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ABSTRACT 
Amyloid diseases involve specific protein misfolding events and formation of fibrillar 

deposits. The symptoms of these diseases are broad and dependent on site of accumulation, 

with different amyloid proteins depositing in specific tissues or systematically. One such 

protein is transthyretin (TTR) associated with senile systemic amyloidosis, familial amyloid 

polyneuropathy and familial amyloid cardiomyopathy. We show that the glycosaminoglycan 

heparan sulfate (HS) can be co-localized with TTR in elder myopathic heart tissue and 

identify residue 24-35 of TTR as the binding site of HS. Moreover, we show that heparin, a 

HS homolog, can promote fibril formation and accumulation of TTR using cell cultures and a 

Drosophila in vivo model. 

It has been shown that certain chaperones are associated with amyloid disease and can 

promote or inhibit the aggregation into amyloid. BRICHOS is an approximately 100 residue 

protein domain present in over a 1000 proteins divided into 10 families. BRICHOS 

containing proteins have been ascribed a wide variety of functions and some are associated 

with diseases such as respiratory distress syndrome, dementia and cancer. The BRICHOS 

domains of proSP-C, a precursor protein to lung surfactant protein C, and Bri2, a protein 

associated with familial British and Danish dementia, can act as chaperones and inhibit 

amyloid fibril formation of the amyloid-β peptide (Aβ) of Alzheimer’s disease (AD). We 

show that both proSP-C and Bri2 BRICHOS can prevent aggregation of Aβ in vivo using 

Drosophila melanogaster as a model organism. Moreover, BRICHOS can inhibit the toxicity 

of Aβ, increasing the life span and locomotor activity of the flies. 

We also identify expression of Bri2 in human pancreas and show that Bri2 co-localizes with 

the islet amyloid polypeptide (IAPP) linked to type 2 diabetes (T2D). Furthermore, Bri2 

BRICHOS can inhibit the aggregation of IAPP in vitro and reduce the toxic effects of IAPP 

in cell cultures and in vivo in a Drosophila model. 

These results show that the BRICHOS domain inhibits the aggregation and toxicity of both 

Aβ and IAPP. The BRICHOS domain, in particular the Bri2 BRICHOS domain, could be 

used as a potential pharmaceutical agent in treatment of amyloid diseases. Similar effects on 

both Aβ and IAPP suggest that the BRICHOS domain also could effect the amyloid 

formation and toxicity of other amyloid proteins, which would be an interesting area to 

further investigate.  



 

 

LIST OF SCIENTIFIC PAPERS 
This thesis is based on the following papers, which will be referred to using their Roman 
numerals. 

I. Noborn F, O’Callaghan P*, Hermansson E*, Zhang X, Ancsin JB, Damas 
AM, Dacklin I, Presto J, Johansson J, Saraiva MJ, Lundgren E, Kisilevsky R, 
Westermark P, Li JP. (2011) Heparan sulfate/heparin promotes tranthyretin 
fibrillization through selective binding to a basic motif in the protein. Proc 
Natl Acad Sci U S A. 108(14):5584-9. *These authors contributed equally to 
this work. 
 

II. Hermansson E, Schultz S, Crowther D, Linse S, Winblad B, Westermark G, 
Johansson J, Presto J. (2014) The chaperone domain BRICHOS prevents 
CNS toxicity of amyloid-β peptide in Drosophila melanogaster. Dis Model 
Mech. 7(6):659-65. 
 

III. Poska H*, Hermansson E*, Presto J, Johansson J. The BRICHOS domain of 
dementia related Bri2 protein is a potent inhibitor of Aβ42 toxicity in vivo 
(manuscript). *These authors contributed equally to this work. 
 

IV.$ Oskarsson M, Hermansson E, Johansson J, Presto J, Westermark G. The 
BRICHOS domain of Bri2 inhibits IAPP aggregation and toxicity 
(manuscript) 
 
Papers not included in this thesis: 
 
Willander H, Hermansson E, Johansson J, Presto J. (2011). BRICHOS 
domain associated with lung fibrosis, dementia and cancer—a chaperone that 
prevents amyloid fibril formation? FEBS J. 278(20):3893-904. 
 
Willander H, Askarieh G, Landreh M, Westermark P, Nordling K, Keränen 
H, Hermansson E, Hamvas A, Nogee LM, Bergman T, Saenz A, Casals C, 
Åqvistg J, Jörnvall H, Berglund H, Presto J, Knight SD, Johansson J. 
(2012). High-resolution strucutre of a BRICHOS domain and its 
implications for anti-amyloid chaperone activity on lung surfactant protein 
C. Proc Natl Acad Sci U S A. 109(7):2325-9. 
 
Biverstål H, Dolfe L, Hermansson E, Leppert A, Reifenrath M, Winblad B, 
Presto J, Johansson J (2015). Dissociation of a BRICHOS trimer into 
monomers leads to increased inhibitory effect on Aβ42 fibril formation. 
Biochim Biophys Acta. S1570-9639(15)00101-6. 
 
 



 

 

CONTENTS 
1$ Introduction ..................................................................................................................... 5$

1.1.1$ Alzheimer´s disease ............................................................................... 10$
1.1.2$ Transthyretin amyloidosis ...................................................................... 13$
1.1.3$ Diabetes mellitus .................................................................................... 14$
1.1.4$ Other amyloid diseases .......................................................................... 14$

1.2$ Molecular Chaperones ........................................................................................ 15$
1.3$ The BRICHOS domain ....................................................................................... 17$

1.3.1$ ProSP-C .................................................................................................. 19$
1.3.2$ Bri2 ......................................................................................................... 21$
1.3.3$ Other BRICHOS families ...................................................................... 23$

1.4$ Drosophila Melanogaster .................................................................................... 24$
1.4.1$ Models of amyloid disease in Drosophila ............................................. 27$

2$ Aims of present investigation ....................................................................................... 31$
3$ Materials and Methods .................................................................................................. 32$

3.1$ Fly generation ..................................................................................................... 32$
3.2$ Longevity assay .................................................................................................. 32$
3.3$ Locomotor activity .............................................................................................. 33$
3.4$ Immunohistochemistry and confocal microscopy ............................................. 33$
3.5$ Proximity ligation assay ..................................................................................... 33$
3.6$ Thioflavin T assay .............................................................................................. 33$
3.7$ Cell apoptosis assay ............................................................................................ 34$

4$ Results ........................................................................................................................... 35$
4.1$ Paper I ................................................................................................................. 35$
4.2$ Paper II ................................................................................................................ 36$
4.3$ Paper III ............................................................................................................... 37$
4.4$ Paper IV .............................................................................................................. 38$

5$ General discussion and future perspectives .................................................................. 41$
6$ Acknowledgements ....................................................................................................... 45$
7$ References ..................................................................................................................... 47$
 
  



 

 

LIST OF ABBREVIATIONS 
Aß 

AD 

Amyloid β peptide 

Alzheimer’s disease 

ApoE 

APP 

CNS 

Elav 

ER 

FBD 

FDD 

GAGs 

GFP 

GKN 

GMR 

HS 

Hsp 

IAPP 

ILD 

PD 

PLA 

proSP-C 

PrP 

SP-B 

Apolipoprotein E 

Amyloid β precursor protein 

Central nervous system 

Embryonic lethal abnormal vision 

Endoplasmic reticulum 

Familial British Dementia 

Familial Danish Dementia 

Glycoaminoglycans 

Green fluorescent protein 

Gastrokine 

Glass multimer reporter 

Heparan sulfate 

Heath shock protein 

Islet amyloid polypeptide 

Interstitial lung disease 

Parkinson’s disease 

Proximity ligation assay 

Surfactant protein C precursor 

Prion protein 

Surfactant protein B 

SP-C 

ThT 

TM 

TTR 

T1D 

T2D 

UAS 

Surfactant protein C 

Thioflavine T 

Transmembrane 

Transthyretin 

Type 1 diabetes 

Type 2 diabetes 

Upstream activating sequence 

  



 

 5 

1 INTRODUCTION 
 

1.1#Amyloids#and#amyloid#diseases#

Amyloids are protein aggregates that arise from misfolding of specific proteins (Merlini and 

Bellotti 2003). There are more than 30 human diseases were proteins deposit as fibrillar 

material in organs and tissues, collectively known as amyloidosis (Table 1) (Westermark et 

al. 2007, Sipe et al. 2012, Sipe et al. 2014). Among those are Alzheimer´s disease (AD), 

Parkinson’s disease (PD), Huntington’s disease and type 2 diabetes (T2D), where each 

disease is characterized by a specific amyloid fibril forming protein (Westermark et al. 2007). 

In some amyloid diseases, the proteins deposit in a single organ (localized) such as the brain 

in AD while in e.g. inflammatory-associated amyloidosis deposits are found in multiple 

organs (systemic), such as the liver, spleen and kidneys (Westermark et al. 2007). The classic 

characterization of amyloids is that they exhibit a β-sheet structure and can be identified by 

exhibiting birefringence when stained with Congo red and viewed under polarized light, and 

as rigid fibrils of approximately 10 nm in diameter when viewed with electron microscopy 

(Sipe and Cohen 2000, Westermark et al. 2002). In some cases, the proteins can have an 

inherited ability to be destabilized and form amyloid fibrils, which becomes pronounced in 

elder individuals, like transthyretin (TTR) in patients with senile systemic amyloidosis 

(Saraiva 2001). In other cases, constant high levels of amyloid forming proteins can cause 

disease, which is the case with β2-microglobulin in patients undergoing extended 

hemodialysis (Gejyo et al. 1985, Verdone et al. 2002). The misfolding of amyloidgenic 

proteins can also be caused by mutations in the gene encoding the protein such in e.g. the 

case of the arctic mutation in familial AD (Nilsberth et al. 2001) or the TTRV30M mutation of 

TTR amyloidosis (Saraiva et al. 1984). 
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Table 1. Amyloid diseases, their respective fibril forming proteins and target organs. Adapted from Sipe et 
al, 2014 (Sipe et al. 2014). Variants indicate abnormality such as mutations or polymorphisms. ANS = 
Autonomic nervous system, CNS = Central nervous system, PNS = Peripheral nervous system. 

