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Abstract 

The glycosyltransferase SnogD from Streptomyces nogalater transfers a nogalamine 

moiety to the metabolic intermediate 3´,4´-demethoxynogalose-1-

hydroxynogalamycinone during the final biosynthetic steps of the aromatic polyketide 

nogalamycin. The crystal structure of recombinant SnogD, as apo-enzyme and with a 

bound nucleotide, 2-deoxyuridine-5´-diphosphate, was determined to 2.6 Å resolution. 

Reductive methylation of SnogD was crucial for the reproducible preparation of 

diffraction quality crystals due to the creation of an additional intermolecular salt bridge 

between the methylated lysine residue Lys384 and Glu374* from an adjacent molecule in 

the crystal lattice. SnogD is a dimer both in solution and the crystal and the enzyme 

subunit displays a fold characteristic of the GT-B family of glycosyltransferases.  

Binding of the nucleotide is associated with rearrangement of two active site loops. Site-

directed mutagenesis shows that two active site histidine residues, His25 and His301, are 

critical for the glycosyltransferase activities of SnogD both in vivo and in vitro. The 

crystal structures and the functional data are consistent with a role of His301 in binding 

of the diphosphate group of the sugar donor substrate and a function of His25 as a 

catalytic base in the glycosyl transfer reaction.   

Database 

The atomic coordinates and structure factors have been deposited with the RCSB Protein 

Data Bank under accession numbers 4AMB, 4AMG, and 4AN4. Streptomyces nogalater 

glycosyltransferase SnogD, GenBank accession no. AAF01811.1, EC 2.4.1, UniProt 

Q9RN61 

Abbreviations 

GT, glycosyltransferase; dUDP, 2´-deoxyuridine-5´-diphosphate; SnogD-wt, SnogD 

wild-type; SnogD-wtUDP, wild-type SnogD-dUDP binary complex; SnogD-m, 

methylated SnogD; SnogD-mdUDP, methylated SnogD-dUDP binary complex. 
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Introduction 

Anthracylines, produced mainly by soil dwelling Gram-positive bacteria of the genus 

Streptomyces, are aromatic polyketides that often exhibit a high cytostatic potency. 

Several members of this group, for example epirubicin and doxorubicin, belong to the 

most used anti-cancer agents worldwide [1]. Anthracycline biosynthesis in Streptomyces 

starts with the production of the polyketide scaffold, which is formed by iterative 

additions of malonate extender units to acetate or propionate primers by type II 

polyketide synthase in concert with cyclases, aromatases and ketoreductases [2]. The 

aglycone backbone is further modified by tailoring enzymes including hydroxylases, 

methylases and aminotransferases, leading to the large diversity of these metabolites. An 

important class of tailoring enzymes are the glycosyltransferases, as glycosylation of the 

carbon skeleton is required in many cases to form the biologically active polyketides 

[3,4]. These glycosyltransferases use nucleotide diphosphate sugars as donors, typically 

TDP-conjugated sugars, with a significantly greater diversity amongst the sugar-

acceptors [5]. 

Streptomyces nogalater produces the aromatic polyketide nogalamycin (Figure 1, 1), 

which contains the carbohydrate moieties nogalose attached to carbon 7 and nogalamine 

attached to carbon 1 [6]. The attachment of nogalamine to the aglycone is highly 

remarkable as it involves the formation of a carbon-carbon bond linking atoms C5´´ of 

the sugar and C2 of the polyketide scaffold. A second link is formed via an O-glycosidic 

bond to carbon 1 of nogalamine. Attachment of sugar moieties to natural products via C-

C bonds has been described in a few cases, for instance urdamycin [7], gilvocarcin [8], 

hedamycin [9] and granaticin [10], but the combination of both types of linkages in 

nogalamycin is rather unique and poses interesting questions about the order of the 

attachment and the chemistry of this glycosylation step.  

The gene cluster responsible for the biosynthesis of nogalamycin in S. nogalater has been 

cloned and the functions of most of the encoded enzymes have been annotated by 

sequence comparisons and/or subsequent biochemical and structural studies [11–15]. The 

cluster contains three genes that code for glycosyltransferases, snogD, snogE and snogZ, 

related to each other by amino acid sequence identities of around 30 %. A recent study 
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showed that SnogE is responsible for the transfer of nogalose to the C-7 hydroxyl group 

of nogalamycinone (Figure 1, 2), whereas SnogD is involved in the transfer of the 

nogalamine moiety to the glycosylated metabolic intermediate  3´,4´-

demethoxynogalose-1-hydroxynogalamycinone (Figure 1, 3) [15]. The 

glycosyltransferase SnogZ appears to be redundant as it is not necessary for the 

heterologous formation of double glycosylated anthracyclines in the expression host S. 

albus.  

Sequence comparisons of SnogD (UniProt Q9RN61) with related enzymes show that it 

belongs to the glycosyltransferase type 1 family [16]. These enzymes display the GT-B 

fold [17] and are characterized by a SN2-type mechanism of sugar transfer with 

accompanying inversion of the anomeric configuration at C1 of the donor-sugar. Here we 

present the X-ray crystal structure of SnogD, in the apo-form and in complex with the 

nucleotide 2´-deoxyuridine-5´-diphosphate (dUDP). We further report the results of in 

vitro and in vivo mutagenesis studies of the conserved active site residues His25 and 

His301.The structural and functional data are consistent with crucial roles of these 

residues in the mechanism of SnogD as a catalytic base and in nucleotide-sugar binding, 

respectively. 

