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ABSTRACT 
 
 
The inflammatory state of chronic kidney disease (CKD) leads to increased susceptibility to infections 
and cardiovascular complications. In this thesis we aimed to investigate development of inflammatory 
properties at different stages of CKD and changes in innate immunity as well as cardiac structure. 
Fibroblast growth factor 23 (FGF23), a phosphaturic hormone known to impact cardiovascular 
outcome and inflammatory markers in CKD was also analyzed.  
 
In the first paper1 a cross sectional study of transmigrated monocytes in patients with advanced CKD 
was performed. Patients with CKD had an increased percentage of CD16+ monocytes, distorted TNF-α 
and IL-10 levels and a significantly higher level of fractalkine (CX3CL1). This inflammatory profile 
may in part mediate the altered immune response in CKD.  
The aim of the second paper2, was to investigate end organ damage to the heart of the pro-
inflammatory state of CKD by evaluating cardiac structure and function in patients with CKD stages 
2-5, compared with healthy controls in the PROGRESS cohort. Transthoracic echocardiography and 
Tissue Doppler Imaging (TDI) were performed to describe cardiac dimensions such as left ventricular 
mass, wall thickness and diastolic and systolic function. CKD patients had a higher prevalence of 
left ventricular hypertrophy (LVH) and alterations in systolic and diastolic myocardial function 
compared to the healthy controls.   
In the third paper, inflammatory changes and altered monocyte function in patients with CKD stage 
2-3 was compared to healthy controls in the PROGRESS cohort at baseline and at follow up after 3 
and 5 years. Monocytes from CKD patients showed early functional abrasions, with altered adhesion 
molecule expression and significantly lower fMLP-induced upregulation of CD11b and decreased 
level of L-selectin (CD62L). CKD patients also had lower oxidative burst in response to fMLP over 
time as well as elevated pro-inflammatory cytokines; TNF-α, RANTES and IL-12. These findings 
suggest that a transformation of monocyte function occurs at an early phase of renal impairment and 
may together with increased plasma levels of pro-inflammatory cytokines contribute to the higher 
vulnerability of CKD patients to comorbidities.  
Our primary objective of the fourth paper was to characterize the altered chemokine profile and 
leukocyte function at CKD stages 2-5 and investigate correlations between these markers and levels of 
FGF23. Elevated levels of FGF23 in CKD are associated to worse outcome and cardiovascular 
complications. FGF23 has also been described to interact in inflammatory processes. FGF23 was 
significantly elevated in the CKD group, and correlated to GFR, PTH, urinary albumin excretion 
(UAE) and phosphate as well as to the expression of IL-12 and RANTES.  In vitro incubation of 
leukocytes with FGF23 reduced CD11b expression in resting as well as in fMLP-stimulated 
granulocytes. Together this indicates an influence of FGF23 on leukocyte transmigration and an 
interference with chemokine signaling in CKD.   
 
In Summary; several factors are involved in inflammation in CKD. Better understanding of 
immunologic mechanisms and altered cellular function at different stages of CKD might help to 
explain the enhanced risk of cardiovascular disease as well as the increased susceptibility to infections. 
With improved knowledge of the inflammatory processes accompanying CKD we might obtain 
diagnostic and prognostic tools to improve clinical outcome. 
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1 GENERAL INTRODUCTION - CHRONIC KIDNEY DISEASE  
 
 
1.1 EPIDEMIOLOGY AND ETIOLOGY 

 

Chronic kidney disease (CKD) is a cumbersome and life threatening disorder. Renal failure 

exposes the patients to an accelerating degree of inflammation and disabling uremia. 

Furthermore this condition brings additional sickness and death through higher incidence of 

cardiovascular morbidity and mortality3–5 as well as increased susceptibility to infections6. 

Treatment of end-stage renal disease (ESRD) with renal replacement therapy (RRT), achieved 

by hemodialysis, peritoneal dialysis or kidney transplantation, can be lifesaving. RRT is 

expensive and not readily offered outside the industrialized world. Demand and costs of RRT 

are increasing each year7,8. In Sweden, the number of dialysis patients has increased by 35 % 

since the millennium9. In the industrialized world the plethoric geriatric group mediates a 

steadily growing incidence of RRT in the population10,11. Patients with CKD are a heterogenic 

group with the declining renal function due to many different etiologies9, where diabetic 

nephropathy, nephrosclerosis and glomerulonephritis constitute the largest diagnosis groups.  

 

1.2 CLASSIFICATION OF CHRONIC KIDNEY DISEASE 

 

National kidney foundation and the Kidney Disease Outcomes Quality Initiative (NKF/ 

KDOQI) published an unifying classification and definition of CKD in 200212, and in 2013 an 

updated version was launched. Based on glomerular filtration rate (GFR) there are currently 

five stages or grades (G) where grade 3 is subdivided into 3a and 3b (Table 1). Structural or 

functional abnormalities of the kidney with a duration exceeding a time frame of three months 

is required to meet the definition. In the absence of evidence of kidney damage, GFR category 

G1 and G2 do not fulfill the criteria for CKD.  
 

GFR  
category 

GFR  
(mL/min/1.73 m2) 

Terms 

G1 >90 Normal or high 

G2 60-89 Mildly decreased 

G3a 45-59 Mildly to moderately decreased 

G3b 30-44 Moderately to severely decreased 

G4 15-29 Severely decreased 

G5 <15 Kidney failure 

Table 1. GFR categories according to KDIGO guidelines  12,13 
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1.3 GLOMERULAR FILTRATION RATE ESTIMATIONS 
 
 
Inulin, a fructose polysaccharide, is considered the gold standard for GFR measurement14. 

Other frequently used methods to measure GFR are 125I-iothalamate, 51Cr-EDTA, and 

iohexol15. For every day clinical use however, these methods are too costly, time consuming 

and not without adverse effects. A more convenient and less expensive substitute to estimate 

GFR are endogenous substances such as creatinine, urea and cystatin C measured in urine or 

blood16. Serum creatinine (S-Cr) is the cheapest and most widely used alternative, but has 

multiple disadvantages. The S-Cr level is affected by the individual muscle mass, proportion 

of recently ingested meat and the body’s fluid homeostasis17. 

Over the years, several attempts to develop a reliable equation to estimate GFR from the S-Cr 

have been made. The Cockcroft-Gault formula18 estimates the creatinine clearance, which is 

not corrected by body surface area, and thus the absolute value of the filtration rate. Due to 

the increased creatinine secretion, the creatinine clearance usually overestimates GFR when 

the GFR is low. With these limitations taken in account the Swedish agency for health 

technology assessments workgroup stated in their report on estimating renal function from 

2014 a general recommendation to discard this method19,20 

The MDRD formula was launched 1999 and revised 200621, standardizing the GFR to body 

surface area (ml/min/1.73m2) and based on the Modification of Diet in Renal Disease 

(MDRD) study22. The CKD-EPI ( Chronic Kidney Disease Epidemiology Collaboration) 

formula is another more recently developed equation and obtains more accurate eGFR values 

in the high eGFR range (>60 ml/min/1.73 m2) as well as eGFR values in the lowest range23. 

In research, the MDRD equation is more widely established and believed to give a more 

accurate estimate of the GFR, particularly for overweight and geriatric individuals16,21. Both 

the MDRD and the CKD-EPI equations include variables for age, gender and race and have in 

direct comparison to Cockcroft-Gault23 and creatinine clearance measured from 24-hour urine 

collections demonstrated superiority24. The revised Lund-Malmö GFR estimating equation 

that combine creatinine and cystatin C and has in a large Swedish cohort outperformed 

MDRD and CKD-EPI25,26. 

Cystatin C, a proteinase inhibitor produced by all human cells and dependent on glomerular 

filtration has become an increasingly popular endogenous marker for GFR. It offers better 

precision among patients with mild CKD and is less sensitive to diet, gender, age and body 

configuration27. However, cystatin C eGFR should not be used on patients on medication with 

glucocorticoids or with hyperthyroidism in whom the levels are significantly increased.  

At extremities in age or body configuration, severe malnutrition or obesity, in pregnancy, in 

vegetarian or vegan diet, muscle diseases or rapidly changing renal function all eGFR 

methods have their limitations.  
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2 BACKGROUND 
 
 

2.1 RISK FACTORS FOR CKD 

  

Already at the age of 25 years the GFR starts to decline with a pace of about 1 ml/min per 

year. There is a considerable inter-individual variation in the progression rate but midst 

patients with CKD, the progression rate is usually more rapid than in the general 

population28,29. By targeting blood pressure control, lowering albuminuria and optimizing 

body fluid volume and electrolyte balance, nephrologists try to delay or halt the progression 

rate, preventing patients from developing uremia and premature start of dialysis.  The kidneys 

are exposed to multiple potentially damage inflicting causes ranging from exogenous toxins to 

life style factors and metabolic or inflammatory diseases. With these repetitive strikes at renal 

function over time, continuous loss of nephrons follow and glomerular hypertension develops 

in the remaining nephrons that try to compensate the overall loss of function by 

hyperfiltrating. This hyperfiltrative state leads to increased urine albumin excretion and 

enhanced mesangial cell proliferation as well as an elevated pro-inflammatory cytokine 

production30,31. Consequentially, renal fibrosis and nephrosclerosis develops. 

 

 

2.2 CARDIOVASCULAR COMPLICATIONS IN CKD 
 

CKD generally aggravates arteriosclerosis and already at modest level of CKD (stage 1 – 2) 

cardiovascular risk increases32,33. Cardiovascular disease (CVD) poses the greatest risk of 

premature death seen among patients with CKD, leading to 40% of all deaths among 

European dialysis patients34. The incidence of left ventricular hypertrophy as well as 

congestive heart disease and coronary heart disease increase with subsequent loss of renal 

function35. Risk of cardiovascular death is up to 30 times higher in dialysis patients than in 

age- and sex-matched controls in the general population36. Diabetes mellitus, hypertension, 

hypercholesterolemia, smoking and physical inactivity are well established traditional risk 

factors for CVD and are highly prevalent in patients with mild CKD (stage 1 – 3)37. Patients 

with CKD are challenged with additional pathological processes such as endothelial 

dysfunction, oxidative stress, low grade chronic inflammation, fluid overload, acidosis, AV-

fistula complications, anemia and alterations in calcium and phosphate levels, as well as 

vascular calcification and secondary hyperparathyroidism38,39. In spite of all these striking 

data, CVD is frequently underdiagnosed and undertreated in patients with CKD40. These 

patients also display a combined atherosclerotic pathophysiology with both damaging intima 

located plaques and smooth muscle cell hyperplasia that in time develop extensive 

calcifications in the media layer of the arteries41–43. The entire vascular apparatus from 

coronary arteries to aorta and heart valves get widely infested with calcified plaques.  
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In CKD patients, lipid abnormalities are found early on and changes character as progression 

of renal failure continues44.  

Dyslipidemia in renal disease commonly exhibit an atherogenic profile with elevated LDL, 

reduced HDL and high triglycerides (TG). Increased glomerular permeability leads to loss of 

lipoprotein lipase and albuminuria stimulates hepatic synthesis of lipoproteins45–47. 

