlour
450 CD16 CD16 CD16 CCR5 CD16 Helios CD16 CD16 CD16
AmCyan/ V50
0 CD3

Aqua Live/ Dead Live/ Dead Live/ Dead Live/ Dead Live/ Dead Live/ Dead Live/ Dead Live/ Dead

BV785 CD45RA CD45RA CD45RA CD45RA

APC/ AL647 CD38 CD45RA NKG2A PD-1 I L-7R CD57 CD57 CD57 CD57
APC-Cy7/ APC-
H7 CD3 CD3 CD3 CD3 CD16 CD8 CD8 CD8 CD8

Alexa700 KI R3DL1 

PE

KI R2DL2/ DS
2/ DL3 I FNγ

PE-CF594 CD3 CD3 CD3 CD3

PE-Cy5 CD14/ CD19 CD14/ CD19 CD14/ CD19

PE-Cy7 CD56 CD56 CD56 CD56

I V I V I V I V I V I V I V I V I V I V

Green 
532nm

Papers used in:

Cytometer used BD LSR I I

Blue 
488nm

Violet 
405nm

Red 
640nm
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whether they were efficiently amplified; the amplification was linear and was not 

affected by multiplexing 303. Subsequent data analysis was performed using JMP 

software (version 10). Details of genes studied can be found in Paper IV. 

 

5.4 ADCC assays  

Measurement of ADCC was performed using the PanToxiLux (PTL) assay 

(OncoImmunin, Inc., Gaithersburg, MD, USA). Recombinant HIV-1 BaL gp120 

from DAIDS, NIAID catalog #4961 and HIV-1 rgp 120 IIIB (CHO), catalog #1174 

(obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH) 

were used to coat targets CEM.NKRCCR5 cells. Optimum concentration used to coat 

target cells was determined for each gp120 through an 11-point titration starting with 

20 μg/ml and serial diluting 2-fold. After coating target cells were labeled with TFL4 

(OncoImmunin, Inc.), a fluorescent target-cell marker, washed and stained with 

viability dye LIVE/DEAD Fixable Aqua Dead Cell Stain (Life Technologies). Target 

cells were then resuspended together with sorted effector cell populations for an 

effector to target ratio of 30:1, in the presence of GrzB substrate (OncoImmunin, 

Inc.). After incubation Human Immunodeficiency Virus Immune Globulin (HIV-

IG™) (North American Biologicals, Inc., Miami, FL, USA) was added to each well, 

and the plate incubated then washed. Cells were acquired on the LSRII (BD 

Bioscience) the same day. Fluorophores were detected using: a 488 nm 50 mW laser 

with 515/20 filters to detect GrzB substrate, a 406 nm 100 mW laser with 525/50 

filters to detect Aqua L/D stain, and 640 nm 40 mW laser with 670/30 filters to 

detect TFL4 stain. Data were analyzed by using FlowJo 9.7.5 (Ashland, OR, USA). 



 

  29

6. RESULTS AND DISCUSSION 

6.1 Lymphocyte subset distributions in Ugandan populations  

The human immune system is composed of a complex network of cells that work in 

concert to protect the host from pathogen attack while avoiding immune-mediated 

pathology. It includes antigen-presenting cells such as dendritic cells and 

macrophages, granulocytes such as neutrophils, eosinophils and basophils, and 

lymphocytes such as T, B and NK cells. Hematology and clinical immunophenotyping 

are basic laboratory tests utilized routinely to guide clinical management of patients, 

with the latter being especially important in the case of HIV infection. In the context 

of research, baseline data on these parameters can help formulate research hypotheses, 

and is used to identify and characterize clinically relevant abnormalities. In addition, 

such data can be important in guiding choice of potential participants for clinical trials. 

In Paper I we sought to establish normal lymphocyte reference ranges for Ugandans 

using blood collected from healthy blood bank donors. We found substantial sex-

associated differences between women and men, with women having higher 

frequencies and counts for all lymphocytes with the exception of the frequencies of 

CD8 T cells and B cells that were similar, and frequencies and counts of NK cells that 

were higher in men (Paper I, Table 2). Of note, basophil counts positively associated 

with overall T cell counts. 

