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ABSTRACT 
Amyloid is associated with both pathological protein deposits and the formation of 

functional protein structures. Therefore, several strategies have evolved to control the 

formation or inhibition of amyloid in vivo. In this thesis, three separate systems were 

investigated in which amyloidogenic protein segments are coupled to regulatory 

elements that prevent or promote fibrillation. We describe the molecular mechanism for 

how (a) a propeptide segment prevents the uncontrolled aggregation of the mature 

peptide, (b) a chaperone domain inhibits amyloid formation, and (c) a pH-dependent 

relay controls protein assembly. For this purpose, mass spectrometry (MS)-based 

approaches to structural biology were applied and extended, involving gas phase 

interaction studies and hydrogen/deuterium exchange MS. 

(a) Proinsulin C-peptide is beneficial for the preservation of insulin activity. We show 

that C-peptide interferes with insulin amyloid fibril formation at low pH and how 

conserved glutamate residues in C-peptide mediate reversible co-precipitation with 

insulin. A mechanism is proposed for how the balance between zinc and C-peptide 

mediates sorting of insulin into slow acting and rapid acting forms inside the secretory 

granules of the pancreatic β-cells, which potentially links C-peptide to diabetes type 1 

and 2. 

(b) Lung surfactant protein C (SP-C) is a highly amyloidogenic transmembrane 

polypeptide that controls surface tension in the alveolar phospholipid bilayer. Its 

proprotein includes a conserved chaperone domain termed BRICHOS, which is also 

associated with neurodegenerative disorders. It is shown here how BRICHOS and its 

N-terminal linker recognize hydrophobic residues and trap the SP-C segment in a β-

hairpin conformation to prevent amyloid formation.  

(c) Spider silk is synthesized as a highly soluble protein that assembles into silk in a 

pH-dependent fashion. It is shown that the spider silk protein N-terminal (NT) domain 

dimerizes at the same pH interval that triggers silk assembly, and we define the 

associated structural changes. Furthermore, the use of the NT domain as a solubility 

tag for the expression of aggregation-prone proteins is demonstrated. 

In summary, we have determined the molecular basis for three distinct mechanisms by 

which fibril formation is controlled through autoregulatory elements and provide insights 

into nature’s strategies to control amyloid formation and prevention. Based on these 

findings, we can now make conclusions about nature’s handling of amyloidogenic 

proteins and their function in general. 
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1 PREFACE 

 
This thesis summarizes research conducted over the years 2008 - 2012 at the 

Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet (KI), a 

department devoted to the study of molecular mechanisms of human disease. 

The work combines research on diabetes, neurodegenerative disease, and spider silk 

formation, with emphasis on application and development of mass spectrometrical 

methods in protein structure analysis for conclusions about amyloidogenic proteins in 

general. The thesis contains a wide spread of methods, structures, and diseases, 

which was made possible through the fruitful collaboration of my three supervisors, 

Professors Hans Jörnvall, Tomas Bergman, and Jan Johansson. As indicated by the 

author list for each paper included in this thesis, not all publications are based on my 

work primarily, but I was able to make significant contributions to each thanks to the 

versatility and robustness of mass spectrometry-based protein structure analysis. 

Accordingly, I have focused on my contributions to the publications, and only the 

corresponding methods are included in the Methodology section. However, I was 

always involved in discussions of key results and in the preparation of the final 

manuscripts, and have included all studies to provide a complete picture. 

At the start of my Ph.D. studies, we designed a three-phase project: the first phase 

aimed to establish and extend Hydrogen/Deuterium Exchange (HDX) Mass 

Spectrometry (MS), the second phase to apply MS-based methods to investigate the 

chaperone activity of the BRICHOS domain on lung surfactant protein C (SP-C), and 

the third phase to broaden the HDX-MS-based investigations to include other amyloid-

related proteins. 

Phase one and two resulted in four publications (Paper III and Papers VII, VIII, and IX, 

respectively). However, already at the end of the first phase, the opportunity arose to 

apply MS to study the pH-dependent assembly of spider silk, which is under 

investigation in the group of Jan Johansson. My involvement resulted in an MS-based 

publication (Paper X) and allowed me to contribute mass spectrometrical analyses 

during the follow-up investigations (Papers XI and XII). Since Hans Jörnvall has a long-

standing interest in the biological role of proinsulin C-peptide and its chaperone-like 

effect on mature insulin, he suggested to further broaden the scope of this work to 

clarify the nature of this interaction. Our findings and the resulting implications are 

summarized in Papers IV, V, and VI. 
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During the course of my studies, it became obvious that the ability to regulate amyloid 

formation is a common feature of these three protein systems, either in its prevention, 

as exemplified by insulin and SP-C biogenesis, or its controlled occurrence, as in 

spider silk assembly. C-peptide, the BRICHOS domain, and the spidroin N-terminal 

domain all represent controlling elements in the (pro)protein and act as an intrinsic 

modulator of amyloid formation. This primed us to search the literature for more 

examples of self-regulating amyloid. We have summarized the well-characterized 

systems in an article that places the results presented in this thesis in the context of the 

current state of amyloid research and concludes this thesis (Paper XIII). 

Furthermore, I have chosen to include two overview articles as an introduction: a 

summary of the nature of amyloid and its prevention (Paper I) and a description of 

mass spectrometry as a protein structure analysis tool (Paper II). 
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2 INTRODUCTION 
 
2.1 STRUCTURAL FEATURES OF AMYLOID (PAPER I) 

 
2.1.1 What is amyloid? 

A long-standing dogma of molecular biology has stated that for each polypeptide chain, 

a specific conformation exists that defines its lowest energy structure and represents its 

native state. The universal validity of this hypothesis, however, has been challenged by 

a discovery that precedes it by more than 300 years. 

In 1639, the Italian physician Nicolaus Fontanus reported a wax-like abnormality in the 

spleen of a patient with liver failure. In 1854, Rudolf Virchow introduced the term 

“amyloid” for its macroscopic resemblance to an amylaceous (i.e. starchy) plant 

constituent, but noted that “only when we have discovered the means of isolating the 

amyloid substance shall we be able to come to any definite conclusion with regard to 

its nature” [1]. 

While reports of similar pathological abnormalities were subsequently linked to a 

variety of diseases, it was not until 1859 that protein was suggested to be constituent 

and, in 1931, was identified as the primary component of amyloid. Since then, 

advances in the use of chemical dyes, electron microscopy (EM) and, finally, high 

resolution protein structure analysis have led to the realization that amyloid represents 

a distinct class of (mis)folded proteins [2]. 

The modern biophysical definition states that proteins in the amyloid state exhibit green 

fluorescence when stained with Thioflavin T (ThT), as well as green birefringence when 

stained with Congo Red and viewed under polarized light. In EM, amyloid appears as 

straight, unbranched fibers with diameters between 6 and 12 nm. X-ray diffraction 

shows a pattern characteristic for β-sheets that run perpendicular to the fibril axis. The 

β-sheet motif is repeated periodically by thousands and thousands of stacked subunits 

that are usually composed of a single peptide each (Figure 1) [3]. Structural 

characteristics as well as strategies to prevent amyloid formation, outlined below, are 

discussed in Paper I. 
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Figure 1. Structural organization of pathogenic amyloid. Amyloid plaques as observed in the brain of AD 

patients (left panel) are composed of individual fibrils, as visualized by EM (middle panel). The molecular 

structure of such fibrils consists of regularly stacked β-sheets from multiple copies of a single protein or 

peptide species (right panel). Scale bars represent 50 µM in the plaque and 100 nm in the EM 

micrograph. Reproduced from Paper I. 

 

2.1.2 Molecular structure and sequence determinants  of amyloid fibrils 

Even though amyloid fibrils possess such a highly ordered nature, insights into their 

molecular structure are notoriously difficult to obtain, and to date a solid-state NMR 

structure [4] as well as a small variety of crystal structures of nanofibers and 3D- 

crystals [5] exist.  

While it has long been a matter of discussion whether the ability to form amyloid fibrils 

is a general property of the protein backbone, only a minor subset of proteins can form 

amyloid in vivo. This means that some proteins contain unprotected amyloid formation 

“hotspots” in their sequence that allows amyloid formation under physiological 

conditions [6]. On the other hand, the ability to form amyloid fibrils is a general feature 

but controlled to occur only under very specific circumstances, such as presence at 

high concentrations, altered pH, and together with destabilizing agents [7]. 

The suggestion that some sequences are more prone to aggregation than others is 

supported by studies on fragments of amyloid disease-associated proteins. Amyloid-

forming sequence motifs have been found e.g. in insulin, the Alzheimer’s Disease 

(AD)-related Amyloid β peptide (Aβ), the yeast Sup35 prion, prion protein, and islet 

amyloid polypeptide. Crystal structures derived from such short model peptides exhibit 

the expected parallel or antiparallel β-strand register. Surprisingly, some of the short 

model peptides have been found to form very densely packed “steric zipper” structures, 

in which sidechains and backbone amides form a tight interaction that excludes water 

from the interface [5, 8, 9]. 
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However, no obvious sequence homology can be derived from these motifs, and 

amyloid peptide structures have been reported that do not feature steric zipper motifs 

[10]. Some structures contain tight interactions between aromatic sidechains instead, 

which have been suggested to mediate amyloid peptide assembly through stacking of 

π-bonds [11, 12]. While several model peptides contain aromatic residues, it has been 

demonstrated that they can be replaced by non-aromatic, hydrophobic amino acids 

without losing the ability to form amyloid fibrils, as long as a balance of negative and 

positive sidechains is maintained [13]. 

