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ABSTRACT 

The Membrane-Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) is 

a family of six membrane bound proteins with different biological functions. MAPEG 

superfamily members enable and catalyze reactions where reactive lipid intermediates are 

either transformed to physiological messengers or turned into unreactive compounds. Five of 

these proteins are enzymes that utilize glutathione in their catalytic mechanism, and two of 

these are the focus of this thesis. 

Microsomal prostaglandin E synthase 1 (MPGES1) is induced by pro-inflammatory stimuli 

and is the major contributor to prostaglandin E2 (PGE2) synthesis during inflammation. PGE2 

mediates a number of biological responses, including the cardinal signs of inflammation by 

modulating vasodilation and thereby increasing blood flow, redness and swelling, as well as 

pain and fever. Increased biosynthesis of PGE2 by MPGES1 has been implicated in numerous 

chronic inflammatory pathologies like rheumatoid arthritis and cancer. MPGES1 is therefore 

considered a potential drug target and has been investigated by both pharmaceutical 

companies and academic researchers. In collaboration with a small research and development 

company, we have developed inhibitors targeting MPGES1 and investigated their inhibitory 

mechanisms. To do that, we developed a simple medium- to high-throughput assay and 

concluded that these inhibitors, as well as the reference inhibitor MK-886, function mainly as 

competitive inhibitors towards its substrate PGH2. We further investigated the inhibitors in rat 

enzyme and through site directed mutagenesis found that the cleft where the inhibitors enter, 

and presumably also PGH2 enters, has more steric hindrance in the rat enzyme compared to 

the human enzyme. This discovery enlightened the reason why several potent human 

MPGES1 inhibitors didn’t have any effect in rodent animal models. Furthermore, we 

developed dual MPGES1 inhibitors for human and rat enzyme and characterized those in in 

vitro assays and in in vivo rodent models of inflammation. In vivo we compared the 

prostanoid profile after pharmacological inhibition to that after genetic deletion of MPGES1. 

Differences in the effect of MPGES1 pharmacological inhibition and genetic deletion were 

detected, as well as differences between different models. We conclude thereby that it is 

important to compare different inhibitors in the same models with similar conditions, in order 

to have a significant comparison, and to complement results from knockout animals with 

inhibition results in wild type systems. 

Microsomal glutathione transferase 1 (MGST1) is a membrane bound glutathione transferase 

that is involved in cellular protection from oxidative stress and xenobiotics. MGST1 catalyzes 

conjugation reactions of glutathione to reactive (electrophilic substrates) so they can be more 

readily excreted from the cells. The enzyme displays broad substrate specificity and is most 

prevalent in the liver, which is the place where the most important part of drug metabolism 

occurs. A unique and very interesting feature of this glutathione transferase is that it can be 

activated by modification with sulfhydryl reagents and proteolysis. Our group has conducted 

extensive research on MGST1 and uncovered several aspects of its catalytic mechanism 

through both steady-state kinetics and pre steady-state kinetic experiments. We have now 



 

 

concluded all the information about the microscopic steps of the enzyme’s global kinetic 

mechanism and derived the steady-state rate expression. By comparing calculated catalytic 

constants to our experimental values we have discovered a pre-existing resting state to this 

enzyme which is most pronounced at low temperatures and low reactive electrophilic 

substrates. We propose that limited turnover pre steady state experiments are the best way to 

understand the physiologically relevant catalytic mechanism of MGST1. 

In conclusion, this thesis provides a deeper understanding of two important members of the 

MAPEG superfamily of enzymes with different physiological functions and catalytic 

mechanisms of action. We have gained insights into the structure and inhibitory mechanisms 

of MPGES1 as well as characterized potent inhibitors of this enzyme in models of 

inflammation. Our findings constitute new tools in the study of MPGES1. We have also 

unraveled the global mechanism of MGST1 which is the closest MAPEG member to 

MPGES1 based on sequence similarity. Our methods used for the determination of the 

catalytic mechanism of MSGT1 have the potential to assist in defining the catalytic 

mechanism of MPGES1. 



 

 

POPULAR SCIENCE SUMMARY 

Some of you reading this thesis may have heard about oxidants, but many more are probably 

aware of the beneficial effects that we seek from antioxidants - in e.g. fruit and vegetables 

and in expensive lotions. Oxidants in biological systems can cause harmful reactions 

involving the membrane bound polyunsaturated fatty acids in the cells, to give an example. In 

this thesis, one of the body's most important antioxidants is presented, glutathione. 

Glutathione participates in an important part of the body's defense against oxidants. Our 

research focuses on a protein that specifically uses glutathione to defend the body against 

compounds that cause, and are formed during, oxidation. This protein is called MGST1. Our 

research makes it possible to determine the exact mechanism of how MGST1 and glutathione 

collaborate when they put a stop to the harmful oxidative processes. We have shown through 

mathematical calculations (equations) which steps in the process are fast or slow. By 

comparing the calculated with the experimental values, we have been able to determine the 

complete mechanism for MGST1. This is important information for us to gain a better 

understanding of the body's defense mechanisms, and to understand how drugs are digested 

by the body, or why chemotherapy doesn’t work in the treatment of some cancers. 

However, many oxidative processes in the cell membrane are advantageous. Organisms have 

through evolution learned to turn external threats into signaling systems in cells. Production 

of short-range acting hormones, called prostaglandins, is an example of this. Prostaglandins 

are produced through oxidation by a group of proteins that can be found in cell membranes. 

Prostaglandins act in the protection of gastrointestinal integrity and the transmission of fever 

and pain. One of the membrane proteins involved is MPGES1, which is part of the 

production of prostaglandin E2. Prostaglandin E2 is a signal molecule secreted from cells 

during inflammation and in e.g. rheumatoid arthritis and cancer. Today, there are numerous 

anti-inflammatory drugs such as Aspirin, Diclofenac and Ibuprofen. These drugs act by 

indirectly preventing the formation of prostaglandin E2 but can also cause adverse effects. 

The most common adverse effects among anti-inflammatory drugs are gastric ulcers although 

they also increase the risk of cardiovascular diseases. Therefore it is important to develop 

drugs that prevent inflammation by stopping only MPGES1, without affecting other signaling 

pathways in the body and thereby circumvent the side effects. Our research has focused on 

finding effective inhibitors of MPGES1 and investigation of the exact way in which these 

inhibitors interact with the protein. We have also found differences between the human 

protein and the protein from rat. It is important to have knowledge about such differences, as 

drugs are tested in animal models, where rat models play a very important role. We have 

further examined whether these inhibitors interact with other proteins and finally tested them 

in animal models of inflammation. The inhibitors do have a positive effect, which is 

important knowledge when developing them into a drug for human use. 

  



 

 

POPULÄRVETENSKAPLIG SAMMANFATTNING 

Några av er som läser denna avhandling har kanske hört talas om oxidanter, men ännu fler är 

nog medvetna om de gynnsamma effekterna som antioxidanter tros förmedla – bl.a. i frukt 

och grönt och i dyra hudkrämer. Oxidanter i biologiska system kan skapa skadliga reaktioner 

för t.ex. de bundna fleromättade fettsyrorna i cellernas membran. I denna avhandling kommer 

en av kroppens viktigaste antioxidanter att presenteras, glutation. Glutation deltar i en viktig 

del av kroppens försvar mot oxidanter. Vår forskning fokuserar på ett protein som specifikt 

använder glutation för att försvara kroppens membran mot substanserna som orsakar 

oxidation eller bildas under oxidativa processer. Detta protein kallas MGST1. Vi har visat att 

det är möjligt att bestämma den exakta mekanismen för hur MGST1 och glutation samarbetar 

när de sätter stopp för de skadliga oxidativa processerna. Vi har tagit fram matematiska 

beräkningar (ekvationer) som beskriver vilka steg i processen som är snabba och långsamma. 

Genom att jämföra beräkningarna med experimentella värden har vi kunnat visa den 

fullständiga mekanismen för MGST1. Detta är viktigt för att vi bättre ska förstå kroppens 

skyddsmekanismer och för att förstå hur ett läkemedel bryts ned av kroppen eller varför en 

del cellgifter (cytostatika) inte fungerar vid cancerbehandling. 

Förutom de skadliga finns det även många gynnsamma oxidativa processer i cellernas 

membran. Under evolutionens gång har organismer lärt sig att använda dessa oxiderade 

membrankomponenter till att skapa signaleringssystem i cellerna. Ett sådant exempel är 

kroppens tillverkning av kortdistansverkande hormoner, så kallade prostaglandiner. 

Prostaglandiner tillverkas via oxidation av en grupp proteiner som finns i cellernas membran. 

Prostaglandiner har till uppgift att bl.a. skydda slemhinnor i mag-tarmkanalen men även ge 

upphov till feber och smärta. Ett utav proteinerna i cellmembranet är MPGES1 som 

medverkar i produktionen av prostaglandin E2. Prostaglandin E2 är en signalmolekyl som 

utsöndras från kroppens celler i samband med inflammation och vid t.ex. ledgångsreumatism 

och cancer. Idag finns åtskilliga antiinflammatoriska läkemedel, Magnecyl, Voltaren och 

Ipren för att nämna några. De verkar genom att indirekt hindra bildning av prostaglandin E2 

men de har även skadliga effekter. De vanligaste biverkningarna bland antiinflammatoriska 

läkemedel är magsår men de ökar även risken för hjärtsjukdomar. Det är därför viktigt att 

utveckla läkemedel som förhindrar inflammation genom att enbart stoppa MPGES1 men utan 

att påverka andra signalvägar i kroppen och därmed undvika biverkningar. Vi har i vår 

forskning inriktat oss på att hitta hämmare till MPGES1 och till att undersöka exakt hur dessa 

hämmare samspelar med proteinet. Vi har vidare hittat skillnader mellan det mänskliga 

proteinet och proteinet hos råtta. Det är viktigt att ha kunskap om sådana skillnader då 

läkemedel behöver testas i djurmodeller, där råttmodeller är mycket vanliga. Vi har även 

undersökt om dessa MPGES1 hämmare interagerar med andra proteiner och slutligen även 

testat dem i djurmodeller. Hämmarna har positiva effekter vilket är viktig kunskap när man 

ska utveckla dem till läkemedel.  
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1 INTRODUCTION, CHAPTER 1 

1.1 MEMBRANE PEROXIDATION 

Structurally, the cell membrane is the physical barrier that encloses the cell from its outer 

environment. It provides protection in many different ways and is primarily constituted by 

lipids and proteins. Apart from the external cell membrane, eukaryotic cells have membranes 

that enclose their organelles, such as the endoplasmic reticulum (ER), Golgi apparatus, 

mitochondria and nucleus. The main lipids of all eukaryotic membranes are the phospholipids 

which are amphipathic molecules with both a hydrophobic and a hydrophilic part. The 

hydrophobic part of phospholipids consists of 14 to 24 carbon long fatty acids which are 

either saturated or can contain one or more double bonds. The fluidity of the membranes is 

dictated by the amount of polyunsaturated fatty acids (PUFA) such as linoleic, linolenic and 

arachidonic acid [1]. For each additional double bond, which normally is in its cis 

configuration, the melting point of the fatty acid is lowered as their arrangement in the 

phospholipid bilayer weakens the hydrophobic interactions of the hydrocarbons. The melting 

point is also affected by the length of the fatty acid; shorter chains give lower melting points. 

