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ABSTRACT 
Gene regulation is important in maintaining cell identity and in higher organisms is a 
very complex process with many layers of regulation. Genome-wide transcriptional 
studies that define gene expression across different cells and tissues give important 
insights into overall gene regulation of a cell as well as the impact of dysregulation in 
diseases. With the recent advances of high-throughput sequencing methods, it has 
become increasingly feasible to elucidate transcriptional regulation in the cell, under 
normal conditions or during cell perturbation.  
The aim of this thesis is, using these genome-wide profiling methods, to study in depth 
the regulatory promoter regions.  
In Paper I, we knocked down 4 transcription factors in the THP-1 cell line and applied 
Cap Analysis of Gene Expression (CAGE) with sequencing. We were able to elucidate 
de-novo the transcriptional binding motifs of these 4 transcription factors as well as 
build perturbation driven gene regulatory networks. In Paper II, we utilized a similar 
approach on DYX1C1, a dyslexia susceptibility gene. Using perturbation studies and 
gene expression profiling with microarrays, the perturbed genes corresponded to the 
previously described neuronal migration phenotype that was speculated to be linked to 
the function of this gene. Furthermore, using mass spectrometry, we were able to 
identify novel protein interacting partners for DYX1C1 and combining with already 
available data build protein level interaction network. In Paper III, relying on the post-
mortem brain samples from the FANTOM5 project, and using CAGE in conjunction 
with a single molecule sequencer, we identified brain specific transcriptional start sites 
and brain specific alternative promoters. Additionally, we identified differences 
between adult and infant brain, interestingly noting many of them originating from 
alternative promoters. We also classified differences between 15 brain regions into 4 
distinct groups and built underlying transcription factor interaction networks. In Paper 
IV, using the FANTOM5 database we investigated the promoter structure and 
expression of 3 genes implicated in Rett syndrome. We identified novel promoters, 
silencing of FOXG1 in the cerebellum, as well as the low correlation between MECP2 
and FOXG1 expression. Interestingly, although expression of FOXG1 is limited to the 
brain and MECP2 is ubiquitous, MECP2 motif activity is significantly lower in the 
brain than in other tissues, while no differences were observed for FOXG1 motif 
activity.  
In summary, our genome-wide studies employing quantitative gene expression 
measures on promoter level resolution let us describe how cells are different, let us 
obtain insights into likely underlying regulatory mechanisms as well as gave us the 
opportunity to explore diseases.  
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1 BACKGROUND 
The year 2001 gave the first draft of the human genome, a first view at the whole 

collection of all the nucleotides, letters and their order that make up our human DNA 

(Lander et al, 2001; Venter et al, 2001). This enormous project conducted in big 

consortia around the world showed that the number of genes we posses is much less 

than was previously believed, around 30,000 out of the earlier predicted 100,000 (Bork 

P. and Copley R. 2001). Yet, these genes and their inner workings give rise to over 200 

different cells that make up our body (Vickaryous and Hall, 2006), all containing the 

same DNA sequence, but with a brought array of functions due to genes being 

regulated in different ways. Gene regulation is important in maintaining cell identity 

and in higher organisms is a very complex process with many layers of regulation. 

Genome-wide transcriptional studies that define gene expression across different cells 

and tissues give important insights into overall gene regulation of a cell as well as the 

impact of dysregulation on diseases. 
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2 RNA AND TRANSCRIPTIONAL REGULATION 

 
2.1 FROM DNA TO RNA – TRANSCRIPTION 

Inside the nucleus each of our cells contains the complete hereditary material, the set of 

46 chromosomes that we inherited from our parents, half from the mother and half from 

the father. The chromosomes are made up of DNA helixes wrapped around histone 

proteins. DNA is double stranded and DNA length is measured in base pairs (bp). Basic 

building blocks of the DNA are nucleotides, the purines adenine (A) and guanine (G) 

together with the pirimidines cytosine (C) and thymine (T), making pairs to connect the 

backbones of the two DNA strands (adenine with thymine and guanine with cytosine). 

 

Genes are stretches on the DNA that define heritable, functional units. The entirety of 

heredity information of an organism forms its genome. DNA is like a blueprint and for 

a gene to be used, it needs to be transcribed from DNA into RNA, meaning that its 

sequence is copied. RNA is, like DNA, a nucleic acid, but it uses the nucleotide uracyle 

instead of thymine and in the cell it occurs mostly in single stranded form, unlike DNA 

who is double-stranded.  The central dogma of molecular biology (Crick F, 1970.) 

describes the information flow from DNA is part of the basic information flow in the 

cell that defines that DNA transcribes into RNA which in turn gets translated into 

proteins. 

 
2.2 RNA POLYMERASE 

Transcription is performed by RNA polymerase, an enzyme that uses the DNA strand 

as a template to build RNA base by base by moving along the DNA strand. The 

products of RNA polymerase are: messenger RNA (mRNA) that is the template for 

translation into proteins as well as non-coding RNA that is a wide group of genes that 

do not get translated into proteins but have other, mostly functional (such as transfer 

RNAs or ribosomal RNAs) or regulatory functions (such as micro RNAs). Non-coding 

RNA includes transfer RNA (tRNA), ribosomal RNA (rRNA), micro RNA (miRNA), 

short RNAs and long non-coding RNAs (lncRNAs). Humans have several different 

types of RNA polymerases: polymerase I synthesizes rRNA, polymerase II synthesizes 

mRNA and most snoRNA and miRNA and polymerase III synthesizes tRNAs, rRNAs 

and other small RNAs.  
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Polymerase II (PolII) is the most studied one and due to its complex level of control, 

requires many additional binding factors. For PolII transcription to function properly, 

additional proteins are recruited to the DNA strand to form the transcription 

preinitiation complex (PIC) together with the polymerase. The role of the PIC is 

positioning the polymerase over the transcription start site (TSS), the position from 

where the transcription of the gene starts.  

 

2.3 TRANSCRIPTION STARTS AT THE PROMOTER REGION 

The PIC binds at the promoter, a specific position on the DNA where transcription is 

initiated. The promoter is an important part of the gene, without the promoter 

transcription of the gene cannot be initiated and no gene product is obtained. The 

promoter is located upstream of the gene and is usually between 100 and 1000 bp long. 

Depending on distance to the TSS and the specific function, we can classify the 

promoter into three parts: the core promoter in close proximity upstream of the TSS; 

the proximal promoter region that comprises about 300 bp upstream from the TSS and 

includes specific regulatory elements binding sites, most notably for transcription 

factors; the distal promoter region up to several 10 kb upstream of the TSS contains 

enhancers or insulators.  

The core promoter region, except the TSS itself, contains binding sites for the PIC, 

RNA polymerase and general binding sites. These include the TATA box (Lifton et al, 

1978), a sequence that contains a TA-rich pattern about 30bp upstream from the TSS 

and binds the TATA binding protein (TBP) involved in DNA strand separation during 

the process of transcription and part of the PIC. Only about 10-20% of all promoters 

have a clear TATA box motif (Valen and Sandelin, 2011) and are linked to genes 

expressed in specific tissues (Carninci et al, 2006). Other core promoter elements 

include the initiator element (Inr), independent of the TATA box but can also initiate 

transcription on its own (Smale and Kadonga, 2003), the downstream promoter element 

(DPE), the TFIIB recognition element (BRE) and the CpG island (CGI). 

Between 40% and 70% of human promoters contain a CGI (Sandelin et al, 2007), 

meaning there are more CG stretches than expect for the local number of C and G 

nucleotides (Deaton and Bird, 2011).   Unlike TATA-box connected proteins, CGIs are 

most often associated to ubiquitously regulated genes.  
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Comparison of the TSS distribution of different genes suggested that promoters can be 

roughly classified into ‘sharp’ and ‘broad’ according to the spread of their distribution 

across the nucleotides, where the sharp class often corresponds to tissue specific 

promoters with TATA boxes. The broad promoter class has an over-representation of 

CGIs usually active in many tissues (Carninci et al, 2006). Recent an additional 

promoter type was suggested that includes differentially regulated genes, often 

regulators in multicellular development and differentiation that contain large CGI 

stretches (Lenhard et al, 2012).  