Inflammation suppresses the anti-oxidative action of HDL which leads to higher amounts of 

oxidized LDL48. Lipid-lowering medication has shown benefits in the early to moderate CKD 

population, probably related to the degree of LDL reduction, rather than the pleotropic effects 

of statins49. Treatment with lipid-lowering agents only moderately reduce atherosclerotic 

events in individuals in late CKD without being proven to alter mortality50. Left ventricular 

dysfunction (LVD) predicts congestive heart failure (CHD) and the presence of CHD predicts 

an exceedingly high mortality rate in dialysis patients51. Risk factors of LVD are multiple in 

CKD; ranging from volume overload, hypertension, inflammation, anemia and AV-fistulas 

with high blood flow that increases cardiac output52–54. LVH can be subdivided in concentric 

hypertrophy, concentric remodeling and eccentric hypertrophy. Eccentric hypertrophy may be 

a consequence of increased preload triggered by anemia and/or intra vascular volume 

expansion (salt and fluid loading) while concentric hypertrophy frequently results from 

afterload augmented by hypertension or increased systemic arterial resistance (secondary 

effect to RAS-activation or vessel calcifying HPT)55. The adjusted relative risk (RR) of death 

in a dialysis population is greatest for patients with eccentric hypertrophy56. N-terminal pro-

brain natriuretic peptide (NT-proBNP) is used as a marker of CHF in non-renal patients where 

an increase leads to inhibition of the renin-angiotensin-system, vasodilatation and 

natriuresis57–59. With loss of renal function proBNP clearance is reduced, which leads to 

rapidly increasing levels. However even after correcting for volume overload, NT-proBNP is 

a prognostic factor of LVD and death in CKD60–62 just like other newer cardiovascular 

prognostic biomarkers such as cardiotrophin and GAL-3 also have been shown to, after 

adjustment, be applicable in CKD63,64. Combined heart and kidney failure has been named the 

cardiorenal syndrome (CRS), a troublesome symptomatic condition requiring high 

hospitalization frequency and displaying a discouraging mortality rate65,66 An inflammatory 

etiology to CRS has been proposed with enhancing inflammatory burden from oxidative 

stress on the endothelium67.  
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2.3 ECHOCARDIOGRAPHY IN CKD PATIENTS  

 

Cardiac imaging in CKD can monitor clinical progress, provide prognostic data and stratify 

risk as well as assess cardiac effects of therapies such as fluid management, dialysis and renal 

transplantation. 74% of patients with CKD stage 5 display evidence of LVH at the initiation 

of dialysis treatment68. Intrinsic cardiac disease can nevertheless be complicated to diagnose 

in CKD due to comorbidities as diabetes, hypertension or old age, all making symptom 

patterns less obvious. Additional CKD specific circumstances with volume overload or 

anemia further confound the clinical evaluation. Accurate diagnosis is essential for initiation 

of appropriate therapy. 2D transthoracic echocardiography is inexpensive, non-invasive and 

widely available, hence frequently regarded as the first-line investigative tool for determining 

cardiac function and structure. It classifies systolic function through evaluation of ejection 

fraction (EF) and fractional shortening (FS), as well as registers change in LV geometry 

according to LV end-diastolic volume, wall thickness and left ventricular mass index (LVMI). 

2D echocardiography can identify structural changes associated with poor prognosis69 and 

differentiate between type of hypertrophy. However, this method can be prone to inaccuracy 

as some measurements are derived rather than actual measures, it has low sensitivity in 

detecting subtle alterations in left ventricular function and is undermined by low 

reproducibility. Impaired relaxation and compliance of the left ventricle generally result in 

diastolic dysfunction. Diastolic function can be estimated by 2D echocardiography with 

comparison of blood flow across the mitral valve during early diastole (E, passive filling) and 

late diastole (A, atrial contraction). Under normal conditions, passive filling is greater than 

filling during atrial contraction, giving an E:A ratio of 1-2. A ratio < 1 signifies impaired 

relaxation whereas E:A > 2 indicates a restrictive filling (limited filling under late diastole). 

Elevated left atrial volume (LAV) predicts all-cause mortality and is a surrogate marker for 

diastolic dysfunction in CKD70. 

Tissue Doppler imaging (TDI) has the ability to detect myocardium wall motion 

abnormalities even when EF is in the normal range. These segmental contraction-relaxation 

disturbances of the myocardium affect the three-dimensional myocardium distortion under 

systole (longitudinal shortening, radial twist and circumferential contraction). TDI is 

especially reliable in detecting longitudinal and radial strain, amplifying the high-velocity 

signals from heart valve and myocardium describing systolic and diastolic function from 

tissue velocity. An altered longitudinal strain inclines worse prognosis despite preserved 

EF71,72. Furthermore, TDI can assess the vertical motion of the mitral annulus; an E/e´ ratio 

(i.e. mean early diastolic transmitral velocity (E) to mitral annulus diastolic velocity (e´)), ≥13 

is indicative of diastolic dysfunction. Less available but somewhat superior; 3D transthoracic 

echocardiography produces assessments of ventricular volume and mass from full LV 

geometry data comparable to MRI results, not risking the overestimations of EF or 

underestimation of diastolic volumes like the 2D technique. 
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2.4 KIDNEY-BONE-AXIS AND FGF23 
 

CKD-MBD or chronic kidney disease – mineral bone disorder, is a condition characterized by 

vascular calcification, biochemical abnormalities, fractures and increased mortality risk. 

Derived from osteocytes and osteoblasts, levels of fibroblast growth factor 23 (FGF23) are 

elevated at an early stage of renal failure73. FGF23 is a phosphaturic hormone which reduces 

the synthesis of active 1,25-dihydroxy vitamin D3
74. In CKD renal handling of phosphate is 

compromised leading to a compensatory rise in FGF23 and development of secondary 

hyperparathyroidism75–78. FGF23 appears to be a more sensitive biomarker of early kidney 

disease than creatinine and enhances phosphate secretion through binding to the tubular FGF-

receptor 1c and the Klotho co-receptor in CKD stages 2-3. In addition, FGF23 simultaneously 

inhibits 1α-hydroxylase and stimulates 24-hydroxylase causing a decrease in circulating 1,25-

dihydroxy vitamin D levels and also appears to reduce parathyroid hormone (PTH) secretion.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1 The effect of FGF23 on target organs. 
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Moderate changes of FGF23 are commonly seen in CKD 2-3 but a markedly elevated level is 

found in ESRD79. Changes in the levels of FGF23 in chronic renal failure have been shown to 

independently predict CKD progression in renal disease78. Adverse outcomes including 

cardiovascular disease (CVD) and mortality have been linked to higher systemic levels of 

FGF-2380–83. FGF-23 has been shown to enhance cardiovascular dysfunction, through diverse 

mechanisms ranging from impaired vasodilatation, enhanced dyslipidemia, heart valve and 

coronary vessel calcification, direct myocyte damage and LVH84–89.  

Circulating FGF23 levels are increased in heart failure and cardiomyocytes have been found 

to produce FGF23 which theoretically might have a paracrine effect that mediates adverse 

cardiac remodeling in the setting of heart disease90–92.  

Development of LVH can be abrogated by blocking of FGF23 binding to Klotho-independent 

FGFR4 activation despite presence of severe hypertension93,94. Klotho deficiency in CKD is 

in part related to systemic and renal inflammation and vascular calcification95,96. FGF23 

stimulates the RAAS-system97 and alter calcium trafficking  in cardiomyocytes resulting in 

increased contractility, hypertrophy and arrythmogenesis98,99. FGF23 has been described to 

interact in metabolic processes such as inflammation, obesity, insulin resistance and iron 

homeostasis83,100–107. Recent studies have implied diverse effects of FGF23 on inflammation 

in CKD101,108. FGF23 associations to inflammatory markers have been described in both CKD 

and non CKD cohorts100–103,109 The relationship between FGF23 and innate immunity appear 

to be more complex than previously assumed and would benefit from further investigations 

including influence of FGF23 on effector cell function. 
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2.5 INNATE IMMUNITY 

 

The initial phase of a immune reaction to invading pathogens is often referred to as the innate 

immune response and largely depends on complement activation and neutrophil 

mobilization110. Exposure to bacterial peptides activates the complement cascade which 

surges a proteolytic reaction targeting the microorganism and co-stimulates the key effector 

cells; the neutrophils.  Neutrophils have receptors that directly recognize both complement 

(C3b, C5a) and bacterial peptides. Circulating neutrophils that are exposed to microbes 

transform to a primed state, leave the circulation and enter the site of microbiologic invasion, 

where they develop more specific properties, such as phagocytosis and ability to discharge 

inflammatory mediators111. Neutrophils orchestra the innate but also the adaptive immune 

response by releasing pro-inflammatory  substances112. A subsequent step in the innate 

immune response is the recruitment of other inflammatory cells. A chemotactic gradient is 

developed with peak concentrations of chemokines closest to the inflamed area. This gradient 

leads the way for the, due to their slower onset of extravasation, casually late entering 

monocytes. Monocytes have a longer survival than neutrophils and rapidly develops into 

macrophages on arriving at sites of inflammation113 where they participate in phagocytosis 

and generates oxidative burst114. Stimulated macrophages release IL-12 and TNFα, both 

mediating sustained leukocyte transmigration and provoke the liver to produce systemic C-

reactive protein (CRP)115. 

 

 

2.6 LEUKOCYTE EXTRAVASATION AND TRANSMIGRATION 

 

Leukocytes exercise their physiological and pathophysiological effect extravascular after 

adhering to the endothelium and transmigrating into the intima or the subendothelial space. In 

order to practice their local defense mechanisms they need to get recruited and leave the 

circulation through several consecutive steps: rolling, activation, firm adhesion and 

transmigration (Figure 1). The first step is dependent on adhesion molecule interaction 

between the neutrophil and the endothelium of the vessel wall. This process, called tethering, 

is mediated by selectins, allowing the neutrophil to scan the endothelium for the presence of 

G-protein coupled receptors that activate a second phase of integrin-mediated adhesion. Once 

firmly adhered to the endothelium, the neutrophil squeezes through diapedesis into the 

extracellular matrix and onward subsequent transmigration guided by a chemoattractant 

gradient directing them to the distinct inflammatory target zone113,116. 
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Figure 2 Extravasation and transmigration of monocytes. 
 
