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ABSTRACT 
 

The oxidative stress response is a fundamental and primitive mode of innate 

immune defense in nearly all forms of life. The host oxidative stress response becomes 

truly important and effective especially against intracellular pathogens such as 

Salmonella. Pathogens have evolved diverse mechanisms to withstand the oxidative 

responses. These include the use of oxidoreductases to neutralize oxidative products 

and repair oxidative damages, rapid alteration in their transcriptome and diversion of 

such oxidative products in cellular signaling, for their survival and successful infection. 

In the first study in this thesis, we have introduced the putative ScsABCD 

oxidoreductases of the thioredoxin superfamily for their role in oxidative stress 

tolerance and in virulence of S. Typhimurium. We demonstrated that ScsABCD 

proteins are dispensable for invasion in cultured epithelial cells under normal invasive 

conditions, although ScsABCD acts as a suppressor of SPI-1 mediated invasion upon 

oxidative stress. Our results have further shown a functional association between 

ScsABCD and thiroredoxin 1 (TrxA) oxidoreductase of S. Typhimurium. In this, we 

demonstrated that absence of ScsABCD restored the invasiveness of a trxA mutant in 

epithelial cells and its virulence in C. elegans. (Paper I). 

Next, we present the analyses on the role of periplasmic Dsb oxidoreductase 

system in S. Typhimurium’s biofilm-development, specifically under redox stress. In 

this, we show that DsbA and DsbB act as suppressors of rdar-morphotype development 

and affect biofilm-regulation using either Csg-dependent or -independent mechanism, 

respectively. Our results further reveal that oxidative stress abrogates rdar-morphotype 

of S. Typhimurium, whereas reductive stress reduces rdar-morphotype with 

concomitant plentiful release of extracellular slimy material containing, notably, the 

extracellular DNA (eDNA). Furthermore, we have demonstrated the oxidative recovery 

of swimming motility defects of a dsbA mutant. (Paper II).  

Finally, we have demonstrated that exoribonuclease; PNPase and its genetic 

associate membrane lipoprotein NlpI constitute an operon and are functionally 

connected (Papers III and IV). PNPase was required for rdar-morphotype 

development whereas, NlpI suppresses the biofilm formation. In addition, we 

established the association of PNPase with c-di-GMP metabolism in biofilm regulation. 

Moreover, we showed that both PNPase and NlpI are required, independently, for cold 

adaptation of S. Typhimurium.  
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1 INTRODUCTION 

1.1 SALMONELLA AND EPIDEMIOLOGY

Salmonellae are Gram-negative, rod-shaped, motile, facultative anaerobic bacteria 

belonging to the family Enterobacteriaceae and are one of the leading causes of 

diarrheal infections spread by contaminated food and water. Salmonella infection has 

remained a major burden on the health care system and food industry both in the 

developed and developing countries (Gast, Guraya et al. 2013). In the United States 

alone, salmonellosis accounts for 1.2 million reported cases with 23,000 

hospitalizations and over 500 deaths each year (Bishop, M.Erdman et al. 2011; Davis 

2012). However, a large proportion of the patients with salmonellosis in countries like 

the United States do not seek medical care, or otherwise, the cases are not reported by 

the peripheral surveillance laboratories. Therefore, the actual incidence in the United 

States is estimated to reach 20 million cases per year (Scallan, Hoekstra et al. 2011; 

Davis 2012).  

Developing countries do not always have a well-managed surveillance system for 

Salmonella infections. Therefore, it is hard to estimate the actual incidence of 

salmonellosis in the developing countries (Pang 2008). Poor sanitation, over-crowded 

living conditions and poverty allow us to speculate that there is a much higher 

incidence in the developing countries. Hence, efforts to reduce the burden of 

Salmonella infections must be implemented. 

Currently, the United States Centre for Disease Control and Prevention (CDC) 

divides Salmonella genus into two main species; Salmonella enterica and Salmonella 

bongori, the former standing as the “Type Species”. However, in last decade a new 

species, Salmonella subterranean, has been approved by Judicial Commission of the 

International Committee on the Systematics of Prokaryotes but has not yet been 

adopted by CDC into Salmonella nomenclature system (Shelobolina, Sullivan et al. 

2004; Bishop, M.Erdman et al. 2011).  

Humans are infected specifically by Salmonella enterica. Salmonella enterica is 

further divided into six subspecies; I, S. enterica subsp. enterica; II, S. enterica subsp. 

salamae; IIIa, S. enterica subsp. arizonae; IIIb, S. enterica subsp. diarizonae; IV, S. 

enterica subsp. houtenae; and VI, S.enterica subsp. Indica (Popoff, Bockemuhl et al. 

2003). More than 2575 serovars of Salmonella have been described based on the 

somatic (O-antigen) and flagellar antigens (H-antigen) although the number is 
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continuously increasing with the discovery of new serovars. In general, the most 

common cases of salmonellosis in man are caused by serovars belonging to subspecies 

I followed by subspecies IV, IIIb, II, and IIIa (Bishop, M.Erdman et al. 2011).  

1.2 SALMONELLOSIS

Salmonellae are ubiquitous in their habitat. Usually they reside in the intestinal 

tract of large number of warm and cold-blooded animals. However, they can also 

survive outside of the animal host in the dry environment for quite long periods. Due to 

the diversity in their habitat, Salmonellae infect a broad range of hosts. The outcome of 

infection depends on the host, infecting Salmonella serovar, the given strain and 

immunological status of the host.  

In humans, 99% of isolates of Salmonella belong to S. enterica subspecies 

enterica (Bishop, M.Erdman et al. 2011). From disease perspectives, the infection with 

Salmonella - “salmonellosis” - is mainly categorized into invasive and local infection; 

enteric fever (typhoid fever) and acute gastroenteritis (enterocolitis) respectively. 

Typhoid and paratyphoid fever are caused by the human specific serovars S. Typhi, S. 

Paratyphi A, S. Paratyphi B and S. Paratyphi C whereas acute gastroenteritis can be 

caused by a number of different serovars collectively known as “Non-Typhoidal 

Salmonellae” (NTS). 

S. Typhi and S. Paratyphi A-C are chiefly transmitted through water 

contaminated with human excreta from Salmonella carriers or with the food irrigated 

with such contaminated water. The infectious dose ranges between 103-106 bacteria 

(Hornick, Greisman et al. 1970). After ingestion and survival through gastric acids, at 

least in infection models for typhoid fever, Salmonella goes to the terminal part of 

small intestine where it attaches to the epithelial surface and transmigrates to the basal 

laminar layer through specialized epithelial cells of Payer’s patches, “the M cells” 

(Takeuchi and Sprinz 1967; Jones, Ghori et al. 1994). This is accomplished with the 

help of specialized virulence-gene island on the genome of Salmonella termed as 

Salmonella pathogenicity island 1 (see below).  

Subsequently, Salmonella are engulfed by the approaching neutrophils, local 

tissue macrophages and dendritic cells and are translocated to the regional mesenteric 

lymph nodes and ultimately to the liver and spleen (Cheminay, Chakravortty et al. 

2004; Johansson, Ingman et al. 2006; Salazar-Gonzalez, Niess et al. 2006). Bacteria 

can survive and replicate inside these macrophages (House, Bishop et al. 2001) with 

the help of Salmonella pathogenicity island 2 and spv virulence genes (see below).  



 

  3 

In human typhoid fever, after a typical 7-14 day incubation period, Salmonella 

can leave macrophages and a widespread bacteremia occurs with possible secondary 

infections of liver, spleen, bone marrow, gallbladder and Peyer's patches of the terminal 

ileum (Parry, Hien et al. 2002). The first week is asymptomatic followed by typical 

low-grade fever that rises progressively to 39°C to 40°C by the end of second week. 

Besides fever, patients experience influenza-like symptoms i.e. chills, a dull frontal 

headache, malaise, anorexia, nausea, poorly localized abdominal discomfort, a dry 

cough, and myalgia. Furthermore, in 5% – 30% of cases, rose spots, blanching 

erythematous maculopapular lesions approximately 2 to 4 mm in diameter can be found 

on the chest, abdomen and rarely on back arms and legs (Stuart Bm 1946; Parry, Hien 

et al. 2002). 

Non-typhoidal Salmonellae (NTS) that cause self-limiting gastroenteritis in 

humans are generally called food-borne serovars. These strains are not human specific 

and are acquired as zoonotic infections. According to the European Centre for Disease 

Prevention and Control (ECDC), the most common isolated NTS serovars for diarrheal 

diseases are S. enteric serovar Enteritidis (S. Enteritidis) and S.enterica serovar 

Typhimurium (S. Typhimurium) (Jansen, Lahuerta-Marin et al. 2011). NTS can grow 

in broad range of temperatures (7oC - 40oC) and substrates. The most important source 

of NTS outbreaks are associated with the use of contaminated food animals or their 

products such as infected chicken, eggs from infected hens, contaminated meat and 

meat products, unpasteurized milk and cheese.  

The infectious dose for NTS is 106-108 but can vary with different risk factors 

(Wray and Sojka 1978). Risk factors for NTS diarrheal disease include age, 

endogenous bowel normal �ora, gastrectomy and presence of other infections in the 

host (Hohmann 2001; Graham 2010). NTS have also been associated with more severe 

and invasive infections in HIV as well as in malaria infected individuals (Feasey, 

Dougan et al. 2012; MacLennan 2012). Such co-infections are more likely to progress 

to focal infections, including meningitis, septic arthritis, osteomyelitis, cholangitis, and 

pneumonia (Fabrega and Vila 2013).  

Among NTS, along with gastroenteritis, S. Typhimurium also represents a 

typhoid-like invasive disease in mice (Monack, Hersh et al. 2000; Mastroeni and 

Sheppard 2004). Therefore, S. Typhimurium is a very suitable model laboratory 

organism to study both the invasive and local aspects of Salmonella pathogenesis and 

hence is the model organism used in this thesis work.  
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1.3 SALMONELLA VIRULENCE ARMAMENTARIUM

The marvelous ability of Salmonella to colonize and succeed within the host 

makes it an excellent and successful pathogen. Salmonella is equipped with an arsenal 

of virulence factors with extremely versatile functions that are activated during 

different stages of the pathogenic process from the intestinal stage to systemic 

dissemination. For instance, the Salmonella genome contains genes required for 

motility and chemotaxis, adhesion, invasion, survival and intracellular replication 

within host cells, as well as for bio�lm-formation (McClelland, Sanderson et al. 2001; 

Fabrega and Vila 2013).  

The genes facilitating different virulence steps are mostly distributed on specific 

genetic continuums that are termed as Salmonella Pathogenicity Islands (SPIs). SPIs 

are believed to have been acquired as genetic blocks during the evolutionary process 

(Marcus, Brumell et al. 2000). In certain strains of Salmonella, the virulence genes are 

located in a highly conserved 8kb region of a 50 to 95 kb virulence plasmid, known as 

pSLT in S. Typhimurium (Rotger and Casadesus 1999; Matsui, Bacot et al. 2001). A 

recent report by Herrero et al. stated that complex resistance islands have also been 

acquired by pSLT during natural recombinational events in certain S. Typhimurium 

isolates (Herrero, Mendoza et al. 2008). Furthermore, a number of genes involved in 

the adaptation, bacterial defense again host bactericidal responses and virulence are 

found on prophage elements scattered on the bacterial chromosome (Stanley, 

Ellermeier et al. 2000; Ho, Figueroa-Bossi et al. 2002; Zou, Li et al. 2010; Boyd 2012; 

Switt, den Bakker et al. 2012).

1.3.1 Salmonella Pathogenicity Islands (SPIs) 

SPIs are horizontally acquired genetic elements regarded as ‘quantum leaps’ in 

the evolution of Salmonella (Groisman and Ochman 1996). To date, more than 21 

different SPIs have been identified (Sabbagh, Forest et al. 2010; Suez, Porwollik et al. 

2013). Among the different SPIs, the SPI-1 and SPI-2 have been most extensively 

studied (Mills, Bajaj et al. 1995; Ochman, Soncini et al. 1996; Lostroh and Lee 2001; 

Kuhle and Hensel 2004), SPI-3, SPI-4 and SPI-5 are beginning to be characterized 

(Blanc-Potard, Solomon et al. 1999; Knodler, Celli et al. 2002; Dorsey, Laarakker et al. 

2005; Gerlach, Jackel et al. 2007) whereas analyses on rest of the SPIs are still in their 

infancy (Suez, Porwollik et al. 2013). 

SPI-1 and SPI-2, each encodes a specific Type Three Secretion System (T3SS). 