The fluidity of membranes influences the diffusion of water and lipophilic molecules though 

the lipid bilayer. 

Molecular oxygen is crucial for aerobic life, but its beneficial properties come with a price. 

The reduction of oxygen is mostly realized in the mitochondrion, considered to be the cellular 

“power house”. This route also induces formation of reactive oxygen species (ROS) such as 

superoxide radical ሺOଶ
ି ∙ሻ and hydrogen peroxide (H2O2), all with potentially damaging 

properties for many biological structures. Low levels of ROS are normally required for many 

redox-dependent cellular processes [2]. An imbalance in ROS flux and antioxidant capacity 

creates oxidative stress. ROS and oxidative stress have, since free radicals were first 

discovered in biological materials 60 years ago, repeatedly been associated with cell damage, 

cancer, and ageing [3]. PUFA of membrane lipids are particularly vulnerable to attacks from 

free radicals created during oxidative stress. Free radicals have the ability to react with PUFA 

structures, ultimately damaging the integrity of the membranes - a process called lipid 

peroxidation. One of the main harms of this process is that it can propagate quickly and even 

more free radicals are created through metal ion (mainly Fe2+) enabled chain reactions and 

e.g. breakdown of H2O2 [4]. Lipid peroxidation of cell membranes can also be caused by 

metabolism of xenobiotics that are lipophilic and accumulate in membranes. Xenobiotics are 

foreign chemical compounds such as drugs, polycyclic aromatic hydrocarbons or even natural 

substances not normally occurring in the cell. They can cause lipid peroxidation directly 

through increased free radical generation or through inhibition of the cellular defense 

systems.  

Oxidative stress and lipid peroxidation are not common in the cells normal state as eukaryotic 

cells have developed a series of cellular defenses to protect themselves from the damaging 

properties of endogenous and foreign reactive compounds. Antioxidants form an important 
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part of the cellular defense strategy by allowing the free radicals to abstract hydrogen atoms 

from their structure resulting in a lesser reactive species [1]. α-Tocopherol (vitamin E) and β-

carotene (pro-vitamin A) are antioxidants and normal components of cellular membranes. 

Cells also employ enzymes in their membrane defense against xenobiotics, a pathway that 

will be further elaborated in the coming sections.  

However, there are also beneficial functions of lipid peroxidation and one of them will be 

discussed in detail throughout this thesis: prostaglandin biosynthesis. 

  

1.2 GLUTATHIONE 

Glutathione (GSH) is a small tripeptide and the most abundant intracellular thiol source in 

eukaryotic cells. It is a pivotal nucleophile and reducing agent in protective metabolism and 

redox regulation and is consequently abundant in the liver, which is the body’s 

“detoxification center”. Peptide links and cysteine containing molecules are readily degraded 

in the cellular environment, but GSH is not susceptible to the action of cellular peptidases 

thanks to its distinguishing structure. It is composed of glutamate, cysteine and glycine and 

has two characteristic structural features which promote its intracellular stability and diverse 

functions in the cell: the γ-glutamyl linkage and the cysteine thiol (Figure 1) [5, 6].  
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Figure 1. Glutathione is a potent nucleophile, through its ability to deprotonate its cysteine moiety 

thiol to a thiolate anion, and also a very versatile biological reducing agent. 

Thiol biochemistry is essential to many cellular reactions as thiols are easily oxidized and 

rapidly regenerated. GSH can be found in almost all animal cells at rather high intracellular 

concentrations, ranging from 0.1 to 15 mM [7]. Constant regeneration of GSH occurs in the 

cells mainly through de novo synthesis by the joint actions of glutamate-cysteine ligase and 

glutathione synthase [6]. GSH is also recycled through the reduction of its oxidized form, 

glutathione disulfide (GSSG), by glutathione reductase and NADPH [8]. Most cells have 

much lower concentration of GSSG than GSH, it being approximately 100 times lower than 

the GSH content [1, 7]. 

GSSG ൅ NADPH ൅ Hା 	
୥୪୳୲ୟ୲୦୧୭୬ୣ	୰ୣୢ୳ୡ୲ୟୱୣ		
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮ	NADPା ൅ 2GSH         (1) 

The three main physiological functions of this endogenous small molecular weight thiol are 

redox reactions, cellular defense against oxidative stress, xenobiotic and eicosanoid 
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metabolism, and signal transduction [9]. Glutathione also functions as a storage and transport 

form of cysteine. GSH is an important cellular antioxidant which protects cells directly or 

indirectly from the toxic effects of ROS and lipid peroxides generated in membrane 

oxidation.  Regulation of the intracellular redox state by GSH is maintained mainly through 

the actions of glutathione peroxidases (GPX) and peroxiredoxin which yields GSSG [10, 11].  

HଶOଶ ൅ 2GSH	
ୋ୔ଡ଼		
ሱۛ ሮۛ 	2HଶO ൅ GSSG 

ROOH ൅ 2GSH	
ୋ୔ଡ଼		
ሱۛ ሮۛ 	ROH ൅ GSSG ൅ HଶO 

GSH dependent systems are the most vital defense against lipid peroxidation in mammalian 

cells. GSH is involved in cellular protection against lipid peroxidation caused by xenobiotics 

through both non-enzymatic and enzymatic pathways and is an essential cofactor in 

prostaglandin biosynthesis.  

 

1.3 ENZYMATIC MEMBRANE PROTECTION 

Cellular membranes have both integral and membrane associated proteins which are 

responsible for a wide variety of functions, including transport, defense, communication and 

biosynthesis. The enzymes discussed in this thesis are integral membrane proteins which 

utilize GSH and have different biological functions. 

Enzymatic conjugation of GSH to different electrophilic compounds in rat liver extracts was 

linked to mercapturic acid metabolism in the early 1960’s [12, 13]. This was the starting point 

of several decades of investigation on the activity of glutathione transferases (GSTs) and their 

ability to catalyze conjugation reactions to electrophilic carbon, nitrogen, or sulphur atoms of 

a large variety of reactive substrates (RX) [7, 14-16]. These reactions often result in a 

decreased toxicity and increased solubility of the electrophiles, which, when conjugated to 

GSH, can be further metabolized (in mercapturic acid metabolism) and excreted. GSTs are by 

this mechanism involved in the detoxification of numerous carcinogenic, mutagenic, toxic 

and pharmacologically active compounds [17].  

GSH ൅ RX	
ୋୗ୘		
ሱۛ ሮ 	GSR ൅ HX 

GSTs are mainly localized in the cytosol and it was thus the cytosolic (or soluble) enzymes 

which were the first to be characterized. Mammalian GST nomenclature, based on sequence 

similarities, immunological cross reactivity and structural and kinetic properties [18, 19], has 

divided the mammalian enzymes into the following subclasses: Alpha (A), Kappa (K), Mu 

(M), Omega (O), Pi (P), Sigma (S), Theta (T) and Zeta (Z). The cytosolic GSTs belong to a 

widespread superfamily with a constantly increasing number of members and subclasses. 

This superfamily is believed to have evolved from an ancient common ancestor as a defense 

system to oxidative stress and throughout evolution new members evolved through a 

combination of gene amplification and divergence [19, 20]. Even though they share limited 
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sequence similarity, the GST fold is preserved throughout the different classes [14, 16, 19]. A 

very important aspect of GST catalysis is the ability to lower the pKa of GSH from 9 to 

approximately 6. Several amino acids in the active site contribute to the stabilization of the 

thiolate anion GS- [21]. GSTs constitute 3% of human liver protein [1]. Even though this 

superfamily of enzymes has been intensely studied, little is known about the enzymes 

biological functions and their natural substrates, as mainly synthetic compounds have been 

used to assay GSTs. Recently, efforts have been made to better characterize, classify, and 

determine the function of this large enzyme family [22]. 

GST expression is up-regulated in response to oxidative stress [23], and their importance to 

the cellular defense system is exemplified by their tremendous excess in the liver. It has been 

calculated that these enzymes can deplete the liver GSH pool in a matter of seconds provided 

there are large amounts of reactive substrates to use in the conjugation reactions. Depletion of 

GSH reservoirs is accompanied by severe toxicity [24] and despite the excess of GSTs in the 

liver, their main activity is resting. GST overcapacity can be illustrated by the fact that their 

actual turnover rate is approximately one turnover per enzyme molecule every second day 

[25].  

GSH and GSTs have also been suggested to protect tumors from chemotherapy [26]. The 

great variety and substrate promiscuity of GSTs has also inspired basic research to study 

fundamental issues of enzyme evolution and function [16, 27-29].  

One of the GSTs involved in the detoxification process against xenobiotics acts specifically 

in membranes; the microsomal GST 1 (MGST1) [30-32]. Similar to many cytosolic GSTs, 

MGST1 has a broad substrate specificity [33] and is most prevalent in the liver, where the 

most important part of drug metabolism occurs [34]. In rat liver cells it constitutes 3% of the 

ER protein and 5% of the outer mitochondrial membrane [35]. Studies of this protein have 

been ongoing since it was first discovered in 1979 [30-34, 36]. A unique feature of this GST 

is that it can be activated, up to 30-fold, by modification with sulfhydryl reagents and 

proteolysis [30, 31, 37]. 

 

1.4 REACTIVE LIPID MEDIATORS 

Not all lipid peroxidation processes in mammalian cells are deleterious. As explained above, 

ROS formation in membranes is a natural process that occurs frequently and evolutionary 

adaptation has led to the development of several defense mechanisms against oxidative stress. 

Living organisms have simultaneously learned to advantageously make use of chemical 

reactivity and developed physiological functions dependent on ROS. A mild oxidative state is 

vital for cell survival, where ROS act as inducers of various biological functions and play a 

key role as mediators of numerous signaling processes [38]. By such mechanisms, lipid 

peroxidation at moderate levels has an important function in cellular signaling, and is driven 

by either non-enzymatic or enzyme-catalyzed reactions. As oxidative stress is closely related 
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to many pathological conditions, it is evident that the beneficial and detrimental functions of 

ROS need to be delicately balanced for life to prosper. 

