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ABSTRACT 

 

Active, as well as passive cigarette smoke exposure is detrimental to the human health, 

negatively affecting the cardiovascular, respiratory and immune systems. In addition, it is 

also carcinogenic. 

The present thesis focused on the effects of cigarette smoke and two of its major components 

nicotine and endotoxin (lipopolysaccharide, LPS) on airway hyperreactivity (AHR) and 

inflammation, in both the lower and upper airways. The roles of nicotine and LPS were 

analyzed in murine in vitro and in vivo models. Further, the effects of smoking on the 

expressions of activin receptor-like kinases (ALK) were analyzed in tonsils from heavy 

smokers and matching non-smokers. 

The first four papers of this thesis illustrated the highly complex interactions induced by 

nicotine and LPS involving direct airway smooth muscle contractions, indirect nerve-

mediated airway contractions and epithelium-dependent relaxations. Short-term exposure (1 

day) to nicotine in an in vitro organ culture model resulted in decreased epithelium-dependent 

airway relaxations via cyclooxygenase (COX) and microsomal prostaglandin E synthase 1 

(mPGES-1) pathways. Long-term exposure (4 days) in the same model caused increased 

smooth-muscle-mediated airway contractions via transcriptional upregulation of kinin-

receptors, involving mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinases 

(JNK) and phosphodiesterase (PDE) 4 pathways. In parallel, JNK-mediated transcriptional 

upregulation of toll-like receptors (TLR) was also seen. This resulted in enhanced contractile 

responses to the prototypical TLR4 agonist LPS, but at the same time decreased LPS-

mediated AHR to electric field stimulation (EFS). In analogy with the latter, in vivo 

experiments using subcutaneously implanted pumps that delivered nicotine during 24 

consecutive days, followed by 3 days of intranasally instilled LPS, demonstrated that the 

AHR induced by LPS was markedly decreased in the nicotine-treated mice. This highlighted 

the role of neuronal mechanisms in the development of lower airway AHR. 

The fifth paper used human tonsils to investigate the effect of chronic cigarette smoke 

exposure on the expression of ALK. A novel cotinine assay was developed to quantify the 

level of cigarette smoke exposure in tonsil homogenates.  Results showed a positive 

correlation between increased levels of smoke exposure and increased tonsillar mRNA 

expressions of IL-8, ALK1 and 2. 

In conclusion, both nicotine and LPS contribute to the development of AHR. Nicotine 

modulates the response to LPS in murine models both in vitro and in vivo. Altered ALK 

expressions in smokers may contribute to the poor prognosis that characterizes tonsillar 

cancer among smokers. These results may contribute to the development of specific and 

personalized treatment strategies for patients that are actively or passively exposed to nicotine 

or cigarette smoke. 
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1 BACKGROUND 
 

1.1 AIRWAY HYPERREACTIVITY 
 

Airway hyperreactivity (AHR) is a major and defining feature of asthma and to a lesser 

extent chronic obstructive lung diseases (COPD). It is defined as an exaggerated 

bronchoconstrictor response to direct pharmacological stimuli, such as histamine and 

methacholine, or indirect stimuli, such as exercise, cold air and hyperventilation (Cockcroft 

et al., 2006).   

The hyperactive phenotype of airway smooth muscle (ASM) is believed to be the primary 

cause of AHR. Bronchodilators, such as -agonists, have therefore always played a central 

role in the treatment of AHR, both as rescue and maintenance therapy (Cazzola et al., 2012). 

However, the use of long-acting -agonists alone has been controversial and it is 

recommended that long-acting -agonists should not be taken without simultaneous treatment 

with inhaled corticosteroids (Beasley et al., 2010).  

The relationship between airway inflammation and AHR is complex. AHR is believed to be 

a consequence of airway inflammation. Numerous studies have shown a positive 

correlation between inflammatory cell counts in bronchoalveolar lavage (BAL) and AHR 

(Cockcroft et al., 2006). However, a number of other studies in both patients (Crimi et al., 

1998; Singapuri et al., 2010) and animal models (Starkhammar et al., 2012; Swedin et al., 

2009) have also suggested that inflammation and development of AHR can be two 

dissociated events.  

ASM function can be regulated by the airway epithelium. The airway epithelium not only 

acts as a simple mechanical barrier, but also expresses a range of pattern-recognition 

receptors (PRR) and produces a number of important inflammatory mediators (Lambrecht et 

al., 2012), as well as bronchoactive substances including acetylcholine (Proskocil et al., 

2004), prostaglandin E2 (PGE2) (Balzary et al., 2006) and nitric oxide (NO) (Gourgoulianis et 

al., 1998). A recent study has shown that bradykinin can also be an important mediator in 

human ASM and epithelium interaction (Deacon et al., 2015). 

Neuronal regulation of AHR has long been recognized. Parasympathetic fibers innervating 

the ASM, vascular smooth muscle and glands regulate smooth muscle tone and mucus 

secretion. Hypersensitive nerves can therefore lead to AHR with symptoms such as cough 

and dyspnea (Undem et al., 2009). In the 1950s, surgical denervation and vagotomy were 

performed to treat severe asthma (Levine et al., 1950) and COPD (Abbott et al., 1953). This 

procedure indeed gave temporary relief of symptoms, but has been abandoned due to high 

complication risks and the introduction of more effective pharmacological treatment options 

targeting inflammation or smooth muscle. Interest in neuronal mechanisms has been 

revitalized during the recent years due the increasing recognition of the roll of neuronal 

transient receptor potential channels in airway diseases (Grace et al., 2014). 
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1.1.1 Cigarette smoking 
 

Tobacco smoke is a composite of irritant molecules, including nicotine, acetaldehyde, 

formaldehyde, nitrogen oxides and heavy metals. It is well-known that both active and 

passive cigarette smoke exposure cause increased AHR (Janson et al., 2001; Menon et al., 

1992). In addition, smoke-addicted asthmatics constitute a subgroup with a poor response to 

local corticosteroid treatment (Comhair et al., 2011; Stapleton et al., 2011). Maternal 

cigarette smoking (Strachan et al., 1998) and passive smoke exposure during childhood 

(Tinuoye et al., 2013) both increase the risk for wheezing in early life and the development of 

childhood asthma. 

Similar observations have been made in laboratory animals. Mice repeatedly exposed to side-

stream cigarette smoke exhibit increased airway contractile responses to carbachol, 

endothelin-1 (ET-1) and potassium (Lei et al., 2008), while chronically exposed guinea pigs 

exhibit increased airway reactivity to bradykinin and capsaicin, without altering their 

responses to methacholine or histamine (Bergren, 2001). This suggests that bradykinin plays 

an important role in tobacco smoke-induced AHR.  

Nicotine is the main addictive compound in cigarette smoke and also freely available over-

the-counter as a smoke cessation aid. Once inhaled, nicotine is quickly taken up by the 

bloodstream and distributed throughout the body, to act primarily on nicotinic acetylcholine 

receptors, leading to the classical symptoms of heart palpitation and increased blood pressure.  

Acute nicotine exposure causes a transient mild airway relaxation (Streck et al., 2010), 

whereas the effects of long-term exposure on the respiratory system are much more complex. 

Many of the detrimental health effects of cigarette-smoke are believed to be due to the ability 

of nicotine to affect the immune system, leading to both inflammatory (Vassallo et al., 2008) 

and anti-inflammatory effects (Wang et al., 2003). The effect of nicotine on AHR is however 

less studied.  

 

1.1.2 Toll-like receptors 
 

Toll-like receptors (TLR) are the most well-known family of PRR. They are essential 

components of the innate immune system, and are found on a variety of airway cells 

including epithelial, smooth muscle and infiltrating inflammatory cells. Thirteen TLRs have 

been identified in mice and four sets of them can be found on the cell surface. They recognize 

conserved microbial patterns such as lipopolysaccharide (LPS) of Gram-negative bacteria 

(TLR4), lipoteichoic acids of Gram-positive bacteria and bacterial lipoproteins (TLR1/TLR2 

and TLR2/TLR6), flagellin (TLR5) and Toxoplasma gondii profilin-like proteins (TLR11) 

(Akira et al., 2006). Our group has previously shown that TLR is widely expressed and 

functional on human airway smooth muscle (Mansson Kvarnhammar et al., 2013). 
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Dysregulation in airway TLR expression can lead to both acute and chronic inflammatory 

lung diseases including asthma and COPD (Lafferty et al., 2010). The “hygiene hypothesis” 

suggests that microbial infections, especially during childhood, can protect us from 

developing allergic diseases such as asthma (Tantisira et al., 2001). However, there are also 

studies suggesting that certain infections, such as respiratory syncytial viruses and 

rhinoviruses in childhood increase the risk of asthma later in life (Feldman et al., 2015). The 

role of TLRs in our innate immune defense against microbial infections has led to the 

speculation that TLR signaling pathways might be involved in the regulation of the extremely 

delicate balance in Th1/Th2 responses, and thus depending on the activation pattern, either 

prevents or promotes asthmatic diseases (Schroder et al., 2007).  

LPS is a prototypical TLR agonist primarily activating TLR4. It is an important component 

of the Gram-negative bacterial cell wall and often utilized to model the effect of bacterial 

infections under experimental conditions. LPS has long been known to be an active 

component of cigarette smoke (Hasday et al., 1999). In fact, cigarette smoke is one of the 

major sources of LPS in indoor environments (Larsson et al., 2004). Exposure to LPS in both 

occupational environments (Larsson et al., 1994; Vogelzang et al., 1998) and at home 

(Michel et al., 1996) has been shown to negatively affect respiratory health and lung function. 

Our group has shown that activation of TLR4 by LPS can cause AHR both in isolated airway 

segments (Bachar et al., 2004) and in an in vivo mouse model (Starkhammar et al., 2012). 

 

1.1.3 Bradykinin and related kinins 
 

Bradykinin and related kinins are peptides that act as pro-inflammatory mediators. They are 

produced from both blood (plasma kallikrein-kinin system) and local tissue (tissue kallikrein-

kinin system) in response to inflammatory stimuli. Bradykinin is formed from the kininogen 

precursor after proteolytic cleavage by the enzyme kallikrein. It can be further converted by 

carboxypeptidase N (kinase I) to des-Arg
9
-bradykinin. Both bradykinin and des-Arg

9
-

bradykinin are degraded by kininase II, an enzyme identical to angiotensin-converting 

enzyme and neutral endopeptidase (Moreau et al., 2005; Zhang et al., 2013). It has been 

proposed that accumulation of bradykinin might be the mechanism behind angiotensin 

converting enzyme inhibitor induced cough and angioedema (Fox et al., 1996; Mahmoudpour 

et al., 2013). 

Two classes of kinin receptor ligands are recognized by the corresponding receptor subtypes: 

B1 and B2 receptors, both belonging to the family of G-protein coupled receptors (GPCR). 

Kinin B1 receptors are expressed at low levels in healthy tissue but induced following 

inflammatory stimuli, whereas the kinin B2 receptors are constitutively expressed. The 

actions of bradykinin are mainly mediated by the B2 receptors, whereas the actions of des-

Arg
9
-bradykinin are mainly mediated by the B1 receptors (Leeb-Lundberg et al., 2005; Zhang 

et al., 2004). Icatibant, the selective antagonist for the kinin B2 receptor has been approved 



 

 13 

for the treatment of hereditary angioedema within the European Union since 2008 (Wu et al., 

2015). 

Increased levels of bradykinin are found in BAL of asthmatics following allergen challenge 

(Christiansen et al., 1992). Directly inhaled bradykinin causes a potent bronchoconstriction in 

asthmatic patients, but even in high concentrations has no effect in healthy individuals 

(Barnes, 1992). Thus, bradykinin has occasionally been suggested as a marker, more sensitive 

than methacholine, for demonstrating AHR (Berman et al., 1995; Suguikawa et al., 2009).   

In murine models, the kinin receptors mediate both bronchoconstriction and epithelium-

dependent airway relaxations, as well as mucus secretion, edema and cough. Effects are 

dependent on the localization of the receptor and the pre-contractile state. Relaxations have 

been shown to be caused by the release of the cyclooxygenase (COX) product and 

bronchodilator PGE2 (Li et al., 1998). Kinin B1 receptors have also been suggested to be 

essential for LPS-induced AHR and acute lung injury in mice (Campanholle et al., 2010). In 

guinea pig, chronic exposure to tobacco smoke increases the airway reactivity to bradykinin 

without altering the response to methacholine or histamine (Bergren, 2001), suggesting a 

special role for bradykinin in smoke-induced AHR.  