A T3SS is multi-component needle like structure that spans the inner and outer 
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bacterial membrane and projects from the bacterial surface (Galan 2001; Galan and 

Wolf-Watz 2006; Mueller, Broz et al. 2008). The T3SS are used to translocate 

virulence-associated effector proteins into the host cell. Such effector proteins are 

encoded by the SPIs or by genes elsewhere located on the chromosome (Lostroh and 

Lee 2001; Ellermeier and Slauch 2007).  

 

1.3.2 SPI-1  

SPI-1 is an approximately 40 kb long genetic region that contains a number of 

different operons dedicated to specific functions of T3SS-1. Generally, the genes on 

SPI-1 can be divided into regulators, structural genes, effectors and the chaperons. The 

structural genes prg/org, inv/spa make the needle-like T3SS structure whereas the 

effectors, encoded by the sic/sip operons, are translocated into the host cell. The 

chaperones on SPI-1 stabilize and protect the effector proteins from degradation and 

prevent premature interactions of these effector proteins (Ehrbar, Friebel et al. 2003; 

Ehrbar, Hapfelmeier et al. 2004). The SPI-1 T3SS (T3SS-1) is mainly activated during 

the intestinal phase of Salmonella invasion into the host cell epithelium (Ly and 

Casanova 2007). However, the effector proteins encoded on SPI-1 have also been 

recovered during late stages of infection (Brawn, Hayward et al. 2007; Pavlova, Volf et 

al. 2011). 

After reaching the terminal ileum, bacteria attach to the intestinal epithelial 

surface with the help of different fimbriae and adhesins, while T3SS-1 assembles to 

deliver the effector proteins into the host cell (Baumler, Tsolis et al. 1997; Galan 2007; 

Gerlach, Jackel et al. 2007; Chessa, Winter et al. 2009). Upon delivery into the host 

cell, the bacterial effector proteins SipC and SipA respectively nucleate and stabilize 

the F-actin filaments (Zhou, Mooseker et al. 1999; McGhie, Hayward et al. 2001; 

Hayward and Koronakis 2002; Chang, Chen et al. 2005). Later on, rearrangement of 

these filaments for membrane ruffling is achieved with the activated Rho family 

GTPases; Cdc42, Rac1 and RhoG.  

The activation of these GTPases is under the effect of another set of SPI-1 

effector proteins; SopE, SopE2 and SopB (Hardt, Chen et al. 1998; Stender, Friebel et 

al. 2000). Along with the membrane ruffling, Rho GTPases also elicit mucosal 

inflammation by activating NF-�B expression that, in turn, enhances the production of 

pro-inflammatory cytokines such as IL-8 and TNF-� (Hobbie, Chen et al. 1997; Patel 

and Galan 2006). After bacterial uptake, the membrane ruffling returns to normal and 

the inflammatory response is down-regulated by SPI-1 effector protein SptP. The SptP 
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inactivates Rac-1 and Cdc42 through their intrinsic GTPases activation (Fu and Galan 

1999). In short, with the cooperative activity of different SPI-1 effector proteins, 

Salmonella is taken up by non-phagocytic epithelial cells of intestine.  

SPI-1 is an essential tool of Salmonella to enter into the host cell, yet through its 

intrinsic activities it also promotes inflammation. Therefore, the expression of SPI-1 

genes should be tightly regulated. The conditions prevailing in the infection site in 

terminal ileum such as high osmolarity, low oxygen, near-neutral to alkaline pH and 

bile, act as signals for the regulation of SPI-1 expression (Lostroh and Lee 2001). The 

signals from the environment are converged to the SPI-1 main regulator HilA, which in 

concert with HilC, HilD, HilE, and InvF regulators controls the T3SS-1 activity (Bajaj, 

Lucas et al. 1996; Altier 2005; Ellermeier and Slauch 2007).  

HilA, encoded by hilA within SPI-1, activates other operons on SPI-1 either by 

direct binding to their promoters (prg/org and inv/spa) or through the activation of InvF 

(sic/sip operon) (Bajaj, Hwang et al. 1995; Darwin and Miller 1999). In addition, direct 

effects of HilA on expression of the T3SS-1 effector genes located outside of SPI-1 

have also been reported (Thijs, De Keersmaecker et al. 2007). HilA expression is 

positively controlled by the combined action of two other forth-mentioned SPI-1 

encoded regulators; HilC and HilD, and by RtsA encoded on a distant chromosomal 

region (Schechter, Damrauer et al. 1999; Ellermeier, Ellermeier et al. 2005). However, 

HilC and HilD have also been shown to activate virulence genes expression 

independently of HilA by direct binding to the HilA-independent promoter of InvF 

(Akbar, Schechter et al. 2003).  

HilA, either negatively regulates its own expression or through HilE, encoded 

outside of SPI-1, that negatively controls the expression of HilA. The negative 

regulation of HilA by HilE is supposed to be due to post-transcriptional interaction of 

HilE with HilD (Baxter, Fahlen et al. 2003; De Keersmaecker, Marchal et al. 2005). 

The overall regulatory network is illustrated in figure1. 

 

1.3.3 SPI-2 

SPI-2 was the second SPI to be identified in S. Typhimurium. Like SPI-1 it is 

also of approximately 40kb length and is required for intracellular replication in both 

macrophages and epithelial cells (Shea, Hensel et al. 1996; Cirillo, Valdivia et al. 

1998). As described in section 1.2, after breaching the intestinal barrier, Salmonellae 

become engulfed by approaching neutrophils, dendritic cells and macrophages.  
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Figure 1: SPI-1 regulation main players. Solid lanes indicate activation and dashed lanes indicate 

negative regulation. Adapted from (Akbar, Schechter et al. 2003; Ellermeier, Ellermeier et al. 2005; 

Thijs, De Keersmaecker et al. 2007; Ellermeier and Slauch 2008). 

 

Subsequently, the bacteria are transported by the phagocytes to mesenteric lymph 

nodes and ultimately to the spleen and liver (Cheminay, Chakravortty et al. 2004; 

Johansson, Ingman et al. 2006; Salazar-Gonzalez, Niess et al. 2006).  

The macrophages of reticulo-endothelial systems of these infected organs serve 

as the niche for Salmonella survival and replication within specialized endocytic 

compartments resembling late endosomes but devoid of lysosomal hydrolases (Steele-

Mortimer, Meresse et al. 1999). This endocytic vacuole is known as the Salmonella 

containing vacuoles (SCV) (House, Bishop et al. 2001). Recently, it has been reported 

that SCV also divides along with Salmonella. The net result is an increase in systemic 

Salmonella load with a substantial requirement for the host cell to clear the infection 

(Eswarappa, Negi et al. 2010). 

SPI-2 genes are induced by the acidic pH and poor nutritional status in the 

developing SCV (Beuzon, Banks et al. 1999; Garmendia, Beuzon et al. 2003; Lober, 

Jackel et al. 2006). The SPI-2 encoded T3SS (T3SS-2) operates at the membrane of 

SCV to deliver approximately 30 different effector proteins with largely unknown 



 

8 

functions across the membrane to host cell cytosol (Chakravortty, Rohde et al. 2005; 

Mills, Baruch et al. 2008; McGhie, Brawn et al. 2009). The concerted action of these 

T3SS-2 effector proteins is to manipulate host cell endosomal degradation pathway, to 

restrict the fusion of SCV with lysosomal hydrolases (e.g. SsaB(SpiC), SseJ, SseI, 

SspH2), to position the SCV in perinuclear position and to allow the replication of 

Salmonella inside SCV (SseF, SseJ, SifA, SseG, PipB2, SigD) (Uchiya, Barbieri et al. 

1999; Freeman, Ohl et al. 2003; Miao, Brittnacher et al. 2003; Hernandez, Hueffer et 

al. 2004; Brawn, Hayward et al. 2007; Steele-Mortimer 2008; McGhie, Brawn et al. 

2009). In addition, SPI-2 also contributes to the protection of Salmonella in SCV from 

macrophage-derived oxidative and nitrosative responses (Vazquez-Torres, Xu et al. 

2000; Chakravortty, Hansen-Wester et al. 2002).  

SPI-2 gene expression is primarily regulated by a two-component regulatory 

system SsrA/SsrB that is encoded inside the SPI-2 locus (Cirillo, Valdivia et al. 1998; 

Garmendia, Beuzon et al. 2003). SsrA is the membrane located sensor kinase that can 

sense the acidic pH, low osmolarity, low Mg2+ and Ca2+ in the SCV and transmits the 

signals to SsrB (Garmendia, Beuzon et al. 2003). SsrB is a transcriptional activator that 

induces the expression of SPI-2 effector proteins located inside SPI-2 or elsewhere on 

the chromosome (Worley, Ching et al. 2000; Feng, Walthers et al. 2004). With respect 

to the complex regulation pattern of SPI-1, it is not surprising to note that SsrA/SsrB is 

also further regulated by multiple factors, which is discussed in section 1.3.4. 

 

1.3.4 Crosstalk between SPI-1 and SPI-2 

According to the information given in section 1.3.2 and 1.3.3, SPI-1 is activated 

during the intestinal phase of Salmonella infection whereas SPI-2 is required for the 

growth and survival of bacteria inside macrophages of reticulo-endothelial system of 

deeper tissues like liver and spleen. However, in recent years many reports claim a role 

for SPI-1 effector proteins in the intracellular survival and replication within SCV 

(McGhie, Brawn et al. 2009). For instance, the SPI-1 effector SipA appears exposed on 

the outer surface of SCV and stimulates bacterial replication. SipA furthermore helps in 

perinuclear positioning of SCV in cooperation with SPI-2 effector protein SifA (Brawn, 

Hayward et al. 2007). Another SPI-1 effector, SopB, delays phagosomal-lysosomal 

fusion and contributes to SCV maturation at early stages through phosphatidylinositol-

3-phosphate (PI3P) accumulation on the SCV membrane (Kuijl, Savage et al. 2007; 

Mallo, Espina et al. 2008; Wasylnka, Bakowski et al. 2008).  
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Until now, a role for SPI-2 effectors has not been associated directly with the 

intestinal phase of infection, albeit both SPI-1 and SPI-2 have been shown to induce 

the intestinal inflammation that can help in Salmonella invasion (Tsolis, Adams et al. 

1999; Zhang, Santos et al. 2002; Zhang, Adams et al. 2003; Stecher, Macpherson et 

al. 2005). This being said, reactive oxygen species (ROS), produced as a consequence 

of inflammation react with intestinal thiosulfate to form a new respiratory electron 

acceptor, tetrathionate. The ttr genes located in SPI-2 allow utilization of tetrathionate 

as an electron acceptor and provides Salmonella with the opportunity to outgrow the 

normal flora of intestine and increase their success of transmission (Winter, 

Thiennimitr et al. 2010). Thus, continued functional interplay between the two SPIs 

effector proteins and their role in facilitating the same steps in pathogenesis would 

imply that they share similar regulatory pathways.  

 

1.3.5 Regulation of SPI-1 and SPI-2 

A number of different two-component regulatory systems maintain a fine 

balance of SPI-1 and SPI-2 expression at different stages of the infection. The 

Phop/PhoQ two-component system is activated under low divalent cation 

concentration and with low pH. PhoQ is a sensor kinase that transmits the signals to 

PhoP regulator (Vescovi, Soncini et al. 1996). PhoP controls SsrA post-

transcriptionally whereas it activates SsrB expression by binding directly to the 

promotor of SsrB. The activated SsrA/SsrB then controls the expression of SPI-2 

genes (Deiwick, Nikolaus et al. 1999; Worley, Ching et al. 2000; Bijlsma and 

Groisman 2005). Similarly, PhoP directly activates the SPI-1 orgBC operon in the 

macrophages, which is believed to play a role in the later stages of the disease 

(Aguirre, Cabeza et al. 2006). However, generally, PhoP represses hilA mediated SPI-

1 expression through HilD. This, in turn, is achieved by activating pag genes that are 

required for survival and replication inside the macrophages (Belden and Miller 1994; 

Boddicker, Knosp et al. 2003). 

SirA/BarA is another important two-component regulatory system that is 

essential for activation of SPI-1 mediated invasion. BarA is a sensor kinase and SirA 

is the corresponding regulator (Teplitski, Goodier et al. 2003; Ellermeier and Slauch 

2007). SirA can directly activate hilA and hilC by binding to their promoters 

(Teplitski, Goodier et al. 2003). Otherwise, SirA mediated activation of invasion 

genes occurs through the carbon storage regulator (Csr) system. SirA enhances 

expression of the CsrB and CsrC small regulatory RNAs that bind to CsrA (Fortune, 
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Suyemoto et al. 2006). CsrA, an RNA binding protein, inhibits SPI-1 gene expression 

by binding to hilD mRNA. CsrA in its bound condition with CsrB and CsrC, is 

unable to bind further to hilD mRNA and hence cannot exert its inhibitory effect on 

SPI-1 mediated invasion (Altier, Suyemoto et al. 2000).  