The essential fatty acid arachidonic acid (AA) is one of the most common PUFAs in the 

phospholipids of mammalian cell membranes (17% in membranes from rat liver microsomal 

fractions [1]) and plays an important role as the main precursor in prostaglandin (PG) 

biosynthesis [39, 40].  PG biosynthesis is a process where natural lipid peroxides are 

generated. These natural lipid peroxides are mediators (signaling molecules, some of them 

reactive) which are synthesized de novo by most mammalian cell types and through their 

actions as local hormones [41] they regulate a number of (patho-)physiological processes, 

including allergic [42] and inflammatory responses [43], cardiovascular control [44], and 

platelet aggregation [45]. 

It was as late as the year 1990 that a non-enzymatic pathway for the formation of PG 

derivatives in vivo was described by a mechanism involving free radical-catalyzed oxidation 

of AA [46]. The discovery of isoprostanes, which are PG-like compounds, showed that potent 

lipid mediators are produced in vivo non-enzymatically in oxidation reactions initiated by free 

radicals [47]. Other non-enzymatically derived PG derivatives have also been identified and it 

is very possible that this family of compounds may include more identified members in the 

future. Isoprostanes have been intensely characterized during the past two decades and have 

been shown to be reliable biomarkers of oxidative stress [48]. Their validity as biomarkers 

and association to different human diseases needs to be further characterized [49] and it 

would be interesting to raise the question whether these compounds are in fact PG ancestors. 

The non-enzymatically produced mediators could have gained biological significance in 

mammalian cells and thus enzymatic pathways of PG synthesis would have arisen through 

evolution. 

PG biosynthesis is primarily realized enzymatically and initiated by the activity of two PGH2 

synthases (PGHS): PGHS1 and PGHS2. These two isozymes catalyze the oxidation of AA 

into the unstable endoperoxides PGG2 and PGH2, and PGH2 is in turn further isomerized by 

terminal enzymes of the PG cascade.  PGHS1 and PGHS2 are membrane associated 

enzymes, prevalent in the ER and nuclear membrane, which exhibit both cyclooxygenase and 

peroxidase activity and are thus also known as cyclooxygenases (COX1 and COX2) [39, 50]. 

Interestingly, the cyclooxygenase activity in both COX1 and COX2 is peroxide-dependent 

[51, 52], and peroxides are thus required for the activation and sustained activity of these 

enzymes. COX1 requires higher concentrations of peroxide for activation and sustained 

activity and thus must have a higher turnover of PGG2 than COX2 [53]. Furthermore, the 

cyclooxygenase activity of COX1 and COX2 is also modulated by fatty acids, which can be 

both substrates and non-substrates to the enzymes [54]. 
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2 BACKGROUND, CHAPTER 2 

2.1 EICOSANOIDS 

Eicosanoids are biologically active, 20 carbon fatty acid derivatives produced either via the 

COX pathway or the lipoxygenase (LO) pathway [39-41]. The COX pathway generates 

prostanoids, including PGs and thromboxane, whereas the LO pathway generates 

leukotrienes (LTs). PGs and LTs have profound physiological effects at low concentrations, 

but differ from global hormones by having a very short half-life and are therefore not 

transported via the circulation, presenting essentially a local effect. Eicosanoids are produced 

by most mammalian cell types and interact with individual receptors, most of which form 

part of the G-protein coupled receptor (GPCR) family [55], exhibiting through them a wide 

range of biological functions. Interestingly, the effects of these lipid mediators can vary 

depending on cell type. 

AA is stored in membranes where its levels are carefully regulated. Eicosanoid biosynthesis 

is initiated by release of AA by phospholipases. The principal phospholipase in the initiation 

of eicosanoid biosynthesis is the cytosolic phospholipase A2 (cPLA2) [56]. Any stimuli that 

leads to an increase of intracellular Ca2+ levels, induces translocation of cPLA2 to the 

membrane and triggers hydrolysis of AA from cellular membranes [57]. After its release AA 

is rapidly oxidized by a host of enzymes to yield different eicosanoids, the specific type being 

determined by the set of enzymes expressed at the site of production. 

2.1.1 Lipoxygenase pathway 

Through the activation of 5-lipoxygenase (5-LO) by 5-lipoxygenase activating protein 

(FLAP) [58-60], LTs are formed from AA. LTA4 is an unstable epoxide which, like PGH2 in 

the COX pathway, is the precursor of all LTs. LTs are potent pro-inflammatory mediators 

formed primarily by inflammatory cells and crucial in the pathogenesis of respiratory 

diseases and allergic reactions [61]. Several pharmaceutical treatments which interfere with 

LT biosynthesis entered into clinical practice for asthma therapy at the end of the last century 

[62, 63].  

LTC4 synthase (LTC4S) catalyzes the specific conjugation of LTA4 to GSH [64], leading to 

the formation of LTC4, which is further metabolized to LTD4 and LTE4 [61]. These three LTs 

are denoted cysteinyl LTs (cysLTs) and are potent mediators of asthma and act through the 

receptors cysLT1 (specifically LTD4) and cysLT2 (specifically LTC4) [65]. LTC4S deficient 

mice are resistant to asthmatic challenge, as is the case for the enzymes higher up the cysLT 

cascade [66, 67]. 
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Figure 2. Biosynthetic cascade of prostaglandins (PGs) and leukotrienes (LTs), including the 

precursor arachidonic acid, all intermediates, products, catalyzing enzymes and receptors identified. 
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2.1.2 Cyclooxygenase pathway 

Eicosanoid formation through the COX pathway can be either constitutive (COX1) or 

induced by pro-inflammatory stimuli (COX2), both generating the PG precursor PGH2. PGH2 

is very unstable [68, 69] and is rapidly converted to PGD2, PGE2, PGF2α, prostacyclin (PGI2) 

or thromboxane (TX) A2 in a cellular environment by the actions of terminal 

isomerases/synthases of the PG cascade. These lipid mediators are mutually referred to as 

prostanoids. 

PGD2 is involved in the regulation of sleep [70, 71] and moreover acts as a mediator of 

allergy and inflammation [42]. Lipocalin-type PGD synthase (LPGDS) and haematopoietic 

PGD [72] synthase (HPGDS) [73, 74] are two rather different enzymes, in terms of structure, 

cellular distribution and evolutionary origin, which catalyze the isomerization reaction of 

PGH2 into PGD2 [75, 76]. LPGDS is a secretory protein [76] expressed in the central nervous 

system [77], male genital organs [78] and human heart [79]. HPGDS is a sigma class 

cytosolic GST [80]. The signal transduction system involving PGD2 acts through two distinct 

receptors, namely DP1 and DP2, of which only DP1 is a GPCR [81, 82].  

The actions of PGF2α, which initiates parturition in mammals [83] and induces potent smooth 

muscle contraction in the human uterus [84], are mediated via the PGF2α receptor FP [85]. 

PGF synthase (PGFS) catalyzes the reduction reaction of PGH2 into PGF2α, but PGF2α can 

also be formed through the actions of PGE2 9-keto reductase on PGE2 [44]. PGF2α is a stable 

molecule in aqueous solution, but has a very short half-life in vivo [86]. 

PGI2 and TXA2 have an important role in cardiovascular physiology and exhibit often 

opposing effects. These two eicosanoids are therefore regarded as significant regulators of the 

cardiovascular system. Both PGI2 and TXA2 are unstable and rapidly degraded, in a non-

enzymatic manner, to their respective metabolites, 6-keto PGF1α and TXB2, by hydrolysis in 

aqueous solution at 37˚C [87, 88]. PGI2 is a potent inhibitor of platelet aggregation [89] and a 

powerful vasodilator [90] and binds to the specific IP GPCR [91]. TXA2 functions through 

two isoforms (α and β) of the TP GPCR that differ in cellular distribution and are involved in 

platelet aggregation and vasoconstriction [92]. Prostacyclin synthase (PGIS) [93] catalyzes 

the isomerization of PGH2 to PGI2 and thromboxane synthase (TXS) catalyzes the 

endoperoxide’s conversion to TXA2 [88]. Both PGIS and TXS have been shown to belong to 

the cytochrome P450 superfamily of enzymes [94, 95]. 

2.1.2.1 PGE2 production 

PGE2 is a pleiotropic and extensively investigated eicosanoid which has an important role as 

mediator of inflammation in chronic inflammatory diseases. PGE2 mediates a number of 

biological responses through the GPCRs EP1, EP2, EP3 and EP4 which all belong to the 

same subfamily of GPCRs [96]. One of the main focus areas involving PGE2 has been its 

ability to regulate the cardinal signs of inflammation. PGE2 mediates vasodilation and thereby 

increases blood flow, redness and swelling [97, 98], as well as pain hypersensitization [99] 

and fever [100] at sites of inflammation.  
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PGE2 is a relatively stable molecule in aqueous solution in vitro, but is rapidly degraded in 

vivo and converted to an inactive metabolite (13, 14-dihydro-15-keto PGE2) by the 

prostaglandin 15-dehydrogenase pathway [101]. The half-life of PGE2 in blood is less than a 

minute and normal its concentration in plasma is 3-12 pg/ml [102]. 

There exists three distinct PGE2 synthases. One is cytosolic prostaglandin E synthase 

(cPGES) and two are membrane bond (microsomal prostaglandin E synthase 1 and 2; 

MPGES1 and MPGES2). MPGES1 is the major contributor to PGE2 synthesis during 

inflammation [103]. The inducible enzyme MPGES1 was discovered by our group together 

with our collaborators in 1999 [104]. MPGES1 is associated with a number of different 

pathophysiological states like chronic inflammation and cancer. Similar to the expression of 

COX2, MPGES1 is up-regulated under pro-inflammatory conditions in vitro [105, 106]. 

Moreover, COX2 and MPGES1 are predominantly co-expressed and functionally coupled to 

generate an outburst of PGE2 under inflammatory conditions [107]. 

