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Abstract: 

Receptor tyrosine kinases (RTKs) family is comprised of different cell surface glycoproteins. 

These enzymes participate and regulate vital processes such as cell proliferation, polarity, 

differentiation, cell to cell interactions, signaling, and cell survival. Dysregulation of RTKs 

contributes to the development of different types of tumors. RTKs deregulation in cancer has 

been reported for more than 30 RTKs. Due to critical roles of these molecules in cancer, the 

specific targeting of RTKs in malignancies is a promising approach. Targeted cellular and 

molecular therapies have been known as a new type of therapeutics, preventing tumor cell 

proliferation and invasion by interrupting with molecules necessary for tumor growth and 

survival. Specific targeting of RTKs using monoclonal antibodies (mAbs) in malignancies as well 

as in autoimmune disorders is of great interest. The growing number of mAbs approved by the 

authorities implies on the increasing attentions and applications of these therapeutic tools. Due to 

the high specificity, mAbs are the most promising substances that target RTKs expressed on the 

tumor cell surface. In this communication, we review the recent progresses in development of 

mAbs targeting oncogenic RTKs for cancer treatment.  

Keywords: Cancer, monoclonal antibody, receptor tyrosine kinase, targeted therapy 
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INTRODUCTION 

Current chemotherapy and radiotherapy modalities and the combinational regimens have 

improved the life quality of cancer patients. In spite of considerable progresses in the 

management and treatment of cancer patients; however, their applications have severe side 

effects on normal cells. Therefore, developing more specific drugs is important to overwhelm the 

current shortcomings of these modalities. In this context, targeted-based cancer therapy (targeted 

therapy) agents have significantly progressed and several drugs have got the approval of 

authorities for application in cancer therapy.  

The purpose of targeted cancer therapy is destroying tumor cells by targeting antigens expressed 

by the cells. Among several targets, receptor tyrosine kinases (RTKs) have distinct properties that 

make them suitable targets for therapy. RTKs have special biological features and structure for 

signal transduction [1]. RTKs with oncogenic property have no or minimum activity in normal 

cells, however their deregulations are seen in cancerous cells. RTK-like orphan receptor 1 (Ror1) 

is an example that is expressed at a noteworthy level during embryogenesis in neuronal and other 

fetal tissues [2]. It is also overexpressed on the surfaces of different tumor cells, including 

chronic lymphocytic leukemia (CLL) [3-5], acute myelogenous leukemia (AML), acute lymphoid 

leukemia (ALL), mantle cell lymphoma (MCL) [6], hairy cell leukemia (HCL) [6], melanomas 

[7, 8], and lung cancer [9].  

The RTKs roles have been extensively investigated in progression and metastasis of cancer [10, 

11]. Aberrant RTKs expression and activation are linked to cancer development, transformation 

and metastasis [12-14]. Currently, different RTKs are under intensive research for targeting 

tumor cells [15]. 

Monoclonal antibodies (mAbs) are the most specific and ideal tools for targeting cell-surface 

antigens expressed by tumor cells. Due to the high specificity of mAbs, they have fewer side 

effects compare to other agents such as cytotoxic drugs and small molecule inhibitors (SMIs). 

Furthermore, mAbs have different mechanism of action to destroy the targeted cells. Some 

antibodies disrupt the kinase signaling through inhibiting ligands and receptor internalization as 

well as preventing homo/hetero-dimerization of RTKs, which might result in direct apoptosis. 

Other mechanisms include effector cells activation [(antibody-dependent cell-mediated 

cytotoxicity (ADCC)], complement activation [complement dependent cytotoxicity (CDC)] and 

direct necrosis of malignant cells [4, 16-18].  
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Currently, several anti-RTK mAbs have shown proper therapeutic effects and thus were approved 

for cancer therapy. The most famous approved mAbs for targeting RTKs are specific to human 

epidermal growth factor receptor (EGFR), HER2 (ErbB2) and VEGFRs (Table 1). In this paper: 

1) the structure and function of selected RTKs appropriate for mAb therapy, 2) current mAbs 

applied for cancer therapy, and 3) promising mAbs targeting oncogenic RTKs in preclinical or 

clinical settings have been described.  

 

Table 1. Oncogenic RTKs for mAb targeted cancer therapy. 

RTK 
Chromosome 

location 

Mechanism of  

 overexpression  
Malignancies (examples) 

Development phase 

Preclinical Clinical trials 

ALK 2p23 Translocation NSCLC, colorectal carcinoma, breast, oesophageal and renal cell cancers + + 

AXL 19q13.1 overexpression 

AML, CML, NSCLC, lung, colon, breast, esophageal, thyroid and  

pancreatic cancers, gastrointestinal stromal tumors, astrocytoma-

glioblastoma 

+ - 

CCK4  6p21.1 Mutation 
Squamous cell carcinoma, small cell lung, breast,  colon and gastric cancers, 

AML 
+ - 

DDR1 6p21.33 
Mutation, 

overexpression 
NSCLC, breast and ovarian cancers, hepatocellular carcinoma, AML + - 

DDR2 1q23.3 Mutation 
Head and neck squamous cell carcinoma, breast and lung cancers, NSCLC, 

CML 
+ - 

EGFR1  7p11.2 
Mutation,  

overexpression 
Breast cancer, hepatocellular and head and neck squamous cell carcinomas + + 

EGFR2  17q12 
Mutation,  

overexpression 
Breast cancer, gastric adenocarcinomas + + 

EGFR3  12q13.2 
Mutation,  

overexpression 
Breast cancer + - 

EGFR4  2q34 
Mutation,  

overexpression 
Breast cancer, melanoma + - 

EPHA1 7q35 
Mutation,  

overexpression 
NSCLC, prostate cancer, esophageal squamous cell carcinoma + - 

EPHA2 1p36.13 
Mutation,  

overexpression Hepatocellular and  colorectal carcinomas, breast cancer, osteosarcoma  + - 

EPHA3 3p11.1 
Mutation,  

overexpression 
Glioblastoma, lung cancer, melanoma, ALL, T-cell leukemia, Hodgkins 

lymphoma 
+ - 

EPHA4 2q36.1 Mutation NSCLC, gastric cancer + - 

EPHA5 4q13.1 Mutation Breast cancer, hepatocellular carcinoma, ALL + - 

EPHA6 3q11.2 Mutation Renal cell carcinoma + - 

EPHA7 6q16.1 
Mutation,  

overexpression 
Hepatocellular carcinoma - - 

EPHA8 1p36.12 
Mutation,  

overexpression 
Colorectal carcinoma, liver tumors - - 

EPHA10 1p34.3 
Mutation,  

overexpression 
Breast cancer, CLL   

EPHB1 3q22.2 
Mutation,  

overexpression 
NSCLC, cervical and ovarian cancers  + - 

EPHB2 1p36.12 - Cervical and breast cancers, melanomas, hepatocellular carcinoma + - 

