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ABSTRACT 

Skeletal muscle is a highly plastic tissue which has the ability to adapt to various forms of 

external stimuli such as diverse modes of contractile activity. Thus, performance of 

endurance exercise over several of weeks results in increased oxidative capacity. In contrast, 

prolonged performance of resistance exercise ultimately results in increased muscle mass. 

These adaptations are brought about by transient alterations in gene expression and mRNA 

translation which result in altered protein turnover, i.e. the balance between protein synthesis 

and protein breakdown. Protein synthesis is the major determinant of muscle growth, which 

at the molecular level, is regulated by the mTORC1 pathway. This pathway is potently 

activated by resistance exercise and amino acids, but the stimulatory role of individual amino 

acids in human skeletal muscle is unclear. Muscle adaptations in response to endurance 

exercise are largely dependent on the PGC-1α pathway, which regulates mitochondrial 

biogenesis. Given the different training adaptations after resistance and endurance exercise, it 

has been suggested that these exercise modalities may be incompatible when combined. Such 

potential interference could be exerted at the molecular level between the pathways 

responsible for each adaptive response. AMPK, an enzyme usually activated by endurance 

exercise and, when pharmacologically activated in cell culture and rodent models, has been 

shown to inhibit mTORC1 and protein synthesis. However, it is not known if activation of 

AMPK by endurance exercise inhibits resistance exercise induced signaling through the 

mTORC1 pathway in human skeletal muscle.  

Thus, the main objective of this thesis was to examine the molecular mechanisms regulating 

protein synthesis in response to amino acids and various modes of exercise in human skeletal 

muscle. 

In study I, the role of BCAAs in stimulating the mTORC1 pathway was examined in both 

resting and exercising muscle. BCAA increased mTORC1 activity, as assessed by S6K1 

phosphorylation, in both resting and exercising muscle, but more so when exercise and 

BCAA were combined. In study II, the effect of leucine was compared to that of essential 

amino acids with or without leucine. It was found that when leucine was combined with the 

remaining essential amino acids, S6K1 phosphorylation was more pronounced than when 

leucine was provided alone. Furthermore, when leucine was removed from the essential 

amino acids, the effect was equal to that of placebo. In study III, the impact of endurance 

exercise on resistance exercise induced mTORC1 signaling was examined. When performed 

after resistance exercise, endurance exercise did not inhibit S6K1 phosphorylation compared 

to when single mode resistance exercise was performed. In study IV, performance of high 

intensity endurance exercise prior to resistance exercise did not inhibit S6K1 phosphorylation 

compared to single mode resistance exercise, despite prior activation of AMPK.  

In conclusion, amino acids and resistance exercise activate mTORC1 signaling, as assessed 

by S6K1 phosphorylation, in a synergistic manner. Leucine is crucial in mediating the amino 

acid response, however, additional amino acids appear to be required to induce a maximal 



response downstream of mTORC1. Activation of the mTORC1 pathway in response to heavy 

resistance exercise is robust and this activation does not appear to be inhibited by prior or by 

subsequent endurance exercise. As such, these results do not lend support to the existence of 

molecular interference when resistance and endurance exercise are combined acutely. 
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1 INTRODUCTION 

Skeletal muscle is a highly malleable tissue which exhibits a remarkable ability to adapt to 

different external stimuli such as the many various factors that constitute physical exercise. 

The plastic nature of muscle allows general and distinct adaptations in response to the 

specific stimulus imposed on the tissue. Traditionally, the most diverse forms of exercise are 

termed resistance and endurance exercise. Endurance exercise is usually defined as repetitive 

submaximal contractions that can be sustained over prolonged periods of time. When 

performed over several weeks, endurance exercise ultimately results in increased 

capillarization (1) and mitochondrial biogenesis (2, 3), thus promoting increased oxidative 

metabolism and capacity (4). In contrast, repeated performance of high intensity, short 

duration contractions, i.e. resistance exercise, eventually results in increased muscle mass (5) 

and improvements in maximal strength (6) but has little effect on oxygen uptake (7). These 

adaptations are presumed to be brought about by transient but repeated alterations in gene 

expression and mRNA translation which ultimately result in altered protein turnover. Protein 

turnover collectively refers to the rates of amino acid exchange between tissue proteins and 

the free amino acid pool by the processes of protein synthesis and breakdown. For a net 

increase in muscle protein to occur, protein synthesis must exceed breakdown and if the 

opposite is true, i.e. breakdown exceeds synthesis, there is a negative net balance and 

consequently, a loss of protein. In adult human skeletal muscle, the protein turnover rate is 

relatively low, approximately 1-2% per day, but this rate is subject to change in response to 

various physiological stimuli such as fasting, feeding and exercise.   

   

1.1 PROTEIN TURNOVER – EFFECTS OF FASTING, FEEDING AND 

EXERCISE 

Since the development of amino acid tracers labelled with stable isotopes, numerous studies 

have been undertaken to examine how external stimuli such as feeding and exercise influence 

the turnover rate of skeletal muscle. Protein synthesis and protein breakdown are dynamic 

processes that are simultaneously active, but to various degrees in relation to each other, 

dependent on the presiding circumstances. In the postabsorptive state under resting 

conditions, the rate of protein breakdown is higher than that of protein synthesis, resulting in 

a negative net balance (8, 9) and thus a loss of muscle protein. The net balance remains 

negative until amino acids are provided, at which the rate of protein synthesis surpasses the 

rate of breakdown (8, 10) and protein accretion occurs. During the course of a day, the 
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alterations in net balance in response to feeding, and lack thereof, constitute the steady state 

of protein turnover at which there is no net gain or loss of muscle mass. However, this steady 

state can be greatly offset by exercise, especially resistance exercise, which when repeated 

over a longer period of time, ultimately results in skeletal muscle hypertrophy (5, 11, 12). As 

muscle accretion requires protein synthesis to be larger than protein breakdown, one might 

intuitively assume that muscle growth following resistance training is a result of exercise 

induced elevations in muscle protein synthesis. This assumption would however be correct, 

only in part. Resistance exercise does in fact induce a robust increase in protein synthesis 

during the acute recovery period, resulting in approximately 2-fold higher values compared to 

rest in untrained subjects (9, 13, 14). However, resistance exercise also exerts a stimulatory 

effect on protein breakdown which, in the postabsorptive state, still remains higher than 

protein synthesis (9, 13, 14). In comparison to the synthetic response, the extent of the 

increase in protein breakdown appears to be substantially less, reaching only around 30-50% 

higher rates compared to rest (9, 13, 14). Thus, as a consequence of the differential increase 

in the synthetic and proteolytic response, resistance exercise results in an improved, albeit 

still negative, net protein balance (9, 13, 14). Similar findings have been reported during 

recovery from endurance exercise in the post absorptive state (15, 16). In contrast, when 

amino acids are provided, net protein balance becomes positive, both during resting 

conditions (8, 10) and during recovery from resistance (10, 17) as well as endurance (15, 18) 

exercise.   

 

1.2 PROTEIN FRACTIONAL SYNTHETIC RATE 

As noted above, for muscle protein accumulation to occur, protein synthesis must exceed 

protein breakdown, and for this circumstance to take place, exogenous amino acids must be 

provided. The necessary alterations in protein turnover may be achieved in several ways, i.e. 

through an increase in protein synthesis, a depression of protein breakdown or a combination 

of both. However, amino acids appear to alter protein turnover primarily by stimulating 

protein synthesis in contrast to attenuating protein breakdown (10). Thus, provision of amino 

acids produces a substantial increase in protein synthesis but has only a minor effect on 

proteolysis (10). Therefore, the protein synthetic response is believed to be the major 

determinant of muscle growth (19). As a consequence, coupled with the difficulty of 

accurately measuring protein breakdown (20), many studies only measure protein synthesis to 

determine the anabolic response following a certain intervention. A common practice 
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involves measuring the protein fractional synthetic rate (FSR) which represents the synthesis 

rate of a fraction of the total protein pool in a unit of time (21). The FSR is calculated from 

the rate of tracer incorporation into protein over time, and is independent of the total protein 

pool size. This trait of the FSR measurement makes it ideal as it can be determined without 

knowing the size of the protein pool, which in turn could be difficult to assess accurately. 

When FSR measurements are performed on whole muscle tissue, the synthetic rate is 

determined for all muscle proteins combined, which results in estimates of mixed muscle 

protein synthesis (9, 13). However, by prior isolation, whole muscle tissue may be separated 

into various subfractions (myofibrillar, mitochondrial and sarcoplasmic), thereby enabling 

fraction-specific FSR measurements (22, 23). Such fractionation of muscle tissue may be 

important if the aim is to study exercise specific adaptations. As evidenced from several 

studies, FSR of mixed muscle proteins have been shown to increase in response to resistance 

exercise (9, 10, 13, 14) as well as endurance exercise (16, 24-26), yet long term training 

adaptations differ vastly between these two modes of exercise. It seems logical that increases 

in mixed muscle FSR would reflect alterations in those subfractions that are associated with 

mode specific training adaptations, i.e. an increase in myofibrillar protein synthesis following 

resistance exercise and elevated synthetic rates of mitochondrial proteins after endurance 

exercise. However, this may not always be the case, as mitochondrial FSR has been found to 

be upregulated in response to resistance exercise (27, 28) and conversely, increases in 

myofibrillar FSR have been detected following endurance exercise (29, 30). Thus, caution is 

warranted when interpreting acute changes in mixed muscle protein synthesis. This notion is 

further supported by findings showing that the acute FSR response in the untrained state may 

be altered following long term training (22). In this study, in the untrained state, resistance 

exercise resulted in elevations in both myofibrillar and mitochondrial FSR but after ten weeks 

of training, increases in FSR were only evident in the myofibrillar fraction (22). It therefore 

appears as if the acute response in untrained or unaccustomed subjects is less specific, thus 

extending the need for careful interpretations of the FSR response in particular subfractions 

as well.  

 

1.2.1 Effects of amino acid provision 

The positive effect of feeding on the protein synthetic response is well known and was first 

established in a seminal study by Rennie and co-workers (31) who showed that feeding a 

mixed meal to fasted subjects induced a two-fold increase in mixed muscle FSR. It was later 
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recognized that the main stimulatory constituents responsible for the increase in protein 

synthesis are the amino acids (8, 10, 32, 33). As a group, they can be divided into essential 

(EAA) and non essential (NEAA) amino acids and are categorized on the basis of the human 

body’s ability and inability to acquire each amino acid through de novo synthesis. Essential 

amino acids are those that fall in the former category and as a result, they must be provided 

through the diet. With regard to the anabolic effects of amino acids, it appears as if only the 

essential amino acids are required to induce a stimulatory effect on protein synthesis (34-36). 

These findings indicate that certain groups of amino acids, and perhaps individual amino 

acids, are more potent than others. Indeed, within the group of essential amino acids, the 

branched-chain amino acids (BCAA; leucine, valine and isoleucine) have received much 

attention for their role in skeletal muscle metabolism. The BCAAs have the ability to largely 

bypass splanchnic extraction, thus making them highly available for muscle uptake (37-39). 

Within muscle, in addition to serving as building blocks for protein synthesis, BCAAs can be 

oxidized and thus be utilized as substrates to support aerobic energy production, an ability 

that is unique amongst the essential amino acids (40). Given that BCAAs are predominantly 

taken up by muscle, and that muscle is equipped with degradative metabolic pathways for 

these amino acids, it would not be unreasonable to assume that one or more of the BCAAs 

may also have a regulatory role in muscle protein turnover. Indeed, such a role was indicated 

in an early in vitro study in which rat diaphragm was incubated with all three BCAAs 

simultaneously as well as with each individual BCAA separately (41). The researchers found 

that addition of all BCAAs to the incubation medium stimulated protein synthesis. 