 

Figure 1 A view of the promoter region and its regulatory elements. Cis-regulatory modules (CRM) 
are clusters of TFBSs. Adjusted from Lenhard et al,2012 Used with permission from the Nature 
Publishing Group. 
The majority of eukaryote promoters are comprised not only of a single TSS, but 

contain several TSSs spread over a region covering 30–100 nt or more (Sandelin et al, 

2007). TSS distribution for a given promoter is often conserved between species (Frith 

et al, 2006).  

 
2.4 MRNA AS THE RESULT OF THE TRANSCRIPTION 

The direct result of transcription is precursor mRNA that requires further processing 

before it becomes functional. On its “front”, the 5' end, it gets an addition in the form of 

a cap, a modified guanine nucleotide, shortly after the start of transcription by the cap-

synthesizing complex associated with RNA polymerase. The 5' cap consists of a 

terminal 7-methylguanosine residue that is linked through a 5'-5'-triphosphate bond to 

the first transcribed nucleotide. Another processing step is splicing, the removal of 

inactive parts, introns, that have no coding information and leaving in the protein-

coding parts, exons. Sometimes precursor mRNAs arising from the same gene can be 
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spliced in different ways, giving rise to different proteins in the process called 

alternative splicing. Another possible process is editing, where nucleotides directly in 

the mRNA are changed and can result in an altered protein sequence in the case of 

protein coding RNA. The final processing step happening at the 3’ end is called 

polyadenylation, an addition of a ‘tail’ of adenosine residues (poly(A) tail) added to the 

free 3' end. This reaction is catalyzed by polyadenylate polymerase. Similar to 

alternative splicing, there can be more than one polyadenylation variant of one mRNA. 

The purpose of the poly(A) tail is to protect mRNA from degradation by exonucleases, 

for export of the mRNA from the nucleus as well as for loading into the ribosome for 

translation. 

 

A mature, fully processed mRNA is thus composed of the cap at the 5’ end, followed 

by the 5’ untranslated region (UTR) that contains regulatory regions, the coding 

sequence (CDS) that includes the code for the start and stop codons used in translating 

the mRNA intro proteins, the 3’UTR and at the end the poly(A) tail.  

 
2.5 TRANSCRIPTION FACTORS ARE THE MAIN REGULATORY 

ELEMENTS 

The regulatory elements that bind at the promoter sites are specific proteins known as 

transcription factors (TFs). A TF can act alone or with other proteins in a complex by 

promoting (activation) or blocking (repression) the recruitment of RNA polymerase to 

the specific promoter (Lee and Young, 2000). However, regulation of gene expression 

in eukaryotes is highly complex and depends on sets of TFs rather than individual TFs 

(Elkon et al, 2003). The main trait that makes a protein a transcription factor is having 

one or more DNA binding domains that recognize and bind to specific sequences of 

DNA in the promoter region. One or more DNA-binding domains are often part of a 

larger protein consisting of additional domains with differing function. The additional 

domains often regulate the activity of the DNA-binding domain. 

 There are approximately 1,400 proteins in the human genome that contain DNA 

binding domains and most of these are presumed to function as TFs (Vaquerizas et al, 

2009). The TFs are the largest family of human proteins, comprised of about 10% of all 

coding genes. The promoter composition of the genes is one of the major determinants 

of gene regulation including multiple transcription binding sites that interact with a 

specific combination of transcription factors (TF). Eukaryotes achieve this diversity by 

combining a small number of transcription factors whose activities are modulated by 
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diverse sets of conditions. Different functionalities can be held by one TF by its 

association with different co-factors. These factors may act as global TFs that assist 

their gene-specific partners in their function, and may thus activate or repress 

transcription depending on the partner motif and the condition. Usually, several binding 

sites for distinct transcription factors are found around each gene and efficient 

expression requires the cooperative action of several different TFs (Pilpel et al, 2001). 

This way, combining 2,600 TFs can regulate the whole genome in an efficient way 

during development and maintenance (Brivanlou and Darnell, 2002).  

 

The TF binds to its specific DNA sequence at the position called the transcription factor 

binding site (TFBS). Due to the weak interactions of such bonds, the TF can bind not 

just to one sequence but to a subset of closely related sequences, making the detection 

of such regions much more complicated. Because these TFBS tend to be short 

sequences, many potential binding sites can be found throughout the genome, not 

necessarily meaning all of them are active binding sites, additionally complicating the 

search for true active TFBS in a specific cell. Additionally, although we know most of 

these proteins to be TFs due to their binding domains, for a vast majority we do not 

know the sequence they bind to with confidence.  

 

Many attempts have been made to identify the TFBSs, both experimentally and 

computationally. Computational methods include identifying the presence of a 

sequence motif in a set of DNA sequences known to bind the protein. The difficulty 

here is that even if the motif is present, we cannot know if the TF really binds there in 

vivo. The most efficient methods combine experimental efforts with computational 

analysis. Chromatin Immunoprecipitation (ChIP) is a technique where a protein of 

interest is selectively immunoprecipitated from a chromatin preparation to determine 

the DNA sequences associated with it (Collas 2010). The obtained sequences that bind 

that protein or TF can then be identified on a tiling microarray (ChIP-chip) or by 

sequencing (ChIP-Seq). To be able to perform experiments for specific transcription 

factors, however, specific antibodies are needed whose production is difficult. For 

many of the transcription factors antibodies are not yet available (Sikder and Kodadek, 

2005). Additionally, computational analysis of such datasets is very demanding for 

example due to low resolution of the ChIP-chip method or the longer reads than 

binding sites in ChIP-Seq that can make it hard to determine the exact sequence the 

protein recognizes. Another emerging experimental technology to identify binding sites 
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in vitro is Systematic Evolution of Ligands by Exponential Enrichment (SELEX). This 

method uses rapid selection of nucleic acids (single- or double-stranded RNA or DNA), 

which have high affinity to a molecular target such as a TF (Oliphant et al, 1989; Tuerk 

and Gold, 1990). Combining SELEX with next-generation sequencing has recently led 

to identifying over 400 TF binding motifs (Jolma et al. 2010; 2013). Over-selection can 

be a problem for SELEX technology that enriches for specific binding sequences since 

TFs in vivo bind to biologically important medium or low affinity TFBSs as well.  

 

Due to their important roles in development, intercellular signaling and cell cycle, some 

human diseases have been associated with mutations in transcription factors. One such 

disease is the Rett syndrome (Paper IV), a neurodevelopmental syndrome linked to 

mutations in the MECP2 transcription factor.  

 

Additional regulatory elements, such as distal acting enhancers and non-coding RNAs 

as well as epigenetic regulators (Chawan et al, 2011) can influence the start of 

transcription and formation of a fully functional mRNA. To be able to characterize 

transcriptional events, different genome-wide techniques can be utilized to gain a better 

insight of the current transcription ongoing in the cell and the underlying regulation.  

 
2.6 MEASURING DIFFERENCES IN GENE EXPRESSION 

Genome-wide expression measurement of a diseased state together with a reference 

normal state allows identifying differences global level using differential expression 

analysis. In the first years when microarrays have been introduced, differentially 

expressed genes were inferred using a fixed threshold cut-off for expression 

differences, for example a two-fold increase or decrease in expression. Improved 

methods to infer significance were based on replicate measurements for ranking genes 

according to their possibilities of differential expression and selection of a cut-off value 

for rejecting the null-hypothesis that the gene is not differentially expressed (Leung and 

Cavalieri, 2003). Replication of an experiment is important to obtain the variation in 

the gene expression for statistics calculation, ideally every experiment performed in at 

least triplicates (Lee et al, 2000). Replication can be either technical, by using the same 

RNA sample multiple times, or biological by extracting RNA from different samples. 