EPHB3 3q27.1 - NSCLC, breast cancer, colorectal carcinoma + - 

EPHB4 7q22.1 
Mutation,  

overexpression 
Breast, melanoma and glioma cancers + + 

EPHB6 7q33-q35 
Mutation,  

overexpression 
CLL, NSCLC, breast cancer   

http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000204580
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000162733
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000178568
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000142627
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000044524
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000116106
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000145242
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000080224
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000182580
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000196411
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ALK: anaplastic lymphoma kinase, ALL: acute lymphoblastic leukemia, AML: acute myeloid leukemia, CLL: chronic 

lymphocytic leukemia, CML: chronic myeloid leukemia, DDR: discoidin domain receptor, EGFR: epidermal growth factor 

receptor, EPH: ephrin receptors, FGFR: fibroblast growth factor receptor, IGFR: insulin growth factor receptor, INSR: 

insulin receptor, LTK: leukocyte tyrosine kinase, MCL: mantle cell lymphoma, HCL: hairy cell leukemia, MuSK: muscle-

specific kinase, NSCLC: non-small cells lung carcinoma, NTRK: neurotrophic tyrosine kinase, PDGFR: platelet-derived 

growth factor receptor, ROR: receptor tyrosine kinase-like orphan receptor, RYK: receptor related to tyrosine kinases, 

VEGFR: vascular endothelial growth factor receptor  [19].                  

 

FGFR1 8p12 Mutation Lung and breast cancers + + 

FGFR2 10q26.13 
Mutation,  

overexpression 
Lung, breast, thyroid, prostate cancer, cholangiocarcinoma, astrocytoma + + 

FGFR3 4p16.3 Mutation Bladder cancer, lung and head carcinomas + + 

IGF1R 15q26.3 
Mutation,  

overexpression 

CLL, breast and pancreatic cancers, hepatocellular and oral squamous cell 

carcinomas 
+ + 

IGF2R 6q25.3 
Mutations,  

overexpression 

Hepatocellular, squamous cell and colorectal carcinomas, breast, pancreatic 

and prostate cancers, NSCLC 
+ + 

FLT3 13q12.2 
Mutation,  

overexpression 
AML, acute promyelocytic leukemia + + 

INSR 19p13.2 
Mutation,  

overexpression 
Colorectal carcinoma, prostate cancer + + 

INSRR 1q23.1 
Mutation,  

overexpression 
Neuroblastomas + + 

KIT 4q12 Mutation AML, melanoma, ovarian carcinoma, gastrointestinal stromal tumors + + 

LTK 15q15.1 Mutation Gastric cancer, lymphomas and leukemias + + 

MER 2q13 Mutation Glioblastoma, hepatocellular carcinoma, astrocytoma + + 

MET 7q31.2 
Mutation,  

overexpression 

Hepatocellular carcinoma, CLL, breast, pancreatic and lung cancers, gastric 

adenocarcinoma 
+ + 

MUSK 9q31.3 
Mutation,  

overexpression 
Ovarian cancer - - 

NTRK1  1q21-22 

Translocation, 

mutation,  

overexpression 

  Thyroid and breast cancers, lung adenocarcinoma, colorectal and oral 

squamous cell carcinomas 
+ + 

NTRK2  9q22.1 Translocation Neuroblastoma, astrocytoma, oral squamous cell carcinoma + + 

NTRK3  15q25.3 Translocation Neuroblastoma, breast cancer + + 

PDGFRA 4q12 Mutation Lung adenocarcinoma, gastrointestinal stromal tumors + + 

PDGFRB 5q32 Mutation Gastrointestinal stromal tumors, glioblastoma + + 

RET 10q11.2 Mutation NSCLC, medullary thyroid carcinoma + + 

RON  3p21.31 
Mutation,  

overexpression 

Pancreatic and breast cancers, NSCLC, laryngeal and head and neck 

squamous cell carcinomas 
+ + 

ROR1 1p31.3 Overexpression 
CLL, ALL, AML, MCL, HCL, melanoma, prostate, lung, breast, pancreatic, 

colon, ovarian, and uterus cancers 
+ + 

ROR2 9q22.31 Mutation 

Melanoma, medulloblastoma, leiomyosarcoma, gastrointestinal stromal 

tumor, hepatocellular, renal cell and head and neck carcinomas, 

osteosarcoma, prostate, testicular, colon cancers  

+ - 

ROS1 6q22 
Deletion, inversion, 

translocation 

NSCLC, cholangiocarcinoma, ovarian and gastric cancers, colorectal 

carcinoma 
+ - 

RYK 3q22.2 Translocation, mutation CML, ovarian cancer + - 

TEK 9p21.2 Mutation Bladder cancer, glioblastoma, AML + - 

TIE 1p34.2 Mutation Glioblastoma + - 

TYRO3 15q15.1 Mutation Melanoma, colon, thyroid, and breast cancers + - 

VEGFR1  13q12.3 
Mutation,  

overexpression 
Ovarian cancer, NSCLC, colorectal carcinoma + + 

VEGFR2   4q12 
Mutation,  

overexpression 
Renal cell and hepatocellular carcinomas + + 

VEGFR3  5q35.3 
Mutation,  

overexpression 
Ovarian and gastric cancers, bladder carcinoma + + 

http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000122025
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000157404
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000062524
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000153208
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000030304
http://www.ncbi.nlm.nih.gov/pubmed/22886570
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000163785
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000120156
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000066056
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000092445
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000102755
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000037280
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RECEPTOR TYROSINE KINASES (RTKs) 

The large family of RTKs consists of cell surface receptors discovered more than 25 years ago 

[20] which are divided into 20 sub-families with 58 members [21]. These receptors are involved 

in crucial processes, for instance in cell proliferation, differentiation, cell-cell interaction, 

migration, signaling, metabolism and survival [22]. RTKs structure consists of 3 distinct regions, 

including extracellular, transmembrane and cytoplasmic domains [23]. The extracellular part of 

RTKs contains the ligand binding site that interacts with the surface, soluble and extracellular 

matrix proteins [24]. This part is also involved in the RTKs dimerization that is critical for the 

activation of tyrosine kinase (TK) in the cytoplasmic portion of the RTKs [14, 19, 25]. The 

extracellular regions of RTKs have a combination of several globular domains, including 

immunoglobulin (Ig)-like, cysteine-rich,  fibronectin type III-like, EGF-like, and Sema domains 

[23]. The cytoplasmic part consists of a lipophilic transmembrane helix and is followed by 

different regions such as the TK domain and carboxy-terminal region. Several serine and tyrosine 

residues at the cytoplasmic region are phosphorylated following ligand binding to extracellular 

part. Indeed, these serine and tyrosine residues serve as docking sites for proteins having Src 

homology (SH) 2 domain to regulate RTKs catalytic function [14, 19, 26]. Among different 

regions of RTKs, the TK domain shows the highest conservation level [27]. Adenosine 

triphosphate (ATP) binding site mutations might change the activity of receptor and consequently 

inactivate the biological function of the receptor that might change the RTK to pseudo-RTK 

without or with low enzymatic activity [26, 28]. The carboxy-terminal tail of RTKs is the most 

distal and non-catalytic part. This region has the highest degree of heterogeneity in length and 

sequence, even among members of the same RTK subclass. The carboxy-terminal tail contains 

tyrosine residues that are phosphorylated by intracellular kinases. Some reports have shown the 

crucial role of C-terminal part in modulating kinase activity that provides proper conformation 

for TK domain [26].  

