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ABSTRACT 

Prostate cancer is the most commonly diagnosed form of non-skin cancer among men in 

developed countries. Although a large proportion of patients eventually die from the disease, 

many indolent tumors are found via prostate specific antigen (PSA) testing. However, todays 

diagnostic tools are unable to distinguish small localized tumors that will have a benign 

development from early stage aggressive disease. Thus, over-diagnosis and over-treatment 

are two major concerns in prostate cancer management. Genetics have been shown to play an 

important role for prostate cancer initiation with an estimated heritability of 58% and over 

100 identified single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. 

However, much less is known about the involvement of genes in the progression and 

prognosis of the disease.      

The overall objective of this thesis is to enhance the understanding of genetic determinants 

for initiation, progression and prognosis of prostate cancer. The purpose of Study I was to 

develop a prediction model for prostate cancer susceptibility, based on the current knowledge 

of genetic risk variants. Furthermore, we aimed to study the potential role of established 

prostate cancer risk variants in disease progression among men with a localized disease 

(Study III). In Study II, the heritability of prostate cancer-specific survival among diagnosed 

men was estimated and a genome-wide search for genetic determinants of the same outcome 

was performed in Study IV. 

We found that a polygenic risk score model with 65 established prostate cancer risk SNPs 

and 68 novel variants optimally separates prostate cancer cases from healthy controls, with a  

prediction accuracy measured using the area under the curve (AUC) of 0.68. Furthermore, we 

observed that these 133 SNPs could be used for risk stratification; compared with an 

intermediate genetic risk score category (40%-60%), men with a low genetic risk score 

(lowest 5% percentile) had 84% decreased relative risk of prostate cancer and men with 5% 

highest risk scores had a four-fold increased relative risk.  

Using a novel conditional likelihood approach for time-to-event data in brother pairs and 

father-son pairs, the heritability of prostate cancer survival was estimated to be 10%. We 

could also observe that common family environment had no effect (estimated to 0%) on 

prostate cancer survival. However, data simulations suggest that this may be underestimated.  

Furthermore, we could not find any association between SNPs and prostate cancer prognosis. 

None of 23 established prostate cancer risk SNPs investigated were found to be associated 

with disease progression in a cohort of men with localized disease. Moreover, in a genome-

wide association study (GWAS) we did not find any association with prostate cancer survival 

at a genome-wide significant level.         

In conclusion, with the current knowledge of prostate cancer genetics it is possible to identify 

men with high and low prostate cancer susceptibility risk. However, the predictive 

performance of established SNPs is not yet sufficient to be used alone in a screening program 

of prostate cancer. Furthermore, the findings in this thesis regarding prostate cancer 



progression and survival suggest that development of prostate cancer and progression to 

lethal disease may be two separate biological mechanisms that involve different genes. In 

order to identify genetic risk variants associated with prostate cancer progression, future 

studies should be designed to find common variants with very low penetrance or rare variants 

with moderate to large effect.    
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1 INTRODUCTION 

Prostate cancer is a major health concern over the whole world (Figure 1), particularly in 

more developed countries (including North America, Australia, New Zealand, and 

Northern/Western parts of Europe). It was the most common non-skin cancer among men in 

the developed parts of the world with an estimated incidence of 759,000 per year and 142,000 

deaths (3rd leading cause of cancer death) in year 2012
1
. Since prostate cancer is most 

common among older men and the population is ageing, prostate cancer incidence is expected 

to increase over the coming years. In the absence of potentially modifiable risk factors, 

primary prevention is difficult so that early detection and treatment will become increasingly 

important. Many of the tumors that are found today are small, localized and so slowly 

growing that they will not cause any symptoms to the diagnosed man. A major problem is 

that today’s diagnostic and prognostic tools are insufficient to separate these indolent tumors 

from early stage aggressive disease. This has resulted in a considerable over-treatment and 

over-diagnosis of the disease. Thus, the identification of biomarkers that can improve 

diagnosis and prediction of prognosis of prostate cancer is warranted.      

In this thesis we have investigated whether genetics can be used for this purpose. In Study I 

we have assessed how well we can predict the risk of developing prostate cancer, based on 

the current knowledge in genetics, which could be of importance in a screening situation. In 

studies II-IV we have studied the role of genetics in the prognosis (progression and survival) 

of the disease.    

 

Figure 1: Age standardized prostate cancer incidence rates per 100,000 individuals (standardized to Segi’s 

World Standard Population
2
).  
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2 BACKGROUND 

2.1 PROSTATE CANCER 

2.1.1 The prostate 

The prostate is a gland organ that is located in the male pelvis, just below the urinary bladder 

in front of the rectum, surrounding the urethra (Figure 2). A healthy adult prostate has the 

size of a walnut. The organ has three anatomical zones: (i) the peripheral zone which is 

closest to the rectum, (ii) the transition zone lies adjacent to the urethra (surrounding it) and 

(iii) the central zone located between the peripheral and transition zones
3
. In a young man, 

each of these zones constitutes approximately 65%, 25% and 10% of a normal prostate
4
. All 

three anatomical zones contain epithelial cells that produce organ specific enzymes, prostatic 

acid phosphate (PAP) and prostate specific antigen (PSA). The prostate plays an important 

role in the male reproductive system. During ejaculation, seminal fluids from the seminal 

vesicles are mixed with prostatic secretion. PSA facilitates the movement of the sperm to 

fertilize the ovulated egg, by liquefying coagulated semen
5
. 

 

 

Figure 2: Male internal sexual anatomy. Reprinted from Wikimedia Commons
6
 under the license of Creative 

Commons.  

 

2.1.2 Diseases of the prostate 

As men grow older various diseases of the prostate gland become more common. Benign 

prostatic hyperplasia (BPH) emerges from a natural growth of the transition zone 

(surrounding the urethra) of the prostate, which can begin from as early as age 30 years
7
. 

BPH is a chronic condition that is progressive with age
8
, and results in difficulties in urination 

for approximately 40% of the male population before age 70 years
9,10

. Since BPH and 
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prostate cancer usually arise from different zones of the prostate (although the diseases can 

coexist in the same region)
4,11,12

, BPH is in general not viewed as a cause of prostate cancer. 

However, there is emerging evidence for a possible link between BPH and prostate cancer via 

chronic inflammation
8,13

. Prostatitis is an inflammation (usually non-bacterial
14

) of the 

prostate, which is also common among men aged 30 years or more
15

. Approximately 50% of 

all men experience an episode of prostatitis sometime during their lifetime
16

. A recent 

hypothesis is that inflammation is a key event in prostate cancer development, although the 

etiology remains unclear
17-22

.    

2.1.3 Prostate cancer  

Cancer is the most severe disease that can occur in the prostate. A large American autopsy 

study of men who died from other causes than prostate cancer have shown that approximately 

45% in the age group 50-59 and approximately 70% in the age group 70-79 have a latent 

prostate cancer (tumor cells in the prostate which would have been found in a needle 

biopsy)
23,24

. Cancers in the prostate are almost exclusively adenocarcinoma, defined as 

tumors that originate from malignant growth in epithelial tissues. Approximately 70% of the 

tumors arise in the peripheral zone, 25% in the transition zone, 5% in the central zone
4
, and 

often tumors invade several zones. Furthermore, prostate cancer is commonly multifocal, 

where the prostate harbours multiple tumors
25

. Lately, evidence has emerged which supports 

a theory that these develop independently and simultaneously from lesions of Prostatic 

Intraepithelial Neoplasia (PIN
26

; sometimes acknowledged as a histopathological precursor 

state of prostate cancer)
27,28

.  

Advancement of the disease often involves a tumor perforating the prostate capsule to nearby 

tissues in the pelvis, urinary bladder, urethra and seminal vesicle. Metastatic spread occurs 

primarily via lymph nodes in the pelvis and thereafter to the bones. In rare cases the prostate 

cancer also spreads to the lungs and other organs
29

. Some tumors are more aggressive than 

others, such that they spread more quickly outside the prostate gland. Although tumors that 

arise in the central zone are rare, they seem to be most prone to metastasis
30

, while cancers in 

the peripheral zone are of intermediate metastatic potential
31-33

. Furthermore, a current 

hypothesis is that the metastatic spread originates from one single clone, that is, from only 

one of the independent tumors within the prostate 
34,35

. Thus, given that prostate cancer may 

consist of several independent tumors that can evolve to become aggressive, the diagnosis 

and prognostic prediction of prostate cancer is not straightforward. 

2.1.4 Diagnosis and prognosis  

Today, prostate cancer is most commonly detected via a PSA test, and sometimes by clinical 

symptoms (for example, difficulties to empty the bladder). In the early stages of the disease, 

when the tumor is confined to the prostate, symptoms are rare. Metastasized disease often 

appears as skeletal pain in the back, hips or pelvis
36,37

. A first step in a prostate cancer 

diagnosis typically involves analysis of the PSA test and a palpation of the prostate, also 

called a digital rectal exam (DRE). Various guidelines for further evaluation exist
36

. Swedish 
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national guidelines regarding PSA levels are age dependent to limit over-diagnosis of 

clinically insignificant cancer. Given a negative DRE, the following thresholds are 

recommended for further investigation of prostate cancer
38

:  

 PSA≥2μg/l for men aged<50 years. 

 PSA≥3μg/l for men aged 50-70 years. 

 PSA≥5μg/l for men aged 70-80 years. 

 PSA≥7μg/l for men aged>80 years. 

A follow-up usually involves a transrectal ultrasound guided needle biopsy, where 12 cores 

are sampled from the prostate, followed by a histopathological evaluation of the specimens. 

Results are reported by using the Gleason grading system with scores that range from 1 (for 

well differentiated prostate glandular cells) to 5 (for poorly differentiated glandular cells)
39

. 

The sum of the most prevalent Gleason pattern and the highest graded area is reported and is 

then used as an indicator of tumor aggressiveness. Before year 2005 the sum of the two most 

prevalent Gleason patterns was used
40

.  

Radiology is used to establish the stage of the tumor in the TNM classification system. The 

following main classification categories are defined by the American Joint Committee on 

Cancer (AJCC)
41,42

:       

T stage (Primary tumor)  

TX: Primary tumor cannot be assessed. 

T0: No evidence of primary tumor. 

T1: Clinically inapparent tumor neither palpable nor visible by imaging. 

T2: Tumor confined within prostate. 

T3: Tumor extends through the prostate capsule. 

T4: Tumor is fixed or invades adjacent structures other than seminal vesicles, such as external 

sphincter, rectum, bladder, levator muscles, and/or pelvic wall. 

Some sub-categories exist, for example, T1c are tumors identified by needle biopsy (e.g. 

because of elevated PSA).         

N stage (Regional lymph nodes) 

NX: Regional lymph nodes were not assessed. 

N0: No regional lymph node metastasis. 

N1: Metastasis in regional lymph node(s). 

M stage (Distant metastasis) 

M0: No distant metastasis. 

M1: Distant metastasis. 

Localized prostate cancer is usually characterized by a slow growth of the tumor. However, it 

is difficult to distinguish an indolent disease (that never leads to any symptoms or death) from 

an early stage tumor that will develop aggressively
43

. Today’s diagnostic tools (PSA, Gleason 
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and TNM staging) perform sub-optimally in this task. The following prognostic risk groups 

are commonly defined
36

:  

 Low risk: T1-T2a, Gleason sum ≤6 and PSA<10 µg/l. 

 Intermediate risk: T2b or Gleason sum 7 or PSA 10-20 µg/l. 

 High risk: T2c-T3 or Gleason sum 8-10 or PSA>20 µg/l.  

2.1.5 Prostate cancer screening 

Screening for prostate cancer using PSA has been controversial due to the shortcomings of 

the PSA test. The main issue with the PSA test is that it is difficult to find a cut-off value that 

yields both a good sensitivity and specificity. For example, a Swedish study reported that cut-

off values at 1, 3, 4, and 5 μg/l resulted in sensitivities of 96%, 59%, 44% and 33%, and 

specificities 44%, 87%, 92%, and 95%, other studies show similar results
44-46

. Two large PSA 

screening trials have evaluated the effect of PSA screening: the American Prostate, Lung, 

Colorectal, Ovarian (PLCO) cancer screening trial and the European Randomized Study of 

Screening for Prostate Cancer (ERSPC) study. The PLCO study did not find any mortality 

reduction for those who attended a PSA screening program
47

. However, this study has been 

criticized for a high proportion of opportunistic screening in the control arm participants and 

poor biopsy compliance. The level of opportunistic screening was less of an issue in the 

ERSPC study because PSA testing was introduced later in the participating European 

countries. The European trial reported a 21% relative risk reduction of prostate cancer 

mortality (38% in the Gothenburg sub-cohort of ERSPC) for those who were screened after 

13 years of follow-up
48

. However, this came with a cost of considerable over-diagnosis and 

over-treatment. It was estimated that 781 men needed to be screened and 27 to be diagnosed 

to prevent one death from prostate cancer. As a result of this, no national prostate cancer 

screening programs exist. Nevertheless, opportunistic screening is very common
49

 and there 

is an urgent need for better biomarkers to prevent over-diagnosis and over-treatment.   

2.1.6 Treatment 

Active surveillance is usually recommended to patients with a localized low risk tumor. 

Patients are initially not treated but monitored (repeated PSA testing and DRE) until the 

occurrence of either progression of disease or a change in preference for treatment. 

Furthermore, patients with limited life expectancy, such as due to advanced age or substantial 

comorbidities, are also less likely to receive curative treatment. Watchful waiting is an 

alternative strategy where the disease is monitored (without treatment) until clinical 

symptoms appear, followed by hormonal treatment (Androgen deprivation therapy; ADT). 

This is recommended to patients with localized disease without clinical symptoms and with a 

limited life expectancy. 

Patients with an intermediate risk disease (as defined above) benefit from curative treatment, 

including surgical removal of the prostate (prostatectomy) or radiation therapy. These 

treatments may cause temporary or persistent adverse effects, including incontinence and 
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impotence. Cancers that progress to locally advanced or metastatic disease are usually not 

treated with curative intent but to prevent the tumor from further advancement. The patient is 

usually treated with hormones (ADT) to reduce testosterone levels. However, eventually 

most advanced prostate cancers progress and become castration resistant (i.e. the tumor is no 

longer dependent of testosterone). At this stage the patients with metastatic disease are 

offered palliative treatment
29,36,37

.   

2.1.7 Incidence, prevalence and mortality  

In Figure 3 we can see that prostate cancer incidence has increased steadily since year 1960 

in USA, Sweden and UK. The introduction of PSA testing in the begging of the 1990s has 

resulted in a rapid growth of the incidence. This increase is mostly due to PSA detected 

small, localized tumors that have excellent prognosis. Thus, mortality rates have been 

relatively stable with a somewhat decreasing trend. As a result of this, the 10-year relative 

prostate cancer survival in Sweden has almost doubled, from 44% among men diagnosed 

between 1989 and 1993 to 79% among men diagnosed between 2009 and 2013
50

. 

Furthermore, this has led to an increased prevalence of the disease (1922.7 per 100,000 

Swedish men lived with prostate cancer in 2013).  

 

Figure 3: Age standardized incidence and mortality rates per 100,000 men in USA, Sweden and 

UK
51,52

(standardized to Segi’s World Standard Population
2
). 