The EnvZ/OmpR two-component system is also important for controlling the 

expression of SPI-1 and SPI-2 genes. EnvZ, as sensor kinase, activates the response 

regulator OmpR (Lee, Detweiler et al. 2000; Lucas, Lostroh et al. 2000; Garmendia, 

Beuzon et al. 2003). OmpR has been reported to induce expression of hilC and post-

translational activation of HilD (Lucas and Lee 2001; Ellermeier, Ellermeier et al. 

2005). Similarly, OmpR can activate ssrA/ssrB genes by direct binding to their 

promoters and hence increasing SPI-2 expression (Lee, Detweiler et al. 2000; Feng, 

Oropeza et al. 2003). 

Besides the aforementioned regulatory systems, SPI-1 and SPI-2 gene 

expression is also under the control of less well described regulatory circuits. For 

instance, the RcsCDB phosphorelay system represses the invasion-associated genes of 

SPI-1 whereas it activates SPI-2 genes (Garcia-Calderon, Casadesus et al. 2007; Wang, 

Zhao et al. 2007). RtsA activates HilA expression whereas the gene rtsB in the same 

operon is believed to represses SPI-1 genes by suppressing FliZ (Ellermeier and Slauch 

2003; Saini, Slauch et al. 2010). QseC/QsecB, yet another two-component system, 

activates the expression of both the SPI-1 and SPI-2 in vitro and in vivo (Moreira, 

Weinshenker et al. 2010)  

Taken together, the extremely complex regulatory network ensures the proper 

and timely expression of virulence genes during infection pathogenesis and still a lot of 

unidentified players remain to be described. 

1.4 PROFESSIONAL PHAGOCYTES AND OXIDATIVE STRESS 

After success against the multiple host barriers; such as low gastric pH, 

peristalsis, intestinal commensal flora, antimicrobial peptides, mucin layer on intestinal 

epithelium and escape from being captured into a phagolysosome, Salmonella 

ultimately establishes its own niche (SCV) within the professional phagocytes of the 

reticuloendothelial system (Eswarappa, Negi et al. 2010; Alvarez-Ordonez, Begley et 

al. 2011). Yet, Salmonella is not out of danger, as it has to combat with a deadly 

bactericidal weapon of the macrophages known as “Respiratory Burst or Oxidative 

Burst”. 
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Oxidative burst is a generic term used to describe a coordinated series of 

metabolic events with increased consumption of oxygen and net production of reactive 

oxygen species (ROS) (Babior 1978). Phagocytes rely on NADPH-dependent oxidase 

(NOX2) for production of ROS (Nauseef 2004). NOX2 is a multimeric enzyme 

complex that assembles at the membrane of phagosome and transfers electron to the 

molecular oxygen into the phagosome (Petry, Weitnauer et al. 2010). The oxygen is 

reduced to superoxide radical (O2
�). This radical, in later steps, is dismutated to 

hydrogen peroxide (H2O2) either spontaneously or by enzymatic catalysis. Furthermore, 

H2O2 is either converted to hydroxyl radicals (HO.) in the presence of Fe2+ during the 

Fenton reaction or converted to hypochlorous acid (HOCl) by enzymatic action of 

myeloperoxidase (MPO). HOCl is further converted to singlet oxygen (1O2) by reacting 

with a second molecule of H2O2 (Hampton, Kettle et al. 1998; Janssen, van der Straaten 

et al. 2003; Fang 2011; Paustian 2013). The overall series of reactions for production of 

different ROS species is shown in figure 2. 

 

 
 

 
Figure 2: Respiratory burst and bactericidal or bacteriostatic ROS and RNS production. Shading 

legends: orange = enzyme; golden = ROS and blue = RNS. ROS = reactive oxygen species; RNS = 

reactive nitrogen species. Adapted from (Babior 1978; Janssen, van der Straaten et al. 2003; Winterbourn 

2008; Flannagan, Jaumouille et al. 2012) 



 

12 

ROS mediated damage to bacterial cells varies depending on the particular ROS 

and the target. The target might be any macro-molecule within bacterial cell i.e. cell-

membrane, DNA or certain proteins. In the cytoplasm, ROS target DNA and either 

oxidize purines particularly guanine or cause strand breaks. These DNA interferences 

may result in mutations or may be lethal in the absence of a repair system (Imlay and 

Linn 1988; Lloyd, Carmichael et al. 1998). Another important target for ROS is the 

iron-sulfur centre in a number of proteins especially enzymes that are involved in 

metabolic pathways (Janssen, van der Straaten et al. 2003; Salmeen and Barford 2005; 

Imlay 2006). The thiol groups in side chains of cysteine in these iron-sulfur centers can 

be oxidized to form a disul�de bond resulting in conformational changes and ultimately 

reversible inactivation of enzymes (Feng and Forgac 1994; Biswas, Chida et al. 2006; 

Suto, Iuchi et al. 2007). The reaction with iron-sulfur center also releases iron (Fe+2) 

from these centers. This released iron can produce more ROS particularly HO. through 

the Fenton reaction that can amplify the deleterious effects of ROS (Janssen, van der 

Straaten et al. 2003). 

Thus, indeed, coping with ROS is a big challenge for ingested bacteria. However, 

Salmonella does not reside in a typical phagolysosome, rather it has created its own 

niche; “the SCV” (Eswarappa, Negi et al. 2010; Alvarez-Ordonez, Begley et al. 2011). 

In fact, Salmonella infection is much pronounced in mice deficient in NOX2 compared 

to wild type littermates (Mastroeni, Vazquez-Torres et al. 2000). Previously, Vazques-

Torres and Gallios demonstrated that NOX2 assembly is excluded from the SCV 

membrane in a T3SS-2-dependant manner (Vazquez-Torres, Xu et al. 2000; Gallois, 

Klein et al. 2001). In contrast, Grant et al. and other groups have proposed that NOX2 

assembly can also take place on SCVs even in the presence of a functional T3SS-2 

(Aussel, Zhao et al. 2011; Grant, Morgan et al. 2012). This being said, these facts 

strongly suggest that ROS-mediated control of Salmonella takes place even in the SCV 

that relies on NOX2 presence.  

To augment the activity of ROS, phagocytes have developed another system that 

results in the production of reactive nitrogen species (RNS) (Chakravortty, Hansen-

Wester et al. 2002; Chakravortty and Hensel 2003). The first RNS is nitric oxide (NO) 

which is produced by the inducible nitric oxide synthase (iNOS)-mediated oxidation of 

L-arginine in the presence of NADPH in the phagocyte cytoplasm (Fang 1997). NO 

diffuses across the phagosome/SCV membrane and reacts immediately with O2
� to 

produce a more potent antimicrobial compound peroxynitrite (ONOO�) that can be 

converted to other RNS in later reactions (Fang 1997; Aktan 2004). The antimicrobial 
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role for RNS usually becomes evident only in the later stages of infection as iNOS is 

not expressed under the basal metabolic state of cell (Vazquez-Torres, Jones-Carson et 

al. 2000; Pautz, Art et al. 2010). The interaction of RNS production with ROS is 

summarized in figure 2.  

1.5 SALMONELLA DEFENSE AGAINST ROS DAMAGE 

To counteract the ROS-mediated damage, Salmonella has developed two 

distinct mechanisms; 1) Detoxification of ROS by induction of stress induced 

detoxifying enzymes 2) Reparation of the damage and scavenging the ROS. 

 

1.5.1 Detoxification 

S. enterica contains a variety of enzymes for detoxification of ROS. Some of 

these enzymes are functional in the bacterial periplasm whereas others work in the 

cytoplasm. Salmonella has four superoxide dismutases (SODs), SodCI, SodCII, SodA 

and SodB that scavenge O-
2 in the periplasm (SodCI, SodCII) as well as in cytoplasm 

(SodA and SodB) and convert it to H2O2 (McCord and Fridovich 1969; Fang 1997; 

Rushing and Slauch 2011). SODs also prevent the formation of peroxynitrite in the 

periplasm, probably by limiting the available O-
2 to react with NO. (DeGroote, 

Ochsner et al. 1997). Salmonella strains deficient in either SodCI or SodCII are more 

prone to death by ROS in macrophages (Sly, Guiney et al. 2002; Golubeva and 

Slauch 2006; Kim, Richards et al. 2010). 

H2O2 produced by the dismutation of O-
2 in the periplasm readily penetrates 

the cell membrane and is converted to HO. by the Fenton reaction (Janssen, van der 

Straaten et al. 2003). Salmonella has three catalases (KatE, KatG, KatN) and three 

peroxidases (AhpC, TsaA, Tpx), that degrade H2O2 to water and oxygen in the 

cytoplasm (Loewen 1984; Hebrard, Viala et al. 2009; Horst, Jaeger et al. 2010). The 

single mutation of any of these genes usually does not affect the survival of 

Salmonella however, a Slamonella mutant deficient in specific single thiol peroxidase, 

Tpx, was found sensitive to H2O2 in vitro and was restricted for replication in 

activated macrophages (Pappszabo, Firtel et al. 1994; Buchmeier, Libby et al. 1995; 

Horst, Jaeger et al. 2010).  

 

1.5.2 Damage Repair 

Once ROS are out of control from the bacterial scavenging/detoxification 

systems, they can cause damage to nucleic acids, lipids and proteins (Lloyd, 
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Carmichael et al. 1998; Biswas, Chida et al. 2006; Imlay 2006; Suto, Iuchi et al. 2007). 

DNA damage signals for the SOS response and activates the DNA-repair 

RecA/RecBCD system or RuvAB resolvasome system (Kuzminov 1999). Indeed, the 

RecA/RecBCD and RuvAB systems have been shown to be important for Salmonella 

survival in macrophages cell lines and in vivo (Buchmeier, Lipps et al. 1993; Cano, 

Pucciarelli et al. 2002; Craig and Slauch 2009).  

Under normal conditions, the sulfur atoms in the cysteine and methionine of 

bacterial proteins are mostly in thiol/thiolate state due to the reducing cytoplasmic 

environment. ROS attacks these thiol groups resulting in disturbance of cellular redox 

balance (the balance of oxidized and reduced molecules in cell), hence perturbing the 

biological functions such as inactivation of enzymes or modulation of redox-sensitive 

signal transduction (Feng and Forgac 1994; Biswas, Chida et al. 2006; Suto, Iuchi et al. 

2007). Nevertheless, the oxidations at thiol groups are usually reversible and bacteria 

have evolved a number of different anti-oxidant oxidoreductase mechanisms that can 

repair the oxidative modifications (Ritz, Patel et al. 2000). The change of methionine to 

methionine sulfoxide is seen more like a ROS scavenging system in the normal 

physiology of the cell (Levine, Berlett et al. 1999). The sulfoxide groups are readily 

recovered to the reduced thiolated from by methionine sulfoxide reductases (Msrs) 

(Sharov, Ferrington et al. 1999; Grimaud, Ezraty et al. 2001; Ezraty, Aussel et al. 

2005).  

The three well-studied and most important repair systems for maintaining redox 

dynamics at thiol groups of cysteine residues are thioredoxin, glutathione/glutaredoxin 

and the Dsb systems in Gram-negative bacteria. The former two operate in the 

cytoplasm whereas the latter is functional in the bacterial periplasm (Holmgren, 

Johansson et al. 2005; Inaba 2009). The members in these systems are the 

oxidoreductases that belong to “Thioredoxin Superfamily” which are characterized by a 

“Cys-X-X-Cys” motifs catalyzing reversible reduction of disulfides (Sjoberg and 

Holmgren 1972; Hoog, Jornvall et al. 1983; Wunderlich and Glockshuber 1993; 

Aslund and Beckwith 1999).  

The prime thioredoxin system consists of thioredoxin I (TrxA), thioredoxin 

reductase (TrxR) and NADPH. TrxA, a small protein with a molecular mass of 12 kDa, 

is the main effector that is capable of reducing a wide range of proteins by making 

temporary thiol-disulfides with the proteins (Laurent, Moore et al. 1964; Holmgren 

1995; Lu and Holmgren 2013). TrxA itself is reduced by TrxR that, in turn, gets its 

reducing equivalents from NADPH (Holmgren 1995; Aslund and Beckwith 1999). 
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Besides reducing the unwanted oxidized proteins in the cytosol, TrxA also act as a 

communication point to transfer the reducing equivalents to the periplasmic Dsb 

oxidoreductase system (Rietsch, Belin et al. 1996; Rietsch, Bessette et al. 1997; Krupp, 

Chan et al. 2001).  