Aberrant activation of RTKs owing to receptor overexpression, gene amplification, impaired 

downregulation, chromosomal translocation, and mutations contribute to cancer development  

and progression [19, 29, 30]. RTKs dysregulation have been reported for more than 30 RTKs 

(Table 1) [13]. These changes in the structure of RTKs make these receptors become potent 

oncoproteins, leading to the neoplastic alteration [13, 30]. 

In the following sections, different RTKs that are proper for mAb targeting have been described. 
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RTKs: PROPER TARGETS FOR CANCER THERAPY 

EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)  

EGFR (ErbB-1/HER1), HER2/neu (ErbB-2), HER3 (ErbB-3), and HER4 (ErbB-4) are EGFR 

(ErbB) family members that play important roles in the normal cell functions regulation. 

Overexpression and mutation are involved in EGFR abnormal activation that is related to several 

tumors development. Therefore, specific inhibition of EGFR is one of the key targets for cancer 

treatment. In this context various mAbs have been approved for targeting solid tumors that 

overexpress the members of this family. Due to the overexpression of EGFR family members, 

mAbs targeting these RTKs are appropriate drugs for the treatment of several malignancies 

(Table 2) [31, 32]. 

Cetuximab (Erbitux) is a chimeric anti-EGFR mAb approved on February 12, 2014 for metastatic 

colorectal carcinoma (mCRC) patients refractory to irinotecan-based chemotherapy. Cetuximab 

was the first mAb approved to treat this type of cancer and is indicated in combination therapy 

with irinotecan, a chemotherapy drug approved for colorectal cancer treatment, or alone if 

irinotecan is intolerable for patients [33]. Cetuximab is prescribed as second- or third-line of 

therapy in mCRC [33] and the head and neck squamous cell carcinoma [32]. Moreover, on July 

6, 2012, the FDA approved cetuximab in combination with chemotherapy drugs (irinotecan, 5-

fluorouracil, and leucovorin) for application as first-line treatment of EGFR-expressing mCRC 

patients having wild-type K-ras (mutation-negative) (http://www.fda.gov). Cetuximab inhibited 

the binding of activating ligand to EGFR and also prevented receptor dimerization, leading to 

disruption of the signal transduction cascade [34].  

 

Table 2. Current therapeutic monoclonal antibodies for targeted-based cancer cell therapies. 

Name Trade name Target 
Antibody 

format 
Malignancy 

Stage for treatment 

Preclinical Clinical trial Approved for treatment 

AVE1642 ND IGF1R Humanized IgG1 
NSCLC, multiple myeloma, Ewing's 

sarcoma 
+ I NY  

Bevacizumab Avastin VEGF Humanized IgG1 
Glioblastoma, NSCLC, metastatic colon 

and kidney cancer 
+ I-IV + 

Cetuximab Erbitux EGFR Chimeric IgG1 
Head and neck squamous cell carcinoma, 

MCC 
+ I-IV + 

Cirmtuzumab 

(UC-961) 
ND ROR1 Humanized IgG1 CLL + I  + 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045467&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045391&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000635764&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000635764&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045750&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044397&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046063&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000597171&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000597171&version=Patient&language=English
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Cixutumumab 

(IMC-A12) 
ND IGF1R Fully human IgG1 

Thymic carcinoma, soft tissue sarcomas, 
osteosarcoma, breast cancer, Ewing's 

sarcoma 

+ I-II NY 

Dalotuzumab 

(MK-0646,) 
ND IGF1R Humanized IgG1 Advanced colorectal carcinoma, NSCLC + I-II NY 

Figitumumab 

(CP-751871) 
ND IGF1R Fully human IgG1 

Adrenocortical carcinoma, NSCLC, 
multiple myeloma 

+ I NY 

Ganitumab ND IGF1R Fully human IgG1 Metastatic solid tumors + I-II NY 

Narnatumab 

(IMC-RON8) 
ND RON Humanized IgG1 Advanced solid tumors + I NY 

Onartuzumab 

(MetMAb) 
ND MET Humanized IgG1 Advanced NSCLC + II NY 

Panitumumab Vectibix EGFR Fully human IgG1 Metastatic colon cancer + I-IV + 

Pertuzumab Perjeta HER2 Humanized IgG1 Metastatic breast cancer + I-IV  + 

PF-03446962 ND ALK1 Humanized IgG2 

HCC, Advanced malignant pleural 

Mesothelioma, relapsed or refractory 
urethelial cancer 

 

+ NY NY 

RG1507 ND IGF1R Fully human IgG1 Metastatic NSCLC + I-II  NY 

Robatumumab 

(SCH717454) 
ND IGF1R Humanized IgG1 Advanced colorectal carcinoma, NSCLC + I-II  NY 

Trastuzumab  
Herceptin 

(Herclon) 
HER2 Humanized IgG1 

Breast cancer, gastric adenocarcinoma, 

gastroesophageal junction adenocarcinoma 
+ I-IV  + 

Trastuzumab 

emtansine 
Kadcyla HER2 Humanized IgG1 Advanced breast cancer + I-IV + 

CLL: chronic lymphocytic leukemia, EGFR: epidermal growth factor receptor, HCC: hepatocellular carcinoma, 

HER: human epidermal growth factor receptor, IGFR: insulin growth factor receptor, MCC: metastatic colorectal 

carcinoma, ND: not defined, NSCLC: non-small cells lung carcinoma, NY: not yet, ROR: receptor tyrosine kinase-

like orphan receptor, VEGFR: vascular endothelial growth factor receptor 

 

Panitumumab (Vectibix) is a fully human mAb specific for EGFR used as second- or third-line of 

the treatment for mCRC patients akin to cetuximab [33, 35]. This mAb was approved on 

September 27, 2006, for EGFR-expressing mCRC cases with cancer progression or following 

chemotherapy regimens containing fluoropyrimidine, oxaliplatin, and irinotecan 

(http://www.fda.gov/). Panitumumab in combination with chemotherapy might also be useful for 

NSCLC patients treatment [36]. The mechanism of action is similar to cetuximab, but it does not 

promote ADCC [37]. Panitumumab in combination with folinic acid, fluorouracil, oxaliplatin has 

also been approved as first-line therapy in mCRC patients [38]. 