 

2.1.8 Risk factors 

Prostate cancer is suggested to arise from a combination of genetic, lifestyle and 

environmental factors. Apart from age, family history of prostate cancer and ethnicity are the 

only established risk factors for the disease. Men with a diagnosed first-degree relative have a 
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2-3 fold increased risk of getting prostate cancer compared to men without a family history
53

. 

The familial risk increases with the number of diagnosed family members and with age at 

onset of the relatives
54

. The heritability of prostate cancer susceptibility was recently 

estimated to 58% in a Nordic twin study
55

, suggesting that the major part of the familial 

aggregation is due to genetic factors. Furthermore, prostate cancer survival has also shown 

concordance in families. The risk of dying from prostate cancer is increased if the father had 

poor prostate cancer survival
56-58

. However, the heritability of prostate cancer survival has 

never been reported.  

The highest incidence rates are found among men with African American ancestry (in 

particular among those living in USA)
59,60

, followed by Scandinavians. Asians have almost 

ten-fold lower incidence than white men living in developed countries
61

. However, the 

incidence increases significantly among Asian men who moved to western countries and 

adapted the local lifestyle
62,63

. This suggests that environmental factors may have a 

substantial role in prostate cancer incidence. Numerous life style factors have been associated 

with an increased risk of prostate cancer incidence (including dairy products, meat cooked at 

high temperature, saturated fatty acids and sexually transmitted diseases) and other have been 

reported to have a protective effect (tomatoes, green tea and soy products)
21,64,65

. However, 

these findings are inconsistent and not well understood. Furthermore, few established 

environmental or life style risk factors for prognosis or prostate cancer survival exist
66

, with 

the possible exception of BMI
67-69

.  

2.2 PROSTATE CANCER GENOMICS 

2.2.1 The human genome 

Genetic information is transferred from parents to children via a molecule called 

Deoxyribonucleic acid (DNA). All cells in the body, except the red blood cells, harbor DNA 

in the nucleus. The DNA molecule has two very long complementary strands which form a 

so called double helix structure (Figure 4). Each strand has a deoxyribose sugar-phosphate 

backbone, to which nucleotide bases are attached. There are four different bases: adenine (A), 

thymine (T), cytosine (C) and guanine (G). Nucleotides on one strand are complementary to 

nucleotides on the other strand; A always binds to T and C to G via hydrogen bonds. The 

human DNA is composed of 23 chromosomes, 22 autosomal and 1 sex chromosome (X or 

Y). Most cells in the body have two copies of each chromosome (diploid), one from the 

mother and one from the father. Only germ cells (sperm and egg) have one copy of each 

chromosome (haploid). These are formed in a process called meiosis, where genetic material 

is exchanged (meiotic recombination) between the two chromosome copies
70

.   

A fundamental function of DNA is to code for proteins, which carries out the function of a 

cell. The first step of this process is that complementary molecules of messenger ribonucleic 

acids (mRNA) bind to one of the separated DNA strands, with the help of the enzyme RNA 

polymerase. The mRNA molecule is a single stranded molecule with the same nucleotide 

bases as DNA, except for thymine (T) which is replaced by uracil (U). The genetic 
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information is transported by mRNA from the nucleus to the cytoplasm of the cell, where it is 

translated to a protein by ribosomes and transfer RNA (tRNA). Triplets of RNA nucleotides 

are translated to amino acids and finally synthesized to proteins
70

.        

            

 

Figure 4: Two aligned DNA molecules, which differs in one base-pair (SNP). Reprinted from Wikimedia 

Commons under the GNU free Documentation Licence 
71

. 

 

Genes are discrete regions of DNA which encodes for proteins. The initiation of the 

transcription of a gene is regulated by a part of the gene that is called the promoter. A gene 

consists of overlapping protein coding (exons) and non-coding (introns) sequences of DNA. 

The human genome consists of approximately 20,000 protein coding genes
72,73

, a very small 

part of the genome (approximately 1%)
74

. However, several other important functional 

elements exist, for example regulatory elements (promoters, enhancers, silencers), DNA 

methylation sites, RNA transcribed regions , transcription-factor binding sites and open 

chromatin structures (DNaseI hypersensitive sites)
73,75

. Lately, the understanding of the 

function of these non-coding regions has increased, to large extent, via the Encyclopedia of 

DNA Elements (ENCODE) project, which has listed numerous functional elements for 

various cell types (including for example the prostate cancer lymph-node metastases cell line 

called LNCaP)
75

. 

2.2.2 Single nucleotide polymorphism (SNP) 

The human genome has approximately 3 billion nucleotide base-pairs, 99% of these are the 

same in all humans. Positions (loci; singular: locus) where mutations have occurred and 

spread to more than 1% of the population during evolution are called polymorphic. There are 
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various kinds of variations (polymorphisms), for example, copy number variations (CNVs) 

and indels, which both are insertions and deletions of DNA. However, the most common 

polymorphisms are single nucleotide polymorphisms (SNPs). These are point mutations, 

where one nucleotide has been replaced by another (Figure 4), A↔C or C↔T substitutions 

(in both directions) are most frequent
70

. Thus, a SNP can only have two possible variants 

(alleles). Individuals with two copies of the same allele are called homozygous, otherwise 

heterozygous (if the two alleles are different). SNPs are the genetic markers that have been 

studied in this thesis.       

To this date, millions of SNPs have been identified, much as a result of large genetic 

sequencing studies as the international HAPMAP project
76

, the UK10K project
77

 and the 

1000Genome project
78

. The latter is an international collaboration, which has the aims to 

identify human genetic variations of all types and to define haplotype structures (sequences of 

SNPs on the same chromosome). We used these data for imputation, as described in section 

5.4.4. SNPs that are located inside of exons can be either synonymous or nonsynonymous, 

depending on whether they change the amino acid sequence or not. The latter category is 

further divided into missense (changes one amino acid) or nonsense (introduces a stop 

sequence which truncates the protein) mutations. In general, the majority of all SNPs in the 

genome are situated in introns and intergenic regions (so called “gene deserts”). Thus, they 

do not have a direct protein coding function.  

As discussed in section 2.1.8 genetic factors are major components of prostate cancer 

development. A graph of all currently known prostate cancer risk variants is shown in Figure 

5. Three rare variants (minor allele frequency (MAF) <1%) with moderate effect sizes have 

been identified in candidate gene studies: two breast cancer predisposition genes (BRCA1 

and 2) and HOXB13. To this date, three germline mutations in the tumor suppressor BRCA2 

gene are associated with the highest prostate cancer risk (8.6-fold for young onset 

disease)
79,80

. Furthermore, a mutation in BRCA2 has been associated with poorer 

survival
81,82

. Carriers of mutations in BRCA1 or in HOXB13 have been associated with an 

approximately 3.5-fold increased risk of disease susceptibility
83,84

. The HOXB13 variant is 

likely a Nordic founder mutation and is more frequent in these countries
84

. A functional study 

of HOXB13 has implicated that the gene is associated with disease prognosis (tumor 

progression and metastasis), however not with prostate cancer survival
85

. In total, the three 

rare variants explain a very small proportion of the familial risk of prostate cancer.  

To date, approximately 100 common SNPs (MAF>1%) with low to moderate effect sizes 

have been identified in Genome-wide association studies (GWAS)
86-93

. Most of them were 

found via the Prostate Cancer Association Group to Investigate Cancer Associated 

Alterations in the Genome (PRACTICAL) consortium, which will be given a more detailed 

description in section 4.2. In total, SNPs in prostate cancer GWAS regions, explain 

approximately 39% of the familial risk of prostate cancer
94

. However, since the effect sizes of 

these SNPs are low (most with relative risks<1.5) or most often very low (1.04-1.10) their 

alone predictive capacity of prostate cancer incidence is limited. Nevertheless, the cumulative 



 

10 

effects of SNPs have proven to be more relevant
88,95

. In study I of this thesis we constructed 

a prediction model for prostate cancer, based on current knowledge of prostate cancer genetic 

risk variants. 

Most of the known prostate cancer risks SNPs, identified via GWAS, are located in introns or 

gene deserts. Several fine-mapping studies that aim to identify the functional variant and 

explore its functional role have emerged lately
94,96,97

. For example, in a recent fine-mapping 

study of 64 known prostate cancer regions, performed by PRACTICAL, an expression 

quantitative trait loci (eQTL) analysis revealed that 20% of the regions were associated with 

gene expressions in prostate tumor tissue
94

. Furthermore, several known prostate cancer risk 

regions have shown functional associations with genes
87,94,97-99

. However, these findings 

needs to be further explored in future studies.  

 

Figure 5: Overview of prostate cancer risk variants. Figure was adapted from Goh and coworkers
100

.   

In general, the established prostate cancer risk variants found in GWAS do not distinguish 

aggressive from less aggressive disease. Some of the SNPs have been reported to 

discriminate between aggressive cases and healthy controls but in case-only analysis (which 

is clinically more relevant) they were not associated with prognostic outcomes, such as 

prostate cancer survival
86,88,101

. One exception is the established risk SNP rs2735839, located 

near the KLK3 gene at chromosome 19q13, that has been found associated with prostate 

cancer survival
102

. However, the reported prostate cancer risk allele was inversely associated 

with disease prognosis
102,103

. Furthermore, Lin and coworkers identified SNPs that were 

associated with the trait in a candidate gene study
104

 and the results were replicated in 

independent studies
105,106

. Moreover, recently two common variants on chromosome 3q26 

and 5q14 were found to be associated with Gleason score in a case-only GWAS
107

. However, 

currently no genetic variants have been associated with prostate cancer survival at a genome-

wide significant level
108

. In study IV of this thesis we performed the largest prostate cancer 

survival GWAS to this date.      
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3 AIMS 

The overall objective is to advance the understanding of genetic determinants for initiation, 

progression and prognosis of prostate cancer. We have the following specific aims, which 

correspond to each the four studies in this thesis: 

I. To predict prostate cancer susceptibility using a polygenic risk score.  

II. To estimate the heritability of prostate cancer survival. 

III. To assess association between established prostate cancer susceptibility variants and 

disease progression. 

IV. To perform a genome-wide assessment of genetic determinants for prostate cancer 

survival. 
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4 STUDY POPULATIONS 

4.1 GENOME-WIDE ASSOCIATION STUDY (GWAS) POPULATIONS 

4.1.1 CAPS GWAS 

CAPS (CAncer of the Prostate in Sweden) is a Swedish population-based case-control study 

of prostate cancer
95,109,110

. Cases were identified from four of the six regional cancer centers 

in Sweden; western (Gothenburg region) and southern regions (Malmö area) were not 

included. All men from the northern and central parts of Sweden aged less than 80 years and 

from the Stockholm area and southeastern part of Sweden less than 65 years were asked to 

participate if they had a newly diagnosed (biopsy or cytologically confirmed) 

adenocarcinoma of the prostate. Recruitment was ongoing in two stages from July 2001 to 

October 2003. Virtually complete coverage was achieved since it is compulsory by Swedish 

law to report all cancers to the regional cancer centers. Out of 3,648 identified men 3,161 

(87%) agreed to participate in the study. Through record linkage to the National Prostate 

Cancer Register (NPCR) (described in section 4.5), clinical information regarding diagnostic 

PSA-levels, Gleason score and TNM stage at diagnosis was obtained.  

A random selection of controls from the Swedish Population Register was concurrently 

recruited with the cases. Controls were frequency matched to cases on age (in 5-year 

intervals) and region of residence. In total 2,149 (68% of all invited) control subjects agreed 

to participate in the study. All participants (both cases and controls) in the study replied to a 

questionnaire regarding risk factors for prostate cancer (including family history) and donated 

a blood sample at enrollment. Vital status of all study participants and cause of death among 

deceased participants is annually assessed via record linkage to the Swedish Cause of Death 

Register.  

Genotyping for GWAS was performed in two phases - CAPS1 and CAPS2. In the first stage, 

498 cases with aggressive prostate cancer (patients that met any of the following criteria at 

diagnosis: Gleason score ≥8, diagnostic PSA >50 ng/mL, T3/4 stage or present metastases) 

and 494 matched controls were included
111

. Subsequently an additional 1,475 cases and 527 

controls (637 with aggressive disease and 838 with less aggressive Gleason 6 disease) were 

genotyped in the second stage. The genotyping was performed by collaborators at the Wake 

Forest University, USA. Two sets of arrays were used, GeneChip Human Mapping 500K 

(CAPS1) and 5.0K (CAPS2) from Affymetrix (Santa Clara, CA)
86

. In Study IV, we followed 

1,985 cases (from CAPS1 and CAPS2) for prostate cancer survival, of which 545 had died 

from the disease before the end of follow-up in December 31, 2012.   

4.1.2 UKGPCS1 GWAS  

Prostate cancer cases from a large nationwide United Kingdom study, established in 1993, 

called UK Genetic Prostate Cancer Study
87,90,112

 (UKGPCS), were ascertained to perform a 

GWAS. Cases were eligible if they had a clinically detected tumor (i.e. not PSA screening 

detected without any symptoms of prostate cancer) and were less than or equal to 60 years at 
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diagnosis or had a strong family history of prostate cancer. Controls were recruited from a 

national PSA screening study, ProtecT, if they were above the age of 50 and had a low PSA 

value (<0.5 ng/ml). In total, 1,906 prostate cancer cases and 1,934 controls were selected for 

this first GWAS stage. Genotyping was performed on an Illumina Infinium HumanHap550 

array, generating 534,446 SNPs. In Study IV, we followed 1,783 cases for prostate cancer 

survival (457 cases died from the disease) up to the end of year 2012. Cause of death is 

ascertained every third month by linkage to national registers. 

4.1.3 UKGPCS2 GWAS 

The top findings in the UKGPCS1 GWAS (SNPs with P<10
-6

) were assessed for replication 

in a subsequent case-control study, called UKGPCS2. In total 47,120 SNPs were genotyped 

on Illumina iSELECT assays. Participants in this study, 3,268 cases and 3,366 controls were 

recruited from UK and Australia (Melbourne area)
89,90

. In study IV of this thesis, 772 cases 

from UK (same inclusion criteria as in UKGPCS1) with available follow-up data for prostate 

cancer survival were included, of which 189 patients had died from prostate cancer.    

4.1.4 BPC3 GWAS  

Seven studies from the BPC3 consortium (Breast and Prostate Cancer Cohort Consortium) 

were used for a GWAS of aggressive prostate cancer
113,114

. All included patients had a tumor 

with a Gleason score ≥8 or stage C or D (approximately equivalent to T3 and T4). In total 

2,782 cases were followed for prostate cancer mortality out of which 598 died from the 

disease. Participants were genotyped on Illumina 610 or 610K SNP arrays. In study IV of 

this thesis, we assessed summary results (not individual data) from the BPC3 consortium. 

4.2 PRACTICAL 

Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the 

Genome (PRACTICAL) is a large prostate cancer genetics consortium, which initially was 

formed to find genetic variants associated with prostate cancer risk. Currently, over 86 

research groups from all over the world are a part of this collaboration with over 200,000 

samples available for genotyping
115

. 