 

Previous studies have shown that immune responses to viral infections differ between 

the sexes 304-307 (reviewed in 308). In the context of HIV immunopathogenesis sex 

differences have been noted, with women displaying better clinical and virological 

outcomes in some data 309-311, and worse in others 312-314. Immune activation and 

inflammation both at the protein 315 and soluble biomarker level 316 also showed sex 

differences, with the latter study showing less reduction in inflammation and activation 

in the first year of ART for women, but with the former showing the reverse after years 

of ART. All this suggests that the sex differences probably i) stem from genetic and 

hormonal differences (reviewed in 317) ii) are revealed by data such as that presented in 

Paper I, and iii) have implications for disease outcomes. For example, a study by 

Weinberg et al revealed an increase of peripheral Tregs that suppressed immune 

responses in association with increases in progesterone 318. Sex differences also 

manifest in the pharmacokinetics and pharmacodynamics of drugs, including ART, so 
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much so that some drug regimens are prescribed differentially 319.  

 

Although we show that basophil counts positively associated with T cell counts in both 

sexes, the association was stronger in women (Paper I, Fig. 3 and 4). Thus basophils 

may probably more strongly modulate immune responses 320 and be one of the 

contributors to greater immune activation and inflammation seen in women (reviewed 

in 321), particularly those with a significant parasitic burden (reviewed in 322, 323). 

Recent research also shows sex differences in metabolism 324; as nutrition influences 

metabolism, and metabolism influences immune responses 151, 185, this may contribute 

to the cellular differences seen here, and to differential HIV immunopathogenesis. 

Furthermore, studies have shown sex differences in cellular function and phenotype 325, 

326.  

 

Interestingly, when we compared participants of two different cohorts, one urban and 

the other rural, to the semi urban blood bank donors, we found significant differences 

in both lymphocyte and hematological parameters, particularly in males. The three 

cohorts were disparate in terms of urbanicity but similar as regards heterogeneity of 

tribes (thus genetics) and altitude. Differences in cell subset proliferation and numbers 

have previously been recorded between ethnic groups in the same environment 327, 328 

in the context of HIV infection, within an ethnic group dispersed in different countries 
329 and within different locations in the same country 330. We hypothesize that 

nutrition, socio-economic status and composition of the intestinal microflora may 

contribute to the differences seen between these groups, although it is possible that 

subclinical conditions not evaluated while taking medical history could influence the 

results 331, 332. These results are relevant to HIV immunopathogenesis: a study 

conducted in semi urban districts of Uganda showed that antiretroviral therapy–naive 

HIV-positive adults with poor diet quality were more likely to be less educated and 

more socio-economically disadvantaged, and poor diet quality was positively 

associated with anemia and low CD4 counts in addition to predicting mortality 333. 

Another study conducted to investigate prevalence of intestinal parasites in two sub-

ethnic groups living in the same area in Malaysia found that the statistically significant 

differential parasitic burden was influenced by socioeconomic factors 334. It is thus of 

interest that males revealed more location differences than women, as it points toward 

socioeconomic factors. Additionally, it emphasizes the need to not only include but 
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also endeavor to balance different demographic groups during data collection and 

analyses so as to pick up any important differences (reviewed in 335, 336) or at the very 

least validate the reference ranges using a sample of the population of interest 337. Thus 

further research with sufficient statistical power to detect how demographic differences 

may impact future clinical studies and trials are needed 312, 338 (reviewed in 321). 

 

6.2 Natural killer cell phenotype and function in HIV-1 subtype D infection 

HIV-1 subtype D infection is characterized by faster disease progression than subtype 

A infection in Ugandans, for yet to be defined reasons. Natural killer cells are 

important effectors of viral control in virus infections that direct both innate and 

adaptive immune responses. They are innately primed to respond to cells expressing 

stress ligands and/or missing MHC class I receptors. In order to function optimally, 

NK cells utilize a plethora of activating and inhibitory receptors that tune the threshold 

of activation thus protecting self against NK-mediated pathology. In HIV, they have 

been shown to help protect against acquisition, inhibit viral replication, and influence 

disease progression. In Paper III we investigated if NK cell phenotype and function 

influenced immunopathogenesis of subtype D infection in chronic untreated HIV-1 

infected Ugandans.  