 

Results 

Structure determination of SnogD 

The crystal structure of recombinant SnogD, comprising residues 13-390 of the native 

enzyme, was determined in two different space groups to resolutions of 2.6 and 2.7 Å, 

respectively (Table 1). Crystals of wild-type SnogD (SnogD-wtdUDP) of sufficient 

diffraction quality (< 3 Å resolution) could not be reproduced despite numerous attempts. 

Reductive methylation of the protein sample proved critical for reproducibility of 

crystallisation and diffraction quality of the crystal. Chemical modification of SnogD 

resulted in a mass of 42023.5 Da determined by electrospray mass spectrometry, which 

compares well to the theoretical mass (42024.0 Da) of the SnogD construct including 
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eight methyl groups. This data thus suggest almost complete di-methylation of the N-

terminal nitrogen atom and the four lysine residues.    

The structure of the enzyme was determined in three different forms, wild-type SnogD in 

space group P21212 and methylated SnogD in space groups P21212 and P2, respectively 

(SnogD-mdUDP and SnogD-m). The orthorhombic space group contains two chains in 

the asymmetric unit (51 % solvent content). The refined models comprise all residues of 

the construct (13-390), with a few exceptions. Weak or no electron density is observed 

for two loop regions in most of the chains of all three reported structures, which were 

thus modelled to various extents. These peptide segments are in the vicinity of the 

acceptor substrate binding site of the enzyme and include residues 74-93 (loop FL1) and 

323-327 (loop FL2). The asymmetric unit of the monoclinic crystal form contains four 

polypeptide chains, corresponding to a solvent content of 40 %. In addition to the above 

mentioned two loops, several other loop regions are disordered in at least one of the 

subunits of the corresponding model. These include residues 152-156, 196-199, 235-244, 

275-276, and 339-350.  

During refinement, residual difference electron density at the nucleotide binding site of 

chain B in SnogD-wtdUDP and chains B and D of SnogD-mdUDP indicated ligand 

binding. The shape of this electron density and the hydrogen bonding interactions with 

the enzyme were consistent with that of a diphosphorylated nucleoside lacking the 2´-

hydroxyl group, and was subsequently modelled as dUDP (Figure 2). The ligand 

originates from the expression host as it was not added during crystallisation. Details of 

the refinement and the model quality are given in Table 1. 

Overall structure of SnogD 

Structure of the subunit: SnogD displays the twin-domain architecture of the GT-B fold, 

consisting of two Rossman-fold domains with the active site located at the domain 

interface (Figure 3). The N-terminal domain (residues 1-209) consists of a seven-stranded 

parallel β-sheet, eight α-helices and two 310-helices. The sheet itself is sandwiched 

between four of the helices on one side and three helices on the other side. The C-

terminal domain (residues 228-390) is of similar topology with a six-stranded parallel β-
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sheet flanked by six α- and four 310-helices. The last C-terminal helix, with a kink 

between residues Glu374-Pro377, a common feature of the GT-B fold, crosses over to 

complete the N-terminal domain through residues Pro378-Gly390.  

Structural relationships to related proteins: A search for structural homologues of 

SnogD using the DALI-server [18] resulted in several GT-1 glycosyltransferases with 

significant structural similarity despite low sequence homology. The closest structural 

relatives are CalG3 [19], Z-score 42.5, r.m.s.d 2.3 Å, 38 % sequence identity; UrdGT2 

[20], Z-score 37.4, r.m.s.d 2.6 Å, 28 % sequence identity; SpnG [21], Z-score 37.4, 

r.m.s.d 2.6 Å, 30 % sequence identity; CalG1 [22], Z-score 37.1, r.m.s.d 3.5 Å, 30 % 

sequence identity, EryCIII [23], Z-score 35.8, r.m.s.d 2.9 Å, 34 % sequence identity and 

OleI [24], Z-score 33.2, r.m.s.d 2.7 Å, 25 % sequence identity.  

A pBLAST search returns the amino acid sequence of the hypothetical protein 

ML5_4439 (Uniprot id: E8RWV0) from Micromonospora sp. L5 as the closest relative, 

showing 63.1 % amino acid sequence identity.  