 PRACTICAL is part of an even larger partnership, Collaborative Oncological Gene-

environment Study (COGS) together with three other cancer genetics consortia (breast, 

ovarian and BRCA1/2 mutation carriers), which had the aim to create a custom made SNP 

chip (iCOGS) relevant for these cancers. This resulted in the production of an Illumina 

Custom Infimum SNP array with totally 211,155 SNPs. The collaboration within COGS has 

recently evolved (now also including lung and colorectal cancer) with the purpose to design a 

new SNP chip with approximately 600K SNPs, called the OncoArray. The manufacturing 

process of this chip and genotyping of approximately 110,000 samples from the 

PRACTICAL consortium has recently finished. Initial results from OncoArray genotyping 

are expected before the end of 2015. Our research group nominated approximately 3,000 

markers from a top list of SNPs associated with prostate cancer survival to the OncoArray. 
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Out of the 211,155 SNPs on the iCOGS chip, 85,278 SNPs were suggested by PRACTICAL 

to be relevant for prostate cancer. These variants were used to develop a prediction model for 

prostate cancer in Study I. The main part (74,001) of these SNPs was chosen on the basis of 

a meta-analysis of the above described GWAS studies as well as the CGEMS
116

 study (a 

publically available NIH funded GWAS). SNPs that showed evidence of association with 

prostate cancer risk, aggressive prostate cancer (as measured by the Gleason score), cause-

specific mortality and early onset disease (age <55 at diagnosis) were selected for the chip 

design. Moreover, 13,739 SNPs were chosen from fine-mapping of 27 previously known 

prostate cancer susceptibility regions and 1,398 markers from candidate genes (such as 

hormone metabolism, HOX class of genes, the cell cycle and DNA repair)
88,117

.   

Table 1: Age distribution among cases and controls in PRACTICAL.  

  Cases Controls 

Study N Age, mean(sd) N Age, mean(sd) 

CAPS 1,153 66.1 (7.8) 664 67.8 (7.5) 

CPCS1 849 69.4 (7.9) 2,771 56.3 (15.3) 

CPCS2 265 64.5 (6.4) 1,015 55.6 (15.3) 

EPIC 722 64.9 (5.6) 1,079 59.6 (6.5) 

EPIC-Norfolk 484 72.1 (7.6) 917 73.6 (9.6) 

ESTHER 313 65.5 (5.1) 318 65.4 (5.3) 

FHCRC 838 59.8 (7.2) 784 59.4 (7.2) 

MAYO 767 65.1 (6.4) 488 65.5 (9) 

MCCS 1,685 57.8 (8.4) 1,183 52.1 (8.6) 

MEC 819 69.5 (7.6) 829 70.5 (8.5) 

MOFFITT 455 64.7 (8.3) 130 61.5 (10) 

PCMUS 151 68.8 (8.9) 140 66.9 (8.3) 

Poland 438 67.5 (8.1) 359 62.8 (10.3) 

ProtecT 1,563 62.8 (5.1) 1,474 59.6 (5.4) 

QLD 186 61.4 (6.9) 87 69.2 (5.6) 

SEARCH 1,371 63.1 (4.8) 1,244 54.4 (7.4) 

STHM1 2,006 66.2 (7) 2,224 67.1 (6.7) 

TAMPERE 2,754 68.2 (8) 2,413 NA 

UKGPCS 4,549 63.8 (8) 4,182 58.2 (5.3) 

ULM 603 63.8 (6.7) 354 58.4 (11.8) 

UTAH 440 62.5 (8.9) 245 66.7 (9.7) 

Total 22,411 64.8 (8.0) 22,990 60.6 (10.7) 

 

In total, samples from 25,074 prostate cancer cases and 24,272 controls from 32 studies in 

PRACTICAL were genotyped on the iCOGS-chip. A subset of the studies from 

PRACTICAL that were included in Study I of this thesis are summarized in Table 1 

(distribution of cases and controls, together with their age) and Table 2 (study design). Study 

populations with available follow-up data on prostate-cancer survival were included in Study 

IV (Epic-Norfolk, MOFFIT, Poland, ProtecT and QLD were excluded). The majority   
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Table 2: Study designs in PRACTICAL. 

Study acronym Study Name Country Design 

CAPS Cancer of the Prostate in Sweden Sweden Case-control,  
Population-based

1
 

CPCS1+2 Copenhagen Prostate Cancer Study 1 and 2 Denmark Case-control,  
Clinic-based 

EPIC European Prospective Investigation Into 
Cancer and Nutrition  

EU* Nested Case-control,  
prospective cohort

1
 

EPIC-Norfolk European Prospective Investigation of Cancer 
- Norfolk 

UK Nested Case-control,  
prospective cohort

1
 

ESTHER Epidemiological investigations of the chances 
of preventing, recognizing early and optimally 
treating chronic diseases in an elderly 
population 

Germany Case-control,  
Clinic-based

1
 

FHCRC Fred Hutchinson Cancer Research Centre USA Case-control, 
Population-based

1
 

MAYO Mayo Clinic USA Case-control,  
Clinic-based

3,4
 

MCCS Melbourne Collaborative Cohort Study Australia Nested Case-control,  
prospective cohort

2
 

MEC Multiethnic Cohort Study  USA Nested Case-control,  
prospective cohort 

MOFFITT The Moffitt Group USA Case-control, 
Clinic-based

1
 

PCMUS Prostate Cancer study Medical University 
Sofia 

Bulgaria Case-control, 
Clinic-based

1
 

Poland The Poland Group Poland Case-control, 
Population-based 

ProtecT Prostate testing for cancer and Treatment UK Case-control, 
PSA screening trial

1
 

QLD Retrospective Queensland Study (QLD) and 
the Prostate Cancer Supportive Care and 
Patient Outcomes Project (ProsCan) 

Australia Case-control, 
Clinic-based 

SEARCH Study of Epidemiology and Risk factors in 
Cancer Heredity 

UK Case-control, 
Population-based

1
 

STHM1 Stockholm 1 Sweden Cohort
5
 

TAMPERE Finnish Genetic Predisposition to Prostate 
Cancer Study 

Finland Case-control, Clinic-
based+Population-
based screening trial 

UKGPCS U.K. Genetic Prostate Cancer Study and The 
Prostate Cancer Research Foundation Study 

UK Case-control, 
Clinic-based

1,2,3
 

ULM Institut fr Humangengetik Ulm Germany Case-control, 
Clinic-based

1,3
 

UTAH UTAH Study USA Case-control
3
 

*Multicenter study from  Denmark, Germany, Greece, Italy, Netherlands, Spain, 
Sweden and UK 
1. Controls frequency-matched to cases by five-year age groups. 
2. Cases enriched for early disease onset. UKGPCS: age<60, MCCS: age<55. 
3. Cases enriched for family history of prostate cancer. 
4. Cases enriched for aggressive disease. 
5. Men who had undergone a biopsy in the Stockholm area between 2005-2007. 
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of studies in PRACTICAL are case-control studies, either population-based (cases identified 

via regional or national population registers) or clinic-based (prostate cancer patients 

ascertained at oncology clinics). Furthermore, some of the studies are nested case-controls 

studies within prospective cohorts. Controls were usually selected from the general 

population in the region of the particular study, frequency matched on age (5 year intervals) 

to the cases. 

4.3 CONOR 

The Cohort of Norway (CONOR)
118

 was used for replication of top findings in Study IV. 

This is a population-based cohort; ten different surveys have provided data from various parts 

of Norway, both from urban and rural areas. Approximately 180,000 Norwegians have 

answered health questionnaires, undergone physical examination and donated non-fasting 

blood samples (from which DNA was extracted). A record linkage between CONOR and the 

Norwegian Cancer Register performed in February 2014 identified 4,923 men with a 

diagnosis of prostate cancer. After exclusion of men diagnosed prior to inclusion in CONOR 

or after age 80 years 3,614 prostate cancer cases remained. A case-cohort design was 

employed among the remaining prostate cancer cases to investigate inherited genetic causes 

of cause-specific survival. From this prostate cancer cohort a random sub-cohort of 931 

patients (of which 226 had died due to prostate cancer during follow-up), and all remaining 

565 patients that had died from prostate cancer were selected. These individuals were 

followed for 8741.7 person-years (min: 0.08, median: 5.8, max: 20.8). Genotyping was 

performed using TaqMan assays. CONOR has recently joined the PRACTICAL consortium 

and will be a part of the OncoArray genotyping. 

4.4 SWEDISH REGISTERS 

In Study II, we used the unique national registration number that all Swedish citizens have, 

to perform record linkage between three national registers: the Cancer Register, the Multi-

generation Register and the Cause of Death Register. This was done to identify brother pairs 

and father-son pairs with prostate cancer, which were followed for prostate cancer survival.     

4.4.1 Cancer Register  

The national Swedish Cancer Register was established in 1958 and is maintained by the 

National Board of Health and Welfare (Socialstyrelsen)
119

. Since clinicians are obliged by 

Swedish law to report new cancer diagnosis to the Cancer Register the coverage of the whole 

population is nearly complete (in a quality study of the register 3.7% of all cancers were 

underreported
120

) . Tumors are recorded according to the seventh version of the International 

Classification of Disease (ICD7), where the diagnosis code for prostate cancer is 177. 

Moreover, the register holds patient information (sex and place of residence) and medical 

records (date and age at diagnosis, the clinic where the diagnosis was established and 

histopathological diagnosis, which almost exclusively is adenocarcinoma for prostate 

cancers). Additionally, the register contains information regarding TNM stage of prostate 
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cancer tumors since 2002. The data extraction for our analysis of the Cancer Register 

included data through until the end of year 2009. 

4.4.2 Multi-generation Register 

The Multi-generation Register contains parental records of all individuals that were born after 

1932 and that were registered in any census after 1961
121

. The register contains 7.7 million 

Swedish born individuals, 97% have a mother and 95% have a father registered. The parental 

information for offspring born after 1961 is nearly complete. The completeness of individuals 

born outside of Sweden is considerably lower (27% mothers and 22% fathers are 

registered)
121

. However, we only included prostate cancer patients born in Sweden in our 

study. With the use of this register we could identify 1,728 brother pairs and 6,444 father-son 

pairs where both family members were diagnosed with prostate cancer.       

4.4.3 Cause of Death Register 

The Cause of Death Register contains ICD coded death causes of all deceased individuals in 

Sweden. The register is maintained by the National Board of Health and Welfare 

(Socialstyrelsen). Information from the early years of the register (1952-1960) has less 

optimal coverage. From 1961 the general quality is excellent and almost complete registration 

of vital status exists since 1997. The frequency of missing death certificates in the register has 

increased from 0,006% in 1975 to 0,8% in 2008
122

. When defining prostate cancer-specific 

cause of death, the underlying cause was used, whereas contributory causes were not 

considered. Our copy of the register was updated through to 31 December 2010. We followed 

individuals from their date of prostate cancer diagnosis to death or end of follow-up. 

Furthermore, we stopped following individuals 20 years after diagnosis to avoid influential 

outliers and after age 90 years, since the quality of cause of death registration decreases with 

increasing age. Individuals were considered as events in the survival analysis if they had died 

from prostate cancer, otherwise they were censored.  

4.5 PROCAP 

The PROCAP cohort was used in Study III to analyze the association between 23 

established prostate cancer risk SNPs and disease progression among patients with localized 

disease. The cohort was recruited from the National Prostate Cancer Register (NPCR), 

including 98% of all prostate cancer patients reported to the Cancer Register. Information 

about TNM stage, Gleason score, serum PSA levels at diagnosis and primary treatment 

within 6 months after diagnosis were available from the NPCR
123,124

. The data in NPCR has 

excellent quality
125

 and is representative of all men with prostate cancer in Sweden
126

. 

Individuals that were registered with a localized prostate cancer in the NPCR between 

January 1, 1997 (January 1, 1998 in one region) and December 31, 2002 were included in a 

retrospective nationwide cohort study, called NPCR of Sweden Follow-Up Study
127,128

. 

Participants who fulfilled the following criteria were eligible: 70 years or younger at the date 

of diagnosis, diagnostic serum PSA levels of less than 20 ng/ml; local tumor stage T1-T2; 
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and no signs of lymph node metastasis (NX or N0) or bone metastasis (MX or M0). In total, 

7,960 out of 8,304 eligible (96%) accepted inclusion in the study.  

In year 2007, all patients still alive in the NPCR of Sweden Follow-Up study were invited to 

an extended study, which aimed to assess the importance of genetic and life-style factors on 

the outcome of localized prostate cancer (PROCAP, PROgression in Cancer of the Prostate). 

In total 5,431 (77%) of all 7,074 eligible patients accepted inclusion to the PROCAP study by 

donating a blood sample for DNA extraction and completed a questionnaire regarding life-

style factors and physical activity. A total of 529 individuals with unknown primary treatment 

were excluded from the study since definition of disease progress is dependent on patient’s 

primary treatment. Furthermore, in this study we only included patients who were initially 

curatively treated (radical prostatectomy or radiation therapy) or were on surveillance (active 

surveillance or watchful waiting). In total, 3,514 men treated with curative intent and 1,159 

patients on surveillance were assessed for disease progression. 

Information regarding prostate cancer progression was extracted from medical records at a 

median time of 4 years after the date of diagnosis. Extracted information included subsequent 

PSA testing, signs of local progress and distant metastases, reasons for and date of 

termination of surveillance, and date of last follow-up. Biochemical recurrence was defined 

according to the primary treatment regimen. A doubling in PSA above the post treatment 

nadir and exceeding at least 1 ng/ml defined biochemical recurrence among patients who 

underwent radiation therapy. For patients treated with radical prostatectomy, biochemical 

recurrence was defined by two consecutive PSA measurements above 0.2 ng/ml. Date of 

recurrence was set to the date of the first of these two test occasions. Furthermore, operated 

patients with only one registered PSA test value above 0.5 ng/ml were also considered as 

having a biochemical recurrence. For patients treated with curative intent, disease progression 

was defined as a composed event reflecting biochemical recurrence, local progress, or distant 

metastases. For patients on surveillance, disease progression was defined by the event of 

termination of deferred treatment with biochemical progression as reason for termination. 

Date of prostate cancer progression was defined as the earliest date observed for each 

treatment specific definition of progressive events. Patients without disease progression were 

censored at last date of follow-up. Patients on surveillance that chose to end deferred 

treatment without any signs of progress were censored at the date of termination. 

The PROCAP participants were genotyped for 23 established prostate cancer susceptibility 

SNPs, all established SNPs known at that time, using a MassARRAY QGE iPLEX system 

(Sequenom, Inc. San Diego, CA). The concordance rate among duplicated control samples 

was 100% and average genotype call rate was 99.7%. Each of the SNPs on the autosomal 

chromosomes was in Hardy-Weinberg equilibrium (P ≥ 0.01). We excluded 46 individuals 

due to low genotyping success rate (<95%).  
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5 METHODS 

5.1 PREDICTION MODELS 

5.1.1 Variable selection 

In study I we aimed to optimize a prediction model for prostate cancer incidence based on 

the 85,278 SNPs from the iCOGS chip, suggested to be relevant for prostate cancer. This 

could be viewed as a high-dimensional classification problem, where we want to classify N 

individuals as prostate cancer patients or healthy controls, using a set of p predictors (SNPs), 

where p>N. A large number of these predictors are redundant (multicollinear variables), false 

positives or totally unrelated to the outcome, which introduces “noise” to a prediction model 

and reduces the predictive capacity. Thus, the exclusion of non-predictive variables is crucial 

for prediction performance. 

