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ABSTRACT 

For many years the standard treatment of advanced metastatic melanoma with 

chemotherapeutic agents, including temozolomide (TMZ) and dacarbazine (DTIC), has been 

unsuccessful. The paradigm shift in melanoma treatment occurred with the identification of 

mutations in the BRAF gene that leads to a constitutively active BRAF V600E protein. This 

resulted in the development of BRAF mutant targeted therapies with small molecule inhibitors 

and showed favorable response in patients harboring BRAF mutations. However, most patients 

relapse due to acquired resistance to the inhibitors and biomarkers that can predict the therapy 

response is still lacking.   

In the first study we assessed the protein expression of melanosome related proteins in tumor 

biopsies from melanoma patients with different response to DTIC or TMZ. We found that 

expression of MITF and GPR143 was significantly higher in tumor samples from patients that 

did not respond to chemotherapy. 

In the second study we performed whole proteome profiling utilizing mass spectrometry based 

proteomics on pretreatment biopsies from melanoma patients receiving DTIC/TMZ. Our data 

showed a significant association between high expression of S100A13 protein and resistance to 

chemotherapy. 

Third study focused on identification of mediators of resistance to BRAF inhibitors. We 

therefore, established mutant BRAF inhibitor resistant sublines of BRAF V600E mutated 

melanoma cell line A375. By performing mass spectrometry based proteomics we identified 

several overexpressed proteins in the resistant sublines. We found two novel resistance 

mediators, aminopeptidase N (ANPEP/CD13) and FLI1 as well as the previously known 

receptor tyrosine kinase EPHA2 to be overexpressed and demonstrated to mediate vemurafenib 

resistance in our resistant sublines. Finally, we suggest that combination of vemurafenib with 

the multi kinase inhibitor dasatinib can overcome resistance in the melanoma cell lines. 

In the fourth study the efficiency of combining BRAF inhibitor PLX4720 with TMZ was 

evaluated in melanoma cell lines with variable sensitivity to BRAF inhibitors. We observed a 

schedule dependency in the response to the combination of PLX4720 with TMZ and further 

investigations indicated involvement of DNA damage response activation after PLX4720 

treatment. Depletion of DNA repair protein MGMT by lomeguatrib abrogated the schedule 

dependency effect. Moreover, inhibition of ATR or disruption of the MDM2-p53 interaction by 

ATR inhibitor or nutlin-3, respectively, synergized with PLX4720 in induction of apoptosis.   

This thesis highlights some potential key molecular markers mediating resistance to chemo and 

targeted therapies in cutaneous malignant melanoma and emphasizes on the importance of using 

drug combination modalities as a way to overcome or bypass innate or acquired resistance. 
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1. INTRODUCTION 

1.1 Cutaneous malignant melanoma 

Although cutaneous malignant melanoma (CMM) only accounts for 5% of all skin cancers, it 

is responsible for 75% of skin cancer related deaths. In advanced disease with distant 

metastasis the median survival is between 6-12 months. Melanoma arises from the melanin 

producing cells, melanocytes, and may appear throughout the skin. The malignant 

transformation of melanocytes to advanced melanoma (Figure1) may occur in four steps: 1. 

Benign melanocytic nevi (controlled proliferation in normal melanocytes) to 

atypical/dysplastic nevi (pre-malignant nevi with aberrant proliferation), 2. Radial growth 

phase (horizontal proliferation and spread to epidermis), 3. Vertical growth phase (vertical 

invasion through basement membrane), and 4. Metastasis (spread of malignant melanocytes 

to lymph nodes and other tissues). During vertical growth phase and metastasis, melanoma 

cells may undergo phenotype switches similar to epithelial to mesenchymal transition (EMT) 

[1].  

Figure1. Melanoma development and progression 

 

JAMA. 2004 Dec 8;292(22):2771-6. Fitzpatrick’s Dermatology in General Medicine,7e. Chapter 124 (modified) 

Major causal factors for developing CMM are environmental factors, UV irradiation from 

sun or exposure to artificial UV light from tanning beds. Light skin color and genetic 

susceptibility, especially with a history of CMM in the family, are some risk factors [2-4]. 

The Caucasian population with light skin is particularly at high risk for CMM development 

especially for subjects with red hair who often have a poor tanning response [5]. A minor part 

of all melanoma cases appears in a familial setting, with genetic germ-line alterations 
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increasing the risk for CMM development. The CDKN2A gene is found to be altered by 

mutations in the germline in a proportion of families with hereditary CMM. CDKN2A is 

translated using two alternate first exons into two separate tumor suppressor proteins, 

p16INK4A and p14ARF; using two partially overlapping transcripts with different reading 

frames, and somatic alterations have been observed in sporadic CMM including inactivating 

mutations, deletions and transcriptional silencing [6].  

The incidence of CMM has been rapidly increasing globally over the past years rendering it 

the fastest increasing cancer among all solid tumors, with similar trend between males and 

females [7] with a yearly increase in incidence of over 5% in Sweden. Figure 2 shows the 

incidence and mortality rate of skin melanoma in Nordic countries. 

Figure2. Statistics for skin melanoma incidence and mortality in Nordic countries: Number of 

new cases and related deaths in 100,000 individuals, age 0-85
+
, between years 1950/60-2014 

(NORDCAN database) 

 

The Association of Nordic Cancer Registries 

2. COMMON ABERRATIONS IN CMM  

2.1 Genetic alterations and signaling pathway activation 

a. RAS/RAF/MEK/ERK pathway 

The RAS/RAF/MEK/ERK pathway is also known as the MAPK (mitogen-activated protein 

kinase)/ERK (extracellular-signal-regulated kinase) pathway (Figure 3). MAPK/ERK is the 

major pathway in control of cell proliferation, growth, survival, senescence and 

differentiation in melanoma. Compromised regulation of the MAPK pathway in oncogenic 

transformation of melanoma, results in un-controlled growth of melanoma tumors [8-10]. 
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Main regulators and components of the MAPK/ERK pathway are three RAS proteins 

(HRAS, KRAS and NRAS), three RAFs (ARAF, BRAF and CRAF), two MEKs (MEK1 and 

MEK2) and two ERKs (ERK1 and ERK2). RAS proteins are members of the small GTPase 

family of proteins.  Switch of GDP (guanosine diphosphate) to GTP (guanosine triphosphate) 

activates RAS (RAS-GTP) proteins. The RAS pathway is normally activated by extracellular 

signals and through interaction of receptor tyrosine kinases with their cognate ligands [11, 

12] (tyrosine kinases such as EGFR, MET, KIT, VEGFR, IGF1R, FGFR and EPHA2). 

Signaling of activated, GTP-bound RAS leads to activation of downstream MAPK pathway 

either as a response of extracellular, mitogenic signaling molecules or due to constitutive 

activation of RAS by a mutation (Figure 3). Downstream of RAS are the serine/threonine 

RAF kinases. BRAF (chromosome 7q34) is fully activated by phosphorylation of amino 

acids T600 and S602 but for activation of ARAF and CRAF phosphorylation of the N-

terminus region of the protein is required, in addition to the kinase domain [13, 14]. 

Nevertheless, BRAF shows higher kinase activity compared to the other RAFs. Alternative 

splicing of BRAF results in several different BRAF isoforms from 70 to100 kDa. Relatively high 

expression levels of BRAF is observed in melanocytes and neural crest cells [15]. Active 

RAS/RAF signaling leads to ERK activation and to translocation of ERK to the nucleus and 

activation of downstream targets such as transcription factors c-jun, c-myc etc. [16].  

