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     Brain microdialysis provides a mean to access extracellular monoamine concentrations in animals, 

although this method can rarely be applied in humans in vivo. Instead, displacement of radioligand 

binding during positron emission tomography (PET) has become an established way of detecting 

altered endogenous dopamine levels in response to pharmacological challenge(Laruelle, 2000). The 

application of PET to measure changes in serotonin levels has been hampered by a lack of suitable 

radioligands(Paterson et al., 2010). There are promising results with the recently developed 5-HT1B 

receptor antagonist [
11

C]AZ10419369, with decreased binding in response to pharmacologically 

induced serotonin release (Finnema et al., 2012) and high doses of a selective serotonin reuptake 

inhibitor (SSRI) in non-human primates(Nord et al., 2013). However, the effect of baseline serotonin 

levels on [
11

C]AZ10419369 binding in humans has not yet been studied. This complicates the 

interpretation of clinical PET studies, as differences in BPND between groups may be explained by 

both differences in receptor density and endogenous ligand concentration. 

    Despite the advent of PET in the 1980s there are few studies addressing the relationship between 

imaging of the serotonin system in the brain and measurements of serotonergic activity in the 

cerebrospinal fluid (CSF). Samples from the CSF are obtained through lumbar puncture (LP). Due to 

technical limitations in the measurement of serotonin in the CSF(Anderson et al., 1990), its metabolite 

5-hydroxyindoleacetic acid (5-HIAA) has been more frequently employed in studies of serotonergic 

activity, especially in relation to psychiatric disorders(Asberg, 1997). However, with improved 

quantification methods CSF serotonin has been resurrected as an estimation of extracellular serotonin 
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in the brain(Anderson et al., 2002; Hubbard et al., 2010). 

     The aim of this study was to test the sensitivity of [
11

C]AZ10419369 to baseline endogenous 

serotonin levels, as estimated by concentrations of serotonin and its metabolite 5-HIAA in the CSF. 

Based on the literature we hypothesized a correlation between [
11

C]AZ10419369 BPND and CSF 

serotonin, and secondly, also a correlation between 5-HIAA in the cerebrospinal fluid and  

[
11

C]AZ10419369 binding. 

     The study was approved by the Regional Ethical Review Board in Stockholm and by the Radiation 

safety committee of the Karolinska University Hospital. Twelve healthy subjects (4 males, 8 females, 

median age 25 years, range 20-53) without psychiatric history were included after giving written 

informed consent. The subjects were healthy, according to medical history, physical examination, 

blood analysis, magnetic resonance imaging of the brain and structured psychiatrical assessment with 

M.I.N.I.(Sheehan et al., 1998)(M.T.).  

     Urine drug screenings for metamphetamine, cocaine, cannabis, bensodiazepines, methadone, 

barbiturates, amphetamine, opiates, phencyclidine and buprenorphine were performed before the PET 

examinations, to exclude the use of drugs at time of PET. The examination with PET and 

[
11

C]AZ10419369  was performed as previously described(Varnas et al., 2011). The mean (± s.d.) 

injected dose of [
11

C]AZ10419369 was 370.1 (± 47.3) MBq. The specific radioactivity of the 

radioligand injected varied between 86 and 327 GBq/mmol, corresponding to an injected mass 

between 0.52 and 2.22 µg. The PET examinations were performed using the High Resolution 

Research Tomograph, with the ordinary Poisson 3D ordered subset expectation maximization 

algorithm, with 10 iterations and 16 subsets(Varrone et al., 2009). List mode data were reconstructed 

as earlier described(Nord et al., 2013).  

     The magnetic resonance imaging (MRI) examinations were performed with a 3 Tesla system. The 

MRI protocol included a T2-weighted sequence to rule out pathology and a T1-weighted 3-

dimensional sequence for optimal visualization of anatomy and coregistration with PET images.  

     In general, the head movements during the PET examination were minor and could be corrected for 
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with a frame-to-frame-realignment algorithm as previously described (Schain et al., 2012). For three 

subjects with larger head movements during PET, the PET images were reconstructed using frame 

specific attenuation-data.  

     SPM5 (Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimaging, U.K.) was used 

to coregister T1-weighted MRI-images to PET-images and segment them into grey matter, white 

matter and cerebrospinal fluid. The binding potential of the whole brain (WB) was chosen as the 

primary PET parameter, defined as the average BPND in the grey and white matter. In addition, regions 

of interest (ROIs) were also defined by the Automated Anatomical Labeling (AAL) template(Tzourio-

Mazoyer et al., 2002) for the occipital cortex (OC) and the caudate nucleus(CN). The cerebellum was 

chosen as reference region, due to its negligible 5-HT1B receptor density (Varnas et al., 2001), and 

defined manually. The simplified reference tissue model has been validated for calculation of 

[
11

C]AZ10419369 BPND in humans(Varnas et al., 2011) and was applied within Matlab R2007b for 

Windows.  

     CSF samples were collected in the morning by lumbar puncture (P.S.) between L3/L4 with the 

patient in sitting position, within one month after PET. 5 ml of CSF was collected and immediately 

centrifuged at 2000 g for 10 min at room temperature, aliqouted in 1 ml aliquots and frozen at -80°C. 

All CSF samples were free from contamination with blood as determined with erythrocyte counts. The 

samples were then prepared for analysis with high performance liquid chromatography (HPLC, with 

Coulochem III electrochemical detector with a 5011A coulometric analytical cell (Dionex Ultimate 

3000 series, ThermoFisher Scientific, Stockholm, Sweden) as previously described(Hubbard et al., 

2010; Yang and Beal, 2011). The limit of detection was 0.16 ng/mL for serotonin and 0.23 ng/mL for 

5-HIAA. Test-retest measurements for one representative analyte (5-HIAA) indicated a coefficient of 

variation of less than 1 % with this method.  