There are three main methods for variable selection in prediction modelling: wrappers, 

embedded methods and filters
129

. Greedy forward and backward selection procedures, often 

combined with cross-validation (described below) are examples of wrappers. Penalized 

regression models (such as Lasso, Elastic Net and Ridge) are examples of embedded 

methods, where the variable selection is intrinsic in the model
130

. These models contain 

penalty functions that produce biased estimates of the predictors and shrink some regression 

coefficients to zero, which in theory should result in better predictions. We evaluated some of 

the mentioned methods in our data, but in our final prediction model a filtering approach was 

employed for variable selection. Predictors were ranked based on their univariate association 

(p-values) with the outcome (case or control status) and included stepwise in the prediction 

models in the ranked order. Since we wanted to exclude redundant predictors, only the top 

associated SNP from each Linkage Disequilibrium (LD) block (described in section 5.4.1) 

was included in the model.  

5.1.2 Polygenic risk score model 

The combined effects of SNPs were incorporated in our prediction models via a polygenic 

risk score (PRS), which assumes that SNP effects are independent and log-additive, i.e. no 

interaction between different loci
131

. For each individual j, the polygenic risk score for N 

genetic variants was calculated as a weighted sum of the number of risk alleles: 

 
PRS = ∑ wi ∗ nij

N

i=1

, 
(1) 

where 𝑤𝑖 is the effect (logarithm of the per allele odds-ratio) of a SNP at locus i, and 𝑛𝑖𝑗 is 

the number of risk alleles carried (0, 1 or 2 for autosomal SNPs and 0 or 1 for SNPs on 

chromosome X). We constructed two risk scores in our prediction model, one that included 

65 previously established risk variants (PRS1) and one where novel SNPs were added (PRS2). 
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The final model that we optimized was a logistic regression model with PRS1 and PRS2 as 

covariates: 

 logit(PC) = β0 + β1 ∗ PRS1 + β2 ∗ PRS2, (2) 

where logit(PC) is the log-odds of being a prostate cancer case and 𝛽𝑖′𝑠 are regression 

coefficients. The non-established SNPs were added to PRS2 according to the filtering strategy 

described above. In order to optimize the prediction of model (2), the number of SNPs to 

include in PRS2 and the weights (𝑤𝑖) in both risk scores were tuned by a cross-sample 

validation.                

5.1.3 Internal and external validation  

If we would optimize our prediction model in the whole PRACTICAL sample, the model 

would predict the outcome over-optimistically in the same data. However, the prediction 

performance in an independent sample would be worse, since the model was optimized to fit 

the data it was trained in
130

. This well-known phenomenon in prediction modeling is called 

over-fitting. Thus, it is important to validate the model in external test data that was not used 

to develop (train) the model. We used individuals from SEARCH, one of the populations in 

PRACTICAL, for external validation. The rest of the PRACTICAL studies were used as 

training data.  

A strategy to overcome the problem of over-fitting in the training data is to use cross-

validation
130

. A common approach is to do k-fold cross-validation, where the sample is 

divided into k random folds that are used for internal validation. Since we want to illustrate 

that prediction performance varies between studies (with different study designs and genetic 

composition of the populations), we used different sub-studies in PRACTICAL for internal 

validation instead, which is a form of cross-study validation. We selected large studies (some 

studies located geographically close were merged to increase the sample size) for internal 

validation: Australia (MCCS+QLD), Denmark (CPCS I+II), ProtecT, UKGPCS, USA 

(FHCRC+MAYO) and STHM1. The first step of the cross-study validation is to set aside one 

of the internal validation samples. The rest of the data is used to rank SNPs according to the 

filtering strategy described above and to estimate weights (𝑤𝑖), which are then used to 

construct prediction models with varying number of genetic variants in PRS2. The prediction 

performances of these models are evaluated in the sample which was set aside. This is 

executed for each internal validation sample. 

5.1.4 Prediction performance 

We assessed the prediction performance in the cross-sample validation by measuring how 

well the model separates the outcome categories (prostate cancer cases vs healthy controls) 

for various numbers of predictors (SNPs) in PRS2. For a dichotomous outcome a measure of 

discrimination can be derived from the receiver operating characteristics (ROC) curve. For 

example, let us assume that we want to evaluate a prediction model (2) with a set of G SNPs, 



 

 21 

and estimated risk score weights (𝑤̂𝑖) and regression coefficients (𝛽̂𝑖) from training data. 

Based on that model, we can calculate a predicted probability of being a prostate cancer case, 

𝑝̂(𝐺) for each individual in the validation dataset, which was not used to train the model. 

Furthermore, we classify individuals as cases or controls based on some critical threshold C: 

 Ŷi = {
 Case             if  p̂(G) ≥ C 

Control       if  p̂(G) < C
. (3) 

For a particular threshold C we can then obtain the proportion of correctly and falsely 

classified cases (sensitivity and 1-specificity). For each possible value of C, we can plot the 

sensitivity on the y-axis against 1-specificity, which results in a ROC curve. Figure 6 is an 

example of a ROC curve, which assess the prediction accuracy of our final model on the 

external test data (SEARCH).         

 

Figure 6: The black line is a ROC curve of the sensitivity (proportion of correctly classified cases) vs 1-

Specificity (proportion falsely classified cases) for different cut-off values (C) in a prediction model. The 

straight grey line on the diagonal corresponds to a scenario where the model has no predictive capacity 

(equivalent to coin tossing).      

 

The area under the ROC curve, AUC (sometimes also called the c-statistic) is a measure of 

prediction performance of the model. The AUC could be interpreted as the probability that a 

model classifies a randomly selected pair of a case and a control correctly
132,133

. A model with 

AUC=1 discriminates cases and controls perfectly and a completely uninformative model 

(i.e. equivalent to tossing a coin) would have an AUC=0.5. In order to compare the prediction 
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performance between two models, the difference in AUC could be tested with DeLong’s test. 

This is essentially an extension of a generalized Mann-Whitney test
134,135

.  

A common critique of the AUC measure is that it is not sensitive to important clinical 

improvements. In order to achieve a statistical significant change in AUC it has been shown 

that enormous odds ratios of new predictors are required
136,137

. As a result of this critique, 

Pencina and coworkers proposed a different measure, called the Net Reclassification Index 

(NRI)
138

. This measure assesses how cases and controls are reclassified when a prediction 

model is developed (by adding SNPs in our study). We define an upward (up) reclassification 

as moving from being classified as a healthy control to a prostate cancer case when SNPs are 

added to the model and a downward (down) reclassification as moving from case status to 

control status. NRI consists of a sum of two parts: the net proportion of cases that is correctly 

reclassified upwards and the net proportion of controls that is correctly reclassified 

downwards:   

 NRI = [P(up|Case) − P(down|Case)] + [P(down|Control) − P(up|Control)]. (4) 

In Study I, NRI was used in the external test data (SEARCH) and statistical tests (based on 

McNemar’s test) were used to assess significant reclassification. 

5.2 SURVIVAL ANALYSIS  

The primary outcome of interest in Studies II-IV was time from prostate cancer diagnosis to 

progress or death from the disease, with censoring due to end of follow-up. In studies with 

right censored data, survival analysis models are indispensable and definitions of the 

survival- and hazard functions are fundamental. If we let T be the time to an event, the 

survival function is defined as the probability to survive longer than a given time t: 

 S(t) ≝ P(T > t). (5) 

The hazard function is defined as 

 h(t) ≝ lim
∆t→∞

P(t ≤ T < t + ∆t|T ≥ t)

∆t
, (6) 

which is interpreted as the instantaneous event (for example, prostate cancer death) rate for 

those who are still at risk at time t. A relationship between these two quantities is given by:  

 S(t) = exp [− ∫ h(u)du
t

0
]. (7) 

5.2.1  Cox proportional hazards model  

The Cox proportional hazards model is one of the most frequently used models in biomedical 

research
139

. We assume that we have censored data (𝑇1,  𝛿1,  𝒙𝟏), …, (𝑇𝑁,  𝛿𝑁,  𝒙𝑵) with 
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observed times Tj, a set of observed covariates 𝑥𝑗 and a variable 𝛿𝑗 , which indicates if the 

observation is an event (𝛿𝑗 = 1) or censored (𝛿𝑗 = 0). Given a set of covariates X the Cox 

regression model is defined as  

 h(t|𝐗) ≝ h0(t) ∗ exp(𝛃𝐗), (8) 

where ℎ0(𝑡) is a baseline hazard function and 𝜷 are regression coefficients. The model is 

assumed to be semi-parametric since the baseline hazard function does not need to have a 

parametric form. Furthermore, the model assumes proportional hazards, i.e. the hazard 

functions of two groups with different covariate levels (𝑿) are proportional. If this is not true 

then the estimates of the model will be biased.          

5.2.2 Partial likelihood function  

The Cox partial likelihood is constructed to estimate the 𝜷 coefficients with standard 

errors
139,140

. Given a sample with ordered event times 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑁 the partial 

likelihood of the Cox model is 

 
L(𝛃) = ∏ (

e𝐱𝐣𝛃

∑ e𝐱𝐤𝛃
kϵRj

) ,

N

j=1

 
(9) 

where 𝑗 is an index for the event times and 𝑅𝑗 is the risk set, which consists of individuals still 

alive at event time 𝑇𝑗. A censored observation will only contribute to 𝑅𝑗 prior to being 

censored. In this likelihood we can observe that only the order of observation times matter, 

we do not have to make any assumptions regarding the baseline hazard
141

. In Study IV, 

participants were not always included in the study directly at prostate cancer diagnosis. Thus, 

they were actually not a part of the risk set until they were recruited. This is an example of 

left truncated data. The risk sets 𝑅𝑗 in Equation (9) is then adjusted for delayed entry, where 

individuals are at risk if they enter before time 𝑇𝑗 and are censored or have an event after 𝑇𝑗.       

The maximum likelihood estimations (MLE) 𝜷̂ are obtained from the solution of the score 

equations 

 
∂

∂𝛃
logL(𝛃) = 0. (10) 

The variance-covariance matrix for 𝜷̂ is estimated from the observed Fisher information  

 I(𝛃) = −
∂2

∂𝛃2
logL(𝛃), (11) 

evaluated at the MLE 𝜷̂ and the standard errors are calculated from the square root of its 

diagonal elements.      
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5.2.3 Cox model in case-cohort studies 

The Cox model is commonly used in prospective full cohort studies. However, with proper 

adjustments, the model can also be implemented in case-cohort studies. This implementation 

is originally described in terms of the counting process version of the Cox model
142,143

. We 

introduce the following notation for the jth individual: (i) Nj(t) is the number of observed 

events up to and including time t, (ii) Yj(t) is a process which indicates if the individual is at 

risk (=1) or not (=0) at time t, (iii) Zj(t) is vector of covariates, which in our case is constant 

with respect to time, and (iv) rj(t) = e𝛃´𝒁𝒋(𝐭) is the subject’s risk score. For a full cohort with 

size nc, the counting process version of the score equations (10) for the Cox model, are 

written as  

 
U(β, t) = ∑ ∫{Zj(s) − Z̅(β, s)}dNj

t

0

(s),

nC

j=1

 
(12) 

where 𝒁̅(𝛽, 𝑡) is the weighted mean  

 Z̅(β, t) =
∑ Yj(t)rj(β, t)Zj(t)

nC
i=1

∑ Yj(t)rj(β, t)nC

i=1

. (13) 

If all individuals are included from the case-cohort sample in equation (12) this would result 

in a biased estimate for the full cohort. Instead we adjust for the sampling design by 

calculating the weighted mean based only on individuals in the randomly selected sub-cohort.   

5.2.4 Accelerated Failure Time (AFT) models  

One reason why the Cox model is widely used is that no assumptions regarding the shape of 

the hazard are required. Instead of modeling the hazard function as a function of covariates 𝑿, 

a parametric model of the survival function could be used instead. In Study II we assume 

that the observed survival times have a log-normal shape. Since we analyze prostate cancer 

survival within family pairs in that particular study, we also introduce a family index i. This 

gives the following model: 

 Tij = 𝛃T𝐗ij + ε, (14) 

where 𝑇𝑖𝑗is the log survival time for individual j in family i, and 𝜀 is a normal variable with 

mean 0. The implication of this model is that the effect of a unit change in covariate j acts 

multiplicatively on the event times with an acceleration factor 𝑒𝜷𝒋.           
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5.3 QUANTITATIVE GENETICS 

5.3.1 Definition of heritability (narrow-sense) 

Quantitative genetics theory could be used to estimate the heritability of a trait (in our case 

prostate cancer survival). The underlying assumption in quantitative genetics is that each 

individual’s phenotypic outcome (P) is a result of genetic (G) and environmental factors 

(E)
144

, that is:  

 P = G + E. (15) 

The genetic effect could be further decomposed into an additive component (A) and a 

dominance component (D) and gene-gene interactions in different loci (epistasis). For 

simplicity epistasis is usually ignored. This gives the following model: 

 

 P = A + D + E.  (16) 

Additive genetic effect assumes that an average effect is added for each copy of a particular 

allele (i.e. an individual with two copies of the same allele has twice the effect on the 

phenotype as an individual with one copy) at each locus. Furthermore, the effects in different 

loci are assumed to act independently and additively. A dominance effect reflects a situation 

where having one or two copies of an allele results in equal effects. 

In general, we are not interested in a particular individual’s phenotype, we rather want to 

model the variability in prostate cancer survival, that is why some die closer to their diagnosis 

while others do not. Thus, we look at the variance of the phenotype, and by using probability 

theory we get: 

 σP
2 = σA

2 + σD
2 + σE

2 + 2 ∗ σAD + 2 ∗ σAE + 2 ∗ σDE,  (17) 

where 𝜎𝑋
2 is the variance of X and 𝜎𝑋𝑌 is the covariance of X and Y. This expression is 

reduced since the additive and dominant genetic effects are independent by definition, i.e. 

𝜎𝐴𝐷 = 0. Furthermore, we simplify reality by assuming that no gene-environment 

interactions exist (σAE = 0 and σDE = 0), which gives the following variance model: 

 σP
2 = σA

2 + σD
2 + σE

2 .  (18) 

Moreover, the environmental component is usually decomposed into a part that is shared by 

individuals within a family (C) and one that is not shared (E), the latter of these also include 

measurement error. Thus, given the model assumptions mentioned, the total variance of the 

phenotype can be decomposed as: 
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 σP
2 = σA

2 + σD
2 + σC

2 + σE
2 . (19) 

Heritability is defined as the proportion of the total phenotypic variance which is attributable 

to genetics
145

. However in most applications, narrow-sense heritability, h
2
 is estimated, 

which is defined as the proportion of the total phenotypic variation that is explained by 

additive effects: 

 h2 =
σA

2

σP
2 . (20) 

We estimated this quantity, which will be referred as heritability, for prostate cancer survival 

in Study II.     

5.3.2 ACE model 

Family relations, i.e. covariance structures between family members can be used to estimate 

the heritability h
2
. Traditionally, this is done in twin studies

146,147
, where monozygotic (MZ) 

twins are compared with dizygotic (DZ) twins, because they share different amount of genes 

but the same environment. However, other family structures are also used to estimate the 

relative balance between genetic and environmental effects. It is possible to use families 

where the amount of genetic sharing is equal but the environment within a family is different. 