RAS genes are mutated in 15-20% of all human cancers [17, 18] and BRAF is mutated in 15% 

of all human cancers [19, 20]. In CMM, activating mutation in RAS and BRAF result in 

activation of MAPK/ERK signaling [9]. A majority of the RAS mutations occur in codon 61 

but also in codons 12 and 13 with lower frequency [21]. A majority of BRAF mutations occur 

in exon 15, among those, the most frequent BRAF activating mutation occurs in codon 600 

(BRAFV600E) that substitutes valine by glutamic acid [18]. Other mutations in BRAF are 

(BRAFV600K) which substitutes valine with lysine and accounts for less than 20% of 

melanoma cases with BRAF mutation [22, 23]. BRAF V600R (substitution of valine by 

arginine) or BRAF V600D (substitution of valine by aspartic acid) are less common BRAF 

mutations. Another rare BRAF mutation occurs in exon 11 leading to BRAF G468A (glycine 

to alanine substitution) [18]. In CMM the prevalence of NRAS (chromosome 1p13.2) 

mutations (codon 61) is up to 30% [24-29] and >50% of the melanoma tumors carry BRAF 

mutations [18, 30] while mutations in ARAF and CRAF are uncommon. NRAS and BRAF 

mutations in CMM have a clear tendency toward mutual exclusivity (TCGA database: 

http://cancergenome.nih.gov/).  
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Mutations in BRAF V600 and NRAS Q61 are early events during melanoma development. In 

melanocytes presence of these mutations appears to induce oncogene induced senescence. To 

induce malignant transformation of melanocytes to melanoma, additional alterations in tumor 

suppressors such as CDKN2A gene (inactivation of p16INK4A), loss of normal function of 

p53 and/or loss of phosphatase and tensin homologue (PTEN) are required [31]. 

b. PI3K/AKT (phosphatidylinositol 3-kinase/AKT) pathway 

Similar to the MAPK/ERK pathway, PI3K/AKT is activated by signals from the receptor 

tyrosine kinases and also RAS signaling. This pathway is activated (Figure 3) in CMM. Upon 

activation of the PI3K pathway, AKT proteins (AKT1-3) are phosphorylated by PDK1 and 

mTORC2 and thereafter activate downstream targets. PI3K/AKT activation is counteracted 

by the tumor suppressor PTEN [32]. PTEN mutations, deletions or promoter methylation 

results in PTEN loss and consequently leads to AKT activation [33]. The tumor suppressive 

activity of PTEN functions through dephosphorylating phosphatidylinositol (3,4,5)-

trisphosphate (PIP3), inhibiting phosphorylation of serine/threonine AKT and inactivating the 

pathway [34]. PTEN loss (approximately in 10% of CMMs) is correlated to decreased overall 

survival in patients with BRAF V600E mutated tumors and to increased invasive capacity of 

the CMMs [35].  

Figure3. Schematic figure of PI3K/AKT and MAPK/ERK pathway activation  

 

Arvind Dasari, and Wells A. Messersmith Clin Cancer Res 2010 [36] (reproduced with permission) 
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c. CDKN2A inactivation  

CDKN2A is a tumor suppressor gene located on chromosome 9p21 with two reading frames 

that result in two distinct tumor suppressors, p16INK4A and p14ARF. Genomic alterations 

such as deletions, mutations and copy number alteration of CDKN2A are reported in 44% of 

CMM (TCGA database: http://cancergenome.nih.gov/). As already discussed, germ-line 

mutations in the CDKN2A gene are found in some kindred with familial CMM [37]. 

Recently, mutated CDKN2A in CMMs, both familial and sporadic cases, was shown to be 

correlated to decreased patient survival [38]. P16INK4A inhibits cell cycle progression by 

inhibiting the cyclin dependent kinases CDK4 and CDK6. Retinoblastoma protein RB is 

phosphorylated by cyclin D1 and CDK4/6 kinases (Figure 4) and, once phosphorylated, is 

inactivated and released from the E2F transcription factor. E2F actively transcribes its target 

genes leading to cell progression from G1 to S-phase [39, 40]. Co-occurrence of sustained 

expression of mutated BRAF and induction of p16INK4A induces cell cycle arrest and 

senescence in melanocytes [41]. Thus, inactivation of p16INK4A induces uncontrolled cell 

cycle progression and abolishes cellular senescence.  

P14ARF
 
is the result of transcription of CDKN2A in a second alternative reading frame and is 

an inhibitor of MDM2 (Figure 4) by disrupting the MDM2-p53 interaction. Loss of p14ARF 

inhibits p53 induced apoptosis and in cooperation with NRAS mutation drives malignant 

transformation of melanocytes [42]. 

Figure4. Schematic picture of the two CDKN2A gene products’ roles in cellular processes 

 

http://www.intechopen.com/books/recent-advances-in-the-biology-therapy-and-management-of-

melanoma/aberrant-death-pathways-in-melanoma (modified) [43] 
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d. NF1  

Neurofibromin 1 (NF1, chromosome 17q11.2) is a negative regulator of the RAS signaling 

pathway, by enhancing RAS-GTPase activity and converting RAS-GTP to inactive RAS-

GDP. Mutations in NF1 are found in around 26% of CMMs with wild type BRAF or NRAS 

[44]. While co-occurrence of loss of function mutation in NF1 together with BRAF or NRAS 

mutation is observed at a much lower frequency of about less than 10% [45]. 

2.2 Kinases 

Protein kinases (PK) constitute a large family of regulatory proteins. They are responsible for 

phosphorylation of other proteins that usually leads to activation of the modified protein. Two 

of the major subfamilies of kinases are serine/threonine kinases (STK) and protein tyrosine 

kinases (PTK). 

a. Serine/threonine kinases (STK) 

This group of kinases has enzymatic activity that catalyzes the phosphorylation of the OH 

group of serine or threonine side chains of proteins. Altered expression of these kinases is a 

common phenomenon in cancers, often following one of three patterns: a) Overexpressed in 

tumors while absent in normal tissues. b) Generally expressed in normal tissues while 

overexpressed in tumors and c) Under-expressed in tumors versus normal tissues [46]. The 

most frequently altered serine/threonine kinase in melanoma is the BRAF protein, which 

harbors V600 mutations in approximately 50% of CMM patients [18].   

b. Protein tyrosine kinases (PTK) 

This large family of proteins is involved in  post-translational modifications of almost 30% of 

the human proteome by phosphorylating proteins on tyrosine residues [47]. Two main 

subgroups of PTKs are receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases 

(NRTKs). RTKs form the largest family of protein oncogenes. They have aberrant expression 

and activation in many cancer types and are widely regarded as potential therapeutic targets 

in cancers [48, 49].  

NRTKs 

Thirty two out of the 90 known PTKs are NRTKs, which are grouped into 10 families based 

on the intron-exon structure [50]. NRTKs play several cellular and molecular roles such as 

signaling, migration, and differentiation and cytoskeletal structure. Unlike RTKs, they lack 
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the receptor features and are mainly localized in cytoplasmic regions of the cells [51, 52]. 

NRTK families are listed in table 1. 

Table1.  Non-receptor tyrosine kinases are grouped into 10 families  

1. ABL: Abelson murine leukemia viral oncogene homolog 1  

2. ACK: Activated CDC42 kinase 1 

3. CSK: C-terminal Src kinase  

4. FAK: Focal adhesion kinase 

5. FES: feline sarcoma oncogene/Fujinami avian sarcoma viral oncogene 

6. FRK: Fyn-related kinase 

7. JAK: Janus kinase 

8. SRC: SRC kinase 

9. TEC: Tyrosine-protein kinase Tec 

10. SYK: Spleen tyrosine kinase 

 

RTKs 

RTKs consist of 58 members divided in 20 families. They all share similar structure that 

includes a single transmembrane helix, an extracellular domain that functions as ligand 

binding part, intracellular regulatory and kinase domains [53]. Except for the insulin 

receptor which is present as a dimer on the cell surface, the other RTKs have been thought 

to appear as monomers in their inactive forms. Upon ligand triggering they form dimers and 

become active (Figure5). The ultimate RTK homo- or heterodimer activation involves 

receptor autophosphorylation of the intercellular residues. Recent structural studies have 

shown that some of the RTKs are present as an inactive pre-form but in dimers [54]. 