This is particularly important in tissue samples to characterize expression variability 

caused by variability of the tissue so that one sample of a tissue might not be a 

representative sample. Statistical methods such as Student’s t-test, ANOVA, Bayesian 
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method, or Mann-Whitney test can be used to rank the genes from replicated data 

(Storey and Tibshirani, 2003). Setting a ad-hoc cut-off for differential expression is 

difficult, because of the false positives (Type I error) and the false negatives (Type II 

error). Furthermore, performing statistical tests for tens of thousands of genes creates a 

multiple hypothesis-testing problem. Therefore, it is necessary to control the false 

discovery rate (FDR) (Reiner et al, 2003), the expected proportion of false positives 

among the number of rejected hypotheses and base the cut-off on the samples that 

satisfy the FDR criteria. 
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3 RNA EXPERIMENTS FOR GENOME WIDE STUDIES 
There is a range of technologies that target the mRNA in a specific way, allowing us to 

capture the expression of a certain cell line or tissue.  

For the 4 different papers, we applied a set of different techniques: RNA perturbation in 

papers I and II as well as CAGE in papers I, III and IV.  

 
3.1 RNA PERTURBATION STUDIES 

Many approaches aim at understanding the interactions between genes that ultimately 

govern phenotype and disease pathology (Birney et al, 2007).  The complex 

interactions among transcription factors derived from such networks point to diverse 

regulatory programs responsible for cell differentiation during development and 

cellular responses to outside stimuli. A powerful technique to understand gene 

regulatory networks is the perturbation of individual transcription factors in concert 

with high-throughput profiling of all genes to assess the impact. Perturbation can be 

performed by either knocking down individual genes or up-regulation. RNA 

interference (RNAi) uses small RNA molecules to inhibit gene expression, typically by 

causing the destruction of specific mRNA molecule and thus knocking-down the gene 

expression. This method employs the cell’s own RNAi pathway in which small 

interfering RNAs (siRNA) are used as a template to mark the target mRNA for 

cleavage (Voorhoeve and Agami, 2003). Alternatively, overexpression of a gene can be 

induced by putting the gene and its promoter into a plasmid construct inserted into the 

cell. 

 
3.2 CAP ANALYSIS GENE EXPRESSION (CAGE) 

Capturing the exact transcription amount and positions of the TSS in the cell is an 

important goal for genome-wide expression studies. Cap-analysis gene expression 

(CAGE) captures the 5’-end of the mRNAs in the cell (Shiraki et al, 2003; Kodzius et 

al, 2006). The strength of CAGE is to comprehensively map the vast majority of 

human transcription starting sites and hence their promoters, and simultaneously 

decipher the expression of the RNAs produced at each promoter. Thus, CAGE allows 

for high- throughput gene expression profiling with simultaneous identification of the 

tissue/cell/condition-specific TSSs, including promoter usage analysis and 

determination of the expression level at each promoter (Takahashi et al, 2012). 
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Precisely mapping the TSS position allows for identifying regulatory elements, such as 

core and proximal promoters and the TFBSs that are responsible for transcription. 

Bioinformatic analysis allows for selection of promoters having similar expression 

profiles that are analyzed for the presence of common TFBS. Coupled to the 

determination of the expression of transcription factors, which drive the gene 

transcription, this analysis allows reconstructing the regulatory networks that drive 

gene expression (Suzuki et al, 2009). Expression is represented by the number of 

CAGE ‘tags’ mapping to a certain TSS. By counting the number of CAGE tags for 

each TSS within a gene, we can determine not only the RNA expression level on a 

digital resolution but also the various alternative promoters being used, allowing 

comprehensive mapping of promoters in mammalian genomes (Carninci et al, 2006).  

 

Figure 2 Representation of CAGE preparation protocol adapted to various platforms. 
Illustration from http://www.osc.riken.jp/english/activity/cage/basic/ 

 A CAGE library is produced in the following steps. First, cDNA complementary 

strands are synthesized from total RNA extracted from cells or tissues by using random 

or oligo dT primers. The 5' end of cDNA is then selected by using the cap-trapper 
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method. Second, a biotinylated linker is attached to 5' end of single-strand cDNA 

acquired by removing the RNA strand using RNaseI. This linker contains recognition 

sites that are essential for cloning, short specific base sequences, and endonuclease 

recognition sites (MmeI or EcoP15I). After the second cDNA strand is synthesized, 20 

nucleotides (MmeI) or 27 nucleotides (EcoP15I) are cut from the 5' end to make the 

CAGE tag. Next, a linker is attached to the 3' side of the tag sequence to amplify it. 

Previously, fragments were cleaved and concatenated in CAGE tags, but current next 

generation sequencers (see below) do not require cleavage and the tags can be directly 

sequenced to produce millions of tags per sample (Takhashi et al, 2012). This next-

generation sequencer adapted CAGE is often referred to as deepCAGE. 

CAGE was also adapted for the single molecule sequencer Heliscope. The changes in 

this simplified protocol include generation of only first strand cDNA using an excess of 

random primer. The capped end is captured on magnetic strepatavidin beads. Released 

first-strand cDNA is poly(A)-tailed and blocked and then loaded directly onto the 

HeliScope flow cell for sequencing (Kanamori-Katayama et al, 2011).  
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4 GENOME WIDE EXPRESSION PROFILING 
METHODS 

4.1 MICROARRAYS 

Studies of gene expression were previously possible on only one or a few genes at a 

time. The ability to perform genome expression profiling on the whole set of genes in a 

cell came in the mid 1990s with the advent of expression microarray technology 

(Schena et al, 1995).  This technology allows for the study of thousands of transcripts 

at the same time. The technology is based on a set of probes immobilized on a glass 

slide in the form of spots. Each spot contains picomoles of a specific probe (either a 

part of a gene or some other specific sequence) and it uses the mechanism of 

hybridization to connect the DNA or RNA target strands to the probes. The un-

hybridized targets are washed away and the hybridization of the probe and its target is 

then detected by fluorophore or chemiluminescence labeled targets to determine 

relative abundance of nucleic acid sequences in the target. Total strength of the signal 

on one spot depends on the amount of targets binding to the probes on that spot. The 

signal then needs to be normalized, usually using the background probe levels. The 

expression levels can be determined using relative normalization in the comparison of 

an experiment and its control for each spot. Thus the values are only explainable in 

relative conditions and are not a direct measurement of the level of expression of the 

target  

 

The most popular genome expression technologies include in-situ-synthesized arrays 

and high-density bead arrays. In situ-synthesized arrays are high-density 

oligonucleotide probe microarrays (such as Affymetrix GeneChip). They are made 

using photolithography, using light to create a pattern. The method relies on UV 

masking and light-directed combinatorial chemical synthesis on a solid support to 

selectively synthesize probes directly on the surface of the array, one nucleotide at a 

time per spot, for many spots simultaneously. The probes are 25 bp long. The other 

popular high-density methods are BeadArrays manufactured by Illumina. This 

technology is based on color-coded 3-micron silica beads that randomly self assemble 

in either a fiber-optic bundle substrate that then themselves assemble into arrays, or a 

silica slide substrate. When randomly assembled on one of these two substrates, the 

beads have a uniform spacing of approximately 5.7 microns, with a packing density of 
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about 40,000 array elements per square millimeter. This gives the Bead Array platform 

about 400 times the information density of a typical spotted array. Each bead is covered 

with hundreds of thousands of copies of a specific oligonucleotide that act as the 

capture sequences in one of Illumina’s assays. The sequence specific probe is 50 bp 

long (Miller and Tang 2009). Illumina BeadArrays were used in Paper II. 