 
 

2.7 ADHESION MOLECULES: INTEGRINS AND SELECTINS 
 
The integrin family members are membrane receptors that anchor the extracellular 

environment (matrix or other cells) with the intracellular cytoskeleton. There are three 

subtypes of integrins grouped according to their type of β subunit117. The most abundant 

integrin found on leucocytes is β2 (CD18).  At least three different α subunits have been 

described to bind to the β2-integrin. The CD11b/CD18 combination is predominantly 

expressed on monocytes, granulocytes and macrophages. Under non inflammatory 

circumstances peripheral neutrophils and monocytes express a low amount of surface 

CD11b/CD18 and keep the molecules stored in intracellular granulae. Activation of cells 

rapidly recruit CD11b/CD18 to the surface, making CD11b/CD18 a reliable marker of 

initiated adhesion leading up to transmigration of neutrophils117–120. The first interactions 

between leukocytes and endothelial cells are mediated by selectins. Selectin family 

members, L-, P- and E-Selectin, capture passing leucocytes in the bloodstream and initiate 

their deceleration along the vessel wall. This adhesion is initiated by weak interactions that 

produce a characteristic "rolling" motion of the leukocytes on the endothelial surface. P-

Selectin and L-Selectin, also called CD62, act in concert and are essential for these initial 

interactions. Different endothelial stimuli induce an up-regulation of adhesion 

molecules117,120. Since they mediate cell adhesion, intergrins and selectins participate in cell 

development, proliferation, migration and apoptosis. Deficit or aberrant expression of specific 

adhesion molecules might contribute to inflammatory disease as well as to tumor 

development117,121. 
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2.8 OXIDATIVE METABOLISM AND ROS PRODUCTION 

 

At microbial invasions, phagocytic cells produce reactive oxygen species (ROS) as a defense 

mechanism for intracellular killing of bacteria67,122. Macrophages and neutrophils generate 

ROS through activating the NADPH oxidase enzyme complex, thus reduce oxygen O2 to 

reactive superoxide (O2
-). This process is referred to as the respiratory burst or oxidative 

metabolism. Further processed by SOD2, glutathione peroxidase and catalase, superoxide is 

converted to highly reactive hydrogen peroxide (H2O2)123.  

 
 

2.9 CHEMOATTRACTANTS, CHEMOKINES AND CYTOKINES 
 
  
Chemoattractants are molecules signaling an ongoing inflammatory event in the body. 

Products from the complement cascade (C3a, C5a), bacterial fragments (fMLP, LPS) and 

chemokines are all considered chemoattractants.118  

Chemokines are small either soluble or membrane bound messenger molecules produced by 

most leukocytes as an inflammatory response after encounters with microorganisms or pro-

inflammatory cytokines such as TNFα or IL-1. They mediate up-regulation of adhesion 

molecules, serve as chemoattractant factors and promote recruitment of inflammatory cells. 

By binding to sugar residents in the extracellular matrix they gradually get captured at the 

inflammatory site124. 

Cytokines are soluble secreted proteins produced in response to an antigen and participate in 

cell growth, activation and differentiation. Based on cysteine residue positioning, chemokines 

divide into two subfamilies, CXC and CC chemokines. Neutrophils respond strongly to CXC 

chemokines while many CC chemokines specifically attract macrophages and T-cells110. 

Cytokines are produced by practically all cells involved in innate immunity and a disturbed 

balance between pro- and anti-inflammatory cytokines can result in tissue damage125. Since 

cytokines can stimulate a cascade of other cytokines from a variety of cell types they rarely 

act alone and are reliant on binding proteins that both protect them from degradation and 

serve as an extracellular cytokine reservoir. Some cytokines have predominantly paracrine 

local effects while others operate systemically126.  

The chemokine fractalkine or CX3CL1, displays a unique transmembraneous domain that 

keeps it anchored to the endothelial cell. Proteolysis generates a soluble circulating 

chemotactic active form of fractalkine. Both the membrane bound and soluble type mediates 

selectin and integrin independent adhesion and chemotaxis127,128. CD16+ monocytes 

particularly rely on the fractalkine pathway to endeavor extravasation129. There are data 

suggesting that fractalkine exhibit a monocyte supporting function resulting in increased cell 

survival in inflammation as well as a capability to protect plaque organized monocytes from 

apoptosis. This might imply a role of fractalkine in the development of vascular disease130.  
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The chemokine RANTES (Regulation on activation, normal T and secreted), also called 

CCL5, orchestra the recruitment of inflammatory cells such as monocytes, dendritic cells, 

neutrophils and macrophages. With the help of cytokines (in particular, IL-12 and IFNγ), 

RANTES also induces the proliferation and activation of certain natural-killer cells and 

enhances the histamine release from eosinophils as well as affects migration of T-cells and 

monocytes131. RANTES induce expression of integrins and metalloproteinases that are 

involved in movement through the endothelial basement membranes and tissues131.  High 

levels of RANTES is associated with a wide range of immune-mediated diseases including 

glomerulonephritis and interstitial nephritis132,133. Blocking of RANTES during early phases 

of chronic ischemia has been shown to mediate decreased neutrophil and macrophage 

recruitment to infarcted tissue leading to improved cardiac function and survival in murine 

studies134.  

Pro-inflammatory cytokine TNFα has been regarded as a superior regulator of the cytokine 

cascade that provides a rapid form of host defense against infection but is fatal in excess. 

Although produced by monocytes, T-lymphocytes, fibroblasts and neutrophils in acute and 

chronic inflammation the major cellular origin of TNFα is activated macrophages135,136. TNFα 

activates neutrophils and mediates neutrophil adherence, chemotaxis, degranulation and 

oxidative burst137. Inducing vasodilatation, increased vascular permeability and promoting 

intravascular coagulation, TNFα play a central role in sepsis and organ failure112,113,. TNFα 

exhibit a pivotal role in regulating both pro- and anti-inflammatory mediators. TNFα is highly 

pleotrophic with effects on insulin resistance, lipid metabolism, coagulation and endothelial 

dysfunction138. It should be noted however, that the association between TNFα and CRP is 

rather weak139. Hence, circulating levels may be affected by a number of different factors and 

that circulating TNFα levels may not reflect biologic activity at the tissue level.   

Systemically acting Interleukin (IL)-6 has a dual role, both as a pro-inflammatory cytokine 

associated with development of atherosclerosis and progression of ERSD80,138 but also as an 

anti-inflammatory cytokine downregulating IL-1 and TNFα as well as increasing 

glucocorticoid synthesis and reduces IFNγ with the net result pointing towards a superior anti-

inflammatory role140.  

Produced early in the infectious process predominantly by monocytes and dendritic cells, IL-

12 is a pro-inflammatory cytokine that has a central function in the initiation and regulation of 

the induction of cell-mediated immunity. IL-12 is an important regulator of the differentiation 

of native T cells into Th1 cells, which is crucial in determining resistance and the type of 

reaction that will be elicited in response to a particular pathogen141.  

Because of their synergistic roles in stimulating inflammation, IL-12, IFNγ - and TNFα are 

considered to be major pro-inflammatory cytokines 141.  

IL-10 is a cytokine produced by monocytes and T-lymphocytes. It inhibits monocyte, 

macrophage and NK cells production of pro-inflammatory cytokines. IL-10 has an anti-

inflammatory profile and it also enhances B-cell survival, proliferation, and antibody 

production142.  
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IL-10 can block NF-κB activity and is capable of inhibiting synthesis of pro-inflammatory 

cytokines such as IFN-γ, IL-2, IL-3, TNFα and GM-CSF made by macrophages and 

regulatory T-cells. Decrease in IL-10 expression results in inadequately 

regulated TNFα levels as IL-10 regulates the TNFα-converting enzyme. As a result, TNFα 

levels rise and drive inflammation143.  

Bacterial peptides triggers extravasation of leukocytes144 and the bacterial tripeptide N- 

formyl-methionyl-leucyl-phenylalanine (fMLP) is regularly used as a chemoattractant in 

studies of leukocyte activation and chemotaxis. By docking to G-protein coupled receptors 

several reactive pathways are initiated, inducing many different inflammatory responsive 

cellular functions including migration and cytokine production122,145,146.  

 

 
 

Figure 3 The innate and adaptive immune systems 
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2.10 INFLAMMATORY CELLS IN CKD 
 
Uremic toxins affect leukocytes in CKD patients. Altered leukocyte adherence to the 

endothelium, impaired chemotaxis, weakened phagocytosis and decreased activity of 

inflammatory cells all occur in CKD147–150. The persistently activated immune system in CKD 

is mirrored by a maladaptive cytokine expression pattern151–153. Activated monocytes have 

been suggested to play an important role in the development of atherosclerosis. Pro-

inflammatory subgroup CD16+ monocytes have been independently associated with 

cardiovascular events in a non-dialysis CKD cohort which might imply this subpopulations 

involvement in human arteriosclerotic development154 Inflammatory triggered monocytes 

enhance their intracellular production of oxygen radicals as well as up-regulate adhesion 

molecules that enables them to infiltrate the endothelial wall155,156. Neutrophils and 

monocytes from patients with advanced CKD have impaired expression of 

CD11b/CD18157,158 There is increasing evidence for a causative connection between 

inflammatory markers with oxidative stress and cardiovascular disease and progression of 

renal failure67,80,159.  
 
 

 

2.11 CHEMOKINES AND CYTOKINES IN CKD 

 

Without showing overt clinical symptoms of infection or visible active inflammation, CKD 

patients display a plasma profile with elevated levels of IL-1, IL-6, TNFα and CRP138. This 

subclinical persistent state of inflammation increase mortality risk and incident cardiovascular 

complications160–162. Research has pinpointed significant alterations in both the adaptive and 

innate immune responses in CKD138,163,164. Cytokine overflow induce fibrosis and incite 

monocyte infiltration eventually causing apoptosis and glomerulosclerosis165. In CKD, 

presence of renal tissue invading macrophages and myofibroblasts is associated with the 

degree of renal function. Macrophages produce pro-inflammatory cytokines such as IL-6 and 

TNFα 166. During the interdialytic interval, the cytokine production from monocytes in 

dialysis patients is normal, although these cells release large amounts of pro-inflammatory 

cytokines under stimulation. In general, IL-12 levels are increased in CKD patients with or 

without dialysis therapy, the elevated levels are probably reflecting a reduced renal clearance 

but also an increased production from DCs that are stimulated by uremic toxins and oxLDL. 

Elevated serum levels of IL-12 have been shown in the sera of chronic HD patients, and the 

overproduction of IL-12 has been associated with accelerated apoptosis of monocytes and T 

cells167,168. Nevertheless, increased IL-12 levels were associated with improved survival in a 

large cohort of patients on dialysis169,170.  
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3 AIMS 

 
The overall objective of this thesis was to gain knowledge about changes in innate immunity 

and cardiac structure in patients with different stages of chronic kidney disease and 

investigate if FGF23-levels and the pro-inflammatory state of CKD in part catalyze the 

adverse clinical outcomes seen in renal insufficiency. 

 
 
The specific objectives were to: 

 
 
Paper I  
 
Investigate the expression of CD16+ and CX3CR1 on peripheral and in vivo extravasated 

monocytes in patients with CKD stage 4-5 and in parallel measure levels of inflammatory 

cytokines in peripheral blood and in the interstitium. 

 
 
Paper II 
 
Investigate if mild-to-moderate CKD patients exhibit alterations in cardiac structure and 

systolic and diastolic function in comparison to patients in advanced CKD as well as to 

healthy controls. 

 

 
Paper III 
 
Investigate monocyte function in terms of adhesion molecule expression and oxidative 

metabolism in patients with mild-to-moderate CKD as compared to healthy controls and 

follow the disease progress over 5 years.  