 

In this cross sectional study, we found that CD56dim NK cells from HIV-infected 

persons produced less IFNγ compared to uninfected controls, when stimulated with the 

cytokines IL-12 and IL-18 (Paper III, Fig. 1b and Fig. 1c). This was in contrast to 

stimulation with MHC-null K562 cell line, which showed no difference. Surprisingly 

there was no difference in either cytolytic (perforin) or proliferation ability (Ki67) of 

the CD56dim NK cells seen as measured ex vivo, regardless of infection status. HIV-

infected individuals had a lower representation of NKG2A+CD57+ CD56dim NK cells 

than the healthy controls (Paper III, Fig. 1f and Fig. 1g); this subset was highly 

activated (HLA-DR; Paper III, Fig. 1h) and its frequency correlated directly with 

CD56dim NK cell IFNγ production in response to IL-12 and IL-18 stimulation (Paper 

III, Fig. 1i), but not K562 stimulation (Paper III, Fig. 1j). Of note, these changes in 

CD56dim NK cell phenotype and function were independent of CD4 T cell count and 

viral load. We concluded that these changes reflected an HIV-driven change in NK 

cell maturation that was accompanied by activation and poorer response to cytokine 
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stimulation.  

 

IL-12 and IL-18 are innate cytokines that activate immune cells differentially to 

respond to pathogens. IL-12 stimulates NK cell production of IFNγ that skews naïve 

CD4 T cell differentiation to Th1 necessary for antiviral and antibacterial activity 

(reviewed in 171, 339), and enhances NK cell - CD4 T cell crosstalk 141, 175, 176 hence 

influencing adaptive immune responses. Cytokine stimulation also enhances NK cell 

cytotoxicity, both through perforin and Fas-Fas ligand pathways 340-342. Thus the 

defect in NK cell IFNγ production could lead to poorer immune responses to not only 

HIV but also opportunistic infections. 

 

NK cells show defects in function in chronic infection, regardless of ART status 342. 

HIV-infection impairs the anti-fungal ability of NK cells by compromising NKp30 

expression and impairing the perforin pathway 342. Stimulating the NK cells in vitro 

with recombinant human IL-12 restored NK cell function measured by perforin 

expression. However, this study did not assess the ability of these NK cells to 

produce IFNγ, despite there being conflicting results on whether the cytokine is 

important for anti-fungal activity 128, 343 (reviewed in 344). Thus, it is possible that Kyei 

et al would have found a defect in NK cell IFNγ production, and that we would have 

found a defect in NK cell perforin expression had we stimulated the NK cells ex vivo. 

Taken together it appears that NK cells display multiple defects in HIV infection that 

are only partially rescued by exogenous cytokine. This data is important particularly 

for the incidence and reactivation of fungal infections in the HIV-infected population 

in Uganda, as fungal diseases are quite common 345. Significantly immunosuppressed 

persons starting ART are at high risk for developing immune reconstitution 

inflammatory syndrome (IRIS), a condition in which patients deteriorate paradoxically 

despite both mycologic and virologic suppression 346. Meya et al showed an increase 

of activated CD56dim NK cells, CD4 T cells and proinflammatory monocytes in the 

cerebrospinal fluid of HIV-infected persons displaying cryptoccocal meningitis-IRIS 
347. It is worth noting that patients who display high Th2 and Th17 responses but low 

proinflammatory cytokines pre-ART are predisposed to develop IRIS post-ART 348. 

Inflammasome activation leads to excessive inflammatory monocyte responses and 

ineffective T cells associated with mycobacterium tuberculosis-IRIS in HIV-TB 

coinfected persons 349. All these, together with the pathogen-associated skewing of NK 
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cell phenotype subsets described here and elsewhere 125, 233, 350, 351 reveal the 

importance of NK cells to the immune response.  