Quaternary structure: Analysis of the crystal packing by manual inspection and with the 

PISA server [25] reveals that SnogD is a dimer in both crystal forms. This agrees well 

with the results from analytical gel filtration experiments that indicated a dimeric 

structure also in solution. The subunits in the SnogD dimer are oriented head-to-tail 

(Figure 3), and related by a twofold non-crystallographic symmetry axis. The dimer 

interface covers an area of 1430 Å2, and includes three salt bridges and 16 hydrogen 

bonds between the subunits. Part of the interface is also the extension of the 7-stranded β-

sheet of the N-terminal domain by an additional parallel β-strand comprising amino acids 

215-217 from the long inter-domain peptide segment (210-227) linking the N-terminal to 

the C-terminal domain of the neighboring subunit. Superimposition of the two subunits 

forming the dimer results in an r.m.s.d. of 0.5-0.8 Å. The overall structures of the dUPD-

free and dUDP bound subunits are all very similar, irrespective of crystal from, and 

superposition results in  r.m.s.d values in the range of 0.6-0.8 Å. Structural deviations are 

restricted to the nucleotide binding site and described below. 
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Reductive methylation stabilizes crystal packing: Reductive methylation significantly 

improved the reproducibility in obtaining better diffracting crystals. Electron density 

corresponding to a methylated lysine side chain was however only observed for one 

(Lys384) of the four lysine residues in chain A. This residue was well defined in electron 

density in the two crystal forms, whereas the side chains of other lysine residues 

(including Lys384 from chains B, C and D in the asymmetric unit) were disordered to 

various extends. Methylated Lys384 forms an intramolecular stacking interaction with 

the side chain of Trp204, and most importantly is also involved in a salt bridge to 

Glu374* from the polypeptide chain related by crystallographic symmetry. This salt 

bridge, only observed for chain A, is not present in crystals of wild-type SnogD and the 

additional interaction in the crystal lattice most likely is involved in the improved 

crystallization behavior upon reductive methylation.   

Nucleotide binding to SnogD: dUDP is bound in a cleft at the interface between the two 

domains of the SnogD subunit.  Hydrogen bonds to the ligand involve residues from the 

C-terminal domain and one residue of the inter-domain linker (Figure 4). The uracil 

moiety packs against the side chain of Trp285. Atoms O2 and N3 of the pyrimidine ring 

are hydrogen-bonded to the backbone amide of Leu288 and carbonyl oxygen of Ile286, 

respectively, while the O4 atom is in close proximity (3.4 Å) of the backbone amide of 

the latter residue. The 3´-hydroxyl group and the O5´ atom of the deoxyribose moiety 

form hydrogen bonds to the side chains of Asn212 and Thr306, respectively.  

The α-phosphate is located at the N-terminal end of the helix (303-315) and is linked via 

hydrogen bonds to the amide groups of Ser304 and Gly305 (Figure 3). Both residues are 

part of the conserved diphosphate-binding “PPi-motif“ [26] represented in SnogD by 

GGSG (Figure S1). The highly conserved His301 is appropriately positioned to form 

hydrogen bonds to both α- and β-phosphate groups. A modest movement would bring the 

β-phosphate group into hydrogen bonding distance to main chain amide and side chain 

hydroxyl of Ser236. Such an interaction is observed in one of the nucleotide-binding 

subunits of SnogD-mdUDP.  

In UDP-utilizing GTs the recognition of the ribose moiety is provided by hydrogen bonds 

of a glutamic acid residue located in the α-helix directly following the PPi-motif 
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[24,27,28]. In SnogD, this glutamic acid is replaced by Thr309, which does not interact 

with the deoxyribose group. Instead the 3’-hydroxyl group of the carbohydrate moiety 

forms a hydrogen bond to the side chain of Asn212. The different mode of hydrogen 

bonding interactions of the deoxyribose group in SnogD compared to the UDP-donor 

specific glycosyltransferases results in a difference in conformation of parts of the 

interdomain linker (residues 210-227). These conformational differences can be 

described as a shift of this peptide segment closer to the nucleotide binding site (Figure 

S2), a feature also recently observed in TDP-donor specific SpnG [21]. 

Another sequence motif, D/E-Q, frequently encountered in the nucleotide binding region 

of glycosyltransferases [29] and involved in hydrogen bonds to the C2´´-C4´´ hydroxyl 

groups of the donor-sugar substrate is not conserved in SnogD (Figure S1). However, 

within the FL2 loop such polar residues are present, which potentially could form 

hydrogen bonding interactions to the 3´´-amino and 4´´-hydroxyl groups of the donor 

sugar nogalamine. This loop is disordered in several of the subunits of SnogD, most 

likely due to flexibility in the absence of the activated sugar donor.  

In SnogD-wtdUDP and SnogD-mdUDP, nucleotide binding is observed in only one of 

the two subunits of the dimer. Comparison of nucleotide-free with nucleotide-bound 

subunits reveals that ligand binding is accompanied by the rearrangements and/or 

stabilization of two nearby residue segments. One of these segments (n1) comprises part 

of the binding site for the α-phosphate, residues 235-237. In the nucleotide-free subunits 

these residues are either disordered or adopt different conformations and are placed more 

distant from the ligand binding site. Local structural differences extend to amino acids up 

to position 249, including the unwinding of the 310-helix (242-246) in nucleotide-free 

subunits A and C of SnogD-m (Figure 5). In the structure of the binary complex loop n2 

(residues 266-268) is shifted away from the binding site to accommodate the pyrimidine 

ring of the bound nucleotide. 

The binding of nucleotides to only one of the active sites in the dimer observed for 

SnogD-wtdUDP and SnogD-mdUDP may be directly linked of the participation of 

segments 235-249 (n1) and 266-277 (n2) in crystal packing interactions in both crystal 

forms. It is thus likely that “half-occupied” and “empty” dimers are preferably selected 
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for incorporation into the crystal lattice, as they interact more optimally with neighboring 

molecules. This may also explain the difficulties in obtaining crystals of SnogD with 

fully occupied binary complexes.   