 
 
Paper IV 
 
Investigate the inflammatory profile in a cross-sectional study of CKD stage 2-5 and examine 

the relationship between FGF23 and immune modulators as well as if FGF23 exposure in 

vitro directly modifies the phenotype of granulocytes and monocytes.  
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4   METHODS 
 
This is a general overview of the methods used in the present thesis. For detailed descriptions 

please refer to each individual article. 
 

4.1 COHORT CHARACTERISTICS 

 

Patients with CKD in all studies were recruited from the Department of Nephrology at the 

Karolinska University Hospital, Solna, Sweden. Informed consent was obtained from all 

patients. All participants gave informed written consent and the study was approved by the 

local ethical committee at the Karolinska University Hospital, Stockholm, Sweden. 

 
 

4.1.1 Paper I – The skin chamber cohort 

 

Included 12 patients with CKD stage 4-5ND (MDRD eGFR < 20 ml/min x 1.73 m2) with a 

mean age of 61 ± 6.2 years. The aetiology of renal impairment ranged from 

glomerulonephritis, interstitial nephritis, adult polycystic kidney disease, amyloidosis and 

nephrosclerosis. Patients with known active systemic inflammatory disease, infectious 

disease, diabetes mellitus as well as those prescribed antibiotics, corticosteroids, non-steroid 

anti-inflammatory drugs, statins, warfarin or immunosuppressive agents were excluded.       

12 age- and gender-matched healthy controls with a mean age was 60 ± 8 years and eGFR     

> 80 ml / min x 1.73 m2 were included as a control group.  

 
4.1.2 Paper II – IV The PROGRESS cohort 

 

Paper II-IV included patients from the PROGRESS cohort, a prospective observational study 

originally designed to detect markers of progression of renal failure. Data from Group 1 was 

only collected for year 0.  

 
Table 1 Inclusion and exclusion criteria of the PROGRESS cohort.  

 Group 1 (n= 49) 
Advanced CKD 

Group 2 (n= 54) 
Mild-to-Moderate 
CKD 

Group 3 (n= 54) 
Healthy controls 

Inclusion criteria  GFR < 20ml/min GFR 50-70ml/min GFR > 80ml/min 
Exclusion criteria Previous kidney transplant, kidney donor or 

blood-borne disease 
Known heart disease. Current 
treatment for hypertension, 
hyperlipidemia or diabetes. 
Blood- borne disease. 

 
Exclusion criteria for all groups: Active infections. Current immunosuppressive therapy with steroids 
or cytotoxic drugs.  Age criteria: 18-62 years. 
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Table 2 Demographic characteristics of the PROGRESS study at inclusion 

 Mild-
Moderate 

CKD 
(stage 2-3) 

Advanced 
CKD 

(stage 4-5) 

Controls p-value n 

GFR ml/min x 
1.73m2 

60.1 ± 5.2 15.3 ± 3.9 99.3 ± 12.0 <0.001 

Age, years 47 ± 11 49 ± 12 48 ± 11 0.60 
Male, n (%) 33 (61)* 29 (59)* 33 (61) 0.97 
Height, m 1.74 ± 0.09 1.73 ± 0.10 1.76 ± 0.09 0.3 
Weight kg 78.7 (18.7) 77.7 (16.6) 77.1 (12.9) 0.88 

BMI 25.7 ± 4.9 26.0 ± 4.2 24.9 ± 3.5 0.42 
Heart rate 

(beats/min) 
65 ± 13 65 ± 13 65 ± 10 0.9 

SBP (mmHg) 123 ± 15 130 ± 20 117 ± 12 <0.001 
DBP (mmHg) 77 ± 10 78 ± 10 73 ± 9 0.03 
Current or past 
smoker, n (%) 

27 (50.9) 25 (51.0) 20 (37.7) 0.29 

Diabetes, n (%) 11 (20.4) 
IDDM 6 

NIDDM 5 

7 (14.3) 
IDDM 1 

NIDDM 6 

- 0.42 

CKD = chronic kidney disease; GFR = glomerular filtration rate; n = number; BMI = body mass index; BSA = body surface 
area Values reported as number (percentage), or mean ± standard deviation or median (interquartile range) for skewed 
variables. p value: analysis of variance (ANOVA) or Kruskal–Wallis test (continuous values), chi-square (categorical 
values). *=matched for age and sex 

 
 

Available clinical data for association studies and parameters ranging from inflammatory 

markers, biochemical markers, nutritional status, general health status, bone density status 

(DEXA) and cardiovascular investigations with blood pressure, effort test, echocardiography, 

carotid Doppler, 24-hour blood pressure registration and mortality data were collected.  

The final participant was enrolled in 2009 and group 2 and 3 of the cohort were monitored 

during a follow-up time of 5 years. Of the 54 healthy controls, 30 were randomly selected 

from the Swedish Total Population Register and 24 were recruited through the website of the 

regional university hospital. Interviews were performed with potential healthy controls 

concerning prior health history and medication. One included patient did not complete the 

baseline echocardiography and was excluded from the echocardiography study (paper II) 

together with her control.  
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Table 3 Cause of CKD and pharmacological treatment in the PROGRESS cohort 
Diagnosis of CKD, n 
(%) 

CKD 2 – 3  
 (n = 54) 

CKD 4 – 5  
(n = 49) 

p value, n  

Hereditary/ congenital 
diseases  

14 (26)  13 (27)  0.94 

Primary 
glomerulonephritis  

17 (32)  12 (25)  0.43 

Secondary 
glomerular/systemic 
disease  

9 (17)  10 (20)  0.63 

Miscellaneous/ 
unknown  

14 (26)  14 (29)  0.76 

Medication, n (%)  
Diuretics  12 (22) 34 (69)  < 0.001 
ACE inhibitors  23 (43)  29 (59)  0.093 
Angiotensin II 
receptor blockers  

22 (40)  23 (47)  0.53 

Beta-blockers  11 (20)  20 (41)  0.024 
Calcium channel 
blockers  

10 (19)  28 (57)  < 0.001 

Statins  13 (24)  32 (65)  < 0.001 
ACE = angiotensin converting enzyme; Values reported as number (percentage), or mean ± standard deviation or 
median(interquartile range) for skewed variables. p value: analysis with Mann- Whitney U-test or t-test   
 
 

The category “Systemic disease” included nefroangiosclerosis, diabetic nephropathy and two 

cases of SLE but no case of vasculitis in group 2. None of the Lupus patients expressed an 

elevated CRP-level at any of the measuring points (hsCRP year 0 – year 3 - year 5: 0.8 -0.87 - 

0.83 mg/l and 0.8 - 0.6 - 0.46 mg/l respectively). Nor did the only SLE diagnosed participant 

in group 1 have an elevated CRP at baseline (hsCRP 0.98 mg/l).  

 

Table 4 DEXA and lipid data from the PROGRESS cohort, all groups at baseline 

Variable Controls  
GFR 99.3 ± 12.0  
(n = 54) 

CKD 2 – 3  
GFR 60.1 ± 5.2  
(n = 54) 

CKD 4 – 5  
GFR 15.3 ± 3.9 
 (n = 49) 

p value, n  

BSA, m2 1.92 ± 0.19  1.92 ± 0.24  1.91 ± 0.23  n.s 

Body fat 
percentage 

23(8) 27(9) 27(11) n.s 

BMC g 2570 (413) 2537 (660) 2380 (434) n.s 
BMD g/cm2 1.2 (0.1) 1.2 (0.2) 1.1 (0.1) 0.02 

T-score 0.3 (1.0) 0.4 (1.4) -0.3 (1.3) 0.01 
Z-score  0.8 (1.1) 1.0 (1.4) 0.4 (1.3) n.s 

Total Cholesterol 5.14 ± 1.20  4.98 ± 1.04  4.63 ± 1.02  n.s 
LDL 3.36 ± 1.12  3.15 ± 0.93  2.64 ± 0.93  0.002  
HDL 1.33 ± 0.41  1.26 ± 0.40  1.19 ± 0.37  n.s 

Triglyceride  1.0 ± 0.62  1.38 ± 0.84  1.7 ± 0.84  < 0.001  
hsCRP 0.90 (0.46 – 2.30)  2.30 (1.10 – 4.10)  1.60 (0.96 – 3.00)  0.009  

DEXA variables all reflect total body measurement., BSA- Boy Surface Area m2 BMC = Bone Mineral Content g/cm, BMD 
= Bone Mineral Density T-score= number of SD above or below the mean for a healthy 30-year old with the same sex and 
ethnicity, Z-score = score number of SD above or below the mean for the same sex, age and ethnicity as the patient. Lipids 
measured in mmol/L. LDL = low-density lipoprotein; HDL = high-density lipoprotein; hs-CRP = high-sensitive C-reactive 
protein in mg/l; Mean (SD) Differences in mean values analyzed with ANOVA-test (F-test). p>0.05 = n.s             
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Paper II  
All 103 patients from both CKD groups (stages 2-3 / mild-to-moderate dysfunction or stage 4-

5 / advanced renal failure) in the Progress 2002 cohort were included in a baseline study of 

echocardiographic variables compared with the healthy controls.  

Paper III 
Included the patients from Group 2 (mild-moderate CKD) and the healthy controls from the 

PROGRESS cohort and collected data at baseline, year 3 and year 5 in a prospective follow 

up study. 

Paper IV 
All 103 CKD 2-5 patients and 53 healthy controls from the PROGRESS cohort were 

examined for FGF-23 levels, biochemical profile, inflammatory markers and cellular data in a 

cross-sectional study at year 0 (baseline). 

 

 

 

4.2  ROUTINE LABORATORY AND CLINICAL MESUREMENTS 

 

Generally, plasma and serum samples were spun and stored at -70° C. Laboratory results and 

clinical data were gathered from the patients’ records at the time of inclusion and at follow up. 

Analyses for creatinine were executed using routine methods.  

All participants in the PROGRESS cohort had glomerular filtration rate (GFR) measured by 

iohexol at inclusion but only the CKD stage 2-3 patients had iohexol analysis repeated at 3rd 

and 5th year. Filtration capacity in healthy controls at 3rd and 5th year was calculated with 

creatinine based formulas. In paper II-IV we used the CKD- EPI formula since this has been 

shown to prove a more exact estimate of kidney function in the range of mild CKD. 
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4.3 THE SKIN CHAMBER METHOD  
 

A fundamental step in the host defense mechanism is when polymorphonuclear leukocytes 

migrate into the tissue. The transmigration process is intricate and includes several 

consecutive steps. The skin chamber technique is a well-documented method providing means 

to study extravasated leukocytes in a local exudation without systemic inflammatory 

responses171. A local inflammatory reaction provokes the leukocytes to leave the blood stream 

and wander to sites where they can be gathered. Skin blisters are induced by suction and a 

gentle heating loosens the epidermal layer from the underlying dermis on the volar surface of 

the forearm172. The eruptions are produced without harming the capillaries or dermal tissue. 

Blister roofs are removed and plastic chambers containing a chemoattractant, autologous 

serum or PBS, are mounted over the raw wound surfaces173. Analysis of temporal changes of 

the cell population in the chamber has shown that mononuclear cells appear early but are soon 

outnumbered by polymorphonuclear cells that constitute 90-98% of the cells after 10-24 

hours. Transmigrated cells in our studies were collected and analyzed after an incubation time 

of 10 hours.  
 