Fibril protein Amyloid forming protein Target organ 

AL  Immunoglubulin Light Chain All organs except CNS 

AH  Immunoglubin Heavy Chain All organs except CNS 

AA (Apo) Serum Amyloid A All organs except CNS 

ATTR Transthyretin, wild type 

Transthyretin, variants 

Heart, ligaments, tenosynvium 

PNS, ANS, heart, eye, leptomeninges 

Aβ2M β2-Microglobulin, wild type 

β2-Microglobulin, variants 

Musculoskeletal system 

ANS AApoAI Apolipoprotein A I, variants Heart, liver kidney, PNS, testis larynx, skin 

AApoAII Apolipoprotein A II, variants Kidney 

AApoAIV Apolipoprotein A IV, wild type Kidney medulla and systemic 

AGel Gelsolin, variants PNS, cornea 

ALys Lysozyme, variants Kidney 

ALECT2 Leukocyte Chemotactic Factor-2 Kidney, primarily 

AFib Fibrinogen α, variants Kidney, primarily 

ACys Cystatin C, variants PNS, skin 

ABri Bri2, variants CNS 

ADan Bri2, variants CNS 

Aβ Aβ Protein Precursor (APP), wild type, variants CNS 

APrP Prion Protein, wild type, variants Brain 

ACal (Pro) Calcitonin C-cell thyroid tumors 

AIAPP Islet Amyloid Polypeptide Islet of Langerhans 

AANF Atrial Natriuretic Factor Cardiac atria 

APro Prolactin Pituitary prolactinomas, aging pituitary 

AIns Insulin Iatrogenic, local injection 

ASPC  Surfactant Protein C Precursor, variants Lung 

AGal7 Galectin 7 Skin 

ACor Cornedesmosin Cornified epithelia, hair follicles 

AMed Lactadherin Senile aortic, media 

Aker Kerato-epithelin Cornea 

ALac  Lactoferrin Cornea 

AOAAP Odontogenic Ameloblast-Associated protein Odontogenic tumors 

ASem1 Semenogelin 1 Vesicula seminalis 

AEnf Enfurvitide Iatrogenic 
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Viewing amyloid fibrils using a transmission electron microscope reveals a characteristic 

structure of the fibrils (Fig 1) (Cohen and Calkins 1959, Shirahama and Cohen 1967). The 

structure of amyloid proteins consists of a cross-β sheet with β-strands running perpendicular 

to the fiber axis bound to neighboring strands through backbone hydrogen bonds (Fig 1). 

Analysis of microcrystals of amyloid peptides have revealed a double β-sheet where the side 

chains protruding from the two sheets form a tight steric-zipper (Nelson et al. 2005). Brain 

extracts from human AD patients analyzed by solid state nuclear magnetic resonance have 

shown that in vivo fibrils can be structurally different from in vitro fibrils (Lu et al. 2013), 

with differences in orientation of the side-chains, allowing for interaction with other 

molecules in the amyloid structure. Furthermore, it was shown that amyloid fibrils from 

patients with distinct clinical histories can be structurally different. Detailed knowledge of 

molecular structures and interactions further supports the generic nature of fibrils from 

different amyloid proteins (Wasmer et al. 2008, Fitzpatrick et al. 2013). The generic nature 

can be credited to common properties of the polypeptide backbone facilitating the hydrogen 

bonds of the fibril core, and differences in structure resulting from how side chains are 

incorporated into the common fibrillar architecture (Fandrich and Dobson 2002, Chiti and 

Dobson 2006). 

 

Figure 1. Amyloid fibrils are made up of β-sheets. The electron microscopy image on the right shows fibrils 

formed by islet amyloid polypeptide protein (IAPP) associated to type 2 diabetes. Photo by Marie Oskarsson. 

Scale bar represents 200 nm. 

The formation of amyloid fibrils typically follows a sigmoidal reaction time course and is 

generally divided into three phases (Fig 2). The first phase is the lag phase were amyloid 

proteins form oligomers (nuclei) that can promote further fibrillization (Arosio et al. 2015). 

Fibril 
axis

β-strand
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Larger aggregates and amyloid fibrils are present during this phase, though in amounts low 

enough to not be detected using assays such as a thioflavine T (ThT), commonly used for 

studies of the aggregation process (Arosio et al. 2014). The lag phase is followed by the 

elongation phase were protofibrils are formed and rapidly aggregates, forming amyloid 

fibrils. This is detected as a rapid signal increase. Finally, the plateau phase is reached when 

equilibrium between fibrils and precursor is achieved and the signal increase levels out. 

Fibrils can work as templates for monomers, meaning that when monomers interact with 

fibrils the monomers adopt the same cross-β conformation as the preexisting peptides. 

Adding preformed fibrils to a solution during the lag phase promotes fibril formation as a 

result of seeding (Jucker and Walker 2011).  

 

Figure 2. The process of fibril formation. The process starts with a lag phase, were the amount of aggregation 

and fibril formation is too low to be detected. This is followed by the elongation phase, were protofibrils form 

and aggregates into amyloid fibrils, which results in a rapid increase in signal. This is followed by the plateau 

phase, were equilibrium is reach and the signal pans out. 

The typical reaction kinetics of amyloid formation is a feature of nucleated polymerization 

(Serio et al. 2000). In traditional nucleated polymerization, the initial formation of aggregates 

occur from soluble precursor peptides, followed by elongation of fibrils through 

incorporation of additional precursors. However, amyloid formation also includes secondary 

processes, which can be dominant in the contribution to amyloid growth (Knowles et al. 

2009). The formation of new fibrils can be divided into three general processes (Fig 3) 

(Cohen et al. 2013). In the primary pathway, monomers interact, forming oligomers that can 

act as nuclei for the formation of amyloid fibrils. The secondary pathways are either 

monomer-dependent or monomer-independent. Fibril fragmentation is an important 

monomer-independent process, were fragmentation of fibrils increases the amount of fibril 

ends that can generate further growth. Surface catalyzed secondary nucleation is a 

lag phase

elongation phase

plateau phase

Time

Fibril 
amounts
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monomer-dependent process where monomer binding to fibrils catalyze oligomer 

formation. Recently it was shown, by using experimental ThT data and kinetic models that 

the proliferation of toxic oligomers and aggregates of AD mainly occurs through a 

secondary nucleation mechanism (Cohen et al. 2013). 

 

Figure 3. Major fibril formation processes and diagram of pathways. The formation of fibrils can be divided 

into different processes. In the primary nucleation pathway, monomers interact with each other to form 

oligomers and fibrils. Two major secondary pathways are fragmentation, were fibrils fragment and increase the 

number of fibril ends available for binding, and secondary nucleation, were monomers bind to the fibrillar 

surface. The lower part of the figure shows a schematic diagram of primary nucleation and secondary nucleation 

molecular pathways. Adapted from Cohen et al, 2013 (Cohen et al. 2013). 

The amyloid forming proteins make up for the major part of amyloid deposits. However, 

other components can usually be found as well. Three of the more studied components are 

heparan sulfate (HS), serum amyloid P component and Apolipoprotein E (ApoE). HS is a 

glycosaminoglycan (GAG) composed of repeating disaccharide units and is believed to be an 

important player in amyloid fibril formation. HS has been associated with several amyloid 

diseases, affecting processing and promoting fibril formation of amyloid proteins (Leveugle 

et al. 1997). Serum amyloid P component is a protein that can bind to amyloid fibrils (Pepys 

et al. 1979), preventing proteolysis (Tennent et al. 1995) and can be radiolabeled to be used 

Monomer

Oligomer

Fibril

Elongation

+

Positive feedback

Primary processes Secondary processes

FragmentationHomogenous nucleation Secondary nucleation
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for studying amyloid deposits in the human body (Hawkins 2002). Another protein that has 

been found in amyloid deposits is ApoE that has been associated with T2D (Charge et al. 

1996) and AD (Strittmatter et al. 1993).  

1.1.1 Alzheimer´s disease 

AD is the most common form of dementia representing 60-80% of all cases (Alzheimer´s 

Association 2014). It is a neurodegenerative disease and symptoms include memory loss and 

cognitive problems such as disorientation and confusion. AD can be divided into two groups, 

sporadic and familial. Sporadic cases are by far the most prevalent form of AD, making up 

95% of all cases, and familial forms makes up for only a small number of all cases (Blennow 

et al. 2006). There are two aggregated hallmark proteins in AD, Aß and tau (Hardy and 

Selkoe 2002). 

The Aß peptide was first discovered in 1984 (Glenner and Wong 1984) and identified as the 

main component of extracellular amyloid plaques of AD (Masters et al. 1985). The amyloid 

hypothesis postulates that the accumulation of Aß is the primary cause of AD and the other 

parts of the disease process are secondary (Hardy and Selkoe 2002). The precursor protein of 

Aß is APP, a type 1 transmembrane (TM) protein, with the N-terminal located in the ER 

lumen. APP can be processed in two distinct pathways, the amyloidogenic and the non-

amyloidogenic, the difference being the initial proteolytic cleavage. In the amyloidogenic 

pathway, APP is first cleaved by ß-secretase at the N-terminal side of Aß, releasing a soluble 

100 kDa N-terminal fragment and a membrane-bound 12 kDa C-terminal fragment  (Fig 4). 

Further cleavage of the C-terminal fragment by γ-secretase produces the Aß peptides (Haass 

et al. 1993). The dominant species of Aß are Aß40 (40 residues in length) and Aß42 (42 

residues in length), although Aß43 has been shown to be more prevalent in amyloid plaque 

cores of AD patients than Aß40 and shows similar aggregation propensity as Aß42 

(Welander et al. 2009). The non-amyloidogenic pathway instead starts with cleavage of APP 

by α-secretase (Sisodia 1992), generating a soluble N-terminal fragment and a 10 kDa 

membrane-bound C-terminal fragment. Cleavage by γ-secretase of the C-terminal fragment 

produces the p3 peptide (Fig 4) (Haass et al. 1993), which is nonpathogenic. The familial, 

early onset AD cases are linked to mutations in the APP gene, located on chromosome 21 

(Tanzi et al. 1987, Korenberg et al. 1989) or presenilin genes (which are part of the γ-

secretase complex). Several different mutations of the APP gene have been linked to the early 

onset of the disease (Chartier-Harlin et al. 1991, Goate et al. 1991, Mullan et al. 1992), 

affecting the aggregation propensity of the Aß peptide. The gene of presenilin 1 is located on 
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chromosome 14 (Sherrington et al. 1995) and presenilin 2 on chromosome 2 (Rogaev et al. 

1995), and mutations in any of them are linked to early-onset AD. Mutations in presenilin 1 

affect the conformation of presenilin 1 and interaction with APP (Berezovska et al. 2005), 

and mutations in both presenilin 1 and presenilin 2 increase the ratio of Aß42/Aß40 and lead 

to early onset AD (Borchelt et al. 1996, Scheuner et al. 1996). An isoform of ApoE, ApoE4, 

increases the likelihood of developing AD by, among other things, modulating trafficking of 

APP and Aß production (Bu 2009, Yu et al. 2014). 

 

Figure 4. Different pathways in APP processing. APP cleavage by β- and γ-secretase result in the production 

of Aβ peptide, hence known as the amyloidogenic pathway. Cleavage by α- and γ-secretase results in the 

production of the nonpathogenic p3 peptide, known as the non-amyloidogenic pathway. 