2.1.3 MPGES1 as pharmaceutical target 

Salicylic acid was the first commercially produced non-steroidal anti-inflammatory drug 

(NSAID) by the Kolbe company in Germany in 1860. An improved form, acetylsalicylic 

acid, was introduced to the market by the pharmaceutical company Bayer in 1899 [108] and 

is still a worldwide used drug. It wasn’t until the 1970’s that its mechanism of action was 

discovered as the inhibition of prostaglandin synthesis through the cyclooxygenase pathway 

[109]. Classical NSAIDs, which inhibited both COX1 and COX2, were soon discovered to 

cause severe gastric ulcerations as side effects of chronic use [110].  After the discovery of 

the inducible COX2, selective COX2 inhibitors (COXibs) were developed to prevent 

inflammation and pain while disturbing less the gastric mucosa integrity due to reduced 

COX-1 inhibitory activity [111, 112]. However, randomized and placebo-controlled trials 

demonstrated an increased cardiovascular risk in patients after long-term use of selective 

COX2 inhibitors [113, 114]. Such an effect was also demonstrated for traditional NSAIDs 

[115], and led eventually to the withdrawal of Merck’s Vioxx (rofecoxib) from the market 

[116].  

The release of chemical mediators during chronic inflammation is variable in onset and 

duration, as chronic inflammations is a dynamic process including different phases, 

depending on the status of the disease. PGE2 is one of the major pro-inflammatory PGs 

derived from the inducible COX2. MPGES1 can be induced in concord with COX2 by pro-

inflammatory stimuli in animal models of inflammation [117, 118]. In addition, genetic 

deletion of MPGES1 in mice renders them resistant to fever and chronic inflammation [119, 

120] similarly to COX2 deletion [121, 122]. These MPGES1 deficient mice lose their 

capacity to induce PGE2 biosynthesis above normal levels and have a strongly reduced 

inflammatory response. Moreover, pharmacological inhibition of MPGES1 alleviates 

inflammatory symptoms in in vivo models [123]. Increased biosynthesis of PGE2 by 

MPGES1 has been implicated in numerous chronic inflammatory pathologies. High amounts 

of PGE2 and expression of the inducible enzymes of this pathway are found in rheumatoid 
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arthritis patient samples [124, 125]. Elevated levels of MPGES1 and COX are found in a 

number of cancers and PGE2 modulates the inflammatory microenvironment and tumor 

immunosuppression which creates favorable conditions for tumor progression [126]. 

Furthermore, MPGES1 induction has been correlated to poor prognosis in colorectal 

neoplasms [127]. 

Drugs targeting MPGES1 are expected to have fewer adverse effects by better maintaining 

the gastric mucosa integrity compared to traditional NSAIDs and by avoiding increased 

incidence of severe cardiovascular side effects related to COXibs. Several international 

pharmaceutical companies have investigated MPGES1 as a drug target. Merck has reported 

the characterization of this enzyme [128-130] and developed several potent inhibitors [123, 

131-133], the most well characterized being MF63 [123]. Pfizer has also investigated 

MPGES1 as a potential drug target through animal models [120, 134-137] and developed 

several potent inhibitors of this enzyme [138-142]. AstraZeneca recently released an X-ray 

crystal structure at 1.2 Å resolution [143], reported a high throughput assay for MPGES1 

[144] and published the characterization of inhibitors [145, 146]. 

 

2.2 MAPEG SUPERFAMILY OF ENZYMES 

The Membrane-Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) 

[147] superfamily has been attributed a somewhat misleading name as it projects an image of 

proteins which simply are associated to membranes instead of, as is the case, integral 

membrane proteins. It includes six proteins, the already introduced MGST1, MPGES1, 

LTC4S, FLAP and two additional membrane bound GSTs, MGST2 [148] and MGST3 [149]. 

MAPEG family members enable and catalyze reactions where reactive lipid intermediates are 

either transformed to physiological messengers (MPGES1, LTC4S, FLAP) or turned into 

unreactive compounds (MGST1-3).  

The nomenclature for microsomal prostaglandin E synthase has varied throughout the years. 

The most commonly used abbreviation is mPGES-1 [104], although also mPGES1 and 

MPGES1 have been used [150, 151]. A lowercase letter preceding the protein’s name 

abbreviation normally indicates species, where “m” represents a mouse homologue, “h” a 

human homologue, and so forth for each relevant species. The lowercase “m” used in the 

abbreviation mPGES-1/mPGES1 does not refer to the murine protein but merely to the fact 

that this is a membrane bound protein. The use of a lowercase letters initiating the 

abbreviation can sometimes be observed for other members of the MAPEG superfamily, such 

as the two prostaglandin D synthases LPGDS (“l”PGDS) and HPGDS (“h”PGDS), whereas it 

is not used in the nomenclature of the glutathione transferases belonging to this family. To 

simplify matters, MPGES1 will be used throughout this thesis as the only abbreviation for the 

enzyme microsomal prostaglandin E synthase 1. 
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2.2.1 MGST1 as a pharmaceutical target 

MGST1 is a 17.3 kDa homo-trimeric enzyme localized mainly at the ER and mitochondrial 

membrane [35] and constitutes 1% of the endoplasmic reticulum protein in human liver 

[152]. Its substrates are very hydrophobic, reactive molecules which are often localized at 

cellular membranes [37, 153, 154]. This enzyme is thus involved in the biotransformation of 

membrane-embedded reactive electrophiles. By this mechanism, MGST1 protects cells from 

lipid peroxidation in the membranes and oxidative stress [155-157]. MGST1 also functions in 

drug metabolism by conjugation of the xenobiotics to GSH, as well as in the 

biotransformation of glyceryl trinitrate [25, 158]. 

Glutathione peroxidases can protect from lipid peroxidation in cellular membranes [16, 26] 

and thereby reduce the toxic effects which originate from oxidative stress. MGST1 displays 

peroxidase activity [159]. MGST1 expression has been reported to be both up- and down-

regulated in treatments causing oxidative stress and is up-regulated in a wide variety of 

tumors [152]. MGST1 has also been reported to protect tumors from cytostatic drug treatment 

[160] and could therefore be a viable anti-cancer drug target [161]. 

 

2.3 ENZYMOLOGY 

2.3.1 Steady-State Kinetics 

Initial characterization of enzymes is often based upon steady-state kinetics as this method is 

the most commonly used means of investigating enzyme-catalyzed reactions [162]. The 

methodology is based on the principle that the concentration of enzyme-substrate 

intermediate(s) remains constant by having equal rates of formation and decay.  

Scheme 1. 

E + S          ES          E + P
k1

k-1

k2

 

Such a kinetic phase can be reached by having the substrate in great excess compared to 

enzyme concentration. The following assumptions need to be met during the steady-state to 

enable mathematical manipulations of the kinetics: 

1. The total enzyme concentration is given by the sum of enzyme intermediates and free 

enzyme. 

2. As substrate concentration is much larger than enzyme concentration we can assume 

that there is no significant reduction of substrate concentration. 

3. The rates of intermediate formation and decay are assumed to be constant and equal. 
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Under these conditions the commonly used Michaelis-Menten expression [163] is deducted 

for enzyme catalysis rate during steady-state and two important catalytic constants are 

introduced, ݇௖௔௧ and ܭெ. 

ݒ ൌ ௠ܸ௔௫ሾSሿ
ெܭ ൅ ሾSሿ

ൌ
݇௖௔௧ሾEሿ଴ሾSሿ
ெܭ ൅ ሾSሿ

																																																																			ሺ1ሻ 

What is the value of knowing these constants and what do they really signify? ݇௖௔௧ is the 

number of catalytic turnovers that occur per time unit (normally seconds) and its unit is thus 

expressed as reciprocal time (s-1).  ܭெ is often mistaken for the dissociation constant of the 

enzyme substrate complex. This is not the case, ܭெ merely indicates the substrate 

concentration at half-maximal rate of the enzyme reaction and approaches ܭ஽ for the enzyme 

substrate complex only when catalysis is slow compared to the off rate of substrate. A better 

measure of effects on substrate binding and/or chemical steps is the ratio ݇௖௔௧/ܭெ which is 

used to define the catalytic efficiency of an enzyme for different substrates or different 

enzymes for a substrate [164]. ݇௖௔௧/ܭெ for drug metabolism through the cytochrome P450 

pathway is used to predict and model the pharmacokinetics and toxicokinetics of drug 

candidates. 

It is important to bear in mind that even if the steady-state conditions accomplished in an in 

vitro laboratory setting are practical for consistently characterizing and comparing different 

enzymes, nevertheless, this condition is not typically occurring in vivo. In vivo, substrate 

concentrations can be far lower than enzyme concentrations (most relevant to 

biotransformation enzymes), as has been discussed in the case of GSTs [25]. Furthermore, it 

is relevant to mention that enzyme catalyzed reactions are rarely as simple as Scheme 1, and 

often consist of a multitude of steps, where the steady-state velocity will largely reflect the 

slowest step. In order to more deeply investigate the individual steps of a multistep reaction, 

transient kinetic methods need to be employed. 

2.3.2 Pre Steady-State Kinetics 

Steady-state kinetic experiments give substantial biochemical insight into enzymatic 

reactions. However, there are limitations to this method which make it difficult to derive rate 

information on the individual binding, chemical or conformational steps on the reaction 

pathway. To overcome such limitations, rapid kinetic methods are employed to facilitate 

detection of transient species and will hereon be referred to as pre steady-state kinetics [165].  

Pre steady-state kinetics can detect reactions down at a millisecond time scale by means of a 

specialized apparatus, or even lower by temperature jump techniques [166]. A very 

commonly employed method is stopped-flow where formation, or decay, of a transient 

species is detected, usually through an absorbance or fluorescence signal (Figure 2). This pre 

steady-state technique requires high amounts of enzyme to enable detection of enzyme-

substrate/intermediate species.  
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Figure 2. Schematic diagram of a stopped-flow instrument employed for rapid kinetic measurements.  

To facilitate the characterization of individual steps of the reaction mechanism the reaction 

should, whenever possible, be carried out under conditions where the observed kinetics are 

first order. Usually, this is achieved by making all other concentrations large relative to the 

concentration of the species of interest. One-step reversible mechanisms give a linear 

dependence of the observed rate ݇௢௕௦. The observed rate for a one-step binding mechanism 

will be the sum of the forward and reverse microscopic rates (Scheme 2, Equation 2). A plot 

of ݇௢௕௦ as a function of substrate concentration will give ݇ିଵ at the intercept and ݇ଵ as the 

slope of a straight line [167]. 

Scheme 2. 

E + S          ES
k1

k-1  

݇௢௕௦ ൌ ݇ଵሾܵሿ ൅ ݇ିଵ																																																											ሺ2ሻ 

A more complex case is the investigation of a two-step reversible mechanism (Scheme 3, 

Equation 3), and mechanisms of interest often consist of multiple steps. This case can be 

observed if substrate binding is a rapid equilibrium reaction and formation of an intermediate 

is the rate limiting step. In a plot of ݇௢௕௦ as a function of substrate concentration in this case, 

the maximal observed rate will correspond to the sum of ݇ଶ and ݇ିଶ and the intercept will 

equal ݇ିଶ. Lastly, the initial slope will represent an apparent second order rate constant for 

substrate binding, ܭଵ݇ଶ, (where ܭଵ is the association constant and equals 1/ܭ஽) [168].  