 

1.1.4 Mitogen-activated protein kinases 
 

The mitogen-activated protein kinases (MAPK) signaling cascade is composed of a family of 

protein kinases whose functions and regulations have been conserved during evolution. There 

are at least three main groups of MAPK in mammalian cells including extracellular signal-

regulated protein kinase 1/2 (ERK1/2), p38 and c-Jun N-terminal kinase (JNK). They are 

activated by a three-tiered sequential phosphorylation starting from MAPK kinase kinase, 

MAPK kinase to MAPK, and are inactivated by MAPK phosphatases. 

Once activated, MAPKs can induce translocation and activation of their downstream 

transcriptional factors to regulate gene expression (Duan et al., 2006). In airways, MAPK 

activation can lead to ASM proliferation (Hirst et al., 2000), cytokine production (Hayashi et 

al., 2000) and mucus hypersecretion (Chen et al., 2001; Zhang et al., 2013). 

Studies in animal models have revealed that the activities of ERK1/2 (Kumar et al., 2003), 

p38 (Taube et al., 2004) and JNK (Nath et al., 2005) in the lungs are enhanced in allergic 

airway inflammation and AHR. Endobronchial biopsies of asthmatic patients show 

significant phosphorylation of ERK1/2 and p38 compared to controls. The degree of 

phosphorylation also correlates positively with the severity of the disease (Liu et al., 2008). 

Our group has shown that cytokines increase AHR to bradykinin in vitro via activation of 

JNK and downstream transcription factor nuclear factor-kappaB (NF-κB) that leads to 

increased expression of kinin receptors (Zhang et al., 2005; Zhang et al., 2004). SP600125, a 

JNK MAPK inhibitor, reduces ozone- (Williams et al., 2007) and allergen- (Nath et al., 
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2005) induced airway inflammation and AHR. MAPK inhibitors have been under clinical 

development for many years for the treatment of corticosteroid-resistant asthma and COPD in 

both oral and inhaled form, showing promising results (Singh et al., 2015). 

 

1.2 OROPHARYNGEAL CANCER 
 

Oral and pharyngeal cancer, grouped together, is the sixth most common cancer in the world. 

About 90% of all oropharyngeal cancers, including tonsillar cancers are squamous cell 

carcinomas. There is wide geographical variation in the incidence of oropharyngeal cancers 

in the world. While the majority of oropharyngeal cancer incidences in Western countries are 

attributed to the rise of local infections with human papillomavirus (HPV), specifically 

HPV16. It should not be forgotten that the majority of the world’s oropharyngeal cancer cases 

are found in developing countries, where smoking and alcohol rates are still high 

(Warnakulasuriya, 2009). Patients with HPV-positive tonsillar cancer, in particular those who 

are also never-smokers, are reported to have significantly better clinical outcome than 

patients with HPV-negative tonsillar cancer. The latter are almost always heavy smokers 

(Ang et al., 2010; Dalianis, 2014; Hong et al., 2013; Maxwell et al., 2010). 

 

1.2.1 Cigarette smoking 
 

Smoking and alcohol are considered traditional risk factor for tonsillar squamous cell 

carcinoma. Smoking is also found to be an important negative prognostic factor for the 

overall survival (Dalianis, 2014; Hong et al., 2013) and disease recurrence (Maxwell et al., 

2010), regardless of HPV status. Patients who smoke during radiotherapy also have a lower 

rate of response (Browman et al., 1993). This suggests that HPV-positive and smoke-induced 

tonsillar squamous cell carcinomas have distinctly different pathogenesis. Hence, tobacco 

smoke exposure is damaging to oral health, stimulating tonsillar squamous cell carcinoma 

development regardless of the pathogenesis. The mechanisms behind this are not fully 

known. 

 

1.2.2 Activin receptor-like kinases 
 

Activin-receptor like kinases (ALK) are receptors for the transforming growth factor-beta 

(TGF-) superfamily. They are involved in several cancer-related cellular processes including 

proliferation, differentiation, adhesion, migration and apoptosis (Graham et al., 2006). 

Among the seven different ALKs found in humans, ALK1 and 5 are possibly the most 

studied in the context of cancer. ALK1 and ALK5 (also termed TGF-βI receptor) have 

antagonizing effects in endothelial cells. While ALK1 promotes growth and proliferation and 
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thereby carcinogenesis, ALK5 inhibits the process (Jonker, 2014). ALK5 conditional 

knockout mice are found to develop spontaneous squamous cell carcinoma (Honjo et al., 

2007). ALK5 expression was found to be decreased in human head and neck squamous cell 

carcinoma tumor cells (Eisma et al., 1996). At the same time, high levels of ALK1 in tumor 

tissue from patients with head and neck squamous cell carcinoma is correlated with advanced 

T classification (greater tumor size), positive N classification (metastasis to nearby lymph 

nodes), advanced TNM stage (faster growing and spreading cancer), and poor prognosis 

(Chien et al., 2013). Inhibitors of ALK1 are currently under clinical trials for the treatment of 

solid tumors (Cunha et al., 2011; Jonker, 2014) . Blockage of ALK1 signaling using an ALK 

ligand trap ALK1-Fc in combination with cisplatin was recently found to inhibit tumor 

growth in murine head and neck cancer models more efficiently than chemotherapy alone 

(Hawinkels et al., 2015). 
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2 AIMS OF THE THESIS 
 

The overall aim of this thesis is to increase the understanding of the mechanisms behind 

cigarette-smoke induced airway hyperreactivity and inflammation.  

Nicotine and LPS are two of the most important components of cigarette smoke. 

Understanding their functions and interactions in in vitro and in vivo murine models, as well 

as in human samples can reveal mechanisms that will allow the development of new 

therapeutic options for cigarette-smoke induced airway diseases. 

 

The specific aims of the thesis are to: 

 

1. Investigate the effects of nicotine exposure on GPCR agonist mediated airway 

contractions in isolated murine tracheal segments and explore the underlying 

mechanisms; 

 

2. Investigate the effects of nicotine exposure on kinin receptor agonist induced airway 

relaxations in isolated murine tracheal segments and explore the underlying 

mechanisms; 

 

3. Investigate the effects of long-term nicotine exposure on cell-surface TLR expression 

in isolated murine tracheal segments and its subsequent effect on LPS-induced AHR; 

 

4. Investigate the effects of long-term nicotine exposure in mouse in vivo on LPS-

induced AHR and explore the underlying mechanisms, with emphasis on neuronal 

mechanisms; 

 

5. Investigate the effect of cigarette smoke exposure on tonsil ALK expression using a 

novel cotinine assay to quantify the level of cigarette smoke exposure in tonsil tissue.  

 

 

 

 



 

 17 

3 MATERIAL AND METHODS 
 

3.1 IN VITRO MURINE MODEL 
 

3.1.1 Tissue preparation and organ culture 
 

Organ culture was performed according to previous protocols (Zhang et al., 2004). Tracheae 

from 10-week-old male BALB/c mice were dissected and cut into 4 segments (or 2 segments 

for EFS experiments) and placed individually in wells of a 48-well plate (or 24-well plate for 

EFS experiments; Ultra-low attachment, Sigma, St Louis, MO) with 1 ml serum-free 

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with penicillin (100 U/ml) 

and streptomycin (100 µg/ml).  

The tracheal rings were incubated for 1, 2 or 4 days at 37°C in humidified 5% CO2 in air in 

the presence of vehicle or nicotine, with/without different concentrations of LPS (0.01, 0.1 

and 1 g/ml), with/without specific MAPK inhibitors (SP600125, U0126 or SB203580). 

Tracheal rings were moved into new wells containing fresh medium with supplements of 

nicotine and/or LPS and/or inhibitors every day.  

The experimental protocol was approved by the Stockholm north animal ethics review board 

(Dnr N153/11) and Malmö-Lund’s animal ethics review board (Dnr M15-09). 

 

3.1.2 Epithelial removal 
 

For the epithelium removal experiments, the epithelium from the whole trachea were 

mechanically scraped away gently by moving a coarse metallic rod in and out of the trachea, 

prior to cutting into segments and organ culture.  

 

3.1.3 In vitro pharmacology 
 

Contractile or relaxant responses of the tracheal segments were measured in temperature-

controlled (37C) myographs (Organ Bath Model 700MO, J.P. Trading, Aarhus, Denmark), 

containing Krebs–Henseleit buffer solution and continuously equilibrated with 5% CO2 and 

95% O2. The tracheal segments were mounted on two L-shaped metal prongs, and gradually 

stretched over the course of one hour to reach a resting tension of 0.8 mN (or 1.6 mN for EFS 

experiments). One prong was connected to a force–displacement transducer for continuous 

recording of isometric tension by the Chart software (ADInstruments Ltd, Hastings, UK). 

The other prong was connected to a displacement device, allowing adjustment of the distance 

between the two parallel prongs. 
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In vitro pharmacology was performed according to previous protocols (Adner et al., 2002; 

Bachar et al., 2005b). The viability of the segments was first tested using 60 mM KCl. KCl 

was later washed out with Kreb-Henseleit buffer solution three times until the segments 

reached basal tension. For contraction studies, each segment was incubated with 3 μM of the 

non-selective COX inhibitor indomethacin for 30 min before administration of agonists to 

inhibit epithelium-dependent relaxations. GPCR agonists such as ET-1, 5-hydroxytryptamine 

(5-HT) and bradykinin were then administered cumulatively to produce their concentration-

effect curves.  

To test relaxant properties, segments were pre-constricted with 1 μM carbachol, and after 

reaching stable plateaus, the concentration-effect curves for bradykinin-, des-Arg
9
-

bradykinin-, isoprenaline- and PGE2-induced relaxations were produced in the absence of 

indomethacin. To further dissect the mechanisms behind the relaxation responses, the 

selective COX-1 inhibitor piroxicam (5 nM), the selective COX-2 inhibitor DuP-697 (5 nM), 

the non-selective COX inhibitor indomethacin (2 µM)  or the selective EP2 inhibitor 

PF04418948 were added 30 min prior to carbachol preconstriction in attempts to inhibit the 

relaxation responses. 

 

3.1.4 Electric field stimulation 
 

Electric field stimulation (EFS) was used to access nerve-induced contractions, and carried 

out according to previous protocols (Bachar et al., 2005a). Tracheal segments were 

stimulated with EFS by two electrodes placed at opposite sides of the tracheal segments 

(Current Stimulator Model CS200, J.P. Trading, Aarhus, Denmark). Each segment was first 

contracted with 60 mM KCl to test its viability. After washing out KCl, and returning to 

resting state, each segment was given five training impulses of 4 Hz, 55 mA (≈10 V). Later, 

segments were given a 2log EFS series of 0.2–12.8 Hz. Each impulse was 0.8 ms long with 

duration of 1 min, followed by 1.5 min rest. Segments were washed and then incubated for 30 

min with 3 μM of the non-selective COX inhibitor indomethacin before EFS, followed by the 

same procedure after incubation with 3 μM indomethacin and 10 µg/ml LPS for 1 hr.  The 

experiment ended with a control contraction to 0.1 μM carbachol. 

 

3.2 IN VIVO MURINE MODEL 
 

3.2.1 Treatment protocol 
 

10-week old female BALB/c mice were implanted with Alzet® osmotic pumps (model 2004, 

Durect Corporation, USA) containing either sterile phosphate-buffered saline (PBS) or PBS-

buffered nicotine tartate salt solution (24 mg/kg/day, Sigma-Aldrich, USA). The mice were 
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then housed for 24 days in groups of four in temperature- and humidity-controlled rooms 

with 12:12 hour light-dark cycle. Standard food and water were provided ad libitum.  At day 

25, the mice started to receive daily intranasal instillations of LPS for 3 consecutive days. At 

day 28, lung mechanics were measured with a flexiVent
TM

 small animal ventilator. 

Bronchoalveolar lavage fluid was obtained. The right lung lobes were fixated in formalin for 

histological analysis and the left lung lobes were snap-frozen in liquid nitrogen for protein 

analysis (Fig 1). 

 

 

Fig 1. In vivo treatment protocol. 

 

Animal procedures were reviewed and approved by the Stockholm north animal ethics 

review board (Dnr N153/11 and N258/13). 

 

3.2.2 Subcutaneous osmotic pump implantation 
 

Mice were anesthetized by continuous inhalation of isoflurane and a small incision was made 

behind the neck using aseptical techniques. A pre-conditioned Alzet
®
 osmotic pump (model 

2004, Durect Corporation, USA) with an infusion rate of 0.25 μl/h , containing either sterile 

phosphate-buffered saline (PBS) or PBS-buffered nicotine tartate salt solution (24 mg/kg/day, 

Sigma-Aldrich, USA) was implanted in a subcutaneous pouch. The incision was closed using 

2-3 sterile Reflex clips (Alzet
®
, USA). Mice were allowed to recover for 30 min before 

returning to home cage. Clips were removed 7-10 days post-operation. 