The microarrays are usually genome based (containing probes for about 47,000 

different RNAs) and the probes are usually based on the 3’ end of the expressed mRNA 

since they target the poly-A tail of mRNAs and contain probes that are clustered for 

detection of sequences at the 3’-end of the target. While these expression arrays can 

report changes in transcript abundance, they are only able to distinguish transcripts of 

the same gene if the transcripts differ in their last few transcribed exons. Since 

microarrays contain many thousands of probes, there is the possibility of cross-

reactivity of samples to different genes giving then a false estimation of gene 

expression annotated for that probe. Many changes in transcript expression are caused 

by inclusion of alternate exons or alternative start sites, which would produce different 

isoforms of the gene that are not visible to 3’ expression arrays. To address the 

challenge of alternative splicing that produces alternative exon expression, several 

splice-sensitive microarray platforms have been developed.  

 

Studying gene expression using microarrays has had big impacts on medical research 

since this technology can compare expression of gene based probes between diseased 

and normal samples, cancers and tissues, enabling the identification of potential targets 

for treatments (van t’Veer et al, 2002). This technology has fundamentally altered 

biology and medicine by allowing the study of expression patterns across an entire 

genome.  

 
4.2 NEXT-GENERATION SEQUENCING – HISTORY AND OVERVIEW 

Sequencing is a method that determines the order of the nucleotides in a sequence. One 

of the first established methods for sequencing was Sanger sequencing, based on chain 

termination. In this method, an extension is initiated at a specific site on the template 

DNA by using a short oligonucleotide primer complementary to the template at that 

region. Included with the primer and polymerase are the four bases, along with a low 

concentration of a chain terminating nucleotide (most commonly a di-

deoxynucleotide). Incorporation of the chain terminating nucleotide results in a series 

of related DNA fragments that are terminated only at positions where this particular 
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nucleotide is used. The fragments are then size-separated by electrophoresis in a slab 

polyacrylamide gel or a glass capillary (Sanger et al, 1977).  

The next steps to improve this technology came with the development of different 

colored terminating nucleotides to enable the reaction to run in one tube (Smith et al., 

1985) as well as the development of machines enabling many reactions to run at the 

same time thus automating the process (Smith et al, 1986).  These were all pre-

requisites for one remarkable project of mapping the whole human genome. In the 

works since the mid 80s, the Human Genome Project (HGP) officially started in 1990 

and finished in 2003. The project was also marked with a huge investment in genome 

sciences, which focused on parallelization and automation of sequencing methods.  

The next big brake for sequencing came in 1996 with establishing of pyrosequencing 

(Ronaghi et al, 1996), a method very different from previous ones. It is based on the 

incorporation of nucleotides one at a time as a complementary, single strand to the 

single stranded DNA template. As the nucleotides are added, light from the release of 

PPi is emitted and measured (usually via a CCD camera). The addition of each 

nucleotide is controlled, allowing for easy tracking of the desired sequence loci.  

Different methods as well as automation, massive parallelization of processes and 

lowering of sequencing costs prepared the market for the advent of sequencing 

machines. 

4.2.1 The Roche 454 

The new era of next-generation sequencing was ushered in with the release of the first 

next-generation sequencer, Life Sciences 454 (Margulies et al, 2005). For a sample to 

be sequenced, it needs to be randomly cut into smaller pieces, adding adapter sequences 

to the ends, then combining the fragments with Sepharose beads (diameter ~28 µm) 

which have been coated with oligonucleotides complementary to the adapters. The 

sample is mixed with an excess of beads so that most beads bind only a single template 

molecule. The beads with the bound DNA are subjected to emulsion PCR (Nakano et 

al, 2003), which amplifies the DNA templates from a single copy to approximately 10 

million copies on each bead. Subsequently, the enriched, template-carrying beads are 

deposited into open wells arranged along one face of a 60×60 mm2 fibre-optic. The 

wells are sized to fit only a single bead and each plate contains approximately two 

million wells. Reagents are supplied to the picotiter plate for sequential rounds of 

sequencing by synthesis using a modification of the pyrosequencing method. The 

chemiluminescent event is detected by a camera. The location of each template 
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molecule in its unique well of the 454 picotiter plate is recorded and computational 

assembly of the sequences of all templates happens simultaneously. The 454 sequencer 

is equipped with an integrated computer which allows for signal processing in real 

time. This system has very low base calling error rate due to only one nucleotide being 

added at a time but it has an issue when a template molecule contains multiple bases of 

the same type, such as a run of AAAA’s , then multiple bases are synthesized onto the 

copy strand all at once, creating a larger emission of light. It is difficult for the system 

to accurately count the number of bases in homopolymers longer than eight or nine 

bases. 

The first 454 produced approximately 500,000 sequences (or 25 Mb) of data, with 

reads 80-120 bases long. In 2012, an upgrade to the ‘GS’ system known as ‘FLX+’ 

increased the average read length to 700 bases for ~1 million reads or 3 Gb of data 

from a run. The cost per run remains about $8,000. To lower the cost and increase 

yield, a multiplex strategy that involves both barcodes for individual samples, and a set 

of gaskets which divide the surface of the sequencing plate into sub-sections are 

employed. The advantage of this system is that it can deliver long reads and deep 

sequencing which is particularly suitable for de-novo sequence assembly. Roche 454 

sequencer is used to sequence the data in Paper I.  

 
4.2.2 Illumina Genome Analyzer 

Around the same time of the release of the 454, a new technology was being developed 

at the University of Cambridge using the bridge-amplification technology or 

sequencing-by-synthesis. It was able to generate for the first time 1 Gb in a run. The 

instrument was called the Solexa 1G (Bentley et al, 2008).  

Prepared libraries are sequenced on a flow cell, which has a lawn of two oligos 

complementary to the different adapter sequences. Cyclical reactions produce a 

‘cluster’ of around 1000 copies of the original library molecule. Clusters are made 

single-stranded by cleaving of the adapter sequence. Hybridization of a sequencing 

primer is then followed by addition of fluorescent terminators in a cyclical reaction 

(similar to pyrosequencing, but using just one color). Nucleotides are incorporated by 

polymerase into the growing DNA strand. The flow cell is imaged to determine which 

nucleotide has been incorporated into each individual cluster. The terminator is 

removed by chemical cleavage ready for the next round of incorporation, imaging and 

cleavage. 
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In 2007, the early Solexa-based sequencers generated reads of 35 bp and generated 

around 30 M sequences (or 1 Gb) of data from a flowcell. 

The newest version of this sequencer, the HiSeq, is currently the most widely used 

sequencer and can generate 2.4 billion sequences (300 Gb) of data in one run, with the 

read length of 100 bp as compared to the first read length of just 26 bp. 

 

4.2.3 Life Sciences SOLiD and Ion Torrent 

The third major technology to enter was the SOLiD, Sequencing by Oligo Ligation 

Detection, which uses sequencing-by-ligation. On a SOLiD flowcell, the libraries can 

be sequenced by 8 base-probe ligation which contains ligation site (the first base), 

cleavage site (the fifth base), and 4 different fluorescent dyes (linked to the last base) 

(Mardis E, 2008). The fluorescent signal is recorded while the probes are bound to the 

template strand and diminished by the cleavage of probes’ last 3 bases.  

Originally, the read length of SOLiD was 35�bp and the output was 3�Gb of data per 

run. The new generation has improved read length, accuracy, and data output of 

85�bp, 99.99%, and 30�G per run, respectively (Lin L. et al, 2012). Despite its high 

accuracy, SOLiD’s short read length makes it a less popular laternative to the Illumina 

Hi-Seq.  

The newer system Ion-Torrent has a semiconductor base detection system. The 

sequencing itself is an approach similar to pyrosequencing but with a twist. It detects 

hydrogen ions that are released during the polymerisation of DNA, as opposed to the 

optical methods used in other sequencing systems. The sequencing is performed in the 

wells of a semiconductor chip into which individual emulsion PCR beads can be 

loaded. Sequencing is performed in the same cyclical manner but there are no 

additional enzymes and natural, rather than fluorescently modified, nucleotides are 

used. As each nucleotide is incorporated hydrogen ions are released, which change the 

pH of the solution in the well. The change in pH is detected by the chip which has an 

ion sensor at the bottom of each well reading out the data (Rotherberg et al. 2011). Ion 

Torrent produces similar amount of data to HiSeq but with a longer read length of up to 

200bp.  