Several prediction strategies have been described to identify amyloid-forming 

sequences, based on their content of β-sheet stabilizing or de-stabilizing residues [14, 

15], the ability of the sidechains to pack into a β-sheet structure [16], or by assignment 

of an “aggregation score” for each amino acid based on its occurrence in α-helices and 

β-sheets, hydrophobicity, and charge [17]. 

A different approach is the identification of stretches in amyloid-forming proteins that 

form α-helices but have a higher propensity to form β-sheets [18]. A prominent 

example of such a “frustrated” or discordant helix is the lung surfactant protein C (SP-

C), the mature form of which contains a 12-residue poly-valine stretch that forms a 

transmembrane helix when inserted into the lung surfactant phospholipid bilayer [19], 

but is thermodynamically unstable and forms β-sheet aggregates in vitro [20]. 

A “reverse” example of sequence discordance in β-sheet conversion is the aggregation 

of arthropod major ampullate silk proteins (MaSp), the main constituents of spider 

dragline silk (see section 2.5). MaSp are mostly unstructured or helical in solution [21] 

and have a high α-helix propensity, but form β-sheet crystalline blocks during silk 

assembly [22, 23] and give the assembled spider silk amyloid fibril-like properties [24]. 

 

2.1.3 Mutations, miscleavages, transmission: Pathog enic amyloid 

Most amyloid deposits formed in vivo are disease-associated. As of 2012, 28 proteins 

have been described to form amyloid fibrils that are linked to human disease and can 

occur either as accompanying symptom or molecular cause of the disease [25]. The 

reasons for conversion of a folded protein into amyloid fibrils are only partially known 

and include mutations, cleavage, and interactions with other misfolded proteins. 

Mutations can cause the generation of amyloidogenic species, as in the familial Danish 

and British Dementias (FDD and FBD), where a stop-codon mutation extends the 23-

residue C-terminal signal peptide of the Bri2 gene product to 34 residues and strongly 

increases its aggregation propensity [26, 27].  
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(Mis)Cleavage of precursor peptides can also generate amyloid-forming products, as 

exemplified by the amyloid β precursor protein (APP), which gives rise to Aβ1-40 and 

Aβ1-42 as well as the less toxic Aβ1-39 peptides. Formation of the toxic Aβ1-42 oligomers 

and subsequent aggregation into amyloid fibrils are thought to be responsible for AD. 

A special case is the self-propagating misfolding mechanism that is observed in 

spongiform encephalopathies caused by aggregated prion protein (PrPSC). Here, a 

small fraction of misfolded PrP can trigger conversion of the folded cellular PrPC into 

the pathogenic, amyloid-forming PrPSC form, which makes PrPSC an infectious agent 

[28]. Interestingly, similar behavior has recently been reported for the Aβ peptide, 

which, when injected in amyloid form, can induce β-amyloidosis in mice [29]. Several 

additional factors have been described to influence amyloid formation in vivo, such as 

protein concentration, e.g. in localized insulin amyloidosis in diabetic patients, where 

high local insulin concentrations at the site of repeated injections give rise to amyloid 

deposits composed of misfolded insulin [30]. Similarly, post-translational modifications, 

e.g. in neurofibrillar tangles formed by hyperphosphorylated tau protein, are thought to 

contribute to AD [31]. Most proteins associated with protein aggregation diseases have 

been found to form amyloid fibrils also in vitro, such as mutant ataxins (Polyglutamine 

diseases, PolyQ) [32] and α-synuclein (Parkinson’s Disease, PD) [33]. In these cases, 

in vivo occurrence of plaques with amyloid properties might have escaped detection, or 

do not share all known characteristics of amyloid deposits [25]. 

 

2.2 CONTROL OF AMYLOID FORMATION IN VIVO 

 

2.2.1 Molecular chaperones in protein aggregation d iseases 

Common to most amyloid-forming proteins is the existence of aggregation-prone 

sequence elements. Hence, stabilization of such motifs by molecular chaperones 

represents a possible approach to the prevention of amyloid formation. 

Two approaches have successfully demonstrated the relation between molecular 

chaperones and protein aggregation diseases: Expression of molecular chaperones in 

protein aggregation disease models, and proteomics- and immunohistochemistry-

based characterization of the content of protein aggregates isolated from patient 

material. 

Both approaches have identified chaperones of the heat shock protein (HSP) families 

as potential modulators of protein aggregation. In the case of co-expression of 

molecular chaperones with protein aggregation disease-related genes, it was found 
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that HSP70 rescues cultured neurons expressing Aβ1-42 by reducing aggregate load 

[34], and similarly promotes α-synuclein refolding in a cell culture model of PD [35]. 

Neuroprotective effects of HSPs have been demonstrated in Drosophila PD [36] and 

PolyQ disease [37, 38] models. Subsequently, an HSP-related pathway was identified 

as component of Aβ proteostasis in a C.elegans model of AD [39]. Pharmacological 

induction of HSP expression has also been shown to delay the progression of 

amyotrophic lateral sclerosis (ALS) in a mouse model [40]. Furthermore, analyses of 

patient-derived protein deposits have confirmed the presence of HSPs in aggregates 

from AD, PD, HD, PolyQ diseases, Lewy Body dementia, and ALS (summarized in 

[41]). This suggests that molecular chaperones can be effectively used to combat 

pathogenic protein aggregation. 

However, since the latter examples lack the biochemical hallmarks of amyloid disease 

[25], the only reported instance of chaperone activity against established pathogenic 

amyloid is the connection between HSPs and Aβ aggregation in AD, and to date no 

case of in vivo amyloid formation due to malfunction of a non-specific chaperone has 

been described. 

 

2.2.2 The emerging concept of functional amyloid 

While amyloid formation is predominantly seen as a hallmark of protein aggregation 

disease, a growing body of evidence suggests that certain forms of amyloid can serve 

specific biological functions. The first “functional amyloids”, as they were termed, were 

reported to form fimbriae of gram-negative E. coli [42]. These fimbriae, which serve in 

bacterial surface adhesion, are composed of six proteins of the Csg family and share 

features of amyloid fibrils such as morphological similarity and ThT and Congo Red 

stainability [43]. A second bacterial amyloid, but with a different biological function, was 

detected to be the Chaplin proteins that aid spore dispersal [44]. Subsequently, several 

additional bacterial amyloids with roles in biofilm formation, surface attachment, and 

pore formation were described (reviewed in [45]). 

The first eukaryotic example was the yeast Sup35 prion: In soluble form, it serves as 

DNA transcription factor, while its ability to assemble into amyloid fibrils allows its 

transmission (in active or inactive form) to the next generation as a non-genetic 

element of inheritance [46]. 

In recent years, two reports have described functional amyloid in humans: melanin 

biosynthesis was found to require amyloid fibril formation by the Pmel17 protein. 

Pmel17 amyloid functions as scaffold for the assembly of melanin polymers while 
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preventing the release of toxic melanin precursors [47]. Furthermore, it was reported 

that 31 different human peptide hormones were capable of forming non-toxic amyloid 

assemblies in secretory granules but can be released in biologically active form [48]. 

Another type of protein assembly with amyloid-like properties is the family of arthropod 

silks, i.e. spider silk. Of the different spider silks that fulfill diverse functions and 

possess a variety of chemical and physical properties, the spider dragline silk is the 

most studied. Assembly of the aggregation-prone regions of MaSp1 (that represent the 

main constituent of dragline silk) in the duct of the spider silk glands converts the 

soluble “storage” form into the β-sheet silk form [23]. 

 

2.2.3 Regulatory strategies to control amyloid form ation 

Due to the extreme stability and potentially toxic nature of amyloid, the apparently 

beneficial presence of amyloidogenic proteins and peptides requires sophisticated 

control mechanisms that go beyond those provided by most molecular chaperones. 

Three basic strategies have evolved to regulate the formation of functional amyloid: 

(1) Specialized chaperones  regulate the assembly of prions into amyloid fibrils in 

yeast. The chaperone HSP104 represents one of few known examples for specialized 

amyloid chaperoning systems and is unique in its ability to disassemble amyloid fibers 

composed of the yeast prion protein Sup35 [49]. Proinsulin C-peptide can be 

considered an example of a chaperoning domain as it blocks the conversion of insulin 

into amyloid fibrils (see section 2.3). Another example is the proSP-C BRICHOS 

domain, which has a chaperoning function that prevents the formation of pathogenic 

amyloid, but is also an auto-regulatory element (see section 2.4). 