 

3.2.3 Intranasal LPS instillations 
 

Mice were anesthetized with isoflurane and 20 l of LPS from Escherichia coli 0127:B8 (0.1 

mg/ml, Sigma-Aldrich, USA) or PBS was placed as a big droplet in their nostrils while the 

mice were held in an upright posture. The droplet was sniffed in by the mice reaching their 

lungs. 
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3.2.4 Airway mechanics 
 

Mice were anesthetized with pentobartial sodium (90 mg/kg body weight) and then placed on 

a heating pad (37C). A tracheotomy was performed and a 18-gauge cannula was inserted. 

The mouse was then connected to a flexiVent
TM

 small animal ventilator (Scireq, Montreal, 

Canada). After ventilation was started, bilateral thoracotomy was performed, in order to 

equalize pleural pressure to atmospheric and to exclude chest wall contribution to the 

mechanics. Animals were ventilated at a tidal volume of 12 ml/kg
 
body weight and the 

positive end-expiratory pressure (PEEP) was kept at 3 cm H2O. An i.v. catheter was inserted 

into the tail vein. Acetyl-ß-methylcholine (Mch, Sigma-Aldrich, St Louis, MO, USA) was 

injected through the tail vein in increasing doses (0.01, 0.03, 0.1, 0.3, 1 and 3 mg/kg
 
body 

weight) to induce airway contractions. Nerve blockage was achieved by pretreatment with 

tetrodotoxin (6 g/kg, Tocris Bioscience, United Kingdom) prior to Mch challenge. A 

broadband forced oscillation manoeuvre was carried out and measurements fitted with a 

constant phase model to compute Newtonian resistance (Rn), tissue damping (G) and tissue 

elastance (H) (Bates et al., 2011). 

 

3.2.5 Bronchoalveolar lavage 
 

BAL was collected after airway mechanical measurements by carefully filling the lungs with 

0.7 ml of ice-cold PBS which was withdrawn 3 times with a syringe. The fluid was 

centrifuged at 4°C, 1200 rpm, for 10 minutes and the supernatant was stored at −80°C until 

use. 

Total cell number was counted on Fast Read 102


 plastic counting slides immediately after 

mixing 10 µl cell suspensions with 90 µl Gentiana blue. Differential cell counts were 

performed on May-Grünwald/Giemsa stained cytospin preparations, counting a minimum of 

300 cells, in a blinded manner. 

MMP-9 and TIMP-1 in BAL were measured with ELISA kits (mouse total MMP-9 

Quantikine ELISA kit and mouse TIMP-1 kit Quantikine Immunoassay, R&D systems, 

USA), according to the manufacturers’ instructions. 

 

3.2.6 Histology 
 

Right lung lobes were fixated in formaldehyde, dehydrated, embedded in paraffin and 

sectioned with a microtome. Sections were immersed in UltraClear
TM

 followed by decreasing 

concentrations of ethanol for deparaffinzation and then immersed in deionized water for 

rehydration. The slides were then stained with hematoxylin and eosin (H&E) for morphology 

and semi-quantification of inflammation, or picrosirius red for visualization of collagen.  
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Peribronchial, perivascular and parenchymal inflammatory cell infiltration were semi-

quantitatively graded in a blinded manner as 0 to 3 (0 = no cell infiltration, 3 = abundant) under 

a light microscope (Olympus BX50 microscope with Nikon Digital Sight DS-5M camera) 

under 400x magnification. 

 

3.2.7 Lung homogenate 
 

Left lung lobes were snap-frozen in liquid nitrogen and stored in -80C after lung 

physiological measurements and BAL collection. Upon use, the samples were defrosted and 

washed free of visible blood using ice-cold PBS. Lung homogenate was obtained by adding 

10 µl of PBS to every 1 mg lung tissue and homogenized at 5000 rpm in two 20s cycles 

(Precellys


24, Bertin technologies, USA) with 2.8mm ceramic beads. 

Every 20 µl of lung homogenate were then digested with 80 µl of 0.5M acetic acid and 

pepsin mixture and the amounts of acid- and pepsin soluble collagen were measured with 

Sircol
TM

 collagen assay (Biocolor, UK) according to the manufacturer’s instructions. 

 

3.3 HUMAN TONSILS 
 

Twenty seven pairs of tonsils were collected from patients between 15 and 40 years old 

undergoing bilateral tonsillectomy at the Ear- nose- and throat clinic at Malmö University 

Hospital, Sweden for chronic tonsillitis. Apart from the tonsillar symptoms, all subjects were 

healthy and did not receive any medications. The allergy statuses of the patients were 

determined by blood Phadiatop


 testing for allergen-specific IgE.  

Directly after surgery, tonsils were cut into small pieces. Some pieces (20-40 mg) were 

placed in RNAlater (QIAGEN, Germany) for 24 hrs at room temperature and then kept at 

−80°C until use, while others (50-150 mg) were snap-frozen in liquid nitrogen and then kept 

at −80°C until use. 

The study was approved by the Lund University research ethics committee (Dnr LU 293-03). 

Informed consent was obtained from all participants. 

 

3.3.1 Tonsil cotinine assay 
 

Small pieces of tonsils that were snap-frozen in liquid nitrogen and stored in -80C were 

defrosted in room temperature. Samples were weighed. For every mg of tissue, 3 µl of sterile 

PBS was added. The tissue was then homogenized together with 1.4 mm ceramic beads in a 

Precelleys


24 homogenizer (Bertin Technologies, France) at 5000 rpm for 20 sec x 2. The 
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homogenate was subsequently centrifuged and the supernatant was used for cotinine 

measurements using a Cotinine ELISA kit (Abnova, Taiwan) following the manufacturer’s 

instructions. 

 

3.4 REAL-TIME PCR 
 

3.4.1 RNA extraction 
 

RNA was extracted using RNeasy mini kit (QIAGEN, Germany) according to the 

manufacturer’s instructions. Pieces from tonsils or tracheae were stored in RNAlater 

(QIAGEN, Germany) at -20C or -80C, defrosted, squeezed free of excessive RNAlater, 

weighed and homogenized in a Precelleys


24 homogenizer. RNA was extracted from the 

homogenate using a spin-column based technique (RNeasy Mini Kit, QIAGEN, Germany) 

according to manufacturer’s protocol. RNA quality was accessed using a Nanodrop
®
 ND-

3300 spectrophotometer (Thermo Scientific, USA). A260/A280 ratio and A260/A230 ratio 

over 1.8 were accepted as “pure” RNA. 

 

3.4.2 Reverse transcription 
 

Reverse transcription of RNA (100 ng/µl) into cDNA was carried out using Omniscript™ 

reverse transcriptase kit (QIAGEN, Germany) with oligo(dT)16 primers (DNA Technology 

A/S, Denmark) in a 20 μl reaction volume with a Mastercycler personal PCR machine 

(Eppendorf AG, Germany) at 37 °C for 1 hr according to the manufacturer’s protocol. 

 

3.4.3 Real-time PCR 
 

Both TaqMan
®
 Gene Expression Mastermix (QIAGEN, Germany) and QuantiTect

TM
 SYBR

®
 

Green PCR kit (QIAGEN, Germany) were used for real-time PCR in the present studies.  

Using TaqMan
®
 Gene Expression Mastermix and MicroAmp

®
 fast optical 96-well reaction 

plates (Applied Biosystems, USA) real-time PCR was performed in 20-μl reaction volumes 

according to the manufacturer’s instructions. Each sample was analyzed in duplicate. 

Commercially available Taqman
®
 probes were used (Applied Biosystems, USA). 40 PCR 

thermal cycles were ran in the Applied Biosystems 7500 Real-Time PCR System. β-actin, 

Hprt1 and GAPDH were used as housekeeping genes. 

Using QuantiTect
TM

 SYBR
®
 Green PCR kit (QIAGEN, Germany), real-time PCR was 

performed in the Smart Cycler® II system (Cepheid, Sunnyvale, CA, USA). A reaction 
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volume of 25 l was used and carried out with heating 95°C for 15 min followed by 

touchdown PCR i.e. denature at 94°C for 30 sec and annealing at 66 °C for 1 min for the first 

PCR cycle, thereafter, a 2°C decrease for the annealing temperature in every cycle up to 56°C. 

Finally, 40 thermal cycles with 94°C for 30 sec and 55°C for 1 min were performed. The 

specificity of the PCR products was checked by using the dissociation curves. Primers were 

designed using Prime Express 2.0 software (Applied Biosystem, Forster city, CA, USA) and 

synthesized by DNA Technology A/S (Aarhus, Denmark). GAPDH was used as the 

housekeeping gene. The primer sequences are as below (Table 1): 

 

Table 1: Primer sequences for real-time PCR 

Namn GenBank No Primer sequences (5’-3’) 

mTLR1 NM_030682.1 Fwd: 5’-CAA GCA TTT GGA CCT CTC CTT TA-3’ 

Rev: 5’-GTA CCC GAG AAC CGC TCA AC-3’ 

mTLR2 NM_011905.2 Fwd: 5’-TCA CCA CTG CCC GTA GAT GA-3’ 

Rev: 5’-CAA GAT GTA ACG CAA CAG CTT CA-3’ 

mTLR4 NM_021297.2 Fwd: 5’-GAA CCC TCT ATC ATG GAA GGA CTA TG-3’ 

Rev: 5’-TTC GCC AAG CAA TGG AAC TTA-3’ 

mTLR5 NM_016928.2 Fwd: 5’-CTG GGG ACC CAG TAT GCT AA-3’ 

Rev: 5’-ACA GCC GAA GTT CCA AGA GA-3 

mTLR6 NM_011604.2 Fwd: 5’-ACC TGG AAG TGC TCG GTT AAA C-3’ 

Rev: 5’-TTC CCT GTC GAT TCT CTC AGT TAT C-3’ 

mTLR11 NM_205819.1 Fwd: 5’-TCC TTC CTC TGA TTA GCT GTC CTA A-3’ 

Rev: 5’-TCC ACA TAA TTT CCA CCA ACA AGT-3’ 

mGAPDH 

 

XM_001473623.1 Fwd: 5’-CAT GGC CTT CCG TGT TCC TA-3’ 

Rev: 5’-TGC TTC ACC ACC TTC TTG ATG-3’ 

mCOX-2 NM_011198 Fwd: 5’-CTC CCT GAA GCC GTA CAC AT-3’ 

Rev: 5’-ATG GTG CTC CAA GCT CTA CC-3’ 

mTNF- NM_013693 Fwd: 5’-GAC TCA AAT GGG CTT TCC GA-3’ 

Rev: 5’-TCC AGC CTC ATT CTG AGA CAG AG-3’ 
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mB1R NM_007539 Fwd: 5'-CCA TAG CAG AAA TCT ACC TGG CTA AC-3'; 

Rev: 5'-GCC AGT TGA AAC GGT TCC-3' 

mB2R NM_009747 Fwd: 5'-ATG TTC AAC GTC ACC ACA CAA GTC-3';  

Rev: 5'-TGG ATG GCA TTG AGC CAA C-3' 

 

The relative amounts of mRNA were determined by subtracting the threshold cycle (CT) 

values for these genes with the CT value for the most stable housekeeping gene to obtain the 

ΔCT value and then expressing amount as 2
−ΔCT

 relative to housekeeping gene.  

 

3.5 IMMUNOHISTOCHEMISTRY 
 

3.5.1 Cryosection 
 

After organ culture, the tracheal rings were immersed in a fixative solution consisting of 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) for 3 hrs at 4°C. The specimens were 

dehydrated in 20% sucrose with 0.1 M phosphate buffer (pH 7.4) for 24 hrs at 4°C, and then 

frozen in Tissue-Tek


 O.C.T. (Sakura Finetek Europe BV, Netherlands) and stored at -80°C. 

Ten μm-thick sections were cut using a cryostat. These were mounted on SuperFrost
TM

 Plus 

slides (Menzel GMBH & COKG, Germany) and frozen in -20C until staining. 

Immunohistochemistry was performed according to standard protocols, i.e. the sections were 

incubated with the primary antibody overnight at 4°C and the secondary antibody for 1 hr at 

room temperature in the dark. In the control experiments, either the primary antibody or the 

secondary antibody was omitted. 

 

3.5.2 Paraffin-embedded tissue 
 

Tracheal segments or lung tissue were immersed in a fixative solution consisting of 

phosphate-buffered formaldehyde overnight at 4°C. The tissues were dehydrated in series of 

ethanol from 50% to 99.5%, followed by UltraClear
TM

 and embedded in paraffin blocks. 

Sections were cut into 4 μm-thick slices using a microtome and mounted on SuperFrost
TM

 

Plus slides (Menzel GMBH & COKG, Germany). 

Sections were then deparaffinized, rehydrated and underwent target retrieval in 98C citrate 

buffer for 25 min prior to immunohistochemical staining.  The sections were permeabilized 

with 1% Triton-X100, blocked with 10% donkey serum in 1% bovine serum albumin (BSA) 



 

 25 

and then incubated with the primary antibody overnight in 4C in darkness. The sections 

were then incubated with the secondary antibody (raised in donkey) for 1 hr in room 

temperature in darkness. Appropriate IgG isotype controls were used instead of the primary 

antibody as control for non-specific staining. 