Interestingly, addition of just leucine resulted in a protein synthetic response of a similar 

magnitude. In contrast, neither valine nor isoleucine had this effect, suggesting that only 

leucine possesses anabolic properties. This notion was further supported by the finding that 

leucine alone produced a similar increase in protein synthesis in perfused rat skeletal muscle, 

as did a complete mixture of amino acids (42). Since then, several studies in experimental 

animals have strengthened the view that leucine holds the highest stimulatory potential 

amongst the amino acids (43, 44). In human muscle, relatively few studies have been 

undertaken to examine the anabolic properties of leucine. Early studies in which intravenous 

infusion was used as means of delivery, found that leucine reduced the plasma and muscle 

levels of several essential amino acids without reducing the rate of release from the leg (37, 

45, 46). The absence of labelled tracers did not permit assessment of net protein synthesis, 

however, the results indicated that the decline in amino acid concentrations reflected an 

increase in protein synthesis. The stimulatory role of leucine on the protein synthetic response 

in human muscle was later confirmed following a large bolus infusion (47) as well as after 
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oral intake of leucine (48). In addition to leucine, several other essential amino acids such as 

valine, phenylalanine and threonine have been shown to stimulate protein synthesis in resting 

muscle following large dose bolus infusions (49, 50). However, whether these results are due 

to the route of administration, i.e. large dose infusion, or an effect of the amino acids per se is 

unknown as no study has examined the effects of oral intake of these amino acids. 

Furthermore, in contrast to animal data (42), the individual impact of leucine on the protein 

synthetic response in human muscle, compared to that of a complete mixture of essential 

amino acids, remains to be determined. 

 

1.3 PROTEIN SYNTHESIS AT THE MOLECULAR LEVEL 

As made apparent by the presentation above, protein synthesis is a highly dynamic and 

reactive process. It is therefore reasonable to assume that this process is under strict 

regulation, as evolutionary logic would dictate that cellular growth would only occur under 

favourable conditions. This is indeed the case in all living organisms and as a result, highly 

complex signaling pathways have evolved to ensure the proper response to various 

environmental cues. At the centre of these regulatory pathways controlling protein synthesis 

is the evolutionarily conserved serine/threonine protein kinase called the mechanistic target of 

rapamycin (mTOR; formerly known as the mammalian target of rapamycin). In mammalian 

cells, mTOR exists in two functionally and structurally distinct multiprotein complexes; 

mTOR complex 1 (mTORC1) and complex 2 (mTORC2), of which mTORC1 is responsible 

for regulating cell growth (51). In addition to the catalytic component mTOR, mTORC1 is 

composed of several other proteins, two of which are unique for complex 1; Raptor 

(regulatory-associated protein of mTOR) which is the defining component and has both 

regulatory and scaffolding functions (52), and PRAS40 (proline-rich Akt substrate 40 kDa) 

which is an insulin-regulated mTORC1 inhibitor (53). mTORC1 exerts control over cellular 

growth by sensing and integrating a variety of signals emanating from growth factors, 

nutrients, energy status and cellular stresses. 

 

1.3.1 Downstream of mTORC1    

Upon activation by various stimuli, mTORC1 stimulates translation initiation by 

phosphorylating various downstream targets within the translational machinery (54). 

Translation initiation refers to the complicated and multistep assembly of the small and large 
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ribosomal subunits with the mRNA transcript that is to be translated into a polypeptide. All 

cellular mRNAs contain a 7-methylguanosine cap structure at their 5’end which is used to 

recruit the mRNA to the small ribosome subunit. For the interaction between the ribosomal 

subunit and the mRNA transcript to occur, a complex composed of three different eukaryotic 

initiation factors (eIFs; eIF4E, eIF4G and eIF4A) must be assembled at the 5’cap (54). To 

assemble this eIF4F complex, eIF4E binds to the cap and subsequently recruits the other two 

initiation factors. However, the interaction between eIF4E and eIF4G is inhibited by the 

translational repressor 4EBP1 (eIF4E binding protein 1), which in a hypophosphorylated state 

tightly binds eIF4E, thereby preventing formation of the eIF4F complex and consequently, 

cap-dependent mRNA translation (54). One of the best characterized mechanisms by which 

mTORC1 stimulates translation initiation involves phosphorylation of 4EBP1 at multiple 

serine and threonine residues in a sequential manner (55). Upon being hyperphosphorylated 

by mTORC1, 4EBP1 is released from eIF4E which can then recruit eIF4G, thus allowing the 

assembly of the eIF4F complex and subsequent mRNA translation (54). The various 4EBP1 

phosphorylation sites include Thr
37

, Thr
46

, Ser
65

 and Thr
70

 of which Thr
37/46

 are 

phosphorylated first in this sequence (55). It is therefore generally held that phosphorylation 

of Thr
37/46

 functions as a priming event for subsequent phosphorylation of the Thr
70

 and Ser
65

 

residues, in that order (55, 56). It has been shown that mTORC1 directly phosphorylates 

4EBP1 at the Thr
37/46

 residues in vitro (57) and as a consequence, phosphorylation status of 

these residues is often used as a readout of mTORC1 activity in vivo.  The other well 

characterized target of mTORC1 is the ribosomal protein S6 kinase 1 (S6K1) which upon 

activation stimulates mRNA translation by mechanisms completely distinct from those of 

4EBP1. Being a protein kinase, S6K1 phosphorylates several downstream targets of which 

most, if not all, are involved in regulating cell growth (54). The most well studied 

mechanisms of S6K1 mediated stimulation of mRNA translation involve increasing the 

helicase activity of the eIF4F complex and stimulating peptide elongation. Several mRNAs 

contain inhibitory secondary structures at their 5’end which suppresses their translation 

efficiency. Thus, for efficient translation of the mRNA, this secondary structure must be 

unwound and this is achieved by the eIF4A helicase within the eIF4F complex (54). When 

active, S6K1 stimulates helicase activity through two distinct mechanisms. First, S6K1 

phosphorylates eIF4B which results in the recruitment of this cofactor to eIF4A which in turn 

promotes helicase activity (54). A second mechanism involves phosphorylation of PDCD4 

(programmed cell death 4) which also binds eIF4A, but in contrast to eIF4B, functions as an 

inhibitor of eIF4A helicase activity. When phosphorylated by S6K1, PDCD4 becomes 

ubiquitinated and subsequently degraded, thus relieving the inhibition exerted on eIF4A (54). 
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Collectively, S6K1 mediated stimulation of helicase activity results in enhanced translation 

efficiency. S6K1 also stimulates mRNA translation by enhancing peptide elongation. The 

principal mediator of peptide elongation is eEF2 (eukaryotic elongation factor 2), which in a 

hypophosphorylated state is active and responsible for the translocation of the assembled 

ribosome along the mRNA construct (58, 59). Phosphorylation of eEF2 by the upstream 

negative regulator eEF2 kinase (eEF2k) results in the inhibition of eEF2 and consequently, 

peptide elongation (59). Upon activation by mTORC1, S6K1 stimulates elongation by 

inhibiting eEF2k through direct phosphorylation, thus relieving the inhibitory effect on eEF2 

(60). Activation of S6K1 involves phosphorylation of the mTORC1 specific residue at Thr
389 

(57, 61, 62). Although additional phosphorylation events are required for maximal activation 

of S6K1 (63, 64), phosphorylation of Thr
389 

is most closely related to the activity of the 

kinase (65). Consequently, phosphorylation status of the Thr
389

 residue is a widely used 

marker for both mTORC1 and S6K1 activity in vivo. As outlined above, mTORC1 controls 

protein synthesis by increasing cap-dependent translation initiation and translation efficiency 

as well as translation elongation. 

 

1.3.2 Upstream of mTORC1 

Both growth factors and amino acids have the ability to activate mTORC1, but they appear to 

do so through different, yet cooperative mechanisms. The ultimate activator of mTORC1 is 

believed to be the small GTPase Rheb (ras homolog enriched in brain) which resides at 

various membrane compartments within cells, such as the lysosomal membrane (51). Rheb 

has been shown to bind directly to mTORC1 in vitro which in turn results in the activation of 

the complex (66, 67). As Rheb is only active when bound to GTP (68, 69), mechanisms 

directed towards regulating the nucleotide state of Rheb also regulate mTORC1 activity. 

Indeed, the GTPase activating protein (GAP) TSC2 (tuberous sclerosis 2) has been shown to 

inhibit mTORC1 signaling by promoting GTP hydrolysis of Rheb, thus converting it to its 

inactive GDP bound state (68, 69). TSC2 functions as part of a heterotrimeric complex 

together with TSC1 and TBC1D7 (70) and several environmental inputs converge on this 

complex to regulate its GAP activity towards Rheb, and consequently, mTORC1 signaling. 

One such input is growth factor signaling, which usually originates from the plasma 

membrane in response to activation of tyrosine kinase receptors (RTKs) by extracellular 

protein hormones such as insulin (71). Stimulation of the RTKs by insulin and related growth 

factors results in the activation of a serine/threonine protein kinase called Akt (or PKB; 
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protein kinase B) (72). Once active, Akt phosphorylates the inhibitor protein PRAS40 which 

results in its dissociation from mTORC1, thereby relieving the inhibitory effect (53). Akt also 

phosphorylates TSC2 on several residues which ultimately inhibits the GAP activity towards 

Rheb (73, 74). Amino acid induced activation of mTORC1 also involves Rheb but in contrast 

to growth factors, amino acids do not engage Akt/TSC2 signaling. The amino acid pathway 

instead appears to involve the Rag family of small GTPases which is composed of four 

members (RagA, RagB, RagC and RagD). The Rags function as stabile heterodimers in 

which RagA or RagB interacts with RagC or RagD leading to four possible combinations. 

When activated by amino acids, RagA and B become loaded with GTP while RagC and D 

are loaded with GDP (75). These nucleotide states result in the recruitment of mTORC1 

through direct interaction between the Rags and Raptor and subsequent translocation of the 

complex to the lysosomal membrane (75, 76). There, the Rag-mTORC1 complex interacts 

with the pentameric complex called the Ragulator, which is tethered to the membrane (76, 

77). Through these interactions, mTORC1 becomes activated as it is anchored to the 

membrane in close proximity of Rheb (76, 77). The signaling events described above are a 

result of stimulatory inputs during nutrient-rich conditions. As anabolic processes are 

energetically expensive, cellular mechanisms have evolved which inhibit the stimulatory 

effect on anabolism during nutrient deficiency and instead activate energy and nutrient 

producing pathways in order to ensure survival. A key component in this system is the 

adenosine-monophosphate activated protein kinase (AMPK). AMPK is a serine/threonine 

protein kinase that is composed of one catalytic (α) and two regulatory (β and γ) subunits and 

functions as a cellular energy gauge by sensing fluctuations in cellular AMP/ATP ratios (78). 

AMPK activity is regulated through phosphorylation of its catalytic α subunit at Thr
172

 and by 

binding of AMP. Maximal activation of AMPK occurs when AMP levels rise as this results 

in a structural change which prevents the Thr
172

 residue from being dephosphorylated (78). 