 
 

Figure 4 Skin chamber technique with mounted plastic chambers 

 

 

4.4 LUMINEX METHOD 

Soluble inflammatory mediators; such as cytokines and chemokines in serum and chamber 

fluid in paper I, III and IV were performed on the Luminex-100 system and assessed by 

Milliplex 26-plex (Millipore Corp). This method has the advantage of being performable on 

very small sample volumes, with a lower detection limit of 3 pg/ml. Briefly, distinctly dyed 

microspheres are coated with capture antibodies that will catch the specific analyte of the 

investigated sample. Added fluorescent detection antibodies are then distinguished by a laser 

that discriminate both the colour of the microsphere and each tagged detection antibody. 
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4.5 FLOW CYTOMETRIC ANALYSIS 

 

FACS (fluorescence-activated cell sorting) or flow cytometry measure cell characteristics by 

laser-scanning cell suspensions flowing through the instrument. Data on cell size and 

granularity are provided by the instrument recognizing different leukocyte cell populations by 

their light-scattering properties. The cells ability to refract and reflect light respectively differ 

between different types of leukocytes. 

A two-parameter scatter plot histogram is produced by the computer presenting the different 

populations of white blood cells. Cell size is expressed as forward scatter (FSC) on the y-axis 

whereas granularity and membrane dimension condensed as density are expressed as side 

scatter (SSC) on the x-axis. With flouro-chrome-marked antibodies more precise details about 

the cells can be revealed when the laser excitation makes them emit light of different wave 

length (represented with a specific color). 

In paper I, III and IV monocytes and granulocytes were selected by flow cytometry and their 

adhesion molecules expression identified in addition to their oxidative metabolism (hydrogen 

peroxide formation), all measured and quantified as mean fluorescence intensity (MFI). 

 
 
 
 

 
 

 

Figure 5 Principles of cell separation by cytometry 
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4.6 TRANSTHORACIC ECHOCARDIOGRAPHY 

 

Transthoracic echocardiography is used to evaluate cardiac function through measuring 

dimensions such as left ventricular mass, wall thickness and diastolic and systolic function. 

TDI – Tissue Doppler Imaging describe tissue movement and velocity.  

Left ventricular ejection fraction (LVEF) and AV plane measurement have traditionally been 

used to assess left ventricular systolic function estimating diagnostic and prognostic 

outcome174–176. Global left ventricular longitudinal strain (GLS) obtained by using two-

dimensional speckle tracking analysis or TDI assessing longitudinal LV function by s´(s′  = 

peak systolic mitral annular velocity) have been shown to be more reproducible and superior 

to LVEF in predicting cardiac events and all-cause mortality177.   

Left ventricular diastolic function and filling pressure can be measured using Doppler 

recordings of transmitral and pulmonary venous flow velocities178. TDI measurement of early 

passive transmitral inflow velocity (E) and the rate of the atrial component of LV filling (A) 

joined in the E/A ratio show a reduced value with declining diastolic function179. A ratio 

between diastolic flow and wall velocity, called the E/e′ ratio (the early diastolic filling rate 

(E) to pulsed tissue doppler velocity of the septal mitral annulus during passive filling (e′)), 

has been demonstrated to effectively, and with high reproducibility, assess diastolic 

function180–182. Moreover, in diabetic patients, the E/e′ ratio has been shown to independently 

envisage cardiac failure and mortality182,183 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

4.7  ADDITIONAL METHODS (featured Paper) 

 
Analysis of surface molecules (I, III-IV)              ¤ Performed by labeling leukocytes with 

flourochrome conjugated antibodies.  
Cell counts (I, III-IV)                                            ¤ Determines total cell count and     

distribution of individual cell types. 

Oxidative Metabolism (IIII-IV)                            ¤ Examination of intracellular H2O2 

production after fMLP stimulation by 

DCFH-DA system and flow cytometry. 

Immunoassay (I)                                            ¤ Determines the concentration of pro-

inflammatory molecules in serum and 

chamber exudates by commercially 

available assays (ELISA) 

In vitro activation (I, III-IV)                                 ¤ Studies of adhesion molecule expression 

on leukocytes after fMLP or PMA 

stimulation  

In vitro incubation with FGF23 (IV)                     ¤ Studies of adhesion molecule expression 

on leukocytes after FGF23 treatment 
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5  STATISTICAL ANALYSIS 
 

 
Descriptive statistics were utilized to characterize the study populations. Categorical variables 

were expressed as frequencies (%) and proportions. Continuous variables were summarized as 

mean (±SD) for normally distributed data or median values (IQR) for non-normally 

distributed values. Categorical variables were stated as percentages. P-values were calculated 

from Chi2-tests (missing observations omitted) and Student’s t-test for the categorical 

variables and continuous variables, respectively.  

A P value <0.05 for a two-tailed test was considered significant.  
 
 5.1   PAPER I 
Results were expressed as mean ± standard deviation for the normally distributed data; age, 

BMI, creatinine, eGFR, CRP, hemoglobin, PTH, phosphorus and albumin. Non-parametric 

data; cellcount, CD16+, CX3CR1 and soluble factors were presented as median and 25-75% 

interquartile range. Box plots represent 25-75% interquartile range with a line at the median 

and bars at the non-outlier values. Statistical analysis and comparison between groups were 

performed using Mann Whitney U-test.  

 

5.2   PAPER II 
Results are presented as number, percentage, mean and standard deviation (SD). Group 

comparisons were performed using one-way analysis of variance (ANOVA), Tukey’s post 

hoc test and chi-square test (v2) where applicable. 

 
5.3   PAPER III-IV 

Normally or non-normal distributed biochemical data, cytokine/chemokine levels (Luminex), 

adhesion molecule expression and respiratory burst cell data, were assessed graphically by 

histogram plots with associated kurtosis and skewness tests, and by Shapiro-Wilk test. 

Potential outlier- values were examined graphically by box plotting the data. An outlier was 

defined as an absolute value bigger than 3.5 x SDs above or below its calculated mean, and an 

absolute value bigger than 10 x iqr (the inter-quartile range) from its calculated median.  

In Paper III, data from year 0 (baseline), year 3, and year 5, statistically significant differences 

between the groups were assessed by Student's t-test and Mann Whitney U test. Delta values 

(Paper III), were calculated for Luminex, and cell data according to the formula:  

Yi
delta = Xi

t=5 – Xi
t=0, where X is the measured value at time t for individual i. 

Additionally, generalized linear regression models were calculated to compare and quantify 

differences between the study groups. Comparisons of mean and median differences between 

all groups simultaneously (multiple comparisons testing) were done by ANOVA, and Dunn’s 

testing, an extension to the Kruskal-Wallis test respectively. P-values were adjusted by 

Bonferroni correction or Benjamini-Hochberg correction 184 . The overall significance level α 

was set at 0.05.  Analyses of correlations between FGF-23 levels and biochemical, Luminex, 

and cell data in Paper IV, were performed by Spearman’s rank and Kendall’s correlation.  
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6  RESULTS AND DISCUSSION 

 
6.1  EXPRESSION OF ADHESION MOLECULES 

  
6.1.1 CD16 on transmigrated and peripheral monocytes (I) 

 

Patients with CKD stages 4-5 had an increased percentage of CD16+ monocytes both in the 

peripheral circulation and at sites of induced interstitial inflammation. The ratio of the 

percentage of CD16+ monocytes between the peripheral circulation and the interstitial 

inflammatory site in the two studied groups were comparable, indicating similar 

transmigration capacity of the CD16+ monocytes in CKD patients and healthy controls. The 

higher accumulation rate at the interstitial inflammation in CKD patients might be a 

consequence of the increased peripheral pro-inflammatory CD16+ pool. 

 

 

 
Figure 6 Flow cytometric charts of CD16+ expression on monocytes in circulation and chamber fluid in CKD 
patients and controls respectively 



32 

 
Figure 7 Boxplot showing the elevation of CD16+ monocytes in CKD patients compared to healthy 
controls. * = p value < 0.05 and *** = p value < 0.001. 
 
Several studies have reported an increase of circulating CD16+ monocytes in CKD185,186 and 

CD16+  monocytes have been found to associate to CV events hence believed to be involved 

in human atherosclerosis154,187. HDF treatment on the other hand, has been shown to reduce 

the percentage of CD16+ cells188.  This study demonstrates an increased percentage of pro-

inflammatory CD16+ monocytes both in blood and in the inflammatory interstitial site in 

patients with advanced CKD. 

 
 

6.1.2 CX3CL1 levels and CX3CR1 expression on monocytes (Paper I) 

 

Fractalkine, CX3CL1, is a membrane anchored chemokine released from the cell surface by 

proteolysis. It binds the fractalkine receptor CX3CR1 and through these dual forms, functions 

as a chemokine as well as an adhesion molecule for a wide variety of immune regulatory 

cells130,189,190. CX3CL1 has a highly antiapoptotic effect on human monocytes191. A balance 

between pro-apoptotic and apoptosis-inhibiting factors is necessary for the maintenance of an 

effective immune response without harmful side effects of an excessive neutrophil activation. 

CD16+ monocytes have a high expression of CX3CR1 which enhances accumulation of these 

cells at sites of overexpressed CX3CL1
192. In study I we found an expression of CX3CR1 of 

above 90 % on circulating monocytes in both CKD and healthy controls and the expression 

decreased substantially following extravasation, probably as a result of shedding. Patients 

with CKD had a significantly higher concentration of CX3CL1 in both blood and in the 

interstitial fluid, compared to healthy controls. This indicates a facilitated transmigration and 

tissue retention mechanism for the pro-inflammatory CD16+ subtype of monocytes in CKD 

patients. Once the pro-inflammatory monocytes have left the circulation and entered the local 

inflammatory site, they can further stimulate neutrophil recruitment by means of producing 

chemokines and perpetuate inflammation and tissue injury. 
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6.1.3 Expression of CD11b and CD62L on leukocytes (Paper III and IV) 

 

Adhesion molecule CD11b has an important role in leukocyte transmigration, directing innate 

immunity cells to act on invading microbes. In our prospective follow up study (Paper III) on 

mild-to-moderate CKD there were no significant differences in monocyte expression of 

CD11b or CD62L at baseline (year 0), in resting state, comparing patients and controls. These 

findings suggest that monocytes are in a restored state at earlier phases of CKD, reflected in a 

normal expression of CD11b. Interestingly, following stimulation with fMLP, we observed a 

higher expression of CD11b on the surface of patients’ monocytes at baseline. This may 

suggest an inclination of these cells to translocate the intracellular stored CD11b to the 

surface, possibly due to a higher responsiveness of primed cells in the pro-inflammatory 

milieu. In contrast to the baseline value, a significant decline in the CD11b expression 

occurred following stimulation with fMLP, both at 3rd and 5th year. This may reflect an 

inability to mobilize CD11b from the intracellular vesicles or a refractoriness of monocytes 

exhausted by the constant inflammatory burden of renal insufficiency 1,147,157,158,193,194. How a 

lower CD11b expression evolves over time supports our previous studies where we found that 

peripheral resting monocytes from patients with advanced renal disease express a lower level 

of CD11b, when compared to healthy controls158.  A preserved response of monocytes to 

fMLP stimulation was previously found in patients treated with high flux hemodialysis147, 

perhaps indicating a reversibility of this cellular refractory effect by hemodialysis. A low 

response to fMLP may contribute to the elevated susceptibility to infections in CKD patients. 