The ErbB-2/HER2, another EGFR family member, has intensively been investigated as an 

important RTK which is overexpressed and/or hyperactivated in various malignancies. The 

extracellular region of the receptor is divided into four domains. No ligand has been recognized 

for HER2. HER2 overexpression can transform cells in a ligand-independent manner which 

http://www.cancer.gov/cancertopics/druginfo/fda-pertuzumab
http://www.cancer.gov/cancertopics/druginfo/trastuzumab
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000302458&version=Patient&language=English
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makes it unusual member in ErbB family [39]. The HER2 importance in targeted therapy is 

highlighted by several molecular and pathological outcomes. HER2 amplification is related to the 

processes of tumorigenesis and pathologic features such as tumor size, invasion, and metastatic 

spread. HER2 has higher expression and activity in metastatic tumors than in non-aggressive 

tumors [40]. HER2 overexpression is found in 10-34% of invasive breast cancers  with a poor 

prognosis [41]. Furthermore, overexpression of HER2 has been detected in several tumors such 

as lung, ovary, salivary gland, prostate, colon, and pancreatic cancers [40] as well as in 

hematologic malignancies such as ALL and AML [42].  

Trastuzumab (Herceptin) was the first anti-HER2 mAb approved for application in HER2
+
 breast 

cancer patients [43]. Trastuzumab is a humanized IgG1 mAb and has shown a 35% response rate 

in metastatic breast cancer (MBC) patients who received no earlier chemotherapy [44]. A phase 

III clinical trial on MBC patients with HER2 amplification has showed that trastuzumab with 

chemotherapy combinational regimen was associated with a few months delay in disease 

progression (median, 7.4 vs. 4.6 months), a higher rate of objective response (50% vs. 32%) and 

survival (median, 25.1 vs. 20.3 months) [45]. Trastuzumab was approved on September 25, 1998 

by the FDA for MBC patients with HER2 protein overexpression and who have received 

chemotherapy drugs for metastatic disease treatment (http://www.fda.gov/). In January 2010, the 

European Medicines Agency (EMA) approved trastuzumab in combination with chemotherapy 

for the treatment of metastatic stomach adenocarcinoma or gastroesophageal junction with HER2 

overexpression [46]. Trastuzumab acts via inhibition of receptor homo/hetero-dimerization, 

internalization and endocytic destruction [47, 48]. Although trastuzumab is well-accepted as the 

standard drug in the breast cancer therapy, up to 40% of MBC patients do not respond to 

trastuzumab and in those who respond, the median progression time is less than one year [49, 50]. 

Moreover, acquired trastuzumab resistance is a serious concern ending in disease progression 

[50, 51]. In general, these limitations call for design of new and superior mAbs for MBC therapy. 

Pertuzumab (Perjeta) is a newly approved anti-HER2 mAb that prevents ligand-dependent 

HER2:HER3 dimerization and reduces intracellular signaling pathways [52]. Pertuzumab 

received approval for the treatment of HER2
+
 MBC patients in June 8, 2012. The combination of 

pertuzumab, trastuzumab and docetaxel has been found to have an overall survival benefit in 

HER2
+ 

MBC patients used in the first-line setting [53]. Recently, the FDA approved the 

combination of trastuzumab, pertuzumab, and docetaxel as first-line treatment for MBC patients 
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(http://www.fda.gov/). At present, pertuzumab in combination with trastuzumab and platinum-

fluoropyrimidine is under study in a phase II clinical trial as a first-line therapy in gastric cancer 

[54].  

Fourth HER2-targeted agent, trastuzumab emtansine (T-DM1, Kadcyla) was approved on 

February 22, 2013, as a single agent for HER2
+ 

MBC patients, who have received trastuzumab 

and/or a taxane [55]. 

 

VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF) 

VEGF-A (usually referred to VEGF), VEGF-B, VEGF-C, VEGF-D, and placental growth factor 

are members of VEGF family that are expressed by various solid tumors [56]. Members of this 

family induce angiogenesis through binding to VEGFR1-3 expressed on the vascular 

endothelium. Angiogenesis is defined as a controlled process accountable for new blood vessels 

formation and is correlated to advanced-stage disease as well as clinically aggressive tumor 

subtypes [56]. Angiogenesis regulation is achieved by a variety of endogenous activators and 

inhibitors during the normal physiological processes such as the menstrual cycle and wound 

healing [57]. VEGF is predominate stimulator of angiogenesis during physiological condition 

such as embryogenesis, skeletal growth and reproductive functions as well as pathological 

angiogenesis associated with solid tumors [56]. Inhibition of angiogenesis prevents tumor 

expansion, survival and metastasis. In this perspective, blocking tumor cells angiogenesis is the 

main focus of several drug discoveries for solid tumors.  

 

Bevacizumab (Avastin), an angiogenesis inhibitor, is an anti-VEGF humanized mAb that 

prevents binding of VEGF to VEGFRs and was approved for the treatment of MBC [58], mCRC 

[59] and NSCLC [60] patients in combination with cytotoxic chemotherapy [37, 61]. 

Bevacizumab is also used in combination with IFN-α in metastatic renal cell carcinoma therapy 

[62, 63]. Combination of bevacizumab and chemotherapy drugs has improved the survival of 

patients with mCRC and NSCLC compared to chemotherapy alone [64, 65]. Bevacizumab 

increased overall survival of mCRC patients 4.7 and 2.1 months following first-line and second-

line therapies, respectively as described in a phase III clinical trial  [66]. The increasing use of 

bevacizumab has resulted in the appearance of bevacizumab-resistant tumor cells as a result of 
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the upregulation of other angiogenic factors [67]. These findings proposed requisite for targeting 

cancer cells via multi-targets to inhibit compensatory mechanisms in tumor escape. 

 

INSULIN GROWTH FACTOR RECEPTOR (IGFR) 

The insulin-like growth factor 1 receptor (IGF1R) is a member of RTK family ubiquitously 

expressed in most human cells with the exception of  hepatocytes and mature B lymphocytes 

[68]. The IGF1R is activated by its ligands insulin-like growth factor (IGF)-1 and -2 and plays 

important roles in cell proliferation control in mammalian cells in vitro and in vivo, regulation of 

lipids, proteins, and carbohydrates metabolism and the maintenance of glucose homeostasis [69, 

70]. IGF-1 has a critical function in hypertrophy of skeletal muscle and other target tissues 

mainly through IGF1R. Mice lacking IGF1R die in late stage of development showing the strong 

growth-promoting effect of this RTK [69].  