Scheme 3. 

E + S          ES          EX
k1

k-1

k2

k-2  

݇௢௕௦ ൌ
ଵ݇ଶሾܵሿܭ
ଵሾܵሿܭ ൅ 1

൅ ݇ିଶ																																																								ሺ3ሻ 
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Enzyme mechanism can be far more complex than described here and many researchers have 

shown proof of ingenuity by applying elegant solutions to detect intricate relations. Today, 

researchers also have a significant advantage in powerful computers which are able to 

perform advanced data simulations and fewer simplifications need to be made. By employing 

specialized data simulation programs for transient enzyme kinetics we can now determine 

more exact reaction mechanisms when characterizing enzymes [169, 170]. 

2.3.3 Inhibition 

A substantial part of enzyme characterization is focused on investigating inhibition of 

enzyme-catalyzed reactions. A large part of the enzymes introduced in this thesis are 

involved in the pathophysiology of chronic, inflammatory diseases including arthritis and 

cancer, and are thus investigated as potential therapeutic targets both by academia and the 

pharmaceutical industry. It is important to determine a set of parameters for the evaluation of 

enzyme inhibitors in vitro. Generally, enzyme inhibitors are evaluated through dose-response 

plots to generate an IC50 value, which corresponds to the inhibitor concentration that gives 

50% inhibition, referred to as the IC50 value that is used to compare relative inhibitor potency. 

IC50 determination is an effective way of studying inhibition for numerous compounds at the 

same time and is thus a method often employed when screening potential drug candidates in a 

high throughput setting [171]. 

It is important to be aware of the limitations for comparing inhibitor potencies by only 

determining IC50 values. The IC50 value will depend on a wide variety of conditions: 

1. Inhibitor concentrations. It is important to have a large span of concentrations and 

also have a good precision in the vicinity of the IC50 value. 

2. Substrate concentration will have a great effect on the IC50 value and needs to be kept 

constant when comparing different inhibitors. 

3. Also the relationship between substrate, inhibitor and enzyme concentrations are 

crucial. It is important to maintain steady-state conditions throughout the assays. 

A better way of characterizing inhibitors is to fully determine the specific enzyme inhibition 

mechanism by which they act. These mechanisms can firstly be divided into two main 

groups; reversible and irreversible inhibition. In drug discovery the most common mechanism 

of use is that of reversible inhibition. Reversible inhibition is desired as a feature of a drug for 

natural preservation of enzymes and receptors and avoidance of adverse effects. Therefore 

only reversible inhibition will be considered onwards. Enzyme-inhibitor interactions usually 

function as normal protein-ligand reactions, and the same thermodynamic terms apply for 

these reactions. In the case of enzyme inhibition, the equilibrium dissociation constant is 

represented by ܭ௜ [171].  

Many different types of reversible inhibitors exist, but this discussion will focus on the 

following: competitive, non-competitive, uncompetitive, mixed and partial inhibitors. 
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Competitive inhibitors generally bind at the enzyme’s active site and consequently compete 

with the substrate for access to enzyme molecules. This type of inhibition can thus be 

overcome by sufficiently high substrate concentrations. Non-competitive inhibitors display 

equal affinity for both the free enzyme and the enzyme-substrate complex. Hence, the extent 

of inhibition will only depend on the non-competitive inhibitor’s concentration. Few 

commercially available drugs are non-competitive inhibitors. Uncompetitive inhibitors bind 

exclusively to the enzyme-substrate complex, and show little or no affinity for the free 

enzyme form. As a result, an increasing substrate concentration cannot overcome the 

inhibition effect. Mixed inhibitors can be considered as a type of non-competitive inhibitors, 

where the inhibitor displays finite but unequal affinity for the two enzyme species (free and 

substrate bound). Partial inhibitors cannot fully block the activity of the enzyme, even at very 

high concentrations. Partial inhibitors are very rare and it is important to rule out 

experimental artefacts, such as limited solubility, when encountering this mechanism. 

For a competitive inhibitor, the IC50 value will depend on the substrate concentration. The 

IC50 value will increase linearly with increasing substrate concentration. For uncompetitive 

inhibitors the plot of IC50 value as a function of substrate concentration will curve downward 

sharply. For non-competitive inhibitors the IC50 will be independent of the substrate 

concentration, and for mixed inhibitors it will curve upward or downward (Figure 3) [172]. 

 

 

Figure 3. Inhibition mechanism patterns where IC50 is plotted as a function of substrate concentration 

for different inhibition mechanisms (adapted from [173]).  
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3 METHODOLOGY, CHAPTER 3 

In the following section the most relevant methods for the author’s contribution throughout 

papers I-IV will be presented and discussed. This section will primarily serve as a discussion 

and will not provide detailed practical information. For such details the reader is referred to 

the methodology section of the articles. 

 

3.1 ACTIVITY ASSAY FOR PGH2 UTILIZING ENZYMES 

An important part of the methodology of this thesis has been based on the development of 

enzymatic assays for measurements of enzyme activity employing PGH2 as substrate and has 

resulted in the publication of a methodological study (paper II). PGH2 is a very unstable 

compound and precautions need therefore to be taken when using it as substrate in a 

biochemical assay. PGH2 decomposes non-enzymatically in aqueous solution, with a half-life 

of approximately 5 min at 37°C, into a mixture of PGE2 and PGD2 [69, 174, 175]. 

Accordingly, all MPGES1 activity assays employed in this body of work have been 

conducted on wet ice to maintain a low temperature of 4˚C. Furthermore, catalysis by 

enzymes that utilize PGH2 is normally very fast, substrate depletion easily can occur within 

seconds, and therefore incubation times need to be short (approximately 1-2 min). 

Consequently, it has been of great interest for us to develop simple and efficient strategies for 

activity measurements, where PGH2 is used as substrate, suitable for a medium-throughput 

setting.  

The principles of the assay employed for PGH2 converting activity measurements were first 

reported by Basevich et al. [176] and are based on indirect detection of remaining substrate 

rather than that of direct measurement of product formation. There are several reasons to our 

choice of method. First, it is a fast method where the degradation product of PGH2, 

malondialdehyde (MDA), forms a fluorescent conjugate with thiobarbituric acid (TBA) that 

can easily be quantified through colorimetric detection. Second, this assay is suitable for 

handling a large amount of samples and thus issuitable for medium and high-throughput 

screening, as the reaction can take place in 96 or 384 well plates. A solution of FeCl2 is added 

in order to entirely stop the reaction after the desired amount of time. FeCl2 non-

enzymatically decomposes the remaining PGH2 into MDA and 12-hydroxyheptadecatrienoic 

acid (12-HHT) (Figure 4). MDA in turn reacts with TBA forming a red product (a TBA-

MDA conjugate) that absorbs at 535 nm [177]. In other words, the amount of formed 

conjugate in each sample will be inversely proportional to product formation. FeCl2 will not 

convert other prostaglandins into MDA, this process occurs exclusively for the unstable 

endoperoxide PGH2. Of note, other molecules can occasionally form MDA upon reaction 

with TBA and therefore potential inhibitors are always examined in this respect. 
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Figure 4. Non-enzymatic decomposition of PGH2 into malondialdehyde (MDA) and 12-

hydroxyheptadecatrienoic acid (HHT) by FeCl2. 

MPGES1 catalyzes the isomerization reaction of PGH2 into PGE2 [104]. Thorén and 

Jakobsson described a quantitative assay for MPGES1 activity at the beginning of this 

century, based upon separation by reverse-phase high-performance liquid chromatography 

(RP-HPLC), product detection by UV-spectrophotometry and quantification through an 

internal standard [105]. Advantages of employing this assay include direct detection of 

product formation, the possibility to detect and quantify all reaction metabolites and its high 

sensitivity, which enables product detection in the picomole range. In this way, low enzyme 

activity as well as altered product profile (e.g. when analyzing enzyme mutants) can be 

detected. On the other hand, this method for direct measurement of prostaglandins requires 

expensive equipment, is time demanding and can clearly not be used in a medium- or high-

throughput setting. In comparison, the MDA-TBA assay is more robust, faster and can 

process a much larger amount of samples. Even though the colorimetric assay requires high 

enzyme activity [178] and doesn’t provide a full product profile, for screening of numerous 

MPGES1 inhibitors, the MDA-TBA assay format is the method of choice. The IC50 values 

obtained with this assay can vary 2-3 fold between tests, but that is comprehensible, as this is 

not a very exact assay (common for assays based on substrate depletion). This is 

compensated by the fact that it can easily be repeated and more exact IC50 values determined 

by reproduction. 

In order to find inhibitors that are truly specific for MPGES1, we have further developed the 

MDA-TBA assay format to counter-screen our inhibitors in other PGH2 utilizing enzymes. 

Those enzymes include MPGES2, PGIS, LPGDS and HPGDS. MPGES2 and LPGDS were 

quite challenging to assay with the MDA-TBA assay, as they lacked potent reference 

inhibitors. Even if MPGES2 has been co-crystallized with imidazole [179], we could not 

detect any inhibition by this compound in MPGES2 (data not shown). In the case of LPGDS, 

a reference inhibitor has been reported [180], but it was not potent enough to give a full IC50 

curve in our assay. Low enzyme activity was also an issue. As pointed out above, the MDA-

TBA assay format requires high activity enzyme and that was not the case with Cayman 

Chemicals LPGDS enzyme preparations. Eventually, we proceeded to apply an enzyme 

immunoassay (EIA) for LPGDS. The reference inhibitors used for PGIS and HPGDS were 

U-51605 [181] and HQL-79 [182] respectively. As this assay detects only consumed 

substrate, it is difficult to determine whether a partial inhibitor is truly partial or if it is due to 

artefacts. Therefore, reference inhibitors are an important part of the MDA-TBA assay, as 

they can demonstrate full inhibition. 
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3.2 INHIBITOR STUDIES 

There is a great difference in approach when testing inhibitors in a high-throughput setting 

compared to mechanistic and detailed studies of a few inhibitors of interest. In the high-

throughput setting one needs to have flexible methods, which can detect a wide range of 

potency, be able to process a large number of samples, thus being rather uncomplicated 

(preferably automatized) and economic in terms of cost and time spent on each tested sample. 