(2) Regulatory domains  have been identified in functional amyloids, such as the yeast 

HET-s and HET-S prions, as well as in the proteins that form spider silk. Here, 

conformational changes in “switch domains” trigger or prevent aggregation. Spider silk 

spidroins contain N- and C-terminal non-repetitive domains, which control fiber 

assembly by responding to pulling forces during spinning as well as changes in salt 

concentration and pH along the spinning duct ([50] and section 2.5). 

(3) Selective precursor processing  has been suggested to play a major role in the 

assembly of functional amyloids such as the assembly of peptide hormone amyloid, 

where cleavage of proforms is thought to generate more or less amyloidogenic species 

[48]. C-peptide still affects insulin amyloid formation after excision from proinsulin 

during insulin processing (see section 2.3) and thus provides evidence that selective 

processing of blocking elements can be used to control amyloid formation in vivo. 
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2.3 PROINSULIN PROCESSING AND AMYLOID FORMATION 

 

2.3.1 Insulin biogenesis and processing 

Insulin is a 51-residue peptide hormone that promotes glucose uptake. Type-I diabetes 

is caused by insulin deficiency which can be treated by administration of recombinant 

insulin through subcutaneous injection. The mature form is composed of two mostly 

helical polypeptide chains linked by two inter- and a single intramolecular disulfide 

bridge [51]. Its precursor proinsulin is produced in the islets of Langerhans [52]. 

Subsequent cleavage by type-I and –II endopeptidases releases mature insulin and the 

31-residue C-peptide, which is co-secreted with insulin into the blood stream and has a 

variety of molecular actions [53-55]. C-peptide is largely unstructured in solution except 

for a potential β-turn motif at the C-terminus [56] and can form large oligomers under 

physiological conditions [57]. C-peptide is required for correct folding of proinsulin [58, 

59], which is dependent on the N-terminal acidic residues Glu3, Glu5, and Asp6 [60]. 

Additionally, co-administration of insulin and C-peptide in diabetic rats accelerated 

insulin uptake [61], suggesting that C-peptide has a chaperone-like activity towards 

insulin [62]. 

 

2.3.2 Regulation of insulin amyloid fibril formatio n 

 At low pH, high concentrations, and elevated temperature, native insulin can assemble 

into amyloid-like fibrils, in which the insulin monomers adopt a cross-β-sheet structure. 

Using mass spectrometry, insulin has been shown to form soluble multimers at low pH 

that are composed of 2, 3, 6 or 12 monomers. These multimers are in rapid equilibrium 

with the monomeric form and increase with increasing insulin concentration [63], but 

retain essentially the same structure as native insulin [64]. However, longer exposure 

to these conditions causes partial unfolding of the monomer [65, 66] and subsequent 

assembly into amyloid-like fibrils composed of 2, 4, and 6 protofilaments [67]. 

Insulin-containing amyloid deposits have been observed in patients with type-I diabetes 

[30]. In these cases, cutaneous local amyloidosis occurs at the site of repeated insulin 

injection in patients using human recombinant and/or porcine insulin [68, 69]. 

Formation of these aggregates is attributed to the high local insulin concentrations as 

well as the increased aggregation propensity of the faster-acting, mostly monomeric 

“LisPro” insulin variant [70]. 
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In order to prevent insulin aggregation and increase bioavailability of the hormone, 

several strategies for inhibition of fibril formation have been tested, including amino 

sugars [71], soluble insulin A and B-chains [72], presence of hydrophilic surfaces and 

solvents [73], small aromatic molecules [74], molecules associated with stress 

reactions [75], and engineered peptides derived from the insulin B-chain [76]. With the 

exception of native A- and B-chain, all of these inhibitors were ineffective unless used 

in >4-fold excess over insulin.  

Interestingly, it has been reported that proinsulin is refractory to insulin fibrillation. While 

it can form β-sheet-rich aggregates under the same conditions as mature insulin, they 

remain morphologically different from insulin fibrils and exhibit significantly extended 

aggregation lag times. It was concluded that proinsulin aggregation is hindered by the 

covalent linkage of insulin A- and B-chain, posing a conformational restraint by 

connecting the N- and C-termini of the insulin polypeptide chains that prevents the 

structural re-arrangement into a cross-β-sheet structure. We hypothesize that the 

absence of insulin amyloid from secretory granules, despite the high local 

concentrations, could also be due to post-cleavage C-peptide effects. 

 

2.4 BRICHOS DOMAINS AND THEIR ROLES IN PROTEIN AGGR EGATION 

DISEASES 

 
2.4.1 BRICHOS-containing proteins 

The BRICHOS domain was first identified by Sanchez-Pulido et al. in 2002 [77] from 

multiple sequence alignments. Three families of BRICHOS-containing proteins were 

described: The Bri genes 1-3 (also referred to as ITM2A-C), one homologue of which 

causes familial British dementia [27], Mature Chondromodulin-I, associated with 

chondrosarkoma [78], and the proform of lung surfactant protein C. In a recent 

investigation, more than 300 different proteins in 12 families were found to contain 

BRICHOS domains [79]. The architecture of these proteins is surprisingly similar. 

Common to all is the presence of an N-terminal hydrophobic region that is predicted to 

be helical, a linker region that is predicted to be coiled or helical, the actual BRICHOS 

domain, and a C-terminal segment (Figure 2). Overall sequence conservation is low, 

with only three residues conserved among all BRICHOS domains: D105, C120 and 

C188 (numbering according to human proSP-C). In human proSP-C BRICHOS, the 

cysteines form an intramolecular disulfide bond [80]. Secondary structure predictions of 

all BRICHOS domains suggest that they share a common fold [79]. 
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Figure 2. Organization of BRICHOS-containing proteins. BRICHOS-containing proteins are characterized 

by a transmembrane (TM) segment with an N-terminal signaling peptide, a linker region, and the 

BRICHOS domain. (A) Most BRICHOS-containing proteins feature a C-terminal segment not found in 

proSP-C which is predicted to form β-strands [81]. (B) In case of proSP-C, two strictly conserved 

cysteines form an intramolecular disulfide bond, and the transmembrane region has high β-strand 

propensity.  

 

2.4.2 Biological and structural features of proSP-C  

The transmembrane segment of the proSP-C protein is the lung Surfactant Protein C. 

SP-C lowers the surface tension at the surfactant’s air-water interface and prevents 

collapse of the alveoli during end expiration. Mature SP-C has 35 residues with a 

stretch of 12 valine residues that forms the transmembrane helix (see section 1.2.2). 

SP-C is released by enzymatic cleavage from a 197-residue proform, which, besides 

the mature SP-C sequence, contains the already described linker and a BRICHOS 

domain on the C-terminal side in the endoplasmic reticulum. 

A clue to the function of proSP-C BRICHOS came from the observation that mutations 

in the proSP-C gene SFTPC have been identified as the cause of interstitial lung 

disease (ILD). Intracellular protein aggregates composed of SP-C were found in the 

alveolar type II epithelial cells normally expressing proSP-C for secretion [82]. To date, 

over 50 SFTPC mutations have been described. Interestingly, while most mutations 

that give rise to protein aggregation in other systems are located within the aggregating 

protein itself, the majority of the SFTPC mutations that cause SP-C aggregation are not 

located in the region that comprises mature SP-C, but in the linker and BRICHOS 

domains [83, 84]. Expression of mature SP-C without its linker and BRICHOS 

segments results in virtually undetectable expression levels, but expression in soluble 

form can be elevated by co-expression with the linker and BRICHOS (a construct 

further referred to as CTC, i.e. “C-terminus of proSP-C”) on a separate vector [85]. In 

line with this observation, purified recombinant CTC was found to prevent aggregation 

of peptides with discordant helices prone to amyloid formation, such as polyvaline and 
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the Aβ1-40 peptide, while the mutations that are linked to ILD were found to interfere 

with its anti-amyloid activity [82]. Additionally, binding of purified recombinant CTC to 

decamers composed of a single amino acid covalently linked to cellulose membranes 

showed that CTC can interact with hydrophobic residues that have a high β-sheet 

propensity [86]. In paper VII, we have conducted a mass spectrometric investigation of 

CTC and BRICHOS ligand preferences using gas phase binding to acquire gas phase 

KDs, and CID were used to measure of relative complex stability. 

Using limited proteolysis, it could be shown that the BRICHOS domain is highly 

resistant to tryptic digestion and stabilized by two intramolecular disulfide bonds. 

Binding of the hydrophobic dye 4,4'-Bis(1-anilinonaphthalene 8-sulfonate) (Bis-ANS) 

suggests that a major fraction of the five tyrosines in CTC are located in a hydrophobic 

environment, which could represent a binding site for hydrophobic target peptides [80]. 

In paper VIII, we present the crystal structure of the protease-resistant core of 

BRICHOS as well as the identification of a putative binding site involving the BRICHOS 

domain and the linker region as interaction partners of a polyvaline ligand. We report 

the observation of amyloid deposits in patients with SFTPC mutations in the linker and 

BRICHOS regions, which suggests that aberrant chaperone function can give rise to 

amyloid disease in vivo. 