The glutathione/glutaredoxin system comprises of glutathione reductase (GR), 

glutathione (GSSG/GSH), glutaredoxins (Grx) and NADPH (Holmgren, Johansson et 

al. 2005; Meyer, Belin et al. 2012). In this system, glutaredoxins (GrxA, GrxB, GrxC) 

are the main effectors that are reduced by NADPH via GR and GSH (Holmgren and 

Aslund 1995; Lillig, Berndt et al. 2008). Grx can reduce protein disulfides by dithiol or 

monothiol mechanism (Bushweller, Aslund et al. 1992; Mesecke, Mittler et al. 2008). 

The monothiol mechanism involves the mixed Grx-GSH-proteinox complex and is the 

specificity of glutaredoxin system that can’t be carried out by the thioredoxin system 

(Bushweller, Aslund et al. 1992; Mesecke, Mittler et al. 2008). 

The periplasmic disulfide bond (Dsb) system ensures the proper disulfide 

configuration of the proteins that are either functional in the periplasm or are exported 

out of the cell. The Dsb system has two distinct arms; DsbA/DsbB responsible for 

introducing disulfide bonds in the newly transported proteins in periplasm, and 

DsbC/DsbD that isomerizes the incorrectly introduced disulfide bonds (Berkmen, Boyd 

et al. 2005; Kim, Lee et al. 2006; Ito 2010). In the DsbA/DsbB pair, DsbA is the one 

that introduce disulfide bonds to the proteins by taking reducing equivalents from the 

thiol groups of the native proteins (Bardwell, McGovern et al. 1991). For efficient and 

prompt function, DsbA is recycled to the oxidized form by the membrane located DsbB 

protein (Regeimbal and Bardwell 2002; Tapley, Eichner et al. 2007). Being a strong 

oxidant, DsbA can also introduce disulfide bonds that are not required; hence, the 

DsbC/DsbD system comes into play (Kim, Lee et al. 2006; Ito 2010). DsbC is the 

isomerase to correct wrongly folded proteins reducing disulfide bonds and getting itself 

oxidized (Rietsch, Belin et al. 1996; Welk, Rudolph et al. 2011). DsbC is recycled to its 

reduced state by the membrane counterpart DsbD (Rietsch, Bessette et al. 1997).  

1.6 OXIDOREDUCTASES AND VIRULENCE  

Bacterial oxidoreductases have also been directly associated with disease 

progression and pathogenicity. In Salmonella, Msrs have been implicated in H2O2 

tolerance, replication in macrophages and survival in mice (Denkel, Horst et al. 2011; 

Denkel, Horst et al. 2011). Similarly, TrxA of Salmonella has been shown to promote 

intracellular replication and survival in mice by activating the expression of T3SS-2 
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(Bjur, Eriksson-Ygberg et al. 2006; Negrea, Bjur et al. 2009). Moreover, TrxA induces 

inflammation in mice and causes increased ROS production in C. elegans (Peters, 

Paterson et al. 2010; Sem and Rhen 2012). DsbA of the periplasmic redox system has 

been implicated in a number of different pathogenic processes. For instance, DsbA is 

essential for P fimbrie assembly in uropathogenic E. coli (UPEC) (Jacobdubuisson, 

Pinkner et al. 1994), required for forming the twitching motility component type 4 

fimbriae in UPEC, V. cholera, and N. meningitidis, (Peek and Taylor 1992; Zhang and 

Donnenberg 1996; Tinsley, Voulhoux et al. 2004) and is needed for maturation of 

intimin, an outer membrane adhesion of enteropathogenic E. coli (Bodelon, Marin et al. 

2009). Furthermore, DsbA has also been shown as an essential component for flagellar 

motor function, certain toxins and virulence factor maturation and secretion, as well as 

proper functioning of T3SSs (Peek and Taylor 1992; Dailey and Berg 1993; Jackson 

and Plano 1999; Agudo, Mendoza et al. 2004; Miki, Okada et al. 2004; Shouldice, 

Heras et al. 2011).  

Besides the protective role of oxidoreductases, Salmonella has evolved the 

strategy to divert the ROS and integrate it in the control of virulence genes. For 

instance, the oxidative stress sensor OxyR is activated by ROS that introduces disulfide 

bonds between its two cysteine residues (Zheng, Aslund et al. 1998). The oxidized 

OxyR can bind to the DNA and activate a number of different oxido-protective 

enzymes (Doyle 1989; Imlay 2008). Similarly, SsrB has an RNS responsive Cys203 

residue and the oxidation of Cys203 by RNS increases the fitness of Salmonella in 

murine model of acute oral infection (Husain, Jones-Carson et al. 2010). 

Taken together, there exist a large number of different genes belonging to 

oxidoreductase systems as well as regulators with active cysteine residues in their 

proteins sequences and their involvement in pathogen fitness still remains to be 

elucidated.  
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1.7 BIOFILMS 

Biofilms, an antique but poorly understood mode of growth, are complex 

communities of microorganisms embedded in self-produced extracellular matrix in 

which they attach to each other and grow on either biotic or abiotic surfaces (Costerton, 

Stewart et al. 1999; Hall-Stoodley, Costerton et al. 2004; Bridier, Briandet et al. 2011). 

Biofilm embedded bacteria constitute around 10% of biofilm total dry mass and have 

the advantage of protection from harsh environmental conditions, such as dehydration, 

phagocytosis, UV exposure and resistance to antibiotics and antimicrobial agents (Le 

Magrex-Debar, Lemoine et al. 2000; Espeland and Wetzel 2001; Leid, Shirtliff et al. 

2002; Smith and Hunter 2008; Flemming and Wingender 2010; Wong, Townsend et al. 

2010).  

Biofilms are implicated in the development and complications of a number of 

diseases (Costerton, Stewart et al. 1999). Recurrent urinary tract infections with 

indwelling catheters, prosthetic heart valve-associated endocardtitis, wound infections 

with implants, dental caries and lung infection with underlying genetic diseases are 

some of the biofilm-associated disease examples (Ge, Kitten et al. 2008; Giacaman, 

Araneda et al. 2010; Bonkat, Widmer et al. 2013; Gross and Welch 2013; Molina-

Manso, del Prado et al. 2013). Moreover, due to the close proximity of bacteria in a 

biofilm, higher genetic exchange events can happen that lead to the development and 

spread of antibiotic resistance strains (Nguyen, Piastro et al. 2010; Bridier, Briandet et 

al. 2011; Marks, Reddinger et al. 2012). 

 The nature, structure and development of biofilms are determined by the growth 

conditions, temperature and the genetic background of microorganism (Mika and 

Hengge 2013). Nevertheless, typical biofilm development follows five sequential steps: 

initial attachment, irreversible attachment, microcolony formation, maturation and 

finally dispersion. In the initial reversible attachment, swimming bacteria migrate over 

the surface and establish pili- or fimbriae-mediated contact with the surface. 

Subsequently, extracellular matrix production is triggered leading to irreversible 

attachment and hence cell division starts to form a microcolony (clusters of up to 50 

cells). This matrix embedded microcolony leads to the mature three-dimensional 

complex biofilm architecture with inter-communicating channels, live and dead 

bacteria plus massive amount of extracellular material (� 90% of dry mass). The last 

stage is the dispersal to ensure remodeling of mature biofilm and seeding of new site 

for biofilm development (O'Toole, Kaplan et al. 2000; Gjermansen, Ragas et al. 2006; 

Flemming and Wingender 2010; Li, Brown et al. 2012; Römling 2013). 
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Salmonella enterica has three different growth behaviors: swimming, swarming 

and sessility in a complex multicellular biofilm formation. Under laboratory conditions 

Salmonella biofilms can be studied in liquid cultures (pellicle formation and flow cell 

based system) and on a low-osmolarity solid agar surface (Branda, Vik et al. 2005). 

Biofilm of S. Typhimurium on low-osmolarity solid medium and at low temperature is 

characterized by a flat spreading colony with a rough and dry surface, netlike warping 

and an undulate margin (Römling 2005). The extracellular matrix components 

described so far in Salmonella biofilms are cellulose, surface associated proteinacious 

curli fimbriae, large surface protein BapA, capsular polysaccharide and others 

including the LPS like polysaccharide (Collinson, Clouthier et al. 1996; Zogaj, Bokranz 

et al. 2003; Latasa, Roux et al. 2005; Anriany, Sahu et al. 2006). However, another 

very important biofilm-matrix component, extracellular DNA (eDNA), of many 

biofilms has not yet been described in Salmonella (Whitchurch, Tolker-Nielsen et al. 

2002; Allesen-Holm, Barken et al. 2006; Bockelmann, Janke et al. 2006; Izano, 

Amarante et al. 2008; Ma, Conover et al. 2009). 

The addition of a diazo Congo red (CR) dye to the medium gives purple color to 

the developing biofilm due to the binding of CR with cellulose and curli fimbriae, 

hence the S. Typhimurium biofilm is called red dry and rough (rdar) morphotype 

(Ross, Weinhouse et al. 1987; Römling, Bokranz et al. 2003). Variants of the rdar-

mophotype are produced on CR supplemented Luria Agar plates without salt in the 

presence or absence of the aforementioned extracellular biofilm components and are 

given in figure 3. 

 

 

 

 

 

 

 
 

 

Figure 3: Salmonella Typhimurium biofilm formation on LA without salt agar plate with CR dye. 

Rdar = red dry and rough; pdar = pink dry and rough; bdar = brown dry and rough; saw = smooth and 

white. (-ve) = absence of extracellular matrix component. Adapted from (Simm, Lusch et al. 2007) 
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1.7.1 CsgD -The Master Regulator of Biofilm Formation 

The regulatory signals for Salmonella rdar-morphotype development are 

converged at the CsgD regulatory protein (curli subunit gene D) that inhibits planktonic 

growth and promotes sessility (Ross, Weinhouse et al. 1987; Carpousis 2007; Schild, 

Tamayo et al. 2007; Ogasawara, Yamamoto et al. 2011). CsgD is a member of 

FixJ/LuxR/UhpA family of transcriptional regulators and is the product of csgD gene 

located on csgDEFG operon (Hammar, Arnqvist et al. 1995; Gerstel and Römling 

2003).  

CsgD regulates the promoter activity of csgDEFG-csgBAC operons (Carpousis 

2007; Zakikhany, Harrington et al. 2010). The products of csgEFG-csgBAC are 

involved in the synthesis, secretion and assembly of curli fimbrie (Das, Bhutia et al. 

2011). CsgA is the major structural protein subunit of curli fibers that can bind 

fibronectin and Congo red. CsgB is the cognate nucleator for insoluble CsgA polymers 

formation at the bacterial cell surface (Das, Bhutia et al. 2011). Other members of the 

csgDEFG-csgBAC operon are accessory proteins that facilitate transport and assembly 

of CsgA (Barnhart and Chapman 2006; Robinson, Ashman et al. 2006; Gibson, White 

et al. 2007). Besides CsgD mediated control of csgBAC operon, csgBAC is also 

regulated by diguanylate cyclases and phosphodiesterase which are otherwise involved 

in cyclic-3’-5’-diguanylic acid (cyclic di-GMP or c-di-GMP) metabolism as described 

in section 1.7.2. (Sommerfeldt, Possling et al. 2009; Tagliabue, Maciag et al. 2010). 

CsgD indirectly activates cellulose biosynthesis by binding to the adrA 

promoter (Bokranz, Wang et al. 2005). AdrA enhances production of c-di-GMP by its 

diguanylate cyclase synthase activity (Zogaj, Nimtz et al. 2001). Subsequently, c-di-

GMP activates the synthesis of cellulose by binding to the main cellulose synthase 

BcsA (Römling, Rohde et al. 2000). However, as is true for CsgD-independent control 

of curli fimbriae, cellulose production can also occur without CsgD-mediated adrA 

activation. This is achieved by the direct increase in the c-di-GMP level independent of 

AdrA (Garcia, Latasa et al. 2004; Da Re and Ghigo 2006). In addition to the 

aforementioned two main biofilm matrix components, CsgD also induces the 

expression of BapA and lipopolysaccharide (Latasa, Roux et al. 2005; Gibson, White et 

al. 2006).  