Overexpression of the RTKs has been correlated to CMM progression, as blocking 

receptors such as IGF-1R by antibodies inhibits cell proliferation in melanoma cell lines 

[55, 56]. Activation and dimerization of RTKs are shown in Figure 5. 
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Figure 5. Summary figure of RTK signaling pathways  

 

http://oregonstate.edu/instruction/bi314/fall11/signalingtwo.html (modified) 

2.3 Transcription factor (TF) dysregulation 

Transcription factors are a family of upstream regulatory proteins and alterations of them can 

lead to dysregulation of several downstream pathways. During progression of CMM the 

following families of transcription factors have been shown to play pivotal roles: The 

microphthalmia-associated transcription factor  (MITF), nuclear factor kappa-light-chain-

enhancer of activated B cells (NFκB), activating protein 1 and 2α (AP-1), activating 

enhancer-binding protein 2 alpha (AP-2α), Notch, C-terminal-binding protein (CtBP1), 

cAMP response element-binding protein (CREB), E26 transformation-specific (ETS), high 

mobility group box 1(HMGB1), LEF/TCF/β-catenin, Paired Box 3 (PAX3), SKI, Zinc finger 

protein SNAI1 (Snail) and signal transducer and activator of transcription (STAT family) 

[57]. In paper I we investigated the role of MITF and other melanosomal related proteins in 

association with chemotherapy resistance in CMM patients [58]. 

MITF was identified as a transcription factor for the tyrosinase gene. Tyrosinase is a 

melanocyte-specific essential enzyme for the biosynthesis of melanin [59, 60]. MITF has 

been suggested as an oncogene in melanoma and is amplified in 10-20% of melanoma 

tumors. MITF amplification is more prevalent in metastatic CMMs and correlates with 

shorter survival of patients [61]. MITF has a paradoxical role in melanoma: low MITF levels 

can efficiently induce tumors and evade senescence in melanocytes; melanoma and 

melanoma stem cells, whereas high MITF regulate genes involved in S-phase progression 

and mitosis [62-64]. Figure 6 illustrates that differential MITF expression levels are 

correlated to divergent forms of cellular behavior. 
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Figure 6. Schematic depiction of how MITF level affects melanoma. Low MITF induces cell 

cycle arrest in G1, invasiveness and stem cell phenotype while high MITF levels induce 

differentiation. 

 

Oncogene (2011) 30, 2304–2306 [62] (reproduced with permission) 

The ETS family of proteins is one the largest among the transcription factor families, 

consisting of 29 human TFs grouped in 12 subfamilies. Ets1 is one of the members of this 

family that was shown to be overexpressed in malignant melanoma and to regulate 

vascularization and tumor cell invasion trough induction of matrix degrading proteins [65]. 

FLI1 is another member of the family that was shown to be positively correlated with Ki67 (a 

cell proliferation marker) and to be highly expressed in tumor samples from patients with 

metastatic melanoma [66].    

NFκB is a protein complex that controls transcription of several genes and their products are 

involved in a cascade of cellular stress response. The NFκB complex is aberrantly regulated 

in several cancers including CMM. As thoroughly reviewed by Ueda and Richmond, in 

melanoma versus melanocytes, NFκB activation has switched the pro-apoptosis behavior of 

the NFκB complex to anti-apoptosis [67].  

STAT is a family of proteins with seven members involved in transcriptional activation and 

signal transduction. STAT proteins are activated by tyrosine phosphorylation and 

consequently form homo or heterodimers [57]. One of the members of this family, STAT3, 

was demonstrated to be activated by SRC kinase activity in melanoma cell lines.  Moreover, 

in the same melanoma cell lines, inhibition of either SRC kinase activity or STAT3 

phosphorylation induced apoptosis. This indicates the involvement of SRC induced STAT3 

activation in CMM cell survival [68].   
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2.4 DNA damage response 

Among many DNA lesions occurring every day only a very low proportion is double strand 

breaks (DSBs). If not properly repaired, these lesions may have consequences such as cell 

death, mutations, or in more severe cases, lead to cancer, immunodeficiency or 

neurodegenerative diseases [69]. Besides endogenous causes for DNA damage (such as 

enzymatic activity, DNA replication or oxidative respiration), environmental factors such as 

UV irradiation can induce DNA damage. The cellular defenses against DNA damage are 

termed DNA damage response (DDR) and include mechanisms both to counteract and repair 

DNA damage and to maintain genomic integrity. Several DNA repair pathways have been 

identified. Mismatch repair (MMR) is activated when a mismatched base occurs during DNA 

replication/recombination. The mismatched base is recognized by a protein complex 

including “Mut” proteins. Following this, the single, affected, strand of DNA is incised and 

resynthesized by a DNA polymerase [70]. Damage to single bases is corrected by base 

excision repair (BER) and UV light induced helix-distorting base is repaired by nucleotide 

excision repair (NER). Two main repair pathways are activated in response to double strand 

breaks, homologous recombination (HR) and non-homologous end joining (NHEJ). During 

HR, a stretch of nucleotides is exchanged between identical DNA molecules to repair DSBs 

while in NHEJ the ends of DNA are ligated without the use of a homologous template.  

In DDR several cascades of events are activated, including phosphorylation of the apical 

phosphatidylinositol 3-kinase-related kinases, ataxia-telangiectasia (ATM), Rad3-related 

protein (ATR) and DNA-dependent protein kinase catalytic subunit (DNA-PKs) kinases. 

When DDR is activated, one of the early events is serine 139 phosphorylation of histone 

variant H2AX (γH2AX) by ATR, ATM or DNA-PKs [71, 72]. Phosphorylation of H2AX is 

contributory in accumulation of repair proteins at the site of DNA damage [73]. Upon DNA 

damage, checkpoint kinase 1 (CHEK1) is activated through kinase activity of ATR which 

further activates p53, implying the link between ATR and p53 [74]. Activation and 

stabilization of tumor suppressor p53 occurs through several post transcriptional 

modifications. Activated p53 functions as a transcription factor for regulators of cell cycle 

regulation, induced cell death and senescence [75-77]. 

DNA alkylating drugs such as temozolomide deliver methyl group to purine bases of DNA 

(O6-guanine; N7-guanine and N3-adedine). The O6-methylguanine (O6-MeG) DNA lesion 

raised DDR and is removed by methylguanine methyltransferase (MGMT) protein or through 

MMR mechanism [78]. 
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3. CMM TREATMENT      

For early stage CMM surgical excision of the primary tumor is the standard treatment with a 

good prognosis, while the prognosis for advanced metastatic disease is very poor. Surgery of 

advanced metastatic disease (if performed) often has a palliative role e.g. to remove 

obstruction in the bowel, etc. and instead systemic drug treatment is used [79, 80]. 

Radiotherapy has also a therapeutic role in advanced CMM but generally as palliative therapy 

in metastatic disease. However, targeted therapy with BRAF inhibitors has significantly 

increased median overall survival and median progression-free survival compared to 

dacarbazine [81]. Immunotherapy with check-point inhibitors such as ipilimumab has also 

improved overall survival in CMM patients [82]. 
3.1 Chemotherapy: For several decades the standard therapy for disseminated CMM 

has been mono- or combination therapy with chemotherapeutic agents using: DNA 

alkylating drugs, dacarbazine (DTIC), temozolomide (TMZ) or nitrosoureas (such as 

fotemustine); platinum compounds (such as cisplatin or carboplatin); antimicrotubular 

agents; vinca alkaloids (microtubule assembly inhibitors such as vindesine and 

vinblastine) and taxanes (inhibitors of microtubule disassembly such as paclitaxel). 

However, these therapy regimens result in therapy response rates of 5-12% with a 

median overall survival of less than one year [83, 84] 

3.2 Immunostimulants: This group includes immune system stimulators like interleukin 

2 (IL-2) and interferon alpha (IFNα). As reviewed by Bhatia et al., several studies 

compared combination of chemotherapy with IL-2 and low dose IFNα versus 

chemotherapy alone and, despite moderately improved objective response rate with 

combination therapy, they have increased toxicity without improving overall survival 

[83].  