 

In HIV infection, persistent inflammation and immune activation begins early in 

infection and is not resolved even when ART is started in acute infection 59, 352. This 

suggests other drivers of inflammation and activation or low-level viral replication in 

local sites 352, 353. Thus the defects we see here could have begun early in infection. 

Although the prevalence of hepatitis B, hepatitis C and syphilis were low, we did not 

evaluate these participants for other coinfections that may contribute to the immune 

dysregulation we see here. Nevertheless, the data presented has implications for the 

immune response to incident infections during HIV-1 infection 354 and thus 

cumulatively lead to more rapid progression of HIV-1 subtype D infection. 

 

6.3 Differential associations of interleukin 6 and intestinal fatty acid-binding 

protein  

High levels of inflammation and immune activation begin in acute HIV infection and 

persist through chronic infection and are associated with morbidity and mortality in 

treated and untreated infection. In this study, we examined indices of immune 

activation and inflammation in Ugandans with chronic untreated HIV-1 infection. 

We found that IL-6, soluble CD14 (sCD14), soluble CD163 (sCD163), and catalase 

were elevated in HIV-1– infected study participants compared with uninfected 

individuals, although C-reactive protein (CRP), intestinal fatty acid binding protein 

(IFABP), IL-10, and neopterin did not differ significantly (Paper V, Table 1). A 

trend toward lower levels of IFABP was observed in HIV-positive participants 

compared with HIV-uninfected individuals (Paper V, Table 1). Viral load, T-cell 

activation and IL-6 levels associated with faster disease progression (Paper V, Fig. 

1A) and with each other (Paper V, Fig. 1B). Surprisingly, even though IL-6 levels 

associated with CRP levels, IFABP levels associated neither with viral load nor with 

sCD14 (Paper V, Fig. 1B). 

 

Our data on soluble biomarkers of inflammation from this rural African population 

differed from what has been described extensively in the literature, where neopterin 

and CRP predict HIV disease progression 355 (reviewed in 356-358). In addition, 
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contrary to what is described in the literature (reviewed in 359), IFABP was lower in 

HIV-infected participants compared to uninfected ones. Sub-Saharan Africa is 

endemic for many infections, particularly enteric ones 360, which may stimulate an 

inflammatory state independent of HIV-1 infection, so that HIV-infection does not 

dysregulate the gut above the other infections. Furthermore, accelerated enterocyte 

turnover facilitates expulsion of gut parasites 361 that are endemic to sub-Saharan 

Africa (reviewed in 362); suggesting that lower IFABP levels in fast progressors 

compared to slow progressors may be a mark of dysregulated immune responses. 

Although sCD14 and IFABP have been used interchangeably as markers of 

microbial translocation, they were inversely correlated in our data, which is more in 

line with IFABP being a marker of slower progression in our cohort. This could also 

be reflective of independent biological processes in this cohort. Taken together, our 

data reveals differences in known soluble biomarkers of inflammation between 

cohorts from different regions that warrant more detailed investigation 363.  

 

Consistent with other studies (reviewed in 356), markers of monocyte activation and 

inflammation were all increased in HIV-positive individuals compared with negative 

participants. In spite of this, CRP levels did not associate with viral load, suggesting 

multiple independent drivers of inflammation in this cohort. Again, the prevalence of 

Hepatitis B and C and active syphilis were low and did not differ between 

progression groups and uninfected, however, we did not test for other coinfections 

that could possibly contribute to the results described here (reviewed in 364). In the 

era of ART it is important to delineate which pathways contribute strongest to both 

AIDS and non-AIDS comorbidities (reviewed by 356), as this will guide future 

therapeutics and vaccines. A recent study conducted among rural Ugandans found 

that T cell activation was not an independent predictor of HIV disease progression 87. 

Thus future work should systematically evaluate what biomarkers and factors 

associate with faster disease progression in African cohorts in comparison to western 

cohorts. 