Aβ40 is the most abundant form of the Aβ, although research points to the fact that the 

main toxic component is Aβ42 (Younkin 1995). Previously, it was believed that Aβ toxicity 

was due to the plaques formed by aggregation and fibrillization of Aβ. In more recent years 

this theory has been revised and it is now believed that oligomers of Aβ formed during the 

aggregation process are the main reason for toxicity (Walsh and Selkoe 2004). This would 

also explain why certain findings indicate that there is no clear link between amount of 

plaques and clinical symptoms in AD patients (Braak and Braak 1991). The new theories 

about Aβ toxicity are further strengthened by the fact that certain Aβ mutations, which 

leads to early onset of AD, have been shown to produce increased numbers of oligomers 

(Nilsberth et al. 2001).  

!
!
!

TM

!
!
!

TM

!
!
!

TM

AβAPP

β-secretase α-secretase

Aβ

ɣ-secretase

Aβ

Amyloidogenic pathway

p3

ɣ-secretase

Non-amyloidogenic pathway

p3

N-terminal C-terminal



 

 12 

The second hallmark of AD is the presence of intracellular neurofibrillary tangles made of 

hyperphosphorylated tau (Grundke-Iqbal et al. 1986). In contrast to Aβ plaques, the amount 

of neurofibrillary tangles correlate with the clinical symptoms of AD (Braak and Braak 

1991, Goedert and Spillantini 2006). Studies have suggested that synergistic effects of Aβ 

and tau can impair mitochondrial function and energy homeostasis (Rhein et al. 2009). It 

has also recently been suggested that the aggregation and toxicity of the Aβ and tau protein 

have similarities to that of the prion protein (PrP), in that toxic forms can be secreted and 

taken up by surrounding neurons, and misprocessed proteins can be used as a template for 

further aggregation of misfolded proteins (Jucker and Walker 2011, Hall and Patuto 2012). 

Currently, there are no cures or treatments for stopping AD from progressing. Memory 

impairments as well as behavior changes can be treated to some extent with medication. 

However, no real cure has been found despite extensive clinical trials (Schneider et al. 

2014). Almost 200 drugs have reached stage 2 clinical trials, however only cholinesterase 

inhibitors and memantine have been approved as treatments of AD over the past 30 years 

and both show limited effects. Lower synthesis of acetylcholine is associated with reduced 

cognition in dementia and AD (Perry et al. 1978, Francis et al. 1985) and raising the levels 

of acetylcholine increases the expression of acetylcholine receptors (Barnes et al. 2000) and 

is linked to the improvement of other neurotransmitter systems (Francis et al. 1993, Dijk et 

al. 1995). Therefore, by inhibiting the action of acetylcholine-hydrolyzing enzyme 

acetylcholinesterase, the levels of acetylcholine are raised and cholinergic 

neurotransmission can be improved (Giacobini 2003). Memantine is a uncompetitive, 

voltage-dependent glutamate receptor antagonist, with rapid blocking-unblocking kinetics 

and moderate binding affinity (Parsons et al. 1993). These properties allow memantine to 

interact with the glutaminergic signaling system and influence dysfunctional receptor 

activation in AD, which are otherwise overactivated (Danysz et al. 2000). As toxic Aβ 

oligomers have come more into focus as a main culprit behind AD (Hayden and Teplow 

2013), strategizes that are directed to inhibit the aggregation of Aβ have emerged. In animal 

models it has been shown that antibodies against Aβ can improve memory and decrease the 

plaque load (Rasool et al. 2013). One Aβ antibody has been shown to decrease the amount 

of Aβ oligomers in the brain and CSF of a mouse model with no impact on the monomeric 

amounts (Tucker et al. 2015). However, several antibodies have been tested in clinical trials 

and have shown no benefits or even adverse effects in later phases (Schneider et al. 2014). 

Treatment strategizes also include indirectly targeting the Aβ aggregation by affecting the 

processing of APP with α-, β- or γ-modulators. Etazolate, a α-secretase activator have 

shown acceptable safety and tolerability (Vellas et al. 2011), with further clinical trials on-
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going. β-secretase inhibitors have been tested, but development has been impaired by 

problems to cross the blood brain barrier. One β-secretase inhibitor, pioglitazone, showed 

acceptable tolerability, but no beneficial effects (Geldmacher et al. 2011). A γ-secretase 

inhibitor showed no improvement in cognition and was associated with adverse effects 

including skin cancer and infections (Doody et al. 2013). Tramiprosate, a compound 

reducing Aβ aggregation, gave negative results in a phase III trial (Aisen et al. 2011). There 

are currently several pharmaceutical candidates in various stages of clinical trials 

(Schneider et al. 2014). 

1.1.2 Transthyretin amyloidosis 

Transthyretin (TTR) is a protein present in blood and cerebrospinal fluid. It has a molecular 

weight of 14 kDa and appears as a homotetramer in its native state (Blake et al. 1978). 

Functionally, TTR has been shown to transport retinol (Vitamin A) and thyroxine and the 

name transthyretin is derived from thyroxine and retinol (Raz et al. 1970). TTR has also been 

suggested to be involved in development and regeneration of the nervous system (Soprano et 

al. 1985). In TTR amyloidosis the homotetrameric structure is destabilized, which causes the 

release of monomeric TTR subunits that are prone to misfold, aggregate and form amyloid 

fibrils (Quintas et al. 2001, Wiseman et al. 2005). The shift in equilibrium between 

monomers and homotetramers have been shown to be effected by high temperatures and low 

pH, resulting in an increased amount of monomers (Kelly et al. 1997). Over 100 point 

mutations have been associated with hereditary forms of disease (Connors et al. 2003) and 

these familial forms are often lethal. Several mutations are associated with destabilization of 

the homotetrameric form of TTR, leading to an increase in monomer content, resulting in 

amyloid formation (Hammarström et al. 2002). Mutations also affect where TTR is deposited 

in the body. Wild type TTR is mostly found as amyloid inclusions in the heart (Westermark 

et al. 1990), but is also found in liver and lungs (Pitkanen et al. 1984). The most common 

mutant TTRV30M (Saraiva et al. 1984) is found as amyloid inclusion in the peripheral nervous 

system and gastrointestinal tract (Saraiva et al. 1984). The TTRV122I mutation (Gorevic et al. 

1989) is found exclusively as amyloid deposits in cardiac tissue and is carried by 4% of the 

African-American population (Jacobson et al. 1996). TTR is primarily produced in the liver 

and therefore a liver transplant can be used to replace the expression of mutated variants of 

TTR with wild type TTR, preventing neuropathy to some extent (Holmgren et al. 1991). In 

recent time, stabilizing the homotetramer of TTR with a small molecular compound has 

shown promise as a viable option to prevent amyloid inclusion and toxicity of TTR (Bulawa 

et al. 2012). 
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1.1.3 Diabetes mellitus 

Diabetes mellitus is a group of diseases affecting over 380 million people (Guariguata et al. 

2014) and is characterized by the lack of, or dysfunction of insulin and disturbed glucose and 

lipid metabolism. The two major forms are type 1 (T1D) diabetes and T2D. In T1D or 

juvenile diabetes the insulin producing β-cells are targeted through an autoimmune response, 

leading to decreased production of insulin (van Belle et al. 2011). The most common form of 

diabetes is T2D also known as adult-onset diabetes, which makes up for 90% of all diabetes 

cases. Development of T2D is affected by a number of genetic and environmental factors, 

such as age, obesity, diet and lifestyle. The disease is caused either by dysfunction of insulin 

producing β-cells or the failure of cells to respond to insulin secretion. Islet amyloid 

polypeptide (IAPP) is a 37 residue peptide (Westermark et al. 1987) naturally expressed in 

the β-cells of Langerhans islets and stored in secretory granules together with insulin 

(Lukinius et al. 1989). Several functions have been ascribed to IAPP, including effects on 

secretion of insulin (Gebre-Medhin et al. 1998), pain reduction (Huang et al. 2010) and 

involvement in calcium homeostasis (Dacquin et al. 2004). The insulin producing β-cells are 

found in the islet of Langerhans and in T2D patients amyloid deposits containing IAPP have 

been found within these islets (Westermark et al. 1986, Westermark et al. 1987). IAPP can 

form toxic oligomers, which can reduce the number of insulin producing β-cells (Gurlo et al. 

2010). The working hypothesis of IAPPs toxicity is that the aggregation starts inside the cells 

and is then spread out from the cells, causing toxicity to surrounding cells (Paulsson et al. 

2006). GAGs such as HS have also been shown to bind IAPP (Watson et al. 1997, Castillo et 

al. 1998), promoting fibril formation. 

1.1.4 Other amyloid diseases 

In Parkinson´s disease (PD), the protein α-synuclein is the major component of the abnormal 

aggregates called Lewy bodies (Spillantini et al. 1997). Although the Lewy bodies and α-

synuclein fibrils are hallmarks of PD, recent research points to oligomers of α-synuclein 

having a significant toxicity and can cause cell death (Outeiro et al. 2008, Nasstrom et al. 

2011, Winner et al. 2011). 

Prion diseases are a group of diseases including Creutzfeldt-Jakob, bovine spongiform 

encephalopathy, scrapie, fatal familial insomnia and kuru (Liberski 2012) The prion diseases 

were first thought to be caused by a virus, but were later found to be caused by a specific 

protein that was named prion (from proteinaceous infectious particle) (Prusiner 1982). The 

prion is distinguished from other amyloid proteins because it can be transferred from one 
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individual to another by uptake of the misfolded PrP. The incubation periods of the prion 

diseases are usually long, but once symptoms appear, the disease can progress rapidly. Other 

amyloid proteins such as Aβ have also been suggested to have prion-like properties, such as 

seeding and cell-to-cell transmission of soluble oligomeric Aβ (Nath et al. 2012, Jucker and 

Walker 2013). 

The most common localized amyloid is aortic medial amyloid and amyloid inclusions of this 

variant can be found in basically everyone over the age of 55 (Westermark and Westermark 

2011). A cleavage product of the glycoprotein lactadherin, medin is the major component of 

amyloid inclusions in of the disease (Häggqvist et al. 1999). The 50 residue long peptide has 

been shown to form fibrils in vitro and the last 18-19 amino acids constitute the amyloid-

promoting region (Larsson et al. 2007). 

1.2 MOLECULAR CHAPERONES 

Proteins need a certain three dimensional fold in order to function correctly, however proteins 

are in risk of misfolding and aggregating, which can lead to loss of function and toxic 

oligomers forming (Hartl et al. 2011). Proteins go through many different conformations, 

while they fold into their native state. The free energy landscape of protein folding is usually 

illustrated as a funnel that the protein travels down into to reach its native folded state (Fig 5) 

(Jahn and Radford 2005). However, the ruggedness of the energy landscape can result in 

proteins ending up locked in non-native, non-functional conformations. Aggregation and 

fibril formation are examples of this phenomenon and the amyloid fibril is considered to 

represent a global minimum of free energy. 
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Fig 5. Schematic picture of funnel-shaped free energy landscape that proteins travel during folding. 