The IGF1R is dysregulated in several cancers such as lung, prostate and breast cancers [71]. The 

anti-apoptotic effects of IGF1R raised tolerance to SMIs and cytotoxic drugs. In breast cancer, 

IGF1R expression induced tumor cell resistance to EGFR inhibitors like erlotinib. It is described 

that crosstalk between EGFR and IGF1R and the common signaling pathway are the main reason 

for tumor cell resistance [72]. Importantly, in prostate cancer IGFIR signaling is crucial for cell 

survival and growth when cancer cells progress to androgen independence [73]. 

 

Currently, several anti-IGF1R mAbs are under study for application in solid tumors treatment. 

Ganitumab (AMG 479) is one of the successful mAbs for targeting IGF1R
+
 tumors. The safety, 

maximum-tolerated dose (MTD), pharmacokinetics, and evidence of anti-tumor activity have 

been studied in several trials [74]. Fatigue, fever, thrombocytopenia, chills, rash, and anorexia 

were the most common adverse effects. A maximum dose of 20 mg/kg was shown to be safe and 

anti-tumor effects were promising [74]. A phase II study evaluated the ganitumab monotherapy 

safety and efficacy in metastatic Ewing family or desmoplastic small round cell tumors. Of 35 

subjects examined for response, partial response and disease stability were observed at 5% and 

48% of patients, respectively [75]. In metastatic pancreatic cancer, the ganitumab efficacy and 

safety were evaluated in a phase II clinical trial. Ganitumab was well-tolerated and improved 6-

month overall survival rate in 57% of patients [76].  
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Cixutumumab (IMC-A12) is a fully human IgG1 mAb specific to the IGF1R with potential anti-

tumor effects. This mAb prevented the binding of the IGF-1 to IGF1R and inhibited the 

activation of phosphoinositol 3-kinase (PI3K)/Akt signaling pathway and reduced the survival of 

cancer cell followed by induction of apoptosis [77]. The effects were tested in several cancers, 

including thymic, head and neck and hepatocellular carcinomas, soft tissue sarcomas, 

osteosarcoma, breast, prostate, islet cell, and pancreatic cancers (Table 2) [77]. 

RG1507 is another fully human IgG1 mAb specific for IGF1R which was assessed in a phase I 

trial in children with relapsed or refractory solid tumors. Although, dose-limiting toxicities were 

not observed, no objective responses were seen [78]. Dalotuzumab (MK-0646) [79], figitumumab 

(CP-751871) [80], robatumumab (SCH717454) [81], and AVE1642 [82] are other anti-IGF1R 

mAbs that have been evaluated in several malignancies in preclinical stages with promising 

results. 

 

Axl RECEPTOR TYROSINE KINASE 

Axl is a member of the TAM (Tyro3, Axl and Mer) family [83]. The TAM members are 

distinguished by having a conserved sequence in the TK domain and adhesion molecule‐like 

domains in the extracellular part [83]. Almost the entire ectodomain of TAM members comprise 

of Ig-like and fibronectin type III domains. These structures are vital in cell to cell contacts and 

are similar to the structure of neural cell adhesion molecule which consists of five Ig domains and 

two fibronectin type III domains [83]. TAM members are involved in the clearance of apoptotic 

cells. Protein S and growth arrest-specific factor 6 (GAS6), bind to the apoptotic cells surface and 

directly bind to TAM members expressed on phagocytes and finally engulf and clear apoptotic 

cells [84]. Axl is overexpressed in several cancers, including Burkitt’s lymphoma [85], CLL [86], 

hepatocellular carcinoma [87], multiple myeloma [88], breast [89], and pancreatic cancers [90] 

and is correlated with cancer poor prognosis [91]. Axl is involved in proliferation and invasion of 

tumor cells, mainly in pancreatic carcinoma [90].  

Currently, anti-Axl mAbs are under investigation in preclinical stages. Two anti-Axl mAbs (D9 

and E8), have been shown to hamper Axl activity and stopped pancreatic cancer cells 

proliferation and migration. These mAbs inhibited Axl phosphorylation and Akt pathway 
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downstream with no effect on GAS6 binding, reduced the expression of Axl due to 

internalization in pancreatic cells. Anti-Axl mAbs therapy in xenografted mice declined 

subcutaneous and orthotopic pancreatic tumor xenografts growth [92]. 

 

DISCOIDIN RECEPTOR (DDR)  

Discoidin receptors (DDR1 and DDR2) are two closely related RTKs that contain a discoidin 

homology domain in their extracellular regions [93, 94]. The DDRs were firstly identified by 

homology cloning based on their catalytic kinase domains, and then different types of collagen 

were recognized as DDR functional ligands [93, 95].  

Human DDR1 coding gene is located to chromosome 6 between the HLA-E and HLA-C genes 

[96]. Structurally, DDR1 has a discoidin homology domain which contains the collagen binding 

site, a discoidin-like domain which involves in collagen-induced receptor activation. DDR1 

transmembrane domain mediates collagen-independent receptor dimerization and a large 

intracellular part with phosphorylated tyrosines that may serve as docking sites for DDR binding 

proteins and a TK domain [97].  

DDRs play roles in the regulation of critical cellular processes like cell differentiation, 

proliferation, migration and survival [98]. They control remodeling of extracellular matrixes by 

modulating the expression and activation of matrix metalloproteinase (MMP) [98]. Indeed DDRs 

are exclusively located on the cells to be sensors for extracellular matrix and also to be a 

regulator of a wide range of cell functions as mentioned above [97]. 

The DDR1 transcript is expressed in several normal tissues, restricted to epithelial cells with the 

highest level in lung, brain, spleen, kidney, and placenta [98-100]. Mutations and altered 

expression of DDRs are observed in many cancer types implies that they might be involved in the 

development and progression of cancers [97]. DDR1 upregulation has been reported in several 

types of cancers for instance in NSCLC [101], primary and MBC [99], brain tumors [102], 

ovarian [103, 104], and prostate cancers [105]. It is worthy to consider that findings related to the 

DDR1 expression encounters conflicting results in breast cancer [106]. DDR1 can be inhibited by 

imatinib, ponatinib and DDR1-IN-1 (selective type II inhibitor) inhibitors may have application 

in malignancies such as lung cancer [107-109]. However, currently no specific therapeutic mAb 

to this molecule has been developed [110].   
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EPHA and EPHB  

Eph family receptor interacting proteins (Eph receptors) represent the largest family of RTKs 

[111]. Eph receptors are segregated into the two subclasses A (EphA1–A8, EphA10) and B 

(EphB1–B4, EphB6) according to their extracellular sequence homology, binding affinity and 

structure [112, 113]. The Eph ligands, ephrins, are divided into ephrin A (GPI anchored proteins) 

and ephrin B (transmembrane proteins) groups, based on their structure and sequence similarities 

[112, 114]. Cell to cell interactions are necessary in Eph activation through ephrin ligands 

binding because all Eph receptors and their ligands are membrane-bound proteins [111]. Eph and 

ephrins interactions lead to a bidirectional signaling in both the receptor and the ligand bearing 

cell [115]. 