Model of SnogD with activated sugar donor and acceptor substrates: Based on the 

structures of the SnogD-dUDP binary complexes and of the complex of a plant 3-O-

glucosyltransferase with the sugar donor analog uridine-5´-diphosphate-2-deoxy-2-

fluoro-α-D-glucose and the acceptor kaempferol [29] we modeled binding of an activated 

sugar donor to the active site of SnogD (Figure 6). The position of the donor-sugar 

nogalamine is restricted by the covalent link to the dinucleotide, the small pocket for the 

carbohydrate moiety present in SnogD, and the requirement for the C1´-hydroxyl to be in 

an axial orientation so that glycosyl transfer can occur.  

In the absence of experimental data on SnogD-acceptor substrate complexes the precise 

orientation of acceptor substrates in the binding pocket of SnogD is more difficult to 

define, due to the large size of the hydrophobic pocket and the lack of structural data for 

the FL1 loop. Acceptor substrate binding to SnogD most likely involves hydrophobic 

residues lining the cleft between the domains and closure of the FL1 loop over the 

acceptor substrate as seen in CalG3 [22]. The acceptor substrate 3 (Figure 1) can be 

modeled in the predominantly hydrophobic substrate cleft in such a way that the C1 

hydroxyl group of the acceptor is located suitably to act as nucleophile and attack the C1 

atom of the activated nogalamine sugar (Figure 6). In this model His25 is close to the C1 

hydroxyl group of the aglycon, which is the attacking nucleophile in the glycosyl-transfer 

reaction.  

In vitro characterization of active site mutants of SnogD  

Based on the modeled ternary complex of SnogD with the nucleotide-sugar donor and 

acceptor substrates, we selected the highly conserved residues His25 and His301 (Figure 

S1) as target for site directed mutagenesis. The mutations His25Ala, His25Asn and 

His301Ala were introduced and the mutant proteins purified according to the protocol 

used for wild-type SnogD. The CD spectra of mutants and wild-type enzyme were very 

similar, indicating that the mutants were correctly folded. The natural sugar donor TDP-
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nogalamine was not available and the enzymatic reaction was therefore studied in the 

reverse direction using the assay described previously [15] (Figure 7A). The in vitro 

assays with the mutants His25Ala, His25Asn and His301Ala showed a significant 

reduction of UDP-dependent deglycosylation of nogalamycin F 4 to 3 to 1.5 – 2.4 % of 

the wild type enzyme activity (Figure 7B and Table 2).   

In vivo studies of active site mutants  

In order to probe the glycosyltransfer reaction in the forward direction, the mutated genes 

were expressed in vivo in S. albus using a two-plasmid system. The polyketide acceptor 3 

and the nucleotide diphosphate deoxysugar donor substrates were produced using cosmid 

pSno∆gD, which contains the majority of the nogalamycin gene cluster and from which 

snogD has been deleted [15]. The native and mutated snogD genes were expressed in the 

heterologous host using the high copy number vector pIJ486 from their own promoter 

sequences as described in the experimental section. The production profiles of the strains 

indicated that formation of the aminoglycosylated SnogD reaction product, nogalamycin 

R 5 (Figure 8A), was impaired in the mutant strains (Figure 8B), consistent with the in 

vitro activity measurements.   

Discussion 

Previous studies on the glycosylation reactions in nogalamycin biosynthesis have shed 

some light on the order of these steps and the enzymes involved [15]. Gene inactivation 

experiments have shown that glycosyltransfer of nogalose to the C7-hydroxyl group of 

nogalamycinone by SnogE precedes transfer of nogalamine to the C1-hydroxyl by 

SnogD. The studies further suggested that formation of the C1-O-glycosidic linkage 

precedes formation of the C-C bond between the C5´´ carbon of nogalamine and the C2 

carbon of the polyketide scaffold. The nogalamine moiety has been demonstrated to be 

involved in the DNA-nogalamycin interactions [30], which are important for poisoning of 

human topoisomerases [31], one of the major biological activities of nogalamycin. 

Therefore detailed understanding of these biosynthetic steps and the enzymes may 

facilitate engineering of novel anthracyclines with improved activities. 
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The structure analysis of SnogD provides a framework for the last glycosylation step, the 

transfer of nogalamine to 3. The enzyme belongs to the type 1 branch of the GT-B fold 

family of glycosyltransferases. Fortuitously the enzyme crystallized with bound dUDP 

derived from the expression host that allowed structural characterization of nucleotide 

binding to SnogD. Sugar donors for the glycosylation reactions in anthracycline 

biosynthesis in Streptomyces species are often formulated as activated TDP-sugars, 

although the biochemical evidence in the case of nogalamycin biosynthesis is lacking. 

SnogD can utilize both TDP and UDP in the in vitro assay, the deglycosylation of 4 [15]. 

This is consistent with structural data, as the binding pocket could accommodate the 

uracil and thymidin rings. SnogD however lacks the glutamic acid residue proposed to be 

characteristic for UDP-donor specific glycosyltransferases [27] and thus might not be 

able to discriminate efficiently between UDP- and TDP-donors. 