Images of native folded protein and amyloid fibrils were produced with VMD version 1.9.2 from structural data 

(www.pdb.org, PDB ID 1Z0Q (Tomaselli et al. 2006), 3G7W (Wiltzius et al. 2009) and 2BEG (Luhrs et al. 

2005)). Adapted from Jahn and Radford, 2005 (Jahn and Radford 2005). 

In order to prevent misfolding of proteins, cells need chaperones to assist in the folding of 

proteins (Hartl et al. 2011). The definition of a chaperone is a protein that can interact with, 

stabilize or help another protein to fold without being incorporated in its final structure (Hartl 

1996). Proteins can misfold and aggregate due to cellular stress, including mutations, 

temperature changes, pH changes and ageing. Because several chaperone families are 

upregulated as a response to temperature increase, they are known as heat shock proteins 

(HSPs). There are six different families of HSPs, traditionally named after their molecular 

weight (Muchowski and Wacker 2005). The six families are HSPH (also known as HSP110), 

HSPC (HSP90), HSPA (HSP70), HSPD/E (HSP60/HSP10), DNAJ (HSP40) and HSPB 

(small HSP) (Kampinga et al. 2009). HSPA chaperones are important proteins in protein 

folding and proteostasis control and they contain an ATP-binding domain and a C-terminal 

substrate-binding site. HSPA, along with its co-chaperone DNAJ, have been shown to be 

involved in assembly of proteins into macromolecular complexes, prevention of protein 

aggregation and protein degradation (Broadley and Hartl 2009). Both HSPA and HSPC can 

inhibit aggregation of Aβ in vitro. HSPDs, also known as chaperonins, are large double-ring 

complexes that function by enclosing and folding substrate proteins up to sizes of around 60 
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kDa. The HSPD counterpart in E.coli, GroEL, has been shown to interact with at least 250 

different proteins (Kerner et al. 2005). The human protein DNAJB6, belonging to the DNAJ 

family, was recently shown to inhibit the fibril formation of Aβ42 in vitro (Mansson et al. 

2014). HSPBs are involved in several human diseases (Kampinga and Garrido 2012) and 

have been shown to reduce toxicity of Aβ oligomers in a transgenic mouse model (Ojha et al. 

2011). There are also extracellular chaperones, such as clusterin (also known as 

Apolipoprotein J). Clusterin is a 75-80 kDa heterodimeric protein that can interact with a 

wide range of molecules and has shown to be involved in apoptotic disease states such as 

neurodegeneration (Jones and Jomary 2002). Clusterin can also inhibit the aggregation and 

fibril formation of Aβ and α-synuclein (Yerbury et al. 2007). 

1.3 THE BRICHOS DOMAIN 

The BRICHOS domain was discovered by Sanchez-Pulido et al in 2002. The name was 

derived from three of the protein families containing BRICHOS domains, Bri, 

Chondromodulin-1 and surfactant protein C (SP-C) (Sanchez-Pulido et al. 2002). The 

BRICHOS family was expanded in 2009, when it was found that BRICHOS domains are 

present in over 300 proteins (Hedlund et al. 2009) divided into 10 families (Fig 6). 

 

Figure 6. The BRICHOS family tree. The distance between the different families reflects their evolutionary 

separation. Image taken from Knight et al, 2013 (Knight et al. 2013) and reproduced with author’s permission. 

The BRICHOS domain is around 100 amino acids long and although the sequence similarity 

between different species is low, predicted structures of the BRICHOS domains are similar 

and they share some common motifs (Sanchez-Pulido et al. 2002, Hedlund et al. 2009). The 

N-terminal part of BRICHOS containing proteins is a cytosolic region, followed by a TM 

region, a linker, a BRICHOS domain and finally a C-terminal part (Fig 7). This is true for all 
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BRICHOS containing proteins with the exception of proSP-C, which lacks the C-terminal 

part. Moreover, all BRICHOS containing protein have a region of high ß-sheet propensity in 

the C-terminal part, whereas in proSP-C, the TM region instead has a high ß-sheet propensity 

(Willander et al. 2011). The overall sequence similarities are low between different 

BRICHOS domains, with only three amino acids being generally conserved, one Asp and two 

Cys (Sanchez-Pulido et al. 2002). The two Cys residues have been shown to form a 

disulphide bridge in proSP-C (Casals et al. 2008), which indicates that this is likely the case 

in other BRICHOS containing proteins as well.  

 

Figure 7. The general structure of a BRICHOS containing protein. The structure begins with an N-terminal 

region, followed by a TM region, a linker region, the BRICHOS domain and a C-terminal part. Most BRICHOS 

proteins share this structure with an exception being proSP-C, which lacks the C-terminal part. 

The only structure of a BRICHOS domain currently available is the crystal structure of 

proSP-C BRICHOS (Willander et al. 2012a). The structure of proSP-Cs BRICHOS domain 

shows a unique folding motif (Willander et al. 2012a), where five β-strands form the central 

part. The central β-sheet is flanked by one α-helix on either side, one on face A of the protein 

and one on face B (Fig 8). Conserved residues and interstitial lung disease (ILD) associated 

mutations suggest that face A is involved in peptide binding. The hydrophobic surface of face 

A is normally blocked by α-helix 1, but molecular dynamic simulations showed that the 

movement of this α-helix makes the surface accessible for interaction with substrates 

(Willander et al. 2012a). Exposed side-chains of face A correlate with the assumed target 

peptides properties, which was first observed from comparison of proSP-C and Bri2. The 

postulated target region of the BRICHOS domain of proSP-C is the hydrophobic TM part and 

the face A of the proSP-C mainly consists of hydrophobic residues (Willander et al. 2012a). 

Bri2 BRICHOS on the other hand binds the C-terminally released peptide of Bri2, Bri23 

(Peng et al. 2010), which is more polar and contains charged residues. In correlation with 

this, face A of Bri2 BRICHOS contains charged residues were proSP-C has hydrophobic 

residues. Other BRICHOS domains can also be modeled based on the proSP-C BRICHOS 

structure, and Bri family proteins and gastrokines show correlation between the target peptide 

and the proposed binding site (Knight et al. 2013). 
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Figure 8. The structure of the BRICHOS domain of proSP-C. The structure has a unique fold and is 

composed of a five-stranded β-sheet and one α-helix on each side of the β-sheet. Image produced with VMD 

version 1.9.2 from the structural data (www.pdb.org, PDB ID 2YAD (Willander et al. 2012a)). 

The BRICHOS domain has been suggested to have a chaperone-like function towards the ß-

sheet propensity region in BRICHOS containing proteins (Willander et al. 2012a, Knight et 

al. 2013). In papers II-IV of this thesis, the effects of two BRICHOS domains, proSP-C and 

Bri2, on amyloid aggregation and toxicity have been studied. 

1.3.1 ProSP-C 

ProSP-C is the precursor protein to lung surfactant protein C (SP-C) and is a type 2 TM 

protein (N-terminal part located in the cytosol) (Keller et al. 1991). The function of lung 

surfactants is to lower the surface tension of the water-air interface and prevent lung collapse 

at the end of expiration (Whitsett and Weaver 2002). The precursor form is expressed as a 

197 amino acid protein. A multistep cleavage process generates mature SP-C, starting with 

cleavage of the C-terminal ER luminal part, followed by cleavage of the N-terminal part 

(Beers et al. 1994, Johnson et al. 2001, Solarin et al. 2001). As a result, the 35 residue mature 

form of SP-C is produced. Mutations in the proSP-C gene (SFTPC) are associated with ILD 

(Nogee et al. 2001, Nogee et al. 2002), of which 55% are spontaneous mutations, while 45% 

are inherited (Hamvas 2006). The severity of disease and age of onset can vary between 

individuals with the same mutation (Hamvas 2006). Most mutations are located in the linker 

region or the BRICHOS domain, with I73T, a linker region point mutation, being the most 

common (Wert et al. 2009). It has been shown that I73T and Δ91-93 give rise to ILD with 

amyloid deposits in the lung tissue (Willander et al. 2012a). 
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The mature SP-C forms an α-helix and is inserted into the ER membrane. The α-helix 

structure of SP-C is stable when it is located in the membrane, but outside of the membrane 

the peptide can rapidly aggregate and form amyloid fibrils (Szyperski et al. 1998, Gustafsson 

et al. 1999). This is due to that the TM mature part of SP-C is primarily composed of Ile and 

Val, residues with a high β-sheet propensity (Kallberg et al. 2001) and therefor have high 

likelihood to form amyloid (Johansson et al. 2010). Replacing these residues in SP-C with a 

poly-Leu stretches with a higher α-helical propensity, results in a stable α-helical 

conformation (Nilsson et al. 1998) and this peptide that can be used to make a synthetic lung 

surfactant (Johansson et al. 2003). In order for the TM segment to fold correctly it has been 

suggested that the BRICHOS domain of proSP-C can act as molecular chaperone and 

facilitate formation of its α-helical fold (Willander et al. 2012a). This is supported by the fact 

that many mutations causing amyloid deposition and ILD are located in the BRICHOS 

domain. The crystal structure of proSP-C BRICHOS domain showed a trimer, which is also 

supported by analytical ultracentrifugation, size exclusion chromatography, native gel 

electrophoresis and electrospray mass spectrometry (Casals et al. 2008, Willander et al. 

2012a). Molecular dynamics simulations suggests that the monomer is the active from, 

because helix 1 on face A needs to move away from the hydrophobic binding site to be 

exposed, which can not occur in the trimer (Willander et al. 2012a). Comparing the properties 

of face A of other BRICHOS families to their putative client peptides support that the trimer 

is an inactive storage form, while the monomer is the active form (Knight et al. 2013). 

Dissociation of trimeric proSP-C BRICHOS into monomers increases the capacity to inhibit 

Aβ42 fibril formation (Biverstal et al. 2015), supporting the theory that the monomer of 

BRICHOS is the active form. 

The BRICHOS domain of proSP-C has been shown to prevent aggregation and fibril 

formation of the Aβ peptide of AD (Johansson et al. 2009, Nerelius et al. 2009a, Willander et 

al. 2012b). The BRICHOS domain interacts with Aβ, maintaining Aβ as an unstructured 

monomer for an extended time period thereby delaying fibrillization (Willander et al. 2012b). 

Recent data suggest that the proSP-C BRICHOS domain delays the fibril formation by 

binding to fibrils and blocking the secondary nucleation of Aβ42 (Fig 9) (Cohen et al. 2015). 

This alters the aggregation process of Aβ42, and the process proceeds through primary 

nucleation and elongation alone. Since the secondary nucleation has been shown to be a 

major source of oligomers during Aβ42 aggregation (Cohen et al. 2013), the effects of 

BRICHOS is a substantial reduction in the amounts of toxic oligomers created (Fig 9).  
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Figure 9. BRICHOS inhibits formation of toxic Aβ42 oligomers. Diagram of molecular pathways involved in 

Aβ42 fibril formation. BRICHOS binds to fibrils and inhibits the secondary nucleation, thereby preventing the 

major source of oligomer formation. Adapted from Cohen et al, 2015 (Cohen et al. 2015). 