CsgD expression is influenced directly or indirectly by multiple environmental 

signals such as nutrient limitation, low temperature, oxygen tension, alkaline pH and 

high cell density (Gerstel and Römling 2001; Brombacher, Dorel et al. 2003; Gerstel 

and Römling 2003; Römling 2005). The signals from varying environments are 
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transmitted to certain global regulators that influence CsgD expression (Gerstel and 

Römling 2003; Ishihama 2010; Ogasawara, Yamada et al. 2010; Ogasawara, 

Yamamoto et al. 2010). Among many regulators, the stress/stationary sigma factor 

RpoS and osmolarity response regulator OmpR are the most important for CsgD 

positive transcription (Römling, Bian et al. 1998; Gualdi, Tagliabue et al. 2007). Along 

with the global regulators, evidence for small regulatory RNA mediated regulation of 

CsgD are increasing rapidly (Udekwu, Darfeuille et al. 2005; Holmqvist, Reimegard et 

al. 2010; Mika, Busse et al. 2012; Monteiro, Papenfort et al. 2012; Thomason, Fontaine 

et al. 2012). Furthermore, the expression of CsgD is strongly influenced by the c-di-

GMP concentration in the cell (Kader, Simm et al. 2006; Weber, Pesavento et al. 2006; 

Krasteva, Fong et al. 2010). 

 

1.7.2 Cyclic-di-GMP Control of Biofilm Formation  

Cyclic-di-GMP is a small and well known bacterial secondary messenger that 

has been implicated in biofilm formation and dispersion, motility, virulence, regulation 

of the cell cycle, differentiation and in a growing number of other properties (Jenal 

2004; Simm, Morr et al. 2004; Wolfe and Visick 2008; Lamprokostopoulou, Monteiro 

et al. 2010; Ahmad, Lamprokostopoulou et al. 2011; Römling, Galperin et al. 2013). 

Interestingly, a recent report has claimed to identify the presence of c-di-GMP in 

eukaryotes as well (Chen and Schaap 2012). The cellular concentration of c-di-GMP is 

maintained by GGDEF and EAL or HD-GYP domain proteins, which act as 

diguanylate cyclases and phosphodiesterases respectively (Römling, Rohde et al. 2000; 

Römling 2005; Scher, Römling et al. 2005). The overall metabolism of c-di-GMP is 

summarized in figure 4. 

Besides its classical function of activating cellulose synthesis that constitute a 

major component of biofilm matrix of many organisms (Ross, Weinhouse et al. 1987; 

Römling, Rohde et al. 2000; Bokranz, Wang et al. 2005; Da Re and Ghigo 2006), c-di-

GMP inhibits motility and flagellar gene expression which aids in the establishment of 

biofilms (Simm, Morr et al. 2004; Kader, Simm et al. 2006; Ryjenkov, Simm et al. 

2006; Meissner, Wild et al. 2007). The motility is repressed by binding of c-di-GMP 

with the PilZ domain of YcgR and BcsA, that inhibits FliG-meditated flagellar rotation 

and imparts steric hindrance to flagellar rotation in dense cellulose matrix respectively 

(Ryjenkov, Simm et al. 2006; Fang and Gomelsky 2010; Zorraquino, Garcia et al. 

2013).  
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Figure 4: Synthesis and degradation of c-di-GMP. Synthesis is carried out by proteins with GGDEF 

domains and degradation is achieved by EAL and HD-GYP domain proteins. White shading indicates the 

active domains and grey background represents inactive domains. Adapted from (Römling, Galperin et 

al. 2013). 

 
The transition from motility to sessility is analogous to the change from the 

acute virulent infection state to a less virulent but persistent chronic stage of infection 

(Tamayo, Pratt et al. 2007; Römling, Galperin et al. 2013). Indeed, a number of reports 

have shown the involvement of a high c-di-GMP concentration in promoting the 

persistence of Pseudomonas aeruginosa in airways of cystic fibrosis patients and in 

animal infection models (Starkey, Hickman et al. 2009; Malone, Jaeger et al. 2010; 

Byrd, Pang et al. 2011). Similarly, elevated intracellular levels of c-di-GMP suppress 

acute stages of infection and promote chronic infection in S. Typhimurium 

(Lamprokostopoulou, Monteiro et al. 2010; Ahmad, Lamprokostopoulou et al. 2011). 

However, motility is also regarded as the initiation step of biofilm formation and is 

essential for colonization of new habitats (Danhorn and Fuqua 2007).  
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This contradiction can’t yet be resolved due to our limited understanding of c-

di-GMP signaling, complexity of regulatory switches, multiple targeting at 

transcriptional, post-transcriptional and post-translational levels and intracellular spatial 

restriction of c-di-GMP pool (Römling, Galperin et al. 2013). Altogether, the 

orchestrated control of c-di-GMP is ultimately decisive for choosing either planktonic 

life style (acute infection mode) or multicellular sessile growth behavior (chronic 

infection mode). However, further efforts to solve the issues regarding c-di-GMP-

mediated controls are still needed. 

1.8 BIOFILMS, REDOX STRESS AND OXIDOREDUCTASES 

Bacterial adaptation and transition from a planktonic lifestyle to sessile biofilm 

growth result in substantial changes in the bacterial metabolome. Biofilms are regarded 

as oxidizing environments and the expression of a significant number of oxidative 

stress tolerant genes is affected by biofilm-forming conditions (Römling and Tummler 

2000; Bokranz, Wang et al. 2005; Resch, Rosenstein et al. 2005; Da Re and Ghigo 

2006; Suo, Huang et al. 2012; Yeom, Shin et al. 2013).  

In the last decade, continuous efforts have been focused on understanding the 

biofilm environment and the role of redox stress in modulation of biofilm (Bitoun, 

Nguyen et al. 2011; Bitoun, Liao et al. 2012; Liu, Sun et al. 2013). In addition to this, 

several reports connect oxidoreductases with biofilm regulation (Ryjenkov, Simm et al. 

2006; Tarutina, Ryjenkov et al. 2006; Lee, Kim et al. 2008; Lee, Oh et al. 2009; Suo, 

Huang et al. 2012). The periplasmic superoxide dismutase (SOD) is known to be 

essential for biofilm formation in E. coli and Listeria monocytogenes (Kim, Lee et al. 

2006; Tarutina, Ryjenkov et al. 2006; Suo, Huang et al. 2012). Kim et. al. has further 

shown that thiol peroxidase, Tpx, is also a requirement for the stability of biofilms in E. 

coli (Kim, Lee et al. 2006). The protein disulfide isomerase DsbA suppresses biofilm 

formation in Pseudomonas putida (Lee, Oh et al. 2009; Lee, Seo et al. 2011) whereas 

in E. coli DsbA is essential for static growth of bacteria (Lee, Kim et al. 2008). In 

Streptococcus mutans, another newly defined oxidoreductase, SMu0629, has also been 

demonstrated to affect biofilm formation probably through its effect on autolysin AltA 

that is essential for biofilm development (Ahn and Burne 2007). However, in the 

presence of certain metabolite oxidoreductases can act as antimicrobials and contribute 

to the reshaping and development of biofilms (Welk, Rudolph et al. 2011; Zhu and 

Kreth 2012).  
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Furthermore, as discussed in section 1.6, bacteria can divert the product of 

oxidative stress to regulate and coordinate their metabolism and virulence. Recently, in 

Staphylococcus epidermidis, a redox sensing regulator, AbfR (aggregation and biofilm-

formation regulator) has been defined to repress biofilm. AbfR can negatively regulate 

its own expression by binding to its promoter in reduced form and oxidation at its Cys13 

and Cys116 results in dissociation from promoter, hence suppression of biofilm-

formation (Liu, Sun et al. 2013). By in silico analysis, we also found a pair of Cys 

residues in CsgD as well (unpublished data). The presence of such a Cys pair invites 

the speculations of ROS mediated changes at active Cys residues of CsgD and hence 

the regulation of biofilm in Salmonella and E.coli.  

In short, the complex biology of biofilms seems to be influenced in part by 

redox stress and oxidoreductases. However, to clearly define the mechanisms 

underlying the involvement of oxidoreductases and redox stress in biofilm control still 

awaits further efforts.  

1.9 RNA DEGRADOSOME 

The central dogma of molecular biology states that information passes from DNA 

to proteins through the intermediate messenger RNA (mRNA) (Crick 1970). Gene 

regulation at post-transcriptional levels largely involves mRNA and relies on the 

stability and half-life of mRNA. The half-lives of bacterial transcripts in model 

organisms such as E. coli are less than 10 minutes on average, suggesting their rapid 

but selective turnover for a successful adaptation to changing environmental conditions 

(Bernstein, Khodursky et al. 2002; Selinger, Saxena et al. 2003; Dressaire, Picard et al. 

2013). 

The well organized and controlled RNA turnover process is accomplished with 

the activity of a highly conserved 500kDa cytoplasmic membrane associated 

multiprotein complex known as RNA degradosome (Carpousis, Van Houwe et al. 

1994; Py, Causton et al. 1994; Carpousis 2007; Burger, Whiteley et al. 2011; Gorna, 

Carpousis et al. 2012; Bandyra, Bouvier et al. 2013). The four major components of the 

RNA degradosome are endoribonuclease (RNase E), exoribonuclease (PNPase), RNA 

helicase (mainly RhlB) and a metabolic enzyme enolase (Py, Higgins et al. 1996; 

Chandran, Poljak et al. 2007; Zhou, Zhang et al. 2013). In addition, a number of other 

components are being isolated that add to the selectivity and specificity of the RNA 

degradosome (Butland, Peregrin-Alvarez et al. 2005; Kaberdin and Lin-Chao 2009; 

Burger, Whiteley et al. 2011). RNase E is the core of the RNA degradosome that 
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anchors itself to the cytoplasmic membrane and acts as a scaffold for the attachment of 

other components of the degradosome (Callaghan, Aurikko et al. 2004; Taghbalout and 

Rothfield 2007; Khemici, Poljak et al. 2008). RNase E is important in initiation of 

mRNA decay by endonuclease activity, especially for mRNAs with PNPase-resistant-

signal at their 3’ ends, and is also involved in the maturation of mRNAs (Carpousis 

2007; Mackie 2013). Helicases facilitate RNAse E- and PNPase-mediated decay by 

unwinding the complex RNA structures, although the functions of enolase are not yet 

fully resolved (Carpousis 2007). The focus here is on the PNPase and will be discussed 

further along with some aspects of cold-shock associated helicase, CsdA or DeaD 

helicase, in the following section.  

 

1.9.1 Polynucleotide phosphorylase (PNPase) 

PNPase is a 3�-5� exoribonuclease encoded by pnp that catalyzes the reversible 

addition of inorganic phosphate (Pi) across the 5�–3� phosphodiester bond of single 

stranded RNA with the concomitant release of a nucleoside diphosphate from the 3�-

end (Grunberg-Manago and Ochoa 1955). PNPase is an ubiquitous enzyme with a 

conserved domain structure (Leszczyniecka, DeSalle et al. 2004). PNPase has two 

RNase PH domains at N-terminus, which are separated by an �-helix. The second 

RNase PH domain from N-terminus is catalytically active and is called the PNPase 

domain (Jarrige, Brechemier-Baey et al. 2002). The C-terminus contains two additional 

domains, KH and S1 that bind and target senescent RNA molecules to RNA 

degradosome (Symmons, Williams et al. 2002; Leszczyniecka, DeSalle et al. 2004). 

PNPase activity is decreased by approximately 90% - 95% by deleting either KH or S1 

domain respectively whereas deletion of both domains results in a 99% loss of 

enzymatic activity (Stickney, Hankins et al. 2005).

1.9.1.1 PNPase and Virulence  

The importance of PNPase is exemplified by its roles in virulence fitness and 

adaptation to stress environments (Sukupolvi, Edelstein et al. 1997; Clements, Eriksson 

et al. 2002; Rosenzweig, Weltman et al. 2005; Rosenzweig and Schesser 2007). In S. 

Typhimurium mutations in the PNPase locus result in enhanced virulence marked with 

spleenomegaly and persistency of infection in mouse infection model (Sukupolvi, 

Edelstein et al. 1997; Clements, Eriksson et al. 2002). Clements et. al. have further 

shown that mutational inactivation of the PNPase gene remarkably affects the mRNA 

level of virulence-associated genes, the majority belonging to SPI-1 and SPI-2 
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activities. This effect on mRNA levels occurred either by altering the expression or the 

stabilization of mRNA (Clements, Eriksson et al. 2002). Moreover, PNPase represses 

spv virulence genes that are required for intracellular survival and replication of S. 

Typhimurium (Ygberg, Clements et al. 2006). We have added to the list of PNPase 

controlled virulence traits in S. Typhimurium where PNPase is required for biofilm 

formation at low temperature and integrates with the c-di-GMP metabolism (Rouf, 

Ahmad et al. 2011). Interestingly, in a recent work, Wang et al. have shown that c-di-

GMP can directly bind to the PNPase (Wang, Chin et al. 2012). Such findings allow for 

the speculation that acute infections in PNPase proficient strains may function through 

sequestration of c-di-GMP, the latter otherwise would promote biofilm formation and 

chronic infection.  