 

6.4 Subtype divergence and immunoregulatory T cell subsets 

Invariant natural killer T cells direct innate and adaptive cell responses to an infection 

through their production of immunoregulatory and activating cytokines. Regulatory T 
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(Treg) cells modulate immune responses to infection through production of cytokines 

or directly by activating apoptotic and/or interruption of metabolic pathways. We thus 

aimed to investigate if distribution of these cell subsets associated with differential 

immunopathogenesis of subtype A and D infection. We found that HIV-1 subtype D 

infected Ugandans had a significantly lower level of iNKT cells than HIV uninfected 

Ugandans (Paper II, Fig. 1b). In contrast, subtype A subjects had a significantly lower 

level of Tregs than either subtype D infected or uninfected subjects, despite both 

subtypes showing Treg loss (Paper II, Fig. 1d). Interestingly, only in subtype A 

infection were correlations observed between total CD4 T cell function and iNKT cell 

frequency, when stimulated with SEB (positive association, Paper II, Fig. 1e, f and g) 

and CMV (inverse association, Paper II, Fig. 1h, i and j). The positive correlation of 

CD4 T cell function to iNKT cell levels held even when it was taken by single 

cytokine expression. There were no associations of iNKT cell levels to Treg levels, 

CD4 T cell absolute count or viral load in either subtype.  

 

More significant iNKT cell loss in subtype D compared to subtype A infection despite 

being at the same stage of infection may contribute to the divergence in 

immunopathogenesis described in Uganda. Selective loss of immunoregulatory iNKT 

cells and dysfunction of remaining cells has previously been documented in HIV 

infection 288, 365. Interestingly, a study of HIV-1 and the less virulent HIV-2 infection 

found loss of iNKT cells in HIV-1, HIV-1/2 and viraemic HIV-2 infected individuals 

compared to uninfected controls, suggesting that preservation of iNKT cells associated 

with less immunopathogenesis in this African cohort 366. iNKT cells were also more 

activated in viraemic compared to aviraemic HIV-2 infected individuals, and activation 

levels correlated with markers of disease progression. When these findings are taken 

together with preservation of iNKT cells in subtype A infection that associated with 

general polyfunctionality of CD4 T cells, it suggests that iNKT cell levels, and 

possibly function are important for protection against HIV disease. The loss of Tregs 

could mean less suppression of general immune responses 174, 181 and thus better 

clinical outcomes. 
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Of note, preservation/reconstitution of CD4 T cell ability to produce IL-2 has been 

associated with control of HIV viraemia 367, is a potential correlate of immune 

protection from HIV acquisition 255 and leads to improved NK cell function 368. Levels 

of polyfunctional CD4 T cells (IFNγ and IL-2 positive) associate inversely to viral load 

in HIV-TB coinfection, adding to the body of knowledge on the importance of these 

cells in the immunopathogenesis of HIV infection 369. While it is not clear why our 

findings were independent of CD4 T cell counts and viral load, it is possible that the 

defects we describe are established early in infection. Proulx et al show that iNKT 

cells are dysregulated quite early in infection, with differential influence of transmitted 

founder virus isolates on iNKT cell activity in female genital mucosa 282. Taken 

together, this data shows differences in immunoregulatory T cell levels, adaptive T cell 

responses and associations with viral subtype that may contribute to differential 

pathogenesis of HIV-1 subtype A and D infections.  

 

6.5 Innate-like terminal effector CD8 T cells expand in HIV infection  

CD8 T cells utilize a range of effector functions to combat viral infections, including 

cytolysis and effects mediated by cytokines and chemokines, utilizing antigen-

specific T cell receptor recognition of antigen-bearing MHC in a restricted manner. 

However, CD8 T cells have been shown to develop innate-like characteristics in the 

context of chronic infection 370. In this study we hypothesized that late-stage 

differentiation of CD8 T cells may be associated with transcriptional changes that 

support innate-like effector functions in the T cell compartment. We found that indeed 

a αβ TCR bearing CD8 T cell population expressing the FcγRIIIA expands in 

chronic untreated HIV-1 infection, that they were highly activated (Paper IV, Fig. 