When activated in response to energy deprivation, AMPK signals to inhibit the costly process 

of protein synthesis through several parallel mechanisms. First, AMPK has been shown to 

phosphorylate TSC2 which, in contrast to Akt mediated inhibition, results in increased GAP 

activity towards Rheb and subsequent inhibition of mTORC1 signaling (79-81). AMPK also 

has the ability to phosphorylate Raptor within mTORC1 which results in loss of kinase 

activity (82). Lastly, AMPK has been reported to inhibit mTORC1 by direct phosphorylation 

of the Thr
2446

 residue of mTOR itself (83). 
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1.4 MTORC1 AND MUSCLE GROWTH 

As outlined above, a considerable amount of mechanistic evidence indicates that mTORC1 is 

a major regulator of protein synthesis and cell growth. It should however be noted that a vast 

majority of studies undertaken to delineate the role of mTORC1 have been performed on cell 

cultures, often using immature and transformed cell lines of non muscle origin. Therefore, it 

must be recognized that these models may not be fully representative of the regulatory 

mechanisms acting on the protein synthetic machinery in skeletal muscle in vivo. As a 

consequence, several studies have been conducted to examine the role of mTORC1 in muscle 

growth. The first connection between muscle hypertrophy and mTORC1 signaling was 

provided by Baar and Esser (84), who showed that an acute increase in S6K1 

phosphorylation was highly correlated with changes in muscle mass after six weeks of high 

frequency electrical stimulation. Subsequent studies in experimental animals found that acute 

changes in mTORC1 signaling in response to resistance exercise as well as amino acids were 

accompanied by an increase in protein synthesis (85-87), thus indicating that long term 

muscle growth was related to acute changes in protein synthesis. Further support for the 

specific role of mTORC1 in skeletal muscle growth was provided in a pioneering study by 

Bodine et al. (88) who showed that muscle hypertrophy was prevented when animals were 

injected with the mTORC1 specific inhibitor rapamycin. Definitive proof of mTORC1’s 

involvement in regulating muscle mass was recently provided in a series of elegantly 

designed genetic mouse models which showed that activation of mTORC1 is sufficient to 

induce muscle hypertrophy (89) and that load-induced muscle growth is fully dependent on 

mTORC1 signaling (90). The first study to examine mTORC1 signaling in human skeletal 

muscle in response to exercise and amino acids was performed by Karlsson et al. (91). They 

found that provision of BCAAs in connection with resistance exercise increased S6K1 

phosphorylation and later studies demonstrated that exercise also induced mTORC1 signaling 

in the absence of nutritional supply (92-94). In parity with data from experimental animals, 

the relationship between long term muscle growth and S6K1 phosphorylation is also present 

in human muscle (95). Lastly, recent studies have confirmed the role of mTORC1 in human 

muscle by the use of the specific inhibitor rapamycin. In these studies it was shown that 

rapamycin treatment prevented the increase in mTORC1 signaling and protein synthesis in 

response to resistance exercise as well as amino acids (96-98). Collectively, there is abundant 

evidence from various experimental models, ranging over a wide array of species, which 

clearly defines mTORC1 as a major regulator of protein synthesis and cellular growth. 
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1.5 MITOCHONDRIAL BIOGENESIS 

The most prominent peripheral adaptive response following long term endurance training is 

an enhanced oxidative capacity as a result of increased mitochondrial content (4). A key 

component in the regulation of mitochondrial biogenesis is the peroxisome proliferator-

activated receptor co-activator 1-alpha (PGC-1α) (99). Expression of PGC-1α mRNA is 

usually seen after acute endurance type exercise in both rodent and human muscle (100, 101) 

and overexpression of PGC-1α in transgenic mice is associated with increased mitochondrial 

enzyme activity and fatigue resistance (99). Several signaling molecules have been 

implicated in the activation of PGC-1α, including AMPK, p38 MAPK and CAMKs (99), all 

of which are typically activated by endurance exercise (102-104).  

 

1.6 POTENTIAL MOLECULAR INTERFERENCE BETWEEN RESISTANCE AND 

ENDURANCE EXERCISE 

The apparent difference in muscular adaptations following endurance and resistance training 

(4, 5) places these exercise modalities in contrasting ends of the training adaptation 

continuum. As such, the opposing phenotypes are likely dependent on highly specific 

adaptations which may be incompatible when different exercise modes are performed 

simultaneously (105). The first evidence in support of such incompatibility was provided 

more than thirty years ago by Hickson (7). The results of that study demonstrated that when 

high volume strength and endurance training were performed concurrently for ten weeks, 

strength development was attenuated compared to single mode resistance exercise (7). The 

seminal findings of Hickson were subsequently confirmed in several investigations showing 

detrimental effects on the development of strength and power (7, 106-108) when both modes 

of exercise were performed concurrently over longer periods of time. In contrast, several 

other studies were unable to confirm the existence of this interference effect (109-116). The 

reasons for these discrepancies are not readily apparent, but may be related to experimental 

variables such as intensity, volume, sequence and nutritional status. The differences in 

experimental protocols utilized do not allow for a decisive conclusion regarding the existence 

of an interference effect, yet, it has been suggested that attenuation of strength development 

in some cases may be due to a blunted growth response following concurrent training. While 

muscle hypertrophy was not affected in the original study by Hickson (7), some studies have 

indeed found that muscle growth may be negatively affected when combining resistance and 

endurance exercise (106, 117, 118). Consequently, several molecular mechanisms have been 
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implicated in mediating the negative effect of endurance exercise on muscle growth. These 

mechanisms involve AMPK signaling. As noted previously, AMPK is activated in response 

to increased energy turnover and cellular stress, such as that exerted by exercise (78). During 

such conditions, the cellular response is to inhibit energetically expensive processes such as 

protein synthesis and to stimulate energy producing pathways which generate ATP (78). 

Thus, AMPK is situated perfectly within the signaling network to co-ordinately regulate 

training adaptations in a mode specific manner. Consequently, activation of AMPK is 

purported to inhibit growth related adaptations by repressing mTORC1 signaling. Support for 

such negative regulation of mTORC1 comes from cell culture and rodent studies in which 

pharmacological activation of AMPK has been shown to inhibit mTORC1 signaling as well 

as protein synthesis (79-81, 119-121). From these studies, one might infer that performing 

endurance exercise, which is known to potently activate AMPK (104), would inhibit 

mTORC1 signaling if performed in connection with resistance exercise. Few studies have 

investigated the interaction between AMPK and mTORC1 in human muscle. When 

performed under postabsorptive conditions and in close proximity to each other, endurance 

type exercise performed prior to resistance exercise have been shown to have a minor impact 

on mTORC1 signaling compared to when resistance exercise was performed first (122, 123). 

Whereas these studies did not include single mode resistance exercise for comparison, one 

study which did, could not detect any inhibitory effect on mTORC1 signaling when 

endurance exercise was performed after resistance exercise (92). When performed in the fed 

state (28, 124) and with ample recovery time between sessions (124), mTORC1 signaling 

was similar between concurrent exercise and single mode resistance exercise. Thus, at present 

and based on the available data, it is difficult to fully reconcile the existence of molecular 

interference in human muscle.  

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Simplified illustration of the mTORC1 pathway. Courtesy of Marcus Moberg.
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2 AIMS 

 

The overall aim of this thesis was to study the molecular mechanisms regulating protein 

synthesis in response to amino acids and various modes of exercise in human skeletal muscle. 

The specific aims were: 

1. To distinguish between the effects of resistance exercise and BCAA on 

mTORC1 signaling. 

 

2. To examine the particular role of leucine in the amino acid induced mTORC1 

signaling response and to gain further insight into the molecular mechanisms 

responsible for mediating the amino acid effect on this pathway. 

 

3. To examine whether resistance exercise induced mTORC1 signaling would be 

repressed by subsequent performance of endurance exercise in comparison to 

single mode resistance exercise.  

 

4. To examine if prior performance of high intensity interval cycling would inhibit 

resistance exercise induced mTORC1 signaling and protein synthesis compared 

to single mode resistance exercise and to gain further mechanistic insight into 

inhibitory AMPK signaling. 
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3 MATERIALS AND METHODS 

3.1 SUBJECT CHARACTERISTICS  

All subjects enrolled in the studies were healthy volunteers which after being informed of the 

purposes and of all associated risks, gave oral or written consent. Each study was approved 

by the Regional Ethical Review Board in Stockholm and performed in accordance with the 

principles outlined in the Declaration of Helsinki. Subjects in Study I were recreationally 

active but did not perform resistance exercise on a regular basis. For study II, subjects with a 

training history of at least twelve months of structured resistance exercise at least four times a 

week were recruited. For study III and IV, subjects were required to have performed 

resistance exercise 2-3 times per week and endurance exercise 1-2 times per week for the last 

six months. For study I there was no lower limit for leg strength, but for studies II-IV, 

subjects were required to have a maximal leg strength equaling four times their bodyweight, 

or more. For more details, see table 1. In all studies, subjects were instructed to refrain from 

any type of vigorous physical activity for a minimum of two days prior to each experiment 

and in studies I and II, subjects were also instructed to follow a standardized diet during these 

same two days. In studies III and IV, subjects were instead instructed to follow their habitual 

diets but to record and duplicate their food intake before the first and second trials, 

respectively. For each trial in each study, subjects reported to the laboratory early in the 

morning after an overnight fast from 9.00 PM the evening before.  

 

 

Table 1. Subject characteristics for all four studies. 

 

 Gender Number Age (yr) Height (cm) Weight (kg) VO2 max (ml·min
-1
·kg

-1
) 

       

Study I  female 5 24 ± 2 162 ± 2 51 ± 2 42.6 ± 1.5 

 male 4 27 ± 1 180 ± 4 73 ± 7 43.7 ± 1.3 

       

Study II  male 9 26 ± 1 180 ± 3 89 ± 4 42.1 ± 2.8 

       

Study III  male 10 26 ± 2 179 ± 2 85 ± 3 50.8 ± 1.6 

       

Study IV  male 8 26 ± 2 183 ± 2 85 ± 2 54.8 ± 1.8 

       

Mean   26 ± 1 178 ± 2 80 ± 3 47.7 ± 1.2 
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3.2 INTERVENTION PROTOCOLS 

3.2.1 Study I 

After warming up on a cycle ergometer, subjects performed unilateral resistance exercise on 

two separate occasions separated by approximately four weeks. Each exercise session 

consisted of three warm up sets followed by 4 sets of 10 repetitions at 80% of 1RM and 4 sets 

of 15 repetitions at 65% of 1RM with 5 min of rest between each set. Tissue samples were 

collected before, immediately after and 1 hour after exercise in both the exercising and 

resting leg. Blood samples were collected at rest before warm-up, immediately before 

resistance exercise, after the fifth set (following approx. 25 min of exercise) and immediately 

after resistance exercise and following 15, 30 and 60 min of recovery. In a randomized, 

double-blind and cross-over fashion, subjects ingested 150 ml of a solution containing either 

a mixture of the three BCAA (45% leucine, 30% valine and 25% isoleucine) or flavoured 

water at rest before warm-up, immediately before resistance exercise and after the fourth set 

(following approx. 20 min of exercise), and immediately after exercise and following 15 and 

45 min of recovery. The subjects were provided with a total of 85 mg BCAA · kg
-1

 body 

weight in 900 ml of flavoured water.  

 

 

 

 

 

 

Figure 2. Schematic overview of the experimental protocol in study I.  

 

3.2.2 Study II 

Subjects performed heavy resistance exercise on four separate occasions, each being 
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performed, with 5 min of rest allowed between each set. Muscle biopsies were sampled 

before, 60 and 90 min after exercise in all four trials. In each trial and in a randomized, 

double-blind and cross-over fashion, subjects were supplemented with one of four drinks: 

flavoured water (Placebo; Pla), leucine (Leu) or essential amino acids with (EAA) or without 

leucine (EAA-leu). The EAA solution was composed of eight essential amino acids 

(Ajinomoto, Kanagawa, Japan) in the following proportions: histidine, 14%; isoleucine, 9%; 

leucine, 17%; lysine, 18%; methionine, 3%; phenylalanine, 14%; threonine, 14%; and valine 

11%. In the Leu trial, subjects were provided with 42 mg/kg body weight of leucine, which is 

the same as in the EAA mixture and similar to the dosage provided in Study I. In the EAA-

leu drink, leucine was replaced with equal amounts of the non-essential amino acid glycine in 

order to keep the solution isonitrogenous compared to the EAA drink. Glycine was chosen as 

a substitute since it has been shown that large doses of this amino acid do not stimulate 

protein synthesis in human muscle (49). The total amount of amino acids in the EAA and 

EAA-leu trials was 240 mg amino acids/kg body weight. A total of 1050 ml solution was 

ingested in 150 ml boluses at rest prior to warm-up, immediately before performing the 

resistance exercise and after the fourth and seventh sets (following approximately 20 and 35  

min of exercise, respectively), and immediately after termination of exercise and following 

15 and 30 min of recovery. FSR was measured following intravenous administration of a 

flooding dose of L-[
2
H5] phenylalanine.  Immediately after resistance exercise, the tracer 

infusion was initiated and completed within 10 minutes. Blood samples were collected at 5, 

10, 15, 30, 40, 50, 70 and 90 min after the start of the tracer infusion for determination of L-

[
2
H5] phenylalanine enrichment in plasma. Blood was also drawn at rest, before resistance 

exercise, after the sixth set (following approximately 30 min of exercise) and immediately 

after termination of the resistance exercise, and following 15, 30, 60 and 90 min of recovery 

for insulin and amino acid measurements. 