3.3 Targeted therapy: The term “targeted therapy” refers to therapeutic small molecules 

that are designed to inhibit specific molecules in the cells that are driving aberrant 

proliferation and growth in cancer cells; therefore, they may be more efficient with fewer 

side effects compared to conventional cytotoxic chemotherapies. For BRAF mutated 

CMMs, two inhibitors of the mutated BRAF protein have been approved by drug 

regulatory authorities (the US FDA and the European EMA): vemurafenib (Zelboraf
®
) in 

(2011 and 2012 respectively) and dabrafenib (Tafinlar
®
) (FDA approved in 2013). 

Studies comparing DTIC with the two BRAF inhibitors (BRAFi), vemurafenib and 

dabrafenib, have shown improved progressions free survival (PFS) as well as overall 
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survival (OS) with the targeted therapies [81, 85].  For the wild type MEK protein two 

inhibitors have been approved: trametinib (Mekinist
®
) and cobimetinib (Cotellic

®
). The 

MEK inhibitors are used for patients with mutated BRAF as follows: Trametinib is used 

in combination with dabrafenib and cobimetinib is approved for use in combination with 

vemurafenib. Side effects for therapy with the targeted drugs are generally milder than 

those for chemotherapies. Commonly observed and reported side effects of treatment 

with BRAFi are reviewed by Welsh and Corrie [86] and include: vemurafenib induced 

moderate to severe photosensitivity, rash, keratoacanthoma, cutaneous squamous cell 

carcinoma (SCC) arthralgia, diarrhea and fatigue [87]. Despite sharing common side 

effects, photosensitivity is rare in patients treated with dabrafenib compared to those 

treated with vemurafenib.  

3.4 Immunotherapy: In parallel with targeted drugs, novel immune therapies have been 

developed for CMM. In 2011, ipilimumab (Yervoy), a monoclonal blocking antibody 

against CTLA-4 was approved for treatment of unresectable CMMs. CTLA-4 is a 

protein receptor on the surface of cytotoxic T-lymphocytes and negatively regulates 

immune response in detection and destruction of cancer cells [88]. Blocking the CTLA-4 

receptor has shown improved overall survival in melanoma patients with advanced 

disease [89]. Interaction of programmed death ligand-1 (PDL-1) and its receptor (PD-1), 

expressed on activated T-cells, B-cells and myeloid cells, is another target for immune 

therapy. The interaction of the ligand-receptor suppresses immune response and is 

inhibited by two FDA approved antibodies pembrolizumab (KEYTRUDA®) and 

nivolumab (OPDIVO®). In a phase I clinical trial, CMM patients refractory to 

ipilimumab were treated with pembrolizumab (anti PD-1) resulting in an overall 

response rate of 26% and only 3% severe adverse effects [90]. Nivolumab treatment has 

significantly improved overall survival in BRAF wild type CMM patients compared to 

DTIC and has superior response rate in comparison to DTIC and ipilimumab [91, 92]. 

3.5 Autologous T-cell therapy: This treatment refers to an approach of collection, ex 

vivo expansion and reinfusion of tumor infiltrating T-cells (TILs). For the purpose, TILs 

are collected by enzymatic digestion of surgical tumor material [93, 94] and expanded in 

vitro. Propagated TILs are re-infused to the patient, usually after an intense conditioning 

treatment with chemotherapy that depletes the patient’s bone marrow. This autologous 

adoptive T-cell transfer targets the cancer cell antigen specifically and has shown 

antitumor activity in advanced CMM patients [95]. 

http://www.opdivo.com/
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4. THERAPY RESISTANCE IN CMM 

Resistance to therapies is a major problem for CMM treatment. For several decades, 

chemotherapy with DTIC and TMZ has been largely unsuccessful both due to innate and to 

acquired resistance to treatment [96]. Drug resistance in solid tumors has been vastly 

investigated with regards to epigenetic and genetic alterations such as mutations, deletions 

and gene amplification. Changes in drug uptake, metabolism or export of the drug from the 

cells are also suggested to play roles in drug resistance. Tumor microenvironment and 

extracellular matrix (ECM) interaction with cancer cells, tumor hypoxia and acidity and 

abnormal tumor vasculature and inefficient blood flow inside tumor (affects drug delivery to 

the tumors cells) are important effectors in drug response in solid tumors [97].  

4.1 Chemotherapy resistance mechanisms: For many years investigations have been 

performed to unravel resistance mechanisms to conventional chemotherapies. Some 

general mechanisms involved in chemoresistance are: a) classical multi drug resistance 

in which cell membrane efflux pumps are increased and eliminate and excrete cytotoxic 

agents, b) induction of certain enzyme systems e.g. for detoxification of alkylating agents 

by conjugating the chemotherapy agents to glutathione through activity of glutathione-S-

transferases (GST) and c) disruption of drug-target interactions possibly due to 

alterations in the targets which results in reduced binding affinity [98, 99]. Alteration in 

drug distribution inside cells is an important mechanism in induction of resistance to 

chemotherapies [100]. One way to alter distribution of the drug is through sequestration 

of drugs in subcellular organelles such as melanosomes (cellular organelles responsible 

for synthesis, storage and trafficking of melanin), which have been shown to have a role 

in cisplatin (CDDP) resistance [101]. Biogenesis, accumulation, and structural integrity 

of melanosome and melanosomal related proteins such as microphthalmia-associated 

transcription factor (MITF), G-protein coupled receptor 143 (GPR143), pre-melanosome 

gp100 (gp100/PMEL), MLANA (MART1), tyrosine related protein 1 (TYRP1) and 

melanosome trafficking related protein RAB27a are associated with chemotherapy 

resistance in melanoma cells [58, 102]. Targeting protein trafficking and melanosome 

formation enhanced cytotoxic effects of anticancer therapies with CDDP, dacarbazine 

and TMZ in melanoma cells [102, 103]. Anti-apoptotic pathways and enhanced DNA 

repair in cancer cells also play roles in unresponsiveness to chemotherapy in CMM 

[104]. As previously discussed, MGMT is a DNA repair protein inducing resistance to 

DNA damaging effect of DNA alkylating drugs e.g. TMZ, by removing the drug induced 
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alkyl adducts. Depletion of MGMT, with the pseudo-substrate O6-benzylguanine and 

lomeguatrib, inhibits the removal of O6-MeG lesions and sensitizes tumors to alkylating 

drugs [78]. In patients with advanced CMM, inactivation of MGMT through promoter 

methylation is associated with better TMZ response and prolonged progression free 

survival [105]. Depletion of MGMT with regards to tolerability and efficacy, alone or in 

combination with DTIC, has been the focus of some studies in melanoma patients [106, 

107].  

4.2 Targeted therapy resistance mechanisms: Despite a rapid response to targeted 

drugs such as vemurafenib, dabrafenib and trametinib, in the majority of patients relapse 

eventually occurs. Resistance to the kinase inhibitors is due to multiple mechanisms; 

some of the resistance mechanisms to BRAF inhibitors are shown in Figure 7 and briefly 

mentioned below: genetic alterations such as gene amplification (e.g. amplification of 

BRAF) , novel or secondary mutations (e.g. secondary NRAS or novel MEK1 mutations), 

presence of abnormal protein isoforms (e.g. BRAF), hetero- and homodimerization of 

proteins (e.g. BRAF-CRAF heterodimers) activation of alternative signaling pathways 

(e.g. PI3K/AKT pathway activation and PTEN loss), signaling bypass (e.g. MAPK 

reactivation by overexpression of COT and CRAF), tumor microenvironment derived 

resistance (e.g. hepatocyte growth factor HGF induced activation of the MET receptor, 

upregulation of PDGFRβ), histological transformation (e.g. epithelial to mesenchymal 

transition or vice-versa), RTK overexpression (e.g. AXL, IGF1R, MET, EGFR, EPHA2) 

and aberrant expression of transcription factors (e.g. MITF downregulation) [108-120].  