 

1.9.1.2 PNPase and Environmental Adaptation 

The classical function of PNPase is its role in bacterial adaptation to cold shock 

(temperature shift from 37oC to 15oC). In E. coli, a shift to low temperature induces 

cold shock associated proteins (CSPs) including PNPase (Jones, VanBogelen et al. 

1987; Yamanaka and Inouye 2001). For growth resumption to pre-stress condition 

during the acclimatization phase, PNPase specifically degrades the CSP transcripts with 

concomitant induction of non-CSP mRNAs. The degradation of the CSP transcript also 

releases captive ribosomes that are recycled in the translation of other non-CSP 

transcripts (Thieringer, Jones et al. 1998; Neuhaus, Rapposch et al. 2000; Polissi, De 

Laurentis et al. 2003). Hence, an E. coli strain lacking PNPase is compromised in cold 

adaptation and half-life of CSP transcripts are prolonged (Yamanaka and Inouye 2001). 

Furthermore, in Yersinia, the catalytic activity of PNPase and its S1 domain have also 

been associated with cold adaptation (Rosenzweig, Weltman et al. 2005). 

Interestingly, PNPase has recently been demonstrated to be required for 

efficient adaptation to oxidative stress environments in many organisms (Wu, Jiang et 

al. 2009; Xiao, Xu et al. 2011; Henry, Shanks et al. 2012; Liu, Gong et al. 2012). As 

discussed in section 1.4, one of the preferred targets for ROS damage is nucleic acid. 

Indeed, PNPase-deficient strains are compromised in their growth in an oxidative stress 

environment due to accumulation of toxic oxidized RNAs in the cell (Wu, Jiang et al. 

2009). PNPase has been shown to bind with a higher affinity to the oxidized RNAs 

compared to undamaged RNAs and hence is essential for clearance of these toxic 

damaged RNAs (Xiao, Xu et al. 2011). In E. coli, the PNPase response to oxidative 

stress adaptation is believed to be degradosome-independent (Wu, Jiang et al. 2009) 
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whereas in Yersinia pseudotuberculosis, this function of PNPase is also degradosome 

assembly dependent (Henry, Shanks et al. 2012).  

 

1.9.2 DEAD Box RNA Helicase – CsdA/DeaD  

In enterobacteria, the deaD gene downstream to pnp encodes a 70kDa DEAD 

box (Asp-Glu-Ala-Asp) RNA helicase, CsdA (cold-shock DEAD box protein A) which 

is now commonly referred to as DeaD RNA helicase to avoid confusion with 

cysteine sulfinate desulfinase (csd) (Jones and Inouye 1994; Blattner, Plunkett et al. 

1997; McClelland, Sanderson et al. 2001; Iost, Bizebard et al. 2013). DeaD helicase 

expression is induced under cold shock and deletion of the deaD gene results in 

retarded growth at low temperatures (Yamanaka and Inouye 2001; Prud'homme-

Genereux, Beran et al. 2004). DeaD helicase can replace the 37oC functional 

counterpart RhlB helicase on RNA degradosome during the cold shock response and 

hence produces a “cold shock degradosome” in association with other essential 

components of RNA degradosome (Khemici, Toesca et al. 2004). The association of 

DeaD helicase with PNPase facilitates the degradation of complex mRNAs (Jones, 

Mitta et al. 1996; Yamanaka and Inouye 2001; Prud'homme-Genereux, Beran et al. 

2004). Furthermore, DeaD helicase has also been reported to be involved in the 

maturation of 50S ribosomal subunit in E. coli (Charollais, Dreyfus et al. 2004; Peil, 

Virumae et al. 2008).  

The fact that DeaD helicase enhances stability of CSP transcripts and delays the 

maturation of ribosomes (Awano, Xu et al. 2007; Peil, Virumae et al. 2008), still leaves 

an open question, that whether longevity of CSP transcripts or maturation-defect of 

ribosomes is responsible for compromised growth of deaD mutant at low temperature? 

 

1.10 NEW LIPOPROTEIN I (NLPI) 

NlpI is a 32kDa outer membrane-associated globular lipoprotein encoded by the 

corresponding gene nlpI, located between pnp and deaD on the chromosome (Blattner, 

Plunkett et al. 1997; McClelland and Wilson 1998; McClelland, Sanderson et al. 2001). 

NlpI is highly conserved among Enterobacteriaceae and the mature membrane 

anchored protein is 276 amino acids long after cleavage of 18 residues at the N-

terminus (Ohara, Wu et al. 1999). However, NlpI is also subject to periplamic Pre-

protease (Prc/Tsp) processing at its C-terminus that results in truncated NlpI with 

possibly different functions to that of its full length membrane associate (Tadokoro, 
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Hayashi et al. 2004). NlpI is the first prokaryotic protein described so far with a 

tetratricopeptide repeats (TPRs) that may provide large surface area for protein-protein 

interactions (Wilson, Kajander et al. 2005).  

NlpI was shown to be involved in E. coli cell division. The mutation in the nlpI 

gene rendered bacteria osmosensitive and thermosensitive with growth problems and 

altered morphology respectively (Ohara, Wu et al. 1999). Moreover, at low 

temperatures, NlpI has been associated with peptidoglycan redistribution with increased 

septation and cocobacilli formation (Pierce, Gillette et al. 2011). Besides a role in cell 

division, NlpI was also shown to participate in virulence. In E. coli, NlpI is required for 

efficient adhesion and invasion, facilitates binding to the microvasculature of blood 

brain barrier and promotes bacteremia by evasion from complement-mediated killing 

(Barnich, Bringer et al. 2004; Teng, Tseng et al. 2010; Tseng, Wang et al. 2012). 

Furthermore, NlpI facilitates eDNA release in E. coli and suppresses biofilm formation 

in S. Typhimurium (Sanchez-Torres, Maeda et al. 2010; Rouf, Ahmad et al. 2011).  

In short, the involvement of NlpI in multiple phenotype regulation raises the 

possibility that NlpI could act as a relay center for communicating signals from the 

environment to the metabolic and virulence regulatory cascades. Therefore, more work 

is needed to answer the remaining questions about NlpI involvement in such regulatory 

mechanisms. 
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2 AIMS OF THE THESIS
 

This thesis focuses on establishing the role of redox stress and the oxidoreductase 

systems in the virulence and environmental adaptation of Salmonella enterica serovar 

Typhimurium. 

  

The specific aims are: 

� To investigate the role of the ScsABCD oxidoreductase system in oxidative 

stress tolerance and virulence of S.Typhimurium 

� To analyze the role of periplasmic Dsb oxidoreductase system in the 

development and regulation of biofilm-formation of S. Typhimurium. 

� To probe the role of membrane protein NlpI and exoribonuclease PNPase in 

biofilm-development and regulation. 

� To establish the functional connection between different members of RNA 

degradosome and NlpI. 
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3 RESULTS AND DISCUSSIONS 

3.1 PAPER I 

Oxidoreductases that act as conditional virulence suppressors in Salmonella

enterica serovar Typhimurium  

Microarray analyses conducted on S. Typhimurium growing in murine 

macrophage-like cells (Eriksson, Lucchini et al. 2003) and in environment mimicking 

intracellular oxidative stress (Bjur et al., unpublished data) have shown an up-

regulation of the scsABCD gene cluster along with other known virulence genes. Since 

then, no attempts have been made to define the role of this genetic locus in Salmonella. 

The scsABCD gene cluster encodes four individual suppressor for copper sensitivity 

(Scs) proteins named as ScsA, ScsB, ScsC and ScsD. In the first paper of this thesis we 

have defined the ScsABCD as a potential new addition to the thioredoxin superfamily 

of oxidoreductases and have described its virulence-associated role in S. Typhimurium 

(Anwar, Sem et al. 2013).  

We started by in silico analysis of scsABCD locus. The scsABCD region is 

~3.4kb long and is located between the cbp and agp region of S. Typhimurium strains 

LT2 and 14028s genomes as well as in selected Enterobacteriaceae members (paper I; 

Fig. 1A). The GC content of this particular genetic region is consistent with the overall 

GC content of S. Typhimurium genome i.e. 50% - 52%. Furthermore, we could not 

detect any inverted repeats encompassing scsABCD locus that would be an indication 

of insertion of this particular genetic locus (unpublished data). These facts gave the 

impression that the scsABCD cluster is not a horizontally acquired genetic islet. Rather, 

Salmonella has retained scsABCD locus during evolution for fitness in versatile 

environments. We further found that each of the Scs proteins contains a Cys-X-X-Cys 

motif (Paper I; Fig.1B, 1C), which is a hallmark of oxidoreductase thioredoxin 

superfamily (Messens and Collet 2006) and thus defines the Scs proteins as putative 

new members in the thioredoxin superfamily. 

The ScsA and ScsB were predicted as outer membrane proteins based on the 

presence of lipobox sequence on N-termini whereas ScsD was predicted as integral 

cytoplasmic membrane protein. The ScsC protein was predicted as periplasmic protein 

based on classical signal sequence present at its N-terminal. In the hunt for the actual 

localization of these proteins in the bacterial subcellular compartments, ScsB was 

detected in the cytoplasmic membrane fraction whereas ScsC was recovered in the 
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predicted periplasmic fraction by using recombinant plasmid expressing His-tag 

variants of respective protein (Paper I; Fig. 1E). However, ScsA and ScsD were not 

detected with such a strategy, perhaps due to the instability of the tagged proteins. To 

overcome this limitation, we constructed the TrxA-Scs-His fusion protein which would 

give stability to the protein. By this approach, we were able to detect TrxA-ScsD-His in 

the predicted cytoplasmic membrane but we still did not recover ScsA (PaperI; Fig. 

1E). 

 In E. coli copper sensitive mutants (Cus), the tolerance to copper (CuCl2) can 

be restored by trans-complementation with the scsABCD genes whereas the scsABCD 

fails to restore tolerance of selected S. Typhimurium Cus mutants (Gupta, Wu et al. 

1997). This may imply that such tolerance conferred by scsABCD in E. coli is not 

against copper metal, rather its against the CuCl2-induced non-enzymatic damage to 

protein disulphide bonds as described previously (Lehrer 1975; Hurme, Namork et al. 

1994). Therefore, we checked the tolerance of 	scsA, 	scsB, 	scsC, 	scsD individual 

and 	scsABCD quadruple mutants of S. Typhimurium to CuCl2. Every defined mutant 

was sensitive to CuCl2 except the 	scsA mutant (Paper I; Fig. 2A). However, any such 

differential sensitivity was not found for 	scs mutants when treated with the transition 

metal salt, ZnCl2 (Paper I; Fig. 2B).  

CuCl2 is also a potential inducer of ROS by the Fenton reaction (Rietsch, Belin 

et al. 1996). Therefore, we tested the viability of 	scs mutants to a prototype ROS, 

hydrogen peroxide (H2O2). Only the viability of 	scsA mutant was reduced whereas all 

other mutants paralleled the survival of the wild type upon H2O2 stress (Paper I; Fig. 

2D). The stand alone behavior of 	scsA mutant for CuCl2 and H2O2 could be explained 

by the fact that the ScsA is predicted to have a peroxidase function and that the 

processing at N-terminal would delete the putative thioredoxin motif (Gupta, Wu et al. 

1997). Furthermore, an imbalance in the Scs protein content rather than lack of ScsA 

might explain the selective sensitization to H2O2. Such reports have already been 

published for the periplasmic protein DsbA, where overexpression of DsbA protein 

suppresses the motility contrary to the requirement of DsbA for proper motility (Lee, 

Oh et al. 2009).  

That the 	scsB, 	scsC, 	scsD and 	scsABCD mutants were as viable as the 

wild type upon treatment with H2O2, but sensitive to CuCl2 raised the question 

regarding effects on cellular redox balance in the 	scsABCD mutant. Disturbances in 

redox status of a cell can, in turn, result in ROS-mediated oxidation of proteins with 

introduction of carbonyl groups (e.g. ketones, aldehydes, carboxylate) or disulfide 
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bonds in side chains of amino acids (Stadtman 1993; Biswas, Chida et al. 2006). 

Indeed, the scsABCD mutation resulted in pronounced protein carbonylation upon 

exposure to H2O2 (Paper I; Fig. 3A), notably in the periplasmic fraction (Paper I; Fig. 