     To assess the relationship between global and regional BPND-values from the PET measurements, 

and 5-HIAA and serotonin in the CSF, Pearson’s correlation was applied, in IBM SPSS Statistics 22 

for Windows (SPSS Inc, Somers, NY, USA).  
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     The mean serotonin concentration in the CSF (±s.d.) was 0,58 (±0.12) ng/ml. In one subject 5-

HIAA levels in the CSF were below the limit of detection. The average 5-HIAA concentration (±s.d.) 

for the rest of the group was 1.49 (±1.22) ng/ml.  For the whole comparable group (n=11) there was no 

significant correlation between 5-HIAA and serotonin concentrations (rho=0.448, p=0.167). When the 

two subjects with high 5-HIAA (>3 ng/ml) were removed from the analysis, 5-HIAA and serotonin 

clearly correlated (rho=0.938, p<0.001).   

     There was no significant correlation between CSF serotonin and binding potential in the whole 

brain (rho=0.231, p=0.471, figure A), in the caudate nucleus (rho=0.170, p=0.598) or in the occipital 

cortex (rho=0.185, p=0.565). 5-HIAA in the CSF did not correlate with BPND in WB (rho=0.143, 

p=0.675, figure B), in CN (rho=0.105, p=0.759) or in OC (rho=0.189, p=0.578). 

     There are to our knowledge no previously published studies relating serotonin levels in the 

cerebrospinal fluid to PET data. We found no significant correlations, between [
11

C]AZ10419369 

BPND in the whole brain or in the brain regions considered most relevant and serotonin or 5-HIAA in 

the CSF.  

     How sensitive is [
11

C]AZ10419369 to baseline serotonin concentrations? The ability of 

[
11

C]AZ10419369 and other serotonin receptor antagonists to measure physiological serotonin 

fluctuations has been questioned on a theoretical basis, since these radioligands, in contrast with the 

endogenous ligand serotonin, do not differentiate between the affinity states of the targeted 

receptors(Zimmer and Le Bars, 2013). Displacement of [
11

C]AZ10419369 binding has been 

convincingly shown in non-human primates after pharmacological challenge with fenfluramine or 

high doses of an SSRI, which based on microdialysis studies on rodents are expected to yield more 

than twofold increases in serotonin concentrations(Rothman and Baumann, 2002). However, 

[
11

C]AZ10419369 binding was not significantly reduced with a single, clinically relevant, dose of 

SSRI in healthy volunteers(Nord et al., 2013).  

     How well do levels of serotonin and 5-HIAA in the CSF correspond to extracellular serotonin in 

the brain? In animal studies, a correlation between serotonin in the CSF and in the brain has been 
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found (Matsumoto et al., 1991). Likewise, serotonin in the CSF correlated with brain levels in a 

human post-mortem material(Wester et al., 1990). In non-human primates a twofold increase in CSF 

serotonin was observed after administration of a selective serotonin reuptake inhibitor, providing 

indirect support for a correspondence between serotonin concentrations in extracellular fluid in the 

brain and in CSF(Anderson et al., 2002). For 5-HIAA, intraindividual correlations between the 

concentration in the CSF and in different brain regions have been demonstrated post mortem(Stanley 

et al., 1985; Wester et al., 1990). Stanley and coworkers thoroughly analyzed the lumbar puncture CSF 

5-HIAA from their post-mortem material and found similar properties as in the range of antemortem 

studies(Stanley et al., 1985). Based on these data CSF levels of serotonin, and possibly its metabolite 

5-HIAA, would be expected to correlate with brain serotonin concentrations. However, since 

[
11

C]AZ10419369 binds selectively to 5-HT1B receptors, endogenous displacement of radioligand 

binding would largely depend on serotonin concentrations in the synapses(Zimmer and Le Bars, 

2013). It is difficult to assess to which degree average brain serotonin levels correspond to synaptic 

serotonin. 

     The median time elapsed between PET and LP was 20 days. The time limit 1 month between PET 

and LP was chosen for practical reasons. There are to our knowledge no test-retest studies on 

serotonin concentrations in human CSF. A pilot study in non-human primates claimed good 

longitudinal stability of CSF serotonin over a three month period, with variances of 16 and 20 % in the 

two monkeys exposed to repeated measurements(Anderson et al., 2002). Serial LPs have demonstrated 

good reproducibility of CSF 5-HIAA concentrations for a time period of 5 days(Ben Menachem et al., 

1989). The distinct correlation between the concentrations of serotonin and 5-HIAA in the CSF, with 

the exception of the two outliers with high 5-HIAA levels, provides indirect support for the 

reproducibility of CSF serotonin measurements also in healthy human subjects.  

     In conclusion, we found no correlation between serotonin and its metabolite 5-HIAA in the 

cerebrospinal fluid and [
11

C]AZ10419369 binding in this pilot PET study. Given sufficient 

longitudinal stability of concentrations of serotonin and 5-HIAA in the CSF, the results of the present 
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study do not support that the [
11

C]AZ10419369 binding potential reflects physiological serotonin and 

5-HIAA levels in CSF. The serotonin detection threshold for [
11

C]AZ10419369 remains to be 

determined.  

 

     Figure legend. Scatterplots depicting the relationship between [
11

C]AZ10419369 BPND in the whole 

brain and serotonin(A) and 5-HIAA in the CSF (B).  
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