1.3.2 Bri2 

Bri2 is a type 2 TM protein encoded by the gene integral transmembrane protein 2 B 

(ITM2B) (Deleersnijder et al. 1996). It belongs to the same family as Bri1 (ITM2A) (Pittois 

et al. 1999) and Bri3 (ITM2C) (Vidal et al. 2001) and is expressed both in the brain and 

several peripheral tissues. The initially produced, full length Bri2 is 266 amino acids long. 

Bri2 is cleaved in the secretory pathway by furin in the C-terminal part (Kim et al. 2002), 

which produces a 243 residue, mature Bri2 and a small, C-terminal peptide (Bri23) (Fig 10) 

(Kim et al. 1999). The mature Bri2 is cleaved by ADAM10 and the BRICHOS domain is 

subsequently secreted into the extracellular space. The remaining N-terminal part undergoes 

intramembrane proteolysis by SPPL2a/b (Martin et al. 2008). Mutations in the Bri2 gene can 

lead to the release of elongated C-terminal peptides, which can cause amyloidosis. In familial 

British dementia (FBD), a single base substitution leads to a 34 amino acid long amyloid 

peptide (ABri) being released (Vidal et al. 1999). In familial Danish dementia (FDD), a 

decamer duplication insertion causes a reading-frame shift and subsequent release of a 34 

amino acid peptide (ADan) (Vidal et al. 2000). Both ABri and ADan can form fibrils and 
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deposit in the brain. However it has been suggested that ABri/ADan amyloid formation does 

not cause FBD/FDD, but rather the loss of function of Bri2 and concomitant effects on APP 

processing (Tamayev et al. 2010a, Tamayev et al. 2010b). Mouse models of both FBD and 

FDD have shown reduced expression of mature Bri2 and severe hippocampal memory 

deficits, but no signs of cerebral amyloidosis or taupathy. Moreover, Bri2+/- show similar 

deficits as the FBD/FDD mice, and memory loss in FDD mice can be prevented by co-

expression of wild type Bri2. Bri2 has also been found to co-localize with Aβ in amyloid 

plaques, suggesting interaction during the misfolding and aggregation process (Tomidokoro 

et al. 2005, Del Campo et al. 2014). Mature Bri2 has also been shown to inhibit APP 

processing by interacting with secretases and reducing their access to APP in the intracellular 

compartments where APP is processed (Matsuda et al. 2011). Moreover, Bri2 has been 

recognized as one of the 20 most important mediators in ApoE4 carriers and late-onset AD 

patients (Rhinn et al. 2013). 
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Figure 10. Processing of Bri2. The full length Bri2 is first cleaved by furin, producing the mature form and 

Bri23. Processing by ADAM10 releases the BRICHOS domain and the N-terminal part is subsequently cleaved 

by SPPL2a/b. 

The structure of Bri2 BRICHOS has not been determined, however a homology model has 

been created based on data from the crystal structure of proSP-C BRICHOS (Willander et al. 

2012b). This model suggests that the Bri2 BRICHOS has a similar structure as proSP-C 

BRICHOS, with a highly conserved central β-sheet core region. 

Like proSP-C BRICHOS, Bri2 BRICHOS can interact with Aβ peptides, delaying fibril 

formation (Peng et al. 2010, Willander et al. 2012b). Moreover, Bri2 BRICHOS seems to be 

more effective in preventing Aβ aggregation than proSP-C BRICHOS (Willander et al. 

2012b). Bri2 can also interact with APP and affect Aβ production (Fotinopoulou et al. 2005, 

Matsuda et al. 2005, Kim et al. 2008, Matsuda et al. 2008) and a fusion protein of Aβ and 

Bri2 expressed in a mouse model showed completely intact cognitive performance, in sharp 

contrast to APP expressing mice (Kim et al. 2013). 

1.3.3 Other BRICHOS families 

As previously mentioned, BRICHOS containing proteins can be divided into 10 distinct 

groups. Apart from Bri2, there are two more families of Bri proteins. Bri1 is a 263 residue 

long protein and has been linked to chondrogenic differentiation (Deleersnijder et al. 1996, 

Van den Plas and Merregaert 2004). Bri3 is mostly expressed in the brain (Vidal et al. 2001) 
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and proteolytically cleaved by furin in the same manner as Bri2 (Wickham et al. 2005). 

Furthermore, Bri3 has been shown to co-localize and co-immunoprecipitate with APP and 

overexpression of Bri3 reduces cleavage of APP by α- and β-secretase by blocking the target 

site of the secretases (Matsuda et al. 2009).  

There are three families of gastrokines, GKN1, GKN2 and GKN3. GKN1 is expressed in 

gastric mucosa (Martin et al. 2003) and has been associated to gastric cancer. It is highly 

conserved and suggested to be important in mucosal protection (Oien et al. 2003, Oien et al. 

2004). GKN1 has also been shown to inhibit amyloid formation of Aβ40 (Altieri et al. 2014). 

GKN2 is just like GKN1 expressed in gastric mucosa and associated to gastric cancer. It has 

been shown to interact with TFF1 and TFF2, members of trefoil factor family. GKN2 can 

form a heterodimer with TFF1 in humans (Westley et al. 2005) and the mouse homolog has 

been found to bind to TFF2 (Otto et al. 2006). GKN3 is a recently discovered group of 

gastrokines in mice, and associated to gastric atrophy (Otto et al. 2006). The human homolog 

seems to have become non-functional due to mutation resulting in a premature stop-codon. 

Group C is a poorly characterized family of BRICHOS containing proteins that has been 

found in organism all the way down to Drosophila melanogaster and shows a high 

conservation in the C-terminal part (Hedlund et al. 2009). The protein is suggested to be 260 

amino acids in humans and to have a N-glycosylating site. Chondromodulin-1 (ChM-1), also 

known as leukocyte cell-derived chemotaxin, is a 335 residues precursor protein. Processing 

through glycosylation and cleavage by furin renders a 28 kDa glycoprotein (Azizan et al. 

2001). ChM-1 has been linked to chondrosarcoma and loss of ChM-1 expression effect 

suppression of tumor angiogenesis and growth (Hayami et al. 1999). Tenomodulin is a 

protein similar to ChM-1 and has found to be expressed in eye, skeletal muscle and whole rib 

of adult mouse. Elevated levels of expression have also been noted in mouse embryonic 

development (Shukunami et al. 2001, Yamana et al. 2001). Arenicin is an anti-microbial 

peptide found so far only in worms, for which the structure of the C-terminal peptide has 

been solved (Lee et al. 2007, Andra et al. 2008). It has been suggested that arenicin induces 

apoptosis through accumulation of intracellular reactive oxygen species and mitochondrial 

damage in fungal cells (Cho and Lee 2011). 

1.4 DROSOPHILA MELANOGASTER 

Drosophila melanogaster, commonly known as the fruit fly, is a fly species of the 

Drosophilidae family. It has been used extensively in research fields including genetics, 

physiology, biochemistry and evolution science. There are several advantages in using 
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Drosophila as a model system. Flies are easy to handle and don’t require a lot of space, and 

costs are in general low. The flies only have four chromosomes, three autosomes and one sex 

chromosome. Female flies can produce up to 100 eggs per day, making generation of large 

numbers of flies easy. Males and females are also easily distinguishable under a light 

microscope. Meiotic recombination is not present in the males, which makes it easier to avoid 

unwanted recombination when crossing flies. A number of balancer chromosome fly lines 

can be used to avert unwanted recombination. A balancer chromosome is essentially a 

product of multiple chromosomal inversions. Homozygote balancer chromosomes lead to 

non-viable flies as do recombination of the inverted regions with non-balancer chromosomes. 

Balancer fly lines are usually also coupled to a specific phenotypical marker, which ensures 

that flies of different genotypes can be distinguished by external phenotypes such as curly 

wings, stubble hairs or eye color (Fig 11). Many analogs to human proteins exist in 

Drosophila and about 80% of disease related genes have a counterpart in the Drosophila 

(Reiter et al. 2001). Studying and using Drosophila melanogaster flies as a model system has 

a long scientific tradition and tracks back to the beginning of the 20th century. Many 

important scientific discoveries have been made using Drosophila as a model in research on 

hereditary effects, diseases, learning, and signaling pathways among others. In 1908, T.H 

Morgan selected Drosophila as a model of heredity. Among his findings were that the eye 

color was sex linked and the gene controlling this was located on the X chromosome 

(Morgan 1910), and this and other discoveries led to Morgan being awarded the Nobel Prize 

in 1933. In 1913, A.H. Sturtevant constructed the first genome map and was able to show that 

genes are arrange in a linear fashion (Sturtevant 1913). In 1917, H.J. Muller introduced 

balancers in Drosophila research (Muller 1918) and in 1927 he was able to show genetic 

damage and mutation in Drosophila using ionizing radiation (Muller 1927). The later 

discovery resulted in him winning the Nobel Prize in 1946. In 2000 the whole genome of 

Drosophila was sequenced (Adams et al. 2000). In 2011, the Nobel Prize in Physiology or 

Medicine was awarded to J. Hoffman for research about the innate immunity. Using a 

Drosophila model Hoffman demonstrated that the Toll gene was necessary for combating 

fungal infection by identifying pathogenic microorganism and triggering the immune 

response (Lemaitre et al. 1996). 
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Figure 11. Balancer phenotypes in Drosophila flies. The top row shows the wild type phenotypes and the 

bottom row the balancer phenotypes. The hairy shoulders phenotype adds additional hairs to the “shoulder” area. 

The stubble phenotype makes the hairs on the flies’ backs shorter and thicker. The curly phenotype makes the 

wings curl instead of being straight like in wild type flies. 