Since attempts to obtain crystals of ternary complexes of SnogD with acceptor substrates 

were not successful, the structure of SnogD with bound dUDP was used as templates to 

model the Michaelis complex of SnogD with UDP-nogalamine and 3. This model 

suggests one active site residue, His25 close to the C1´´ atom of the activated sugar that 

might be able to facilitate the enzymatic reaction. This residue could be involved in 

proton abstraction, thus enhancing nucleophilicity of the acceptor substrate and 

facilitating the attack onto the C1´´ of the donor-sugar and subsequent glycosyl transfer. 

Replacements of His25 by alanine and asparagine result in mutants that are severely 

impaired in catalytic activity in vitro.  Analysis of the production profiles in vivo using 

these SnogD mutants show the same trend with a significant reduction in the amounts of 

5 produced. These data demonstrate a critical role of this residue in the enzyme reaction 

and are consistent with a function as catalytic base. 

Another histidine residue, His301 close to the diphosphate group of the donor sugar, is 

also essential for catalysis as substitution of this residue by alanine results in significant 

loss of enzyme activity in vitro. This residue is involved in binding of the diphosphate 

group and could further stabilize the negative charge developing at the β-phosphate of the 

leaving group [32]. These two residues are conserved in many glycosyltransferases and 
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their counterparts have been implicated in the catalytic mechanisms of these enzymes 

[19,24,27–29,33]. 

The evidence for the function of SnogD as a glycosyltransferase involved in the 

formation of the C1-O-glycosidic bond to nogalamine is now rather compelling. It is 

however much less clear whether or not SnogD is directly involved in the formation of 

the carbon-carbon linkage between C5´´ of nogalamine and the C2 atom of the 

polyketide. This reaction requires formally abstraction of hydrogen, and the structure of 

SnogD does not contain any catalytic groups and/or cofactors that might support such 

chemistry. This step in nogalamycin biosynthesis remains enigmatic and most likely 

requires another enzyme, either working in concert with SnogD or acting after the 

glycosyltransfer reaction. 

Materials and methods 

Cloning, expression and purification of recombinant SnogD 

The cloning, expression and purification of recombinant SnogD was performed as 

described previously [15]. In short, eight different constructs were designed, all with an 

N-terminal His-tag, amplified from genomic Streptomyces nogalater DNA by PCR and 

cloned using ligation-independent (LIC) cloning [34]. The production of one construct, 

comprising residues 13-390, using E. coli as expression host followed a protocol 

described elsewhere [15]. For the production of SnogD used for subsequent methylation 

experiments, cells were grown with supplementation of the culture medium with a 

mixture of metal salts with final concentrations of 40µM CaCl2, 20µM MnCl2, 20µM 

ZnSO4, 4µM CoCl2, 4µM CuSO4, 4µM Na2MoO4, 4µM H3BO3, 4µM NiSO4, 4µM 

Na2SeO4 and 4µM FeCl3. Recombinant SnogD was purified using affinity, anion-

exchange and size exclusion chromatography. The purity of the protein was monitored by 

SDS-PAGE and the identity of the recombinant protein was confirmed by electrospray 

mass spectrometry (ES-MS). 

Mutagenesis 

Residues for mutagenesis were selected based on the structure of SnogD and protein 

sequence alignment to structural homologues (Figure S1). The mutations were introduced 
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by PCR using the full-length expression plasmid, encoding residues 1-390 of SnogD 

cloned as described previously [15], as template using primers containing the mutations 

(His25Alaf 5´-GCCATCCTGCCGACGGTGCCGCTGGC-3´, His25Alar 5´-

GGCGCTGAGC CCGGGTGAAGTGATGAACAACGCA-3´, His25Asn_f 5´-

AACATCCTGCCGACGGTGCCGCT GGC-3´, His25Asn_r 5´-

GTTGCTGAGCCCGGGTGAAGTGATGAACAACGCA-3´, His301Alaf 5´- 

GCCGGGGGCAGCGGCACACTGCTGACG-3´, His301Alar 5´- 

GGCATGGATGATCGCGTCGC ACGTCTCCAGCAG-3´), which were combined with 

vector specific primers (f5´-GAATAATT 

TTGTTTAACTTTAAGAAGGAGATATACATATGCACCATCA-3´, r5´-

TGCGGCCGCAAG CTTGTCGACGG-3´) to amplify the mutated DNA fragments using 

Phusion DNA polymerase (Finnzymes, Espoo, Finland)). These fragments were 

subsequently used to generate the full dsDNA sequence of SnogD harbouring the 

mutation as well as vector compatible restriction sites. After restriction enzyme digestion 

(NdeI and HindIII) ligation using T4 ligase (all enzymes from New England Biolabs, 

MA, USA or Fermentas International Inc., Canada) was performed to insert the dsDNA 

into the vector (pET28-pNic BasI). The sequences of the respective mutants were verified 

by DNA sequencing.  