3C). Collectively, these findings imply that the scsABCD gene cluster is important for 

the oxidative stress tolerance that interferes with periplasmic disulphide bond formation 

in S. enterica and thus define the ScsABCD as new members in the oxidoreductase 

thioredoxin superfamily.  

Thioredoxin 1 (trxA, TrxA), the prototype of thioredoxin superfamily, 

contributes to copper tolerance in E. coli (Rietsch, Belin et al. 1996) and is required for 

efficient invasiveness of S. Typhimurium in a mammalian epithelial cell line (Bjur, 

Eriksson-Ygberg et al. 2006). We noted a decreased CuCl2 tolerance of �trxA mutant in 

S. Typhimurium as well (Paper I; Fig. 4A) and determined that full invasiveness relied 

on its catalytic motif indicating the role of redox dependent invasion activity of S. 

Typhimurium (Paper I; Fig. 4B). Therefore, we set out to test if there is some 

connection between �scs mutants and �trxA mutant regarding invasiveness as both 

stand CuCl2 sensitive.  

We found that the invasion was not affected by deletion of scsABCD (Paper I; 

Fig. 4B) however the scsABCD deletion in the �trxA mutant enhanced the invasion of 

mammalian cells (Paper I; Fig. 4C). This implies that attenuation in the invasiveness of 

the S. Typhimurium �trxA mutant is conditionally relying on the presence of scsABCD. 

Furthermore, we showed that the scsABCD mutation can restore the virulence of the 

�trxA mutant in a soil nematode C. elegans infection model (Paper I; Fig. 7). Upon pre-

invasion CuCl2 treatment of bacterial cultures, the invasiveness of the wild type S. 

Typhimurium was lost whereas the invasion index for �trxA mutants was increased and 

was much retained in �scsABCD or �scsABCD/�trxA mutants (Paper I; Figs. 4E and 

4F). Thus, the CuCl2-associated suppression of invasion in wild type or the �trxA 

mutant is also dependent on the presence of ScsABCD oxidoreductases. Our findings 

are in accord with previously reported conditional phenotypes for oxidoreductase in E. 

coli (Takemoto, Zhang et al. 1998; Hiniker, Collet et al. 2005). For instance, deletion 

of DsbA, which is dispensable for CuCl2 stress tolerance, substantially increases CuCl2 

sensitivity of a �dsbC mutant (Hiniker, Collet et al. 2005). 

Furthermore, we reported that the retained invasiveness of the �scsABCD 

mutant upon CuCl2 exposure still relied on SPI1 T3SS activity. However, as assayed by 

measuring the expression and secretion of a SPI-1 T3SS effector fusion protein SipB-�-
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lactamase, the �scsABCD mutant deviated from the wild type in that the �scsABCD 

mutant retained much more SPI-1 effector proteins as compared to wild type (Paper I; 

Fig. 5). The expression of the genes for the main regulator of the SPI-1 T3SS hilA and 

main structural component prgH was much reduced under CuCl2 stress with no 

remarkable difference between �scsABCD mutant and wild type. Thus, these 

observations indicated that SPI-1 T3SS expression is redox sensitive and that the 

scsABCD deletion affects the secretion of a SipB fusion protein. 

The conditionally enhanced invasion of the �trxA mutant or in the presence of 

CuCl2 can be explained in two ways. First, the presence of CuCl2 or TrxA-deficiency 

could cause differential Scs-mediated accumulation of oxidized periplasmic proteins, 

being these Scs proteins themselves or their substrates. These unwanted accumulated 

proteins could subsequently interfere with the T3SS activity and thus affect invasion. 

Indeed, in a previous report, the DsbA activity of S. Typhimurium has been connected 

to both SPI1 gene expression and in the SPI1 T3SS apparatus functionality (Lin, Rao et 

al. 2008). Second, assuming that in the absence of CuCl2, the expression of SPI1 T3SS 

mediated invasion genes in wild type is highly active but leaky allowing secretion of 

effector proteins even in the absence of host cell contact. In the �scsABCD mutant the 

apparatus is either less active or more strictly regulated. Effector proteins accumulating 

inside mutant bacteria create a secretion competent pool applicable even after copper 

induced down-regulation of SPI1 gene expression, and notably, only used for 

translocation.  

To conclude, the newly defined ScsABCD oxidoreductase system can be seen 

more like a fine-tuner for maintaining the redox balance inside the cell and redox-

dependent virulence associated traits of S. Typhimurium. Their role as conditional 

virulence suppressor invites to the speculations regarding other oxidoreductases of the 

thioredoxin superfamily standing as conditional suppressors not restricted to 

Salmonella only rather in more general terms. 

3.2 PAPER II  

Redox-sensitivity of biofilm-formation in Salmonella enterica serovar 

Typhimurium – A particular impact of the DsbA/DsbB redox system 

Salmonellae are ubiquitous in their habitat and at any given stage of their life 

they come across with varying environmental conditions such as extreme pH, low 

temperature, desiccation, low/high osmolarity and oxidative stress (Foster 1995; 

Gruzdev, Pinto, and Sela 2012). For survival and adaptation under such challenging 
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conditions Salmonella tend to adapt to a sessile growth phase (Costerton, Stewart et al. 

1999) with a substantial requirement of changes in its transcriptome and proteome. 

Interestingly, a proportion of genes related to oxidative stress tolerance becomes 

induced under biofilm-forming conditions (Resch, Rosenstein et al. 2005). Therefore, 

in the second study of this thesis, we assess the role of periplasmic disulfide bond (Dsb) 

oxidoreductase system in biofilm-development in S. Typhimurium.  

Among the different members of Dsb oxidoreductase system, we found that the 

DsbA and DsbB (DsbA/DsbB redox pair) suppressed the red dry and rough (rdar) 

morphotype development in S. Typhimurium on a solid low osmolarity growth medium 

supplemented with Congo red (CR) but were required to make a pellicle at the air 

liquid interface in low osmolarity liquid cultures (Paper II; Fig. 1) In accordance with 

the requirement for pellicle formation in broth, both mutants also revealed a decreased 

transcription of biofilm master regulator csgD in liquid cultures (Paper II; Fig. 2C). 

However, this decrease was much more pronounced for the �dsbA mutant. Our results 

for dsbA mutation in S. Typhimurium corroborate a role for DsbA for liquid-based 

biofilm formation in E. coli O157 (Lee et al., 2008) and for biofilm-development on 

solid media in Pseuodomoas putida (Lee, Oh et al. 2009). However, the influence of 

dsbA for pellicle formation in S. Typhimurium is contradictory to those observations in 

Pseuodomoas putida where dsbA down-regulates pellicle development (Lee, Oh et al. 

2009). Our findings along with previous reports indicate a versatile role of DsbA in 

regulation of biofilm morphotypes under selected environmental conditions. 

Furthermore, we demonstrate a new role of DsbB as a modulator of biofilm-

development. Hence the DsbA/DsbB redox pair can be envisioned as a connection 

between the bacterial redox-shuffling system and biofilm-development and -regulation.  

In dissecting the molecular effects of dsbA and dsbB mutations on biofilm 

regulation we found that enhanced biofilm development on the agar plates is due to the 

increased production of surface associated curli fimbriae CsgA (Paper II; Fig. 2A). The 

increased CsgA was accompanied by enhanced expression of its main regulator CsgD 

in both the �dsbA and �dsbB mutants (Paper II; Fig. 2B). These results raised the new 

question of whether the effects on biofilm-formation by DsbA and DsbB are directly 

mediated through CsgD or some other mechanism is involved for enhanced rdar-

morphotype development in S. Typhimurium. 

 Interestingly, while a �dsbA/�csgD double mutant failed to generate a rdar-

morphotype on agar plates, a �dsbB/�csgD double mutant still resulted in an increased 
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biofilm-formation (Paper II; Fig. 3). Furthermore, over-expression of the YhjH 

phophodiesterase, responsible for breaking down c-di-GMP and hence reducing the 

concentration of CsgD, resulted in loss of biofilm-formation in both the �dsbA and 

�dsbB mutants (Paper II; Fig. 3). From these results we deduced that DsbA affects the 

biofilm formation through CsgD-mediated regulation, although at present, we cannot 

clearly define the regulatory cascade for the DsbB in controlling biofilm-formation in 

S. Typhimurium.  

That the oxidative stress promotes biofilm formation (Costerton, Stewart et al. 

1999) and periplasmic oxidoreductases such as DsbA and DsbB modulate biofilm-

regulation led us to test the effects of exogenous redox stress on biofilm development. 

Under CuCl2 induced oxidative stress S. Typhimurium lost its ability to develop a rdar-

morhotype in a dose dependent manner on CR plates regardless of the genetic 

background of the strains (Paper II; Fig. S2). Similarly, supplementation of CR low 

osmolarity growth media with the reductant dithiothritol (DTT) reduced the rdar-

morphotype in both the �dsbA and �dsbB mutants (Paper II; Fig. 4A). This was 

accompanied by decreased expression of both CsgA and CsgD (Paper II; Figs. 4A and 

4B).  

For the �dsbA and �dsbB mutants the DTT-induced reduction in rdar-

morphotype was accompanied by the production of an extremely slimy colony 

morphotype. Sliminess was further enhanced in both the �dsbA and �dsbB mutants 

upon expressing YhjH from the recombinant plasmid or by introducing a csgD 

mutation in the �dsb mutants. Surprisingly though, the attempt to complement �dsbA 

and �dsbB mutants under reductive stress rather resulted in enhanced rdar-morphotype, 

even more than isogenic wild type, and in suppression of slime production (Paper II; 

Figs. 4A and 5A). In order to further trace the cause of the slimy colony morphotype, 

we generated mutants defective in either colanic acid synthesis (wcaM) or in their 

ability to ligate the LPS O-antigen (waaL) in the �dsb mutants. However, under DTT 

stress on agar plates all double mutants generated a slimy colony morphotype.  

In selected bacteria nucleic acids form an essential component of the biofilm 

(Whitchurch, Tolker-Nielsen et al. 2002; Allesen-Holm, Barken et al. 2006; 

Bockelmann, Janke et al. 2006; Izano, Amarante et al. 2008; Ma, Conover et al. 2009). 

To assess whether the slimy colony morphotype originated from nucleic acid release 

we suspended colonies of wild type and �dsb mutants grown under DTT stress in 

buffer, separated the bacteria by centrifugation and subjected the supernatant to nucleic 

acid isolation protocols. Upon a final ethanol precipitation the supernatants from the 
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�dsb mutants, but not those from wild type bacteria, yielded a massive cotton-like 

precipitate. The precipitate readily dissolved in distilled water into a viscous material. 

When run on agarose gels, it revealed a “chromosome-like” band that disappeared upon 

cleavage with restriction endonucleases (Paper II; Fig. 5B).  

Motility is regarded as the initiation step of biofilm formation and is essential 

for colonization of new habitats (Danhorn and Fuqua 2007). Motility is the opposite of 

sessility yet the two modes of growth are interconnected. Previously, both DsbA and 

DsbB have been shown to be required for swimming motility in many organisms 

(Dailey and Berg 1993; Abe and Nakazawa 1996; Hayashi, Abe et al. 2000; Lee, Kim 

et al. 2008). As expected, our �dsbA mutant was defective in motility and this defect 

was possible to complement by providing a non-specific disulfide oxidant CuCl2. 

Interestingly, the �dsbB mutant was dispensable for motility in S. Typhimurium (Paper 

II; Figs. 6A and 6B). These results imply that oxidant function of DsbA for proper 

folding of flagellar basal body protein FlgI (Dailey and Berg 1993) can work 

independently of DsbB mediated oxidation and as a result DsbA can get its reducing 

equivalent from some alternative oxidase in the periplasm. However, the presence of an 

oxidase with such a high redox potential is not yet described. In contrast to oxidative 

stress, supplementation of DTT in the motility agar plates did not affect the �dsbA 

mutant motility defect, albeit, �dsbB mutant was lagging in motility too (Paper II; Fig. 

6C). 

Taken together, the current study describes the contributions of DsbA and DsbB 

oxidoreductases in the regulation of biofilm-development and motility. Furthermore, 

under stress conditions, additional biofilm matrix components can be induced 

conditionally in the absence of DsbA/DsbB. These findings invite the target based 

designing of novel antibiotics to eradicate biofilm-associated chronic infections. 