Figure 7. Schematic illustration of mechanisms of resistance to BRAFi in CMM  

 

Alexander M. Alcalá, and Keith T. Flaherty Clin Cancer Res 2012 [113] (reproduced with permission) 
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4.3 Prediction of response to therapy: Most CMM patients experience either innate or 

acquired resistance to therapeutic agents. Unlike for targeted therapies, only a small 

subpopulation of patients responds to chemotherapies. Therefore, identification of reliable 

biological markers which can predict long-term therapy response would enable oncologists to 

find those that would benefit from the treatment. This approach may help to further 

individualize the treatments based on the therapy response prediction. Moreover, biomarker-

based identification of possible non-responders enables the use of alternative treatment 

options such as combination of two targeted drugs, or combination of immunotherapeutic 

agents. As previously discussed, epigenetic and genetic (such as 

deletion/amplification/mutation) alterations, tumor vascularization, tumor hypoxia and 

acidity, tumor-microenvironment interactions, RTK overexpression and MAPK reactivation 

are predictors of therapy response in CMM [121]. Epithelial to mesenchymal transition-like 

phenotype switching in melanoma, is also predictive of drug response especially with regards 

to BRAFi treatment [122]. Besides EMT molecular markers, such as loss of E-cadherin and 

induction of N-cadherin and osteonectin (SPARC), aminopeptidase N (ANPEP/CD13) is a 

surface receptor that is found to be expressed on melanoma cell surface and correlate to high 

angiogenesis and metastatic capacity of the cells [1, 122, 123] and may also predict treatment 

response in CMM. High levels of calcium binding S100 protein was shown to correlate to 

increased tumor angiogenesis, metastatic capacity and immune evasion in different cancers 

[124]. S100A13 is an angiogenic marker that positively correlates with high vascular 

endothelial growth factor (VEGF)-A protein expression in advanced melanoma patient 

tumors [125]. Serum level of S100B protein can be used as a marker in predicting and 

monitoring drug response in CMM patients treated with chemoimmunotherapy [126]. High 

expression of MITF and other melanosomal proteins correlate with poor chemotherapy 

response, while for mutant BRAF inhibitors low MITF expression is predictive of 

unresponsiveness [58, 120, 127].  
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5. AIMS OF THE THESIS  

The research projects presented in the current thesis, primarily aim at identification of 

therapy resistance mechanisms in CMM and finding novel predictive biomarkers for 

therapy response. Moreover, a project investigates drug combination schedules 

(simultaneous or concomitant) that might abrogate/bypass the therapy resistance or delay 

the onset of resistance. 

 

Specific aims for the papers I-IV 

 

Paper I: Investigate the correlation between chemotherapy resistance and melanosomal 

related proteins; specifically MITF 

Paper II: Identify predictive biomarkers for response to chemotherapy in pre-treatment; 

fresh frozen tumor biopsies from CMM patients, utilizing a mass spectrometry based 

proteomics based approach  

Paper III: Uncover novel and confirm known resistance mechanisms to BRAFi in 

melanoma cell lines with acquired resistance to BRAFi, using mass spectrometry based 

proteomics, gene expression analysis and targeted next generation sequencing.  

Paper IV: To investigate the efficiency of combining targeted therapy (BRAFi) with 

conventional chemotherapy (TMZ) in an in vitro model.  
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6. MATERIALS AND METHODS 

6.1 CMM tumor samples:  

Paper I: For this study, pretreatment tumors from 52 CMM patients; treated with DTIC/TMZ, 

including 34 men and 18 women, were collected. The mean age was 58 (25-82) years. A 

majority of the tumors were lymph nodes metastases and the others were skin metastases. 

The tumors were formalin-fixed and paraffin embedded. Eighteen patients were responders 

and 34 were non-responders to chemotherapy.  

Note: World Health Organization WHO criteria, defines response to the therapy as 50% 

reduction in tumor size (by measure of the sum of products of two perpendicular tumor 

diameters). 

Paper II: In this study a collection of 14 fresh frozen lymph node CMM metastases were 

selected from two groups, responders (n=5) and non-responder (n=9) to chemotherapy with 

DTIC/TMZ. The selection was made based on presence of at least 50% tumor cells in the 

lymph nodes (majority >70%). Five responders and five non-responders were matched for 

age and sex and the rest of the samples were selected since they had been previously analyzed 

by gene expression microarray. For validation of the findings an extended set of formalin-

fixed paraffin-embedded pretreatment tumors from 16 responders and 34 non-responders to 

DTIC/TMZ were selected for IHC analysis. The selected samples are overlapping with those 

used for the study in paper I. 

Paper III: Samples from three patients with metastatic CMM (stage M1c) who received 

BRAF inhibitor (vemurafenib or dabrafenib) were selected. Tumors were collected before 

treatment and after relapse. All samples were formalin-fixed paraffin embedded. 

For all of the patient tumors used in the studies I-III, ethical permits were approved by 

Regional Ethics Committee of Stockholm and patients gave informed consent. 

6.2 In vitro cell line models and sublines with acquired drug resistance 

For all four studies, a set of melanoma cell lines (SKMEL24 and SKMEL28 and A375) were 

purchased from American type culture collection (ATCC). The pigmented MNT-1 cell line 

was kindly provided by Dr. Pier Giorgio Natali, Instituto Regina Elena; Rome, Italy. 

Induction of BRAF inhibitor resistance: A375 cells were consecutively treated with either 

vemurafenib or PLX4720 (non-clinical analogue of vemurafenib) in a dose escalating 

manner. Three BRAF inhibitor resistant sublines were established over a course of two 

months treatment. A375PLX4720R1 (A375PR1; resistant to PLX4720), A375vemuR3 

(A375VR3; resistant to vemurafenib) and A375vemuR4 (A375VR4; resistant to 

vemurafenib) were established. Sensitivity to BRAF inhibitors was tested by MTS 
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proliferation assay. STR profiling of A375 cells and all the BRAFi resistant sublines was 

performed to confirm the authenticity of the cell lines using the AmpFLSTR™ Identifiler™ 

PCR Amplification Kit (Thermo Fisher Scientific).  

6.3 Proteome profiling using LC/MS-MS 

Liquid chromatography (LC) coupled to tandem mass spectrometry (MS-MS) is a powerful 

technique with high sensitivity in analytical chemistry. Liquid chromatography separates 

molecules based on the physical property and mass spectrometry separates ions based on 

their mass to charge ratio (m/z) in a gas phase. Utilizing the LC/MS-MS technique, the cell 

proteome can be thoroughly analyzed in a quantitative manner. The process of LC/MS-MS 

proteome profiling is briefly described below: 

a. Sample preparation and protein extraction: Human tissue disruption was performed using 

tissue homogenizer or Mixer mill MM200 (Retsch, Hann, Germany). For this purpose, 

Teflon cylinders were precooled in liquid nitrogen before transferring 1mm
3 

of frozen tissues 

to the cylinder and the disrupting the tissues into powder by shaking. Then each sample was 

dissolved in 20mM HEPES solution and immediately frozen in -80
o
C. For the analysis the 

tissue suspension was thawed and mixed with 1mM of DTT and 3.75% SDS. The mixture 

was heated at 90
o
C 5min followed by sonication for 5min in room temperature (RT, FASP 

protocol). Finally, after centrifugation of the samples at 10,000g for 10min the supernatants 

were collected for protein concentration measurement. For acetone precipitation, 120mg 

protein from each sample was mixed with four volumes of ice-cold acetone and incubated at 