An example is adoption studies where siblings that are reared together are contrasted to 

siblings that are reared apart. In our study we estimate the heritability of prostate cancer 

survival in families that are genetically equal (share 50% of segregating alleles identical by 

descent), brother pairs and father-son pairs. However, since the environment that affect 

prostate cancer prognosis is expected to change with calendar time, we assume that brothers 

share environment (since they get their diagnosis closely in time), whereas fathers and sons 

do not. The latter is probably not entirely accurate but with the family structures that we have 

in our data this assumption is necessary to be able to estimate heritability.         

With our data structure we can only study three components of the right hand side of equation 

(19) at the same time. The unshared environmental component (E) has to remain in the model 

since random errors are included in that parameter. Furthermore, it is common to model the 

additive genetic (A) and shared environmental (C) components, unless it is believed that 

dominance effects are important for the trait (which we have no reason to believe in case of 

prostate cancer survival). This leaves us with a so called ACE-model.  

We model the outcome in our study, log-time from prostate cancer diagnosis to death from 

prostate cancer, 𝑇𝑖𝑗 (ith family for the jth family member) in a mixed log-normal AFT model:  

 Tij = μij + Aij + Ci + Eij, (21) 
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with unmeasured latent variables  𝐴𝑖𝑗 , 𝐶𝑖 and 𝐸𝑖𝑗 (additive genetic, common environment and 

unshared environment components) that are assumed to be normally distributed with mean 0 

and variances 𝝋 = (𝜎𝑎
2, 𝜎𝑐

2, 𝜎𝑒
2) respectively. The fixed effects, 𝜇𝑖𝑗 = 𝜷𝑿𝒊𝒋 are the observed 

variables. We adjusted our analysis for age and calendar period of diagnosis. The calendar 

period effect on prostate cancer survival was modeled as linear up to 1995 with a quadratic 

term after that (because of the introduction of PSA testing; see section 2.1.7).  

Given the previously mentioned assumptions, the expected covariance matrices of the 

prostate cancer log survival times are  

 Cov (
Ti1

Ti2
) = [

σa
2 + σc

2 + σe
2 0.5 ∗ σa

2

0.5 ∗ σa
2 σa

2 + σc
2 + σe

2], (22) 

for father-son pairs, and  

 Cov (
Ti1

Ti2
) = [

σa
2 + σc

2 + σe
2 0.5 ∗ σa

2 + σc
2

0.5 ∗ σa
2 + σc

2 σa
2 + σc

2 + σe
2], (23) 

 for brothers. 

We let the observed log-transform of the survival times, 𝑻𝒊 = [𝑇𝑖1 𝑇𝑖2]𝑇 in family pair i have 

a bivariate normal distribution with mean 𝝁 = [𝜇1 𝜇2]𝑇 and covariance  

 Σ = [
σ1

2 ρiσ 1σ2

ρiσ 1σ2 σ2
2 ], (24) 

where 𝜎𝑗
2 is the variance of family member j and 𝜌𝑖𝜎1𝜎2 is the family pair covariance. We 

will refer to this as the observed covariance matrix. Furthermore, we assume that 𝑻𝒊 are 

independent from the log censoring times 𝑪𝑖 = [𝐶𝑖1 𝐶𝑖2]𝑇. This leads to the following 

definition of the observed prostate-specific survival times,  𝒀𝑖:    

 
𝐘i = [

Yi1

Yi2
] = [

min(Ti1, Ci1)

min(Ti2, Ci2)
]. 

(25) 

Thus, an event is not observed if  Cij <  Tij  and the exact survival time is not known (but it is 

known that Tij >  Cij).  

Moreover, we assume that variances (adjusted for age and calendar time) within family pairs 

are equal (𝜎1
2 = 𝜎2

2 = 𝜎2). This implicates that the observed covariance matrix (24) 

simplifies to 𝜎2on the main diagonal and to the covariance elements 𝜎2𝜌𝐹𝑆 and 𝜎2𝜌𝐵 in 

fathers-son pairs and brother pairs, respectively. Hence, if we compare these observed 

covariance matrices with the expected, (22) and (23), we can see that the variance 

components 𝝋 are identified from the following equations:  
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σa

2 + σc
2 + σe

2 = σ2, 

0.5 ⋅ σa
2 + σc

2 = σ2ρB, 

0.5 ⋅ σa
2 = σ2ρFS. (26) 

Since we have three unknown parameters and equally many equations only one unique 

solution exist. Thus, it is clear that including a fourth variance parameter in the model, for 

example a dominance genetic component (D) would result in an unidentifiable problem. 

5.3.3 Conditional likelihood estimation 

The following two sections are adapted from the appendix of Study II. In order to obtain 

estimates of 𝝋 we want to maximize the sum of the log-likelihood contributions of all pairs 

with regards to the unknown parameters, 𝜽 = (𝜇1, 𝜇2, 𝜎1
2, 𝜎2

2, 𝜌𝑖): 

 log(L(𝛉)) = ∑ log(Li(𝛉))

n

i=1

. (27) 

The likelihood components for the family pairs are calculated depending on whether the 

events are observed or not. There are four possible scenarios, shown in Figure 7, for the 

censoring in a family pair, which we have to condition on: (i) both survival times are 

observed as prostate cancer events (no censoring); (ii) only member 1 is censored; (iii) only 

member 2 is censored; and (iv) both members are censored. For censored observations we 

want to integrate the density function over all possible survival times, i.e. from 𝑪𝑖.   

 

Figure 7: Four scenarios of censoring of survival times in a family pair. The dot represents observed times, 

censored or not, the green lines and area represent potential survival times if censored. 
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If both individuals are observed events in the ith family with survival times 𝒚𝒊 = (𝑡𝑖1 𝑡𝑖2)𝑇, 

the likelihood is given by the multivariate normal density function: 

 Li(θ) = fY1,Y2
(𝐲𝐢) = (2π)−1|Σ|−

1
2exp (−

1

2
(𝐲𝐢 − 𝛍)T𝚺−1(𝐲𝐢 − 𝛍)) 

=
1

2π√σ1
2σ2

2(1 − ρ2 )
exp (−

1

2σ1
2σ2

2(1 − ρ2)
(σ2

2(yi1 − μ1)2 + σ1
2(yi2 − μ2)2

− 2ρσ1σ2(yi1 − μ1)(yi2 − μ2))). 
(28) 

In the scenario where one of the observations in a pair is censored, for example 𝑌𝑖1 at 𝐶𝑖1, the 

observed times are 𝒚𝑖 = (𝐶𝑖1, 𝑡𝑖2)𝑇. The likelihood in this case is constructed by using the 

conditional density function, where we condition on that we have observed an event (prostate 

cancer death) for the second family member (i=2): 

fYi1|Yi2=yi2
(yi1) =

fYi1,Yi2
(yi1, yi2)

fYi2
(yi2)

 

=

1

2π√σ1
2σ2

2(1 − ρ2 )
exp (−

1
2σ1

2σ2
2(1 − ρ2)

(σ2
2(yi1 − μ1)2 + σ1

2(yi2 − μ2)2 − 2ρσ1σ2(yi1 − μ1)(yi2 − μ2)))

1

√2πσ2
2

exp (−
1

2σ2
2 (y2 − μ2)2) ,

 

=
1

√2πσ1
2(1 − ρ2 )

exp (
1

2σ1
2(1 − ρ2)

(y1 − μ1 − ρ
σ1

σ2

(y2 − μ2))

2

) (29) 

The last expression is recognizable as a 𝑁 (𝜇1 + 𝜌
𝜎1

𝜎2
(𝑦2 − 𝜇2), 𝜎1

2(1 − 𝜌2))-distributed 

variable. Thus, the likelihood may be calculated as 

 Li(𝛉) = fY2
(y2) ∫ fY1|Y2=y2

(y1)dy1

∞

ci1

, 
(30) 

where 𝑓𝑌2
(𝑦2) is the density function of a 𝑁(𝜇2, 𝜎2

2) distributed variable. This is of course 

symmetric for the scenario where 𝑌𝑖2 is censored and 𝑌𝑖1 is not. 

In the case where both observations are censored, at 𝐶𝑖1 and 𝐶𝑖2, the likelihood is the 

multivariate integral 

 
Li(𝛉) = ∫ ∫ fYi1,Yi2

(yi1, yi2)dy1dy2

∞

Ci2

∞

Ci1

. 
(31) 
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Maximization of this this composite likelihood was performed in the open source package 

OpenMX in the program R. The function mxFIMLObjective (with a thresholds option), was 

used to integrate the likelihood functions above, from the censoring times, 𝑪𝑖𝑗 (interpreted as 

“thresholds” in a liability model for twin data with a binary outcome
146

). 

5.3.4 Simulations 

The above described conditional likelihood estimation procedure was evaluated on simulated 

data, which was created to closely mimic the observed data. In order to get the same 

distribution of age and calendar period (year) at diagnosis in the different family pairs, we 

took a random sample (25,000 families) with replacement from the real data. This also gave a 

true relation between the number of father-son pairs (N= 19,665) and brother-pairs 

(N=5,335). Since a realistic scenario is that the survival time decrease with age and increase 

with calendar period (because of improved treatment and clinical practice), we simulated in 

each family i for individual j a log-normal time from diagnosis to death from prostate cancer, 

𝑇𝑖𝑗: 

[
Ti1

Ti2
] = [

log (T1)
log (T2)

] + 𝐗,  

where log(𝑇𝑗) = 𝑚𝑒𝑎𝑛(log(𝑇real data)) − 0.02 ∗ 𝐴𝐺𝐸 + 0.1 ∗ 𝑌𝐸𝐴𝑅 and X has a bivariate 

random normal distribution with mean 0 and covariance Σ, which is generated by the 

rmvnorm function (mvtnorm-package) in R. The structure of the covariance matrix depends 

on family type, given by (22) for father-son pairs and (23) for brother pairs.  

Furthermore, for each individual, we simulated a time from diagnosis to death from 

competing risks (𝑇𝑖𝑗
𝐶𝑅) by using national life tables from Statistics Sweden for Swedish males 

in 2010
148

. Mortality rates for each age-group were used to randomly generate an age of death 

from competing causes, from an exponential function in which the rate was piece-wise 

constant by age. The msm-package in R was used to implement this. 

The time of event was defined as the minimum of the generated times of cause-specific death 

and competing risks, i.e. min(𝑇𝑖𝑗, 𝑇𝑖𝑗
𝐶𝑅).  If simulated death from prostate cancer occurred 

before the competing risk this was considered as an event, otherwise the observation was 

censored. As in the real data, we also stopped following individuals at age 90, after 20 years 

of follow-up and at end of follow-up (December 31, 2010). Simulation was performed for 

various combinations of variance components (𝜎𝑎
2,  𝜎𝑐

2,  𝜎𝑒
2). 

5.4 GENOME-WIDE ASSOCIATION STUDIES (GWAS) 

In study IV, we performed a GWAS of prostate cancer-specific survival. The basic idea in a 

GWAS is to scan the whole genome for common SNPs (MAF>0.01) that are associated with 

a trait of interest. This search is agnostic, in the sense that no prior hypothesis is formulated 

regarding any specific loci or genes to be associated with the outcome. Using this approach 

low-risk genetic variants are usually identified.      
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5.4.1 Linkage Disequilibrium (LD) 

During meiosis, i.e. when germ cells are produced, DNA from the paternal and maternal 

chromosomes recombines (at least once per chromosome). Thus, gametes consist of a 

mixture of DNA chunks from both parents, and alleles that are located physically close are 

often inherited together and correlated
70

. Measures of correlation (nonrandom association) in 

a population, linkage disequilibrium (LD), between two SNP alleles (A and B) on different 

loci depend on the following coefficient: 

 D = fAB − fAfB, (32) 

where 𝑓𝐴𝐵is the frequency of individuals that carry both the A and B alleles and 𝑓𝐴𝑓𝐵is the 

product of the A and B allele frequencies
149

. If 𝐷 = 0, the alleles are in linkage equilibrium, 

that is, they are statistically independent. Since D is constrained by the allele frequencies 

other standardized measures are preferred, such as 𝑟2, which is a measure of correlation 

between two loci: 

 r2 =
D2

pA(1−pA)pB(1−pB)
. (33) 

Values of this coefficient range from 0 (no correlation) to 1 (perfect correlation). The human 

genome is made up of haplotype blocks, containing variants in LD with each other. Thus, in a 

GWAS it is sufficient to genotype one SNP in each such block when testing for association 

with disease outcome, since this tagSNP will be in high LD with all variants in that region. 

5.4.2 Quality Control (QC) 

A first important step in a GWAS is quality control (QC) and data cleaning. Individuals were 

excluded from the study due to signs of poor DNA quality for one of the following reasons: 

1. Genotype call rate <95%.  

2. Cryptic and false duplicates. 

3. Not male (XX or XXY sex genotypes). 

4. High or low heterozygosity (±4.89 SD from mean).  

5. Related to other study participant. 

6. Ancestry outlier. 

Furthermore, SNPs with bad genotyping were excluded based on the following criteria: 

1. Call rate <95%. 

2. Departure from Hardy-Weinberg equilibrium. 

An overview of which of these QC criteria that were applied in each study is given in Table 

3. Explanations of some of these concepts follows.  
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5.4.2.1 Hardy Weinberg equilibrium  

Let us assume that a SNP has alleles A and a with allele frequencies p and q respectively. The 

Hardy Weinberg principle states that the frequencies of the three possible genotypic variants 

in a population are 𝑓(𝐴𝐴) = 𝑝2, 𝑓(𝐴𝑎) = 2𝑝𝑞 and 𝑓(𝑎𝑎) = 𝑞2.  This theory assumes 

random mating, no inbreeding, no selective survival factors related to genotype, a large 

population and no recent mutation
70

. Large deviations from Hardy Weinberg equilibrium 

(HWE) may indicate poor genotyping of a SNP. 

5.4.2.2 Identical by state (IBS) 

Two alleles are identical by state (IBS) if they have identical DNA composition and function 

but do not necessarily come from the same ancestor (i.e. not identical by descent; IBD). For a 

pair of individuals, the proportion of SNPs that are IBS indicate to what degree they are 

genetically related.  Based on approximately 37,000 uncorrelated SNPs, a matrix with IBS 

proportions, for all pairs of individuals, was calculated using the GenABEL package
150

 in R. 

Using this information, duplicates and relatives could be identified. For obvious first-degree 

relatives and cryptic relatives (IBS>0.86), controls were removed from case-control pairs, 

otherwise the individual with the lowest genotype call rate was removed. 

  

Table 3: Summary of quality control.  