 
Other vendors are competing with the current ‘big three’ of the next-generation 

sequencing, including Complete Genomics, which uses DNA nanoballs and unchained 

sequencing by ligation (Lee et al, 2010) but does all the sequencing ‘in house’ as a 

service without producing any machines.  
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Another angle is making the machines more approachable to general users, particularly 

aiming at clinicians by miniaturizing the products. Both Illumina and Ion Torrent have 

smaller versions, MiSeq and Ion PGM, that give smaller yields but are more affordable 

and aimed at personal genomics for sequencing few genes of many different 

individuals.  

 
4.2.4 Heliscope single molecule sequencing 

Helicos Biosciences sequencer Heliscope was the first sequencer that was truly single 

molecule based, meaning that it did not need any of the amplification steps that the 

other sequencers use. It uses DNA fragments with added poly-A tail adapters attached 

to the flow cell surface. The next steps involve extension-based sequencing with cyclic 

washes of the flow cell with fluorescently labeled nucleotides (one nucleotide type at a 

time, like with the early Sanger method). The reads are short, up to 55 bases per run, 

but allow for more accurate reads of stretches of one type of nucleotides (Thompson 

and Steinman, 2010). Heliscope was used for sequencing the data described in Paper III 

and Paper IV. 

 
4.2.5 Third generation sequencing and future efforts 

Two things characterize third the generation of sequencers: they are single molecule 

sequencers without any PCR steps involved and the reactions are observed in real time. 

Single-molecule real-time (SMRT) is the third-generation sequencing method 

developed by Pacific Bioscience. An active polymerase is immobilized at the bottom of 

each SMRT Cell, each patterned with 150,000 zero mode waveguide chambers, 

nucleotides diffuse into each of these chambers. In order to detect incorporation events 

and identify the base, each of the four nucleotides A, C, G and T are labeled with a 

different fluorescent dye having a distinct emission spectrum. Since the excitation 

illumination is directed to the bottom of the chamber, nucleotides held by the 

polymerase prior to incorporation emit an extended signal that identifies the base being 

incorporated. Read lengths of 20 KB and higher have been recorded and it is possible to 

generate base-modification data as well (Branton et al. 2008; Timp et al, 2010).  

The newest sequencer to come out is based on nanopore technology produced by 

Oxford Nanopore Technologies. They use a semiconductor chip with nanometer sized 

holes (‘nanopores’) to read DNA as it translocates through the pore under an 

electrophoretic current. The DNA is tethered to the pore by a polymerase which slows 
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translocation down to around 1000 bases-per-second (Ayub and Bayley 2012). The 

read lengths are expected to be 100,000 base pairs. In 2012, they announced the 

MinION sequencer, a disposable genome sequencer in a USB stick capable of 

generating over 1 GB of data (Niedringhaus et al, 2011). 

 

The future of commercial sequencing will be driven by miniaturization of machines 

and lowering the costs as well as providing a high level of yield together with long 

reads. In addition, methods to handle to high level of data are being developed in 

parallel as well as novel techniques of processing and analyzing the data. 

 
4.2.6 The bioinformatics requirements of handling next-generation 

sequencing data 

With the development of many high-throughput technologies to be used in genome 

expression profiling, there was also a need for dedicated bioinformatics methods for 

these data. Some important steps are shared by all the different approaches and types of 

data, starting from obtaining the raw data, checking for quality and mapping to the 

reference genome. Most of the modern sequencers follow the same standard file 

formats. The reads obtained from the sequencers are presented in a FASTQ format, a 

text based format that presents the sequence and its sequencing quality (Cock et al, 

2010). The range of quality values is different for each sequencer, but in principle 

quality score is an indication of probability of the base call being incorrect.  

The FASTQ format is usually the input format for the next basic step, which is 

mapping or aligning the data to the reference genome. The reference genome is the 

current genome assembly released by the Genome Reference Consortium 

(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/). Next-generation 

sequencing generally produces short reads, meaning short sequences of <~200 bases 

(as compared to long reads by Sanger sequencing, which cover ~1000 bases).  

To compare the sequenced sample to its reference sequence, we need to find the 

corresponding part of that sequence for each read in our data.  

Many different mapping tools are freely available and usually the choice of which to 

use depends on the exact dataset and technology used. In Paper I we used the Nexalign 

(Lassmann,T., http://genome.gsc.riken.jp/osc/english/dataresource/) while in Papers III 

and IV we used Delve, a probabilistic mapper. Delve uses a pair hidden Markov model 

to iteratively map reads to the genome and estimate position dependent error 

probabilities. After all error probabilities are estimated, individual reads are placed to a 
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single position on the genome where the alignment has the highest probability to be 

true according to the model. Phred scaled mapping qualities (Li et al, 2008), reflecting 

the likelihood of the alignment at a given genome position, are also reported, allowing 

filtering of the mapped reads based on the error probability of the mapping. Other 

popular mapping tools include BWA (Li and Durbin, 2009) and Bowtie (Langmead et 

al, 2009).  

Possible errors during the mapping process can arise from the following: PCR artifacts 

from the early amplification steps of the sample, these errors are visible as mismatches 

in the alignment; sequencing errors come from the machine making an erroneous call 

either for physical reasons (limitations on the slide) or due to repeated stretches of the 

same base; mapping errors that arise due to the mapping algorithm, most often 

happening around repeat or low complexity regions (Li et al, 2012). 

The mapping tools usually give output in the standard SAM/BAM file format. SAM 

format is the text version of the binary BAM format. These files include information 

about the alignment of the sequence and the mapping quality. They can easily be 

converted into the one another or queried for information using the samtools package 

(Li et al, 2009). Data files processed in this way can be further analyzed to answer 

specific questions as well as visualized and compared to existing data in dedicated 

genome browsers such as the UCSC Genome Browser (Meyer et al, 2013). 
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5 CONSORTIUM WORK ON TRANSCRIPTOME 
STUDIES 

There is still a lot of work left to gain complete insight into transcriptional regulation 

and events in the cell. Similarly to the Human Genome Project, using the expertise and 

technology of different research centers, a few consortia aiming at demystifying 

transcriptional regulation have been formed. 

 
5.1 THE FANTOM PROJECT 

The Functional ANnotation of The Mammalian Genome project (FANTOM 

Consortium) begun in the year 2000 to assign functional annotations to the full-length 

cDNAs that were collected during the Mouse Encyclopedia Project at RIKEN, Japan. 

FANTOM has since developed and expanded over time to encompass the fields of 

transcriptome analysis involving researchers from 19 countries. The object of the 

project is moving steadily up the layers in the system of life, progressing from an 

understanding of the ‘elements’ - the transcripts - to an understanding of the ‘system’ - 

the transcriptional regulatory network. Since FANTOM3, the consortium has taken on 

CAGE as its main technology. Some of the major findings through the projects include: 

FANTOM3 revealed that 63% of the genome, instead of the previously thought 1.5% 

comprising of protein coding genes, is transcribed as RNA in the mammalian genome 

(mouse and human), as well as discovering over 23,000 non-coding RNAs and 

abundant sense-antisense transcription (Carninci et al, 2005; Katayama et al, 2005). 

FANTOM4 used CAGE adapted for next generation sequencing (Roche 454 machine) 

and the THP1 cell line to monitor the dynamics of TSS usage during a time course of 

monocytic differentiation. The expression levels from each promoter and TFBS 

predictions were then used to build a transcriptional regulatory network (Suzuki et al, 

2009). The current project FANTOM5 aims to expand on previous projects to generate 

a map of the majority of human promoters and comparative transcriptional regulatory 

models across different primary cells, cell lines and tissues. The CAGE sequencing is 

performed on Helicos single molecule sequencer and RNA isolated from every major 

human organ, over 200 cancer cell lines, 200 primary cells as well as time courses.  