 

3.5.3 Confocal microscopy 
 

The stained specimens were examined under a confocal microscope (Leica, Wetzlar, 

Germany or Nikon, C1plus, Nikon Instruments Inc., NY, USA) for semi-quantification of 

protein expressions. The fluorescence intensity was measured and analyzed by Image J 

software (http://rsb.info.nih.gov/ij). Either the entire preparation or 6 randomly selected 

sections were measured. All experiments were carried out in one single batch and 

measurements were done under the same microscope instrument setting on the same day to 

ensure comparability between the slides. 

 

3.6 STATISTICS 
 

All data were expressed as mean values ± S.E.M. Agonist concentration-effect curve data 

from individual segments were fitted to the Hill equation using an iterative, least-squares 

method (GraphPad Prism


 5, U.S.A.) to provide estimates of maximal contraction (Emax) and 

pEC50 (negative logarithm of the agonist concentration that produces half of its maximal 

effect). Concentration-effect curves obtained from the in vitro pharmacology experiments 

were compared using two-way analysis of variance (ANOVA). Unpaired two-tailed Student’s 

t-test was used when two groups are compared to each other. One-way ANOVA were 

performed when three or more groups are compared with each other. Bonferroni’s post hoc 

analysis was used to correct for multiple comparisons. Linear regression was used to 

determine correlation between data. P-values less than 0.05 were considered to be statistically 

significant. 
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4 RESULTS AND COMMENTS 
 

4.1 NICOTINE ON AIRWAY SMOOTH MUSCLE CONTRACTION (PAPER I) 
 

4.1.1 Time- and concentration-effect 
 

Murine tracheal segments were cultured for one (Fig. 2A-B), two (Fig. 2C-D) or four (Fig. 

2E-F) days in serum-free DMEM medium in presence of nicotine (1 and 10 μM) or vehicle 

(DMSO). Contractile responses monitored with myographs were induced by the following 

GPCR agonists: the kinin B1 receptor agonist des-Arg
9
-bradykinin (D-A-BK, Fig 2A,C,E), 

the B2 receptor agonist bradykinin (BK, Fig 2B,D,F), the 5-HT receptor agonist 5-HT, the 

cholinergic agonist acetylcholine, the non-selective ET receptor agonist ET-1 and the 

selective ETB receptor agonist sarafotoxin 6c.  

The results showed that nicotine did not affect the contractile responses mediated by 5-HT, 

cholinergic or ET receptors (data not shown). For kinin receptor agonists, a tendency towards 

an increased airway contractile response to des-Arg
9
-bradykinin and bradykinin was seen 

already after 2 days of nicotine treatment (Fig. 2C-D) and this increase reached statistical 

significance at day 4 (Fig. 2E-F). After 4 days of organ culture with a lower nicotine 

concentration (1 μM), the contractile responses to des-Arg
9
-bradykinin and bradykinin were 

not significantly altered, while culture with 10 μM of nicotine significantly increased the Emax 

for both agonists (Fig. 2E-F). Although a tendency towards an increased pEC50 could be seen, 

it did not reach statistical significance (des-Arg
9
-bradykinin: Ctrl 6.96 ± 0.17, 10 μM nicotine 

7.20 ± 0.20, p>0.05; bradykinin: Ctrl 6.72 ± 0.38, 10 μM nicotine 7.30 ± 0.25, p>0.05). Two 

different neuronal nicotinic receptor antagonists MG624 and hexamethonium both blocked 

the nicotine-induced effects (data not shown). 

 

4.1.2 Transcriptional upregulation of kinin receptors 
 

The relative amount of mRNA for kinin B1 and B2 receptors was semi-quantified by real-time 

PCR, and their corresponding protein expression with immunohistochemistry. Four days of 

organ culture in the presence of nicotine (10 μM) increased the mRNA expression for both 

receptors, compared to controls (Fig. 3A). An increase in kinin B1 (Fig. 4A,B,E) and B2 (Fig. 

4C,D,F) receptor protein expressions was seen in both the airway epithelial and smooth 

muscle cells (Fig. 4E-F). After nicotine treatment, the increase in B1 receptor protein 

expression was more prominent in the smooth muscle cells than in the epithelial cells (Fig. 

4E), while the increase of B2 receptors was more prominent in the epithelial cells (Fig. 4F). 
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Figure 2. Time- and concentration-dependent effects of nicotine (Nic) on contractions of 

murine tracheal segments induced by des-Arg
9
-bradykinin (D-A-BK; A, C, E) or 

bradykinin (BK; B, D, F). Each data point is derived from 15-22 experiments and data is 

presented as mean ± S.E.M. Statistical analysis was performed using two-way ANOVA 

Bonferroni's post hoc analysis. Control vs Nic. * P < 0.05; ** P < 0.01; *** P < 0.001. 
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Figure 4. Nicotine (Nic) 

effects on kinin B1 (B1R) 

and B2 (B2R) receptor 

protein expressions. The 

reference bar corresponds 

to 25 μm. Epi = 

epithelium; SMC = 

smooth muscle cells; and 

C = cartilage. Each data 

point is derived from 6 

experiments. Two-tailed 

unpaired Student's t-test 

with Welch's correction 

was performed. Control 

vs Nic * P < 0.05; *** P 

< 0.001. 

Figure 3. Kinin B1 (B1R) and B2 (B2R) receptor mRNA expressions. Each data point is 

derived from 3-6 experiments and data is presented as mean ± S.E.M. Statistical analysis 

was performed using unpaired Student's t-test with Welch's correction. Control vs Nic 

(A); Nic vs Nic+SP600125/YM976 (B). ** P < 0.01; *** P < 0.001. 
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4.1.3 Involvement of JNK and PDE4 pathways 
 

Confocal-microscopy-based immunohistochemistry showed that 4 days of nicotine treatment 

induced activation (phosphorylation) of JNK (Fig. 5), but not ERK1/2 and p38 (data not 

shown). Inhibition of JNK with its specific inhibitor SP600125 abolished the nicotine-

induced effects on kinin receptor-mediated contractions (Fig. 6A-B) and reversed the 

enhanced receptor mRNA expressions (Fig. 3B).  

Similar effects were observed after administration of the specific PDE4 inhibitor YM976. 

YM976 decreased the nicotine-enhanced kinin receptor mRNA expressions (Fig. 3B), as well 

as the airway contractile responses to des-Arg
9
-bradykinin and bradykinin (Fig. 6C-D).  

 

 

 

4.1.4 Comments 
 

The present study demonstrated that long-term exposure (4 days) of mouse tracheal segments 

to nicotine caused a concentration-dependent increase of kinin B1 and B2 receptor-mediated 

airway contractions. Short-term nicotine exposure (1-2 days) induced no significant effects. 

Nicotine treatment did not affect airway contractions mediated by 5-HT, cholinergic or 

endothelin receptors. The increase in Emax, without significant change of pEC50, seen after 4 

days of nicotine treatment suggested an increase in kinin receptor protein expression rather 

than alteration of receptor sensitivity. This conclusion was further supported by the discovery 

of upregulated protein expressions for both B1 and B2 receptors using immunohistochemistry. 

In addition, real-time PCR revealed a parallel increase in B1 and B2 receptor mRNA 

suggesting the involvement of transcriptional mechanisms in the effects of nicotine. The 

Figure 5.  Nicotine (Nic) effects on phosphorylated JNK (pJNK) protein expressions. 

The reference bar corresponds to 25 μm. Epi = epithelium; SMC = smooth muscle cells; 

and C = cartilage. Each data point is derived from 6 experiments. Two-tailed unpaired 

Student's t-test with Welch's correction was performed. Control vs Nic. ** P < 0.01; *** 

P < 0.001. 
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intracellular cascades involved in the kinin receptor upregulation seemed to be both JNK- and 

PDE4-related intracellular signal pathways. 

 

 

Many GPCRs are involved in the regulation of the contractile state of airway smooth muscle. 

Bradykinin, ET and M3 muscarinic receptors are Gq-coupled while 5-HT receptors are Gi-

coupled (Billington et al., 2003). Our results showed that nicotine upregulated kinin B1 and 

B2 receptor-mediated airway contractions, leaving 5-HT, cholinergic and ET receptor-

mediated contractions unaffected. This suggested that nicotine acted on specific targets 

within the airways. Thus, the effects observed were neither the result of a general hyperres-

Figure 6. Effects of JNK inhibitor SP600125 (10 μM, A, B) and YM976 (YM, 1 μM, C, 

D) on nicotine-enhanced des-Arg9-bradykinin- (A, C) and bradykinin- (B, D) induced 

contractions. Each data point is derived from 4-17 experiments and presented as mean ± 

S.E.M. Statistical analysis was performed using two-way ANOVA with Bonferroni's 

post hoc analysis. Nic+vehicle vs Nic+inhibitor. * P < 0.05; ** P < 0.01; *** P < 0.001. 
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ponsiveness nor due to alteration of downstream G-protein signaling processes. This idea was 

further strengthened by the finding of a simultaneous upregulation of kinin receptor function, 

mRNA and protein expression, revealing a special role for bradykinin in nicotine- and/or 

tobacco smoke-induced AHR. 

JNK has long been implicated in the pathogenesis of asthma (Adcock et al., 2004). In a study 

of human bronchial epithelial cells, ERK1/2, JNK, but not p38 was strongly activated after 

treatment with nicotine (Tsai et al., 2006). In the present study, nicotine induced phosphory-

lation of JNK, but not ERK1/2 and p38. SP600125, a small molecular inhibitor for JNK, 

abolished the nicotine-enhanced kinin receptor-mediated contractions and the receptor 

mRNA expression. These results are well in line with a previous study which has demon-

strated that SP600125 exhibits a powerful inhibitory effect on TNF-α induced upregulation of 

kinin B1 and B2 receptors in airways (Zhang et al., 2004). SP600125 was applied at a 

concentration of 10 μM.  At this concentration, SP600125 was found to selectively inhibit the 

phosphorylation of JNK, but not ERK1/2 or p38 in blood vessels (Xu et al., 2008). SP600125 

up to 30 μM caused no alteration in carbachol-elicited contractile responses in isolated airway 

segments (Zhang et al., 2004). 

YM976 is a selective PDE4 inhibitor shown to possess powerful anti-inflammatory and direct 

bronchorelaxatory effects (Aoki et al., 2000). PDE4 is expressed in airway smooth muscle 

cells and increases intracellular concentration of the second messenger cAMP (Torphy et al., 

1993). A previous study has shown that inhibition of PDE4 suppresses endotoxin-induced 

airway inflammation and hyperreactivity (Toward et al., 2001). Our results showed that 

YM976 attenuated the nicotine-enhanced kinin B1 and B2 receptor-mediated airway 

contractions. Inhibition of PDE4 produces a specific depression of nicotine's effects without 

altering control, suggesting that the nicotine-induced changes might be PDE4-specific.  

The present study showed the simultaneous involvement of both JNK and PDE4/cAMP-

mediated pathways in the effects of nicotine on kinin receptors. Supporting this, there have 

been several reports on the cross-talk between cAMP and JNK pathways. For example, 

cAMP has been shown to inhibit JNK activation in human airway smooth muscle cells (Kaur 

et al., 2008) and lung cancer cells (Park et al., 2016). cAMP specifically blocked activation 

of JNK, but not ERK 1/2 through protein kinase A (Pearson et al., 2006). 
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4.2 NICOTINE ON AIRWAY EPITHELIAL RELAXATION (PAPERS I & II) 
 

4.2.1 Short-term nicotine exposure 
 

Relaxation responses to bradykinin, des-Arg
9
-bradykinin, PGE2, and isoprenaline were 

studied in fresh murine tracheal segments or segments after 1 day of organ culture 

with/without nicotine (Fig. 7). Pre-contraction was induced by 1 M of carbachol. Pre-

contraction levels were similar in all groups (data not shown). 

 

 

Figure 7.  One-day nicotine exposure on airway relaxations. Cumulative dose–

response relaxation curves to des-Arg
9
-bradykinin (A), bradykinin (B), PGE2 (C) and 

isoprenaline (D) were performed after pre-contraction with 1 μM carbachol. Each data 

point was derived from 7 to 18 segments. Statistical analysis was performed using two-

way ANOVA with Bonferroni's post-hoc analysis. Culture vs Nic; *** P < 0.001. 