 

2.4.3 Bri2 and its related familial dementias 

Interestingly, other BRICHOS-containing proteins besides proSP-C are associated with 

protein aggregation disease. Vidal et al. reported amyloid deposits in the brain of 

patients with FDD and FBD [26, 27] which were composed of an extended C-terminal 

peptide from the Bri2 protein that is expressed in several tissues of the brain, but most 

prominently in neurons of the hippocampus and the cerebellum [87]. The wt peptide, 

Bri23, is 23 residues long and, like the 32-residue mutant form (ABri) that is released 

from Bri2 by furin cleavage [88]. Several studies have pointed towards a relationship 

between APP processing and Bri2: Aβ accumulation was found to be inhibited through 

binding of Bri2 to APP [89], and their interaction to be mediated by their respective 

transmembrane domains. Subsequent in vivo studies in a mouse model of AD revealed 

that Bri2 inhibits Aβ accumulation [90]. The link between Bri2 and AD was further 

supported by the observation that amyloid plaques from FDD patients contain Aβ 

peptide, suggesting that ABri32 aggregation occurs in interaction with Aβ [81] and is 

promoted by increased APP processing [91]. Interestingly, the Bri23 peptide can inhibit 

Aβ aggregation in vitro and in vivo [90, 92]. Secondary structure predictions of Bri2 
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indicate a preference for β-sheet conformation in the Bri23 peptide [81], which is 

analogous to the high β-sheet propensity of the transmembrane segment in proSP-C. 

In Paper IX, we present evidence that the Bri2 BRICHOS domain can also interact with 

peptides that have high β-sheet propensity (with Bri23 as the natural target) and 

prevent amyloid formation in a manner similar to the action of CTC. 

 

2.5 SPIDER SILK AS AN AMYLOID-LIKE BIOMATERIAL 

 
2.5.1 Spider silk assembly and structure 

Spider silk is a proteinaceous biomaterial that has evolved to suit a wide variety of 

functions. Besides their superficial morphological similarity, the assembled fiber shares 

a number of characteristics with amyloid fibrils: assembled fibrils can be stained with 

ThT and Congo Red, their secondary structure has been calculated to contain more 

than 70% β-sheet and β-turn motifs, and show X-ray diffraction that indicate a β-sheet 

structure with close inter-sheet packing [24]. Solid-state NMR H/D exchange 

measurements, however, indicate that 50% of the alanine residues which are enriched 

in the repetitive domains of spider silk fibroins (see below) are accessible to water [93], 

indicating that assembled fibers are not completely composed of β-sheets, but contain 

significant amounts of unstructured regions. Molecular mechanics simulations have 

suggested that a balance between semi-extended coil regions and crystalline blocks 

composed of β-sheets could be responsible for the toughness and elasticity of the fiber 

(Figure 3) [94]. This illustrates that the unique mechanical properties of spider silk are 

achieved by controlled assembly of spidroins to contain tough, amyloid-like and elastic, 

disordered segments. 

The most studied variant is dragline silk, which is mainly composed of major ampullate 

spidroin proteins 1 (MaSP1) and 2. They are stored in the major ampullate gland in the 

spider abdomen as a concentrated dope with a protein content of up to 50% (w/v) [95]. 

Interestingly, the proteins maintain a largely α-helical conformation even under these 

extreme conditions [21]. Silk assembly is initiated by pulling of the dope from the major 

ampullate gland’s duct, which simultaneously (a) shifts the pH of the solution from 

approximately 7.0 to below 6.4 [96], (b) reduces the salt content of the dope [97], and 

(c) subjects the dope to pulling forces as it exits the duct [98].  
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Figure 3. Proposed model of spider silk architecture. Assembled spider silk is composed of both β-sheet-

rich and disordered, extended segments, indicating a balance between amyloid-like and flexible regions. 

A single fibroin chain is shown in red. Adapted from Paper XIII. 

 

2.5.2 Architecture of MaSp proteins 

The assembly of silk spidroins into fibers requires a unique arrangement of sequence 

motifs. MaSp proteins have a tripartite organization, with a non-repetitive, conserved N-

terminal domain of ~130 amino acids, a long repetitive region composed of up to 3300 

residues that contains alternating alanine- and glycine-rich segments, and a non-

repetitive, conserved C-terminal domain of ~110 amino acids [99]. The alanine-rich 

segments have been assigned to β-sheet blocks, while specific glycine-containing 

motifs are predominantly found in 310-helices and β-spirals, the occurrence of which 

determines specific mechanical properties of the assembled silk [100]. 

It should be noted that neither glycine nor alanine-rich sequences can be regarded as 

amyloidogenic. Alanine is the amino acid with the highest α-helix propensity and 

therefore likely responsible for the high helix content of the spidroin protein dope. Yet, 

assembly of spider silk fibers converts the highly soluble spidroins to an amyloid-like 

material with β-sheet structure. Studies using truncated spidroin constructs have shown 

that the non-repetitive C-terminal domain is essential for fiber formation [101, 102] and 

can form macroscopic fibers on its own [103]. The high-resolution structure of the 

soluble C-terminal fragment supports the hypothesis that amphipathic helices in the 

entirely helical domain can refold to expose hydrophobic parts that in turn promote silk 

assembly. The C-terminal domain forms a disulfide-linked parallel dimer that has been 

proposed to align the repetitive elements during assembly [104]. 

The N-terminal (NT) non-repetitive domain, on the other hand, despite being the most 

conserved segment of the MaSp proteins, is not required for MaSp1 fiber formation in 
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vitro and has no known homologues in silk-forming proteins from other organisms 

[105]. However, its inclusion in recombinant spidroins promotes their assembly into 

fibrils at pH 6.3, while inhibiting their assembly at high salt concentrations [50]. This 

suggests that the NT domain acts as a molecular switch that senses the pH and salt 

concentration changes during extrusion from the duct and accelerates silk assembly 

accordingly. Its high-resolution crystal structure shows an antiparallel, non-covalent 

dimer of dipolar subunits, each composed of a 5-helix bundle. Replacement of 

conserved residues aspartate 40 (D40) and glutamate 84 (E84) interferes with the pH-

dependent action of the NT domain, further supporting the suggestion that its function 

is charge-dependent [50]. However, how these charge interactions mediate silk 

assembly could not be determined from the crystal structure. 
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3 AIM OF THE THESIS 
 
The aim of this thesis has been to investigate the self-regulatory strategies behind the 

control of amyloid formation in three protein systems: proinsulin processing, the 

biosynthesis of lung surfactant peptide C, and the assembly of spider silk. In order to 

study these mechanisms, we applied mainly gas phase interaction studies and H/D 

exchange mass spectrometry. 

Specifically, we aimed to understand the molecular mechanisms by which 

- proinsulin C-peptide chaperones insulin, 

- the proSP-C BRICHOS domain stabilizes the highly amyloidogenic SP-C  

transmembrane segment, and 

- the N-terminal domain of MaSp1 mediates the pH-dependent assembly of 

spider silk. 
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4 METHODOLOGY 
 

4.1 MASS SPECTROMETRY IN PROTEIN STRUCTURE ANALYSIS  (PAPER II) 

 
4.1.1 Why mass spectrometry? 

Since most amyloid-related proteins and peptides are refractory to standard protein 

analysis methods, mass spectrometry can be applied as an alternative for the 

investigation of their structure and function. Two principal strategies were employed: 

gas phase interaction analysis to monitor the formation of non-covalent complexes, and 

hydrogen/deuterium exchange mass spectrometry (HDX-MS) to monitor protein 

structural dynamics in solution. The background to both approaches is summarized in 

Paper II and briefly outlined below. 

 
4.1.2 Protein structure in the gas phase 

The development of electrospray ionization mass spectrometry (ESI-MS) provided soft 

ionization as a means to study intact protein molecules by mass spectrometry . Drops 

from a protein solution are then ionized and evaporated, leaving a charged protein 

species without solvent that is transferred into the vacuum chamber of a quadrupole 

time-of-flight mass spectrometer. In 1991, it was reported that ESI-MS could not only 

produce charged protein species but could also be used to transfer intact protein 

complexes into the gas phase [106]. Over time, evidence has accumulated that it is 

possible for proteins to retain their native fold even after desolvation. Longer exposure 

times to a solvent-free environment significantly alters protein structure, weakening 

hydrophobic while strengthening electrostatic interactions (reviewed in [107]). However, 

analysis of the electron capture dissociation (ECD) fragmentation pattern of a protein in 

an ion trap showed that salt bridges, secondary structure and hydrogen bonds were 

preserved for >4 seconds in vacuum [108]. 

These observations suggest that correctly folded protein species and intact protein 

complexes with a near-native fold can be studied by ESI-MS. Since the 1990s, several 

approaches have been developed, and the ensuing systematic studies found gas 

phase interactions to be partially comparable to solution-phase interactions (reviewed 

in [109]). The two most widely used applications that emerged were the determination 

of gas phase KD values by direct titration, and the comparison of relative complex 

stabilities by collision-induced dissociation (CID) [110]. 
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We have employed both strategies to investigate the substrate requirements for the 

chaperoning effect of the proSP-C BRICHOS domain (Paper VII). Homo-tripeptides 

were used to mimic peptide sequences with specific properties such as hydrophilic, 

hydrophobic, and aromatic segments. The determined ligand preferences correlate well 

with solution phase results (see section 5.1), indicating that this approach can be 

successfully applied to the study of hydrophobic complexes. 