The FANTOM resources have been used in several important research projects, 

including the Human Genome Project and the iPS cell establishment.  The deliverable 

of FANTOM also include the FANTOM database and the FANTOM full-length cDNA 

clone bank. 
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5.2 THE ENCODE PROJECT 

The ENCyclopedia Of DNA Elements (ENCODE) Project launched by the US 

National Human Genome Research Institute in September 2003 aims at identifying all 

functional elements in the human genome sequence. The pilot phase of the Project was 

focused on a specified 30 megabases (�1%) of the human genome sequence and is 

organized as an international consortium of computational and molecular laboratory-

based scientists working to develop and apply high-throughput approaches for 

detecting all sequence elements that confer biological function. For the current phase, 

the primary assays used in ENCODE are ChIP-seq, DNase I Hypersensitivity, RNA-

seq, CAGE and assays of DNA methylation. The combination of these technologies 

across cell lines enabled the project to assign biochemical functions for 80% of the 

genome, in particular outside of the well-studied protein-coding regions (Dunham et al, 

2012; Djebali et al, 2012). Other deliverables include a comprehensive map of DNase 1 

hypersensitive sites (Thurman et al, 2012), a lexicon of short DNA sequences that form 

recognition motifs for DNA-binding proteins (Neph et al, 2012), and a preliminary 

sketch of the architecture of the network of human transcription factors (Gerstein et al, 

2012). One part of the ENCODE project is also GENCODE, a project to annotate all 

evidence-based gene features in the entire human genome at a high accuracy (Harrow 

et al, 2006). 
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6 APPLICATIONS TO DISEASES 
An integral next step is to apply all of these technologies and approaches to research 

complex diseases. In my research I have applied these approaches to genes involved in 

dyslexia (Paper II) and Rett syndrome (Paper IV). 

 
6.1 DYSLEXIA 

Dyslexia is a common impairment in learning to read and write despite normal 

intelligence and normal senses that affects approximately 5%–10% of the population 

(Petryshen and Pauls, 2009). Developmental dyslexia is a complex neurodevelopmental 

disorder with a genetic basis. Many candidate genes for dyslexia have been identified 

with DYX1C1, dyslexia susceptibility 1 candidate 1, being one of the most promising. 

Function of DYX1C1 is mostly unknown, but it has been demonstrated to affect 

neuronal migration and modulate estrogen receptor signaling (Wang et al, 2006; 

Massinen et al, 2009). Knowledge that RNAi mediated knockdown in rats influenced 

cognitive processes (Threlked et al, 2007), is involved in estrogen receptor signaling 

and that the protein product can be seen in the nucleus, led us to think DYX1C1 would 

be a good candidate for perturbation studies. 

 
6.2 RETT SYNDROME 

Rett syndrome is a neurodevelopmental disorder that affects the grey matter of the 

brain. While almost exclusively affecting females, it has been detected in males as well. 

The clinical features include small hands and feet and a deceleration of the rate of head 

growth including repetitive stereotyped hand movements, seizures, no verbal skills or 

walking skills as well as intellectual disability (Neul et al, 2010).  

 It is caused by mutations in three functionally diverse genes: FOXG1 (Ariani et al, 

2008), MECP2 (Amir et al, 1999) and CDKL5 (Weaving et al, 2004). Although the 

functions of FOXG1, MECP2 and CDKL5 have been studied individually, not much is 

known about their relation to each other with respect to expression levels and 

regulatory regions. Using the big data repository of FANTOM5, we set out to identify 

the promoter characteristics of each gene in human and mouse, as well as the other 

possible common features related to the core promoter region.  
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7 AIMS 
Employing genome-wide profiling methods we aim to study in depth the promoter 

regions to characterize and better understand transcriptional regulatory events in the 

context of expression changes and using these approaches to study disease on the 

transcriptional level. 

 
7.1 INDIVIDUAL AIMS 

 
Paper I Combining knock-down and deepCAGE to infer genome-wide effects 

of the transcription factors. 

 

Paper II Apply the method used in paper I to DYX1C1 and infer the genome-

wide effects of its perturbation. 

  

Paper III Using human post-mortem brain samples, define promoter-level 

differences on the spatio-temporal level using single-molecule sequencer CAGE data. 

 

Paper IV Using the wide set of samples, define the promoter regions, expression 

levels and shared regulatory level features of 3 genes implicated in Rett syndrome. 
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8 PRESENT INVESTIGATION 

8.1 COMBINING SIRNA PERTURBATION AND DEEPCAGE GIVES US 
INSIGHT INTO TRANSCRIPTIONAL REGULATORY NETWORKS 
(PAPER I) 

In this paper, we knocked down the 4 key transcription factors IRF8, MYB, PU.1 and 

SP1 in the human monoblastic leukemia cell line THP-1 (Tsuchiya et al, 1980). The 

capped RNAs in the knockdown and control samples were captured by CAGE and 

sequenced using the Roche 454 sequencer.  

Since microarray experiments done on the same RNA samples were available through 

the FANTOM4 project (Suzuki et al, 2009), first we compared the fold changes of the 

perturbed genes for both the microarrays and CAGE. We found an overall positive 

correlation for all four TF knockdown samples across both technologies. In general, 

CAGE fold changes were greater than those measured by microarrays, as has been 

previously noted (deHoon and Hayashizaki, 2008). 

Knockdown of SP1, IRF8, PU.1 and MYB led to induction of 267, 347, 189 and 307 

genes and repression of 428, 527, 260 and 1160 genes by 1.5-fold up- or down- 

regulation, respectively. We used the top 50 of each set of perturbed promoters to 

search for novel motifs using de-novo motif finder MEME (Bailey et al, 2006). Our 

results were consistent with the expected roles of the TFs. For example, we find that 

knockdown of IRF8, a known activator (Meraro et al, 2002), results in down-regulation 

in both the deepCAGE and microarray experiments of XAF1, a gene which we predict 

to contain our novel motif. The observation that MYB knockdown yielded motifs for 

both up- and down-regulated sets is consistent with its known role as both a 

transcriptional activator and repressor (Luscher and Eisman, 1990). 

We assessed if our motifs truly describe functional sites by comparing the expression 

fold changes of the TSSs containing the motifs. Since we had replica for microarray 

data only, we used microarray expression for these measurements, although we got no 

discernable differences when using just the CAGE values. We found the most 

interesting results in the IRF8 and PU.1 down-regulated sets and the motifs we found 

there. Promoters containing those motifs were expressed at significantly lower levels 

than promoters lacking the motif.  Furthermore, our motif out-performed known motifs 

present in the Transfac database (Matys et al, 2006) for PU.1 and IRF8, as well as PU.1 

ChIP data from the same cell line. Checking the conservation of our motifs, we find 

that 32.8 % (PU.1) and 35.5% (IRF8) of their base positions are strictly conserved 
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compared to the 3–8% average overall conservation and 11–24% conservation in 

coding regions.  

Our found motifs were longer than the known ones present in the databases. Tested this 

by truncating the motifs to be of the same length, we lost specificity leading us to 

confirm our longer. Additionally, we found an overlap between down-regulated TSSs 

in both PU.1 and IRF8 (44 TSSs) that contain both motifs overlapping each other. 

Here, we found confirmation by already published data on the combinatorial regulation 

properties of these two TFs (Meracki and Fenton 2000; Meraro et al, 2002).  

Finally, we constructed a promoter based gene regulatory network led by our 

confirmation that the most down-regulated genes contain the motifs linked to TFs. In 

this network, we included only genes that were perturbed upon knockdown of at least 2 

out of 4 TFs. Genes co-regulated by PU.1 and IRF8 were predominantly co-

downregulated upon knockdown. Interestingly, there is an antagonistic relationship for 

genes co-regulated by PU.1 and MYB, with the majority downregulated upon PU.1 KD 

but up-regulated upon MYB knockdown.  