 
Sample QC Genotyping QC 

    

 

Inclusion/exclusion 

criteria 

  

Genotyping 

platform 

Inclusion criteria 

Study/   

Consortium 

No. of 

cases       

in file 

No. of 

controls in 

file 

Minimum 

sample 

call rate 

for 

inclusion 

Exclus-

ions* 

No. of 

cases 

after 

exclus-

ions 

No. of 

controls 

after 

exclus- 

ions 

SNP 

Call 

rate P, HWE 

SNPs that 

met QC 

criteria 

PRACTICAL 

iCOGS 
24198 23994 ≥95% 1−8 20219 20440 

Custom 
Illumina 

Infinium 

(iCOGS) 

≥95% ≥1x10-7 201598 

UK GWAS 

stage1  
1906 1934 ≥97% 1, 2, 4-7 1854 1894 

Illumina 
Infinium 

HumanHap 

550 Array 

≥95% ≥1x10-5 541129 

UK GWAS 

stage 2 
3888 3956 ≥97% 1, 2, 4-7 3706 3884 

Illumina 

iSELECT 
≥95% ≥1x10-5 43671 

CAPS 1 
GWAS  

498 502 ≥95% 1, 2, 4-7 474 482 

Affymetrix 

GeneChip 

500K 

≥95% ≥1x10-6 369025 

CAPS 2 
GWAS  

1483 519 ≥95% 1, 2, 4-7 1458 512 
Affymetrix 
GeneChip 

5.0K 

≥95% ≥1x10-6 369610 

BPC3 
GWAS 

2137 3101  ≥95%  2,5-7  2068 3011 

Illumina 

Human610 

Illumina 610K 

 ≥95%  ≥1x10-5  525766 

*Exclusion criteria = 1) XX or XXY; 2) heterozygosity lower/higher than 4.89 SD from mean; 3) low concordance with previous genotypes; 4) 

false duplicates; 5) cryptic duplicates; 6) relatives; 7) ancestry outliers; 8) UK, CAPS or BPC3 GWAS overlap. 
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5.4.3 Principal components 

Systematic differences in population allele frequencies across geographic regions results in 

population structures that can be assessed by principal components of SNP data. For 

example, on European level, a south-north gradient is present along the axis of the first 

principal component and a west-east gradient along the second principal component
151

. Intra-

country differences have also been observed, but are generally modest
152,153

.  

Population stratification may confound results in genetic association studies. This could be 

corrected for, by adjusting for principal components in the model. However, it is also 

important to not over-adjust (i.e. adjust for principal components that are not needed) since 

the power to detect true associations decrease. We adjusted for six principal components in 

the association analysis in Study I, where PRACTICAL samples from a mixture of samples 

across the world were used. In Study IV we used principal components in a sensitivity 

analysis of our top findings. Furthermore, principal components were used to exclude genetic 

outliers.   

5.4.4 Imputation  

Genetic data is very suitable for imputation of unmeasured genotypes because of the LD 

block structure of the human genome. Since alleles that are located physically close are often 

inherited together, missing genotypes could be inferred from neighboring loci. To illustrate 

the principle of SNP imputation we can consider a simplistic example with one missing SNP 

in a haplotype, AC?GA. If we observe in a comparison with a reference population that the 

haplotype ACCGA is the most common, we would make the guess that the missing genotype 

should be C, since we know that stretches of DNA are inherited together. However, 

individuals in the reference population with less frequent haplotypes, for example ACTGA 

might also exist. In this case we would assign the two possible variants probabilities that 

correspond to the observed frequencies in the reference population. In practice, imputation is 

carried out in two main steps: (i) phasing the sample genotypes and (ii) alignment of phased 

data to phased reference haplotypes, coupled with imputation.     

The rationale for using imputed data is that such data increase the marker density and the 

power to detect a true causal association. However, the main benefit is that it enables meta-

analysis across different genotyping platforms
154,155

. In Study IV a reference panel from the 

Phase I release of the 1000 genome project (March 2012)
78

, consisting of 1,094 individuals 

from 14 different populations with 17 million SNPs/indels, was used. Imputation was 

performed in PRACTICAL (each sub study was imputed separately), CAPS GWAS and 

UKGPCS GWAS, using the software IMPUTE2
156

, while MACH
157

 was used for imputation 

of the BPC3 study. This was carried out at Cambridge University by PRACTICAL 

consortium collaborators as described in Amin Al Olama et al
86

. Furthermore, we obtain 

estimates of the imputation accuracy of each SNP. These metrics (r
2
 in MACH and INFO in 

IMPUTE2) lie in the range (0,1), where 0 means complete uncertainty and 1 indicates perfect 
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imputation
154

. Only SNPs with imputation accuracy above 0.75 were included in the final 

meta-analysis.     

5.4.5 Meta-analysis 

For each individual study we carried out genome-wide assessment and combined the 

estimated effects in a meta-analysis .We performed Cox regression analysis with time from 

prostate cancer diagnosis to death from prostate cancer (or censoring)  as outcome. Delayed 

entry (left truncation) was allowed in the model since some study participants were not 

enrolled at the time of diagnosis. Dosage of a reference allele was used as exposure, which 

corresponds to an additive genetic model. The following example of a C/T polymorphism 

illustrates how SNP dosage was calculated. For imputed SNPs, we obtained probabilities pCC, 

pCT  and pTT for the possible genotypes CC, CT and TT for each individual. These were 

transformed to dosages of a reference allele (for example C): 

 dosageC = 2 ∗ pCC + 1 ∗ pCT + 0 ∗ pTT. (34) 

Results from each study were combined in an inverse variance weighted meta-analysis. 

Assuming that the additive genetic effect 𝛽𝑖 with a standard error 𝑆𝐸𝑖 was estimated from 

study i for a particular SNP. With weights defined as 𝑤𝑖 = 1/𝑆𝐸𝑖
2, the weighted combined 

effects and standard errors were obtained by:  

 βMeta = ∑ βi
i

wi ∑ wi
i

⁄  (35) 

     
SEMeta = √1 ∑ wi

i
⁄ . 

(36) 

These were used to calculate an overall Z statistic, ZMeta = βMeta SEMeta⁄ , and used to 

perform an overall test with P = 2Φ(−|ZMeta|), where 𝛷 is the cumulative normal 

distribution function. This meta-analysis was carried out for all available SNPs over the 

genome. Furthermore, for each SNP, Cochran’s Q-test for heterogeneity between samples 

was performed. We only considered SNPs where no significant (p>0.05) heterogeneity 

between study effects was present. The meta-analysis was implemented in the METAL 

software
158

. 

5.4.6 Evaluation of genome-wide association results 

After performing GWAS it is critical to evaluate the genome-wide distribution of the used 

test statistic in comparison with the expected distribution by chance (when no genetic 

associations are present). Deviance from the expected null distribution may be due to an 

excess of truly associated genetic variants that are in LD
159

. However, it might also indicate 

poor quality control of the data, inappropriate adjustment for population structure (principal 

components) or some other technical bias. A Quantile-Quantile (Q-Q) plot, of the observed p-
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values against the expected p-values obtained by chance is a visual assessment of deviance. 

The resulting plot should ideally appear as a straight line on the diagonal, with true 

associations deviating in the extreme tail of the distribution
160

.  

Another commonly used metric is the genomic inflation factor λ, which is defined as the ratio 

between the median of the observed p-values against the median of p-values expected by 

chance
161

. This is a measure of the excess of false positives. However, it has been shown that 

the inflation factor scales with sample size
161

 and that the inflation factor λ1000 for an 

equivalent study of 1000 cases and 1000 controls is more informative
162

: 

 λ1000 = 1 + (λ − 1) × (
1

ncases
+

1

ncontrols
) (

1

500
) ,⁄  (37) 

where, in our study, ncases is the number of prostate cancer patients that died from their 

disease and ncontrols is the number that did not die (i.e. were censored). Results are usually 

displayed in a Manhattan plot with p-values (−log10) plotted on the y-axis against their 

physical position in the chromosome on the x-axis. Since it is assumed that approximately 1 

million independent statistical tests are performed in a GWAS it is crucial to adjust for 

multiple tests (to avoid false positive findings). A Bonferroni correction gives a critical p-

value, p < 5 × 10−8, where a SNP is considered as genome-wide significant, i.e. truly 

associated with the outcome.  

In our study, a SNP was considered as an interesting finding which qualified for replication if 

the following criteria were satisfied: 

1. Genome-wide significant in combined Meta-analysis between PRACTICAL and 

BPC3. 

2. The direction of effect in PRACTICAL and BPC3 were equal. 

3. Cochran’s Q-test for heterogenity was not significant (p>0.05) within PRACTICAL 

and BPC3. 

4. Cochran’s Q-test  for heterogenity was not significant (p>0.05) between 

PRACTICAL and BPC3. 

Furthermore, a number of sensitivity analyses were performed for all interesting SNPs: 

1. Adjustment for six principal components in a full cohort stratified Cox regression 

analysis to adjust for possible confounding due to population stratification. 

2. Adjustment for other possible confounders, such as age, PSA and Gleason score at 

diagnosis.   

The leading SNP (strongest associated with the outcome) in each interesting region was 

genotyped in a sub-population (UKGPCS1 GWAS) to assess the imputation quality. If the 

leading SNP was not possible to genotype because of manufacturing reasons, we chose a 

different genome-wide significant marker in the same region or a surrogate SNP (in high LD 

with the leading SNP). SNPs that demonstrated a satisfying concordance rate between 
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imputed and genotyped SNPs (percentage of individuals correctly classified by imputation) 

were put forward for replication in an independent sample (CONOR).         
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6 RESULTS AND DISCUSSION 

6.1 STUDY I: PREDICTION OF INDIVIDUAL GENETIC RISK TO PROSTATE 
CANCER 

6.1.1 Results  

In Figure 8 we can see that the prediction performance for different internal validation 

samples in the cross-sample validation varies substantially. AUC values range from 0.64 to 

0.69 in the models that only include 65 established risk variants. In most studies, except 

STHM1, we can observe an increasing trend in AUC when additional, previously not 

established SNPs are added to the model. However, this initial growth is rather modest 

(approximately 0.01 change in AUC) and the peak of mean prediction performance is 

observed at 68 added SNPs.  

 

 

Figure 8: Prediction accuracy (AUC) for different internal validation samples of the training data. The left 

plot shows prediction performance when up to 5,000 novel SNPs are added to the prediction model. The right 

plot is zoomed in on the part where the predictions increase. The black line corresponds to the mean AUC. 

 

Based on the training data, we concluded that a prediction model with 65 established and 68 

additional non-established SNPs would give the best predictive capacity. This final model 

(with polygenic risk score weights and SNP rank order obtained from the whole training data) 

was evaluated in the external test sample, SEARCH. The initial model with only 65 

established SNPs had an AUC=0.67 and increased significantly (p=0.0012) to 0.68 when the 

68 non-established SNPs were added to the prediction model. Furthermore, the NRI was also 

significantly improved (p=0.00051) when the non-established SNPs were added to the 

prediction model.  

We could also observe an increasing trend in prostate cancer risk with higher total genetic 

risk score in the independent SEARCH sample (Table 4). Comparing with the reference 

category (40–60% percentiles), individuals with lowest risk scores (lowest 5% percentile) 



 

38 

have an 84% decreased risk of prostate cancer, while individuals with highest risk scores 

(highest 5% percentile) have a four-fold increased relative risk of prostate cancer. 

6.1.2 Discussion 

In this study, we derived a polygenic risk score model that discriminates between prostate 

cancer cases and healthy controls to some extent. We observed a large variability in 

prediction performance (AUC) in the training data, probably due to different study designs. 

For example, the best predictions are obtained in the Australian sample where cases with age 

at diagnosis below 55 were enrolled, followed by the UKGPCS study, which also included 

early onset cases (below 60 years) and patients with a family history of prostate cancer. These 

cancer subtypes are known to be more heritable, which results in better predictions by the 

SNPs in our model. However, we argue that the prediction accuracy (AUC=0.68) in the 

independent SEARCH study (population based) is a realistic result in a screening situation. 

The participants in that particular study are aged up to 70 years, and therefore representative 

for a screening target population. Furthermore, we observed in SEARCH that a polygenic 

risk score has the capacity to stratify individuals into risk groups based on the 133 SNPs (65 

established and 68 novel) in our final model. It is evident from this study that the 5% with 

highest risk scores has a considerably higher risk of getting prostate cancer compared to the 

5% with lowest risk scores. These results are in concordance with other studies with a 

somewhat different approach
86,163

. However, the clinical utility of these models still remains 

to be evaluated.  

 

Table 4: Risk distribution in different percentiles of a genetic risk score, containing both 65 established and 

68 novel SNPs, evaluated in an external test sample. 

Percentiles OR (95%CI) P value 

0% - 5% 0.16 (0.10,0.27) 4.43e-12 

5% - 10% 0.52 (0.35,0.77) 0.0012 

10% - 20% 0.41 (0.30,0.56) 2.85e-08 

20% - 30% 0.82 (0.61,1.10) 0.18 

30% - 40% 0.92 (0.69,1.24) 0.60 

40% - 60% 1.00 (ref) - 

60% - 70% 1.36 (1.01,1.84) 0.046 

70% - 80% 1.60 (1.18,2.16) 0.0026 

80% - 90% 2.58 (1.86,3.56) 9.66e-09 

90% - 95% 2.37 (1.56,3.60) 5.07e-05 

95% - 100% 4.00 (2.51,6.39) 6.50e-09 
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Furthermore, by adding the SNPs that were mostly associated with the outcome in the 

training sample to the 65 previously established risk variants, the prediction model was 

significantly improved. Interestingly, the additional SNPs were all located in regions that 

were previously recognized as established prostate cancer risk regions. This suggests that 

fine-mapping of these parts of the genome could identify SNPs that are more predictive (i.e. 

causal variants or SNPs in higher LD with the causal variants) for prostate cancer incidence. 

Concurrently with our study, Amin Al Olama and coworkers reported that fine-mapping of 

64 known prostate cancer GWAS regions resulted in multiple independent signals in 16 of 

the regions (12 independent but previously unknown regions within 500kB of the established 

SNP) and 35 regions with a new lead SNP
94

. This supports our observation that more 

predictive SNPs exist in previously known GWAS regions. 

We employed several other strategies to improve predictions in our polygenic risk score 

model. We used forward selection, together with cross-validation to rank SNPs in which 

order to add them into the prediction model. This did not improve the predictive capacity 

compared with a model that only included established risk SNPs. Furthermore, several 

regularized regression methods (Lasso, Ridge and Elastic net) and a random forest model 

were implemented in our data. In general these efforts resulted in over-fitted prediction 

models that performed poorly in the external test sample (SEARCH).   

6.2 STUDY II: ESTIMATING HERITABILITY OF PROSTATE CANCER-
SPECIFIC SURVIVAL USING POPULATION-BASED REGISTERS 

6.2.1 Results 

Results from assessment of the heritability of prostate cancer-specific survival are shown in 

Table 5. No evidence of heritability of prostate cancer-specific survival was observed in the 

crude unadjusted analysis. However, a model with adjustment for age at diagnosis and 

calendar period revealed an estimated heritability of 0.10 (95% confidence interval [CI] = 

0.00 to 0.20) that was borderline significantly different from zero (P = 0.057). In the adjusted 

analysis the shared environment was not significantly different from zero with a point 

estimate of 0.00 (95% CI = 0.00 to 0.13). 

Sensitivity analysis, exploring 5- and 10-years survival and excluding PSA detected tumors, 

revealed that the heritability estimates were relatively robust, varying between 0.10 and 0.14. 

The estimates of the shared environmental component increased to 0.14 (95% CI = 0.00 to 

0.30) when T1c tumors from 2002 were removed, but continued to not be significantly 

different from zero. 