 

 

 

 

 

Figure 3. Schematic overview of the experimental protocol in study II.  
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3.2.3 Study III 

In a randomized and cross-over fashion, subjects performed one session of resistance exercise 

(R) and another session of resistance exercise followed by endurance exercise (RE), 

approximately two weeks apart. Each subject began with three warm-up sets after which the 

subjects performed 10 sets of heavy resistance exercise. The resistance exercise protocol 

consisted of 4 sets of 8-10 repetitions at 85% of 1RM, 4 sets of 10-12 repetitions at 75% of 

1RM and lastly 2 sets to volitional fatigue at 65% of 1RM with three min of recovery allowed 

between each set. After resistance exercise in the RE trial, subjects rested for 15 min and then 

performed 30 min of cycling at an intensity corresponding to 70% of each subjects' maximal 

oxygen consumption. Muscle and blood samples were collected before, 60 and 180 min after 

resistance exercise.  

  

 

 

 

 

 

Figure 4. Schematic overview of the experimental protocols in study III. R-protocol, resistance exercise; RE-

protocol, resistance exercise followed by endurance exercise. 
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muscle biopsy was taken after which subjects continued to cycle for an additional 10 minutes 

which was then followed by five minutes of complete rest. Next, the subjects carried out three 

warm-up sets and then performed 10 sets of heavy resistance consisting of 4 sets of 8-10 

repetitions at 80% of 1RM, 4 sets of 10-12 repetitions at 70% of 1RM and lastly 2 sets to 

volitional fatigue at 60% of 1RM, with 3 min of recovery allowed between each set. In the R-

trial, the cycling was replaced by rest with tissue sampling performed at the same time points 

as in the ER-trial. In both trials, immediately after resistance exercise, a fourth muscle biopsy 

was taken and after that, two additional biopsies were collected 90 and 180 min post 

resistance exercise. During the initial five hours of rest, blood was collected at 30 min 

interavals. During cycling, blood was drawn after warm up and after the third and fifth 

intervals. These time points were also used to collect blood in the R-trial in which cycling 

was replaced by supine rest. During resistance exercise, blood was collected prior to warm-up 

and following the third, seventh, tenth and thirteenth set. During recovery, blood was sampled 

15 and 30 min after resistance exercise and then at 30-min intervals throughout the remainder 

of the trial.  

 

 

 

 

 

 

 

 

Figure 5. Schematic overview of the experimental protocols in study IV. ER-protocol, interval cycling followed 

by resistance exercise; R-protocol, resistance exercise only. Arrows indicate sampling time points for muscle 

biopsies and vertical lines indicate sampling time points for blood. 
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for subsequent sampling. In studies I, II and IV, muscle extraction was performed with a 

Weil-Blakesley conchotome and in Study III muscle was sampled using a Bergström needle 

with manually applied suction. For every new time point, a new incision was made 

approximately 2-4 cm proximal to the previous one. Immediately after sampling, biopsies 

were blotted free of blood and quickly frozen in liquid nitrogen and stored at -80°C for later 

analysis. In study I, sampling always started in the exercising leg which in turn was randomly 

assigned in each subject. In study II, all biopsies were taken from the same muscle of each 

subject in each trial. Sampling was alternated between both legs throughout the four trials, 

beginning with the right leg in the first trial. In study III, the resting biopsy during the first 

trial was sampled from a randomly assigned leg and the two biopsies obtained during 

recovery were collected from the contra lateral leg. The opposite sampling pattern was used 

in the second trial. In study IV, sampling was alternated between legs throughout both trials, 

beginning with the right leg in the first trial.  

 

3.4 PLASMA ANALYSIS 

3.4.1 Glucose, lactate and insulin 

To obtain plasma, blood was collected in heparinized and/or EDTA tubes and centrifuged at 

9,000 g at 4°C for three min. Analysis of glucose and lactate was performed on plasma from 

heparinized tubes in all studies according to Bergmeyer (125). In study I, insulin was 

measured on heparinized plasma using a radioimmunoassay kit and in Study II plasma 

samples from EDTA-tubes were used for insulin measurements with an ELISA kit, both 

according to the manufacturers’ instructions.   

 

3.4.2 Amino acids 

For amino acid measurements, heparinized plasma samples were deproteinized by 

precipitation with 5% trichloroacetic acid (TCA; 1:5) after which they were centrifuged at 

9,000 g at 4°C for three min and the supernatant stored at -80
o
C. The concentration of amino 

acids in the supernatants from plasma was measured by reversed-phase high performance 

liquid chromatography (HPLC) according to Pfeifer et al. (126), with orthophthalaldehyde 

(OPA) as the derivatizing agent. 
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3.4.3 L-[2H5] phenylalanine enrichment in Study II 

Equal volumes of plasma and 15% SSA were combined to precipitate proteins. After 

precipitation, samples were centrifuged at 16,600 g at 4°C for 10 min and the resulting 

supernatant was purified on a resin column and subsequently dried by vacuum centrifugation. 

After drying, samples were derivatized and plasma enrichment as well as enrichment of the 

standard curve was measured using GC–MS by selective ion monitoring for 336 and 341 m/z. 

 

3.4.4 L-[ring-13C6]-phenylalanine in Study IV 

200 µl of plasma was combined with 100 µl of internal standard (L-[ring-
13

C9]-

phenylalanine, 50 µmol · L
-1

) and then precipitated with 500 µl of acetic acid (50%) before 

being purified on a resin column, dried under a stream of N2 and derivatized. Plasma 

enrichment as well as enrichment of the internal standard was measured using gas GC–

MS/MS by selective ion monitoring for 336, 342, and 345 m/z. 

 

3.5 MUSCLE ANALYSIS 

3.5.1 Tissue processing prior to analysis 

Muscle samples were freeze dried and thoroughly dissected clean from blood and connective 

tissue under a light microscope, leaving only very small fibre bundles intact. The fibre 

bundles were then extensively mixed, resulting in a homogenous sample pool free of non 

muscle contaminants. This mixed sample was then divided into aliquots for each subsequent 

analysis.   

 

3.5.2 General western blot protocol  

Cleaned muscle samples were homogenized in ice-cold buffer containing 2 mM HEPES (pH 

7.4), 1 mM EDTA, 5 mM EGTA, 10 mM MgCl2, 50 mM β-glycerophosphate, 1% TritonX-

100, 1 mM Na3VO4, 2 mM dithiothreitol (DTT), 1% phosphatase inhibitor cocktail and 1% 

(v/v) protease inhibitor cocktail. Homogenates were then cleared by centrifugation at 10,000 

g for 10 min at 4°C and the protein concentration of the resulting supernatant was 

determined. Samples were diluted in Laemmli sample buffer, heated at 95°C for 5 min and 
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20-30 µg of protein was loaded on acrylamide gels for size dependent separation. 

Electrophoresis was performed on ice at 200-300 V for 40-90 min after which gels were 

equilibrated in transfer buffer (25 mM Tris base, 192 mM glycine, and 10-20% methanol) for 

30 min. After equilibration, proteins were transferred to polyvinylidine fluoride membranes at 

a constant current of 300 mA for 3 h at 4ºC. To confirm equal loading after transfer, 

membranes were stained with a total protein staining kit. For each set of target proteins, all 

samples from each subject were loaded on the same gel and all gels were run simultaneously. 

Membranes were then blocked for 1 h at room temperature in Tris-buffered saline (TBS; 20 

mM Tris base, 137 mM NaCl, pH 7.6) containing 5% non-fat dry milk and 0.1% Tween-20. 

After blocking, membranes were incubated overnight with commercially available primary 

antibodies diluted in TBS supplemented with 0.1% Tween-20 containing 2.5% non-fat dry 

milk (TBS-TM). Following overnight incubation, membranes were washed with TBS-TM 

and incubated for 1 h at room temperature with secondary antibodies conjugated with 

horseradish peroxidise. Next, the membranes were washed with TBS-TM and TBS. Finally, 

membranes with the antibodies bound to the target proteins were visualized by 

chemiluminescent detection. To standardize the immunoblotting procedure, prior to blocking, 

membranes were cut and assembled so that for each target protein, all membranes with 

samples from each subject would be exposed to the same conditions. In study II and IV, 

following image capture of phosphorylated proteins, membranes were stripped of the 

phosphospecific antibodies after which the membranes were re-probed with primary 

antibodies for each respective total protein as described above. All phospho-proteins were 

normalised to their corresponding total protein. When only total protein was measured, these 

values were normalized against values obtained with the total protein staining kit. In study III, 

phosphorylated and total proteins were normalized against total levels of α-tubulin.   

 

3.5.3 Immunoprecipitation 

In Study II, the interactions between mTORC1 related proteins were investigated by 

immunoprecipitating (IP) Raptor from tissue samples homogenized in ice-cold IP-lysis buffer 

containing 40 mM Hepes (pH 7.5), 120 mM NaCl, 1 mM EDTA, 10 mM sodium 

pyrophosphate, 50 mM NaF, 0.5 mM Na3VO4, 10 mM β-glycerophosphate, 1% (v/v) 

protease inhibitor cocktail and 0.3% (w/v) CHAPS detergent. Following homogenization, 

samples were centrifuged at 10,000 g for 10 min at 4°C after which an aliquot of 250 µg of 

protein was incubated with 2.5 µg of sheep anti-Raptor antibody and rotated over night at 
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4°C. The next morning, each sample was incubated with 12.5 µl of protein G magnetic beads 

and rotated for an additional hour. Following incubation, beads containing the Raptor-

immune-complexes were washed four times with ice cold IP-lysis buffer after which the 

beads were combined with Laemmli sample buffer, boiled for five min and immunoblotted as 

described above. The amount of Co-IP targets were normalized against the amount of Raptor 

in the immunoprecipitate. 

 

In study IV, the interactions between TSC1 and TSC2 was examined in tissue samples 

homogenized in ice-cold IP-lysis buffer containing 50 mM Hepes (pH 7.5), 0.1 mM EGTA, 1 

mM EDTA, 1% (v/v) TritonX-100, 50 mM NaF, 5 mM sodium pyrophosphate, 1 mM 

Na3VO4, 0.27 M sucrose, 0.1% (v/v) β-mercaptoethanol (βME) and 1% (v/v) protease 

inhibitor cocktail. After centrifugation and IP of S6K1 (see below), TSC1 was 

immunoprecipitated from an aliquot of 175 µg of protein with 1 µg of goat anti-TSC1 

antibody and 10 µl of protein G magnetic beads, incubated over night at 4°C. Following 

incubation, IPs of TSC1 were washed four times in IP lysis buffer after which the beads were 

combined with Laemmli sample buffer, boiled for five min and immunoblotted for TSC1 and 

TSC2 as described above. The amount of TSC2 was normalized against the amount of TSC1 

in the immunoprecipitate.  