Culture vs Fresh. 
+
 P < 0.05; 

++
 P < 0.01; 

+++
 P < 0.001. 
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Fresh segments barely responded to des-Arg
9
-bradykinin (6.3 ± 2.0% relaxation, at 10

− 6
 M of 

agonist, Fig. 7A), exhibited limited relaxation to bradykinin (24.4 ± 3.9% relaxation, at 10
− 6

 

M of agonist, Fig. 7B), but relaxed markedly in response to PGE2 (64.2 ± 3.9% relaxation, at 

10
− 6

 M of agonist, Fig. 7C) and isoprenaline (50.7 ± 3.8% relaxation, at 10
− 6

 M of agonist, 

Fig. 7D). The organ culture procedure per se greatly increased the relaxation response to 

bradykinin and des-Arg
9
-bradykinin (Fig. 7A-B), modestly affected isoprenaline relaxations 

(Fig. 7D) and did not alter relaxations induced by PGE2 (Fig. 7C). 

Nicotine suppressed the organ-culture-enhanced relaxations induced by des-Arg
9
-bradykinin 

and bradykinin, leaving PGE2- and isoprenaline-induced relaxations unaltered (Figs. 7A–D). 

Nicotine by itself produced nearly negligible relaxations regardless of group (Fresh: 9.3 ± 3.7% 

relaxation, n = 5; Organ culture: 6.4 ± 1.5% relaxation, n = 7; Nic: 7.3 ± 2.3% relaxation, n = 

4, at 10
− 6

 M of agonist). 

 

4.2.2 Long-term nicotine exposure 
 

Murine tracheal segments were cultured for 4 days in serum-free DMEM medium in the 

presence of nicotine (10 μM) or vehicle (0.1% DMSO). Their relaxation responses to 

bradykinin and des-Arg
9
-bradykinin were characterized after pre-contraction with 1 M 

carbachol in the absence of COX inhibitors. Neither B1 nor B2 receptor-mediated relaxations 

were affected by long-term nicotine exposure in vitro (Fig. 8). 

 

 

Figure 8.  Four-day nicotine exposure on kinin receptor-mediated airway relaxations. 

Each data point is derived from 6-8 experiments and data is presented as mean ± S.E.M. 

Statistical analysis was performed using two-way ANOVA with Bonferroni's post hoc 

analysis. Control vs Nic. No significant differences were found. 
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4.2.3 Role of epithelium 
 

The epithelial layers of the tracheal segments were gently scraped away prior to organ culture 

with vehicle (0.1% DMSO) or nicotine (10 μM) for one day. This process nearly completely 

abolished des-Arg
9
-bradykinin- (Fig. 9A) and bradykinin- (Fig. 9B) induced relaxations in 

both organ cultured and nicotine-treated segments which shows that kinin-receptor mediated 

relaxations are epithelium-dependent. 

 

 

 

4.2.4 Involvement of COX pathways 
 

Kinin receptor agonist induced airway relaxations are dependent on the airway epithelium as 

well as on COX activity and EP receptors (Barnes, 1992). To further dissect the underlying 

mechanisms, segments were treated with indomethacin (2 μM), DuP-697 (selective COX-2 

inhibitor, 5 nM), piroxicam (selective COX-1 inhibitor, 5 nM) or PF04418948 (selective EP2 

receptor inhibitor, 10 nM) for 30 min in the organ bath. Relaxations were then induced by 

des-Arg
9
-bradykinin or bradykinin after pre-contraction with 1 μM carbachol (Fig. 10). 

The levels of COX-1, COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) 

mRNA and protein expressions were examined after 1-day organ culture with/without 

nicotine exposure. COX-1, COX-2 and mPGES-1 were upregulated after 1-day of organ 

culture compared to fresh trachea (Fig. 11). 

The increase in COX-2 mRNA expression following organ culture was the most prominent 

(Fig. 11, Fresh: 0.022 ± 0.004, n = 5; Organ culture: 2.31 ± 0.53, n = 5, relative to house-

keeping gene Hprt1). Staining for COX-2 protein with immunohistochemistry revealed that 

Figure 9.  Effect of mechanical epithelial removal on kinin-receptor mediated airway 

relaxations. Each data point was derived from 3 to 5 segments. All data were 

presented as mean ± S.E.M. 
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COX-2 protein was mostly amplified on the smooth muscle, but not on the epithelium (data 

not shown). Nicotine also showed a tendency to decrease organ-culture-induced COX-2, but 

without reaching statistical significance on mRNA (Fig. 11, Organ culture: 2.3 ± 0.5, n = 5; 

Nic: 1.5 ± 0.3, n = 5; P > 0.05, relative to house-keeping gene Hprt1) and protein levels (data 

not shown). 

 

 

 

 

 

 

Figure 10.  Effects of COX- and EP2 receptor inhibition on airway relaxations. Typical 

relaxation trace after each inhibitor is presented. Arrows denote when the first dose of 

relaxation agent is added. Each experiment is carried out individually and repeated 3–6 

times with similar results. 

Figure 11. Effects of organ 

culture, nicotine (Nic) and 

dexamethasone (Dex) on 

mRNA expressions. Each data 

point is derived from 3 to 8 

segments and data is presented 

as mean ± S.E.M. Statistical 

analysis was performed using 

unpaired Student's t-test. Fresh 

vs Organ culture, Organ 

culture vs Nic 10 μM, Organ 

culture vs Dex 1 μM; * P < 

0.05; ** P < 0.01; *** P < 

0.001. 
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Figure 12.  Effects of organ culture, nicotine (Nic) and dexamethasone on mPGES-1 

protein expressions. Epi = epithelium; SM = smooth muscle; and Cart = cartilage. 

Each data point is derived from 3 to 4 samples. One-way ANOVA with Bonferroni's 

post-hoc analysis is performed. * P < 0.05; ** P < 0.01; *** P < 0.001, ns = no 

significance. 
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COX-1 mRNA expression increased 2 folds following organ culture (Fig. 11, Fresh: 0.12 ± 

0.02, n = 7; Organ culture: 0.22 ± 0.02, n = 8, relative to house-keeping gene Hprt1). 

However, despite the changes in mRNA expressions (Fig. 11), COX-1 protein expressions 

were unaltered between groups (data not shown).  

Fresh segments expressed relatively low levels of mPGES-1 protein (Fig. 12A) on the 

epithelium, and the smooth muscle. Organ culture markedly increased the mPGES-1 

expression on both the epithelium (Fig. 12C) and the smooth muscle (Fig. 12B). Nicotine 

significantly decreased the mPGES-1 mRNA expression (Fig. 11, Organ culture: 0.86 ± 0.06, 

n = 6; Nic: 0.64 ± 0.06, n = 6; P < 0.05, relative to house-keeping gene Hprt1) as well as 

protein expression on the smooth muscle (Fig. 12B), and showed a tendency to decrease on 

the epithelium (Fig. 12C).  

 

4.2.5 Comments 
 

In contrast to long-term nicotine induced increase in ASM contractility, short-term nicotine 

induced decrease in epithelium-dependent airway relaxation was not mediated by changes in 

the kinin receptor expression, but rather on changes in the downstream mediators. The 

decreased kinin-receptor-mediated relaxation induced by nicotine was paralleled by 

decreased mPGES-1 mRNA and protein expressions, leaving kinin B1, B2 and COX-1 

mRNA unaltered. A tendency towards a decrease in COX-2 mRNA and protein expressions 

were seen, but it did not reach statistical significance. Neither PGE2- nor isoprenaline-induced 

relaxations were affected by nicotine exposure, suggesting that the downstream EP-receptor 

sensitivity and the relaxation-machinery of the tracheal rings were intact. It is therefore most 

likely that the decreased relaxation was caused by a decrease in PGE2 production. 

Bradykinin and des-Arg
9
-bradykinin cause airway relaxations via stimulation of the kinin B2 

and B1 receptors respectively, with subsequent activation of COX-pathways and production 

of airway relaxing prostaglandins (Barnes, 1992; Li et al., 1998). In our study, selective 

inhibition of COX-2 with DuP-697 and non-selective inhibition of COX-1 and COX-2 with 

indomethacin completely abolished the relaxation induced by des-Arg
9
-bradykinin and 

bradykinin, without affecting PGE2 relaxations. COX-1 inhibition with the selective inhibitor 

piroxicam at previously shown effective concentrations (Bachar et al., 2005b) did not affect 

bradykinin and des-Arg
9
-bradykinin-induced relaxations. The central role of COX-2 in our 

model agrees well with reports indicating that in human (Daham et al., 2011) and guinea pig 

(Safholm et al., 2013) PGE2 is mainly produced by COX-2 and not COX-1. However, 

increases in PGE2 are not always accompanied by increased COX-2 (Kuroda et al., 2003). 

mPGES-1 is an inducible enzyme that is often upregulated, at both mRNA and protein levels, 

simultaneously with COX-2 to increase PGE2 biosynthesis under inflammatory conditions, 

and this upregulation can be abolished by dexamethasone (Murakami et al., 2000). PGE2 

stimulates EP1 receptors that mediate Ca
2+

 mobilization, EP3 receptors that inhibit adenylate 
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cyclase, and EP2 and EP4 receptors that activate adenylate cyclase (Sugimoto et al., 2007). 

Previous studies show that the EP2 subtype is mainly responsible for smooth muscle 

relaxation (Tilley et al., 2003). However, though often upregulated simultaneously, the 

kinetics for the induction of COX-2 and mPGES-1 expressions have been shown to be 

distinct (Stichtenoth et al., 2001), suggesting different transcriptional regulation mechanisms. 

This is in line with our observations that nicotine significantly inhibited mPGES-1 mRNA 

and protein expressions, but only showed a tendency to decrease COX-2. 

It is worth noting that the effect of nicotine on murine airway relaxations is transient. After 4 

days of organ culture, the difference between nicotine-treated and control segments 

disappears. At the same time, the morphology of the relaxation curve is drastically altered. 

While the relaxation curve after 1 day of organ culture has an inverse S-shape, the relaxation 

curve to bradykinin and des-Arg
9
-bradykinin becomes more or less a straight line. 

Histological studies of cultured guinea pig bronchi showed that long-term organ culture (3 

days or longer) caused submucosal swelling and decreased epithelial integrity, while the 

smooth muscle layer was unaffected. In situ detection of apoptosis by TUNEL assay and 

DAPI counterstaining revealed increases in apoptosis with time in the epithelial and 

submucosal layers, but not in the smooth muscle (Morin et al., 2005). These findings suggest 

that normal epithelial, but not smooth muscle function is disrupted by long-term organ culture, 

making the long-term organ culture model unsuitable for studies of epithelial function.  
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4.3 NICOTINE ON NERVE-MEDIATED AIRWAY CONTRACTIONS (PAPER IV) 
 

4.3.1 In vitro effects 
 

Tracheal segments from mice were organ-cultured with nicotine for 1 or 4 days. Their 

contractile responses to increasing frequencies of EFS were recorded before and after 1 hr 

incubation with LPS. Nicotine per se did not have an effect on EFS-induced contractions 

neither after short- nor long-term exposure (Fig. 13).  

LPS increased the contractile responses to EFS after 4 days regardless of nicotine exposure 

(Fig. 13B). The increases were most pronounced at the higher frequencies (~1.5-1.9 fold). 

However, nicotine-treated segments generally displayed lower contractile responses after 

LPS treatment than non-nicotine-treated ones (Fig. 13B).  Responses to KCl and carbachol 

were similar in all groups (data not shown). 

 

 

 

 

 

Figure 13. Effect of 1- and 

4-days nicotine exposure in 

vitro on EFS-elicited airway 

contractions. Tracheal 

segments were cultured for 

1 (A) or 4 (B) days with 

nicotine and pretreated with 

LPS for 1 hr prior to 

stimulation with EFS (0.2–

12.8Hz) in the organ bath. 

Two-way ANOVA with 

Bonferroni post hoc 

analysis (unpaired) was 

used to compare Control vs 

Nicotine, and Control after 

LPS vs Nicotine after LPS. 

Two-way ANOVA with 

Bonferroni’s post hoc 

analysis (paired) was used 

to compare Control vs 

Control after LPS and 

Nicotine vs Nicotine after 

LPS. * p<0.05, ** p<0.01. 

n = 10–12 rings per group. 
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4.3.2 In vivo effects 
 

Long-term (28 days) exposure to nicotine (24 mg/kg/day) delivered via a subcutaneous pump 

did not alter the airway mechanics per se, neither at baseline nor after methacholine (Mch) 

challenge. However, nicotine-treated mice that received intranasal LPS instillations displayed 

reduced responses to Mch in both central (Newtonian resistance, Rn, Fig. 14A) and 

peripheral (tissue damping, G, Fig. 14B) airways.  