1b-d) and persisted even with ART (Paper IV, Fig. 1g). The activation of this subset 

associated with plasma markers of HIV-driven systemic immune activation (Paper 

IV, Fig. 1i). Phenotypically, FcγRIIIA+ CD8 T cells were distinct from FcγRIIIA- 

CD8 T cells as they were terminally differentiated effector cells that expressed 

perforin and NKG2D expression while not expressing CD161 (Paper IV, Fig. 2a-c), 

and were thus less likely to be invariant T cells. The significant upregulation of the 

transcription factor Helios, at the protein level, distinguished FcγRIIIA+ CD8 T cells 

from FcγRIIIA- CD8 T cells and NK cells (Paper IV, Fig. 2d). Interestingly, when 
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we assessed KIR expression we found that FcγRIIIA+ CD8 T cells from HIV-

infected persons had a similar expression pattern to NK cells, while they were 

intermediate between FcγRIIIA- CD8 T cells and NK cells in healthy donors (Paper 

IV, Fig. 2e). Transcriptomic analysis confirmed that the level of Helios gene IKZF2 

and IL-7Rα gene transcription distinguished FcγRIIIA+ from FcγRIIIA- CD8 T cells 

and NK cells, while transcript levels of the NK cell-associated receptor NKp80 gene 

KLRF1 was similar between FcγRIIIA+ CD8 T cells and CD56dim NK cells (Paper 

IV, Fig. 3). Furthermore, the capacity of FcγRIIIA+ CD8 T cells to mediate HIV-1-

specific ADCC was similar to that of FcγRIIIA+ NK cells on a per cell basis (Paper 

IV, Fig. 4c). Thus these late-stage effector T cells acquire FcγRIIIA expression in 

HIV-1 infected individuals and use it to mediate HIV-specific ADCC, a function 

normally associated with NK cells. Functional diversification of adaptive CD8 T 

cells may be important as therapeutic strategies evolve to include antibody-mediated 

mechanisms to eliminate HIV-1 reservoirs.  

 

FcγRIIIA+ CD8 T cells expansion coincident with bulk CD8 T cell population 

expansion suggests a concomitant response to the chronic uncontrolled viral 

replication. In some murine models, bystander activated memory CD8 T cells can 

recognize and clear pathogens in a TCR-independent fashion (NKG2D 371 and IFNγ 

plus GrzB 372). In another murine model, innate-like memory CD8 T cells respond to 

inflammasome-generated cytokine by promoting antimicrobial resistance in lymph 

nodes while inhibiting systemic spread 373. Jacomet et al describe a phenotypically 

similar population of ‘innate/memory-like’ CD8 T cells in both healthy adults and 

cord blood and hypothesize that they would expand in infection 374. Similarly, 

FcγRIIIA+ CD8 T cells maintained protein expression of T-bet and Eomes while 

downregulating CD127, which confirms that they are terminally differentiated 

effector cells 375. The FcγRIIIA+ CD8 T cells we describe adopt a KIR profile 

similar to NK cells in HIV-1 infected subjects, and their activation associates with 

systemic immune activation, suggesting that they expand in response to infection. 

NK cell KIR profiles have been found to influence HIV immunopathogenesis 376. 

Previously, Eller et al found expansion of polyfunctional KIR3DL1+ CD56dim NK 

cells in chronic untreated HIV-1 infected Ugandans who expressed the appropriate 

HLA-B ligand 214. CD8 T cells from healthy donors have been shown to express 

single activating or inhibitory receptors independent of their HLA ligands and NK 
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cell inhibitory receptors 377. That FcγRIIIA+ CD8 T cells express multiple KIRs may 

be a feature of this subset, with the similarity to NK cells being a function of viral 

replication. The conditions in vivo during HIV-1 infection thus seem to drive not 

only an expansion of these cells, but also expression of surface receptors beyond 

FcγRIIIA normally associated with NK cells.  