 

In both studies, IP’s were also performed for subsequent kinase assays; kinase activity of 

S6K1 was measured in both Study II and IV, while AMPK activity was assessed only in 

Study IV. Two different IP-lysis buffers were used in Study II and IV (see above) and these 

buffers were used to IP S6K1 in each respective study. In both studies, 750 µg of protein was 

combined with 7.2 µg of rabbit anti-S6K1 antibody and 10 µl of protein G sepharose beads 

per sample and rotated for 3 hours at 4°C. Immunoprecipitation of the α1 and α2 isoforms of 

AMPK in Study IV were performed on two aliquots of 225 µg of protein each, that were 

incubated with 4 µg of AMPKα1 and AMPKα2 antibodies, respectively, and 10 µl of protein 

G sepharose beads. The AMPK IP samples were also combined with 800 µl of AMPK lysis 

buffer (50 mM TrisHCl (pH 7.25), 150 mM NaCl, 50 mM NaF, 5 mM sodium 

pyrophosphate, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 1% (v/v) TritonX-100 and 1% (v/v) 

protease inhibitor cocktail) to adjust for the slightly higher pH in the IP lysis buffer, and 

incubated over night at 4°C. Following IP, the beads with the S6K1- and AMPK-immune-

complexes were washed twice in their respective high salt lysis buffer (i.e. respective IP-lysis 
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buffers and AMPK lysis buffer; both with 0.5 M NaCl) and once in kinase specific assay 

buffer (see below). 

 

3.5.4 Kinase assays 

Following the last wash in kinase specific assay buffer (S6K1, 50 mM TrisHCl at pH 7.5, 

0.03% BrijL23, 0.1% βME; AMPK, 50 mM HEPES at pH 7.4, 1 mM DTT, 0.03% BrijL23), 

the beads from each sample were suspended in assay buffer and divided into three assays of 

20 µl each. Two of the assays were run with a kinase specific substrate and the third assay 

was run without the substrate, thus serving as a blank. Kinase assays were initiated by the 

addition of 30 µl of a hot (radiolabeled) kinase specific reaction mix every 20 sec and 

terminated at 20 sec intervals by the addition of 50 µl phosphoric acid (1% v/v) to each assay. 

For the S6K1 activity assay, the final reaction mix (50 µl) consisted of 100 µM ATP, 10 mM 

MgCl2, 
32
γ-ATP (specific activity: Study II, 1.1 x 10

6
; Study IV, ~ 2.5 x 10

6
 cpm/nmol), 30 

µM synthetic S6K1 substrate (Study II, AKRRRLSSLRA; Study IV, KRRRLASLR) and 

was carried out at 30°C for 45 min in Study II and 60 min in Study IV. The AMPK activity 

assays were performed for 30 min at the same temperature and final volume, however, in a 

reaction mix consisting of 200 µM ATP, 200 µM AMP, 5 mM MgCl2, 
32
γ-ATP (specific 

activity: ~ 0.2 x 10
6
 cpm/nmol) and 200 µM synthetic AMPK substrate (“AMARA”; 

AMARRAASAAALARRR). After termination of the assay reactions, assays were spotted 

onto squares of p81 filter paper and washed three times in phosphoric acid and once in 

acetone. When the p81 squares had dried they were immersed in scintillation fluid and 

counted on a liquid scintillation counter. The average values from the duplicate assays with 

substrate were corrected for background noise by subtraction of the blank (no substrate) and 

values were expressed as pmol/min/mg protein. 

 

3.5.5 mRNA analysis 

Total RNA was extracted from approximately 2-3 mg lyophilized and cleaned tissue which 

was homogenized in RNA isolation reagent according to the manufacturers´ instructions. The 

concentration and purity of the RNA was determined by spectrofotometry and 2 µg RNA was 

used for reverse transcription of 40 µl cDNA using a cDNA synthesis kit. The concentration 

of cDNA, annealing temperature and PCR cycle protocol was determined for each primer 

pair to ensure optimal conditions for amplification. Samples were run in triplicate and all 
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samples from each subject were run on the same plate to allow direct relative comparisons. 

Relative changes in mRNA levels were analyzed by the 2
-∆CT

 method with GAPDH used as 

the reference gene. 

 

3.5.6 Amino acids 

For analysis of free amino acids, freeze dried tissue samples were extracted with 5% TCA 

(30µl/mg), centrifuged at 9,000 g for 3 min and the resulting supernatant was measured by 

reversed-phase high performance liquid chromatography (HPLC) according to Pfeifer et 

al.(126) , with orthophthalaldehyde (OPA) as the derivatizing agent. 

 

3.5.7 Muscle glycogen 

Muscle glycogen was determined in approximately 2 mg lyophilized and cleaned muscle 

tissue according to the method described by Leighton et al. (127). 

 

3.5.8 L-[2H5] phenylalanine enrichment in Study II 

Approximately 10 mg of muscle tissue was homogenized in 1 ml of 4% SSA and then rotated 

for 30 min at 4°C. The precipitated proteins were then pelleted by centrifugation and the 

pellets washed in 4% SSA and subsequently dissolved in 1 ml of 0.3 M NaOH. To precipitate 

proteins once again, 130 µl of 40% SSA was added to all samples which were then kept on 

ice for 10 min. Proteins were pelleted once more by centrifugation and the pellets washed 

with 4% SSA before being hydrolyzed for 24 h in 1 ml of 6 M HCl at 110°C. Hydrolyzed 

samples were dried and subsequently dissolved in 450 µl of 0.5 M trisodium citrate and 

passed through filter tubes after which each sample was combined with a suspension 

containing 2 mg of tyrosine decarboxylase and 0.25 mg pyridoxal phosphate and incubated 

over night at 50°C to decarboxylate phenylalanine into phenyl ethylamine. Next morning, 

100 µl of 6 M NaOH was added to each vial and samples were pelleted by centrifugation. 

The supernatants were combined with 500 µl of ether to extract phenyl ethylamine. Samples 

were shaken vigorously and then placed in an ethanol bath with dry ice. When the bottom 

layers had frozen, the liquid ether phase was transferred to new tubes containing 100 µl of 0.1 

M HCl by which the phenyl ethylamine was back-extracted to the aqueous phase from the 
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ether phase. The new tubes were shaken and again placed in the ethanol bath and when the 

bottom layer containing the phenyl ethylamine had frozen, the liquid ether phase was 

discarded. Samples were then transferred to GC-MS vials and dried after which they were 

derivatized by the addition of 25 µl of N-Methyl-N- (Tert Butyldimetylsilyl) 

trifluouroacetamide and ethyl acetate in a ratio of 1:1 and incubated for 1 h at 60°C. The ratio 

of isotopically labelled and unlabelled phenylalanine was obtained by selective ion 

monitoring for 180 (m+2) and 183 (m+5) m/z. Protein enrichment was obtained by relating 

the ratio of labelled and unlabeled phenylalanine in each sample to a standard curve 

containing 0-0.267 atom percent excess (APE) of L-[
2
H5] phenylalanine, that was run 

together with all samples. FSR was calculated as follows: 

 

 FSR = (Em/A) x 60 x 100 

 

Where Em is the delta enrichment of L-[
2
H5] phenylalanine in muscle protein between 

biopsies taken after 90 min of recovery and at rest, and A is the area under the curve for L-

[
2
H5] phenylalanine enrichment in plasma during 90 min of recovery. Values are multiplied 

by a factor of 60 and 100 to express FSR in percent per hour (%/h). 

  

3.5.9 L-[ring-13C6]-phenylalanine in Study IV 

Approximately 7 mg of muscle tissue was combined with 100 µl of internal standard (L-

[ring-
13

C9]-phenylalanine, 5 µmol · L
-1

) after which samples were pelleted and extracted 

twice with 500 µl of 2% perchloric acid. To determine intracellular enrichment of free 

phenylalanine, supernatants were combined and dried, after which they were dissolved in 500 

µl of 50% acetic acid before being passed through a cation exchange resin column. Amino 

acids were then eluted with 2 ml of 2 M NaOH, dried under a stream of N2 and derivatized by 

the addition of 50 µl of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide and 

acetonitrile (1:1) and heated at 70°C for 1 h. Intracellular enrichment as well as enrichment of 

the internal standard was measured using GC–MS/MS with electron impact ionization and 

selective ion monitoring for 336, 342, and 345 m/z. The remaining pellet was washed twice 

with 70% ethanol and then hydrolyzed over night in 1 ml of 6 M HCl heated to 110°C. The 

hydrolyzed proteins were then dissolved in 500 µl of acetic acid (50%) and passed through a 

cation exchange column. To determine protein bound phenylalanine enrichment, the purified 
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pellet derived amino acids were eluted with 2 ml of 2 M NaOH, dried under a stream of N2 

and converted to their N-acetyl-n-propyl amino acid esters and analyzed by GC–C–IRMS. 

FSR was calculated using the standard precursor–product method: 

 

FSR = ∆Ep phe / (Eic phe × t) × 100 

 

Where ∆Ep phe is the difference in protein bound phenylalanine enrichment between two 

biopsies, Eic phe is the intracellular phenylalanine enrichment in the second biopsy, and t is the 

time period for tracer incorporation in hours. To express FSR in percent per hour (%/h), 

values were multiplied by 100. 
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4 RESULTS 

4.1 STUDY I 

In study I, the effects of BCAA ingestion on mTORC1 signaling in both resting and 

exercising human skeletal muscle were investigated. It was found that ingestion of BCAA 

increased phosphorylation of S6K1 at the mTORC1 specific site Thr
389

 in both legs while 

placebo ingestion had no effect in either leg. Although not quite significant, phosphorylation 

of S6K1 was higher in the exercising leg of all subjects in the BCAA trial, indicating the 

existence of a synergistic effect of BCAA and exercise on mTORC1 signaling in human 

muscle. Phosphorylation of Akt, an upstream effector of mTORC1 was unaffected by both 

exercise and amino acid supplementation. Downstream of S6K1, phosphorylation of rpS6 

increased to a larger extent in the exercising leg in both trials, with no difference between the 

two. At the end of recovery, phosphorylation of eEF2 decreased to a similar extent in both 

legs in both trials. 

 

 

 

 

 

 

 

Figure 6. Phosphorylation of S6K1 at Thr
389

 in resting and exercising muscle during placebo and BCAA trials. 

Representative immunoblots from one subject are shown above each graph. Bands have been rearranged to fit 

the illustrated bars. Values in graphs are arbitrary units (means ± SE for 9 subjects). Symbols above lines 

denote differences revealed by a post-hoc test when a main effect was observed.  
*
P < 0.05 vs. before exercise; 

#
P < 0.05 vs. placebo. 

 

4.2 STUDY II 

In study II, we examined the particular role of leucine in mTORC1 signaling, complex 

assembly, S6K1 kinase activity as well as protein synthesis in human skeletal muscle. At 60 

and 90 min of recovery, supplementation of leucine (Leu) increased S6K1 phosphorylation at 

Thr
389

 ~170 and ~190% more compared to placebo (Pla) and essential amino acids supplied 
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without leucine (EAA-leu) , respectively. When essential amino acids were supplied with 

leucine (EAA), S6K1 phosphorylation was further increased at both time points, resulting in 

~340 and ~400% higher values, respectively, compared to Pla and EAA-leu. Compared to 

Leu, supplementation with EAA resulted in ~60 and ~75% higher S6K1 phosphorylation at 

the 60 and 90 min time points, respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Phosphorylation of  S6K1 at Thr
389

 before, 60 and 90 min after exercise in the four trials; placebo 

(Pla), leucine (Leu) and essential amino acids with (EAA) and without leucine (EAA-leu). Representative 

immunoblots from one subject are shown above each graph. Values in graphs are arbitrary units (means ± SE 

for 9 subjects). Symbols denote differences revealed by a post-hoc test when an interaction effect was observed. 
*
P < 0.05 vs. before exercise; 

‡
P < 0.05 vs. Pla; 

#
P < 0.05 vs. EAA-leu; 

†
P < 0.05 vs. Leu.  