One of the more important developments in the Drosophila field is the introduction of the 

Gal4/UAS system (Brand and Perrimon 1993). The essential principle of this system is that a 

gene of interest is placed downstream of an upstream activating sequence (UAS), which is 

inserted into the fly genome by injection of a target vector into fly embryos. The gene of 

interest will not be expressed with this insert alone and to achieve expression, the 

transcription factor Gal4 is needed (Brand and Perrimon 1993). Expression of the transgene is 

promoted when Gal4 binds to the UAS. Gal4 is not naturally present in the Drosophila, as it 

is derived from Saccharomyces cerevisiae. Expression is achieved by crossing the responder 

line with a driver line, which has a cell or tissue specific expression of Gal4. As Gal4 is 

needed for expression of the gene of interest, the expression of the transgene will only occur 

in the cells with Gal4 (Brand and Perrimon 1993). Crossing the same responder line with 

different Gal4 driver lines can therefore generate flies with different expression levels and 

locations (Fig 12). This also allows for high toxicity genes to be studied, as the genes can be 

kept silent in the responder flies until crossed with driver flies. The expression of Gal4 is 

temperature dependent and higher temperatures results in higher expression levels (Duffy 

2002). Several different UAS dependent genes can be combined in the same fly for studying 

co-expression of different proteins. Today, there are thousands of fly lines using the 

UAS/Gal4 system available. One of the most common drivers is the ElavC155 driver, which 

gives a pan-neuronal expression of Gal4 (Lin and Goodman 1994). Another commonly used 

driver is the glass multimer reporter (GMR) driver (Freeman 1996), which has a primary eye-
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specific expression profile. The expression of a reporter such as green fluorescence protein 

(GFP) can also be incorporated into a driver line, which can be utilized to investigate which 

cells or tissues that express the gene of interest. The UAS system cannot only be used to 

induce expression, as several UAS controlled RNAi lines have been created and utilized. In 

this instance, the Gal4 is instead used to specifically suppress the expression of a certain gene 

(Brand and Perrimon 1993). 

 

Figure 12. The UAS Gal4 system. When a female fly carrying the transgene of interest (in this case BRICHOS) 

is crossed with a Gal4 expression male fly, the resulting progeny containing both the UAS BRICHOS transgene 

and the Gal4 driver will express the BRICHOS domain. In other possible outcomes, the BRICHOS protein 

cannot be expressed. The white eye phenotype of the flies with only balancer results from this phenotype lacking 

transgene insert, which contains the element for red eye color. 

1.4.1 Models of amyloid disease in Drosophila 

1.4.1.1 Models of Alzheimer´s disease 

There are several Drosophila models of amyloid diseases available. For Alzheimer´s disease, 

several models has been created and utilized in different manners. One strategy has been to 

create transgenic strains expressing human Aβ peptides with different length and mutations 

(Iijima et al. 2004, Crowther et al. 2005). In these models it has been shown that Aβ42 and 

Aβ42E22G (also known as the artic mutant) causes toxicity, reducing the locomotor activity 

and life span of the flies when expressed in the CNS. Aβ42E22G was also shown to be the 
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more toxic variant, with enhanced effects compared to the wild type Aβ42 (Crowther et al. 

2005). Expression of Aβ42 in the eyes of the flies led to retinal degeneration. In another 

study, flies expressing two copies of Aβ42 fused together via a short linker (a tandem 

construct) were generated. Expression of the tandem constructs show highly reduced life 

span, malformation of eyes, increased deposition of Aβ42 and higher levels of soluble 

oligomers (Speretta et al. 2012). The malformation of the eyes in this model is shown in Fig 

13. Another approach for studying Alzheimer´s disease and Aβ toxicity has been to develop 

flies expressing human APP together with BACE (β-secretase) to replicate the processing of 

APP into Aβ peptides. Constructing flies with targeted expression of APP, BACE and 

presenilins, the effects of APP with and without processing could be compared. It was found 

that APP with expression of BACE and presenilins lead to age-dependent neurodegeneration 

due to generation of toxic species, whereas expression of full length APP only did not have 

severe negative effects on the flies (Greeve et al. 2004). Aβ42 Drosophila models have been 

used in a number of studies aimed at finding inhibitors of Aβ aggregation and toxicity. One 

strategy includes co-expressing engineered proteins binding Aβ42 (Luheshi et al. 2010), 

which showed to be effective inhibitors for Aβ42 toxicity, increasing the life span and 

locomotor activity of the flies. Furthermore, the amount of insoluble Aβ was reduced. 

Another strategy is to feed the flies compounds mixed with their normal food. Curcumin was 

fed to flies in one study and the flies showed increased activity and life span when compared 

to flies only expressing Aβ42 or Aβ42E22G (Caesar et al. 2012). Interestingly, this study also 

showed that curcumin does not decrease the fibril formation, but rather accelerates the 

process. The reduced toxicity was therefore ascribed to curcumin reducing levels of toxic 

Aβ42 oligomers. In another study, synthetic ligands binding and stabilizing Aβ in a α-helical 

conformation were fed to Aβ42 expressing flies, which led to increased life span and reduced 

eye tissue destruction (Nerelius et al. 2009b). 
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Figure 13. Aβ42 causes toxicity in flies. Expression of a tandem Aβ42 construct causes severe malformation of 
the eyes compared to the control flies (Speretta et al. 2012). 

1.4.1.2 Transthyretin expressing flies 

Drosophila models of familial amyloid polyneuropathy have been made by creating 

transthyretin expressing flies. Both wild type and mutants such as TTRV30M have been 

created, along with an extra aggregation prone engineered double mutant variant 

TTRV14N/V16E (Pokrzywa et al. 2007). Expression of TTRV30M and TTRV14N/V16E lead to 

decreased life span, neurodegeneration, reduced locomotor activity and eye tissue damage 

(Pokrzywa et al. 2007, Berg et al. 2009). 

1.4.1.3 IAPP expressing flies 

A model for studying T2D amyloidosis has been created (Schultz et al. 2011). In this work 

three different transgenic fly lines were created, expressing human proIAPP, human IAPP 

and non-amyloidogenic mouse IAPP. Only proIAPP reduced the life span of the flies, 

whereas human IAPP and mouse IAPP had no significant effects. Aggregates of both human 

proIAPP and human IAPP could be detected in the CNS and in fat bodies of the fly head 

(Schultz et al. 2011). The accumulation of human proIAPP and human IAPP in the fat bodies 

was further characterized and shown to result in structurally organized granules with a 

pentagonal rod-like structure (Schultz et al. 2011). 

1.4.1.4 α-synuclein expressing flies 

A Drosophila model of PD was published in 2000 (Feany and Bender 2000). In this model, 

wild type or mutant forms of α-synuclein are expressed leading to intraneuronal inclusions, 

decreased locomotor activity and eye degeneration (Feany and Bender 2000). All variants 

Control Tandem Aβ42
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showed similar toxicity. Co-expression of HSPA and α-synuclein in dopaminergic neurons in 

flies was later shown to protect against α-synuclein-induced neuronal degeneration (Auluck 

et al. 2002).  
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2 AIMS OF PRESENT INVESTIGATION 
The overall aim of this thesis was to study amyloid diseases and investigate the effects of the 

BRICHOS domain on aggregation and toxicity of amyloid proteins. More specifically, we 

used Drosophila models to achieve these goals. The specific objectives were as follows: 

Paper I: To characterize possible HS interactions with TTR and effects on aggregation. 

Papers II and III: To study the effects of proSP-C and Bri2 BRICHOS on Aβ aggregation and 

toxicity in vivo using a Drosophila model system 

Paper IV: To investigate possible association of Bri2 and IAPP in human pancreatic islets and 

study the effects of Bri2 BRICHOS on IAPP aggregation and toxicity in vitro and in vivo 
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3 MATERIALS AND METHODS 
More detailed descriptions about the materials and methods used in this thesis can be found in 

papers I-IV. In this part I will go into some general concept of methods used in the different 

studies. 

3.1 FLY GENERATION 

We have generated our BRICHOS flies using a system called the φC31 (Bateman et al. 

2006). The advantage of this system is that one can achieve site-specific expression, 

eliminating a number of problems related to random gene insertion such as variable 

expression levels or unwanted insertion into an essential gene. The φC31 integrase is derived 

from the bacteriophage φC31 and encodes a recombinase that mediates site-specific 

recombination between two attachment sites, attB and attP (Thorpe et al. 2000). Insertion of 

the gene of interest can be directed to a specific site by using the attB-sequence in a vector 

and a fly line that has an attP sequence already incorporated into a specific site in the genome. 

For our fly lines we used the pUASTattB vector, a vector based on the pUAST vector (Brand 

and Perrimon 1993) containing five optimized Gal4 binding sites. Our constructs were 

inserted into the vector, which was then sent to BestGene Inc for injection and initial 

cultivation of fly lines. In study II or III we chose to incorporate our BRICHOS genes at site 

86Fb, since this site have a high rate of successful integration (Bischof et al. 2007). The site is 

located on the third chromosome, which was important because most Aβ lines that we used 

have their transgene inserted in the second chromosome, making crossings easier. 

3.2 LONGEVITY ASSAY 

The longevity assays were performed by keeping 10 flies of a genotype per tube at constant 

temperature and humidity, changing the food every 2-3 days and counting the number of flies 

alive. Aβ42 expression in the CNS reduces the life span of the flies compared to control flies 

(Crowther et al. 2005). Variability can be caused by several factors, e.g. the food 

composition, temperature and humidity. If the food is too moist, the flies can get stuck and 

drown, if the food is to dry the flies and larval will be dehydrated. The relative temperature 

and humidity in the incubator also affects the flies’ longevity. Higher temperature induces a 

higher expression of Gal4 (Duffy 2002), leading to increased expression of transgenes and 

possibly higher toxicity. Keeping constant temperatures, humidity levels and regular 

changing the food is essential to decrease the variability. 
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3.3 LOCOMOTOR ACTIVITY 

The locomotor activities of groups of 5 flies were measured by counting the number of flies 

able to climb a certain height in a given time. It has previously been shown that flies 

expressing Aβ42 in the CNS develop age-dependent locomotor deficits compared to control 

flies (Crowther et al. 2005). 

3.4 IMMUNOHISTOCHEMISTRY AND CONFOCAL MICROSCOPY 
To visualize the expression and deposition of the various proteins used in these studies, 

antibody staining and visualization by confocal microscopy was used. Two different methods 

were used for visualization in the fly head and brain. In paper I, the flies were decapitated and 

the heads embedded and frozen in Tissue-Tek O.C.T compound followed by cryosectioning. 

In subsequent steps the sections were fixated and stained with antibodies for analysis by 

confocal microscopy. The advantage of this method is that the whole head can be studied, 

including the eyes and the brain, however due to sectioning the overall three dimensional 

structure is lost. The second method used was to dissect out the brain from the fly heads, 

fixating it and stained with antibodies followed by visualization of the whole brain. In doing 

so, the three dimensional structure of the brain is intact, but surrounding areas such as the fat 

bodies and the eyes cannot be studied. 

3.5 PROXIMITY LIGATION ASSAY 

In order to detect co-localization in tissue samples, we used proximity ligation assay (PLA, 

Olink) (Fredriksson et al. 2002, Soderberg et al. 2006). PLA, like conventional 

immunohistochemistry, uses antibodies, but with higher sensitivity and specificity. In order 

for a PLA signal to occur, dual binding events need to take place. In PLA, primary antibodies 

from two different hosts are used, binding to the same or different targets. Instead of a 

conventional fluorophore, the secondary antibodies are coupled with oligonucleotides, which 

are complementary. If these oligonucleotides are in close proximity, they can be ligated and 

amplified, giving a fluorescence signal. The amplification process results in high sensitivity. 