 

  

 

Intranasal instillation of LPS (20 l, 0.1 mg/ml) during three consecutive days enhanced the 

concentration-dependent increase in airway resistance caused by intravenous Mch in both 

central (Newtonian resistance, Rn, Fig 14A) and peripheral airways (tissue damping, G, Fig 

14B). The LPS installations also raised the baseline tissue elastance (H, Fig 14C). The 

Figure 14. Airway mechanics after long-term in vivo nicotine exposure. One-way 

ANOVA with Bonferroni’s post hoc analysis was performed for each individual 

methacholine dose. PBS pump LPS i.n. vs Nic pump LPS i.n, * p<0.05, ** p<0.01, 

*** p<0.001; PBS pump PBS i.n. vs PBS pump LPS i.n., 
#
 p<0.05, 

##
 p<0.01, 

###
 

p<0.001. n = 8–12 animals per group. 
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increased AHR could partially be inhibited by intravenous pretreatment with the neurotoxin 

tetradotoxin (6 g/kg) prior to Mch administration (data not shown). 

 

4.3.3 Comments 
 

The present study confirms that intranasal instillations of LPS enhance the concentration-

dependent increase in airway resistance caused by intravenous Mch injections (Starkhammar 

et al., 2012). We have demonstrated that long-term treatment with nicotine did not enhance 

the airway resistance per se, but markedly dampened the expected increase in airway 

resistance after acute LPS. These experiments were reproduced under in vitro conditions, 

using isolated murine tracheal segments. LPS caused a similar increase of the airway 

contractile response induced by EFS. Long-term, but not short-term culture of isolated 

tracheal segments with nicotine, dampened the LPS induced augmentation of the contractile 

EFS response, similar to what was seen for Mch in vivo.  

The striking similarity between the in vivo effects of nicotine and LPS on the Mch-elicited 

AHR and the in vitro EFS-elicited AHR implicates the involvement of nerves in the former. 

EFS contractions in mice are known to be abolished by both the Na
+
 channel blocker 

tetrodotoxin and the cholinergic antagonist atropine (Bachar et al., 2005a) suggesting that this 

response is related to cholinergic nerve activity. The involvement of nerves in in vivo Mch-

induced airway contractions is confirmed by a suppression of Newtonian resistance following 

acute treatment with tetrodotoxin. Other studies have suggested that activation of the transient 

receptor potential vanilloid type 1 (TRPV1) on sensory nerve contributes in this type of LPS-

induced AHR in human bronchi (Calzetta et al., 2015). Bilaterally vagotomized sheep do not 

exhibit any contractile response to Mch suggesting that neuronal mechanisms play a major 

role in this type of smooth muscle contraction in vivo (Wagner et al., 1999). 

 

 

 

  



 

42 

4.4 COMBINED NICOTINE AND LPS ON AIRWAY CONTRACTIONS (PAPER III) 
 

4.4.1 Effects of LPS 
 

Trachea rings were cultured for 4 days in the presence of LPS at concentrations of 10
−5

, 10
−4

, 

and 10
−3

 mg/ml. LPS induced dose-dependent AHR to des-Arg
9
-bradykinin (Fig. 15A) and 

bradykinin (Fig. 15B). LPS at 10
−5

 mg/ml had almost no effect, while 10
-4

 mg/ml and 10
-3

 

mg/ml produced significant effects. The highest effect was reached with 10
−3

 mg/ml LPS for 

both bradykinin and des-Arg
9
-bradykinin. 

 

 

 

4.4.2 Effects of nicotine and LPS combined 
 

Trachea rings were cultured for 4 days with LPS 10
−5

 mg/ml (Fig. 16A-B) or 10
−4

 mg/ml (Fig. 

16C-D) with 10 μM nicotine or vehicle (DMSO). LPS at 10
−5

 mg/ml alone produced nearly 

no effect on bradykinin- and des-Arg
9
-bradykinin–induced airway contractions, whereas the 

addition of nicotine increased the contractile responses to bradykinin (Fig. 16B) and des-

Arg
9
-bradykinin (Fig. 16A) but not carbachol and KCl (data not shown). Nicotine at 10

−5
 M 

per se also could increase the contractile response, but the magnitude was smaller than when 

nicotine and a low-concentration LPS were combined (Fig. 16). 

A similar synergistic effect between nicotine and LPS was observed at an LPS concentration 

of 10
−4

 mg/ml. Although nicotine alone increased contractions produced by 10
−6

 M des-Arg
9
-

bradykinin by 74% (compared with control contractions) and LPS (10
−4

 mg/ml) increased it 

Figure 15.  Concentration-dependent effects of LPS on kinin receptor agonist 

mediated airway contractions. D-A-BK: des-Arg
9
-bradykinin. BK: bradykinin. Each 

data point was derived from 6 to 11 segments. All data were presented as mean ± 

SEM, LPS-treated versus control (Ctrl). P values were calculated using two-way 

ANOVA with Bonferroni’s post hoc analysis. **P < 0.01; ***P < 0.001. 
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by 80%, the combination of nicotine and LPS increased the contraction induced by 10
−6

 M 

des-Arg
9
-bradykinin by 235% (Fig. 16C).  

 

 

 
 

Nicotine alone increased the contraction produced by 10
−6

 M bradykinin by 109%, whereas 

LPS (10
−4 

mg/ml) alone increased the contraction by 268%. The combination of nicotine and 

LPS increased the contraction by 541%, thereby demonstrating a synergistic effect (Fig. 16D). 

However, when LPS concentration was as high as 10
−3

 mg/ml, the addition of nicotine failed 

to produce a further increase in contraction (data not shown). 

 

4.4.3 Comments 
 

In the present study, nicotine was used to mimic the effects of cigarette smoke exposure, and 

the presence of LPS mimicked bacterial infection. LPS was found to concentration-

Figure 16.  Effects of combined nicotine and LPS exposure on kinin receptor agonist 

mediated airway contractions. Each data point was derived from 5 to 7 segments. All 

data were presented as mean ± SEM, Nicotine+LPS versus Nicotine. P values were 

calculated using two-way ANOVA with Bonferroni’s post hoc analysis. *P < 0.05; **P 

< 0.01; ***P < 0.001. 
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dependently increase the contractile responses to the selective kinin B2 and B1 receptor 

agonists bradykinin and des-Arg
9
-bradykinin without affecting carbachol- or KCl-induced 

contractions. Nicotine exaggerated the AHR to LPS, causing stronger contractions at lower 

concentrations. No such effects were seen when nicotine and LPS were given separately. This 

finding is in agreement with the clinical observation that smokers, regardless of whether they 

have COPD, are more sensitive to bacterial infections than non-smokers (Nikota et al., 2012). 

The current study confirms this idea by demonstrating that nicotine, in combination with low 

concentrations of LPS, induces a more potent response to kinin receptor agonists than the 

sum of the effects of the two substances given separately. In humans, inhalation of 5 g of 

LPS is sufficient to induce a small but significant change in FEV1 in “healthy” smokers (Aul 

et al., 2012), while healthy non-smokers only display a small but not significant decrease in 

FEV1 after 50 μg LPS (Michel et al., 1997). In small animal in vivo experiments, LPS 

administered locally at 10
-1

 mg/ml elicit pulmonary inflammation and AHR (Starkhammar et 

al., 2012). It is therefore important to note that nicotine enhances the response to LPS at 

concentrations more than 1,000-fold lower than that used in vivo. Hence, it is natural to 

assume that the high LPS concentrations produce contractions that are so strong (i.e., close to 

the segment’s contraction maximal limit) that the effect induced by nicotine becomes hard to 

visualize.  
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4.5 NICOTINE ON TLR EXPRESSIONS (PAPERS III AND IV) 
 

4.5.1 mRNA 
 

The effects of nicotine on mRNA expressions of cell surface TLR in mice tracheal segments 

were examined under in vitro conditions. Four days of nicotine exposure (10 μM) increased 

the mRNA expression of TLR2 (1.5-fold; P < 0.05), TLR4 (1.8-fold; P < 0.01), and TLR6 

(2.0-fold; P < 0.01) in the airways. TLR1 and -11 remained unchanged, whereas the mRNA 

expression for TLR5 decreased (−2.4-fold; P < 0.01) (Fig. 17A).  

 

 

 

 

4.5.2 Proteins 
 

After 4 days of organ culture with nicotine in vitro, immunohistochemistry revealed a 

dominating TLR4 staining of the smooth muscle cells during control conditions, with only a 

weak expression in the epithelium. Nicotine exposure increased the TLR4 expression at 

muscular and epithelial levels, with a more prominent increase in the latter (Fig. 18A-C). 

TLR6 staining was evenly divided between the smooth muscle and the epithelium at fresh 

state and increased in both the epithelium and smooth muscle after incubation with nicotine 

(Fig. 18D-F).  

After 28 days of nicotine exposure via a subcutaneous nicotine pump in vivo, the fluorescence 

intensity, which reflects the amount of TLR4 on bronchial epithelial cells, was markedly 

increased compared to mice receiving PBS in their pumps (2.9 fold, p<0.01, Fig. 19A,B,D). 

Figure 17. Effects of nicotine 

on cell surface TLR mRNA 

expressions. Tracheae were 

incubated in the presence of 

vehicle (DMSO, control) or 

nicotine (10 μM) for 4 days. 

Each data point is derived from 

three or four animals. P values 

were calculated using two-

tailed unpaired Student’s t test. 

*P < 0.05; **P < 0.01.  
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Figure 18.  Effects of nicotine on TLR4 (A–C) and TLR6 (D–F) receptor protein 

expressions in isolated mouse airway. C, cartilage; Epi, epithelium; SMC, smooth muscle 

cells. Each data point is derived from 6 experiments. P values were calculated using two-

tailed unpaired Student’s t test, Control versus Nic. *** P < 0.001. 

Figure 19.  TLR4 expressions after long-term in vivo nicotine exposure. A: PBS pump 

PBS i.n.; B: Nic pump; C: Isotype control; D: TLR4 expression semi-quantified by 

florescence intensity. One-way ANOVA with Bonferroni post hoc analysis. PBS pump 

PBS i.n. vs  Nic pump PBS i.n., *** p<0.001. n=5-6 animals. 
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4.5.3 Involvement of the JNK pathway 
 

Specific pharmacological inhibitors for JNK (SP600125, 10 μM), ERK1/2 (U0126, 10 μM), 

and p38 (SB203589, 10 μM) pathways were used to explore the role of the MAPK pathways 

in nicotine-induced alteration of TLR expression. SP600125 abrogated the nicotine-induced 

alterations in the mRNA expression of TLR2, -4, -5, and -6, without affecting the TLR1 and -

11 expressions (Fig. 20).  

 

 

 

 

 ́

Figure 20. Effects of specific 

JNK inhibitor SP600125 on 

TLR mRNA expression. Each 

data point is derived from 4 to 7 

animals. P values were 

calculated using two-tailed 

unpaired Student’s t test. *P < 

0.05, **P < 0.01.  

 

Figure 21.  Effects of the specific JNK inhibitor SP600125 on TLR4 (A–C) and TLR6 

(D–F) protein expressions. C, cartilage; Epi, epithelium; SMC, smooth muscle cells. Each 

data point is derived from six experiments. P values were calculated using two-tailed 

unpaired Student’s t test, Nic+DMSO vs Nic+SP600125. ***P < 0.001. 
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U0126 and SB203580 had no significant effect on the TLR expressions (data not shown). 

Analysis of TLR4 protein expressions by immunohistochemistry verified that SP600125 

depressed TLR4 (Fig. 21A-C) and TLR6 (Fig. 21D-F) protein expressions in both smooth 

muscle and epithelium. 

 

4.5.4 Comments 
 

TLR activation is crucial for mounting a forceful immune response against invading 

pathogens. However, excessive activation of TLRs can also cause an overproduction of 

inflammatory cytokines and chemokines as well as an increase in AHR (Starkhammar et al., 

2012). Patients with fatal asthma have been shown to have a more pronounced airway 

expression of TLR3 and TLR4 than healthy control subjects (Ferreira et al., 2012). On the 

other hand, a down-regulation of the TLRs might compromise the host’s immune defense. 

The differential effects of nicotine on the expression of various TLRs might be a reflection of 

the complex nature of smoke-associated airway disease. TLRs are known to be able to form 

heterodimers with each other. For example, upregulated TLR4 and -6 can form heterodimers 

together with the co-receptor CD36. Similar formations have been shown to be of importance 

in atherosclerosis, a disease where cigarette smoking is known to be detrimental (Stewart et 

al., 2010). 

Nicotine per se increased the mRNA expressions of TLR2, -4, and -6, with TLR4 and -6 

showing the largest fold increase. Further analysis of TLR4 and -6 revealed receptor protein 

increases in the epithelium and in the smooth muscle layer. An augmentation of the receptor 

density might explain the amplified LPS sensitivity. The present data are well in line with in 

vivo studies which showed that exposure to cigarette smoke increases the pulmonary 

expression of TLR2 and -4 in mice (Maes et al., 2006). 