 

Phosphorylation of 4EBP1at Thr
37/46

 was increased approximately 50% at 60 min post 

resistance exercise with no difference between trials. At the 90 min time point, 

phosphorylation of 4EBP1 remained elevated at a similar level, again with no difference 

between trials. 
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Figure 8. Phosphorylation of  4EBP1 at Thr
37/46

 before, 60 and 90 min after exercise in the four trials; placebo 

(Pla), leucine (Leu) and essential amino acids with (EAA) and without leucine (EAA-leu). Representative 

immunoblots from one subject are shown above each graph. Values in graphs are arbitrary units (means ± SE 

for 9 subjects). Symbols above lines denote differences revealed by a post-hoc test when a main effect was 

observed. 
*
P < 0.05 vs. before exercise.  
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Kinase activity of S6K1 was higher in the Leu trial compared to Pla (54%), and tended to be 

higher compared EAA-leu (36%). S6K1 activity following EAA supplementation was 

significantly higher compared to both Pla and EAA-leu (97 and 73%, respectively) and 

tended to be higher compared to Leu (28%). There was a strong correlation between S6K1 

phosphorylation at Thr
389

 and S6K1 activity (r=0.72). 

 

 

 

 

 

 

 

 

Figure 9. Kinase activity of S6K1 before and 60 min after exercise in the four trials; placebo (Pla), leucine (Leu) 

and essential amino acids with (EAA) and without leucine (EAA-leu). Values in graph are presented as means ± 

SE for 9 subjects. 
*
P < 0.05 vs. before exercise; 

‡
P < 0.05 vs. Pla; 

#
P < 0.05 vs. EAA-leu. 

 

 

 

 

 

 

 

 

Figure 10. Correlation between S6K1 activity and S6K1 phosphorylation before and 60 min after exercise in the 

four trials. 
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Complex assembly of mTORC1 was unaltered by exercise as well as amino acid 

supplementation in all four trials.  

 

 

 

 

 

 

 

Figure 11. mTORC1 assembly. The amount of recovered mTOR was related the amount of Raptor present in the 

immunoprecipitate. Values are means ± SE for 9 subjects. 

 

Protein synthesis was highly similar in both the Leu and EAA trials (0.091 ± 0.007%/h in 

both) as well as in the Pla and EAA-leu trials (0.075 ± 0.011 and 0.073 ± 0.008%/h, 

respectively). Despite the numerically higher FSR in the Leu/EAA trials (26%) compared to 

the Pla/EAA-leu trials, these differences did not quite reach statistical significance (P = 0.15).  

 

 

 

 

 

 

 

Figure 12. Individual values for mixed skeletal muscle protein FSR during 90 min of recovery after exercise in 

the four trials; placebo (Pla), leucine (Leu) and essential amino acids with (EAA) and without leucine (EAA-

leu). Values in graph are presented for 9 subjects. Horizontal lines represent mean values.  
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4.3 STUDY III 

In study III, mTORC1 signaling in human skeletal muscle was examined in response to 

single mode resistance exercise (R) and resistance exercise followed by continuous cycling 

(ER). Both exercise protocols induced pronounced increases in mTORC1 signaling during 

recovery as assessed by S6K1 phosphorylation of the Thr
389

 residue. More specifically, 

phosphorylation of S6K1 increased ~5-fold at 60 min post resistance exercise and continued 

to increase until the 180 time point, reaching ~14-fold higher values compared to before 

exercise, with no difference between trials. In contrast, phosphorylation of 4EBP1, another 

downstream target of mTORC1, was largely unaffected by either exercise protocol.  

 

 

 

 

 

 

 

Figure 13. Phosphorylation levels of S6K1 at Thr
389 

and 4EBP1 at Thr
37/46

 before, 1 and 3 h post resistance 

exercise in both trials. Representative immunoblots from one subject are shown above each graph. Values are 

normalized to α-tubulin and presented as means ± SE for 10 subjects (n = 9 for 3 h Post). R, resistance exercise 

only; RE, resistance exercise followed by cycling. Symbols above lines denote differences revealed by a post-hoc 

test when a main effect was observed. 
*
P < 0.05 vs. Rest; 

#
P < 0.05 vs. 1h Post. 

 

Phosphorylation of eEF2 was reduced by approximately 70% at both time points during 

recovery with no difference between trials. Phosphorylation of AMPK at Thr
172

 and its 

downstream target ACC at Ser
79

 was reduced 180 min into recovery by ~30 and ~50%, 

respectively, again with no difference between trials. 
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Figure 14. Phosphorylation levels of AMPK at Thr
172 

and ACC at Ser
79

 before, 1 and 3 h post resistance 

exercise in both trials. Representative immunoblots from one subject are shown above each graph. Values are 

normalized to α-tubulin and presented as means ± SE for 10 subjects (n = 9 for 3 h Post). R, resistance exercise 

only; RE, resistance exercise followed by cycling. Symbols above lines denote differences revealed by a post-hoc 

test when a main effect was observed. 
*
P < 0.05 vs. Rest; 

#
P < 0.05 vs. 1h Post. 

 

4.4 STUDY IV 

In study IV, mTORC1 and AMPK signaling was examined in response to resistance exercise 

with (ER) or without (R) prior high intensity interval cycling. Immediately after cycling, 

phosphorylation of S6K1 and eEF2 increased significantly, but 4EBP1 phosphorylation 

decreased, compared to before exercise as well as compared to the same time point in the R 

trial. This phosphorylation pattern was maintained immediately after resistance exercise, but 

was now evident in both trials with no difference between the two. During recovery at 90 and 

180 min post resistance exercise, phosphorylation of S6K1 at Thr
389

 increased ~9 and ~12-

fold, respectively, while phosphorylation of eEF2 was reduced by ~55% at both time points. 

During recovery, phosphorylation of 4EBP1 had largely returned to baseline values. Kinase 

activity of S6K1 tended to increase at the 90 min time point but did not quite reach statistical 

significance until 180 min post resistance exercise at which kinase activity was elevated 

~125% in both trials, compared to before exercise.  
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Figure 15. Phosphorylation levels of S6K1 at Thr
389

 and 4EPB1 at Thr
37/46

 before and after exercise. ER, 

interval cycling followed by resistance exercise; R, resistance exercise only. Phosphorylation values are 

normalized to the corresponding total values for each protein and presented as means ± SE for 8 subjects. 

Symbols denote differences revealed by a post-hoc test when an interaction effect was observed. 
*
P < 0.05 vs. 

Rest; 
#
P < 0.05 vs. R-trial; 

‡
P < 0.05 vs. R-Ex. 

 

 

 

Figure 16. Kinase activity of S6K1. ER, 

interval cycling followed by resistance 

exercise; R, resistance exercise only. All 

values are presented as means ± SE for 8 

subjects. Symbols above lines denote 

differences revealed by a post-hoc test when a 

main effect was observed. 
*
P < 0.05 vs. Rest. 

 

 

Kinase activity of AMPK α1 was unaffected by either exercise protocol. In contrast, AMPK 

α2 activity increased ~90% immediately after cycling and this elevation was maintained after 

resistance exercise in the same trial, but had returned to baseline values during recovery. In 

the R trial, AMPK α2 activity was unaffected by resistance exercise at all time points. 

Phosphorylation of TSC2 at Thr
1387

, downstream of AMPK, increased ~40% after cycling as 

well as after resistance exercise in both trials.  Phosphorylation of Raptor at Ser
792

, another 

downstream target of AMPK, was unaffected by cycling but increased after resistance 

exercise to the same extent in both trials. 
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Figure 17. Kinase activity of AMPK isoforms α1 and α2 and phosphorylation levels of TSC2 at Ser
1387

 and 

Raptor at Ser
792

 before and after exercise. ER, interval cycling followed by resistance exercise; R, resistance 

exercise only. All values are presented as means ± SE for 8 subjects. Symbols above lines denote differences 

revealed by a post-hoc test when a main effect was observed. Symbols without lines denote differences revealed 

by a post-hoc test when an interaction effect was observed.
*
P < 0.05 vs. Rest; 

#
P < 0.05 vs. R-trial. 

 

Furthermore, assembly of the TSC1/2 complex was unaffected by both single mode 
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rest was 0.056±0.005%/h. During 180 min of recovery in the R-trial, the FSR value was 

0.069±0.012%/h. In the ER-trial, this value was 0.082±0.015%/h. While numerically higher 

in both trials compared to rest, these increases were not statistically significant (P = 0.18). 

Expression of MuRF1 mRNA was unchanged in the R-trial at all time points but increased 

2.2 and 1.6-fold at 90 and 180 min after resistance exercise in the ER-trial. Protein expression 

of MuRF1 did not change in the R-trial but increased in the ER-trial at 180 min during 

recovery by approximately 15% compared to before exercise as well as compared the R-trial. 

In contrast, at 180 min post exercise, mRNA expression of MAFbx decreased by 
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trial. Protein expression of MAFbx decreased by approximately 10% at the 180 min time 

point during recovery in both trials, with no difference between the two. 
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5 METHODOLOGICAL CONSIDERATIONS 

5.1 RAPTOR IP AND MTORC1 ASSEMBLY 

In study II, immunoprecipitation of Raptor was performed to examine mTORC1 assembly in 

response to amino acid supplementation and resistance exercise. The aim was to measure the 

interaction of Raptor with mTOR, RagC, Rheb and Lamtor1. However, only mTOR was 

detected in the immunoprecipitates, indicating that the remaining proteins may not be present 

in human skeletal muscle at detectable levels. As many previous studies have used HEK293 

cells to examine theses interactions (52, 53, 75-77), we chose to compare the abundance of 

RagC, Rheb and Lamtor1 in these cells with that of human skeletal muscle. As can been seen 

in figure 18, when equal amounts of protein are loaded, abundance of all proteins of interest 

is much higher in HEK293 cells compared to that of muscle. Furthermore, while Raptor and 

mTOR are readily detectable in skeletal muscle, RagC is undetectable even in 50 µg of 

protein. In contrast, faint bands of Lamtor1 could be detected when 25 and 50 µg protein was 

loaded. For Rheb, a very faint band was detected only in the 50 µg lane. Thus, the lack of 

these proteins detected in the immunoprecipitates is likely explained by the very low 

abundance in skeletal muscle. These results indicate that experiments performed in 

transformed cell lines such as HEK293 may not be representative of those performed on adult 

skeletal muscle. Thus, caution should be exercised when extrapolating data from cell lines 

and applying these on skeletal muscle. 

 

 

 

 

 

 

 

 

Figure 18. Left: image of total protein staining in various amounts of loaded protein in adult human skeletal 

muscle and HEK293 cells. Right: blots following incubation with target specific antibodies at a dilution of 

1:1000 as described in the general western blot protocol. 
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5.2 S6K1 KINASE ACTIVITY 

In studies II and IV, kinase activity of S6K1 was assessed by measuring the in vitro rate of 

incorporation of radiolabeled phosphate onto a peptide substrate. In order to determine the 

appropriate incubation length, a time dependent saturation assay was performed on pooled 

muscle samples. The sample was treated as in study IV. Briefly, after homogenization and 

incubation, bead-immune-complexes were split into nine assays. Three time points were 

chosen and three assays were used for each time point. For each time point, two of the assays 

were run with substrate and the third assay was run without substrate, thus serving as a blank. 

The average values from the duplicate assays with substrate were corrected for background 

noise by subtraction of the blank (no substrate) and values were expressed as pmol/min/mg 

protein. Time points chosen were 15, 30 and 60 minutes. 

 

 

 

 

 

 

 

Figure 19. Left: Time dependent saturation curve for the S6K1 kinase assay. CPM, counts per minute. Right: 

Kinase activity of S6K1 at each time point measured in the saturation curve. Values are means ± SD for blank 

corrected duplicates.   

 

As can be seen in figure 19, each time point measured was within the linear range of the 

assay, thus kinase activity was highly similar at all time points. Based on these experiments, it 

can be concluded that the incubation times chosen in studies II (45 min) and IV (60) were 

appropriate for this assay.    