Eph receptors are involved in a broad range of biological functions, including angiogenesis, cell 

attachment and cell segregation [116]. For instance, the Eph receptors have significant roles in 

the neuronal and vascular networks establishment during embryonic development and regulation 

of excitatory synapses function [117]. Eph receptors play functions in a variety of aspects of the 

tumor formation, including tumorigenesis, proliferation and metastasis [113, 118-120].  

Regarding the expression profile, the Eph receptors/ephrins family has wide expression in adult 

tissues with organ-site-specific patterns. For instance EphA6, EphA8 and EphB1 transcripts have 

unique pattern in normal brain and testis [121]. The Eph receptors protein expression is 

downregulated in normal adult tissues [122, 123]. Eph and ephrin proteins are expressed at lower 

levels in adult comparing with embryonic tissues. This low-level expression may play a function 

in architecture of the kidney, the vasculature and the adult gut [124, 125]. On the contrary, Eph 

receptors and ephrins are relatively expressed at high level in the adult's brain [124, 126].   

Eph receptors and ephrins are differentially expressed in a variety of human cancers [111]. For 

instance, EphA2 overexpression has been reported in breast, colorectal, prostate, lung, 

hepatocellular, and gastric and brain tumors [124, 125, 127]. Moreover, Eph receptors expression 

has been found in several leukemias such as AML [128].    

Base on Eph receptors characteristics, there is a focus on Eph targeted cancer therapy. A fully 

human mAb (1C1) targeting EphA2 has been generated by Jackson et al [129]. 1C1 selectively 

bond to EphA2 and stimulated tyrosine phosphorylation, internalization and degradation of the 
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EphA2 receptor. Considering this internalize, an antibody-drug conjugate (ADC) has been 

prepared as a vehicle for delivery of cytotoxic drug to the cancer cells. EphA2 ADC selectively 

targeted and inhibited the growth of endometrial and ovarian malignant cells expressing EphA2 

in vitro and in vivo [129-131]. After success in preclinical studies, this anti-EphA2 

immunoconjugate has been studied in clinical trial phase I. Clinical trial data showed that the 

immunoconjugate did not have safety profile and the trial was terminated due to treatment-related 

bleeding and coagulation events [132]. Although findings were disappointing; however, targeting 

other Eph family members by mAbs is still ongoing. In this context, recently anti-EphA10 mAb 

has been introduced that significantly inhibited breast cancer cells proliferation and proposed 

EphA10 as a promising target for breast cancer therapy [123].  

 

Met oncogene 

c-Met, also named Met is a proto-oncogene that encodes hepatocyte growth factor receptor 

(HGFR). The coding gene is located on chromosome 7q31. Met is the hepatocyte growth factor 

(HGF)  high affinity receptor which is structurally composed of  α and β chains disulfide-linked 

heterodimer with 45 and 145 kDa mass, respectively. The α chain and the N-terminal of the β 

chain form the extracellular region of Met [133]. Met is a master regulator RTK of cell survival, 

growth, differentiation, mobility, and cell division and have an essential role in normal 

development [134]. During embryogenesis, HGF and Met expression are vital for cell growth, 

development of hepatocytes, placental trophoblasts, and myoblasts [135, 136]. After birth,  

activation of the HGF-Met pathway appears to be involved in hepatic, renal, and other organ 

regeneration after injury, epithelial-mesenchymal transition (EMT) and wound healing [137]. 

Met and HGF interaction results in autophosphorylation of several key tyrosine residues, which 

recruit different downstream molecules, including phosphorylation of tyrosine residues 1234 and 

1235 in the kinase domain that is crucial for kinases activation [137]. Activated Met 

phosphorylates and binds to growth factor receptor-bound protein 2 (Grb2) and Grb2-associated 

binding protein 1 (Gab1), acting as a scaffold protein and stimulating Met interactions with 

molecules involved in the PI3K/Akt, the signal transducer and activator of transcription factor 

(Stat), the mitogen-activated protein kinase (MAPK) and the NF-κB pathways [137].  

Altered Met levels, and activity have been noted in several cancers, such as renal, colon, 

melanoma, and breast cancers [137]. Met is dysregulated in tumors by gene amplification, 
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translocation, mutation, and overexpression of Met and HGF proteins. Met dysregulation is 

correlated with an increased tendency for metastatic disease and poor overall survival. Blocking 

Met or HGF leads to cell growth inhibition and apoptosis induction and tumor cells necrosis. 

Therefore, targeting HGF and Met is an area of active research [138]. Several mAbs targeting 

Met have been developed with promising results in cancer therapy.   

Onartuzumab (MetMAb) is an affinity-matured and humanized monovalent mAb that binds to 

the Sema domain of Met. It has been demonstrated that onartuzumab blocked HGF binding and 

prevented Met phosphorylation and signaling. Biochemical data and crystallography of 

onartuzumab antigen-binding site has shown that it binds to  extracellular domain of Met. 

Therefore, onartuzumab specifically blocks binding of HGF α-chain to Met [139]. These finding 

propose that α-chain dimerization on Met leads to Met signaling activation [139]. In a KP4 

pancreatic tumor cell mouse xenograft model onartuzumab suppressed tumor cell growth, 

decreased the Met phosphorylation and increased the mice survival [140]. Observing the 

effectiveness of onartuzumab in the animal model led to start clinical trials.  

A dose-escalation phase I clinical trial checked the effects of onartuzumab and its combination 

with bevacizumab in 43 advanced solid tumors patients [140]. Onartuzumab half-life was 11 

days, and no adverse effects were observed in combination with bevacizumab. Mild adverse 

reactions were hypo albuminuria, fatigue and peripheral edema [140]. In a phase II study, 

onartuzumab and erlotinib combination was evaluated in advanced NSCLC patients after initial 

therapy [141]. Patients randomly received 15 mg/kg onartuzumab every three weeks in 

combination with 150 mg erlotinib daily. Combination of onartuzumab with erlotinib showed a 

considerable improvement in progression free survival (1.5 to 2.9 months) and median overall 

survival from 3.8 to 12.6 months [141]. Interestingly, onartuzumab has been shown to be 

effective in EGFR-driven tumors acquire resistance to erlotinib [142]. In another phase II clinical 

trial, onartuzumab in combination with erlotinib was used in advanced and previously treated 

NSCLC patients [142]. This combination improved progression free survival and overall survival 

of patients with Met-overexpressed tumors [142]. Currently, a phase III clinical trial is testing the 

onartuzumab and erlotinib combination in NSCLC (http://clinicaltrials.gov).  