We can see that the observed results follow the same pattern as in the simulated data (Table 

6). In a crude analysis, heritability estimates are biased towards null and the shared 

environmental component is clearly over-estimated. However, by adjusting for age and 

calendar period we obtain precise estimates for the heritability but the shared environmental 
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component is under-estimated. This underlines the importance of proper adjustment for age 

and calendar period for the heritability estimates.  

 

Table 5: Estimates and 95% likelihood-based confidence intervals of heritability-, shared environment- and 

unshared environment components. 

Model a2* c2** e2*** 

Main analysis 

   Crude (unadjusted) 0.00 (0.00, 0.01) 0.51 (0.42, 0.59) 0.49 (0.41, 0.58) 

Age adjusted 0.00 (0.00, 0.03) 0.30 (0.17, 0.42) 0.70 (0.58, 0.83) 

Calendar time adjusted 0.05 (0.00, 0.15) 0.02 (0.00, 0.16) 0.93 (0.79, 1.00) 

Age and calendar time adjusted 0.10 (0.00, 0.20) 0.00 (0.00, 0.13) 0.90 (0.76, 1.00) 

    Sensitivity analysis 

   10 year survivala 0.10 (0.00, 0.20) 0.00  (0.00,0.13) 0.90 (0.77, 1.00) 

5 year survivalb 0.14 (0.02, 0.25) 0.00 (0.00, 0.15) 0.86 (0.71, 0.98) 

T1c tumors removedc 0.12 (0.01,  0.24) 0.14 (0.00, 0.30) 0.74 (0.58, 0.90) 

Diagnosed from 2005 removedd 0.13 (0.00, 0.25) 0.01 (0.00, 0.20) 0.87 (0.68, 0.99) 

* Estimated heritability, a2 = 𝜎𝑎
2/(𝜎𝑎

2 + 𝜎𝑐
2 + 𝜎𝑒

2). 

** Estimated common environment effect, c2 = 𝜎𝑐
2/(𝜎𝑎

2 + 𝜎𝑐
2 + 𝜎𝑒

2).   

*** Estimated unshared environment effect, e2 = 𝜎𝑒
2/(𝜎𝑎

2 + 𝜎𝑐
2 + 𝜎𝑒

2). 

a, Same data as in main model but observations censored after 10 years. 

b, Same data as in main model but observations censored after 5 years. 

c, Patients with missing T-stage information and T1c tumors (PSA detected) removed from 2002. Data restricted to 3915 father-son pairs and 

746 brother-pairs. 

d, Individuals diagnosed from 2005 removed. Data restricted to 2776 father-son pairs and 461 brother pairs.  

 

Table 6: Estimates and 95% confidence intervals of variance components (𝒂𝟐=𝝈𝒂
𝟐 ,  𝒄𝟐=𝝈𝒄

𝟐, 𝒆𝟐=𝝈𝒆
𝟐) on 

simulated data. 

  

Crude model  

(no adjustment) 

Adjustment for age and  

calendar period (year) 

Parameters in  

simulated data a2 c2 e2 a2 c2 e2 

a2=0.1, c2=0.2, e2=0.7 0.00 (0.00,0.00) 0.76 (0.74,0.77) 0.24 (0.23,0.26) 0.09 (0.06,0.13) 0.06 (0.02,0.11) 0.84 (0.80,0.89) 

a2=0.1, c2=0.4, e2=0.5 0.00 (0.00,0.00) 0.82 (0.80,0.83) 0.18 (0.17,0.20) 0.09 (0.06,0.13) 0.24 (0.20,0.28) 0.66 (0.62,0.71) 

a2=0.4, c2=0.2, e2=0.4 0.00 (0.00,0.00) 0.80 (0.79,0.81) 0.20 (0.19,0.21) 0.39 (0.36,0.43) 0.05 (0.00,0.09) 0.56 (0.52,0.60) 

a2=0.4, c2=0.3, e2=0.3 0.00 (0.00,0.00) 0.83 (0.82,0.84) 0.17 (0.16,0.18) 0.39 (0.36,0.43) 0.14 (0.10,0.18) 0.47 (0.43,0.51) 
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6.2.2 Discussion 

The main finding from this study is that the heritability of cause-specific survival among men 

with prostate cancer is approximately 10%, which is considerably lower compared with many 

other cancer traits
164

 and in particular with prostate cancer susceptibility (58%)
55

. This 

supports the hypothesis that susceptibility of prostate cancer and progression of disease are 

separate mechanisms that involve different genes. Furthermore, the results of this study imply 

that the total additive genetic effect is small and that the predictive capacity in future 

prediction models may be low for this outcome. Another probable implication is that the 

amount of common variants with moderate effect sizes, usually found in GWAS, may be 

limited. However, many common variants with very small effect sizes or rare more penetrant 

variants may exist. Identifying these genetic variants associated with the aggressiveness and 

prognosis of prostate cancer is of great importance to enhance our understanding of 

aggressive prostate cancer etiology. 

It is also important to emphasize that the ACE model, as used in this study, is rather crude 

since it relies on moderately strong assumptions. For example, the model assumes that no 

epistasis or gene-environment interactions exist. This issue has not been properly addressed 

for the studied outcome, since it requires much larger samples of men with follow-up data 

after prostate cancer diagnosis than are available today. Another assumption is that brothers 

are assumed to share environment, whereas fathers and sons do not. This may be a reasonable 

approximation for prostate cancer survival, but is not expected to be entirely accurate. 

However, this assumption is not empirically testable.  

Publically available software implementations for analysis of family data with a survival 

outcome are currently rare or even nonexistent. Our conditional likelihood approach was 

implemented in the open source package OpenMX. We demonstrated that this application 

estimated the heritability well in simulated data. However, the shared environmental effect is 

expected to be under-estimated; the reason for this is not completely obvious. In the 

sensitivity analysis where T1c tumors (PSA detected without clinical symptoms of prostate 

cancer) were removed we saw that the estimate of the shared environment increased 

substantially. This may indicate that lead time bias, induced by opportunistic PSA screening, 

is the problem, although we adjust for this in the model. Thus, we cannot rule out the 

possibility of a common environmental effect, despite that it was estimated to be 0 in this 

study. 

Furthermore, we considered other modeling strategies for this data. For example, we applied 

a Mixed Accelerated Failure Time (MAFT) model developed by Yip and coworkers
165

. This 

method maximizes a hierarchical likelihood procedure with a clever algorithm to speed up 

estimation. In an application on simulated data (with no covariate dependencies), we were not 

able to achieve satisfactory convergence for the model. This could be due to a poor model 

implementation or that the method makes too strong approximations in its algorithm. Another 

possibility is that the random effects for the simulated example are difficult to estimate, 

which has been shown for an ACE model with binary outcomes
166

. We encountered similar 
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problems when we applied a Bayesian method to the same simulated data
167

. Nevertheless, 

our conditional likelihood approach resulted in robust predictions in the simulation datasets, 

which provides some reassurance for robustness of our estimates of the heritability of prostate 

cancer-specific survival.      

6.3 STUDY III: PROSTATE CANCER RISKVARIANTS ARE NOT ASSOCIATED 
WITH DISEASE PROGRESSION 

6.3.1 Results 

Results from association tests between 23 established risk SNPs with prostate cancer 

progression are shown in  

Table 7. Three of these genetic variants were nominally significant: rs9364554 (p=0.04) on 

chromosome 6q25 and rs10896449 (p= 0.03) on chromosome 11q13 among patients treated 

with curative intent (radiation therapy or radical prostatectomy); and rs4054823 (p=0.008) on 

chromosome 17p12 among patients on surveillance. However, none of these variants 

remained significant after Bonferroni correction. Furthermore, the cumulative effect of these 

SNPs was explored in a polygenic risk score but no significant association with prostate 

cancer progression was observed, neither for patients treated with curative intent (p=0.14) nor 

for those on surveillance (p=0.92).   

6.3.2 Discussion 

We did not find any of the 23 established prostate cancer susceptibility SNPs to be associated 

with prostate cancer progression among patients with localized disease at diagnosis. These 

results are in line with other studies that have addressed this issue
168,169

. However, some 

studies with similar cohorts have reported associations with known risk SNPs and disease 

prognosis outcomes, such as prostate cancer-specific mortality
102,170

, aggressive prostate 

cancer
101

 and biochemical recurrence
171-173

. Many of these studies are small and do not adjust 

for multiple testing (i.e. Bonferroni correction) in the reported associations. Furthermore, 

findings are inconclusive, with no overlap of observed associations between studies. The only 

exception from this are two SNPs (rs2735839 and rs17632542), located in the KLK3 gene 

(encoding PSA), which have been replicated in several studies
170,171,174

. We did not observe 

any association between rs2735839 and prostate cancer progression in our study. Shui and 

coworkers found that the susceptibility risk allele (G) for this SNP was inversely associated 

with prognosis
102

. Furthermore, it has been shown that the G-allele is associated with higher 

levels of circulating PSA
90,175,176

. Hence, individuals in an early stage of prostate cancer 

carrying this allele are more likely to be discovered by a PSA test as compared to individuals 

not carrying the allele. Thus, the protective effect on disease prognosis observed for this allele 

may be explained by PSA induced lead-time bias and not by a true biological association 

with prognosis.  
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Table 7: Association between 23 established prostate cancer susceptibility variants and disease progression. 

  
RADIATION+OPERATION Surveillance 

SNP (CHR) Alleles* HR** (95% CI) P-value*** HR** (95% CI) P-value*** 

rs721048 (2p15) G/A 0.96(0.82-1.14) 0.66 0.94 (0.75–1.18) 0.86 

rs2660753 (3p12) C/T 1.03(0.83-1.28) 0.54 0.78(0.56-1.08) 0.26 

rs629242 (4q12) C/T 1.16(0.99-1.36) 0.19 1.22(0.99-1.51) 0.08 

rs9364554 (6q25) C/T 1.13(0.98-1.29) 0.04 1.06(0.88-1.27) 0.09 

rs10486567 (7p15) C/T 0.99(0.85-1.16) 0.74 0.90(0.72-1.11) 0.61 

rs6465657(7q21) C/T 1.10(0.97-1.25) 0.09 0.88(0.73-1.05) 0.34 

rs16901979 (8q24) C/A 0.83(0.61-1.13) 0.51 1.01(0.69-1.48) 0.35 

rs6983267 (8q24) G/T 1.08(0.95-1.23) 0.14 0.92(0.77-1.11) 0.42 

rs1447295 (8q24) C/A 1.07(0.89-1.27) 0.39 1.18(0.93-1.49) 0.21 

rs1571801 (9q33) G/T 0.96(0.83-1.11) 0.15 1.03(0.85-1.24) 0.76 

rs10993994 (10q11) C/T 0.94(0.82-1.07) 0.62 1.06(0.88-1.26) 0.74 

rs10761581 (10q11) T/G 1.08(0.95-1.23) 0.38 1.01(0.85-1.20) 0.98 

rs4962416 (10q26) A/G 1.06(0.91-1.24) 0.70 0.95(0.77-1.16) 0.83 

rs12418451 (11q13) G/A 1.08(0.93-1.24) 0.29 0.99(0.82-1.19) 0.89 

rs10896449 (11q13) G/A 0.89(0.78-1.02) 0.03 1.10(0.92-1.31) 0.37 

rs4054823 (17p12) T/C 0.98(0.86-1.12) 0.63 1.10(0.92-1.31) 0.008 

rs11649743 (17q12) C/T 1.16(0.98-1.37) 0.15 0.98(0.78-1.22) 0.93 

rs4430796 (17q12) T/C 1.05(0.92-1.21) 0.76 0.95(0.80-1.14) 0.79 

rs1859962 (17q24) G/T 0.92(0.80-1.05) 0.25 1.01(0.85-1.21) 0.83 

rs887391 (19q13) T/C 0.92(0.78-1.08) 0.12 0.96(0.78-1.18) 0.75 

rs2735839 (19q13) G/A 1.09(0.88-1.34) 0.56 1.30(1.00-1.68) 0.13 

rs9623117 (22q13) T/C 1.12(0.96-1.31) 0.35 0.95(0.76-1.17) 0.61 

rs5945619 (Xp11) A/G 1.03(0.85-1.24) 0.96 1.08(0.85-1.39) 0.82 

* Common allele/Rare allele. 
** Hazard ratio from additive Cox regression model. 
*** Log-rank test p-value. 

 

The main strengths of this study are the large sample size and the unique population-based 

design, complemented with follow-up regarding disease progression. The restricted follow-up 

time (mean 4 years, range 14 days to 8.5 years among patients without disease progression) 

may have limited the ability to explore the possible long-term effects of the assessed SNPs on 

prostate cancer progression. However, several studies report that disease progression after 

curative treatment is an early event among prostate cancer patients with a localized disease 
177-180

. For example, Stephenson and coworkers report that the median time to biochemical 

recurrence was 22 months in a cohort of 3,125 men that were followed for 20 years
180

. The 

delayed collection of blood samples in the NPCR Follow-up study is another possible 

limitation. This may have resulted in a selection of patients carrying ‘non-progressive’ 

genetic variants that would bias our results towards null. However, in a vital status follow-up 

of the PROCAP participants in 2012, it was concluded that 134 patients (3.1%) of those that 

were included in the study in 2007 had died from prostate cancer
67

. Furthermore, Sullivan 

and coworkers report, from a similar cohort, that only 2% of the patients had died (from any 

cause) within 5 years after diagnosis
174

. Hence, we argue that death from prostate cancer is 
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rare among patients with a clinically localized disease and that the survival bias is of minor 

importance.  

6.4 STUDY IV: GENOME-WIDE ASSOCIATION STUDY OF PROSTATE 
CANCER-SPECIFIC SURVIVAL  

6.4.1 Results 

In Figure 9, we can see the QQ plot of the test statistic from the combined prostate cancer-

specific survival meta-analysis. The plot shows an early deviation of observed p-values from 

what is expected by a null distribution, which indicates possible inflation in the test statistic. 

However, the inflation factors, 𝜆 = 1.11 and λ1000 = 1.02 indicates no serious inflation in 

the test statistic. 

 

 

Figure 9: QQ-plot of –log10(p) in combined meta-analysis between PRACTICAL and BPC3. The inflation 

factors were also assessed separately in PRACTICAL (𝜆 = 1.06, 𝜆1000 = 1.02) and BPC3 (𝜆 =
1.06,  𝜆1000 = 1.06).  

 

The Manhattan plot (Figure 10) of the combined meta-analysis shows in total 27 genome-

wide significant SNPs located in chromosomes 1, 2, 3, 4, 5, 7, 8, 12, 18, 23. SNPs from 10 

regions were selected for genotyping (based on the criteria, described in section 5.4.6) to 

perform concordance analysis between imputed and genotyped data in the UKGPCS1 GWAS 

sample.  
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A summary of the 10 SNPs is shown in Table 8. Eight of these were rare variants with a 

minor allele frequency (MAF) of 1%-2% and two were common variants with MAF 7%–8%. 

Six of the SNPs failed genotyping in the UKGPCS1 sample, either because of failed assay 

design or monomorphism. The remaining four SNPs (rs114997855 on chromosome 2, 

rs76010824 on chromosome 3, rs140659849 and rs723557 on chromosome X) had an 

excellent concordance rate (98%–99%) between genotyped and imputed data. These were 

genotyped in the independent CONOR sample for replication. In CONOR, two SNPs 

(rs723557 and rs76010824) showed a null effect (HR=1) and two SNPs (rs114997855 and 

rs140659849) had opposite effects compared with the initial meta-analysis results. The 

combined effects of these four SNPs between PRACTICAL, BPC3 and CONOR were no 

longer genome-wide significant. Thus, none of the findings in the initial meta-analysis 

replicated. 