 

In study II, tissue limitations prevented us from measuring kinase activity in the resting state 

in all subjects in all trials. Therefore, resting values for S6K1 activity were only obtained 

from a single pre-exercise biopsy from all subjects. The rationale behind this choice was that 

the pre-exercise values were always obtained in the postabsorptive state prior to exercise and 
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amino acid supplementation in each trial. Thus, all pre-exercise values should be equally 

representative of the resting state. However, in three subjects there was sufficient biopsy 

material from each trial and these were therefore measured to validate our previous 

assumption.  

 

 

 

 

 

 

 

Figure 20. Kinase activity of S6K1 at rest and 60 min after resistance exercise. Values are means ±SE for three 

subjects.   

 

As evident from figure 20, resting values were very similar between trials in the three 

subjects and they corresponded well with mean values obtained from the single biopsies in 

the complete set of subjects (see figure 9). At rest in the Leu trial, one subject had 

approximately two fold higher kinase activity compared to the other trials as well as 

compared to the two other subjects, thus explaining the numerically higher mean and 

standard error on this trial.  
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6 DISCUSSION 

Since the discovery of mTOR almost twenty years ago (128), our understanding of cellular 

growth regulation has increased immensely, yet several of the mechanisms regulating this 

pathway remain to be fully determined. Thus, the aim of this thesis was to study the 

molecular mechanisms involved in the regulation of protein synthesis in response to amino 

acids and various modes of exercise in human skeletal muscle.  

 

In the first study examining the mTORC1 pathway in response to amino acids and resistance 

exercise in human muscle, Karlsson et al. (91) found that S6K1 phosphorylation increased 

only when resistance exercise was combined with BCAA ingestion. The results indicated that 

the BCAA were solely responsible for this effect as phosphorylation of S6K1 was unaltered 

after exercise alone. However, due to the experimental design, it was not possible to 

distinguish the separate effects of each independent stimulus. To address this question, study 

I was undertaken using a unilateral exercise model in which one leg performed resistance 

exercise and the other served as a resting control. This model allowed us to examine the 

impact of BCAA in both resting and exercising muscle in contrast to only the latter as in the 

study by Karlsson et al. (91). In line with their results, we found that the most potent increase 

in S6K1 phosphorylation occurred when exercise was combined with BCAA intake, while 

resistance exercise alone did not alter Thr
389

 phosphorylation. Interestingly, there was a 

significant difference between BCAA and placebo, showing that amino acid provision 

increased S6K1 phosphorylation in both resting and exercising muscle. These results 

suggested that BCAA intake is more potent than exercise alone as S6K1 phosphorylation 

remained unchanged in response to the latter. Although mean differences were not 

significant, further examination of individual data showed that S6K1 phosphorylation was 

more pronounced in the exercising leg compared to the resting leg in all subjects. 

Nevertheless, the combined effect of resistance exercise and BCAA intake increased S6K1 

phosphorylation to a greater extent than did the sum of the two when exerted separately, 

indicating the existence of a synergistic effect. Whether these data are reflective of the 

anabolic potential of each stimulus, separate and combined, could not be determined due to 

the lack of protein synthesis measurements. However, such an assumption would be 

supported by previous studies showing that resistance exercise alone is unable to induce a 

positive net balance without the presence of amino acids and that theses two stimuli are 

additive with regard to the protein synthetic response (9, 10).  
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The many animal studies identifying leucine as a potent stimulator of mTORC1 would 

suggest that the observed effects in study I might not have been mediated by the three BCAA 

combined, but rather by leucine alone. Consequently, study II was undertaken to examine the 

stimulatory role of leucine using an unconventional study design. Previous studies examining 

the role of leucine in human muscle used study designs in which additional leucine was 

provided to an already fully potent protein or amino acid supplement, with no added benefit 

on the mTORC1 signaling (129) or protein synthesis in young subjects (129-132). While 

ample evidence exists identifying the potency of leucine, no previous study had compared the 

effects of all EAA to that of leucine alone. Furthermore, the observation that several other 

essential amino acids (49), including the BCAA valine (50), were capable of stimulating 

protein synthesis suggested that these amino acids could have separate or synergistic effects 

when combined with leucine. Therefore, in addition to comparing leucine and EAA, we also 

included a trial in which EAA were provided without leucine. This study design would allow 

us to examine not only the individual contribution of leucine, but also that of the remaining 

EAA and thus the potentially synergistic effect of them, when combined. In contrast to our 

hypothesis, provision of leucine alone resulted in a substantially less pronounced signaling 

response of mTORC1, as assessed by S6K1 phosphorylation, compared to when leucine was 

provided in combination with the other EAA. This finding suggested that the remaining 

essential amino acids were indeed important in mediating a stimulatory effect on mTORC1 

signaling. Surprisingly, when provided without leucine, the EAA response was no greater 

than that of flavored water, clearly showing that the individual effect of leucine on mTORC1 

is synergistically enhanced by these amino acids. The molecular mechanisms responsible for 

the amino acid induced mTORC1 response in human muscle still remain unclear as neither of 

the previously implicated mediators (RagC, Lamtor1 and Rheb) we set out to examine were 

detected in the immunoprecipitates. It could however be concluded that it did not involve 

alterations in mTOR and Raptor association which is in contrast to some previous reports 

using cell culture and non muscle tissue models (52, 133, 134). Whether the synergistic effect 

seen after combined intake of leucine and the remaining essential amino acids was mediated 

by the BCAAs valine and isoleucine remains to be determined. Nevertheless, the data 

gathered from studies I and II clearly indicate that leucine has a major role in mediating the 

amino acid signal to mTORC1 in human skeletal muscle. 

 

Diverse modes of exercise result in vastly divergent training adaptations which are believed 

to be mediated by different and potentially opposing molecular pathways. At the centre of 
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muscle growth adaptations following resistance exercise lies the mTORC1 pathway while a 

corresponding role in the oxidative adaptations seen after endurance exercise has been 

identified for the PGC-1α pathway. Interactions between these pathways have been linked to 

the energy sensing protein AMPK which, in various cell and animal models, has been shown 

to both stimulate and inhibit signaling through the PGC-1α and mTORC1 pathways, 

respectively (119-121, 135). The frequent finding that AMPK is robustly activated by acute 

endurance exercise (104, 136, 137) has implicated AMPK as a potential mediator of the 

interference effect observed in some long term concurrent training studies with regard to 

muscle hypertrophy in humans (106, 117, 118). As previous human studies on molecular 

interference either did not include a resistance exercise only comparison (122, 123) or were 

performed in the fed state (28, 124), decisive conclusions could not be made regarding the 

influence of mode specific contractions per se.  

 

In an attempt to fill this gap, study III was undertaken to examine the mTORC1 signaling 

response induced by resistance exercise alone and resistance exercise followed by endurance 

exercise, performed in the postabsorptive state. The major finding of study III was that both 

exercise protocols induced robust increases in mTORC1 signaling during recovery, as 

assessed by S6K1 phosphorylation, and that the response was highly similar between trials. 

Thus, in contrast to our hypothesis, we could not detect an inhibitory effect on mTORC1 

signaling. The reason for a lack of interference is unclear but is likely explained by the lack of 

increase in phosphorylation, and consequent activation, of AMPK following both exercise 

protocols. While the AMPK response following resistance exercise appears to be quite 

variable (93, 138-140), acute endurance exercise has consistently been shown to increase 

AMPK signaling (104, 136, 137, 141-144), and as such, the lack of increase in AMPK 

phosphorylation in the concurrent trial was quite surprising. Even more so was the finding 

that AMPK phosphorylation was actually depressed below baseline values three hours after 

exercise in both trials. The observation that S6K1 phosphorylation was largely elevated at the 

same time point suggests that this kinase may be involved in the repression of AMPK 

phosphorylation at the Thr
172

 residue. Support for this notion is provided by Dagon et al. 

(145) who recently demonstrated that S6K1 can phosphorylate AMPK at the inhibitory Ser
491

 

residue in hypothalamic cells of mice. Additional support for S6K1 mediated control of 

AMPK comes from the study by Aguilar et al. (146) in which it was shown that genetic 

ablation of S6K1 in mouse myotubes resulted in increased AMPK phosphorylation at Thr
172

. 
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While not yet confirmed, these studies lend support to the idea that the reduced AMPK 

phosphorylation observed in study III is indeed a result of increased S6K1 phosphorylation.  

 

While it could be concluded from study III that endurance exercise performed after resistance 

exercise does not appear to inhibit resistance exercise induced mTORC1 activity, the lack of 

AMPK activation prevented us from drawing any decisive conclusions regarding the 

purported role of AMPK as an inhibitor of growth related signaling. Thus, to further explore 

the potential mechanisms of AMPK mediated inhibition of the mTORC1 pathway, study IV 

was undertaken. We identified three possible reasons for the lack of AMPK activation in 

study III. First of all, the fact that endurance exercise was performed after resistance exercise 

suggests that the exercise sequence may be of importance. Second, while the intensity 

employed in study III has previously been shown to activate AMPK, it might not have been 

high enough to elicit a response in our subject population. Lastly, sample collection was 

performed 15 minutes after endurance exercise in the RE trial which may have been to late, 

as most studies have noted increased AMPK signaling in muscle collected immediately after 

exercise. Thus, to maximize the probability of detecting an increased AMPK response in 

study IV we designed the concurrent protocol so that endurance exercise would not only be 

performed prior to resistance exercise, but would also be of greater intensity. In addition, 

biopsy sampling was performed immediately after cessation of muscle contractions in both 

trials and after both modes of exercise in the ER trial.   

 

As a result of the modified exercise protocol in study IV, we could indeed detect a robust 

AMPK response elicited by the high intensity interval cycling. However in contrast to study 

III in which we measured AMPK phosphorylation, in study IV we chose to focus on kinase 

activity of the two catalytic α subunits instead of AMPK phosphorylation. There are several 

rationales for this change in analytical endpoints; one is the fact that the two isoforms of the α 

subunit appear to have diverse metabolic functions and respond differently to endurance 

exercise (104, 142-144). Another is that the activating Thr
172

 residue is present in both 

isoforms which does not allow them to be distinguished from one another using available 

phospho-specific antibodies without prior isolation of each isoform specific subunit. Lastly, 

phosphorylation status of the Thr
172

 residue does not always reflect in vivo AMPK activity 

(147), which is the most relevant biological function of interest in human muscle.  
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High intensity cycling induced an almost two-fold increase in AMPK α2 kinase activity, 

which was maintained at the same elevated level immediately after resistance exercise in the 

same trial. Concomitant with these elevations, phosphorylation of S6K1 at Thr
389

 was also 

significantly elevated, reflecting an increase in mTORC1 activity. Interestingly, performance 

of resistance exercise without prior cycling did not affect AMPK activity but did increase 

S6K1 phosphorylation to the same extent as after resistance exercise in the ER-trial. These 

findings indicate that mTORC1 activity is not inhibited despite prior activation of AMPK. As 

the mechanisms mediating the inhibitory effect of AMPK involve both direct and indirect 

actions of this kinase, we also measured several of the downstream targets which have been 

identified as requisite for the inhibition to occur. One indirect mechanism involves the 

phosphorylation of TSC2 at Ser
1387

 which is believed to result in increased GAP activity 

towards Rheb, the essential and proximal activator of mTORC1 (68, 69). While the GAP 

activity of TSC2 was not measured in study IV, phosphorylation of the AMPK site did in fact 

increase after cycling as well as after resistance exercise, surprisingly, in both trials. The 

increase in Ser
1387

 phosphorylation after resistance exercise alone was unexpected since 

AMPK activity did not increase in the R-trial. This suggests that this site may also be targeted 

by other kinases independent of AMPK. Nevertheless, the phosphorylation status of TSC2 at 