Robustness and consistency are two additional features which are very important, as the 

results are compared over a time period that could be several years long. This process might 

sound tedious for the free spirit of many researchers, but its rewards are often potent 

inhibitors that can bring much excitement as they can be applied in a wide array of systems 

thanks to their strong effect. At this point, more expensive and time demanding methods can 

be employed and potent inhibitors can develop into tools for the study of enzyme inhibition 

[183].   

The workflow when developing drug candidates for MPGES1 inhibition started by screening 

tens of thousands of compounds from commercially available libraries in the colorimetric 

assay. MK-886 was used as a reference inhibitor based on the large number of publications 

where its IC50 in MPGES1 has been reported [184-189].  MK-886 was initially tested in 

MPGES1 because of its potent inhibitory effects on two other members of the MAPEG 

family: LTC4S and FLAP [184]. The A549 non-small cell lung cancer cell line was selected 

for similar reasons when evaluating inhibitors in our in vitro cellular assays. A459 cells have 

been reported to have an increased COX2 and MPGES1 expression after IL-1β stimulation 

[190] and have been used in cellular assays to evaluate novel MPGES1 inhibitors [123, 191]. 

After evaluating inhibitor potency in vitro, the most potent hits were further optimized and 

their specificity was evaluated in parallel. Counter-screening assays included the colorimetric 

MDA-TBA assay for MPGES2, PGIS, LPGDS and HPGDS, as well as COX1 and COX2 

EIAs. The most promising compounds were further evaluated for species selectivity (paper I), 

inhibition mechanism (paper II) and finally in animal models (paper III). 

 

3.3 STOPPED FLOW EXPERIMENTS 

In the introduction, the theoretical aspects of transient kinetics were presented. In order to be 

able to determine the microscopic rate constants, a measurable signal must exist for one or 

preferably several of the reacting species/intermediates. It is also necessary that those species 

change their spectroscopic properties during the course of the reaction. Luckily, there are 

several measurable signals that can be detected in the reaction pathway of GSH and 1-chloro-

2,4-dinitrobenzene (CDNB) conjugation with MGST1 [192] and these were applied in paper 

IV. 

To be able to conduct the stopped-flow experiments at 5˚C, the stopped-flow apparatus 

(including the syringes, mixing chamber and detection cell) is equipped with a water cooler 

(or heater if required). In this manner, the reaction temperature could be monitored and 
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constantly kept at 5˚C. In a stopped-flow apparatus, the path of the cell where the absorbance 

signal is detected is normally 10 mm long, whereas the fluorescence signal is detected in a 2 

mm path length configuration.  

The absorbance signal for thiolate anion formation in MGST1 can be followed at 239 nm 

(߳ଶଷଽ = 5000 M-1cm-1), and is considerably higher than that of GSH at 239 nm. At high GSH 

concentrations on the other hand, the GSH background signal becomes so high that we had to 

employ a 2 mm cell path. A shorter path length will give a lower signal. CDNB also has an 

absorbance at 239 nm (߳ଶଷଽ = 2700 M-1cm-1), which is higher than that for the GS-CDNB 

conjugate.  

When performing single turnover stopped-flow experiments GSH containing MGST1 was 

injected from one syringe and its second substrate, CDNB, from the other syringe. MGST1 

displays one-third-of-the-sites reactivity [193] and will already have converted one of the 

GSH molecules in its active sites into GS-. When the two solutions are rapidly mixed all 

active sites containing GS- molecules will quickly conjugate a CDNB molecule (burst) and 

both the thiolate anion and CDNB signal will simultaneously decrease. The amplitude of the 

observed signal is actually an active site titration. This amplitude can thus account for factors 

such as inactive enzyme. The reason we can detect this signal is that there is a rate limiting 

step after the conjugation reaction, which consists of slow thiolate anion formation after a fast 

GSH rebinding step [194]. It is rather unusual that the thiolate anion formation is the rate 

limiting step in a GST mechanism, although examples have been reported [195], as it is 

normally a fast step compared to turnover  [195-198]. As microscopic steps involving 

deprotonation are typically very fast, we believe that the slow step rather reflects a 

conformational transition that limits deprotonation [194]. Activation of MGST1 by sulfhydryl 

reagents actually increases the rate of thiolate anion formation [199]. Depending on the 

reactivity of the second substrate, either this microscopic rate or chemical conjugation can be 

rate limiting for the overall turnover [200].  

If there is an excess of CDNB, the experiment no longer is a single turnover experiment, but 

rather a limited turnover experiment (Figure 5). In this case, the remaining CDNB will be 

consumed and the corresponding turnover rate will depend on the rate limiting step of the 

overall catalytic mechanism (thiolate anion formation). When all the CDNB is consumed we 

can follow this slow step of the enzyme mechanism separately as the enzyme-thiolate 

rebound. Compared to the burst, the amplitude of the signal here will be lower, as it only 

involves reformation of the GSH thiolate. Thus limited turnover experiments constitute a 

powerful approach to measuring the active site concentration, chemical rate, turnover rate and 

thiolate anion formation rate in a single experiment. Importantly, the experimental conditions 

reflect the GSH bound enzyme as it functions in vivo. 
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Figure 5. Example of a single turnover trace compared to a limited turnover trace for the reaction that 

takes place when GSH containing MGST1 is rapidly mixed with CDNB in a stopped flow experiment. 

Absorbance was measured at 239 nm. 

 

3.4 DERIVATION OF THE STEADY-STATE RATE EQUATION FOR MGST1 

Derivation of the steady-state rate equation for enzyme mechanisms can be achieved by 

following the three assumptions listed in the introduction section on steady-state kinetics 

(total enzyme concentration is equal to the sum of free enzyme and intermediate species, no 

change in substrate concentration, and finally, rates of formation and decay of intermediates 

are assumed to be constant and equal). First, a set of equations for mass balance and all the 

involved reactions and equilibria (of the different enzyme forms) are set up, and subsequently 

the rate equation is derived by solving the postulated equations. This is how we derived the 

steady-state rate equation for MGST1. Simplifying assumptions in the particular case of 

MGST1 are equal binding affinity of substrates to the various enzyme forms and treatment of 

the re-protonation rate process using an apparent first order constant. As complex enzyme 

mechanisms can result in intricate equations, several methods have been developed to 

simplify the derivation process. One is the traditional King Altman method from 1956 [201], 

which has been further developed for reactions where equilibria are involved by i.e. Cha et al. 

[202], an approach that we also have employed to confirm our resulting rate equation (not 

shown). Here we show the complete derivation of the steady-state rate equation for MGST1 

based on the random sequential bisubstrate mechanism shown in Scheme 5 where C 

represents an electrophilic substrate and rapid equilibria are denoted with an asterisk. 

Scheme 5. 
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Total enzyme concentration is equal to the sum of free enzyme and intermediate species: 

ሾܧ௧ሿ ൌ ሾECሿ ൅ ሾEGSHሿ ൅ ሾEGSHCሿ ൅ ሾEGSିሿ ൅ ሾEGSିCሿ ൅ ሾE୤ሿ 

Equilibrium relations based on the mechanism (Scheme 5) give expressions for the different 

enzyme species based on the equilibrium binding constants for GSH and the electrophilic 

substrate (C):  

஼ܭ ൌ
ሾEGSିሿሾCሿ
ሾEGSିCሿ

					⇒ 					 ሾEGSିሿ ൌ ሾEGSିCሿ
஼ܭ
ሾCሿ

 

	

஼ܭ ൌ
ሾEGSHሿሾCሿ
ሾEGSHCሿ

					⇒ 					 ሾEGSHCሿ ൌ ሾEGSHሿ
ሾCሿ
஼ܭ

 

	

ீܭ ൌ
ሾECሿሾGSHሿ
ሾEGSHCሿ

					⇒ 					 ሾECሿ ൌ
ሾEGSHCሿீܭ
ሾGSHሿ

ൌ ሾEGSHሿ
ሾCሿீܭ

஼ሾGSHሿܭ
 

Insertion of the above relations into the formula for ீܭ give us expressions for ሾEGSHሿ and 

ሾEGSHCሿ including ሾEGSିሿ and ሾEGSିCሿ: 

	

ீܭ ൌ
ሾE୤ሿሾGSHሿ
ሾEGSHሿ

ൌ
ሺሾE୲ሿ െ ሾECሿ െ ሾEGSHሿ െ ሾEGSHCሿ െ ሾEGSିሿ െ ሾEGSିCሿሻሾGSHሿ

ሾEGSHሿ
 

	

⇒ 				
ீܭ

ሾGSHሿ
ൌ
ሾE୲ሿ െ ሾEGSିሿ െ ሾEGSିCሿ

ሾEGSHሿ
െ

ሾCሿீܭ
஼ሾGSHሿܭ

െ
ሾCሿ
஼ܭ

െ 1 

	

⇒ 				 ሾEGSHሿ ൌ
ሾE୲ሿ െ ሾEGSିሿ െ ሾEGSିCሿ
ሾCሿீܭ
஼ሾGSHሿܭ

൅
ீܭ

ሾGSHሿ ൅
ሾCሿ
஼ܭ

൅ 1
 

	

⇒ 				 ሾEGSHCሿ ൌ
ሾE୲ሿ െ ሾEGSିሿ െ ሾEGSିCሿ
஼ܭீܭ

ሾCሿሾGSHሿ ൅
ீܭ

ሾGSHሿ ൅
஼ܭ
ሾCሿ ൅ 1

 

Equal rates of formation and decay of the intermediates give the following equation: 

		݇ଶሺሾEGSHሿ ൅ ሾEGSHCሿሻ ൌ ݇ିଶሺሾEGSିሿ ൅ ሾEGSିCሿሻ ൅ ݇ଷሾEGSିCሿ 

By substituting the above derived expressions for ሾEGSHሿ, ሾEGSHCሿ and ሾEGSିሿ into the 

following equation we have all we need to derive the steady-state rate equation: 
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݇ଶ
ሾE୲ሿ െ ሾEGSିሿ െ ሾEGSିCሿ
ሾCሿீܭ
஼ሾGSHሿܭ

൅
ீܭ

ሾGSHሿ ൅
ሾCሿ
஼ܭ

൅ 1
൅ ݇ଶ

ሾE୲ሿ െ ሾEGSିሿ െ ሾEGSିCሿ
஼ܭீܭ

ሾCሿሾGSHሿ ൅
ீܭ

ሾGSHሿ ൅
஼ܭ
ሾCሿ ൅ 1

ൌ ݇ିଶሾEGSିሿ ൅ ݇ିଶሾEGSିCሿ ൅ ݇ଷሾEGSିCሿ 

After simplifications, including insertion of the expression for turnover rate, which is 

determined by the last step of the mechanism (Scheme 5),  

ݒ ൌ ݇ଷሾEGSିCሿ 

we arrive at the steady-state rate equation for MGST1: 