In this paper we have established the knockdown (KD) CAGE technology and 

demonstrated that it can be used to determine de novo TFBS as well as build promoter 

based networks. Compared to ChIP technology, we can identify sites that are 

influenced by TF KD, with ChIP identifying sites where the TF is bound but not 

necessarily functionally active (Wasserman and Sandelin, 2004). However, combining 

these two approaches could create a powerful method to discriminate indirect targets 

from direct targets bound by factors at both proximal and distal sites including 

enhancers and insulators.  

 
8.2 PERTURBATION STUDIES OF DYX1C1 REVEAL ITS INVOLVEMENT 

IN NEURONAL MIGRATION PATHWAYS (PAPER II) 

In the previous paper we explored the properties of knockdown of known TFs to infer 

regulatory networks of perturbed genes. In this study, we applied this knowledge to 

DYX1C1, a dyslexia candidate gene and analyzed molecular networks of DYX1C1 

with global transcriptome and protein interaction assays. 

We perturbed DYX1C1 in the neuroblastoma SH-SY5Y cells and investigated the 

global transcriptome changes using the Illumina HT-12v4 expression beadchip arrays. 

We detected 379 probes corresponding to 357 genes with significant differential 

expression in the DYX1C1 overexpressed cell line compared with control SH-SY5Y, 

207 of these probes were up-regulated, and 172 were down-regulated. Genes previously 
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linked to neuronal differentiation and migration, RELN and ASL1 (D’Arcangelo et al, 

1999; Dixit et al, 2011), were the most upregulated and downregulated. In the siRNA 

samples, siDYX1C1 was compared with siControl, revealing 88 differentially 

expressed probes corresponding to 87 genes, of which 15 probes were upregulated, and 

73 were downregulated. In total, 30 genes including PDGFRA, SNAP91, CUX2, GAL, 

IL11RA, OLFM1, and PDS5A were differentially expressed in both comparisons. To 

check these genes for common features and put them into context, we examined the 

gene ontology (GO) enrichment. The upregulated genes of the overexpression 

experiment showed the most significant enrichment in the biological process GO terms 

“cellular component movement”, “cell migration”, and “nervous system development”. 

Interestingly, a total of 18 genes were classified in the “cell migration” term, and 6 of 

those genes (TWIST1, RELN, PHOX2B, NRCAM, DCX, and PXMP3I) are part of the 

“neuron migration” term, which is another confirmation of previous involvement of 

neuronal migration role of DYX1C1 (Wang et al, 2006). Additionally, the GO term 

“nervous system development” was also significantly enriched in the siDYX1C1 list of 

downregulated genes, with a total of 17 of the 73 genes in that term. The “cell 

migration” GO term was not significantly enriched when analyzing the siDYX1C1 

downregulated gene list but, in the cellular component category, the “cell leading edge” 

term was significantly enriched, suggesting that also knockdown of DYX1C1 affects 

genes important for cell migration. We also looked for enrichment in the Kyoto 

Encyclopedia of Genes and Genomes pathways (KEGG) and found overrepresentations 

for genes in “cell cycle pathway” for both experiments. Interestingly, the “focal 

adhesion pathway” was also upregulated significantly in the overexpression cell line. 

Given that focal adhesion constitutes a core machinery of cell migration (Lock et al, 

2008), this further strengthens the notion that DYX1C1 controls cell migration. 

Another significant term present in both experiments was “pathways in cancer”, 

connecting to the previous suggestion of DYX1C1 being involved in brest and colon 

cancers (Chen et al, 2009; Kim et al, 2009). 

To better characterize DYXC1’s function and involvement in pathways, we looked for 

its protein interacting partners using co-immunoprecipitation combined with protein 

identification with nano–liquid chromatography coupled with tandem mass 

spectrometry (LC-MS/MS). We identified 66 new proteins associated with DYX1C1, 

24 of which were identified in at least two independent experiments. To infer the 

DYX1C1 protein interaction network, we searched Pathways commons database 

(Cerami et al, 2011) and found that 43 of the proteins in the DYX1C1 interactome have 
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previously been shown to interact with each other. The high connectivity of the proteins 

suggested that DYX1C1 might participate in multiprotein complexes. Again, we 

checked for GO term enrichment and found that “microtubule based process” and 

“microtubule organizing center organization” were among the most significant 

biological processes, again pointing toward a role for DYX1C1 in cell migration. The 

analysis of GO category “cellular component” showed a significant overrepresentation 

of cytoskeletal proteins, more specifically microtubule proteins among the DYX1C1 

associated proteins. Centrosomal proteins such as CEP170, CENPJ, and NPM1 were 

among them and in other results we could also find that iDYX1C1 localizes to the 

centrosome when overexpressed. These characteristics are similar to those of other 

neuronal migration genes that promote the recruitment, stabilization, and organization 

of microtubules and actin that eventually drive neuronal migration and cell division 

(Liu SJ, 2011).  

Additionally in this work, we identified a novel highly conserved protein domain in 

DYX1C1 of 43 residues that we called the “DYX1 domain”. Position specific iterated-

blast searches did not detect this domain in any other protein family. 

 
8.3 THE PROMOTER LEVEL ATLAS OF SPECIFIC TRANSCRIPTS AS 

WELL AS SPATIO-TEMPORAL COMPARISONS IN HUMAN BRAIN 
(PAPER III) 

As part of the FANTOM5 project, a set of 15 brain regions from post-mortem 

individuals, one infant and 3 adults, were sequenced using CAGE on the Heliscope 

single molecule sequencer.  

Using the advantage of all FANTOM5 samples profiled with the same technology, we 

compared the brain samples to all the other samples in the FANTOM5 human tissue 

collection. Using multi-dimensional scaling, we could see clear difference between 

brain samples and all the other samples. Looking at data subsets, such as only 

expression TF, enhancer expression, non-coding transcripts or expression coming from 

repeat regions, we were able to consistently observe this difference between brain and 

other tissues. These results show that the brain specific expression signature is 

distinctive with respect to other tissues, not only on the level of coding genes but also 

on non-coding transcripts or transcriptional regulators. 

Attempting to explain these differences, we compared the cumulative distribution of 

tags accounted for by the 10,000 most highly expressed TSSs in each tissue sample. 

The obtained results suggest that brain has a more complex and diversified 
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transcriptome compared to other tissues, which is additionally proven with calculations 

of transcriptional complexity where brain samples significantly different from and 

score higher than other tissues. Through differential expression analysis between brain 

and other tissues, we observe that one third of all transcripts are more highly expressed 

in brain and thus brain-specific. GO term analysis in this set reveals the terms for 

neurological system processes and transmission of nerve pulse. Additional important 

differences between brain and other tissues are brain specific alternative promoters. We 

identified 589 mRNA isoforms for genes expressed in brain but not in other tissues 

including some TFs. 

Our samples comprised of one infant individual and 3 adults. To look for detailed 

differences on the temporal level, we performed again differential expression analysis 

between these two groups.  Notably, over a quarter of the genes expressed in brain 

contain at least one differentially expressed TSS; most of these genes display both an 

infant or adult specific TSS as well as a non differentially expressed TSS (82.1%), 

while the remaining TSSs are exclusively expressed in one of the two age extremes. 

This shows that alternative TSS usage importantly contributes to the differences 

observed between infant and adult transcriptomes and suggests that the expression of 

specific mRNAs is differentially regulated in the two age extremes. Another interesting 

result is that about 20% of differentially expressed TSSs originate from non-coding 

RNA loci and 11% from intergenic regions, meaning that a lot of the difference comes 

from previously uncharacterized TSSs or those stemming from genes with unknown 

function. 