 

 

Figure 10: Manhattan plot of p-values from prostate cancer-specific survival analysis. Red line marks 

genome-wide significant level, p<5*10
-8

.  

 

6.4.2 Discussion 

In this study we searched for SNPs associated with prostate cancer survival but we could not 

demonstrate any such association. This is in line with a smaller previous study with the same 

GWAS approach
108

. To this date, no genetic variant has been associated with this outcome on 

a genome-wide level (p<5*10
-8

). However, five SNPs from a candidate gene study have been 

observed to associate with prostate cancer-specific survival
104

 and were replicated in 

independent cohorts
105,106

. Furthermore, two SNPs on chromosome 3q26 and 5q14 were 

recently found to be associated with Gleason score in a case-only GWAS of prostate 

cancer
107

. Unfortunately we could only assess two of these seven variants in our study, which 

did not replicate.  

In our initial meta-analysis between PRACTICAL and BPC3 we found several SNPs that 

were genome-wide significant, but none of them were replicated in the independent CONOR 

study. This underlines the importance of independent replication of GWAS findings from 

imputed data. Associations of imputed rare variants (representing the majority of our initial 

findings) are more uncertain in general. Furthermore, some of the SNPs were discovered in 
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smaller subsets of the full data due to poor imputation quality in many sub-cohorts, which 

increases the chance of random findings, such as false positives. Nevertheless, we were not 

able to follow-up six of the rare variants because of genotype failure. Thus, some of these  

Table 8: Summary of top findings in prostate cancer-specific survival analysis. 

    PRACTICAL and BPC3   CONOR   All studies§ 

SNP 

CHR:BP 

Alleles
ϯ
 

MAF 

Total 

number 

No of 

PC/deaths 

HR (95% CI) 

P-value 
  

HR (95% CI) 

P-value 
  

HR (95% CI) 

P-value 

rs190087062* G/A  2,416/704 2.83 (1.99-4.02) 
    

1:115063785 0.02 
 

6,5E-09 
    

rs114997855 A/G  20,051/2,729 1.75 (1.44-2.13) 
 

0.88 (0.42-1.85) 
 

1.67 (1.38-2.03) 

2:30622824 0.02 
 

2,6E-08 
 

0,73 
 

1,20E-07 

rs76010824 A/G  23,251/3,324 1.29 (1.18-1.41) 
 

1.01 (0.76-1.35) 
 

1.26 (1.16-1.38) 

3:67442642 0.07 
 

2,8E-08 
 

0,94 
 

1,10E-07 

rs184342703** T/C  6,812/832 2.36 (1.73-3.20) 
    

4:135989066 0.02 
 

4,2E-08 
    

rs192864713* G/A  1,738/464 3.54 (2.31-5.43) 
    

5:27429220 0.01 
 

7,3E-09 
    

rs111414857*** G/A  17,146/2,236 1.98 (1.56-2.50) 
    

7:126639415 0.01 
 

1,7E-08 
    

rs149470135** A/T  4,725/599 3.09 (2.09-4.59) 
    

8:86472701 0.01 
 

2,0E-08 
    

rs117643112*** C/A  6,306/1,577 1.93 (1.53-2.43) 
    

12:81746712 0.02 
 

3,1E-08 
    

rs140659849ˀ A/G  2,702/271 3.00 (2.06-4.36) 
 

0.75 (0.24-2.33) 
 

2.61 (1.83-3.73) 

X:50194937 0.01 
 

9,6E-09 
 

0,62 
 

1,20E-07 

rs723557ˠ G/T  23,251/3,324 1.17 (1.10-1.24) 
 

1.00 (0.84-1.19) 
 

1.15 (1.09-1.22) 

X:126653357 0.08   1,5E-07   0,98   6,10E-07 

Abbreviations: CHR=Chromosome, BP=Base position (Genome build 37), MAF=Minor allele frequency,  

HR=Hazard ratio, PC=Prostate cancer, 95% CI=95% confidence interval.  

Ϯ Minor allele/Major allele. Minor allele used as effect allele (major as reference) in analysis. 

§ Meta-analysis between PRACTICAL, BPC3 and CONOR. 

ɣ Proxy for rs13440791 (p=2.7E-08 in PRACTICAL and BPC3). 

ʔ Proxy for rs190977150 (p=9.5E-09 in PRACTICAL and BPC3). 

* Monomorphic in UKGPCS1 replication. 

** Failed assay (samples did not cluster) in UKGPCS1 replication. 

*** Failed assay (failed quality control) in UKGPCS1 replication. 
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may have replicated if genotyping had succeeded, although it is rather unlikely given the 

weakness of the initial finding. However, it was surprising that the two more common 

variants, rs76010824 on chromosome 3 and rs723557 on chromosome X, which were 

identified in the full cohort, were not replicated. A possible explanation for rs723557 might 

be that it is a surrogate SNP for the initial GWAS finding (rs13440791), which we could not 

genotype because of manufacturing reasons. Although, this is not likely since these two SNPs 

were in perfect LD (r
2
=1 in the European ancestry population of the phase 3 release of the 

1000Genome project).     

There is a possibility that population stratification affected our analysis, which was indicated 

by the QQ plot. However, since the adjusted inflation factor 𝜆1000 (1.02) indicated minimal 

inflation, we chose not to include any principal components in the survival models to 

maintain statistical power. Participants in most studies were ascertained in a restricted 

geographical area (on sub-country basis, not nationwide). Thus, our model could be viewed 

as a geographically stratified analysis. Furthermore, we performed a number of sensitivity 

analyses to assess confounding and bias from different sources revealing robust results. Thus, 

we feel confident that the initial top findings were not confounded.  

Another possible reason for the null finding in this study is that our analysis was based on 

imputed data and some areas of the genome were not well represented due to a low number 

of SNPs with good imputation quality, especially in studies genotyped with the iCOGS chip. 

Furthermore, we used a very heterogeneous group of patients, in terms of disease 

aggressiveness, local spread at diagnosis, mode of detection (screening or clinical symptoms) 

and treatment modalities. Moreover, several reasons why prostate cancer tumors develop to 

lethal disease exist, for example, unsuccessful radical prostatectomy, non-response to 

radiation therapy and resistance to hormonal treatment and initial chemotherapy. Each of 

these paths may involve different genes. Thus, analyzing all prostate cancer patients together 

may have diluted these effects. In this study we did not have the possibility to adjust or 

stratify for this properly due to insufficient information regarding diagnostic tumor 

characteristics and treatment regimens. 
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7 FUTURE DIRECTIONS  

GWAS have identified more than 100 SNPs associated with prostate cancer incidence. 

Currently, these genetic variants explain approximately 39% of the familial risk
94

, which 

indicates that more genes can be discovered. For example, it has been estimated that almost 

2,000 additional SNPs that are truly associated with prostate cancer exist on the iCOGS 

chip
88

. Thus, larger consortia studies, such as the OncoArray initiative, are warranted to find 

these genetic variants. However, it is likely that risk SNPs that will be identified in future 

GWAS will have even smaller effect sizes than what we see today (OR<1.05). Thus, the 

individual contribution of these variants to prediction models will probably be small. 

Nevertheless, each small contribution will increase the predictive capacity. Furthermore, 

large-scale sequencing studies of the exome and eventually of the whole genome may reveal 

new rare prostate cancer risk variants with high or moderate penetrance (such as HOXB13 

and the BRCA genes). Despite that rare variants explain a small part of prostate cancer 

heritability, they will enhance the understanding of prostate cancer etiology. 

We have observed in this thesis that we can discriminate between prostate cancer cases and 

healthy controls, to some extent (AUC=0.68), based on the current knowledge of genetic risk 

variants (from the iCOGS chip). Furthermore, we saw that these SNPs may have benefits for 

risk stratification, and it has also recently been shown that over-diagnosis could be 

significantly reduced in a screening situation by using a polygenic risk score
181

. However, the 

predictive capacity of these SNPs alone is not yet of the magnitude that is required 

(AUC=0.75) to be beneficial in a screening context
182

. Nevertheless, as the knowledge of the 

biological function of these markers increase, predictions will also improve. A first step is to 

fine-map established prostate cancer risk regions to identify functional genes (or SNPs that 

are more correlated than current tagSNPs). Ideally, this would be performed with deep re-

sequencing of these parts of the genome, coupled with functional annotation of regulatory 

elements and studies of gene expression in prostate cancer tumors. Amin Al Olama and 

coworkers found that the explained familial relative risk of prostate cancer increased with 9% 

when more functional variants were identified in their fine-mapping study
94

. Hence, by 

incorporating newly discovered SNPs and fine-mapping variants will probably increase 

predictions substantially. 

Genetic variants have the potential to be effective biomarkers since they do not change over 

time, which is appealing since a blood test at birth could implicate the cancer risk later in life. 

However, it is likely that future prediction models will combine SNPs (including interactions) 

with other biomarkers and risk factors. There is evidence that such approaches are more 

successful. For example, it has been shown that predictions improved by combining SNPs 

with family history and PSA
95,183-185

. Furthermore, the STHLM1 study has reported that 

22.7% of prostate biopsies could be avoided (at a cost of missing 3% diagnosis of patients 

characterized as having an aggressive disease) by adding a polygenic risk score with 35 SNPs 

to a model with age, family history, PSA and free-to-total PSA
186

. The utility of these 

combined models needs to be further evaluated, and translating the results to clinical practice 
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is a major task for future research. The STHLM3 study is an excellent example of a screening 

trial, where the purpose is to reduce the number of unnecessary biopsies and to maintain the 

sensitivity for aggressive tumors, based on 256 SNPs, a biomarker panel (Total PSA, Free 

PSA, Human kallikrein 2
187

, Macrophage inhibitory cytokine-1
188

 and microseminoprotein 

beta gene
189

) and clinical data. It is likely that similar models will be useful in a screening 

scenario in the near future.  

In parallel with research that focus on discovery of new prostate cancer biomarkers, 

development of statistical methodology for prediction models that use SNP data is important. 

It is striking that the great majority of prediction models (including most prostate cancer 

prediction studies) are based on a simple regression model with a polygenic risk score. 

Genetic risk scores are popular because they have an intuitive polygenic additive 

interpretation that seems to fit data well. However, we know that undetected truly associated 

variants exist on current SNP platforms, which we were not able to identify with our 

methods. Thus, strategies that perform better variable selections are warranted. We applied 

more sophisticated prediction models (for example, a random forest model and various 

regularized regression methods), which according to the machine learning literature promise 

to perform this task better in high dimensional problems
130

. As previously mentioned, we 

could not see any improved predictions with these models. This could be due to the fact that 

SNPs are not well suited to these methods and that a polygenic risk score models the biology 

better. Nevertheless, assessment of existing machine learning methods in comparison with 

polygenic risk score models and methodological development in this field of research is 

needed.  

The results from our heritability study suggest that genes may not be very useful as predictive 

markers for prostate cancer survival. However, our study was a first attempt to estimate this 

quantity and has to be re-confirmed in other study populations, preferably with other types of 

relatives (for example, twins with known zygosity, half-brothers or cousins). Our conditional 

likelihood approach is easily translated to other family structures that include pairs, but for 

more extended families other methods may be preferable. The MAFT model, which we tried 

to apply without much success, would be an appealing alternative since it easily extends to 

more complex family structures. The development of a publicly available implementation of 

this method is warranted. Furthermore, developments of methods that can adapt other 

transforms of the time outcome than the log-transform are needed. For example, one could 

use a Box-Cox transformation to approximate normality or use a bivariate Gumbel 

distribution applied in our conditional likelihood approach
190

. In our study this was not 

necessary since a log-normal distribution fit the data reasonably well, although this may not 

be true in general. 

Genome-wide Complex Trait Analysis (GCTA) is a different approach to estimate the 

heritability of a trait. This method uses a genetic relationship matrix (estimated genetic 

correlations between individuals in a GWAS sample) to estimate the additive genetic part of 

the total variation in the outcome (i.e. narrow-sense heritability) by using a mixed linear 
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model
191

. One major benefit of GCTA is that no assumption regarding shared environment is 

needed, and unrelated individuals can be used. However, the method requires large 

population-based GWAS samples (in the order of 5,000 to 10,000 or more
192

), which for 

prostate cancer survival data is presently difficult to find, since most studies are enriched for 

cases with a high Gleason score, a family history of the disease or early onset disease. 

However, it might be possible to develop an application, as for binary outcomes, to adjust the 

method for ascertainment, to give population-based estimates
193

. Nevertheless, GCTA is not 

yet developed for survival outcomes but should in theory be possible to implement for such 

traits. This would give a nice independent confirmation of our results.      

Despite that inherited germline SNPs may have low predictive capacity for prostate cancer 

survival, it is of great importance to identify genes associated with prostate cancer prognosis 

to enhance our understanding of aggressive prostate cancer etiology. Patients with a localized 

prostate cancer, as in the PROCAP study, are of particular interest since this group contains 

many indolent tumors, which today are hard to distinguish from early stage aggressive 

disease. We did not find any association between established risk variants and disease 

progression in this group of patients. Furthermore, accumulated evidence from several other 

studies points in the direction that GWAS SNPs associated with the development of prostate 

cancer are not involved in progression to aggressive lethal disease. However, it is important 

to search for SNPs associated with prostate cancer survival in other parts of the genome.  

The results from our prostate cancer survival GWAS and heritability study indicate that 

common variants with moderate or large effect sizes on prostate cancer survival will be 

difficult to discover. The problem has been that in the early GWAS era much of the focus 

was on identification of SNPs associated with prostate cancer susceptibility. Thus, studies 

were not designed to find genetic variants that predict prognosis. However, deeper 

collaboration in PRACTICAL has emerged and the focus has shifted towards collecting 

follow-up data for the prostate cancer cases. This effort has resulted in a sample of 

approximately 58,000 prostate cancer patients (of which approximately 5,000 died from the 

disease) that have been genotyped on the OncoArray. Hopefully through this effort we will 

be able to identify SNPs that are genome-wide significantly associated with prostate cancer 

survival. Furthermore, designing large-scale sequencing studies to identify rare variants, 

associated with disease prognosis should also be a target for future research.      

Cancer survival is determined by many factors, including the metastatic potential of tumors, 

treatment, response to treatment and early detection. It is likely that different genes affect 

these factors differently. Hopefully, GWAS with larger sample sizes will overcome this issue 

with heterogeneity in the outcome. Nevertheless, it would be useful to perform GWAS in 

homogenous groups of patients with more specific prognostic outcomes. For example, it 

would be interesting to study survival in different treatment groups or search for genes that 

are associated with resistance to treatment among patients on hormonal treatment. However, 

this is not feasible today because these studies do not achieve adequate statistical power, in 

particular the small number of deceased prostate cancer patients that are available would be 
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problematic in a sub-group analysis. Hence, to increase sample size, even larger consortia 

collaborations with good qualitative registration of clinical variables are essential. Pooling 

existing resources is the only way to develop the knowledge of prostate cancer genetics from 

GWAS in the future.  
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