ݒ ൌ
݇ଶ݇ଷሾCሿሾGSHሿሾE୲ሿ
݇ିଶX ൅ ݇ଷY ൅ ݇ଶZ

 

X ൌ ஼ሾGSHሿܭ ൅ ீܭ஼ܭ ൅ ሾCሿሾGSHሿ ൅  ሾCሿீܭ

Y ൌ ሾCሿሾGSHሿ ൅  ሾCሿீܭ

Z ൌ ሾCሿሾGSHሿ ൅  ஼ሾCሿܭ
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4 THESIS AIMS, CHAPTER 4 

The work presented in this thesis is focused on extending the mechanistic understanding of 

MAPEG superfamily members MPGES1 and MGST1. The overall aim of this thesis project 

is to elucidate the catalytic and inhibitory mechanisms of these two integral membrane 

proteins. The specific aims of this study form the basis of the following publications: 

Paper I 

 

Paper II 

Paper III 

 

 

Paper IV 

To investigate the active site and inhibitor binding site of MPGES1 and 

determine species differences of the human and rat enzyme 

To evaluate inhibition mode for MPGES1 specific inhibitors 

To characterize a new pharmacological inhibitor of MPGES1 in murine 

models of inflammation and compare its effect with MPGES1 gene deletion 

in vivo 

To determine the global kinetic mechanism of MGST1 by pre steady-state 

and steady-state kinetics 

Our studies thus potentially contribute to human health by enabling safer drug development 

and to the basic understanding of membrane bound enzymes. 
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5 RESULTS AND DISCUSSION, CHAPTER 5 

This thesis includes three studies regarding function and inhibition of MPGES1, which have 

all been published. These publications can be found at the end of this thesis as papers I-III. 

Paper I deals with structural aspects of MPGES1, paper II is a methodological paper for the 

evaluation of MPGES1 inhibition in vitro, and finally in paper III MPGES1 inhibition is 

evaluated in vivo. The final study, included as paper IV, focuses on MGST1 and is available 

in the form of a manuscript as it has not yet been published. Paper IV presents the global 

kinetic mechanism of MGST1. The main findings will be presented and discussed here in the 

context of relevant literature.  

 

5.1 MPGES1 INHIBITION 

MPGES1 has been called a novel therapeutic target since 1999 [104], and continues to be 

attributed that title [100]. Unfortunately, 15 years later, there are no MPGES1 inhibitors in 

advanced clinical trials and many pharmaceutical companies have discontinued their R&D 

efforts on this pharmacological target. This is the reality of many pharmaceutical projects and 

several take far longer to finally develop into commercially available drugs. This was for 

instance the case for omeprazole (Losec), where discovery efforts by Astra and Swedish 

researchers at Sahlgrenska Hospital started already in the 1950’s and launch of the drug was 

in 1988 [203]. 

Potent inhibitors targeting MPGES1 have been developed, but when testing them in animal 

models, they often turn out to be quite ineffective. Merck developed a potent and selective 

MPGES1 inhibitor, MF63, with a reported IC50 of 1 nM in enzymatic assays of human 

MPGES1. This inhibitor however was virtually inactive against rat MPGES1 [123, 131]. We 

investigated MPGES1 as a drug target in collaboration with Actar and NovaSAID, and 

during the screening process we found two potent human MPGES1 inhibitors originating 

from two different screening efforts (Figure 6). Unfortunately, we encountered the same 

problems as Merck did with several of our hits when attempting to characterize them with rat 

enzyme. Compound I only inhibited human MPGES1, whereas compound II inhibited both 

enzyme orthologues. To investigate the underlying details of this discrepancy in species 

specific inhibition, we evaluated the enzyme and inhibitor differences through site directed 

mutagenesis (paper I).  

Initially, two chimeric forms of rat/human MPGES1 were created to determine the 

approximate range within which the catalytically active and inhibitor interacting amino acids 

could be encountered. Sequence differences between the enzymes of the two species are 

located in transmembrane helices 3 and 4, as well as the N terminus. We also had guidance 

from the then recently published electron crystallography structure of MPGES1 [204] and 

chose to exchange residues 115-140 from the rat enzyme into the human enzyme, and vice 

versa.  The  exchanged  sections comprise  the  end of  transmembrane  helix 3, the beginning 
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Figure 6. Chemical structures for compounds I and II which are competitive inhibitors of MPGES1 

evaluated in papers I and II. 2-Chloro-N-[3-(naphthalen-1-ylcarbamoyl)phenyl]benzamide (I), 4-[2-(3-

Bromophenyl)hydrazono]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-1-carbothioamide (II).  

of transmembrane helix 4 and the cytosolic loop in between them. Both chimeric proteins had 

PGE2 forming activity in the same range as the rat enzyme, which is 3 times lower than the 

human enzyme. When investigating inhibition, we observed that compound I failed to inhibit 

the catalytic activity of hum115rat140hum and gained inhibitory potential in the 

rat115hum140rat chimeric enzyme. We could thereby conclude that residues of importance 

for inhibitor binding were in fact within this chosen region. Subsequently, those amino acids 

that varied in between the two species were mutated through site directed mutagenesis and 

investigated for activity and inhibition by compound I. No single mutation accounted for the 

full effect of inhibitor sensitivity, but a few were more prominent than others, so we 

continued our efforts and created new mutant combinations based on two or more mutations. 

The result of our efforts identified mutations V131T, F135L and F138A in the rat enzyme as 

the most critical for regained inhibitor sensitivity. The IC50 for compound I in the rat enzyme 

triple-mutant still was somewhat higher than that in the chimeric rat protein and wild type 

human enzyme, which implies that other more remote residues could also contribute to the 

inhibition sensitivity, although with only less pronounced effects. The three crucial residues 

are all aligned in the cleft between helix 4 and 1, which is the presumed PGH2 substrate-

binding site (and inferred competitive inhibitor binding site). In fact a recent MPGES1 

structure obtained from in cubo crystallization with bound inhibitor is consistent with the 

location [205].  In human MPGES1, these residues are rather small, but in the rat enzyme 

they are instead bulky aromatic residues and thereby mediate steric hindrance for several 

MPGES1 inhibitors. Similar bulky residues are found in the mouse orthologue, whereas they 

are not encountered in the guinea pig enzyme. This could be the explanation why many 

human MPGES1 inhibitors have similar IC50 values with the guinea pig enzyme [123] and 

also motivated the use of this species as an animal model. At the time our studies were the 

first experimental data supporting the PGH2 and inhibitor binding site and as such could be 

used for targeted docking efforts. Subsequent enzyme inhibitor structures [143, 205] are of 

course more conclusive. 
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In parallel with the above discussed investigations, we determined the mode of inhibition of 

several inhibitors (including compound I and II) to better understand their inhibitory 

mechanism. We used the MDA-TBA assay format and determined IC50 values for interesting 

inhibitors which had already been well characterized for potency and selectivity in several in 

vitro assays. The assay was conducted at three different PGH2 concentrations, one at the ܭெ 

value (170 µM) [206], one well below its  ܭெ value (10 µM), and one high above (640 µM). 

By applying the principles shown in Figure 3, it is possible to determine the inhibition 

mechanism by investigating the pattern of IC50 values as a function of substrate 

concentration. It is imperative that the substrate concentrations are spread out around the ܭெ 

value for the trends to be meaningful. Paper II describes a simple and generally applicable 

approach to determine inhibition mechanism and inhibitor potency of MPGES1 inhibitors. 

We felt that there was a need to establish a method for evaluating MPGES1 activity which 

didn’t require demanding procedures [105] or expensive robotics [130]. No previous study 

had determined the inhibition mechanism of ܭ௜ value for the often employed reference 

inhibitor MK-886. Here we concluded that MK-886 along with compound II showed mixed 

inhibition towards PGH2. The remaining four compounds were pure competitive inhibitors 

towards PGH2 and all inhibitors were non-competitive towards GSH. Most reported 

MPGES1 inhibitors are competitive toward PGH2, as shown here, and also by others [207]. 

Moreover, as observed in paper I, the residues responsible for inhibitor efficiency are aligned 

on the cleft where the substrate potentially enters. We suggest therefore that inhibitor binding 

likely occurs in the same cleft. Prage et al. reported their H/D exchange experiments recently 

after our publication [150], and could confirm that the location of MK-886 include the GSH 

binding site and the substrate binding cleft. Shortly thereafter, He and Lai published a 

molecular docking study which supported the idea that MK-886 binds to the PGH2 binding 

site [208]. To summarize, we have developed a simple and efficient approach for 

pharmaceutical inhibitor screening, determined the inhibitory mechanism of the well-

established MPGES1 reference inhibitor MK-886, and developed several potent competitive 

inhibitors of MPGES1. 

The promising results for compound II as a rat enzyme inhibitor pushed us to further 

characterize this compound in vitro and in vivo [183]. Through this compound we could set 

up models to test specific MPGES1 inhibitors for their potential in the treatment of 

inflammation related to arthritis. Those models consisted of the air pouch and adjuvant-

induced arthritis models which are driven by the inducible PGE2 pathway [185, 209] and 

have been applied in the development of NSAIDs [209, 210]. Our discovery efforts complete 

this story of MPGES1 inhibition with the development of compound III (Figure 7). It is 

unfortunate, but important, to note that compound III in paper III differs from compound III 

in paper II. Hereon, compound III will refer to that described in paper III and Figure 7. 

Compound III was developed in a targeted effort to improve the potency for human MPGES1 

(IC50 of 0.09 µM),  whereas  its  potency  in  the rat enzyme  is  in the  same  range  as  that of 
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Figure 7. Chemical structure for compound III; 1-(1-isopropyl-5,6-dimethyl-1H-benzoimidazol-2-yl)-

piperidine-4-carboxylic acid cyclopentylamide. 

compound II (IC50 of 0.9 µM) MPGES1. This compound was characterized in vitro by the 

aforementioned enzymatic and cellular assays. We also tested the compound in vitro in the 

presence of serum proteins, as protein binding has been reported to be a potential problem in 

the development of MPGES1 specific inhibitors [189]. The hydrophobic nature of PGH2 and 

therefore its binding site, results in development of MPGES1 competitive inhibitors that are 

quite hydrophobic. Consequently, they often perform poorly in whole blood assays or assays 

with high serum protein content [131, 138, 211, 212]. The whole blood assay used in paper 

III originates from Brideau et al [213] and was established for the development of NSAIDs. 