3.3 PAPER III  

Opposing contributions of polynucleotide phosphorylase and the membrane 

protein NlpI to biofilm formation by Salmonella enterica serovar Typhimurium 

S. Typhimurium, when subjected to low temperature and osmolarity, tend to 

restrict motility and start growing as sessile multicellular communities known as the 

biofilm. The transition from motility to sessility is analogous to the change from the 

acute virulent infection state to the less virulent but persistent chronic stage of infection 

(Tamayo, Pratt et al. 2007; Römling, Galperin et al. 2013). Among the different factors 

promoting chronic infection, polynucleotide phosphorylase (PNPase encoded by pnp), 
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an evolutionarily conserved 3’ - 5’ exoribonuclease in eubacteria and eukaryotes 

(Sarkar and Fisher 2006; Carpousis 2007; Das, Bhutia et al. 2011), is involved in the 

persistence of S. Typhimurium infection in mouse infection model (Sukupolvi, 

Edelstein et al. 1997; Clements, Eriksson et al. 2002). Sukupolvi et al. further 

demonstrated that PNPase promotes curli fimbriae submunit, CsgA production 

(Sukupolvi, Edelstein et al. 1997).  

The nlpI gene, encoding an outer membrane lipoprotein NlpI, is conserved 

among enteric bacteria and is located downstream of pnp on the genome (Blattner, 

Plunkett et al. 1997; McClelland and Wilson 1998). Recently, NlpI has been associated 

with secretion of eDNA component of biofilm in E.coli (Sanchez-Torres, Maeda et al. 

2010). Therefore, we started with the question, if NlpI affects biofilm-formation in S. 

Typhimurium.  

The biofilm formation was assayed on Luria Bertani (LB) without salt agar 

plates supplemented with Congo red dye at 28°C. Under such conditions, Salmonella 

makes biofilm and gives a characteristic rogous growth termed as red dry and rough 

(rdar) morphotype (Römling 2005). We found that the pnp mutation resulted in 

compromised rdar-morphotype development whereas 	nlpI mutant was much more 

proficient in biofilm formation as compared to wild type. Surprisingly though, the 

biofilm development in pnp-nlpI double mutant was intermediate relative to the 	pnp 

and 	nlpI single mutants and approached to wild type level (Paper III; Fig. 1A).  

The rogousness of the biofilm in S. Typhimurium is due to the production of 

surface associated fimbrial subunit CsgA the expression of that in turn is controlled by 

the biofilm master regulator CsgD (Hammar, Arnqvist et al. 1995; Römling 2005). In 

accordance with the rdar-morphotypes on CR plates, the protein expression of CsgA 

and CsgD was reduced and increased in the 	pnp and 	nlpI mutants respectively 

(Paper III; Fig. 2). Furthermore, the transcript levels of csgA and csgD for both mutants 

followed their protein expression profile relative to wild type (Paper III; Fig. 3). 

To find the mechanistic details for the effect of pnp and nlpI on CsgD we 

extended our study to check the turnover of the bacterial secondary messenger cyclic-

di-guanosine monophosphate (c-di-GMP) that controls the expression of CsgD 

(Römling 2005). The turnover of C-di-GMP is controlled by synthetases and 

phosphodiesterases. Hence, we determined the mRNA levels for biofilm-enhancer c-di-

GMP synthetase AdrA and biofilm-suppressor phosphodiesterases YciR, YjcC and 

YhjH in 	pnp, 	nlpI and 	pnp-nlpI double mutants. In the 	pnp and 	nlpI mutants the 

mRNA levels of adrA, yciR, and yhjH were slightly but inversely affected whereas yjcC 
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mRNA was markedly increased and decreased in the respective 	pnp and 	nlpI 

mutants. However, the opposing effects on the expression of all these genes were 

restored to wild type levels in the 	pnp-nlpI double mutant (Paper III; Fig. 3). The 

transcript data was in agreement with enhanced biofilm formation on CR plates and 

increased CsgD and CsgA expression in 	pnp-yjcC mutant when compared to the 

single 	pnp mutant (Paper III; Figs. 1C and 2).  

In conclusion, the PNPase and NlpI have opposite effects on biofilm formation 

in S. Typhimurium. These effects are mediated through the biofilm suppressor YjcC 

phosphodiesterase that plays major role in CsgD turn over via c-di-GMP (Simm, Lusch 

et al. 2007). Our findings are supported by a recent report where c-di-GMP was shown 

to take part directly in the activation of PNPase for RNA processing (Tuckerman, 

Gonzalez et al. 2011). That the NlpI suppresses biofilm development and is required 

for proper motility in S. Typhimurium (unpublished data) brings in the speculations for 

some unknown functions for NlpI that need the bacteria to be in the motile state. 

Furthermore, NlpI location at outer membrane protein might suggest that it can act as a 

sensor, which mediates the downstream gene regulatory connections with c-di-GMP 

metabolism. 

3.4 PAPER IV  

Genetic analysis of the pnp-deaD genetic region reveals membrane lipoprotein 

NlpI as an independent participant in cold acclimatization of Salmonella enterica 

serovar Typhimurium 

Salmonella Typhimurium can infect a variety of organisms with remarkable 

living temperature differences (Charkowski, Barak et al. 2002; Tenor, McCormick et 

al. 2004; David, Wandili et al. 2009). To be a successful pathogen, S. Typhimurium 

experiences the adaptation pressure in such altering living temperatures. The shift from 

higher to low temperature (temperature shift from 37oC to 15oC) results in specific 

cold-shock responses, associated with cold-shock protein (CSP) induction and 

modulations in RNA turnover (Phadtare, Alsina et al. 1999; Phadtare and Severinov 

2010). Two major component of RNA degradosome, the exoribonuclease PNPase and 

the alternative cold-shock RNA helicase CsdA, are required for cold adaptation in E. 

coli. (Beran and Simons 2001; Yamanaka and Inouye 2001; Prud'homme-Genereux, 

Beran et al. 2004). In the S. Typhimurium genome, the pnp and csdA (termed as deaD 

gene in Salmonella) genes are separated by nlpI (McClelland, Sanderson et al. 2001). 

The genetic organization of pnp and nlpI is also connected functionally to the 
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regulation of biofilm development at decreased growth temperatures in S. 

Typhimurium (Rouf, Ahmad et al. 2011). Therefore, we set out this study to define any 

genetic association between pnp, nlpI and deaD genes. Furthermore, we questioned if 

NlpI and Dead along with PNPase contribute to cold adaptation in S. Typhimurium.  

To define the genetic association between pnp, nlpI and deaD genes we used a 

cDNA PCR approach. By using different combination of primer sets we were able to 

amplify integenic region between pnp and nlpI by using cDNA as template. However, 

we could not amplify any fragment from intergenic region between nlpI and deaD gene 

(Paper IV; Fig 3). This allowed us to deduce that pnp and nlpI constitute a genetic 

operon whereas deaD is a transcriptionally independent gene.  

We tested 	nlpI, 	deaD and three different ORF mutants of pnp for their 

ability to grow upon a temperature shift from 37oC to 15oC in a broth based culture. All 

the mutants were compromised in growth upon the temperature shift relative to the wild 

type S. Typhimurium (Paper IV; Fig 4). Cold sensitization of these mutants was also 

corroborated with the follow up of a serially diluted culture with drop on agar plate-

assay at 15oC after shift from 37oC (Paper IV; Fig 5). We also found that a 	pnp-nlpI 

double mutant is further restricted in growth at low temperature and it can only be 

restored to wild type upon supplement of both the pnp and nlpI clones. This implies 

that pnp and nlpI, despite of making an operon, contribute individually to the cold 

adaptation of S. Typhimurium. Furthermore, we were unable to complement the growth 

defect of the deaD mutant by providing either pnp or nlpI clones implying the 

individual contribution of DeaD along with PNPase and NlpI to cold adaptation in S. 

Typhimurium (Paper IV; Fig 5). 

We also determined the effect of nlpI mutation on the pnp transcript and vice 

versa. We found that mutation in nlpI apparently did not alter pnp expression. 

However, the nlpI transcript was increased in two non-polar pnp mutants (Paper IV; 

Fig 2). Such an increase in the nlpI transcript level could be due to the tentative 

promoter between the nlpI and pnp region.  

To summarize, our observations imply that the pnp, nlpI and deaD genes 

contribute individually to cold adaptation in S. Typhimurium and that pnp-nlpI make a 

transcriptional unit. Furthermore, an outer membrane protein NlpI can be seen as new 

addition to the RNA degradosome components for the turnover of cold-shock induced 

transcripts. 
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4 CONCLUSIONS AND OUTLOOK 
 

In recent years enormous efforts have been made to understand the role of 

oxidative stress in host-pathogen interactions. From a bacterial pathogenesis point of 

view an increasing number of reports on oxidoreductases are becoming available, 

depicting their role in oxidative stress tolerance and virulence in S. Typhimurium (Bjur, 

Eriksson-Ygberg et al. 2006; Negrea, Bjur et al. 2009; Horst, Jaeger et al. 2010; Peters, 

Paterson et al. 2010; Denkel, Horst et al. 2011; Sem and Rhen 2012).  

A novel finding in one of the studies comprising this thesis was that the 

ScsABCD proteins function as a new periplasmic oxidoreductase system that is 

involved in the oxidative stress tolerance and virulence of S. Typhimurium. 

Furthermore, we have shown that ScsABCD in concert with TrxA modulates the 

oxidative stress-associated virulence properties of S.Typhimurium (Anwar, Sem et al. 

2013). However, there are still many unanswered question that need to be addressed in 

order to understand the complexity of virulence-associated roles of different 

oxidoreductases. We are currently not able to define the exact roles of individual Scs 

proteins, especially regarding the ScsA protein that appeared to contribute differently 

under various oxidative stresses. The ScsA contains a peroxidase motif in addition to 

Cys-X-X-Cys motif at its N-teminus (Gupta, Wu et al. 1997) suggesting a dual role in 

handling the redox stress. This raises the questions whether ScsA is a regulator of 

scsBCD operon or if it is a connector between scsBCD operon and other oxidoreductase 

systems such as Dsb system or thioredoxin/glutaredoxin system. In fact, the �scsABCD 

mutant was sensitive to CuCl2 stress (Anwar, Sem et al. 2013), as is true for the �dsbC 

mutant belonging to periplasmic Dsb oxidoreductase system (Hiniker, Collet et al. 

2005). Hence, a possible interaction between the two systems cannot be ignored. 

Furthermore, the scsABCD mutation increased the in vivo fitness of S. Typhimurium in 

mouse infection models (Anwar, Sem et al. 2013) but how it happens still requires 

further research. 

In the second study, we demonstrated that the DsbA and DsbB proteins of 

periplasmic Dsb oxidoreductase system differentially control the biofilm formation and 

that the control is differentially regulated for solid surface-associated biofilms and 

liquid culture biofilms. In addition, we showed that DsbA-mediated biofilm control 

goes through the biofilm master regulator CsgD while this is not the same for DsbB 

(Paper II). These results suggest the role of DsbA in biofilm-development that 

dissociates its dependency on DsbB oxidase function. Furthermore, in a recent report 
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on Staphylococcus epidermidis, the aggregation and biofilm formation regulator AbfR 

has been shown to be oxidatively modified at its two Cys residues and this results in the 

negative control of biofilm-formation (Liu, Sun et al. 2013). Interestingly, CsgD also 

contains only two Cys residues which are apart from each other mirroring AbfR 

(unpublished data). Hence, it is very interesting to determine whether the effects of 

DsbA- and DsbB-mediated oxidation of Cys residues of CsgD affect the three 

dimensional structure of CsgD and hence result in alteration in its regulatory potential. 

Moreover, reductive stress induced the production of extracellular slime in DsbA and 

DsbB deficient S. Typhimurium (Paper II). Currently, we were able to identify nucleic 

acids (eDNA) as one of the components of that slime. However, relatively large amount 

of unidentified materials such as surface polysaccharides exists and need further 

investigation. In addition, the mechanism of extracellular slime release under reductive 

stress is still an interesting topic to investigate. 

Lastly we showed that PNPase and NlpI affect the biofilm regulation and that 

PNPase associates with the c-di-GMP metabolism (Rouf, Ahmad et al. 2011). PNPase 

is an exoribonuclease and is responsible for the turnover of small regulatory RNAs of 

Csr system (Viegas, Pfeiffer et al. 2007). Furthermore, CsrA, the main small regulatory 

RNA (sRNA) binding protein of Csr system, is directly involved in the c-di-GMP 

metabolism and hence controls the biofilm formation and motility (Jonas, Edwards et 

al. 2010). The genetic and functional association of NlpI with PNPase would invite the 

speculation as to whether NlpI is also involved in the c-di-GMP metabolism and 

sRNAs turnover and hence plays a global regulatory role instead of just targeted 

phenotype control.  

In conclusion, the current study presents new aspects of the regulatory control 

of S. Tyhpimurium virulence and environmental adaptations and opens up new 

horizons to understand the underlying regulatory mechanism not only in Salmonella but 

rather in more general terms.  
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