In a recent study, p21-activated kinase 1 (PAK1) which is a central protein in pancreatic 

adenocarcinoma cells survival and downstream signaling pathways has been shown to be 

responsible for resistance to anti-Met mAbs and SMIs (such as onartuzumab and crizotinib, 
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respectively). In human, PAK1 expression has been shown to be highly associated with Met 

expression and is linked to tumor metastasis [143]. PAK1 inhibition blocked signaling to 

cytoskeletal effectors and tumor cell motility driven by HGF/Met. Combination of anti-Met 

mAbs with PAK1 inhibitors has been shown to overcome resistance mediated by PAK1. 

Inhibition of PAK1 attenuated in vivo tumor growth and metastasis in a model of pancreatic 

adenocarcinoma [143].  

CE-355621 mAb is another anti-Met mAb that inhibited ligand-dependent activation of Met in 

A549 cell line. This mAb antagonized Met function by inhibiting the receptor activation and 

downregulating of downstream signaling pathways. In multiple xenograft tumor models, 

significant inhibition of Met activity and consequently tumor growth has been demonstrated. For 

instance, CE-355621 has been shown to inhibit up to 98% of U87MG glioblastoma cell and 

GTL-16 gastric cancer cells growth in xenograft models [144].   

 

RECEPTEUR D’ORIGINE NANTAIS (Ron)  

The Ron (macrophage-stimulating protein receptor, MST1R) RTK belongs to Met family kinase. 

Ron stimulates proliferation, survival, cell migration, and invasion in the presence of ligand 

[145]. Ron also plays a role in the innate immunity by regulating macrophages migration and 

phagocytic activity [145]. It is expressed on epithelial cells and macrophages and controls the 

inflammatory response to various insults. All functional responses mediated by Ron and Met are 

initiated by their respective ligand [145]. Ron is produced as a single premature 180 kDa chain 

and then is cleaved into a 160 kDa β-chain and a 40 kDa α-chain. The α-chain is bound to the 

extracellular region of the β-chain by a disulfide bridge [146]. The Sema domain on the N-

terminal of the Ron binds to HGF and macrophage stimulating protein (MSP) as ligands [147]. 

Subsequently, ligand binding induces Ron autophosphorylation that generates docking sites for 

downstream signaling molecules. Activated Ron interacts with the PI3K subunit PIK3R1, 

phospholipase C (PLC) γ1 or the adapter Gab1. Then, these downstream effector molecules 

recruit and activate the Ras/Erk, PI3K/Akt axis or PLCγ/PKC signaling pathways [147]. Ron 

signaling promotes epithelial cell proliferation, migration and survival at the wound site which 

stimulates wound healing process [147].  
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Ron expression profile in malignancies showed that it is overexpressed in several cancers, 

including pancreatic cancer cells and pancreatic cancer stem cells [148, 149], rectal cancer [150], 

and DLBCL [151]. Lack of both Met and Ron expression was shown to be associated with 

inferior overall survival in DLBCL patients [151]. Moreover, abnormal overexpression of Ron 

induced the generation of oncogenic variants such as Ron160 and Ron165. Currently, seven Ron 

oncogene variants have been recognized which are produced by alternative splicing or protein 

truncation [152-154].  Ron160 is expressed in primary invasive ductal, lobular and lymph node-

involved breast cancer cells [154]. This variant is mostly observed in invasive ductal and lymph 

node-involved cases. Blocking of Ron160 signaling by PHA665752 inhibitor blocked Du4475 

cell anchorage-independent growth and prompted apoptotic cell death. In addition, PHA665752 

inhibitor prevented 3T3-Ron160 and Du4475 cell-mediated tumor cell growth implanted in 

mouse mammary fat pad [154]. 

Ron has been considered as a RTK for mAb targeting. In this milieu, anti-Ron mAbs inhibited 

60% of subcutaneous and orthotopic tumor growth in nude mice model [155]. Likewise, anti-Ron 

antibody has also been demonstrated to be suitable for delivery of chemotherapeutics agents to 

the cancer cells. Anti-Ron mAb Zt/c9 doxorubicin immunoliposomes (Zt/c9-Dox-IL) has been 

shown to direct the toxin into the pancreatic CSCs (CD24
+
CD44

+
ESA

+
). Zt/c9-Dox-IL binding to 

Ron expressed on CSCs rapidly stimulated Ron internalization that led to doxorubicin uptake and  

subsequently reduced the viability of CSCs [149]. 

The inhibitory effects of anti-Ron mAbs have been examined in colon cancer. Zt/g4 mAb 

downregulated Ron expression in SW620 colon cancer cell line both in concentration and time 

dependent manner. Antibody-induced receptor internalization is the mechanism of Ron 

downregulation. Ron downregulation led to intracellular signaling inhibition by decreasing 

Erk1/2 and Akt phosphorylation. Moreover, Zt/g4 mAb changed SW620 cell morphology and 

affected its colony formation and increased its sensitivity in response to gemcitabine-induced 

cytotoxicity.  

Anti-Ron mAb Zt/f2 targets an epitope located in a 49 amino acid residues of the β-chain 

extracellular domain of Ron [156]. This sequence is vital in Ron maturation and activation 

regulation. In mice models, Ron targeting by anti-Ron mAb Zt/f2 inhibited tumor growth of 

oncogenic Ron160 expressing NIH-3T3 cells. Moreover, this mAb attenuated cell-mediated 

tumor growth of colon cancer HT-29 in athymic nude mice [156].  
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In addition to solid tumors, Ron overexpression has been demonstrated in Burkitt’s lymphoma 

(BL) cell lines and human lymphoma samples [157]. Anti-Ron mAb Zt/f2 also downregulated 

cell proliferation and colony formation and induced tumor cell apoptosis and cell cycle arrest in 

Raji BL cells [157]. 

IMC-Ron8, the first anti-Ron mAb entered into the clinical trial, downregulated the expression of 

Ron in pancreatic cancer cells and inhibited MSP-induced Ron activation, survivin expression 

and Akt and Erk activation. The co-treatment of pancreatic cells with panobinostat (PS) and anti-

Ron mAb decreased Ron expression and Akt activation, and increased cleavage of PARP 

compared to both treatments alone [148]. 

Overall, reported data shows that anti-Ron mAbs reduced Ron expression, impaired signaling 

events and enhanced sensitivity towards cytotoxic drugs in cancer cells [158]. 