4
o
C for 2hrs to form the flocculent. Another centrifugation at 10,000g (10min) was 

performed to remove the supernatant and collect the precipitated proteins. The protein pellet 

was air dried at room temperature. This final step was only performed for the MS-MS part 

but not for the immunoblotting confirmation. For the similar analysis of the cell line protein 

profiling for the BRAF inhibitor resistance analysis (project III) the protein extraction buffer 

was a complete RIPA buffer system purchased from Santa Cruz biotechnology Inc. 

b. Protein digestion and iTRAQ labeling: Each sample was trypsin digested (1:20 trypsin to 

protein) and labeled with a unique iTRAQ label according to the manufacturer´s protocol 

(Thermo Fisher Scientific, Waltham, MA, USA). Eight iTRAQ labels were available and 

therefore, seven samples and one internal standard were pooled (each 100µg) for the MS 

analysis. The other seven protein samples were assigned to the second pool and were 

analyzed separately due to limited number of iTRAQ labels. Pooled samples were then 

cleaned to remove excess unbound labels by applying them through 1ml Strata X-C 33mM 

polymeric strong cation exchange (SCX) microcolumns (Phenomenex, Torrance, CA, 

USA).  
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c. Narrow-range IEF: Samples mixed with low pH (pH 3.3) buffer were loaded on narrow 

range isoelectric focusing strips (pH 3.4-4.7; GE healthcare, Uppsala, Sweden). Then the 

loaded peptides were separated accordingly to their isoelectric points, and eluted to 72 

predefined fractions. Each fraction was separately eluted by milliQ water and dried in 

speedVac for MS analysis.   

d. Mass spectrometry: Each of the 72 fractions with a specific pH was injected into 

HPLC/MS (Agilent Technologies, Santa Clara, USA/ Thermo Fischer Scientific, San Jose, 

USA; LTQ-Orbitrap Velos). For detailed procedural explanation see reference [128].  

e. Database search: Data from the Orbitrap mass spectrometer were aligned against 

Uniref100 protein sequence database using Proteome Discoverer 1.1 software (Thermo 

Fisher Scientific). 

6.4 Additional methods: The main methods used in this thesis are briefly described below.  

Immunoblotting: To validate the candidate proteins’ expression and evaluate efficiency of 

gene expression modulation, human melanoma cells or human tissues were lysed and protein 

was extracted using RIPA buffer system or HEPES-DTT-SDS buffer (FASP protocol; 

explained below). The protein concentration of samples was measured using Pierce™ BCA 

Protein Assay Kit (Thermo Fischer Scientific, USA). Equal concentration of 

the samples were loaded on NuPAGE Novex Bis-Tris Gel (Life Technologies, Carlsbad, 

CA, USA) and then transferred to PVDF membranes (Thermo Scientific, Rockford, IL, 

USA), according to the manufacturer’s standard protocol. Chemiluminescent method was 

used to visualize the protein expression. 

Immunohistochemistry (IHC): IHC was performed on formalin-fixed paraffin-embedded 

tissues (3-4µm thick samples). First, sections were heated in pressure cooker in citrate buffer 

(pH 6.0) for antigen retrieval. Endogenous peroxidase was blocked with 10 minutes 

incubation in 3% H2O2 and after rinsing in 1x TBS buffer, they were incubated in 2,5% 

blocking buffer (1x TBS+ horse serum) to minimize the risk of unspecific antibody binding. 

Then sections were incubated with an optimized concentration of primary antibody (diluted 

in blocking buffer) at 4
o
C

 
overnight. Sections were rinsed in 1x TBS and a secondary, 

biotinylated antibody together with streptavidin/ peroxidase (Vectastain Universal Quick Kit, 

Vector) was added at room temperature for 1hr. Developing and nuclear counter staining 

were performed by incubating the sections for 10 minutes in 3,3’́-diaminobenzidine (DAB kit, 

Vector Laboratories Inc., Burlingame, CA, USA) and 45 seconds in Mayer‘s haematoxylin. Each 
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section was mounted and sealed by a coverslip (Histolab, Sweden). Evaluation of protein 

expression in each tissue section was performed blinded with regard to the clinical data. 

DNA and RNA extraction: DNA and RNA were extracted from cell lines with and without 

treatments using the extraction kits according to the product manual; RNeasy kit (cat no. 

74104) and DNA mini kit (cat no. 51304) both from Qiagen. 

Gene silencing: To study the role of selected genes in therapy response, we silenced the gene 

of interest using silencing RNA (siRNA) in the melanoma cell lines and evaluated the 

treatment response. Non-targeting siRNA was used a negative control for these experiments. 

Gene expression analysis (qPCR): Quantitative real-time PCR was used to quantify mRNA 

expression of selected genes in cell lines with DMSO versus drug treatment or non-targeting 

si-control and gene specific siRNA to ensure efficient gene silencing.  

Gene copy number analysis (CNA): Copy number analysis of the gene of interest was 

performed using custom TaqMan Copy Number Assays (Applied Biosystems, USA). 

Next generation sequencing (NGS): For identification of any mutations involved in BRAF 

inhibitor resistance we performed NGS sequencing (Agilent HaloPlex technology followed 

by next generation sequencing; Illumina Hiseq) on a selected set of 120 genes known to be 

relevant in CMM. The findings were then confirmed by standard Sanger sequencing (BigDye 

Terminator v.3.1 system in ABI 3700 capillary electrophoresis system (both Applied 

Biosystems, Carlsbad, CA).   

Cell proliferation assay: For evaluation of base line and treatment effect of siRNA or 

targeted/chemotherapeutic agents, treated and untreated cells were subjected to measurement 

of proliferation inhibition or induction using Celltiter96 AQueous one solution cell 

proliferation assay (MTS; Promega, USA).    

Apoptosis/necrosis assay: End point effect for many of the targeted or chemotherapeutic 

agents is apoptosis induction. Therefore, we performed flow cytometry based apoptosis and 

necrosis analysis using Annexin V and propidium iodide (PI) staining. Annexin V binds to 

externalized phosphatidylserine and indicates apoptotic cells and PI intercalates with DNA 

indicating disrupted cell membrane in necrotic cells. 

Scratch assay (wound healing assay): To study the proliferation/gap filling capacity of the 

A375 cell line and its corresponding vemurafenib resistant subline A375VR4 we performed 

a scratch assay. Cells were seeded in 6-well plates and grown to confluent state; then with 
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the tip of a pipette tip a radial scratch was made. Cells were also grown with human 

recombinant Ephrin-A1 (EFNA1; 10882-H03H a cognate ligand of EPHA2) to evaluate the 

EPHA2 degradation effect on the gap filling rate (EPHA2 is degraded upon ligand 

treatment).  

Colony forming assay: In 4 cm plates, 200 cells were plated and 24h after seeding they 

were treated with vemurafenib or siRNA against EPHA2. The number of colonies formed 

were fixed in crystal violet and counted 14 days after seeding. Culture media for the cells 

was changed every 3 days but the treatment was done only once. 

Confocal microscopy: Twenty five thousand cells were seeded on coverslips and after 24h 

incubation in 37 °C CO2 incubator; the cells were treated for 48h with BRAF inhibitor and 

fixed in 4% paraformaldehyde. Cell membrane was permeabilized and for minimizing the 

risk of unspecific binding, cells were treated with blocking buffer containing 2% bovine 

serum albumin (BSA). Then cells on coverslip were incubated overnight with two primary 

antibodies against pAb anti-53BP1 (100904 Novous diluted 1:400 in blocking buffer) and 

γH2AX (Ser139) (05-636 Merck Millipore diluted 1:1000 in blocking buffer) for 1h at 

room temperature. Then cells were incubated with goat anti-Rabbit IgG (H+L) secondary 

antibody, Alexa Fluor® 488 conjugate and donkey anti-Mouse IgG (H+L) secondary 

antibody, Alexa Fluor® 594 conjugate were added to cells and incubated for 1 hour at room 

temperature in the dark. Lastly, coverslips were sealed by adding mounting medium 

containing DAPI. The images were captured by a LSM700 confocal microscope (Zeiss), 

mounted on Axio observer Z1 (Zeiss) equipped with a Plan-Apochromat 63X/1.4 oil 

immersion lens.  
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7. RESULTS AND DISCUSSION 

                                                                                                                        

Paper I:  

Results: In this project we investigated the role of six melanosome-related proteins 

involved in chemotherapy resistance to the alkylating agents TMZ/DTIC in CMM. 