Reductive methylation of SnogD  

Purified SnogD was diluted to a final concentration of 1 mg/ml in a solution containing 

45 mM Na3PO4, 0.3 M NaCl, and 10 % (v/v) glycerol pH 8.0. Reductive methylation was 

performed based on a protocol described previously [35], with two exceptions; the 

formaldehyde solution was prepared freshly by dissolving paraformaldehyde in 50 mM 

Na3PO4 pH 8.0 and heating to 333 K during 4 hours, and the methylation reaction was 

quenched by addition of 1 M glycine to a final concentration of 0.1 M. After filtration 

methylated SnogD was purified using anion exchange and size exclusion 

chromatography. The extent of methylation of SnogD was determined by ES-MS. 
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Crystallization of SnogD 

Wild-type SnogD (SnogD-wtdUDP) was crystallized by hanging drop vapour diffusion 

against a reservoir containing 26 % (w/v) PEG 3350 and 0.1 M citrate pH 5.2. Droplets 

of the protein solution (10 mg/ml SnogD-wtdUDP in 50 mM Tris pH 7.4, 0.2 M NaCl) 

were mixed with equal volumes of the reservoir solution. Crystals belonging to space 

group P21212 appeared after three days equilibration at 293 K.  

 

Since diffraction quality crystals were difficult to reproduce using wild type enzyme, 

screening for crystallization conditions was repeated with methylated SnogD, which in 

combination with streak seeding reproducibly yielded diffraction quality crystals at two 

conditions. The SnogD-mdUDP and SnogD-m data were collected from crystals obtained 

by vapour diffusion against a reservoir of 15 % (w/v) PEG 8000, 0.16 M calcium acetate, 

0.08 M sodium cacodylate pH 6.8, and 16 % (w/v) PEG 3350, 0.2 M MgCl2, 0.1 M 

BisTris pH 5.7, respectively.   

Data collection and structure determination 

SnogD-wtdUDP crystals were briefly transferred to a solution of 30 % (v/v) glycerol, 

28 % (w/v) PEG 3350, 0.1 M BisTris pH 5.3 prior to flash-freezing in liquid nitrogen. 

Crystallographic data were collected at 100 K and at a wavelength of 0.934 Å at beamline 

ID14-EH1 of the European Synchrotron Radiation Facility (Grenoble, France), to a 

resolution of 2.6 Å. Crystals of methylated SnogD were cryo-protected using mineral oil. 

Data were collected from two crystals, to 2.7 Å (SnogD-mdUDP) and 2.6 Å (SnogD-m) 

resolution, respectively, at a wavelength of 1.072 Å at beamline ID23-EH1 at ESRF 

(Grenoble, France). Data processing was performed using the programs MOSFLM and 

SCALA from the CCP4 package [36]. Statistics of the diffraction data sets are given in 

Table 1. 

 

The SnogD-m crystal belonged to space group P21212 with similar unit cell dimension as 

the SnogD-wt crystal, containing two enzyme subunits per asymmetric unit. In contrast, 

the SnogD-mdUDP crystal belongs to space group P2 with 4 molecules (2 dimers) per 

asymmetric unit.   
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The crystal structure of SnogD-wtdUDP was determined by molecular replacement using 

PHASER [37] and an ensemble of monomer structures of five homologues enzymes 

(PDB accession codes 1F0K, 1NLM, 2IYA, 2P6P, and 3D0Q) as search model, of 

which CalG3 from Micromonospora echinospora shows the highest sequence identity to 

SnogD (36 %). The structures of methylated SnogD were determined by molecular 

replacement using PHASER (SnogD-mdUDP) or MOLREP [38] (SnogD-m) and the 

refined ligand-free subunit of SnogD-wt as search model.  

 

Model building and refinement was performed using WinCOOT [39] and REFMAC5 

[40], employing tight main chain NCS restraints in the first and automatically determined 

local NCS restraints in the final cycles of refinement. 5 % randomly selected reflections 

were used for monitoring Rfree. Water molecules were added in WinCOOT. The presence 

of residual electron density indicated ligand binding to the active sites of one subunit per 

dimer for SnogD-wtdUDP and SnogD-mUDP. Based on shape of the density and the 

hydrogen-bonding pattern the ligand was identified and modeled as dUDP, an analogue 

of one of the products of the SnogD-catalyzed reaction. 

 

The final model of SnogD-wtdUDP contains residues 13-389 of SnogD, one residue from 

the affinity tag for chain A and residues 13-390 for chain B, two residues from the 

affinity tag, a total of 115 water molecules and one dUDP molecule. Two loop regions, 

residues 76-84 and 325-327, are disordered to various extents in the two subunits. The 

refined model of SnogD-mdUDP contains four subunits. Also in this space group several 

loop regions were disordered to various extents in the four subunits and not included in 

the model. The structural model contains 48 water and 2 dUDP molecules. The final 

model of SnogD-m contains residues 13-389 (except for the following loop regions, 

which are disordered in the electron density maps, A79-A90, A239-A241, B78-82, and 

B324-327) and 67 water molecules. Refinement statistics are given in Table 1.  
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The atomic coordinates and crystallographic data have been deposited with the Protein 

Data Bank under accession numbers 4AMB (SnogD-wtdUDP), 4AMG (SnogD-m), and 

4AN4 (SnogD-mdUDP). 

Quaternary structures, crystal packing and interfaces were analyzed using the PISA-

server at the European Bioinformatics Institute [25]. Database searches for structural 

homologues were carried out using Dali [18]. Sequence alignments were performed using 

ClustalW [41]. Figures were prepared with PyMol [42].  