A powerful proof of the possibility to observe even complex protein assemblies intact in 

the gas phase was provided by ion mobility mass spectrometry analysis of 

macromolecular ring-shaped assemblies of the trp RNA-binding protein. The resulting 

data provides compelling evidence for collapse of these rings in the absence of RNA 

molecules, while their presence was found to stabilize the ring structure [111]. 

 

4.1.3 H/D exchange mass spectrometry 

The principle of H/D exchange was demonstrated by Linderstrøm-Lang as early as in 

the 1950s [112]. The speed of exchange of protein backbone amide hydrogens for 

deuterium depends on solvent accessibility and local secondary structure elements and 

can be accelerated or quenched by changes in pH and temperature [113, 114]. 

In 1991, the possibility to measure the exact amount of deuterium incorporation by 

mass spectrometry and its application in the determination of protein folding states was 

demonstrated [115]. The combination of enzymatic digestion of labeled protein, 

separation of the resulting peptides by liquid chromatography, and subsequent mass 

spectrometric quantification of the deuterium incorporation in each fragment can be 

used to identify slow and fast exchanging protein segments and yield information about 

the local protein backbone conformation [116]. 

Most notably, the application of HDX-MS is limited only by the efficiency of the 

enzymatic digestion and the resolution power of the chromatographic peptide 

separation. In recent years, this method was therefore used to investigate the structure 

of proteins that have eluded most conventional NMR and X-ray crystallography 

methods, such as the β-sheet core of Aβ 1-40 [117, 118], prion [119], and insulin [67] 

fibrils. E.g., HDX-MS was successfully utilized to show that in vivo prion aggregates 

have structural features not found in amyloid fibrils generated from recombinant prions, 

which demonstrates the importance of the method [120]. 

We used HDX-MS to obtain information about unstructured segments of proSP-C 

BRICHOS that could not be visualized by X-ray crystallography to locate the ligand 

binding segment in the proSP-C linker region (Paper VIII). We also applied HDX-MS to 
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monitor structural dynamics of the N-terminus of MaSp1 and demonstrated that the pH-

dependent assembly of spider silk is mediated by dimerization and structural tightening 

of the N-terminal domain (Paper X). Both studies illustrate how HDX-MS can 

complement crystallographic protein structure data with information about protein 

regions that could otherwise not be analyzed. 

As described below, we also developed an automatable on-line HDX-MS system for 

dilution-free protein labeling and demonstrate its application by monitoring 

conformational changes in proteins (Paper III). 

 

4.2 H/D EXCHANGE MICROFLUIDICS FOR PROTEIN STRUCTURE ANALYSIS 

(PAPER III) 

 
4.2.1 Problems with conventional H/D exchange strat egies 

HDX-MS relies on the dilution of a protein stock solution in a deuterated buffer with a 

final D-content preferably above 80%. This ensures a one-directional exchange of the 

protein backbone hydrogens for deuterium. At fixed time points, the exchange is 

quenched and the incorporation of deuterium into individual protein segments is 

measured by MS. 

This approach has two disadvantages: Firstly, the dilution of a protein stock solution in 

deuterated buffer by a factor of > 5x can only be achieved through the use of 

concentrated protein stock solutions, usually in the high µM or even mM range, which 

requires large amounts of material and can cause unwanted aggregation. Secondly, 

sample preparation involves multiple pipetting steps, which represents an additional 

error source. Hence, a dilution-free, automatable procedure is desirable. 

 

4.2.2 Deuterium delivery via a membrane flow cell 

To overcome these problems, deuterium delivery using a flow cell (HDX cell) with two 

channels separated by an ion-selective membrane was tested (Figure 4). One flow 

channel carries the sample (main channel), the other deuterium oxide (second 

channel). By adjusting the flow rate of the sample, the deuterium incorporation can be 

adjusted, while the flow of the D2O determines the deuterium concentration in both 

channels. The cell can be coupled directly to the ESI inlet of a mass spectrometer or to 

an HPLC system that includes peptic digestion and reverse-phase separation prior to 

MS analysis. 
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Figure 4. Layout of the HDX cell. The upper channel carries D2O and is separated from the sample 

channel by a cation-selective membrane. D+ and H+ ions are freely transferred between the channels, 

allowing for deuterium labeling of protein transported in the sample channel. Reproduced from Paper III. 

 

4.2.3 Method validation 

To determine the amount of labeling afforded by the HDX cell, we measured the on-line 

deuteration of the unstructured [Glu1]-fibrinopeptide B at varying D2O flow rates and 

compared it to the off-line deuteration of the same peptide in buffers containing 

between 10 and 90% D2O. We found that, at a D2O flow rate five times greater than the 

sample flow, a D-content of approximately 80% can be achieved (Figure 5 A), which is 

comparable to that conventionally used for off-line HDX [114]. 

We then investigated whether HDX cell deuteration accurately reflects protein folding 

states. For this purpose, we subjected myoglobin under native or denaturing conditions 

to on-line deuteration. The results indicate a significant increase in backbone labeling 

when denaturing conditions that increase backbone accessibility are employed (Figure 

5 B), which supports the concept. We therefore concluded that global protein folding 

can be monitored by HDX cell deuteration. 
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Figure 5. On-line deuteration using the HDX cell. (A) [Glu1]-fibrinopeptide B is shown as undeuterated 

(top), deuterated on-line in the HDX cell with a D2O flow rate of 10 µL/min and a sample flow rate of 2 

µL/min (middle), and deuterated off-line in 80% D2O, 20% H2O. (B) Deuteration of myoglobin at varying 

flow rates converted to exposure time (see Paper III for details) in H2O (open squares) and in the 

presence of 35% acetonitrile without (black squares) and with heme group attached (open triangles). (C) 

Peptide level HDX profile of MaSp1 NT deuterated in the HDX cell at flow rates between 0.25 and 5 

µL/min. Color coding indicates the degree of backbone labeling in each fragment relative to the maximum 

deuteration observed after off-line labeling in 80% D2O. Adapted from Paper III. 

 

For peptide-level HDX-MS analysis, we equipped the HDX cell setup with a pepsin 

column for on-line proteolytic digestion, as well as a reverse phase column for 

purification of the resulting peptides. On-line deuteration and digestion of the N-terminal 

domain of spider silk MaSp 1 resulted in a deuteration pattern that accurately reflects 

the presence of secondary structure elements as determined by X-ray crystallography 

[50] and conventional HDX-MS (Paper X) (Figure 5 C). It should be noted that protein 

solutions between 10 and 60 µM were employed, which is equivalent to the 

concentrations used during labeling reactions in conventional HDX-MS after dilution.  
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Taken together, our data indicate that (a) the HDX cell can achieve the D+ 

concentrations necessary for effective HDX in the sample channel, and (b) HDX cell-

driven HDX-MS can be used to monitor protein folding at the global and peptide levels 

without the need for concentrated protein stock solutions. 
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5 RESULTS AND DISCUSSION 
 
5.1 CONTROL OF INSULIN AGGREGATION BY PROINSULIN C- PEPTIDE 

 
5.1.1 C-peptide interferes with insulin fibril form ation (Paper IV) 

5.1.1.1 C-peptide changes the morphology of insulin amyloid-like fibrils 

Firstly, we investigated the effect of C-peptide on insulin fibrillation. Incubation of insulin 

alone under fibril forming conditions (1 mM insulin at pH 2.5 and 75ºC) in standard 

microcentrifuge tubes resulted in increasing ThT fluorescence after a lag time of 

approximately 3 ½ h and formation of fibrillar structures visible by EM (Figure 6 A, C). 

Co-incubation of equimolar amounts of insulin and C-peptide under these conditions, 

on the other hand, resulted in significantly reduced lag time, with the appearance of 

ThT-postive, rounded aggregates already after 1 h (Figure 6 A and C, top panel). When 

incubation was carried out in Protein LoBindTM tubes, which are designed to prevent 

protein aggregation by lack of nucleation sites, C-peptide was found to significantly 

extend fibrillation lag time (Figure 6 B). In both cases, EM analysis revealed that co-

incubation of insulin and C-peptide resulted in the formation of clumps of short fibrils 

(Figure 6 C, bottom panels). Together, the data suggest that C-peptide interferes with 

the assembly of unfolded insulin into fibrils. 