3.6 THIOFLAVIN T ASSAY 

Thioflavine T (ThT) is a benzothiazole salt that is used for measuring the fibril formation of 

amyloid proteins. When ThT binds to β-sheets its fluorescence emission increases and a 

characteristic red shift in wavelength of emission maximum is seen (LeVine 1999). 
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3.7 CELL APOPTOSIS ASSAY 

Caspase-3 is a member of a group of proteases activated during cellular apoptosis (Taylor et 

al. 2008). The target for caspase-3 is a four amino acid (DXXD) motif. Stable cell lines 

transfected with a vector producing two fluorophores linked by a DXXD sequence can be 

used to monitor caspase-3 activity (Kohler et al. 2003). When the fluorophores are linked to 

each other, fluorescence energy transfer (FRET) occurs and the signal can be measured. 

When apoptosis occurs, caspase-3 cleavage of the linking region results in loss of the FRET 

signal.  
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4 RESULTS 

4.1 PAPER I 

Since wild type TTR is stable in homotetrameric configuration, one can argue that factors that 

can cause a shift into aggregation prone monomers will affect amyloid propensity. HS has 

been associated with several amyloid diseases and found to promote fibril formation. In this 

study we examined the association and effects of HS on TTR. Staining myopathic heart tissue 

from an elderly patient using Congo red showed the characteristic birefringence and staining 

with Alcian Blue, for detection of HS, revealed a similar pattern. TTR and HS therefore seem 

to co-localize in heart tissue, which was supported by using antibodies against TTR and HS. 

The effect of HS on aggregation of TTR was investigated with a ThT assay under acidic 

conditions. The addition of HS to TTR promoted the fibril formation and high sulfated 

heparin increased the fibrillization more than lower sulfated forms of HS. The length of the 

polysaccharide chains also had an effect, and heparin was the overall most effective 

compound in increasing the fibril formation. 

The interaction of TTR and HS was characterized using surface plasmon resonance. The 

binding of heparin to TTR was significantly higher at low pH than at higher pH, and higher 

sulfation degree increased the affinity of HS. By using peptide fragments and full length TTR 

incubated with heparin, the region of binding in TTR was localized to residues 24-35. This 

region contains three basic amino acids, which are likely involved in the interaction with HS. 

Since this region is buried in the native homotetramer of TTR, dissociation into monomers is 

needed for effective binding of HS. 

Comparing wild type and HS-deficient cells incubated with TTR, showed significantly higher 

TTR fibrillization for wild type cells. Finally, we used a Drosophila model expressing 

TTRV14N/V16E, an engineered, aggregation prone variant of TTR. Since the valines are buried 

in a hydrophobic environment in wild type TTR, the exchange to polar residues causes 

destabilization leading to heightened aggregation tendency. The flies were fed with either 

standard media, heparin supplemented food or low molecular weight heparin supplemented 

food. Lysates of the heads from flies fed with heparin supplemented food gave ThT and 

Alcian blue signal, whereas standard media and low molecular weight heparin supplemented 

food did not. Sectioning the heads and staining with antibodies for heparin and TTR revealed 

co-deposition in the retina, which was not present in control flies. 
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 To summarize our findings, HS can be found co-localized with TTR in a myopathic heart 

tissue and the presence of HS seems to promote fibril formation of TTR both in vitro and in 

vivo. In addition, we identified that the region of residues 24-35 of TTR contains the binding 

site of HS and that low pH is necessary for effective binding. 

4.2 PAPER II 

It has previously been shown in vitro that the BRICHOS domain of proSP-C can interact with 

Aβ42 and inhibit its aggregation into fibrils (Johansson et al. 2009, Nerelius et al. 2009a, 

Willander et al. 2012b). To examine proSP-C BRICHOS effects on Aβ42 in a living 

organism, we generated a UAS/Gal4 dependent Drosophila melanogaster model expressing 

the linker region and BRICHOS domain of proSP-C coupled to a signal peptide from lung 

surfactant protein B. We used the φC31 system for site-specific insertion into the 3rd 

chromosome. These flies were crossed with Aβ42 expressing flies with either one or two 

copies of Aβ42 (Crowther et al. 2005). The expression levels were compared using qtPCR, 

which showed no effect on expression levels of Aβ when co-expressing proSP-C BRICHOS. 

Longevity and locomotor assays of non-expressing transgenic flies were also done to ensure 

that the transgenic insertion as such did not affect the flies. 

Expressing Aβ42 in either one or two copies in the CNS of the flies using the ElavC155 driver 

resulted in decreased life span and locomotor activity when compared to control flies, with 

two copies of Aβ42 resulting in higher toxicity. Co-expressing Aβ42 and proSP-C BRICHOS 

showed increased life span and locomotor activity compared to flies only expressing Aβ42. 

The effects of proSP-C BRICHOS on Aβ42 were further studied by dissecting out the brain 

of the flies and staining with antibodies against Aβ and proSP-C BRICHOS. Accumulation of 

Aβ42 was delayed when co-expressed with proSP-C BRICHOS, and proSP-C BRICHOS and 

Aβ42 could furthermore be co-localized in the central parts of the brain. An in vitro 

experiment using electron microscopy showed that proSP-C BRICHOS binds Aβ42 fibrils. 

Finally, we showed that the presence of proSP-C BRICHOS increases the ratio of soluble to 

insoluble Aβ42. 

The results of the study show that proSP-C BRICHOS can have an inhibiting effect on Aβ42 

aggregation and toxicity in vivo. Furthermore, proSP-C BRICHOS was shown to co-localize 

with Aβ fibrils and affect the levels of soluble/insoluble Aβ42. The presence of Aβ42 

deposits at later time points, but without severe toxicity, indicate that proSP-C BRICHOS 

interferes with the formation of toxic species rather than preventing Aβ deposition altogether.  
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4.3 PAPER III 

Having shown that the BRICHOS domain of proSP-C, a lung surfactant protein, could 

prevent toxicity and aggregation of Aβ42 (Paper II), we wanted to examine if the same was 

true for other BRICHOS domains. Previously, we have shown that the BRICHOS domain of 

Bri2 can inhibit fibril formation of Aβ42 in a more efficient way than proSP-C BRICHOS 

(Willander et al. 2012b). 

We generated a fly strain with an insert of residue 90-236 of Bri2 together with a signal 

peptide from lung surfactant protein B. The flies were generated in the same manner as in 

paper II, although in this study, only flies with one copy of Aβ42 were used and different 

food composition, temperature and humidity levels were used. ProSP-C BRICHOS 

expressing flies were also generated to compare effects of two different BRICHOS proteins. 

qtPCR analysis of mRNA levels from fly heads showed that amounts of Aβ42 expressed was 

unaffected by the expression Bri2 BRICHOS. 

Co-expression of Bri2 BRICHOS and Aβ42 showed improved survival over flies expressing 

Aβ42 alone. The expression of Aβ42 reduces the climbing ability of the flies when compared 

to control flies only expressing Gal4. Co-expression of either proSP-C BRICHOS or Bri2 

BRICHOS causes the climbing ability to improve, with Bri2 BRICHOS showing the largest 

improvement.  

Expressing Aβ42 in the eyes of the flies causes malformation and reduced diameter of the 

rhabdomeres of the flies’ ommatidia. These effects can largely be inhibited by co-expression 

of Bri2 BRICHOS, while proSP-C BRICHOS seems to inhibit the reduction of the 

rhabdomers diameter to a somewhat smaller extent. Expression of Bri2 BRICHOS or proSP-

C BRICHOS alone results in no phenotypical changes compared to control flies. 

Localization of BRICHOS and Aβ42 was studied in the fly brain using immunofluorescence 

and confocal microscopy. Interestingly, the staining pattern of flies expressing Aβ42 alone 

and co-expressing Bri2 BRICHOS with Aβ42 was drastically different. In flies only 

expressing Aβ42, the Aβ is detected around the antennal lobes of the fly brain, while co-

expression with Bri2 BRICHOS results in staining in the mushroom bodies, where Aβ42 co-

localizes with Bri2 BRICHOS. Co-expression of proSP-C BRICHOS and Aβ42 instead leads 

to co-localized signal around the antennal lobes and the amount of Aβ42 deposits are 

reduced. Expressing Aβ42 together with GFP as a reporter protein results in no visible 

changes in the mushroom bodies structure compared to control flies. 
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Analyzing the amounts of soluble and insoluble Aβ42, it was seen that co-expression of Bri2 

BRICHOS reduces the amounts of insoluble Aβ42. The soluble level seems largely 

unchanged by the co-expression of Bri2 BRICHOS. 

In summary, Bri2 BRICHOS seems to be more efficient in inhibiting the toxic effects of 

Aβ42 than proSP-C BRICHOS. The difference in localization of Aβ42 in the fly brain 

indicates possible differences in the mechanism of action by the two BRICHOS domains. 

Bri2 BRICHOS ability to prevent Aβ42 toxicity and association to APP and Aβ (Matsuda et 

al. 2008) makes Bri2 BRICHOS a very interesting protein that could be harnessed for AD 

treatment. 

4.4 PAPER IV 

IAPP is a small peptide associated with T2D, which can aggregate and form amyloid fibrils. 

Bri2 is expressed in several tissues in the body and the anti-amyloid mechanism makes it an 

interesting candidate to study in conjunction with IAPP.  

The presence of Bri2 in isolated human islets was shown using extracts and pancreatic 

sections and reactivity seems to appear in the β-cells and co-localize with insulin. However, 

comparing the staining of insulin and Bri2 indicates that Bri2 also is present in other cell 

types in the islets. Bri2 presence was furthermore shown by mRNA analysis, which showed 

that Bri2 is expressed in human islets. Culturing islets from donors in either normal or high 

glucose levels caused the mRNA levels of Bri2 to decrease, while levels of IAPP mRNA 

increased significantly. 

Pancreatic sections from T2D patients were analyzed using PLA, which showed co-

localization of IAPP and Bri2 in islet amyloid deposits. Sections from healthy individuals 

without amyloid deposits showed no co-localization of IAPP and Bri2, suggesting that co-

localization and interaction occurs only in amyloid deposits and not in β-cells. 

Using either ThT or pFTAA assays showed that Bri2 BRICHOS prevents IAPP from forming 

fibrils, even at substochiometric amounts and in the presence of cellular components. 

Bri2 BRICHOS ability to prevent IAPP toxicity was studied using a caspase-3 fluorescence 

energy transfer (FRET) assay. In this assay, addition of IAPP induced apoptosis and this 

effect was concentration dependent. A 1:1, 2:1, 4:1 and 8:1 ratio of IAPP and Bri2 BRICHOS 

reduced the toxic effects. However a 10:1 ratio of IAPP and Bri2 BRICHOS increases the 

toxic effects of IAPP leading to more cell death, which indicates that substochimetric 
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additions of Bri2 BRICHOS can have a negative impact on cell survival, possibly due to 

formation of toxic species of IAPP. 