In vitro enzyme assays 

Full-length SnogD and point mutants were used for the activity assays. Since activated 

TDP-nogalamine or UDP-nogalamine were not available as sugar donors the reaction 

was monitored in the reverse direction, using UDP as acceptor and 4 as donor using the 

protocol described previously [15]. In short 8.1 µg of SnogD was added to 40 µl of a 

mixture of 20 mM UDP as acceptor- and 0.5 mM 4 as donor-substrate in 50 mM Tris, 

200 mM NaCl, pH 7.4 and incubated in the dark at 295 K for 13h. The reactions were 

quenched by addition of chloroform and the anthracyclines were extracted from the 

resulting mix of chloroform and water. The chloroform phases were analyzed by HPLC 

to detect glycosyl transferase activity, which was defined as the ratio between formed 

product 3 over remaining substrate 4, after correction for 3 present in minor amounts in 

the substrate solution.   

In vivo activity assays 

The mutated snogD genes were moved as NdeI-EcoRI fragments to digested and CIAP-

treated pBluescript SK(-) (Stratagene; La Jolla, CA, USA) harbouring the PCR amplified 

and sequenced snogD promoter region. The PCR was carried out using pSnogaori [15] as 

the template and the following primers with vector compatible restriction sites (EcoRI, 

HindIII) and added NdeI-site downstream of the promoter region: FWgDp 

AATAAGCTTAGGTCTCCGGGCGGGTCA REVgDp: 

TTAGAATTCTTACATATGGACGGCGCCTTCTGTTGC. The promoter and gene 

region were moved as an EcoRI-HindIII fragment (1.5 kb) to a digested and CIAP-treated 

pIJ486-vector [43]. The plasmids were amplified in S. lividans TK24, verified by 
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digestion analysis and moved to S. albus/pSnoΔgD by PEG-induced protoplast 

transformation [44]. The wild type SnogD plasmid was constructed as described earlier 

[15].  

For analysis of the activity of SnogD and mutated SnogD the strains were cultivated in 

250 ml Erlenmeyer-flasks with 30 ml of NoS-soyE1 [15] supplemented with thiostrepton 

(Calbiochem; San Diego, CA, USA 50 μg ml-1) and apramycin (Sigma-Aldrich, St. 

Louis, MO, USA 50 μg ml-1) for 5 days at 303 K in vigorous shaking. The produced 

metabolites were collected by binding to Amberlite® XAD-7 (2 days, Rohm and Haas, 

Philadelphia, PA, USA, 20 g l-1) after which the medium was decanted and the XAD-7 

was washed with water. The metabolites were extracted with MeOH and filtered (0.2 μm 

PTFE, VWR, Radnor, PA, USA) prior to analysis by HPLC (Shimadzu SCL-10Avp; 

Kyoto, Japan) with a reversed-phase column (SunFireTM C18 3.5 μm 2.1 x 150 mm, 

Waters, Milford, MA, USA) using a gradient from 15% acetonitrile in 0.1% formic acid 

to 100% acetonitrile.  
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Supporting information 

The following supplementary information is available: 

Fig. S1. Structure based sequence alignment of SnogD and homologues. 

Fig. S2. Inter-domain linker reorganization upon hydrogen bonding to Asn212 of SnogD to 

deoxy-ribose C3´-hydroxyl of dUDP. 
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Figure legends 

Figure 1. Glycosylation steps in nogalamycin biosynthesis. 1, nogalamycin; 2, nogalamycinone: 

3, 3´,4´-demethoxynogalose-1-hydroxynogalamycinone; SnogY, nogalose C2´ 

methyltransferase; SnogM and SnogL, C3´ and C4´ O-methyltransferases; SnoaL2, C1 

hydroxylase; SnogA and SnogX, nogalamine C3´´ aminomethyltransferases; SnoN and SnoT 

putative nogalamine C2´´ hydroxylases.  

Figure 2: Composite 2Fo-Fc simulated annealed omit map at the position of bound dUDP in 

chain B of SnogD-wtdUDP, shown in green. The omit electron density map was calculated with 

Phenix [37] and is contoured at 1.3σ. The refined 2Fo-Fc map is overlaid in blue contoured at 

1.5σ. 

Figure 3.  Stereo view of the three-dimensional structure of SnogD. Chain A is shown coloured 

after secondary structure elements (red/yellow/green), chain B in blue with bound dUDP as a 

stick model. The flexible loops FL1 and FL2, likely to be involved in acceptor substrate binding 

are shown as dashed lines.  The putative binding location of the acceptor-substrate is indicated 

by an asterisk.  

Figure 4. Binding of dUDP to SnogD. Interactions of dUDP, shown as yellow sticks, with amino 

acids in the nucleotide binding pocket of SnogD. Putative hydrogen bonds (< 3.2 Å distance 

between donor and acceptor atoms) are indicated as dotted lines. For clarity the N-terminal 

domain of SnogD is not shown. 