 

5.1.1.2 C-peptide and insulin interact during fibril formation 

We concluded that these effects must be mediated by a direct molecular interaction 

between C-peptide and insulin. Native ESI-MS spectra during fibrillation lag phase 

show the presence of 1:1 complexes between insulin and C-peptide, indicating that 

both peptides can indeed interact under the buffer conditions employed here. MS 

analysis of solubilized fibrillar material confirmed the presence of both insulin and C-

peptide in the aggregates. Additionally, we performed short-time deuterium labeling of 

insulin + C-peptide fibrils. Labeled fibrils were dissolved in formic acid and subjected to 

MS analysis. We observed two separate insulin populations: one with labeling behavior 

similar to that of fibrillated insulin, the other with additional backbone protection. This 

suggests the presence of two molecular conformations, which is indicative for 

additional structural arrangement of the insulin fibrils, or continued interactions of C-

peptide with the insulin fibrils. 
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Figure 6. C-peptide interferes with insulin fibril formation. (A) ThT fluorescence time course shows 

acceleration of insulin fibrillation by C-peptide in regular microcentrifuge tubes. (B) Co-incubation of C-

peptide and insulin in Protein LoBindTM microcentrifuge tubes delays insulin fibrillation. Error bars indicate 

standard deviation from four separate incubations. (C) Aggregate morphology in ThT fluorescence 

microscopy (top and middle row) and EM (bottom row). Co-incubation of insulin and C-peptide caused 

the appearance of small, round, ThT-positive aggregates after 1 h. Electron microscopy shows clumps of 

short, thick fibrils from co-incubation of insulin and C-peptide. Scale bars indicate 200 µM in fluorescence 

microscopy images and 200 nm in EM micrographs. Reproduced from Paper IV. 
 

5.1.1.3 C-peptide as a regulator of amyloid fibril formation 

Two previous studies by others have reported no effect of C-peptide on insulin 

fibrillation at pH 2.0 [121] and 7.3 [122]. However, both studies were conducted using 

low rather than high insulin concentrations (60 and 2.5 µM, respectively) in salt-

containing buffers (150 and 100 mM NaCl, respectively). However, the salt 

concentration found in secretory exceeds that of insulin by a factor of only 5 to 10 [123], 

and insulin fibrils observed at the injection sites in diabetic patients are likely the result 

of high local insulin concentrations. Standard insulin injection solutions contain between 

0.7 and 1 mM insulin and no NaCl. Since salt and insulin concentration have been 

described as important factors in insulin fibrillation, it is likely that use of such near-

millimolar concentrations in the absence of salt cause insulin aggregation [73]. Thus, 

C-peptide can stabilize insulin under these conditions, opening the possibility to control 

insulin aggregation by an endogenous peptide. 
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Interestingly, the effects of C-peptide on islet amyloid polypeptide (IAPP) fibrillation are 

similar to those reported here. The presence of C-peptide caused significantly 

accelerated IAPP aggregation, leading to reduced Congo Red staining intensity and 

incorporation of C-peptide into fibrils with altered morphology [124, 125]. The proposed 

mechanism that the negatively charged C-peptide forms a stabilizing complex with the 

unfolded, positively charged IAPP monomer in solution, but can accelerate fibril 

formation if nucleation points are present, is compatible with our findings on the effect 

of C-peptide on insulin fibrillation. This raises the possibility of C-peptide being a 

general regulator of β-cell granule peptide amyloid formation (see section 5.1.3). 

 
5.1.2 pH-dependent regulation of insulin solubility  by C-peptide (Paper V) 

5.1.2.1 C-peptide co-precipitates with insulin at pH 5 

Having established that C-peptide affects the state of insulin under fibril-forming 

conditions, we asked whether C-peptide could exert a similar effect on insulin at pH 

values between 5 and 6, i.e. around the isoelectric point of insulin. Insulin processing in 

the secretory granules occurs at this mildly acidic pH range [126]. Its reduced solubility 

under these conditions is thought to drive the processed insulin into complex formation 

with the abundantly present zinc ions and subsequent crystallization [127]. The crystals 

are released into the bloodstream as long-acting insulin together with a fluid, acidic 

phase containing C-peptide and soluble insulin [128], suggesting that C-peptide 

participates in intragranular sorting [129]. 

Previously, we have employed native ESI-MS to monitor the effect of C-peptide on 

insulin oligomers observed at pH 5 that represent pre-fibrillar aggregates [63]. C-

peptide removed insulin multimers from the ESI-MS spectra, which was interpreted as 

a desaggregating effect on insulin [61, 130]. We employed spectrophotometry and 

microscopy to monitor the effect of C-peptide on insulin oligomers at pH 5. Surprisingly, 

we observed a direct increase in the optical density at 500 nm (OD500) of concentrated 

insulin solutions after the addition of equimolar amounts of C-peptide, indicating that 

the presence of C-peptide causes immediate precipitation. Isolation by centrifugation 

and subsequent ESI-MS analysis confirmed that the precipitate contains both C-

peptide and insulin, while only C-peptide was found in the supernatant. The sub-

stoichiometric incorporation of C-peptide was investigated by spectrophotometric 

analysis of solutions containing insulin and C-peptide at ratios between 1:1 and 1:32. 

Only solutions containing an insulin/C-peptide ratio of 1 or 2 were found to precipitate, 

which shows a strict stoichiometry of one C-peptide per two insulin moieties. 
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5.1.2.2 Co-precipitation is dependent on conserved C-peptide charges 

To investigate whether co-precipitation provides an explanation to the observed 

removal of insulin oligomers from ESI-MS spectra, we repeated the ESI-MS studies 

with C-peptide analogues in which the conserved glutamate residues at positions 11 

(E11A) or 27 (E27A) or 3, 11 and 27 (E3,11,27A) were replaced by alanines. None of 

the three peptides caused an increase in OD500 when mixed with insulin at equimolar 

ratios. Similarly, the presence of 100 mM NaCl inhibited co-precipitation, while increase 

of the pH to > 7.5 immediately dissolved the precipitate, showing that its formation 

depends on charged residues. 

ESI-MS spectra of insulin in the presence of the E11A and E27A C-peptide variants 

showed only a minor reduction of insulin oligomers, while no reduction was observed 

the case of the E3,11,27A variant. All three variants formed heteromers with insulin 

oligomers at sub-stoichiometric amounts of C-peptide. CID-analysis revealed that 1:1 

complexes between insulin and wt C-peptide have the same gas phase stability as 

those formed between insulin and the E11A or E27A variants, while insulin complexes 

with the E3,11,27A variant had a lower gas phase stability. 

 

5.1.2.3 C-peptide-insulin interactions via mutual charge neutralization 

Insulin has a net charge of +2 at the mildly acidic pH during secretion that was 

employed in this study. At the same pH, C-peptide has a net charge of -4 due to its four 

glutamate residues, three of which are the only largely conserved residues in the C-

peptide sequence. A complex of two insulin molecules and one C-peptide would have 

a net charge of 0, thus lowering its solubility and causing precipitation. This is 

supported by evidence from gas phase interaction studies: All three C-peptide variants 

do not co-precipitate with insulin and cannot remove insulin oligomers from the ESI-MS 

spectra, but form instead non-covalent complexes. This indicates that the presence of 

two or three glutamate residues is sufficient for the formation of 1:1, but not 1:2 

complexes with insulin. Removal of three glutamate residues, however, significantly 

decreases the stability of the 1:1 complex. This is compatible with wt C-peptide binding 

two insulin molecules together via its negative charges in a “handcuff”-like manner 

(Figure 7). Removal of one charge on C-peptide leaves one of the two interactions 

intact, while the removal of three charges weakens the remaining interaction. In all 

cases, the complex net charge is <0 and the complex retains its solubility. 
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Figure 7. Proposed model for pH-dependent regulation of insulin solubility by C-peptide. At pH 5, C-

peptide has a net charge of -4, while insulin has a net charge of +2. We propose a “handcuff”-like 

mechanism by which insulin forms a 2:1 complex with C-peptide that has a net charge of 0 and 

precipitates. 

 

5.1.2.4 Implications for the prevention of insulin fibrillation in vivo 

Several studies have raised the question why insulin does not form amyloid at the 

extreme concentration found in the secretory granules, which can exceed 20 mM [123]. 

It has previously been thought that zinc crystal formation catches poorly soluble 

processed insulin and thus prevents insulin fibrillation. However, it has been shown that 

zinc is not essential for production and release of biologically active insulin from 

pancreatic β-cell granules [131]. Additionally, the insulin released from the C-peptide-

rich acidic fluid phase is biologically active, and not all granules contain zinc-insulin 

crystals [128]. 

To date, only one charge-altering C-peptide mutation has been investigated for its 

potential to alter insulin processing and release, and no negative effects were detected 

[132]. We propose a balance between zinc-mediated crystal assembly and C-peptide 

mediated, pH-dependent precipitation. The lowered pH following proinsulin cleavage 

[126] could cause protonation of insulin B-chain histidine residue 10, which is known to 

prevent zinc crystal formation [133]. Thus, minor pH-changes could steer insulin into 

crystallization or precipitation to balance the amount of long-acting and rapid-acting 

release forms.  
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5.1.3 Peptide interactions and protein aggregation in diabetes (Paper VI) 

 
5.1.3.1 C-peptide as an aggregation inhibitor in vivo? 

As described above, in vitro studies show that C-peptide interacts with both insulin and 

IAPP to prevent uncontrolled aggregation, and either type of interaction is charge-

based and therefore pH-sensitive. In both cases, the effective pH range is close to that 

found in the secretory granules, where the peptides co-localize in the halo region. 