In order to assess individual differences in expression between brain regions in the 

adult, we performed differential expression analysis between all the pairs of regions 

available. The brain region with the largest number of differentially expressed TCs and 

the largest fold changes is cerebellum. We observed that expression signatures were not 

characteristic of a single region but tended to be shared by groups of regions with 

related developmental derivation, functions or projections, consistent with previous 

reports (Hawrylycz et al, 2012). We separated the signal then in 4 distinct groups, each 

of them containing genes that are known markers for the regions they are expressed in: 

1) frontal, temporal, parietal and occipital lobes, hippocampus and amygdala (cortex-

limbic system) 2) caudate and putamen (striatum), 3) cerebellum, 4) thalamus, globus 

pallidus, substantia nigra, locus coeruleus, spinal cord and medulla oblongata (brain 

stem-basal ganglia). For each of these groups we identified TFs that are differentially 

expressed. Often these TFs were enriched in more than one group but these differences 
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were driven by group specific alternative promoters. We also built regulatory 

interaction networks for each TF group and were able to confirm known interactions 

for the majority of TFs in the group (average of 66%).  

Overall we have classified brain specific expression signal on the promoter level into 

different sections (adult, infant, brain region group), which leaves us with 67% of genes 

that are highly expressed in brain when compared to other tissues as the brain 

expression signal not explained by any other comparison. We have also pointed out that 

many of the differences in brain expression result from poorly annotated or poorly 

characterized regions of the genome. Further research in this regions could give novel 

findings of brain specific genes. 

 
8.4 CHARACTERIZING RETT DISEASE GENES ON THE PROMOTER 

LEVEL (PAPER IV) 

In contrast to the previous study that was based on characterizing various aspects of and 

contrasting a vast amount of, data, in this study we picked 3 genes specific for Rett 

syndrome. We used the FANTOM5 data for human and mouse for in detail 

characterization the promoters, regulators and expression patterns of these three genes. 

First, we identified CAGE-derived TSSs for all 3 genes in both human and mouse. We 

identified a novel main promoter in mouse for Foxg1. Both human and mouse had high 

expression of Foxg1 in brain, but intriguingly, expression was absent in the cerebellum 

samples. Analyzing ENCODE DNAse-I hypersensitive sites and active promoter 

histone marks (H3K4me3) available for mouse, we found evidence of silencing of 

FoxG1 by the PRC2 complex in the cerebellum. For Mecp2, we identified two TSSs in 

both human and mouse (with an exception of a third lowly expressed TSS expressed 

exclusively in blood primary cells, particularly in CD14 monocytes).  We found Mecp2 

to be ubiquitously expressed in all tissues and not just the brain. For Cdkl5 we also 

found 2 TSSs for both species, also expressed ubiquitously. 

We compared all the TSSs of these 3 genes for correlations in expression levels and 

found that Mecp2 and Cdkl5 are more highly correlated to each other than they are to 

Foxg1. Additionally, the expression of main TSSs of Foxg1 and Mecp2 are in contrast 

to each .  

Using Encode ChIP data we additionally characterized the mouse promoters for the 

presence of enhancer or promoter markers. For all the main promoters of the 3 genes, 

we find enhancer marks close by in the mouse, while for human, using the enhancer 
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data of FANTOM5, we find 4, 14 and 1 significantly correlated enhancers for FOXG1, 

MECP2 and CDKL5 respectively.  

When we characterized the promoter shapes of all the TSSs, we found that most of 

them are broad, consistent with their connection to CpG islands. We also found a 

strong conservation of promoter shape across species, particularly visible in the highest 

expressed TSS of FOXG1. 

We calculated also the probabilities of having the same TFs regulate the three genes. 

Our data reveal that the sequence region around the main promoter of FOXG1 in 

human is significantly enriched in binding sites for the RREB1 (p = 0.01), FOXP1 (p = 

0.03), and NFY (p = 0.01) transcription factors. NFY is also predicted to regulate 

MECP2  (p = 0.01) and possibly CDKL5 (p = 0.09).  In mouse, for all three genes the 

promoter regions are enriched for motifs associated with transcription factor NFY, as 

well as Sp1.   

FOXG1 and MECP2 both are TFs and thus binding DNA at the promoter regions. 

Using the expression data of the whole FANTOM5 we checked their motif activities 

(ref). Although FOXG1 is expressed mostly in brain tissues, its motif activity did not 

show any significant difference between brain and other tissues in either human or 

mouse (human p <= 0.2738, mouse p <= 0.3272). In contrast, the motif activity of 

MECP2 is significantly lower in brain compared to other tissues both in human and 

mouse (human p <= 1.019e-10, mouse p <= 0.0005343), consistent with a role of 

MECP2 as a negative regulator in brain. 

Our comprehensive analyses of the data from the FANTOM5 project reveal that 

although the three genes are related by disease phenotype, their genomic architecture, 

expression and regulation are independent of each other. Thus intersecting molecular 

pathways likely cause the overlapping phenotypes seen in Rett patients.  
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9 CONCLUSIONS AND PERSPECTIVES 
Through these papers we used the power of CAGE in conjunction with next-generation 

sequencing to define the promoter region of genes, regulatory element binding sites as 

well as alternative promoter usage depending on different states. 

 

In paper I we developed a method combining siRNA knockdown and sequencing based 

CAGE to show we can accurately predict genomic loci where TFs are actively 

regulating transcription. We then applied this same approach to a gene linked to a 

disease but without completely known function and without a known DNA binding 

site. Even without a TF function, we could still derive the downstream effects of 

perturbing DYX1C1.  

 

For papers III and IV we used the FANTOM5 database of tissues and cells. In paper III 

we used this to make global conclusions about differences in regulation between i) 

brain and other tissues, ii) adult and infant brain as well as iii) different adult brain 

regions. Using an opposite approach, in paper IV we started with 3 previously not 

associated genes and investigated their detailed promoter-level functionality using the 

database of tissues and cells. This way we have shown how the same data repository 

can be used for more global questions as well as specific questions such as the common 

characteristics of three genes.  

 

This approach has shown us that genome-wide studies and quantitative measures can 

give a glance at to why the cells are different and what might be the underlying 

mechanisms. To gain further details, additional studies that would involve 

complementary methods such as RNA-Seq to give us an idea if the alternative TSS we 

find do give different protein products in the end. Of course, in complex disorders we 

should not forget the potential influences of other factors including non-coding RNAs, 

enhancers, epigenetics or repeat regions.  

 

The advent of next-generation sequencing has brought us into an era of vast biological 

data. The advances in sequencing technologies and lowering of costs in general has 

brought us closer to clinical application of these technologies. Main goal in this area is 

to develop diagnostic tools that medical doctors can use in everyday work with patients 

to quickly diagnose or classify a disease. This would particularly be necessary to end 
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the 'diagnostic odyssey': the grueling, painful, expensive and sometimes decades-long 

journey from negative test to negative test, failing to diagnose a rare disease. Currently 

methods are being developed with exome sequencing as a diagnostic tool with 25% of 

diagnosis rate for now (Glusman G, 2013). Additional diagnostic methods can rely in 

developing un-invasive ways to diagnose a patient that would normally require invasive 

procedures, such as identifying markers in the blood that are quick to be checked by 

clinical personnel. The miniaturization of sequencing machines is also leading to this 

point that dektop sequencers for small samples would be available to clinicians.  

Good communication needs to be established between the lab and the clinic for both to 

profit from it. The clinician could this way provide valuable disease samples which in 

turn could lead to better diagnostic methods or even potentially to identify intervention 

points for drug treatment.  

Another novel topic in this field, which arose due to lowering costs of sequencing and 

the ability to take small amounts of RNA, is single cell sequencing. It is a common 

perception that expression in a tissue is an average of the expression of all the single 

cells making it up. First single cell studies have found genes can be highly expressed in 

some cells while they are virtually not at all expressed in other cells of the same cell 

type possibly resulting from expression bursts. Not only is the biology of single cells 

still poorly understood but also the methods required to obtain single cells (often 

manually) are complicated and it is hard to separate cells but still keep the information 

about their cross-talk to be visible in the sequencing step. 

 

The methods described here are basic science that is gradually turning toward clinical 

samples and clinical application. Hopefully, the average patient will be able to soon 

benefit from these services and have the diagnostics and treatment be speeded up with 

these technologies.  
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