These proteins, MITF, G protein coupled receptor 143 (GPR143), premelanosomal 

protein gp100/PMEL, Melan-A (MLANA), Rab27A and tyrosinase-related protein 1 

(TYRP1), have previously been suggested to play a role in resistance to cisplatin in 

melanoma cell lines [101]. Therefore, we investigated the expression of these proteins by 

immunohistochemistry in a set of 52 formalin-fixed paraffin-embedded pretreatment 

tumor biopsies from patients with metastatic CMM. MITF and GPR143 expression 

levels were significantly higher (Fisher’s exact test; p<0.05) in tumor samples from non-

responders than responders. Since gp100/PMEL has previously been associated with 

resistance to cisplatin and paclitaxel, we studied the effect of transient knockdown of 

gp100/PMEL by siRNA in a pigmented MNT-1 melanoma cell line and observed 

increased sensitivity to cisplatin and paclitaxel, but no effect on DTIC or TMZ 

sensitivity. 

Discussion: Metastatic CMM has a low response rate to chemotherapeutic agents. Our 

data confirms the previous hypothesis of involvement of MITF and other melanosomal 

related protein in chemoresistance in CMM. Melanosomes are suggested to decrease the 

efficacy of chemotherapy through sequesteration of the drug in them [102]. Higher 

expression of the melanosomal proteins such as GPR143, MLANA, TYRP1, RAB27A 

etc. that are transcriptional targets of MITF [129] could correlate to unresponsiveness to 

chemotherapy and may serve as markers for lack of therapy response. Inhibiting or 

downregulated expression of melanosomal pathway effectors may be a way to improve 

the chemotherapy effect.   

 

Paper II: 

Results: In this study we performed proteome profiling of fresh frozen CMM lymph 

node metastases from five responders and nine non-responders to DTIC/TMZ based 

chemotherapy. We performed mass spectrometry based proteomics. Among the 

identified proteins with differential expression levels in responders and non-responders, 

we selected four protein candidates for technical validation by immunoblotting. The four 

candidate proteins were calcium binding S100A13, cystatin B (CSTB), coagulation 

factor A1 (F13A1) and inositol-3-Phosphate synthase 1 (ISYNA1). We further evaluated 
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the expression of CSTB and S100A13 proteins in an extended set of 50 formalin fixed 

paraffin embedded CMM tumors from 16 responders and 34 non-responders by IHC. 

Despite high expression of CSTB in most of the tumors, it did not show significant 

difference between the two groups. High levels of S100A13 expression were 

significantly associated with unresponsiveness to DTIC or TMZ. 

Discussion: A majority of the patients with metastatic CMM are unresponsive to 

chemotherapies but there is a small subpopulation among the patients that are long-term 

responders to the treatment. In this study we aimed at identifying a set of potential 

predictive biomarkers for response to chemotherapy with DTIC or TMZ, to have a 

higher probability to identify patients that may benefit from DTIC or TMZ. Proteomics 

analysis using mass spectrometry is a powerful tool in the field of biomarker discovery. 

The technique enables simultaneous analysis of biological samples with high throughput. 

Utilizing LC/MS-MS technique we investigated proteome alterations in fresh frozen 

tumor biopsies from CMM patients with metastatic disease. We identified that high 

expression of the S100A13 protein correlated with resistance to chemotherapy with 

DTIC/TMZ in the patients. S100A13 has previously been suggested to be involved in 

angiogenesis in CMM as well as in regulating several signaling pathways such as NFκB 

and high mRNA levels of S100A13 has been demonstrated to correlate with higher risk 

of relapse of CMM [125, 130]. Finally, high expression of S100A13 protein in tumor 

tissues may be suggestive of highly invasive and treatment unresponsive disease.       

Paper III:  

Results: To investigate resistance mechanisms to BRAFi and devising strategies to 

overcome resistance, we established BRAFi resistant sublines of melanoma A375 cells. 

We then performed whole proteome profiling using liquid chromatography coupled to 

mass spectrometry LC/MS-MS. Several protein families were identified to be 

differentially expressed in parental A375 cells compared to the BRAFi resistant sublines 

such as receptor tyrosine kinases, cell surface receptors, transcription factors, etc. We 

then validated the already known BRAFi resistance mediators as well some novel protein 

candidates for mediating resistance to BRAFi. Overexpression of hepatocyte growth 

factor receptor (MET), Ephrine receptor A2 (EPHA2), aminopeptidase N 

(CD13/ANPEP) and transcription factor FLI1 were observed in the BRAFi resistant 

cells. Silencing of EPHA2, FLI1 and targeting ANPEP by blocking antibody resulted in 

elevation of apoptosis or sensitization to BRAF inhibitor vemurafenib. More specifically, 

a blocking antibody against ANPEP as monotherapy induced massive cell death not only 
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in the resistant cells with high CD13 expression but also in the sensitive A375 cells. 

Knocking down EPHA2 or FLI1 sensitized the resistant cells to vemurafenib. Due to 

overexpression of several receptor tyrosine kinases, we combined vemurafenib with the 

multi kinase inhibitor dasatinib (inhibiting phosphorylation of EPHA2, SRC, etc.) and 

observed an induction of massive cell death compared to any of the drugs alone. 

Discussion: We are reporting for the first time that FLI1 mediates vemurafenib 

resistance. In addition we show that CD13/ANPEP is overexpressed in our melanoma 

cell line with acquired resistance to vemurafenib and it could serve as a novel target for 

therapy. CD13 is a cell surface aminopeptidase involved in tumor progression and cell 

proliferation [131]. It has variable expression throughout melanoma progression with low 

levels in melanocytes and high in melanoma cells [132]. As shown in a study, high 

expression levels of CD13/ANPEP correlates to low grade of differentiation and reduced 

melanocytic markers gp100, MART-1 and S100B [133]. Another of our identified novel 

BRAFi resistance protein candidates, FLI1, is a member of the large ETS transcription factor 

family [134] and has been associated with an increased proliferation, differentiation and 

evasion of apoptosis in human cancer cells [135, 136]. Aberrant FLI1 activation induces 

dysregulated cell division and malignant transformation [137, 138]. In endothelial cells, ETS 

transcription factor phosphorylation via the RAS/MAPK pathway is required for CD13 

induction [139]. Our vemurafenib resistant A375VR4 cells, overexpress FLI1 at protein and 

mRNA levels, and silencing with FLI1 siRNA re-sensitized the cells to the drug, suggesting 

that FLI1 contributes to vemurafenib resistance. The effect was also shown in another 

melanoma cell line, SKMEK24, with moderate expression of FLI1. Besides increased 

apoptosis in vemurafenib treated A375VR4/SKMEL24 cells, silencing of FLI1 also inhibited 

proliferation of these cells and the parental A375 cells. We also showed that the combination 

of vemurafenib with the multi-kinase inhibitor dasatinib could overcome vemurafenib 

resistance in cells with EPHA2 receptor overexpression. Also, blocking CD13/ANPEP 

diminished or abolished phosphorylation of EPHA2 in the vemurafenib resistant A375VR4 

and SKMEL24 cells indicative of its role in oncogenic signaling activation of EPHA2.                     