In diabetes types 1 and 2, the synthesis and processing of granular peptides is 

impaired. Since insulin has an inhibitory effect on IAPP aggregation [134], it has 

previously been suggested that diabetes-associated disturbances in peptide synthesis 

and processing promote IAPP aggregation and contribute to β-cell dysfunction [135]. 

However, reduction in insulin processing too small to abolish the inhibitory effect on 

IAPP aggregation [136]. Similarly, diabetes-related changes in insulin levels do not 

affect the insulin:C-peptide ratio, and no insulin amyloid deposits have been found in 

the secretory granules. Therefore, does the finding that C-peptide can control IAPP and 

insulin aggregation in vitro have any relevance in vivo? 

 

5.1.3.2 Peptide ratio imbalances may contribute to diabetes-associated protein aggregation 

Even though the changes in ratios of insulin, C-peptide and IAPP as well as their 

respective proforms at different diabetic stages are individually too small to affect 

peptide aggregation, they do represent a significant deviation from normophysiology 

that is exacerbated as the disease progresses. In this work, we present evidence that 

C-peptide interacts with insulin and IAPP through the same mechanism, and therefore 

propose that their interactions in the secretory granules are more complex than 

previously thought. 

In Paper V, we have proposed that a balance between charge-based co-precipitation 

with C-peptide and zinc-mediated crystallization contributes to intragranular insulin 

sorting. It has been suggested that similar charge-based interactions with C-peptide 

localize IAPP to the halo region [134]. Therefore, if peptide relative or absolute 

amounts are disturbed, such a sorting mechanism might function less efficiently or 

become non-functional. In this scenario, lowered amounts of C-peptide and insulin but 

continued high zinc content could drive insulin exclusively into crystallization. 

Alternatively, lowered amounts of C-peptide could be insufficient in recruiting and 

binding IAPP to the halo region. In both cases, IAPP would be sequestered from 

aggregation inhibition. 
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The sorting mechanism via insulin crystallization and C-peptide precipitation also offers 

an explanation to the fact that neither the exclusion of zinc from the secretory granule 

[131] nor charge-altering C-peptide mutations [132] lead to the formation of insulin 

aggregates. When both stabilizing components are lacking, as it is the case during 

administration of recombinant insulin in insulin-dependent diabetes of both types, 

insulin aggregates can form. In this sense, localized insulin amyloidosis can be 

considered an extreme case of diabetes-associated peptide imbalance. 
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5.2 UNRAVELLING THE ANTI-AMYLOID ACTIVITY OF BRICHO S DOMAINS 

 
5.2.1 Binding specificity of proSP-C BRICHOS (Paper  VII) 

5.2.1.1 Monitoring BRICHOS-peptide interactions by ESI-MS 

Based on the previously established anti-amyloid activity of CTC, we set out to 

determine the molecular determinants for substrate recognition by the BRICHOS 

domain using native ESI-MS to determine gas phase binding constants through direct 

titration and relative gas phase binding energies through CID. Target peptide 

sequences were modeled by homo-tripeptides composed of small (AAA, GGG), 

hydrophobic (LLL, VVV), charged (KKK) and aromatic (FFF, YYY) amino acids, all of 

which were amidated and acetylated to mimic longer protein segments. Additionally, 

we included amyloidogenic peptides (KFFE [13], Aβ1-40) and a non-amyloidogenic β-

hairpin peptide (KFFEYNGKKFFE, in the following termed “YNGK” [137]). These 

peptides were mixed at increasing concentrations with the purified proSP-C BRICHOS 

domain. Free protein [P] and the non-covalent complexes [66] were quantified directly 

from the spectra. The gas phase KD was then derived by plotting the [66]/[P] ratio 

against the total ligand concentration [66]. 

We found that VVV had the lowest KD of all tested peptides (summarized in Table 1), 

which fits well with the valine-rich natural target sequence of SP-C. The KD observed 

for the hydrophobic aromatic peptide FFF was similarly low, while the hydrophobic 

peptide LLL had a much higher gas phase KD. The highest gas phase KD was 

observed for the YYY peptide, indicating that the introduction of hydroxyl groups 

significantly lowers binding. Interestingly, we observed a low gas phase KD for the 

YNGK peptide, indicating that BRICHOS can also interact with β-hairpin peptides. 

By measurement of the amount of intact protein-peptide complexes using CID with 

increasing collision voltages, we were able to derive relative gas phase stabilities for 

binding of each model peptide to the BRICHOS domain. Their order (from low to high 

stability) was determined to be GGG < VVV ≈ LLL ≈ KFFE ≈YNGK < FFF < YYY. Due 

to its greater length, Aβ1-40 may interact with the BRICHOS domain at multiple sites and 

is therefore not suitable for direct comparison with shorter model peptides. We 

concluded that the complexes with the highest gas phase stability are formed by 

interaction with aromatic residues. Since it has been shown that four conserved 

tyrosine residues in the BRICHOS domain can be involved in ligand binding [80], it is 

possible that this tyrosine-rich environment can be responsible for the increased gas 

phase stability. 
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Table 1. Apparent dissociation constants (KD) and maximum binding (Bmax)
 for peptide ligands to the 

proSP-C Brichos domain. See Paper VII for details. 

Peptide Apparent KD (µM) Bmax R2 a 
AAA, KKK - b - b - b  
KFFE - c - c 0.710 
Aβ40 - d - d 0.988 
GGG - e - e 0.998 
YYY 45 0.71 0.980 
LLL 17 0.18 0.967 
YNGK 1.7 0.11 0.996 
FFF 1.4 0.27 0.928 
VVV 1.2 0.07 0.979 
a Linear correlation (0 = no correlation, 1 = perfect correlation) 
b No quantifiable interaction observed. 
c No interpretable titration data. 
d KD outside of practical titration range. 
e Unspecific interactions. 
 

5.2.1.2 BRICHOS gas phase and solution phase ligand preferences are comparable 

To validate whether the derived gas phase ligand preferences are compatible with in-

solution data, we compared the apparent KDs with results obtained from a membrane 

binding assay, where segments composed of a single amino acid were spotted on a 

cellulose membrane, incubated with S-tagged recombinant CTC, and subjected to 

immunodetection with an S-tag-reactive antibody. Subsequent quantification of the 

amount of CTC bound to each spot confirmed that hydrophobic and aromatic residues 

are the preferred binding partners of CTC [86]. Therefore, the gas phase results are 

comparable to those obtained under solution conditions and suggest that native ESI-

MS can be utilized in the investigation of hydrophobic interactions. 

 

5.2.2 The molecular action of the proSP-C BRICHOS d omain (Paper VIII) 

5.2.2.1 The high-resolution proSP-C BRICHOS structure 

To map the interaction of CTC with amyloidogenic peptides at the molecular level, 

determination of its high-resolution crystal structure was carried out in collaboration 

with the group of Prof- Stefan Knight (SLU, Uppsala). After several crystallization 

attempts proved unsuccessful, it was found that treatment of full-length CTC with 

trypsin yielded material suitable for crystallization. MS analysis revealed that the 

crystallized protein lacked the N-terminal linker region and a shorter segment close to 

the C-terminus.  
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The crystallized protein encompassed thus residues 82-160 and 168-197 linked by two 

disulfide bridges and includes most of the conserved BRICHOS domain. The crystal 

structure determined at 2.1 Å shows a trimer. Each subunit contains a central five-

stranded β-sheet enclosed by an α-helix on each side. One side of the beta sheet 

plane (face A) is lined with strictly conserved hydrophobic residues including the 

tyrosines previously suggested to be involved in peptide binding. However, access to 

this surface is in the crystal structure blocked by the α-helix composed of residues 134-

145 (helix 1). Mapping of the conserved residues in the SFTPC sequence showed that 

the strictly conserved aspartic acid in position 105 is in contact with the C-terminal α-

helix 182-190 (helix 2) and could mediate the position of both helices via non-covalent 

interactions. Molecular dynamics simulations carried out by Prof. Johan Åqvist and 

colleagues (Uppsala University) of D105Y and D105G CTC mutants resulted in partial 

unwinding of helix 2, which in turn moves helix 1 away from face A by 5-7 Å, thus 

making face A solvent accessible. It was therefore concluded that interactions via 

aspartic acid 105 could regulate the contact between face A and a hydrophobic ligand. 

This hypothesis is supported by the observation that mutations of D105 are associated 

with ILD in humans. 

We then mapped the structure of the segments that were proteolytically removed in 

order to facilitate crystallization by performing HDX-MS of full-length CTC. Interestingly, 

no individual peptic peptides from the regions encompassing residues 110-161 and 

180-197, which corresponds to the crystallized segment of CTC were observed, 

indicating that this region is highly protease-resistant even at pH 2. Of the segments 

that could be digested and subsequently analyzed by HDX-MS, the linker region 

(residues 67-84) and the short peptide spanning residues 161-179 acquired full 

deuterium labeling within 60 seconds. This indicates that the non-crystallizable 

segments are in fact unstructured in solution, which explains their inhibitory effect on 

CTC crystallization.  