In Paper IV inactive granulocytes and monocytes from CKD stage 2-5 patients showed an 

elevated expression of CD11b which might reflect an impact of amplified activity of TNFα 

and RANTES on these cells, exposing cells to a higher inflammatory elementary level. 

However, no difference between patients and controls was detected in terms of CD11b 

expression on fMLP stimulated granulocytes while the expression on monocytes was 

increased in patients. Monocytes are in general more inflammatory active and cytokine 

responsive whereas granulocytes exhibit greater impact on host defense and direct immunity. 

There was also a greater interpersonal variability in CD11b expression on monocytes in 

patients as compared to controls, perhaps reflecting fluctuations of cytokine levels.  

CD62L (L-selectin) plays an important role in adhesion of cells to the inflamed endothelium. 

Following adhesion and activation of monocytes, CD62L is rapidly enzymatically cleaved 

and shed from the cell surface195,196. In a previous study we have shown that monocytes from 

patients with severe renal failure express a lower CD62L in periphery158.  
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In Paper III, CD62L expression on monocytes in patients with mild-to-moderate CKD was 

comparable to healthy controls at baseline but had a significantly lower expression both at 3rd 

year and at 5th year of the study. This could imply a better feature of monocytes at an earlier 

phase of the disease, but a lower translocation, or higher shedding of CD62L over time, 

probably due to enhanced production of inflammatory mediators. For instance pro-

inflammatory TNFα enhances shedding of CD62L195–197. The significant increase of TNFα 

over the study years with a simultaneous decrease in CD62L levels, may support this 

hypothesis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Expression of CD11b and CD62L in CKD patients and Controls at baseline (y0), year 3 and year 5 
(Paper III). 
 
The counterbalance act of the innate immunity is crucial to avoid tissue damage. The altered 

monocyte function and excessive pro-inflammatory cytokine expression in our CKD 2-3 

cohort might imply consequences of the distorted innate immune system. Alterations in 

chemokine levels as well as in adhesion molecule expression might potentially act either 

harmful or protective. Perhaps there is a dysregulation rather than a dysfunction of the innate 

immunity network, inducing the inflammation in CKD.  
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6.2  CHEMOKINES (I, III and IV) 
 

CKD patients are subjected to a state of chronic inflammation198, a condition reflected in 

consequential imbalance of pro-inflammatory and anti-inflammatory cytokines112,152,153,199. 

Alterations occur in both innate and adaptive immune responses in CKD due to inflammation, 

uremia, dialysis procedures and oxidative stress. 

In Paper I, CKD stage 4-5 patients had a significantly higher concentration of TNFα in the 

peripheral circulation compared to healthy controls. However, in the skin chamber fluid, 

concentrations of TNFα and IL-10 were significantly lower in CKD patients compared to in 

healthy controls. In addition, the TNFα/ IL-10 ratio was significantly higher in serum from 

CKD patients compared to in controls.  

The impaired TNFα concentration gradient between the circulation and the interstitial space 

has previously been associated to an increased risk of septicaemia as well as adverse 

outcome200–203. An impaired cytokine gradient might also contribute to decreased leukocyte 

trafficking to secondary inflammatory sites, potentially contributing to the impaired immune 

response and increased susceptibility to infections in CKD.  

Experimental apheresis studies have been shown to effectively restore chemokine gradients, 

leading leukocyte trafficking toward infected tissue and away from healthy organs204 

However, attempts to acute remove TNFα and IL-6 with hemoadsorption have not achieved 

decreased levels post treatment, even though treated subjects had an improved survival. 

Hence, blood purification must instigate some other beneficial immuno-modulating effect, 

with a so far unknown mechanism205. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 9 TNFα and IL-10 levels in CKD vs Controls in peripheral circulation and chamber fluid from Paper I. 
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In Paper III and IV, there were significantly higher levels of TNF- α, IL-12 and RANTES in 

plasma from patients, compared to in healthy controls. Notably, in paper III, levels of 

chemokines in general tended to fluctuate over time which most likely reflects a variability of 

the inflammatory process. Elevated cytokine levels in advanced CKD are partly due to a 

reduced renal clearance but may also be a result of an increased production from dendritic 

cells that are stimulated by retained toxins153. However, at early stages of renal disease an 

accumulation is less plausible and elevated levels would probably result from an actual 

pathogenic mechanism rather than from a decline in filtration rate.  

Augmented production of pro-inflammatory cytokines such as TNF-α, IL-1, IL-8, IL-15 and 

IL-12 has been shown in both pre-dialysis and in hemodialysis groups, indicating a role of the 

uremic milieu in this process, independent of dialysis treatment199. Elevated levels of pro-

inflammatory cytokines might contribute to enhanced vascular plaque formation as well as 

changes in cardiac function and structure, leading to cardiovascular morbidity. 

 

RANTES modulates migration of monocytes by inducing expression of CD11b/CD18206. 

Elevated levels of RANTES have been associated with sustained inflammation and multiple 

immune-mediated diseases132,207. Moreover, TNFα is known to induce production of 

RANTES under inflammatory conditions131. Aberrant IL-12 expression has been reported in 

infectious, autoimmune, inflammatory conditions and atherosclerosis, modulating the 

adaptive immune response208.  

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 10 Concentration (pg/ml) of RANTES (CCL5) in plasma from CKD patients and controls at 
baseline, year 3 and year 5 from Paper III.  
 

High levels of RANTES and TNFα are evidence of a high inflammatory state together with a 

poor opposed anti-inflammatory regulation in CKD patients142. These cytokines might serve 

as potential surveillance biomarkers to monitor development of inflammation in kidney 

failure. 

   

Controls 
CKD 2-3 



37 

6.3  OXIDATIVE METABOLISM 
 

There was no significant difference in H2O2 production at baseline (Paper III and IV) or at 

follow up, between patients and healthy controls in Paper III, but stimulation with fMLP 

resulted in a significantly lower oxidative burst response in monocytes over time in CKD 

patients.  

 

 
 
 
Figure 11 H2O2-production measured as Oxidative Metabolism (OM) (MFI) median in (fMLP)-
stimulated cells in CKD patients and controls at baseline, year 3 and year 5. 
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6.4  FGF23 (Paper IV) 

 

  6.4.1 Levels of FGF23 

 

An elevation of FGF23 is the earliest detectable serum abnormality in patients with CKD-

MBD (mineral and bone disorder). As kidney function decreases FGF23 increases gradually, 

reaching more than 200 times the normal levels at advanced CKD209. Accordingly, the FGF23 

concentration in Paper IV varied markedly among CKD patients and data confirmed a strong 

inverse correlation between FGF23 and kidney function. As anticipated, there were 

significantly higher levels among CKD patients as compared with healthy controls.  

The FGF-23 levels were right-skewed and were natural log-transformed for further analysis. 

Median FGF-23 level in subjects with normal kidney function (controls) was 17.5 RU/ml 

(IQR 11.1), in patients with mild-to-moderate CKD 26. 3 RU/ml (IQR 26.2) and in severe 

CKD 175.8 RU/ml (IQR 439.7). 
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Figure 12 Diagram of the FGF23 distribution depending on kidney function in a sub-study from Paper IV. 
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6.4.2 FGF23-correlations 

 

The relationships between FGF23 and a broad set of inflammatory and non-inflammatory 

biomarkers were investigated. Importantly, the established relationship between FGF23, renal 

function and markers of mineral metabolism was corroborated. Association studies between 

FGF23 and non-inflammatory biomarkers showed significant correlations between FGF23 

and phosphate, PTH and calcium but not with CRP or fibrinogen. In addition, FGF23 level 

was associated with albuminuria (UAE/urinary albumin excretion), a prognostic marker for 

disease progression210–212. This is interesting since recent studies may indicate presence of the 

relevant FGF23 receptor(s) in podocytes213. The pro-inflammatory cytokine TNF-α was 

significantly increased in CKD patients as compared to in healthy controls, but did not 

correlate to FGF23 level. Moreover, significantly higher levels of transmigration triggering 

chemokine RANTES and immune response initiating IL-12 were found in CKD patients as 

compared to in controls and were also associated to rising FGF23 level. 

FGF23 was associated with CD11b expression on resting granulocytes and monocytes in the 

CKD group, but not with CD11b on fMLP activated cells. This might reflect how FGF23 in a 

cohort including various stages of CKD predominantly exhibits an immune-modulating effect 

through augmented impact on pro-inflammatory cytokines and cell priming which perhaps 

precedes a more direct cell targeting effect on active granulocytes that might develop as 

kidney function deteriorates and FGF23 levels increases.  

Thus, FGF23 levels were associated to elevated chemokines IL-12 and RANTES in CKD as 

well as to leukocyte altered adhesion molecule expression on unstimulated cells.  

FGF23 linkage to inflammatory markers has been described in several studies in both CKD 

and non CKD cohorts100–103. These studies have delivered pieces of information on the 

relationship to inflammation but none have previously analyzed different aspects of innate 

immunity with multiple soluble markers and effector cells simultaneously. 
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Figure 13 FGF23 Correlation plots. Illustrating log-log correlation plots between FGF23 and biochemical 
markers. Six specific plots where we found a statistically significant (p<0.05) difference of the FGF23-marker 
correlation between groups. Scale values show orders of magnitude instead of units. For example, considering 
the FGF23-Phosphate plot, an observation (individual) with the highest number on the x-axis had the highest 
measured phosphate level. 
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6.4.3. Cell incubation with FGF23 protein 

 

Given a potential dual effect of FGF23 the aim was to analyze the direct effect on neutrophil 

function related to transmigration, focusing on expression and mobilization of CD11b. In 

incubation experiments in vitro, leukocytes from healthy volunteers were exposed to different 

levels of FGF23, simulating conditions of gradually worsening renal function. Granulocytes 

exposed to high levels of FGF23 showed significantly lower expression of CD11b both in 

resting as well as in fMLP stimulated cells when compared with cells unexposed to FGF23.  

An impaired granulocyte response to fMLP can theoretically result in either a diminished 

granulocyte recruitment subsiding host defense, but perhaps also trigger an anti-inflammatory 

effect mediated by a down regulated cell response.  