The effect of nicotine in cell surface TLR mRNA expressions and TLR4 and 6 protein 

expressions were completely reversed by the inhibition of the MAPK-JNK pathway. The role 

of JNK-related mechanisms in many of the pathological processes in respiratory diseases has 

also been discussed in the recent decade (Bennett, 2006). However, clinical development of 

kinase inhibitors has primarily focused on p38 inhibitors (Adcock et al., 2004). In animal 

studies, it has been found that the JNK inhibitor SP600125 can reduce allergic cellular 

inflammation and ASM proliferation (Eynott et al., 2003) as well as allergen-induced AHR 

(Nath et al., 2005). Our results suggest that JNK may play a special role in cigarette-smoke-

induced pulmonary diseases. 
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4.6 CIGARETTE SMOKE EXPOSURE ON ALK EXPRESSIONS (PAPER V) 
 

4.6.1 Cotinine assay 
 

Twenty seven pairs of tonsils were collected from patients between 15 and 40 years old 

undergoing bilateral tonsillectomy for chronic tonsillitis at the Ear- nose- and throat clinic at 

Malmö University Hospital, Sweden.  
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Figure 22. Local cotinine 

concentrations in tonsil tissue. 

Unpaired Student’s t test was 

used to compare self-reported 

non-smokers with self-reported 

smokers. ** p<0.01.  

Figure 23. IL-8 mRNA expressions in cotinine-verified smokers and non-smokers. 

Unpaired Student’s t test was used to compare IL-8 mRNA levels in non-smokers vs 

smokers (A). * p<0.05. Linear regression was performed relating IL-8 mRNA to local 

cotinine concentration (B). 
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The tonsils were homogenized, centrifuged and the supernatants were analyzed with cotinine 

ELISA. A cut-off level of 80 ng cotinine/g tonsil was used to distinguish smokers from non-

smokers (Fig. 22). This level was chosen to minimize the number of excluded samples. 

The mRNA of IL-8, a cytokine known to be upregulated by cigarette smoke (Agusti et al., 

2012; Lau et al., 2012; Starrett et al., 2011) was significantly higher in the cotinine-verified 

smoker group compared to the cotinine-verified non-smoker group (2.7 folds, p<0.05, Fig. 

23A). A linear positive correlation was found between tonsillar cotinine levels and IL-8 

mRNA levels (r
2
=0.22, p<0.05, Fig. 23B). 

 

4.6.2 ALK expressions 
 

The mRNA expressions of ALK1 and 5 were relatively high in the tonsillar tissue, ALK 2, 3, 

and 4 were lower, while ALK7 was near to undetectable, ALK6 was not detectable at all. 

Significant increases in ALK1 (1.5 fold, p<0.05) and 2 (1.4 fold, p<0.05) mRNA levels were 

found in the cotinine-verified smoker group compared to cotinine-verified non-smoker group 

(Fig. 24A). Both ALK1 and 2 levels displayed linear positive correlations with tonsillar 

cotinine levels (ALK1:  r
2
=0.23, p<0.05, Fig. 24B; ALK2:  r

2
=0.51, p<0.001, Fig. 24C). 

 

4.6.3 Comments 
 

Despite the importance of smoking in a wide range of diseases, patient-reported smoking 

history is notoriously unreliable (Caraballo et al., 2001; Florescu et al., 2009; Hobbs et al., 

2005; Stelmach et al., 2015). This is also reflected in the present study. There can be many 

reasons behind this discrepancy, including memory failure, recall bias, lack of knowledge, 

but also intentional false reporting especially when the social acceptance for smoking in the 

society is decreasing (Caraballo et al., 2001).  A valid estimation of the risks of smoke 

exposure, both active and passive is crucial for the assessment of risks associated with 

smoking. The present study suggests that cotinine measurements in homogenates of tonsils 

can be used to demonstrate local smoke exposure in the tissue. The obtained cotinine levels 

were positively correlated to tonsillar IL-8 mRNA levels. A clear correlation between smoke 

exposure and ALK1 and ALK2 mRNA levels was also seen. 

ALKs are receptors for the transforming growth factor-beta (TGF-) superfamily. They are 

involved in a range of cancer-related cellular processes including proliferation, 

differentiation, adhesion, migration and apoptosis (Graham et al., 2006). Among the seven 

different ALKs found in humans, ALK1 and 5 are the most studied in the context of cancer. 

ALK1 and ALK5 (also termed TGF-βI receptor) exhibit antagonizing effects in endothelial 

cells. While ALK1 promotes growth and proliferation and thereby carcinogenesis, ALK5 

inhibits the same processes (Jonker, 2014). ALK5 knockout mice develop spontaneous 
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squamous cell carcinoma (Honjo et al., 2007). ALK5 expression is also known to be 

decreased in human head and neck squamous cell carcinoma tumor cells (Eisma et al., 1996). 

At the same time, high levels of ALK1 in tumor tissue from patients with head and neck 

squamous cell carcinoma appear to be positively correlated to more advanced TNM stages as 

well as a poor prognosis (Chien et al., 2013). Inhibitors of ALK1 are currently under clinical 

trials for the treatment of solid tumors (Cunha et al., 2011; Jonker, 2014). Blocking ALK1 

signaling using an ALK ligand trap ALK1-Fc in combination with cisplatin was recently 

found to inhibit tumor growth in murine head and neck cancer models more efficiently than 

chemotherapy alone (Hawinkels et al., 2015). The present data supports the role for ALK in the 

poor prognoses that characterize tonsillar cancer among smokers. 
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Figure 24. ALK mRNA levels in tonsils of cotinine-verified smokers and non-

smokers. Unpaired Student’s t test was used to compare  individual ALK mRNA 

levels in non-smokers vs smokers (A). * p<0.05. Linear regression was performed 

relating ALK1 (B) and 2 (C) mRNA levels to tonsillar cotinine concentrations. 
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5 CONCLUSIONS 
 

The present thesis has investigated the effects of nicotine and LPS, alone or in combination, 

on AHR and inflammation.  

 

The main conclusions are the following: 

 

- Long-term nicotine exposure in vitro enhances bradykinin- and des-Arg9-bradykinin-

induced airway contractions in murine tracheal segments. The nicotine effect is 

mediated by activation of neuronal nicotinic receptors which lead to transcriptional 

upregulation of kinin B1 and B2 receptors. This process depends on the activation of 

JNK- and PDE4-related intracellular signalling pathways. 

 

- Short-term nicotine exposure in vitro impaired epithelium-dependent kinin-receptor 

mediated airway relaxations in murine tracheal segments. In addition, nicotine 

suppressed the mRNA and protein expression of mPGES-1 and showed a tendency to 

suppress COX-2. Addition of dexamethasone to the system did not reverse the effects 

of nicotine. 

 

- Long-term nicotine exposure in vitro induced inflammation and upregulated the 

expression of TLR4 and 6 via the MAPK-JNK pathway. In addition, nicotine 

exaggerated LPS-induced AHR. This might explain the increased AHR often seen 

among cigarette smokers when confronted with bacterial infections.  

 

- LPS increased AHR to EFS in vitro and to methacholine in vivo. Long-term nicotine 

exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. The 

effect of nicotine was mimicked by tetrodotoxin, suggesting an important role for 

neuronal mechanisms in cigarette smoke-induced AHR in vivo. 

 

- Measurement of cotinine in tonsil homogenate appears to be a useful and reliable 

method to objectify smoke exposure levels in tonsils. A direct correlation between 

smoke exposure and increased tonsillar expressions of IL-8, ALK1 and 2 were 

demonstrated, suggesting a role for ALK1 in the poor prognosis that characterize 

tonsillar cancer among smokers. 
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6 GENERAL DISCUSSION 
 

6.1 WHY STUDY NICOTINE? 
 

One might wonder why it is necessary to study the effects of nicotine, since everybody 

already knows that smoking is detrimental to health. After the Surgeon General report made 

headlines in the United States and the rest of the world  in 1964, it has been known that 

cigarette smoking causes lung cancer, laryngeal cancer, chronic bronchitis and cardiovascular 

disease. Now, more than 50 years after the publication of this report, the knowledge about the 

spectrum of organ systems negatively affected by smoking has expanded, accompanied by 

drastic changes in attitudes towards smoking (Alberg et al., 2014).  

Indeed, the smoking prevalence is decreasing, especially in Western countries. In Sweden, 

the smoking prevalence has decreased from 27.7% to 12.7% among middle-aged men and 

32.3% to 14.3% among women from the period 1990-1995 to the period 2002-2007. 

However, the use of the Swedish oral moist snuff, has steadily increased from 27.5% to 

33.7% among middle-aged men and rapidly increased from 3.2% to 13.9% among middle-

aged women (Norberg et al., 2011). Also, it should not be forgotten that in non-Western 

countries such as China, the overall smoking prevalence (including both regular smokers and 

former smokers) is still over 70% among men (Paskett et al., 2015). 

Despite falling smoking prevalence, the availability of nicotine in the society is greater now 

than ever. Nicotine replacement products, such as nicotine gum, patch and spray, deliver pure 

nicotine through the oral or nasal mucosa or the skin and reduce the severity of withdrawal 

symptoms and craving of tobacco products. They are generally recommended as first-line 

treatment against tobacco dependence. Their side effects are small and they are often sold 

over-the-counter in most countries (Little et al., 2015). Moreover, e-cigarettes were 

introduced to the European and American markets in 2006, and their sales increased 

dramatically around 2010, quickly surpassing nicotine replacement products and are 

predicted to surpass traditional cigarettes within 10 years. The regulatory status of e-

cigarettes is still unclear in most countries and is a subject of debate (Fagerstrom et al., 2015).   

Given the high prevalence of nicotine exposure in the society today, it is therefore of interest 

to study the long-term physiological and pathophysiological effects of nicotine. 

 

6.2 EXOGENOUS VS ENDOGENOUS NICOTINE RECEPTOR ACTIVATION 
 

In the present thesis, nicotine receptor activation caused by exogenous nicotine that may 

derive from sources such as cigarettes, moist snuff or nicotine replacement products is 

discussed. The concentration of nicotine used in both the in vitro and in vivo studies 

corresponds to that seen among heavy smokers and moist snuff users. For the in vitro studies, 
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nicotine at a concentration of 10 μM was used. This level can roughly be compared to the 

“local exposure” level. In the saliva of smokers during smoking days, the level of nicotine 

measures up  to 8 μM  (Lindell et al., 1993) and 34 μM is found in the induced sputum of 

smokers 5 min after smoking one cigarette (Clunes et al., 2008). 

For the in vivo studies, a level equivalent to “systemic exposure” was used. Subcutaneous 

osmotic pumps containing nicotine tartate salt produces a stable plasma nicotine 

concentration and have long been utilized for the study of chronic nicotine effects. Nicotine at 

24 mg/kg/day supplied via a subcutaneous osmotic pump produces plasma cotinine 

concentration equivalent to that of a human smoker (Dickson et al., 2014). This seemingly 

high nicotine dosage is necessary due to the relative high nicotine metabolism in mice 

compared to other species and is commonly utilized in in vivo nicotine research (Matta et al., 

2007). 

It should be noted that the endogenous neurotransmitter acetylcholine can also bind to and 

activate nicotinic acetylcholine receptors. However, the mode of action is very different 

between normal physiological neurotransmission where the receptors are exposed to a sudden 

high concentration of an agonist and a chronic exposure with a sustained low agonist level. 

The former causes the receptors to rapidly change from resting to activated and then 

desensitization, while the latter can stabilize the receptor in an active or inactive state 

depending on the concentration of agonist (Fenster et al., 1997; Jones et al., 2012). The time 

and concentration of exposure is therefore of crucial importance for the effect of nicotine. 

This is also reflected by results from Paper I and II in the present thesis. 

 

6.3 IN VITRO AND IN VIVO DIFFERENCES? 
 

In Paper I, it was seen that long-term nicotine exposure in mice in vitro caused increased 

AHR measured by the myographs. This was not confirmed by the in vivo study in Paper IV 

where long-term exposure to nicotine alone did not alter AHR measured with flexiVent
TM

.  

At a first glance, the most obvious reason for this inconsistency is probably the difference 

between in vitro and in vivo environments. It is not inconceivable that a piece of tracheal 

tissue free from supporting tissue, neural connections and circulating inflammatory cells 

should react differently to that of a living mouse that has access to liver, kidney, brain and 

blood. However, there are several other differences between the two models that also need to 

be considered. 