 

 

TROPOMYOSIN-RELATED KINASE (TrkA/NTrk1)  

The first member of tropomyosin-related kinase (Trk) family was primarily discovered as a new 

oncogene in colon carcinoma at 1986 [159].  TrkA/Ntrk1 is a normal cellular counterpart of the 

oncogenic Trk and is highly expressed in the developing nervous system [160]. TrkB/NTrk2 and 

TrkC/NTrk3 are other members of Trk family with highly sequence homology to TrkA [160]. 

TrkA is a functional and high-affinity nerve growth factor (NGF) receptor that mediates some of 

the signal transduction processes induced by this neurotrophic growth factor [161]. 

Trk receptors were introduced as important prognostic factors in neuroblastoma, in a way that 

TrkA and TrkB are correlated with favorable and unfavorable disease, respectively [162, 163]. 

Truncated forms of Trk receptors have been identified lacking the kinase domain. For example 

alternative TrkA splice variant has only functional extracellular domains and is expressed in 

human neuroblastoma [164]. This oncogenic NGF-unresponsive isoform antagonizes NGF/TrkA 

signaling that is accountable for arresting of neuroblastoma cell growth. During tumor 

progression, the truncated form provides a mechanism for switching anti-oncogenic signals of 

NGF/TrkA/Ras/MAPK to tumor-promoting signals of truncated-TrkA/IP3K/Akt/NF-κB [164].   
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Due to the importance of TrkA-NGF pathway in anti-oncogenic signals, targeting of TrkA with 

mAbs specific for docking site of TrkA would be an appropriate strategy to inhibit neuroblastoma 

progression and growth.  

Tanezumab, a humanized NGF blocking mAb, has recently shown hopeful results in clinical 

trials for osteoarthritic pain because NGF/TrkA signaling is important for normal and 

pathological feeling of pain [165]. However, TrkA could not pass the criteria as an appropriate 

target for cancer therapy by mAbs. Moreover, there are reports that proposed TrkA for cancer 

targeting by other modalities like SMIs [166-169].     

 

RECEPTOR TYROSINE KINASE-LIKE ORPHAN RECEPTOR 1 (Ror1) 

Ror family, consists of Ror1 and Ror2, is another member of the RTK families that is 

evolutionarily conserved [170]. Ror1 consists of three domains, immunoglobulin (Ig)-like, 

cysteine rich (CRD) and kringle (KNG), in the extracellular part [171]. Of the three extracellular 

regions, CRD region has been described to have the antigen binding site [172, 173]. The 

cytoplasmic part contains a TK domain with protein kinase activity, and further downstream 

serine, threonine- and proline-rich motifs. Ror1 is located on chromosome 1p31.3 and consists of 

937 amino acids with an estimated molecular weight of 97-105 kDa. Human and mice Ror1 also 

have 97% amino acid identity [174, 175]. Ror1 and Ror2 have important roles in embryonic 

skeletal and cardiac as well as nervous system development in mouse [2, 176]. In this regard, 

Ror1 and Ror2 adjust hippocampal neurons neurite growth and branching pattern that are 

important in brain development [177].  In adults, Ror1 has been indicated to be expressed at 

mRNA level in several tissues, including colon, adipocytes, kidney, liver, lung, Ovary, lymph 

nodes, prostate, and testis [178]. However, Ror1 protein has not been detected in adult normal 

tissues [178]. 

Interestingly, Ror1 overexpression has been found in several malignancies, including CLL [179], 

ALL [180], AML [6, 181], HCL [6], MCL [6], melanoma [7], breast, pancreatic, lung [182], and 

ovarian cancers [14].  Recently it is shown that Ror1 can contribute in CLL leukemogenesis by 

interacting with T-cell leukemia 1 (TCL1) and causing elevated Akt activation and leukemia cell 

proliferation [183].  
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Overexpression of Ror1 on cancer cells and lacking expression in normal tissues introduced Ror1 

as an appropriate target for cancer therapy. During the recent years that Ror1 has been recognized 

as an important tumor antigen, a few mAbs have been produced for therapeutic approaches [4, 

178, 184]. Up to date, only an anti-Ror1 mAb, cirmtuzumab (humanized) (UC-961) has passed 

the preclinical stages. This mAb has been developed from the D10 anti-Ror1 mAb. This mAb 

showed a high specificity and affinity (KD=4nM) for Ror1. Intravenous injection of cirmtuzumab 

followed by infusion of human Ror1
+
CD5

+
B220

low
 murine leukemia cells from Ror1xTCL1 

transgenic mice, as well as of human Ror1
+
 CLL cells into the peritoneal cavity of Rag-2-/-/γc-/- 

immunedeficient mice, induced clearance of leukemic cells in the spleen and peritoneal cavity. 

Cirmtuzumab had not only a direct killing effect on tumor cells but was also internalized by 

malignant B cells. An ADC using this mAb showed promising results with enhanced cytotoxic 

activity against Ror1 expressing cells. Cirmtuzumab-ADC cleared Ror1 expressing CLL cells in 

vivo in xenografted mice and in vitro using adenocarcinoma cell lines of the breast and pancreas 

[185]. 

Overall, among 30 known oncogenic RTKs, several have not been well-studied for targeted 

therapy or several obstacles are in front of researchers to target them by mAbs. Proper and 

suitable RTKs for mAb targeting such as Musk, Mer, Eph receptors, NTrk, Ror2, Ros, Ryk, Tek, 

Tie, and Tyro3 are overexpressed in several tumors. A few mAb against these RTKs are in early 

stages of preclinical studies. More studies are necessary to investigate these RTKs for targeted 

therapies.   
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CONCLUSION  

Oncogenic RTKs are one of the appropriate classes of surface molecules for mAb targeted 

therapy. However, in spite of large efforts in targeting RTKs by specific mAbs, the evidences 

show the unsuccessfulness of this field and only a few antibodies have been entered clinical trials 

or have been approved by FDA for clinical application. Several obstacles, including differential 

post-translational modification of RTKs within a tumor population in different cancers as well as 

within different individual patients, paradigm of CSCs and the lack of enough information about 

their characteristics are in front of researchers. A better understanding of molecular, genetic and 

epigenetic factors involved in the pathogenesis of cancer, especially in a patient-based manner 

might be a suitable way to cure cancer in each patient. Tumor heterogeneity and the presence of 

several types of cancer cells within a special tumor suggest that the future of cancer targeted 

therapy may apply to target a particular cellular or molecular pathway within a specific cell type 

(cell-based therapy). On the other hand, current evidences show a better response in 

combinational therapy that targets different critical and pivotal molecules involved in cancer 

growth and progression. Overall, cancer therapy by mAbs may need to define new critical and 

vital targets on cancer cells and new approaches are warranted, and current methods might be 

necessary to be revised.  
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