One might speculate that FGF23 possibly affects innate immunity in a dose dependent 

manner. Initially at moderately elevated levels, FGF23 may induce production of pro-

inflammatory chemokines. As a result, host defense would be strengthened with chemokine 

endorsed CD11b expression, priming resting granulocytes and monocytes as well as activated 

monocytes. Conversely, exposure to high concentrations of FGF23, equivalent to levels in 

advanced CKD, may operate directly through a receptor dependent pathway on granulocytes 

to downregulate CD11b and hereby result in impaired host defense mechanisms. Granulocyte 

recruitment appears to be compromised by high FGF23 exposure. However, FGF23 incubated 

monocytes showed no difference in CD11b expression. This cellular discrepancy in response 

might indicate diverging principle target molecule of FGF23. Neutrophils predominantly 

express the migration mediating FGF receptor FGFR2214 whereas monocytes display high 

expression of FGFR1215. Thus an exposure to high concentrations of FGF23, equivalent to 

levels in advanced CKD, may operate directly through a receptor dependent pathway on 

granulocytes to downregulate CD11b and hereby result in impaired host defense mechanisms.  

 

 

 
 
Figure 14 Granulocyte and monocyte fMLP response in CD11b expression (MFI) with and without FGF23 
exposure in vitro. 
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6.5  CARDIAC STRUCTURE IN CKD (Paper II) 
 

It is clear that there is a close relationship between CKD and increased risk of cardiovascular 

disease. From early stages to end stage renal disease (ESRD); coronary artery disease, 

arrhythmias, congestive heart failure and sudden cardiac death represent the main causes of 

morbidity and mortality in CKD. With progressive CKD a more compensatory hypertrophy, 

dilation and dysfunction of the heart (uremic cardiomyopathy) might occur as a consequence 

of myocardial apoptosis, decreased myocardial capillary density and intermyocardial 

fibrosis216. Echocardiographic abnormalities such as LVH, impaired EF and increased end-

systolic and end diastolic LV volumes have been reported from early to severe stages of 

CKD52,53,217. However, the exact pathophysiological mechanisms behind the high prevalence 

of cardiovascular disease in earlier stages of renal impairment remain insufficiently 

investigated. In our study (Paper II) of cardiac structure at different stages of CKD we found 

alterations even in the mild-to-moderate CKD group. 

 

 

6.5.1 Systolic function 

 

CKD patients had a higher prevalence of LVH compared with the controls; 30% in CKD 2-3, 

and 37% in stage 4-5 as compared to 13% in controls. There was however no significant 

difference between the groups in LVEF calculated with Teichholz method but systolic 

dysfunction in terms of impairment of longitudinal systolic movement measured by AV-plane 

method with TDI showed lower longitudinal systolic function in CKD patients as compared 

to controls, as assessed by atrio-ventricular plane displacement and s´.  

 

 

 
 
 
Figure 15 LVH prevalence with Teichholz 2D echocardiography showed no significant difference between the 
groups whereas LVMI were higher in CKD patients as compared to controls. 
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6.5.2 Diastolic function 

 

There was no significant difference in traditional characteristic measurements of diastolic 

dysfunction, such as transmitral inflow pattern (E/A ratio) or left atrial size. With TDI method 

however, CKD patients had significantly lower septal diastolic velocity (e´) and higher mitral 

mean E/e´ compared to controls, indicating altered diastolic function in the patients. This 

indicates an impairment of diastolic function in the patients with CKD, although the majority 

had preserved LVEF. These changes in diastolic variables may be precursors of clinical heart 

failure.  

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 16 TDI data showed had significantly lower septal diastolic velocity (e´) and higher mitral mean E/e´ 
compared to controls, indicating altered diastolic function in the patients. 
 
Systolic dysfunction in late stages of CKD is associated with increased mortality and CV 

events even in asymptomatic patients 218. In non-dialysis CKD diastolic dysfunction has a 

prevalence of 29% whereas numbers up to 80 % have been found in the dialysis population.219 

With TDI, we found alterations in systolic and diastolic myocardial function in the CKD 

patients compared to the healthy controls. Several previous studies have demonstrated 

changes in LV geometry in patients with CKD but association between kidney function and 

impaired global systolic function (LVEF) measured by traditional echocardiographic methods 

has not been established. After adjusting for potential confounders the Chronic Renal 

insufficiency Cohort (CRIC) study showed association between reduced renal function and 

abnormal cardiac structure, but not to systolic or diastolic function219. Our findings are 

consistent with previous studies showing that TDI is a more sensitive tool than conventional 

echocardiography for the detection of impaired diastolic function in the patients with 

CKD72,220. Echocardiographic diagnosis and assessment of alterations in cardiac structure in 

early CKD have clinical implications on when to initiate optimization of blood pressure 

control, renal anemia, treat secondary hyperparathyroidism and volume overload. These 

medical interventions can to some extent reverse LVH and thereby save lives and suffering in 

CKD patients.  
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6.6  DEVELOPMENT OF GFR IN THE PROGRESS COHORT (Paper III) 

 

The healthy control group (Group 3) in the PROGRESS study decreased in GFR over the five 

years of study to a greater extent than anticipated, while the mild to moderate CKD patients 

lost GFR to a lower degree than expected. Both groups lost the filtration capacity at the same 

rate; a mean GFR loss of 10 ml/min/1.73m2 over 5 years.  

The frequent therapeutic interventions in the CKD-group with more regular follow up and 

aggressive treatment of hypertension, hyperlipidemia and proteinuria, might very well have 

halted the progression rate. There is also a problem with predicting the outcome of GFR 

development in a relative kidney competent group. For example, some participants were 

included at, as it would turn out, an uncharacteristically low GFR, only to recover renal 

function and not progress any further. 

 

 
‘ 
 

Figure 17 Progress in eGFR in CKDEPI CKD 2-3 (yearly) and controls (year 0, 3 and 5). CKD 4-5 at baseline 
(year 0). 

 
 

 
Figure 18 Progress of GFR (ml/min) in the mild-to-moderate CKD-group of the PROGRESS cohort. Data 
displayed both with 3 types of eGFR methods (MDRD, CKDEPI and LundMalmöRevised formula) as well as 
iohexol clearance. Presented in delta value (value year 5 minus value at baseline year 0). 



45 

Patients with diabetes as CKD diagnose were relatively few in the cohort which also can have 

slowed down the median progression rate of the CKD group, since patients with diabetic 

nephropathy generally loose kidney function faster than other CKD groups.  

 

 
 
 
Figure 19 Development of Urinary Albumin Excretion (UAE) in controls and patients CKD 2-3 over the 5 
study years in the PROGRESS cohort. 
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7   GENERAL DISCUSSION AND METHODOLOGICAL 
CONSIDERATIONS 

 
7.1  STUDY DESIGN 
 

All the studies we performed were cohort studies but in Paper I we used a case control design. 

Paper II and IV were based on a cross sectional study of baseline data from the observational 

single-center PROGRESS study. In paper III we used prospective observational data with 5 

years follow up from the PROGRESS cohort.  

Observational studies investigate events that take place within a population without an 

experimental design. According to this set up exposed and non-exposed subjects are most 

likely different. Adjustment for differences between the divers groups in an observational 

study is needed. Case-control studies are usually performed when the studied disease is rare 

but the events fairly common. The method is to select cases that have developed the disease 

and compare them with healthy controls from the same study base. Differences between 

patients and controls have to be adjusted for by logistic regression analysis. Since we wanted 

to obtain the same sex and age distribution, the controls were matched on these variables.  

 
   

7.1.1 Selection of cases and controls 

 
Incident CKD cases would by definition imply newly diagnosed, which is problematic since 

CKD show so few early signs. This is resolved by using a set predefined GFR level or range 

and by this define incident as when a patient passed the predefined upper inclusion value. 

Prevalent CKD cases includes all patients living with CKD within a defined area, which 

makes the group more heterogeneous since there is an over-representation of patients with 

milder and slower progressing disease. This is why incident CKD more precisely gives a 

picture over how progression rate develops. 

An advantage of our study cohort is the high attendance of the participants and the fact that 

the non-selective referral policy concerning disease severity, makes it possible to follow 

patients during many years which reduces the patients lost to follow up. 

Participants in both cohorts were predominantly white Caucasian upper middle aged patients 

without inflammatory disease and great heterogeneity concerning etiology to CKD, why 

generalization of our results to other patient groups must be done with caution. 

There are of course some study limitations. The sample size of the PROGRESS study of 49 + 

54 patients and 54 controls may have been underpowered to demonstrate potential 

associations. Also, we were not able to ascertain the duration of comorbid conditions, such as 

hypertension and diabetes.  

In the skin chamber cohort, 12 patients were included, since several previous experiences in 

the field have shown that small patient samples demonstrate significant differences. 
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  7.1.2 Cohort studies 
 
In our third paper the PROGRESS group was used as a prospective cohort study where we 

followed the individuals prospectively and registered events occurring along the way. The 

difficulty with cohort studies is that they generally demand a large number of participants to 

secure that enough events occur. In addition, they are time consuming and expensive to 

manage. Research on CKD has its obstacles with the large individual variability in disease 

causes and manifestations as well as consequential differentiating set point of diagnosis at 

different CKD stages. Circumstances leading to insufficient data on duration and progression 

rate from the actual disease onset. Furthermore, as we became aware of with the PROGRESS 

cohort, in the majority of CKD cases, disease progresses slowly, obliging for a long follow-up 

time in order to correctly describe the development and to identify biomarkers that predict 

further progress. In the PROGRESS cohort there was a considerable diversity in disease 

progression rate and for group 2 being at such an early stage of CKD mortality was low and 

few patients progressed to renal replacement therapy (RRT). 

The number of measurements varied between individuals in the research follow up resulting 

in cases lost under the follow up time. At inclusion we had 54 patients with mild to moderate 

CKD and 53 controls, but a reduced turn up rate delivered data from 47 CKD patients and 42 

healthy controls year 3 and somewhat improved figures at year 5, with 49 versus 45 persons.   

  
 

7.2  VALIDITY 

 
Defined as results adhering as close to the true value as possible, validity can either be 

described as internal (inferences) or external (generality – do results apply to settings other 

than those studied?). In general, there is always the question of generalizability of the results 

to the investigated population. How representable are the participants of the intended 

investigated population – for example - patients who start on dialysis have a better outcome 

then those who do not. There are several different systematic errors, biases which need to be 

considered when designing a case-control or cohort study. In paper IV we aimed to strengthen 

our data by a validating strategy. We analyzed correlations between FGF23 and biochemical 

markers that previously have been confirmed in larger studies to have associate with the 

FGF23 levels. We thereafter carried on with association analysis between FGF23 and the less 

well described inflammatory markers. Other potential validity concerns are the technical 

issues in the measurement of inflammatory biomarkers with the Miliplex method. Due to the 

fluctuating nature of cytokine levels, the expression is depending on inflammatory effector 

cell activity. On the other hand, using the Miliplex technique enabled us to analyze 

inflammatory markers portraying different aspects of the inflammatory immune system from 

very modest sample volumes. 
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  7.2.1 Confounding 

 
Confounding may occur if a related factor affects the compared groups in a way which relates 

to and interferes with the studied outcome. A true confounder is not a consequence of the 

studied exposure but has to be associated to both the exposure and disease. Paper II – is 

perhaps high blood pressure and not CKD/ inflammation behind altered diastolic function? In 

Paper II there are confounders as anemia, hyperparathyroidism and hypertension to take in to 

account since they might affect outcome echocardiography data on LVMI. 