The differences between large and small airway in terms of function and physiology have 

been brought to attention during the recent decades (van der Wiel et al., 2013). On the other 

hand, the “united airway hypothesis” suggesting that the respiratory tract, all the way from 

the nose down to the alveoli, should be treated as one single entity, has also gained 

momentum (Grossman, 1997; Passalacqua et al., 2001). In the present thesis, in the in vitro 
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model, the large extra pulmonary airway, trachea is used, while in the in vivo model, the 

contraction of the whole lung is tested, including both large and small intrapulmonary 

airways. However, by applying different oscillation frequencies and fitting into the constant 

phase model, the flexiVent
TM

 system computes three separate variables for airway resistance: 

Newtonian resistance (Rn), tissue damping (G) and tissue elastance (H), where Rn reflects 

AHR in the central airways and G reflects AHR in peripheral airways (Bates et al., 2011). In 

the present study, the effects of nicotine and LPS on Rn and G nearly always follow the same 

pattern and no difference was seen between the central and peripheral airways. 

It is worth noting that in the in vitro model, AHR to kinin receptor agonists was increased, 

but contractile responses to the muscarinic receptor agonist, carbachol remained unaltered. In 

the in vivo model, the muscarinic agonist methacholine was used to elicit airway contractile 

responses as methacholine is the golden standard used to demonstrate AHR in in vivo animal 

models and humans. If the responses to the muscarinic agonists carbachol and methacholine 

are compared in vitro and in vivo, the results are consistent, none of the responses were 

altered by nicotine. 

The role of kinin receptor agonists in AHR is a subject of debate. Early studies have shown 

an extensive role for bradykinin in asthma. Increased bradykinin concentration was found in 

BAL of asthma patients. Bradykinin also specifically acted as a potent bronchoconstrictor in 

asthmatic patients, while it had no effect in normal individuals. (Barnes, 1992). Allergen-

induced AHR to bradykinin was found to be more pronounced than that to methacholine in 

human subjects (Berman et al., 1995). However, the failure of the inhaled selective kinin B2 

receptor inhibitor HOE140 to achieve clinically relevant symptom score improvements in a 

phase II trial for moderate to severe asthma (Akbary et al., 1996) has dampened the interest 

for kinin receptors as a target for the treatment of asthma and/or COPD. In rats, HOE140 

inhibits AHR to bradykinin, but not to acetylcholine (Huang et al., 1999). HOE140 was later 

found to be efficient in the treatment of hereditary angioedema attacks (Cicardi et al., 2010).  

Stimulation of kinin receptors produces different effects dependent on the receptor 

localization. On the ASM, kinin receptors directly activates the inositol 1,4,5-trisphosphate 

(IP3) pathway increasing intracellular Ca
2+

 levels which subsequently activates the cellular 

contractile machinery (Billington et al., 2003). On airway sensory nerves, kinin receptors 

activate the vagal ganglion and thereby initiate the cough reflex (Fox et al., 1996; Grace et 

al., 2012). On the airway epithelium, kinin receptors activate COX and stimulate the release 

of PGE2 from airway epithelial cells which induces airway relaxation through EP receptor 

activation (Barnes, 1992). In in vitro studies, the production of PGE2 was blocked with the 

non-selective COX inhibitor indomethacin, while this is not the case in in vivo studies or 

humans. The complex and sometimes contradictory nature of bradykinin’s effects might be 

the reason behind the failure of the kinin receptor antagonist in clinical trials as an asthma 

drug. 
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6.4 TLR4 EXPRESSION AND RESPONSE TO LPS 
 

TLRs are central players in the innate immune response. They are PRRs and recognize a 

variety of molecular structure of pathogens such as bacteria, virus and fungi.  

In Paper III, both TLR4 mRNA and protein was found to be increased by long-term nicotine 

treatment in vitro. TLR4 protein was predominantly expressed on ASM in fresh segments, 

but after nicotine exposure for 4 days, its expression increased significantly both on ASM and 

epithelium, with a greater percentage increase on the epithelium. This nicotine-induced 

upregulation of TLR4 receptor was believed to be responsible for the synergistic effect 

observed between nicotine and LPS on AHR, making the tracheal segments more sensitive to 

low concentrations of LPS. However, in the in vivo model in Paper IV, despite an increase in 

the protein density of TLR4 on bronchial epithelium following long-term nicotine exposure, 

the AHR to LPS decreased in the nicotine-treated group.   

The clear increase in TLR4 expression but decrease in LPS response seen in vivo is 

somewhat puzzling. One reason could be the fact that only epithelial TLR4 protein 

expression is semi-quantified with immunohistochemistry, while the expression on other 

structures such as ASM and nerves cannot be seen in the immunohistochemistry sections 

used. The ability of tetrodotoxin to inhibit the LPS-induced AHR in vivo, as well as the 

striking similarity between the effect of nicotine and LPS on EFS-responses in vitro, supports 

the role for nerves in the observed decreased LPS responses. Therefore, the TLR4 expression 

in bronchial epithelium might not be important for the development of LPS-induced AHR. 

This is supported by the recent finding that stimulation of TLR4 on different cellular 

compartments contributes to different inflammatory responses. While TLR4 on 

hematopoietic cells is responsible for the neutrophilic inflammation following LPS- and 

house dust mite lysates, TLR4 on airway epithelial cells is mainly responsible for the 

eosinophilic airway inflammation following allergen sensitization and challenge (McAlees et 

al., 2015). 

Another possible explanation for the difference in LPS responses might be due to the 

difference in LPS concentrations. In the in vitro system in paper III, a synergistic effect 

between nicotine and LPS was seen at LPS concentrations of 10
-5

 mg/ml and 10
-4

 mg/ml, but 

not 10
-3

 mg/ml. This was possibly due to the ability of high LPS concentrations to saturate the 

TLR4 receptors and thereby mask the differences in response caused by different TLR4 

receptor density. A much higher LPS concentration (10
-1

 mg/ml) was used in the in vivo 

system in paper IV, compared to that used in vitro.  
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6.5 FUTURE ASPECTS   
 

In the present thesis, the inhibition of MAPK JNK with SP600125 attenuated nicotine-

induced AHR as well as the transcriptional upregulation of TLR in vitro. It might therefore be 

a promising target in the treatment of cigarette-smoke associated airway diseases.  

It is interesting to note that despite the current interest in p38 inhibitors un the treatment of 

COPD (Norman, 2015), no changes in p38 phosphorylation were seen in the in vitro nicotine-

exposure model and the upregulated TLR expression was selectively inhibited by the JNK 

inhibitor SP600125, but not by the p38 inhibitor SB203589. Our group has previously shown 

that cytokine-induced increase in AHR to bradykinin in vitro is also mediated via activation 

of JNK and the downstream transcription factor NF-κB which leads to increased expression 

of kinin receptors (Zhang et al., 2005; Zhang et al., 2004).  

The effect of the specific JNK inhibitor SP600125 has been studied in animal models with 

somewhat different results. It was found to reduce allergic cellular inflammation and ASM 

proliferation, but not AHR in a rat model of chronic allergen exposure (Eynott et al., 2003). 

While in another mice model, SP600125 was found to decrease allergen-induced AHR (Nath 

et al., 2005).  

Over 100 mediators have now been implicated in asthma and COPD inflammation. Blocking 

a single mediator is therefore unlikely to be very effective in this complex disease. So far, 

mediator antagonists have not proved to be very effective compared to drugs that have a 

broad spectrum of anti-inflammatory effects, such as glucocorticoids. MAPKs are therefore 

desirable targets as they are involved in a large number of intracellular activities including 

gene expression, apoptosis, differentiation, proliferation and oncogenesis. However, at the 

same time, with such a broad activity profile, it is not strange that inhibition of MAPK comes 

along with many side effects, a problem that troubles the clinical development of p38 

inhibitors (Adcock et al., 2004). 

One possibility to reduce the side effects could be the use of a combination of drugs in lower 

doses. Paper I revealed cross-talk between the JNK and PDE4 pathways. The PDE4 inhibitor 

Roflumilast is already approved for the treatment of COPD in the clinic. A combination of a 

PDE4 inhibitor with a JNK inhibitor can theoretically lower the concentration of JNK 

inhibitor required and thereby possibly also lower the risk of side effects.  

Paper IV highlighted the involvement of neuronal mechanisms in LPS-induced AHR and its 

modulation by long-term nicotine treatment. While one might not want to return to the 1950s 

and perform surgical denervation and vagotomy on asthma (Levine et al., 1950) and COPD 

(Abbott et al., 1953) patients, recent research find transient receptor potential channels to be 

promising targets. Transient receptor potential channels are mainly found on sensory nerve 

endings. Studies have shown a fivefold increase in the number of nerve profiles that express 

TRPV1 channels in airway biopsies from subjects with chronic cough compared with normal 

controls (Groneberg et al., 2004). Recent study using optogenetics found that activation of 
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TRPV1 positive nerves in the vagal ganglion dramatically exacerbated AHR of inflamed 

airways, which shows that the AHR phenotype can be physiologically dissociated from the 

immune component. The TRPV1 blocker JNJ17203212 (Bhattacharya et al., 2007) and the 

transient receptor potential ankyrin 1 blocker GRC 17536 (Mukhopadhyay et al., 2014; Ryan 

et al., 2014) are currently under development as anti-tussives. 

Paper V found ALK1 to be specifically upregulated in the tonsils of smokers. The effects of 

ALK1 inhibitors for the treatment of solid tumor cancer are currently under intensive study 

(Cunha et al., 2011). Our results suggest that ALK1 inhibitors could be effective for the 

treatment of smokers with tonsillar cancer, a group of patients characterized by poor disease 

prognosis and low response to current therapy.   

In conclusion, the results in the present thesis may contribute to the development of specific 

and personalized treatment strategies for patients exposed to cigarette smoke or nicotine. 
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7 POPULAR SCIENCE SUMMARY IN SWEDISH 

 

Det är välkänt att tobaksrök kan orsaka och förvärra sjukdomar i luftvägar. Tobaksrök ger 

upphov till ökad inflammation och ökad retbarhet i luftrören, så kallad luftvägshyper-

reaktivitet. Rökare svarar sämre på dagens behandlingar mot luftvägssjukdomar och cancer 

och därför är behoven av effektivare och individanpassade behandlingsstrategier stora. 

Tobakrökens negativa inverkan på luftvägarna har inte alltid varit självklart. Astmacigaretter 

innehållande en blandning av olika örter och i många fall också tobak har används under 

minst hälften av 1900-talet för att förebygga och behandla astmaattacker. Detta vittnar om 

den komplexa syn som funnits på tobaksrökens effekter på luftvägarna. De exakta 

mekanismerna bakom tobaksrökens verkan på luftvägshyperreaktivitet och inflammation är 

fortfarande ofullständigt kartlagda. 

Tobaksrök innehåller tusentals olika kemiska ämnen. Avhandlingen har valt att fokusera på 

två av de viktigaste komponenterna, nikotin och endotoxin. Den senare finns också i 

cellväggar hos bakterier och aktiverar det medfödda immunförsvaret. Effekter på lung-

funktionen och på isolerade luftrör av dessa två ämnen enskilt eller tillsammans har studerats 

på möss. Effekterna av tobaksrök studerades också i tonsiller från rökare och matchade icke-

rökare. Målet har varit att identifiera nyckelmolekyler i de signalvägar som är involverade i 

luftvägssjukdomar associerade med tobaksrök. Genom att selektivt hämma dessa signal-

molekyler hoppas vi att nya effektivare behandlingsalternativ skall kunna utvecklas. 

Delarbete 1-IV visar att korttidsexponering för nikotin minskar luftvägarnas förmåga att 

relaxera medan långtidsexponering ökar de glatta muskelcellernas sammandragningsförmåga. 

Långtidsexponering ökar också uttrycket av toll-lika receptorer på luftvägarna. Dessa 

receptorer är en del av vårt medfödda immunförsvar. Ökat toll-lika receptoruttryck ökar den 

glatta muskulaturens  känslighet för långtidsendotoxinstimulering men minskar känsligheten 

för korttidsendotoxinstimulering på nerver. Möss som har exponerats för nikotin under 28 

dagar minskar den endotoxin-inducerade luftvägshyperreaktiviteten. Detta antyder att 

nerverna kan spela en viktig roll i uppkomsten av luftvägshyperreaktivitet.  

Delarbete V visar att tonsiller från rökare uttrycker  höga nivå av interleukin 8 samt activin 

receptor-like kinase (ALK) 1 och 2. Nivåerna korrelerar med mängden lokal rökexponering. 

Interleukin 8 och ALK1 är involverade i såväl uppkomst som spridning av cancer och kan 

bidra till den negativa prognos som rökare med tonsillcancer har.  

Sammanfattningsvis, bidrar både nikotin och endotoxin till utvecklingen av luftvägs-

hyperreaktivitet. Nikotin modifierar dessutom det medfödda immunsystemet och påverkar på 

så sätt känsligheten för endotoxin. Tobaksrök förändrar ALK uttryck i tonsiller och tycks 

påverka cancerprognosen. Dessa resultat kan bidra till utvecklingen av individanpassade 

strategier för behandling av patienter som exponerats för tobaksrök eller ren nikotin, såväl 

aktivt som passivt.  
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