Figure 5. Structural changes upon nucleotide binding to SnogD illustrated by superimposition of 

apo-enzyme and binary complexes of SnogD with dUDP.  Structures of SnogD with bound 

nucleotide, SnogD-wtdUDP (chain B) and SnogD-mdUDP (chain B), are shown in blue and 

green, respectively. Nucleotide-free chains of SnogD-mdUDP (chain C) and SnogD-m (chain B) 

in red and yellow. The loops n1 and n2, undergoing conformational changes are indicated. For 

clarity the N-terminal domain of SnogD is not shown. 

Figure 6. A. Structure of ThDP-nogalamine B. Model of the SnogD Michaelis complex with the 

acceptor substrate 3 and the donor substrate TDP-nogalamine at the active site. The calculated 
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electrostatic surface potential is coloured blue to red, after increasing negative charge. The 

mutated histidine residues are highlighted.  

Figure 7. Enzymatic assays of wild-type and active-site mutants of SnogD. A. Scheme of the 

deglycosylation of nogalamycin F 4 to 3´, 4´-demethoxynogalose-1-hydroxynogalamycinone 3, 

used in the SnogD in vitro assay. B. HPLC chromatogram traces of the UDP dependent 

deglycosylation of 4 in vitro. The traces were recorded at 460 nm. The numbering of the 

compounds is as in Figure 7A. The absorbance (A) is shown on the Y-axis scale, in arbitrary 

units. 

Figure 8: In vivo experiments with wild type SnogD and active site mutants. A. Structure of the 

bi-glycosylated SnogD reaction product nogalamycin R 5 produced during in vivo cultivations in 

S. albus. B. HPLC chromatogram traces of crude extracts of the anthracycline compounds 

produced during in vivo cultivations, recorded at 460 nm. Compound numbering as in Figure 7A. 

The absorbance (A) is shown on the Y-axis scale, in arbitrary units. 
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Table 1 – Statistics of data collection and refinement.  

 SnogD-wtdUDP SnogD-mdUDP SnogD-m 

Data collection #    

Beam line ID14-EH1 (ESRF) ID23-EH1 (ESRF) ID23-EH1 (ESRF) 

Wavelength (Å) 0.934 1.072 1.072 

Space group P21212 P2 P21212 

Cell axes (Å) 64.9, 171.0, 69.4 64.6, 70.1, 176.0 66.7, 179.8, 70.2 

Cell angles (deg.) 90.0, 90.0, 90.0 90.0, 91.7, 90.0 90.0, 90.0, 90.0 

Resolution (Å) 60-2.6 (2.76-2.62) 58.6-2.7 (2.85-2.70) 48.3-2.6 (2.73-2.59) 

Rsym (%) 13.7 (45.9) 7.0 (50.2) 5.6 (35.1) 

I/Iσ 7.9 (2.0) 17.7 (2.2) 15.2 (2.0) 

Completeness (%) 97.6 (86.7) 98.3 (92.7) 96.2 (82.4) 

Multiplicity 3.0 (2.3) 4.5 (3.7) 3.0 (2.1) 

No. of reflections  69886 (6703) 192976 (21392) 77517 (6780) 

No. of unique reflections 23310 (2915) 42845 (5800) 26051 (3158) 

Wilson B-factor (Å2) 43.0 81.3 66.9 

Refinement    

Resolution 50.0-2.6 60.0-2.7 60.0-2.6 

R/Rfree 22.3 / 29.7 22.8 / 26.6 22.1 / 24.3 

No. of non H-atoms / average B-

factor (Å2) 

   

Protein 5450 / 33.1 10233 / 82.0 5370 / 54.5 

Water 115 / 24.5 48 / 43.4 67 / 37.3 

Ligands (dUDP) 24 / 37.6 48 / 84.2 - / - 

R.m.s.d. bond lengths (Å) 0.011 0.009 0.010 

R.m.s.d. bond angles (⁰) 1.5 1.4 1.3 

Ramachandran plot    

Residues in favoured regions (%) 96.2 96.3 97.2 

Residues in allowed regions (%) 3.7 3.4 2.7 

Residues in disallowed regions 

(%) 

0.1 0.3 0.1 

#Numbers in parentheses are for the highest resolution shell 
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Table 2 – Relative in vitro activities of SnogD mutants  
 

 
Relative activity of triplicates +/- SD 

No enzyme 1.1% 1.7% 
No UDP 0.2% 0.1% 
His25Ala 1.5% 0.6% 
His25Asn 1.9% 1.3% 
His301Ala 2.4% 1.6% 
WT 100% 5.8% 
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Supplementary information  

Figure S1. Structure based sequence alignment of SnogD and homologues. The active site histidine 

residues mutated in this study are highlighted by black boxes and the PPi motif in a green box. Invariant 

residues are shown in red boxes, conserved residues are shown in red. The figure was prepared with 

ESPript [45]. 
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Figure S2. Inter-domain linker reorganization upon hydrogen bonding of Asn212 of SnogD to deoxy-

ribose C3´-hydroxyl of dUDP. Protein chains are shown as cartoons with SnogD (blue), SpnG (green), 

and UGT78G1 (yellow) [46]. The bound NDPs are shown as sticks with colours matching the protein 

chains. Hydrogen bonds to the C3´-hydroxyl are shown as dashed lines. For clarity the respective N-

terminal domains are not shown. 
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