This assay is perceived as a robust method to assure that inhibitors are likely to function in 

vivo.  

In order to evaluate if MPGES1 is a better drug target than COX inhibition by traditional 

NSAIDs, much effort has been put in assessing the effect of MPGES1 inhibition on the 

prostanoid profile. Long-term treatment with COXibs has been reported to cause 

cardiovascular complications associated with perturbation in the blood TXB2/PGI2 ratio [214] 

and it is thus necessary to prove that this is not the case with MPGES1 inhibitors. Treatment 

with MPGES1 inhibitors and MPGES1 gene deletion have been reported and point to a 

heterogeneity in outcomes, which are dependent on cell type, assay conditions and genetic 

background [120, 123, 129, 138, 211, 215]. This is in line with our results, where MPGES1 

inhibition by compound III in A549 cells was associated with shunting of PGH2 into the 

prostacyclin pathway, whilst it induced general down-regulation of prostanoid synthesis in 

the mouse air pouch model. Moreover, genetic deletion of MPGES1 in the mouse air pouch 

model and mouse macrophages shunted PGH2 into the thromboxane pathway. Differences in 

the effect of MPGES1 pharmacological inhibition and genetic deletion are to be expected, as 

inhibition is never complete and doesn’t directly affect enzyme expression. It is therefore 

important to compare inhibitors in the same models with similar conditions and to 

complement results from knockout animals with inhibition results in wild type systems. 

Through different in vitro assays and in vivo models of inflammation we have characterized 

compounds II and III. At the time these compounds were the only MPGES1 inhibitors 

reported to have an effect in vivo in native murine models of inflammation. Our results show 

that it is possible to develop potent human MPGES1 inhibitors that can be tested in murine in 

vivo models. 
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Where do MPGES1inhibition efforts stand now? Except for compound III, which is a potent 

inhibitor that has a demonstrated effect in animal models, the study by Shiro et al. of new, 

potent MPGES1 inhibitors appears promising [216]. Their inhibitors seem to have a strong 

profile including nanomolar range IC50 values in enzymatic and cell-based assays, 

good MPGES1 selectivity, and favorable in vitro ADME and in vivo rat PK profiles. New 

approaches in inhibitor development will be discussed in the future perspectives section. 

 

5.2 THE GLOBAL MECHANISM OF MGST1 

MGST1 is the closest relative to MPGES1 in the MAPEG superfamily based on sequence 

similarity (38%) [147]. MGST1 has been far more studied, especially concerning its 

enzymatic mechanism, than MPGES1, and even if there are clear differences in their 

biological functions and catalytic mechanisms, many important aspects of one’s catalysis can 

give insights to the other’s.  

Our group was involved in the discovery and characterization of MGST1 [30-34] and has 

further investigated the details of its catalytic mechanism in detail [30, 37, 193, 194, 199, 

217]. As was described in the methodology section, MGST1 displays a bimolecular random 

sequential mechanism [37] and the ability to be activated, up to 30‐fold, by modification with 

sulfhydryl reagents [30, 31]. Moreover, MGST1 exhibits one-third-of-the-sites-reactivity 

towards GSH [193] and hence heterogeneous binding at its three active sites. Pre steady‐state 

kinetic steps have been characterized for MGST1 [193, 194, 199], but until now, global 

mechanisms have only been determined for soluble GSTs [198, 218-220]. In paper IV, we 

assemble the collected knowledge on the different steps of the catalytic mechanism of 

MGST1 and propose a global mechanism for this enzyme. Through limited turnover kinetic 

measurements of the activated enzyme form, we could more accurately determine ܭ஽ for the 

“third” low affinity GSH‐binding site (1.4 ± 0.3 mM) and the rate of thiolate formation, ݇ଶ 

(0.77 ± 0.06 s‐1). These constants are more physiologically relevant compared to the high 

 values for GSH obtained earlier [199]. Intracellular GSH concentrations will thus saturate	஽ܭ

MGST1 in vivo and ensure that the enzyme is fully loaded with GSH at the start of a catalytic 

cycle [25]. A Hammett analysis was also conducted on four second substrates of increasing 

chemical reactivity. The results differ from those obtained at 30˚C [200]. In general, the 

kinetic parameters at 5˚C are linearly dependent on the electrophile’s reactivity at the same 

time as activation of the enzyme clearly takes place regardless of chemical reactivity of the 

second substrate. MGST1 seems to enter a resting state at these low temperatures, which can 

be activated both in terms of increased rate of thiolate formation and in the chemical 

conjugation step. By deriving the steady-state rate equation we compared the theoretical 

catalytic constants ܭெ, ݇௖௔௧ and ݇௖௔௧/ܭெ (obtained by inserting the microscopic constants in 

the equation) to the experimentally obtained constants. The microscopic steps account for the 

global mechanism in activated enzyme with reactive second substrates. The catalytic 

constants obtained for reactive substrates in unactivated MGST1 can only be accounted for 

by the microscopic constants if a more active subpopulation of MGST1 is assumed. The 
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existence of an activated subpopulation (approximately 10%) could be directly demonstrated 

in limited turnover experiments. In conclusion, we suggest that MSGT1 has a pre‐existing 

dynamic equilibrium between high and low activity forms. 

The activated MGST1 is unstable without GSH at 30˚C and pre steady-state analysis 

therefore had to be performed at 5˚C. Our conclusions are thus valid for the enzyme’s 

catalytic behavior at low temperature. Still, there are important lessons to be learned from this 

investigation. Furthermore we propose limited turnover experiments, which can be conducted 

at 30˚C, to obtain physiologically relevant results. These ideas will be further discussed in the 

future perspectives. 

 

5.3 FUTURE PERSPECTIVES 

5.3.1 Global mechanism of MGST1 

Hammett analysis and steady-state experiments of MGST1 with a series of four electrophilic 

second substrates at 5˚C pointed to a dynamic resting state of this enzyme (paper IV). As this 

phenomenon was not observed at 30˚C, we propose that the resting state is more peculiar to 

the low temperature experiments.  

By performing limited turnover stopped flow experiments at 30˚C we will obtain 

physiologically relevant microscopic rate and equilibrium constants. By insertion of these 

constants in the steady-state rate equation derived here, we will be able to evaluate if the pre 

steady‐state behavior can account for the published steady‐state kinetic behavior at 30˚C. 

These experiments are feasible, since the enzyme is stable in the presence of GSH at this 

temperature and would give a good basis for the understanding of the catalytic mechanisms 

of other MAPEG family members. 

5.3.2 Inhibition of MPGES1 targeting the GSH binding site 

Hurdles in the development of PGH2 competitive inhibitors of MPGES1 include their species 

specificity, hydrophobic nature and solubility issues. We propose investigation and 

development of inhibitors targeting the enzyme’s GSH site instead. By targeting the GSH 

site, enhanced solubility could more easily be achieved for potential inhibitors. GSH is a 

hydrophilic molecule which enters the active site of MPGES1 from the cytosol rather than 

through the phospholipids of the membrane, which is the route of entrance for PGH2. In this 

way, problems encountered with limited availability of animal models, binding to serum 

proteins and bioavailability could be diminished. 

He et al. have in their study from 2011 explored the idea of development of dual-site 

inhibitors [208], but, to our knowledge, no groups have explored the possibility of developing 

GSH competitive and PGH2 non-competitive inhibitors in MPGES1. In LTC4S, this notion 

has been fully explored by Ago et al. who found a series of GSH competitive inhibitors 

which were non-competitive towards LTA4 [221]. Prague et al. have explored the binding of 
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glutathione sulfonate in MPGES1 through H/D exchange experiments [150]. They also found 

that this inhibitor has a rather high IC50 (1.8 mM) in MPGES1 compared to other GSH 

utilizing enzymes [222]. Several groups have also made efforts to develop and characterize 

dual inhibitors of MPGES1 and 5-LO for the inhibition of pro-inflammatory PGE2 and 

leukotrienes formation [223-227]. Sjögren et al. from AstraZeneca confirmed the horse-shoe 

shaped conformation of GSH in the active site of MPGES1 [143] for which there was 

evidence already in the crystal structure determined by our groups through electron 

crystallography [204]. This conformation of GSH is different to that of any other investigated 

GSH utilizing enzyme (except LTC4S [228]) and could therefore be an interesting way of 

proceeding with drug development efforts. Dual inhibitors of MPGES1 and LTC4S could be 

pursued as a potential pharmacological strategy for treatment of inflammation and cancer, 

and a more specific alternative to dual inhibitors of MPGES1 and 5-LO. 

5.3.3 Catalytic mechanism for MPGES1 

MPGES1 has been extensively investigated as a pharmaceutical target and great efforts have 

been made in developing inhibitors targeting its active site, though very little is known about 

its catalytic mechanism. Two catalytic mechanisms have been proposed on the basis of the 

electron crystallography [204] and X-ray structures [143] but remain to be confirmed. As the 

latter has a higher resolution and more detail, we propose to explore that mechanism based on 

site directed mutagenesis and pre steady-state experiments. The catalytically interesting 

residues to mutate in human MPGES1 would be those close to, or coordinating the GSH 

molecule (Ser127, Arg126, Asp49 and Arg73).  

 
Figure 8. Proposed catalytic mechanism for MPGES1 where the catalytic cycle is initiated by proton 

abstraction at C9 (by Asp-49) and the protonated GSH thiol acting as a proton donor to the developing 

oxyanion at C11 in PGH2 perhaps assisted by Ser-127. Subsequent proton reshuffling from Asp-49 to 

GSH thiolate forming the catalytically competent ground state could involve water molecules present 

in the active site. 
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Preliminary results from our mutagenesis studies show that Arg126 and Asp49 are important 

residues for the enzymes catalytic activity, whereas the Ser127 and Arg73 mutants retain 

almost full activity (data not shown). Our results are preliminary and were evaluated through 

Western Blot for MPGES1 expression in bacterial membrane fractions, MDA-TBA assay for 

activity and RP-HPLC coupled to a mass spectrometer (RP-HPLC/MS) for product analysis. 

Based on these findings and difficulties in detecting a thiolate signal in stopped flow 

experiments (performed in collaboration with Haeggström et al.) we propose a novel catalytic 

mechanism for MPGES1 (Figure 8). 

MPGES1 is a less stable protein than MGST1; it precipitates without GSH and has a very 

labile substrate. All these aspects make enzymatic and mechanistic characterizations of this 

protein more complicated. Still, understanding the catalytic mechanism of MPGES1 will play 

an important role in the continued understanding of the MAPEG superfamily of enzymes, as 

well as in the development of future inhibitors and potential new drugs. 
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