The possible inhibition of IAPP toxicity by Bri2 BRICHOS was also evaluated in a 

Drosophila melanogaster model. By expressing IAPP and Bri2 BRICHOS in 8 lateral ventral 

neurons of each brain hemisphere of a fly, together with GFP as a reporter protein, the 

number cell nuclei could be counted. IAPP expression alone is toxic and causes a reduction in 

cell nuclei compared to control flies. Co-expression of IAPP and Bri2 BRICHOS increased 

the number of cell nuclei significantly, compared to IAPP only, showing that Bri2 BRICHOS 

can have a rescuing effect in vivo. Bri2 BRICHOS only expression gave no significant 

difference in cell numbers compared to control flies. 

Our study suggests that Bri2 could be associated to IAPP in the amyloid fibril forming 

process in T2D. Bri2 is co-expressed with IAPP and insulin in β-cells and can be co-localized 

with IAPP in T2D patients. Bri2 BRICHOS can also prevent aggregation and fibril formation 

of IAPP in vitro, and also reduce the toxicity of IAPP in cell culture and in vivo in a 

Drosophila model. Taken together, this indicates that Bri2 could reduce aggregation and 

toxicity of IAPP and possibly be used as a novel treatment for T2D. 
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5 GENERAL DISCUSSION AND FUTURE PERSPECTIVES 
HS has been implicated to play a vital role in several amyloid diseases and shown to promote 

fibril formation. In paper I, we showed that HS is co-localized with TTR in heart tissue of an 

elderly patient and promotes fibrillization in vitro. Moreover, the binding region of TTR was 

identified and we could show decreased fibril formation in HS-deficient cells and co-

localization of heparin and TTR in a Drosophila model. The interactions, binding and co-

localization of HS and TTR can be an important factor in TTR amyloidosis. 

In paper II and III we show that the BRICHOS domain can prevent aggregation and toxicity 

in vivo by using a Drosophila model, reflecting previous in vitro results (Willander et al. 

2012b), Bri2 BRICHOS is seemingly more potent than proSP-C BRICHOS in preventing 

aggregation and toxicity of Aβ42. Interestingly, as seen in the confocal images of the fly 

brain, the distribution pattern of Aβ42 is markedly different when co-expressed with proSP-C 

compared to Bri2 BRICHOS. This could be due to different mechanisms of action. It has 

been shown that proSP-C BRICHOS binds fibrils and prevents secondary nucleation 

specifically (Cohen et al. 2015), while the mechanism of Bri2 is currently being investigated. 

Co-expression of Aβ42 and Bri2 BRICHOS results in Aβ42 distribution in the mushroom 

bodies of the fly brain, which is interesting as this structure plays a important role in olfactory 

learning and memory (Davis 1993, Heisenberg 2003, Busto et al. 2010) and a Drosophila 

APP ortolog, essential for long-term memory (Goguel et al. 2011), is highly enriched in the 

mushroom bodies (Torroja et al. 1996). 

The fibril formation inhibition by the BRICHOS domain has not been explored in detail for 

amyloid proteins other than Aβ, but the BRICHOS domain of proSP-C has also been shown 

to inhibit fibril formation of medin (Nerelius et al. 2009a). Bri2 is expressed in several tissues 

in humans and could therefore be associated with other amyloid diseases than AD. We 

investigated if Bri2 is expressed in pancreatic islets involved in T2D and examined possible 

interactions of Bri2 and IAPP. We found that Bri2 is expressed in the islets and co-localizes 

with IAPP in amyloid deposits. Interestingly no co-localization of IAPP and Bri2 could be 

detected in tissue lacking amyloid deposits, possibly indicating that Bri2 only binds to IAPP 

in aggregated and amyloid form. This is in line with recent findings about the interaction 

between proSP-C BRICHOS and Aβ (Cohen et al. 2015), indicating a possible common 

mechanism for BRICHOS domains in general. We also showed that Bri2 BRICHOS could 

prevent the fibril formation of IAPP for an extended time period in a similar, but more potent, 

manner as seen before with Aβ. Moreover, Bri2 BRICHOS can under certain conditions 

prevent toxicity of IAPP, as seen in cell toxicity assays and the Drosophila model. However, 
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using higher molar ratios of IAPP:Bri2 BRICHOS leads to increased toxicity. Further studies 

are required to determine the basis of this observation, but it could possibly be due to that 

Bri2 BRICHOS slows down the fibril formation process, and thereby extends the time under 

which toxic oligomers are present.  

Utilizing a fly model for studying amyloid diseases is a viable option for looking at 

mechanisms and toxicity in an in vivo system. As mentioned previously, many important 

scientific insights and discoveries have come from the use of Drosophila as a model system. 

Comparing the results in papers I and IV obtained using fly models and human tissue 

sections, one can see that they agree well. In paper I, we showed that TTR can co-localize 

with HS in heart tissue from a myopathic patient. Using a fly model expressing TTR we show 

that by feeding the flies with heparin supplemented food, TTR and HS could be co-localized 

in the fly’s heads. In paper IV we used human cell lines to study toxicity of IAPP and 

likewise, IAPP had a toxic effect on cells when expressed in lateral ventral neurons in a 

Drosophila model. Different amyloid proteins also have potentially different toxic effects, 

which is also reflected in the fly models. In paper II and III we use an Aβ42 fly model that in 

both studies decreases the longevity of the flies when expressed throughout the CNS. IAPP 

on the other hand, has previously been shown not to affect the longevity of the flies when 

expressed in the same way compared to control flies (Schultz et al. 2011). Interestingly, when 

expressing IAPP in the lateral ventral neurons using the pdf driver, IAPP expression 

decreases the number of cell nuclei. However, expression of Aβ42 with the same driver 

results in no significant difference from the control flies (Schultz 2011). As HS also has been 

linked to IAPP aggregation and shown to promote IAPP fibril formation (Watson et al. 1997, 

Castillo et al. 1998), the fly model of IAPP could be used to study this interaction in vivo with 

a similar strategy as used in paper I with TTR and HS. The field of Drosophila research is, as 

all other research fields, ever-evolving, and new genetic tools become available all the time. 

In 1993 the UAS/Gal4 system was introduced and further developed during the subsequent 

years. The last years have introduced techniques such as the CRISPR/Cas9 system (Gratz et 

al. 2013) in the Drosophila, facilitating precise deletion, insertion and sequence replacement 

in fly lines. These genetic tools, together with the many fly models of amyloid diseases 

available, makes Drosophila a viable choice for further studies of amyloidosis in vivo. There 

are of course drawbacks in using Drosophila as a model organism. The flies are small and 

fragile to environmental changes such as temperature or humidity, and due to their size the 

amounts of expressed protein is low, which in turn requires sensitive techniques for analysis. 

In studies with implications for human medicine one must also consider that the flies are 
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much less complex when compared to humans, e.g. their blood brain barrier is rudimentary 

compared to humans. 

The BRICHOS domain models introduced in papers II, III and IV could be used to study 

other aspects of the BRICHOS domain in vivo, or to investigate effects of BRICHOS 

domains on other amyloid proteins, such as TTR or α-synuclein. We have also generated a 

model of proSP-C BRICHOSL188Q, a mutant associated with ILD. This model could be used 

to study how mutations in the BRICHOS domain affect the functionality compared to the 

wild type counterpart in vivo. 

The BRICHOS domain is far from the sole example of a chaperone inhibiting amyloid 

formation. As mentioned previously, HSPs have shown to exhibit similar effects on amyloid 

proteins (Auluck et al. 2002) and in a recent study the molecular chaperone DNAJB6, 

belonging to the DNAJ family, was shown to inhibit both primary and secondary nucleation 

of Aβ42 (Mansson et al. 2014). It has also been shown that non-chaperone proteins can 

exhibit chaperone-like inhibition of Aβ40 aggregation (Luo et al. 2014). The results of this 

thesis suggest that BRICHOS could in the future be used in treatment of AD. One general 

problem in AD treatment is getting a drug across the blood brain barrier. Getting a sizable 

protein domain to cross is challenging, although modern molecular engineering can be used 

to modify drugs for easier transport over the barrier (Pardridge 2012, Pardridge and Boado 

2012). In the case of Bri2 BRICHOS, there could be alternative strategize like cell 

transplantation, or utilizing the endogenous protein, by e.g. upregulating its expression and/or 

modulate the processing of Bri2. As Bri2 is present in several other organs such as the 

pancreas, this could also be applicable for harnessing Bri2 in prevention of other amyloid 

diseases. A natural next step after showing inhibition of Aβ42 and IAPP in Drosophila is to 

continue research in another in vivo model, such as mice. Bri2 has already been shown to 

inhibit aggregation and toxicity of Aβ42 in a mouse model (Kim et al. 2013), however this 

was done with a fusion protein of Aβ42 and Bri2. Expressing Aβ42 in the mice and injecting 

BRICHOS to study possible treatment effects would give a more realistic situation, and could 

also be used to see if BRICHOS is transported across the blood brain barrier to any 

significant extent. Mice with Aβ42 and BRICHOS expressed individually could be 

constructed to study possible effects of upregulation of BRICHOS. There are a number of 

APP-mouse models which could be interesting to used instead of just mouse models 

expressing Aβ, especially seeing as Bri2 has been shown to modulate the processing of APP 

(Fotinopoulou et al. 2005, Matsuda et al. 2005, Matsuda et al. 2008). Several mouse models 

of APP have been created and shown behavioral and pathological characteristics similar to 
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AD (Hsiao et al. 1996, Sturchler-Pierrat et al. 1997). Knock-in models of human APP have 

led to overexpression and artificial phenotypes as a result of other APP fragments are 

overproduced alongside Aβ. A recent mouse model tried to solve this issue by humanizing 

the mouse APP sequence and introducing mutations to increase the ratio of Aβ40/Aβ42 or 

Aβ42/Aβ40 (Saito et al. 2014). The mice showed Aβ accumulation, neuroinflammation and 

memory impairment in an age-dependent manner reminiscent of AD.  

As mentioned previously it was recently shown that increased dissociation of proSP-C 

BRICHOS trimers into monomers, either by substrate addition or mutation, increases the 

inhibition potential against Aβ42 (Biverstal et al. 2015). This further strengthens the 

possibility that the monomer is the active form, but also suggests that modification to 

BRICHOS structure could enhance its capacity for fibril formation inhibition and possibly 

prevention of toxicity. This could be tested in vivo by using a Drosophila model system with 

the same approach as we have used in papers II, III and IV, which would also give an 

important indication if increased dissociation into monomers would cause any side effects. 

Summarizing our results from paper II, III and IV, we have shown that the BRICHOS 

domain can prevent toxicity of amyloid proteins in in vivo model systems. These results show 

that harnessing the effect of the BRICHOS domain against amyloid formation and toxicity 

could provide a novel candidate for pharmaceutical use against amyloid diseases.  
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