In observational studies one needs to be observant of confounding by indication – meaning 

sicker patients are treated more actively than healthier patients. This needs to be adjusted for 

by regression or stratification. However, it is impossible to adjust for everything a 

nephrologist decides and tries in her or his clinic. Moreover, there might be residual 

confounding due to insufficient clinical information on pharmacological interventions or co-

morbidities in addition to unaccounted laboratory parameters. In addition, there were missing 

or incomplete data in our studies on other potentially relevant confounders such as dietary 

intake or timing of prandial factors. Impaired kidney function alters several hormonal 

pathways but it is not fully understood whether these changes play any significant role in 

systemic inflammation or if these enhance kidney injury 221.  
 
 
  7.2.2 Selection bias 

 
Differences might exist between groups already before a study is carried out rendering a 

problem called selection bias, where a preferential recruitment of individuals to the study 

groups might be liable for the observed effect. Socio-economic groups might be more or to a 

lower extent represented at some clinics raising the question of selection bias. However, in 

Sweden this kind of selection bias in unlikely since the national health insurance gives 

basically equal access to health care regardless of income or habitat. Failed or insufficient 

response to treatment with blockers of the RAAS-system with regard to outcome of blood 

pressure and albuminuria most probably reflects pre-existing renal damage, providing, at least 

to some extent, the high predictive value of follow-up measurements for theses variables on 

disease outcome. Lead time bias, refers to how early detection and diagnosis gives appearance 

of longer survival.  This however, is probably not a relevant concern in our cohort where a 

predetermined GFR level determined inclusion. 
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7.2.3 Misclassification 

 
Differential misclassification can be prohibited by the use of standardized protocols, 

interviews and registry data. Trained professionals at the renal clinic were involved in the 

diagnostic work why misclassifications seem unlikely. The PROGRESS study has several 

strengths in this respect. The demographic data set was robustly characterized. GFR was 

determined by iohexol providing an optimal CKD classification which reduces the probability 

of misclassification and slightly improved the power of the statistical analysis.  
Insufficient exploration of covariates and exposure might lead to non-differential 

misclassifications where both groups are equally affected driving the results towards the null-

hypothesis.  

 
 

7.2.4 Precision 

 
When random sampling results in point estimates that are close, statistical precision is 

obtained. To verify precision one needs to analyze the confidence intervals as we did in Paper 

IV. Even results with high precision might be biased and therefore inaccurate. Sample size is 

crucial to size of standard error. The number of individuals who develop the measured 

outcome and distribution of events across the population are critical factors to obtain 

precision. In small cohorts measuring exact biomolecular markers the sample size is less of 

incidental importance than in prospective case-control studies where sample size is vital. 

Having stated this we are aware of the modest amount of individuals included in the 

PROGRESS. This has made us refrain to certain analyses concerning progress of disease and 

end target organ damage. This would imply a greater number of participants to achieve 

precision. 
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8 CONCLUSIONS AND FUTURE PERSPECTIVES 

 
Irrespective of etiology, renal diseases have inflammation and immune system activation as 

common underlying pathophysiological generators. The findings from the present work 

contribute to the conception that there is persistent activation of pro-inflammatory elements of 

the innate immunity at different stages of CKD. The thesis provide a deeper knowledge of the 

mechanisms behind changed leukocyte function and altered cytokine expression in CKD.  Our 

findings with alterations in systolic and diastolic myocardial function in patients with even at 

early stages of CKD, indicate that cardiac involvement is already present in mild-to-moderate 

CKD and may be a precursor of premature cardiac morbidity. Whether the pathogenic 

mechanisms behind the cardiovascular structural and functional effects of CKD also has an 

association to FGF23 remains to be proven.  

 

 

Specifically, based on the different study results, we conclude that:  

 
o In advanced stage of CKD the level of pro-inflammatory CD16+ monocytes 

increase both at local sites of inflammation as well as in the blood. Hence, 
extravasated monocytes may enhance the pro-inflammatory milieu. 
 

o There are alterations in diastolic heart function in mild to moderate CKD. 
 

 
o Patients with CKD have early adhesion molecule alterations and increased levels 

of pro-inflammatory cytokines as well as an impaired ability to induce oxidative 
metabolism. This implies an impaired cell transmigration and a weakened 
response to invading microorganisms.  
 

o FGF23 levels were associated to elevated chemokines IL-12 and RANTES in 
CKD as well as to leukocyte altered adhesion molecule expression at unstimulated 
state but not to oxidative metabolism markers. 

 
 

o Systemic FGF23 levels are associated with multiple markers of the innate immune 
system and high levels suppress the transmigration factor CD11b in granulocytes.  
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Patients with CKD have increased risk for infections and this is an important field of further 

investigation, with the aim to minimize the consequences of secondary blows on an already 

heavily burdened group of patients.  

In continuous analysis of leukocyte function in CKD special efforts should be made to reveal 

the connection to uremic toxins and how they affect the immune system.  

We need to further study the mechanisms behind the refractoriness of neutrophils when they 

encounter inflammatory stimuli, since this reaction most likely is essential for the altered 

leukocyte function in CKD. If we figure out where to suppress inflammation we might 

ameliorate the preservation of target organ function. 

CKD implicates a substantial risk of premature cardiovascular disease that potentially get 

enhanced by pro-inflammatory cells and cytokines as well as by pleotropic acting FGF23 with 

vascular calcification and cardiac remodeling as results. The risk of diastolic and systolic 

impairment in early stages of CKD needs to be recognized and brought to the attention of 

both cardiologists and nephrologists so that we can act on this information and tailor 

treatment according to individual conditions in order to prevent or halt further progress.  

 

In summary, we found increased levels of pro-inflammatory chemokines and CD16+ 

monocytes in advanced CKD while patients with mild-to-moderate CKD displayed early 

alterations in adhesion molecules in addition to the increased cytokine levels. Altered cardiac 

structure and function were found early in CKD and FGF23 levels were associated with 

multiple markers of the innate immunity. 
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9  SUMMARY IN SWEDISH / Populärvetenskaplig sammanfattning 
 
Leukocyterna – kroppens vita blodkroppar, har som främsta uppgift att patrullera i 

blodcirkulationen och uppmärksamma samt oskadliggöra invaderande mikroorganismer eller 

andra potentiella hot. Vävnadsskada eller infektion triggar igång det så kallade naiva 

immunförsvaret direkt. De två viktigaste leukocyterna för detta immunsvar är monocyter 

respektive neutrofiler. Monocyter aktiveras i blodbanan och tar sig sedan till skadad eller 

inflammerad vävnad. Celltransporten från blodet ut i vävnaden kallas för transmigration och 

är en viktig process som innefattar flera kronologiska förändringar i cellfunktionen och 

regleras av vidhäftningsmolekyler på cellytan (adhesionsmolekyler) som CD11b och CD62L 

samt genom svar på signalmolekyler (kemokiner). 

Vi vet sedan tidigare att patienter med njursvikt har en ökad infektionskänslighet och även en 

ökad risk för kardiovaskulär sjukdom. Det har visat sig att leukocyter hos njursjuka fungerar 

sämre med en nedsatt förmåga att hantera invaderande mikroorganismer. 

I arbete I, undersökte vi monocyter både i blodcirkulationen och lokalt i inflammerad 

vävnad. Vi använde oss av en hudkammarmodell som gör det möjligt att studera celler som 

tagit sig ut i vävnaden. Syftet var att studera de utvandrade monocyterna hos patienter med 

kronisk njursvikt och jämföra dem med celler från friska kontroller. Vi kunde påvisa en ökad 

förekomst av en subgrupp av proinflammatoriska monocyter, sk CD16+ celler, hos patienter 

med avancerad njursvikt.  Vi fann även en ökad nivå av de proinflammatoriska 

signalmolekylerna TNFα i blodet samt av fraktalkin i blod och blåsvätska hos de njursjuka. I 

blåsvätskan var både TNFα och IL-10 lägre hos patienterna, som tecken på att immuncellerna 

inte förmådde att fungera optimalt. 

I våra tre följande arbeten har vi undersökt leukocytfunktion, olika inflammationsparametrar 

och hjärtfunktionsmarkörer i en studiepopulation som kallas PROGRESS-studien. Det är en 

prospektiv observationsstudie som sträcker sig över 5 år och som följer utvecklingen av en 

rad kliniska och laboratorieparametrar i en grupp individer med lätt till måttligt nedsatt 

njurfunktion. Dessa jämförs med en grupp ålders och könsmatchade icke njursjuka personer. 

Vid år noll inkluderade vi även data från patienter med avancerad njursvikt vilket gav oss 

möjlighet att utföra tvärsnittsstudier mellan tre grupper (arbete II) och i en större bredare 

njursviktgrupp (arbete IV) år 0. 

I arbete II jämfördes alla tre grupper vid år 0 avseende hjärtfunktion undersökt med 

hjärtultraljud (ekokardiografi) samt med en teknik för att bedöma hjärtvävnades 

rörelsedynamik (Tissue Doppler imaging - TDI). Vi kunde konstatera att det fanns 

förändringar i hjärtats struktur och fyllnadsmekanik både hos patienter med avancerad 

njursjukdom och ibland de med måttligt nedsatt njurfunktion. 
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Arbete III koncentrerades på att följa monocytfunktion och inflammatoriska markörer över 

tid hos gruppen patienter med mild till måttlig kronisk njursvikt jämfört med de friska 

kontrollerna. Vi fann förändringar i uttryck av vidhäftningsmarkörer på cellytan och nedsatt 

förmåga till produktion av oxidativa syremetaboliter (vilka cellen använder som 

bakteriedödande vapen). Därutöver var nivåerna av inflammations underhållande cytokiner 

såsom TNFα, RANTES och IL-12 högre hos patienterna jämfört med de friska kontrollerna. 

I arbete IV analyserade vi nivåer av hormonet FGF23 och korrelerade dem till 

inflammatoriska markörer och cell transmigrationsmolekyler hos samtliga patienter (njursvikt 

grad 2-5) och jämförde det med friska kontroller. FGF23 ökade med avtagande njurfunktion. 

Vi fann att FGF23 nivåer var korrelerade till uttryck av chemokiner som RANTES och IL-12 

samt till högre urinutsöndring av albumin, parathormon och fosfat hos CKD-patienterna 

jämfört med hos de friska kontrollerna. Inkubering av celler från friska donatorer med FGF23 

protein i provrör nedreglerade ytmolekyler för transmigration på neutrofila celler. 

 

Sammanfattningsvis råder ett kroniskt tillstånd med rubbad immunjämvikt vid njursvikt. 

Balansen mellan pro och anti-inflammatoriska faktorer och immunceller snarare än den 

exakta nivån av en enskild markör är av överordnad betydelse för den inflammatoriska 

processen (t.ex. ateroskleros, njursviktsprogress mm). Ytterligare forskning behövs för att öka 

kunskapen om de komplexa mekanismerna bakom hur kronisk njursvikt påverkar 

immunförsvaret och om kopplingarna mellan inflammation, FGF23 och de kardiovaskulära 

konsekvenser som drabbar patienter med njursjukdom.  
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