Ser
1387

 indicates that mTORC1 signaling should have been inhibited after either form of 

exercise, yet it was not. A direct mechanism by which AMPK is said to inhibit mTORC1 is 

by phosphorylating Raptor at Ser
792

 (82). Interestingly, phosphorylation of Raptor did not 

differ between trials despite marked elevations in AMPK activity induced by the cycling 

protocol. A second direct inhibitory mechanism involves phosphorylation of the catalytic 

component of mTORC1, namely mTOR itself. When activated, AMPK directly 

phosphorylates the Thr
2446

 residue which results in blunted phosphorylation of S6K1 

downstream of this complex. This blunting coincides with decreased phosphorylation of 

mTOR at Ser
2448

 by upstream signals such as insulin, indicating that this site is important for 

the catalytic activity of mTORC1 (83). While the precise function of Ser
2448

 in mTOR 

remains elusive, phosphorylation of this site is often increased following amino acid 

provision and exercise (93, 148, 149). In study IV, Ser
2448

 phosphorylation was increased 

immediately after cycling and continued to increase after resistance exercise in the ER-trial, 

despite increased AMPK activity. In the R-trial, mTOR phosphorylation increased after 

resistance exercise to the same extent as in the ER-trial. Thus, while the Thr
2446

 residue was 

not measured in study IV, the dissimilar AMPK response between trials, yet highly similar 

and elevated mTOR phosphorylation in both trials, indicates that Thr
2446

 was likely not 

phosphorylated by AMPK. Briefly, out of the three inhibitory mechanisms that mediate 
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AMPK derived inhibition of mTORC1, only one appeared to have been activated in response 

to high intensity cycling. The lack of a differential inhibitory phosphorylation of Raptor at 

Ser
792

 between trials, and the potential lack of Thr
2446

 phosphorylation may therefore explain 

the absence of mTORC1 inhibition despite increased AMPK activity. Indeed, in the original 

study by Gwinn et al. (82), in which the inhibitory residue on Raptor was found to be 

phosphorylated by AMPK, the authors noted that Raptor phosphorylation was required for 

complete inhibition of mTORC1, thus lending support to the idea that AMPK mediated 

phosphorylation of TSC2 alone is not sufficient to inhibit mTORC1. 

 

The results discussed above beg the question as to why the robust increase in AMPK activity 

did not result in increased Raptor phosphorylation. While data obtained from this thesis does 

not allow for this question to be answered, an interesting observation in study IV was that 

AMPK activity increased in an isoform specific manner. More specifically, the increase was 

specific to the α2 isoform while α1 activity remained unchanged at all time points in both 

trials. This finding may have some bearing on the reason as to why mTORC1 was not 

inhibited. As noted previously, the two catalytic α isoforms seem to have diverse cellular 

functions and, consequently, some studies have suggested that the negative regulation of 

mTORC1, and thus muscle growth, is under the influence of the α1 isoform, not α2. For 

instance, in a study by McGee et al. (150) it was shown that genetic knockout of LKB1, the 

primary upstream kinase of AMPK in skeletal muscle, reduced AMPK α2 activity to barely 

detectable levels while the activity of the α1 isoform was unaffected by this manipulation. 

Interestingly, overload induced muscle hypertrophy increased to a similar extent in wild type 

mice and in mice with ablated AMPK α2 activity, suggesting that inhibition of this isoform 

does not affect muscle hypertrophy. Another interesting finding was that the activity of 

AMPK α1 increased robustly in response to overload in both strains of mice, yet muscle 

hypertrophy was not only similar between groups but also quite substantial. Thus, muscle 

growth occurred despite increased α1 activity. These results led the authors to conclude that 

the α2 isoform is not involved in the regulation of muscle growth and that the α1 isoform may 

function to limit hypertrophy (150). In subsequent studies, it was shown that the knockout of 

either AMPK α1 alone (151) or double knock out of both isoforms (152) in cultured 

myotubes and in vivo muscle of mice was associated with an increase in cell and muscle size 

as a result of increased mTORC1 signaling. In contrast, in the same experimental model, α2 

specific knockout had no impact on muscle hypertrophy (153). Collectively, these studies 

identify the α1 isoform as the primary mediator of AMPK induced inhibition of mTORC1 
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signaling, thus, potentially explaining the lack of inhibition found in study IV. However, 

based on additional experimental findings, there may be several objections to this conclusion. 

 

As noted previously, several studies have shown substantial inhibition of mTORC1 signaling 

and protein synthesis in response to pharmacological activation of AMPK (119-121). In this 

context, it is important to note that the pharmacological agent used in these studies, the AMP 

mimetic AICAR, appears to specifically activate the α2 isoform of AMPK (119, 135, 154, 

155), which in contrast to the genetic knockout models, instead identifies AMPK α2 as the 

mTORC1 inhibiting isoform. Furthermore, in human muscle, acute endurance exercise 

predominantly activates the α2 isoform (104, 136, 141-144), which given this association, is a 

far more likely candidate to exert inhibition over mTORC1 than AMPK α1. Regardless, there 

appears to be substantial disagreement as to which isoform is the principal mediator of the 

inhibitory effect. The reasons for these conflicting results are not clear but may be related to 

the various experimental models used. It is therefore not unlikely that results based on genetic 

and pharmacological models in rodents are not representative of the molecular interactions in 

response to a physiological stimulus such as exercise, in human muscle. The overall 

interpretations are further complicated by additional studies in humans showing simultaneous 

increases in AMPK and mTORC1 signaling following endurance (22, 26, 156) and resistance 

exercise (22, 93) as well as after concurrent exercise (149). Evidently, despite the large 

number of studies investigating the role of AMPK induced inhibition of mTORC1, the 

elucidation of the precise interactions and mechanisms by which they are exerted, as well to 

what extent, requires further study. Nevertheless, from studies III and IV it can be concluded 

that prior or subsequent endurance exercise does not inhibit resistance exercise induced 

mTORC1 signaling in human skeletal muscle.  

 

As noted previously, regulatory control of protein synthesis by mTORC1 is exerted mainly 

through phosphorylation of its downstream targets S6K1 and 4EBP1 (54). One might 

therefore assume that the mTORC1 specific phosphorylation sites of each downstream target 

would be affected in a similar manner and extent upon activation of mTORC1 by upstream 

signals. However, as noted in studies II, III and IV in which phosphorylation of both targets 

was measured, this is not necessarily the case. In response to each stimulus in each study, i.e. 

amino acids in studies I and II and exercise in studies III and IV, phosphorylation of S6K1 at 

Thr
389

 increased dramatically during recovery. In contrast, phosphorylation of the Thr
37/46

 



 

50 

residues of 4EBP1 was more or less unaffected by amino acids in study II as well as by 

exercise in study III. This differential phosphorylation response was even more explicit in 

study IV, in which the pattern of S6K1 phosphorylation was completely opposite that of 

4EBP1, i.e. an increase was seen in the former and a decrease in the latter immediately after 

exercise. While somewhat confounding, similar results have been obtained in various 

experimental models using the mTORC1 inhibitor rapamycin. For a long time, rapamycin 

was believed to be a specific inhibitor of mTORC1, and consequently, an inhibitor of its 

downstream targets (157). However, recent studies have shown that treatment of cells with 

rapamycin may also inhibit mTORC2 signaling under certain conditions (158), but more 

importantly, that rapamycin differentially regulates S6K1 and 4EBP1. More specifically, 

S6K1 phosphorylation at Thr
389

 is highly sensitive to rapamycin treatment, whereas 

phosphorylation of the Thr
37/46

 residues of 4EBP1 appears to be rapamycin resistant in some 

cell types (159, 160). The mechanisms responsible for these differential effects are unclear 

but recent studies have provided some insight. The interaction between mTOR and its targets 

is mediated by Raptor within the complex and both S6K1 and 4EBP1 bind to Raptor through 

their TOS (TOR signaling) motifs (161). The TOS motifs are conserved amino acid 

sequences within both targets which are absolutely required for phosphorylation by mTORC1 

(162). Interestingly, the TOS motifs differ between S6K1 and 4EBP1 and, moreover, the 

affinity of 4EBP1 for Raptor is much stronger than that of S6K1 (161, 162). Therefore, in 

response to upstream signals, even minor modifications of the mTORC1 and S6K1 

interaction could potentially result in large fluctuations of the phosphorylation status of 

S6K1. In contrast, the stronger affinity of 4EBP1 for Raptor may render this interaction 

insensitive to upstream signals and consequently, changes in phosphorylation status (157). 

With regard to the findings presented in this thesis, it is noteworthy that in study II, there was 

only a small increase in 4EBP1 phosphorylation, but more importantly, the increase was 

amino acid independent. In contrast, phosphorylation of Thr
389 

was substantial and highly 

amino acid dependent. Interestingly, it was recently shown that the specific sensitivity 

towards rapamycin is mimicked in response to nutrient and growth factor availability (163). 

Thus, being sensitive to rapamycin, Thr
389 

is also highly sensitive to amino acids in contrast 

to 4EBP1 which is rapamycin, and therefore nutrient resistant. These findings may therefore 

explain the difference in response between S6K1 and 4EBP1 phosphorylation observed in 

study II. An interesting observation in study IV was that 4EBP1 phosphorylation decreased 

immediately after exercise. This finding may be interpreted in several ways. First, it does 

suggest that mTORC1 activity was inhibited, although, the fact that S6K1 phosphorylation 

increased simultaneously suggests otherwise. While it is difficult to stipulate the direction of 
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mTORC1 activity, the higher sensitivity of S6K1 phosphorylation suggests that mTORC1 

activity was indeed increased. Furthermore, the decrease in phosphorylation of 4EBP1 may 

also have been a result of increased phosphatase activity towards Thr
37/46

. However, this 

notion is purely speculative. Nevertheless, the lack of increase above baseline values in 

studies IV, as well as in study III, suggests that in the basal state, 4EBP1 is highly 

phosphorylated by mTORC1 in vivo. This in turn suggests that S6K1 modulation is the 

primary mechanism by which amino acids and exercise potentiate the increase in protein 

synthesis. It should however be noted that the relevant outcome of the 4EBP1 

phosphorylation, i.e. the degree of interaction with eIF4E, was not measured in any of the 

studies presented in this thesis. Interestingly, some studies have found that phosphorylation of 

the Thr
37/46

 residues results in dissociation from eIF4E (57), while others have found that 

neither phosphorylation of Thr
37/46

 (55, 56) nor that of Thr
70 

or Ser
65

, alone or in combination, 

has any impact of 4EBP1 and eIF4E association (55). Thus, the significance of the Thr
37/46

 

residues, and the extent to which they were phosphorylated here, is difficult to appreciate. 

Nevertheless, the finding that protein synthesis is inhibited by rapamycin in response to 

amino acids as well as resistance exercise (96-98), coupled with the high sensitivity of S6K1 

to rapamycin treatment, supports the idea that S6K1 has a more prominent role in mediating 

the protein synthetic response. Thus, while not significant, protein synthesis measurements in 

studies II and IV tended to increase compared to control values, and these patterns were 

overall reflected by the S6K1 phosphorylation status at the Thr
389

 residue. 

 

In conclusion, amino acids and resistance exercise activate mTORC1 signaling, as assessed 

by S6K1 phosphorylation, in a synergistic manner. Leucine is crucial in mediating the amino 

acid response, however, additional amino acids appear to be required to induce a maximal 

response downstream of mTORC1. Activation of the mTORC1 pathway in response to heavy 

resistance exercise is robust and this activation does not appear to be inhibited by prior or by 

subsequent endurance exercise. High intensity interval cycling increases kinase activity of the 

AMPK α2 isoform but does not inhibit mTORC1 mediated S6K1 phosphorylation, likely due 

to insufficient phosphorylation of Raptor. As such, these results do not lend support in favour 

of the molecular interference hypothesis and suggest that resistance exercise and endurance 

exercise may be combined without detrimental effects on muscle protein synthesis. However, 

it must be acknowledged that molecular responses during acute interventions may not 

necessarily reflect long term training adaptations.  
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