 

At gene level, the FcγRIIIA+ CD8 T cells appear to have a transcriptional program 

intermediate between late-stage effector CD8 T cells lacking FcγRIIIA and CD56dim 

NK cell expressing FcγRIIIA. The FcγRIIIA+ CD8 T cells displayed high expression 

of grzB and granulysin, maintained expression of IL-21R but with very low 

expression of IL-7Rα. It is thus possible that these effector cells are maintained by 

IL-7 independent mechanisms, such as by IL-21 378, 379, as they remain stable over 12 

months of ART. Consistent with upregulation of surface KIR expression in this 

subset in HIV infection, genes for other NK cell-associated receptors were also 

upregulated. Most interestingly, the KLRF1 gene, which encodes the activating 

receptor NKp80 was expressed at similar levels as in CD56dim NK cells. NKp80 has 

recently been shown to associate with the development and maturation of fully 

functional NK cells in secondary lymphoid tissue in response to signals from DC in 

addition to cytokines such as IL-15 380. We hypothesize that NKp80 could be playing 

a similar role here. It is also possible that, like is seen with NK cells, FcγRIIIA+ CD8 

T cells utilize NKp80 to foster mutual activation of the CD8 T cells and 

monocytes/macrophages for improved viral control 381.  

 

In addition, the FcγRIIIA+ CD8 T cells displayed high expression of the 

transcription factor Helios both at the protein and gene levels, as well as a modestly 

lower expression of the transcription factor Eomes. At the protein level Eomes 

expression in the FcγRIIIA+ CD8 T cells appeared normal, which was consistent 

with previous studies 374. Helios has been shown to mark out T cells that have been 

activated and are proliferating 382. Possibly, then, the distinctive transcription factor 

pattern contributes to sustaining FcγRIIIA+ CD8 T cell expansion in HIV-1 infected 

individuals. It would also be interesting to establish if they can be activated and 

maintained by other means, such as cytokine and natural cytotoxicity receptors 371, 

372, 374.  
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The expansion of FcγRIIIA+ CD8 T cells we describe is reminiscent of CD8 T cells 

with a similar phenotype in HCV-infected patients 370. The chronic nature of these 

infections with rapid viral replication and high mutation rates, leads to selection of 

epitope immune escape variants. The FcγRIIIA+ CD8 T cells display a memory 

phenotype of expanded antigen-specific T cells 383, 384 but whose epitopes possibly 

mutated, and thus the new biological characteristics including additional mechanisms 

to trigger effector activity may be a way to repurpose this subset to contribute to the 

immune response. It is intriguing that in murine models innate-like memory CD8 T 

cells were important for the immune response to both viral and bacterial infections, 

particularly in the early response. More studies exploring the role of the FcγRIIIA+ 

CD8 T cells in reactivated and opportunistic infections in the context of HIV 

infection are warranted. The ADCC activity of these cells could perhaps be 

harnessed for HIV preventive, therapeutic and cure research 99, 225.  
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7. CONCLUDING REMARKS 

This thesis aimed to investigate what role innate immune cellular subsets play in the 

immunopathogenesis of chronic untreated HIV-1 infection in Ugandans. We also 

investigated cellular differences between subtype A and D infection in order to 

elucidate differential immunopathogenesis. A number of lymphocyte subsets were 

studied including NK cells, iNKT cells, regulatory T cell subsets and CD8 T cells 

exhibiting innate-like ADCC activity. Furthermore, the distribution of lymphocyte 

subsets and reference ranges were determined for the Ugandan population. We found 

altered and impaired phenotypes and functions in HIV infection consistent with HIV-

driven immune dysregulation, although we could not rule out contributions from 

other coinfections not assessed in our studies. The impairments of NK cells and 

iNKT cells may contribute to the accelerated immunopathogenesis of subtype D 

infection. It is interesting that cytokines such as IL-12 and IL-18 can, at least 

hypothetically, activate most of the cell subsets described here, and yet we show 

impaired cytokine responses in NK cells. In addition, some CD8 T cells, in HIV 

infected donors, develop the capacity to perform ADCC and mediate HIV-specific 

immunity in this way thus possibly adding to the functional repertoire employed 

against HIV. Further work should be done to evaluate phenotype and function of 

these cells with different stimuli, particularly in the context of subtype D infection. 
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