Paper IV:  

Results: Combination of BRAFi PLX4720 with the conventional chemotherapeutic 

agent TMZ gave additive effects in cell proliferation inhibition. For this analysis A375 

melanoma cell line with the V600E BRAF mutation and its BRAF inhibitor (BRAFi: 

PLX4720) resistant subline A375PR1 was used. Concomitant or alternating drug 

scheduling showed different cell growth inhibitory or viability effects. The additive effect of 

the combination was achieved only when TMZ treatment was added prior to BRAFi but not 

when BRAFi was added prior to or simultaneously with TMZ. We investigated the cell cycle 
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effect of BRAFi and TMZ: Despite an increased proportion of G1 arrest in cells after BRAFi 

treatment, neither of the treatment schedules ere significantly different in their effects on cell 

cycle distribution, or specifically G1 arrest. This indicates that when treatment schedules 

starts with either BRAFi or TMZ, cell cycle distribution did not differ significantly. Then, 

we found that the DNA damage response marker γH2AX appears after BRAFi treatment and 

peaks at 48h post-treatment, while after TMZ, γH2AX is observed and peaks at later time 

points. To bypass the effect of DNA damage signaling effectors we depleted the MGMT 

using lomeguatrib. Upon MGMT depletion, the schedule dependency of the treatment was 

abrogated indicating that induction of MGMT by BRAFi treatment could confer resistance to 

TMZ. Moreover, we inhibited ATR by specific ATR inhibitor or disrupted MDM2-p53 

interaction by nutlin-3 which stabilized p53 (and also induced Ser15 phosphorylation in p53) 

and observed additive effects in induced cell death when each of them was combined with 

the BRAFi.   

Discussion: In  many patients resistance to vemurafenib occurs rapidly after the start of 

treatment (6-8 months after the start of treatment) [140] and combination of a targeted 

therapeutic agent with another targeted drug is significantly more efficient compared to 

monotherapy. For example, BRAFi combined with MEKi increases progression free and 

overall survival in patients. Here we speculated whether the conventional standard 

chemotherapy with TMZ would be useful to delay the occurrence or overcome the 

resistance to BRAFi. Efficiency of the combination of BRAFi (PLX4720) with TMZ 

showed a schedule dependency. When BRAF inhibitor was added prior to TMZ an 

additive effect of the combination was not observed. It has been shown that BRAF 

inhibition by vemurafenib elevates reactive oxygen species (ROS) and nitric oxide (NO) 

level in A375 melanoma cells [141]. We have also observed that in response to BRAF 

inhibition, as indicated by increased γH2AX, DNA damage response (DDR) was 

activated. Therefore, we speculated that ROS and NO induction upon BRAFi treatment 

might induce DNA damage. On the other hand, induction of DDR in the cells exposed to 

BRAFi reduces the DNA damaging effect of TMZ possibly through activating DNA 

repair proteins. To overcome the counteracting effect, we added MGMT inhibitor 

lomeguatrib to the BRAF-TMZ combination which led to abrogation of schedule 

dependency. Thus, when DNA repair protein MGMT was depleted by lomeguarib, 

concomitant treatment with BRAFi and TMZ showed additive effect on apoptosis 

induction regardless of treatment order. To confirm the involvement of MGMT in 

unresponsiveness to TMZ, the SKMEL24 melanoma cell line which lacks MGMT 

expression due to MGMT promoter hypermethylation, was treated with TMZ and 
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BRAFi. No effect of treatment order was observed in SKMEL24 cells when combining 

BRAFi with TMZ whether BRAFi or TMZ was added first. Moreover, to validate the 

importance of DDR activation in therapy response, we inhibited ATR by a specific 

inhibitor and observed additive effect in apoptosis induction when combined with 

BRAFi. Similarly, disrupting MDM2-p53 interaction through nutlin-3 treatment elevated 

apoptotic response in combination with BRAFi. The findings highlight the importance of 

considering the cell death escape mechanisms in cancer cells when designing therapy 

regimens e.g. activation of DDR in response to BRAFi monotherapy.  Furthermore, we 

suggest that combination therapies may be scheduled in a manner that allows bypassing 

or delaying the occurrence of drug resistance.  
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8. CONCLUSIONS     

Paper I:  Sequestration of the drugs by melanosomes was previously suggested as a 

mechanism of resistance to chemotherapy in CMM. Therefore, we performed IHC on pre-

treatment metastatic lymph node biopsies from CMM patients with variable response to 

chemotherapy. We confirmed a significant association between high expression of MITF and 

GPR143 and drug resistance supporting the role of melanosomal proteins in chemotherapy 

resistance. 

 

Paper II: Reliable biomarkers for therapy response in CMM are still crucially needed. 

Conventional methodologies such as immunoblotting are not suitable for identification of 

commonly altered protein expression patterns mainly due to low throughput. Advanced 

methods capable of analyzing deep proteome alterations in several samples in parallel are 

versatile for the purpose. We applied liquid chromatography coupled to mass spectrometry 

(LC/MS) based proteomics on fresh frozen pretreatment lymph node metastases from CMM 

patients. By comparing the whole proteome of biopsies from chemotherapy responders to 

non-responders, we found several protein candidates to be overexpressed in non-responder 

samples. S100A13 and CSTB were two proteins selected for further validation on larger 

sample sets. We found that a significantly higher expression of the S100A13 protein 

correlated with unresponsiveness to the alkylating chemotherapeutic agents DTIC and TMZ.     

 

Paper III: Targeted therapies with mutated BRAFi have shown favorable response in CMM 

patients harboring the mutation. However, acquired resistance is a major problem in patients 

receiving the treatment. We established BRAFi resistant sublines of the BRAFV600E mutant 

A375 melanoma cell line and performed LC/MS based proteomics to evaluate proteome 

alterations among the resistant sublines compared to the proteome of the parental A375 cells. 

We identified that overexpression of the surface receptor amino peptidase N (ANPEP/CD13) 

and the transcription factor FLI1 mediate resistance to the BRAF inhibitor vemurafenib. 

Moreover, several receptor tyrosine kinases including previously known candidates, EPHA2 

and MET, are overexpressed in our BRAF inhibitor resistant cell lines. We could overcome 

vemurafenib resistance by combining vemurafenib with either multi kinase inhibitor dasatinib 

or siRNA against FLI and through single treatment with blocking antibody against 

ANPEP/CD13 
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Paper IV: Combination treatment is an alternative therapy strategy to overcome or delay the 

occurrence of drug resistance towards BRAFi. We found a schedule dependency in the 

response to combination of BRAFi PLX4720 with TMZ. Optimal combination efficiency 

was achieved when adding TMZ before the BRAFi. By investigating the mechanisms 

underlying schedule dependency, we found that the DDR is activated by BRAFi treatment, 

leading to increases in levels or activities of DDR related proteins. MGMT is a repair protein 

that counteracts TMZ-induced DNA alkylation and we found that it is increased at the 

mRNA level by BRAF inhibitor treatment. Depletion of MGMT by lomeguatrib abolished 

the schedule dependency of the BRAFi-TMZ combination. Moreover, inhibition of ATR by a 

chemical inhibitor or p53 stabilization by nutlin-3 treatment enhanced BRAFi treatment 

efficacy. 

9. REMARKS AND FUTURE PERSPECTIVES  

Resistance to therapies in CMM might be reverted by simultaneous or concomitant 

combination of BRAFi with other inhibitors or chemotherapeutic agents. Despite frequent 

innate or acquired resistance to treatments, especially for chemotherapy, there is still a small 

subpopulation of patients that respond to the treatment. Therefore, detection of this group 

requires reliable predictive biomarkers for response to therapy, which are yet lacking in the 

field of melanoma. Unraveling mechanisms underlying resistance to therapies may also 

reveal novel drugable targets or alternative treatment strategies to overcome or delay the 

onset of drug resistance. Further investigations to uncover drug resistance mechanisms and 

relevant therapy response predictive biomarkers, is crucial for improvement of therapies and 

therapy regimens for patients with advanced CMM. For this purpose, mass spectrometry 

based proteomics is a powerful method to both study molecular pathways regulating therapy 

resistance and for predictive biomarker discovery.  

Application of the constantly improving –omic (genomics, transcriptomics, proteomics and 

metabolomics) methodologies as standard clinical procedures, may further personalize the 

treatments and significantly enhance the therapy outcomes.  
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