 

5.2.2.2 CTC interacts with peptide ligands via its flexible linker region 

To determine whether the chaperoning effect of CTC on polyvaline target peptides can 

be monitored, HDX-MS of CTC was conducted in the presence of peptides containing 

5 or 7 valines (V5 and V7) or alanines (A7) flanked by two lysine residues at each end. 

Comparison of the deuteration pattern of the polyvaline peptides in the absence and 

the presence of CTC shows that CTC induces significant protection from exchange in a 
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subpopulation of ligand peptides (Figure 8). This effect is more pronounced in the 

longer V7 peptide, while no additional protection is observed for the A7 peptide. 

To determine whether a distinct segment within CTC mediates this effect, we 

performed the same experiment with a construct encompassing only the BRICHOS 

domain, as well as a synthetic peptide corresponding to the linker segment only 

(residues 68-84). In case of the BRICHOS domain, only a minor increase in protection 

of the V7 peptide could be observed, while the linker alone had no effect. 

 

 

Figure 8. CTC induces increased protection from deuterium exchange in long polyvaline segments. A 

subpopulation of the V7 (left column) and to a lesser extent V5 (middle column) peptide show lower 

deuterium uptake in the presence of CTC. This effect is greatly reduced when only the BRICHOS domain 

is present. Labeling of the A7 peptide (right column) is not influenced by CTC. 

 

Monitoring the deuterium exchange pattern of the linker region (as the BRICHOS 

domain was inaccessible to peptic digestion) in the presence and the absence of the V7 

peptide showed that the N-terminal peptide encompassing residues 68-71 (VLEM) 

incorporates significantly less deuterium when a polyvaline segment is present (Figure 

9). This indicates the induction of a secondary structure element in this region. We 

therefore propose a model in which the polyvaline segment is bound to face A of the 

BRICHOS domain in extended conformation while the linker region forms a 

complementary β-strand (Figure 9). 
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Figure 9. A schematic model of CTC action derived from HDX-MS data. A polyvaline peptide interacts 

with face A of the BRICHOS domain (grey arrow). The unstructured linker segment (red) forms a 

complementary β-strand (red arrow), which traps the amyloidogenic peptide in extended conformation 

and increases protection from deuterium labeling in both segments. Reproduced from Paper VIII. 

 

5.2.2.3 CTC mutations cause amyloid formation in vivo 

The importance of the linker region for the biological function of CTC is illustrated by 

the observation that the most prevalent mutation, in which an isoleucine in position 73 

is replaced with a threonine, is located only two residues away on the C-terminal side 

of the VLEM fragment that is involved in peptide ligand binding (Figure 9), suggesting 

that the introduction of a polar amino acid in this region can interfere with the 

interaction of the linker with the SP-C transmembrane segment.  

To investigate whether CTC malfunction can give rise to amyloid in vivo, the group of 

Prof. Per Westermark (Uppsala University) performed histological screening of lung 

sections obtained from seven patients with mutations in the CTC region. In all but one 

case, microdeposits composed of mature SP-C were observed that showed green 
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birefringence upon Congo Red staining when viewed under polarized light, as well as 

immunoreactivity of serum amyloid P component, which both are hallmarks of amyloid 

deposits. Therefore we concluded that CTC exerts its anti-amyloid function in vitro and 

in vivo via both linker and BRICHOS domain, and the ILD cases reported here an 

instance of an amyloid disease caused by specific chaperone dysfunction. 

 

5.2.3 Function of the Bri2 BRICHOS domain (Paper IX ) 

5.2.3.1 Bri2 has anti-amyloid activity in vitro 

Parallel to our studies on the BRICHOS domain structure, it was investigated whether 

the anti-amyloid activity observed for the proSP-C BRICHOS domain can also be 

exerted by the BRICHOS domain of Bri2 (ITM2B). This was carried out using a cloned 

and purified a construct encompassing residues 90-236 of the Bri2 protein, which 

includes the BRICHOS domain but not the 23-residue C-terminal peptide. The 

presence of the single intramolecular disulfide bond was confirmed by chemical 

reduction and MS. 

Next, we asked if the Bri2 BRICHOS domain is able to prevent Aβ1-40 aggregation in 

vitro. While Aβ1-40 alone was found to aggregate within 7h, incubation of Bri2-BRICHOS 

with Aβ1-40 at ratios between 1:1 and 1:10 prevented amyloid fibril formation within the 

24 h period studied, as judged by ThT fluorescence. EM of solutions containing a 1:1 

solution of Aβ1-40 and Bri2 BRICHOS showed no amyloid fibrils even after 5 days of 

incubation at room temperature. 

 

5.2.3.2 The Bri2 BRICHOS domain interacts with aromatic peptides 

In an approach based on that presented in Paper VII, we employed ESI-MS to study 

interactions between Bri2-BRICHOS and its potential target peptides, the 23-residue 

Bri23 peptide of unkown function, and Aβ1-40. We observed the non-covalent 

complexes between Bri2 BRICHOS and either peptide. However, only a minor fraction 

of Bri2 BRICHOS was found to interact with Aβ1-40, while the presence of equimolar 

amounts of Bri23 was able to nearly completely saturate Bri2 BRICHOS. In competition 

between Aβ1-40 and Bri23, Aβ1-40 was unable to displace Bri23 from the Bri2 BRICHOS 

domain, indicating that the latter binds Bri23 with high affinity. 

We then specified the preferred peptide ligand features by screening the homo-

tripeptide library employed for proSP-C BRICHOS. Unfortunately, the Bri2 BRICHOS 

construct proved to be less suitable for native ESI-MS, which prevented the 

determination of gas phase KDs. However, we were able to perform qualitative binding 
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studies and observed that only tyrosine-containing ligands were able to interact with 

Bri2 BRICHOS in the gas phase. We therefore conclude that proSP-C and Bri2 

BRICHOS domains have only partially overlapping ligand preferences, indicating that 

they possibly exert their anti-amyloid activity by targeting different regions in their 

ligands: While both domains are capable of interacting with peptides containing 

aromatic residues, which are enriched in amyloidogenic peptides [11], proSP-C 

BRICHOS is additionally adapted to polyvaline segments to suit its biological function. 
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5.3 CONTROL OF PH-DEPENDENT SPIDER SILK ASSEMBLY 

 
5.3.1 pH-dependent action of the MaSp1 NT domain (P aper X) 

5.3.1.1 MaSp1 NT dimerizes in a pH-dependent manner 

To gain insights into the assembly of the MaSp1 NT domain, we recorded native ESI-

MS spectra of wt and mutant NT in which conserved aspartate and glutamate residues 

(D40, E79, E84, and a D40E84 double mutant) are substituted for their uncharged 

counterparts asparagine and glutamine. Interestingly, we observed that lowering the 

pH from 7.0 to 6.0 resulted in a shift from mostly monomeric to dimeric wt NT protein 

(Figure 10), with a sharp transition between pH 6.4 and 6.3, the same pH step at which 

the NT domain was found to accelerate assembly of recombinant MaSp1 constructs. 

The D40, E84 and D40E84 mutants showed no increase in dimer formation at this pH 

step, while mutation of the non-conserved E79 did not affect dimerization. We therefore 

conclude that charge-dependent dimer formation could trigger pH-dependent 

assembly. 

 

5.3.1.2 In-solution dimerization is accompanied by global fold tightening 

To investigate whether the observed dimerization occurs in solution, we performed 

HDX-MS analysis of the NT domain at pH 6.0 and 7.0 in the presence and absence of 

300 mM NaCl, and of the non-dimerizing D40E84 double mutant. Since deuterium 

exchange is accelerated by one order of magnitude when the pH is increased one unit 

[114], labeling times at pH 6.0 were extended by a factor of 10 to facilitate direct 

comparison of the deuterium incorporation under both conditions. 

Comparison of the HDX-MS profiles at both pH values revealed a significant increase 

in backbone protection for helix 2 and 3, which are located at the dimer interface as 

determined from the crystal structure (Figure 10). This suggests that the dimerization 

observed by native ESI-MS occurs in solution. Interestingly, we also observed reduced 

deuterium uptake in peptides from the hydrophobic core of the 5-helix bundle. We 

interpreted this as global tightening of the NT domain, which could be a prerequisite or 

a result of its dimerization. 

It should be noted that both conclusions -dimerization and fold tightening- were 

subsequently confirmed by an NMR study [138]. 
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Figure 10. Monitoring structural dynamics in the MaSp1 N-terminal domain by mass spectrometry. The 

helical MaSp1 NT domain dimerizes when the pH is lowered from 7 (left) to 6 (right). The dimerization 

can be followed by an increased protection from H/D exchange in peptides located at the dimer interface 

as well as an increase in non-covalent dimers in ESI-MS spectra recorded at low pH. Reproduced from 

Paper II. 

 

5.3.1.3 Structural changes are dependent on salt and conserved residues 

The HDX-MS profiles of the D40E84 double mutant and wt NT in the presence of 300 

mM NaCl showed two opposing effects. While NaCl caused globally reduced 

deuterium incorporation, the double mutant exhibited overall increased labeling. In both 

cases, however, no pH-dependent differences in deuteration could be observed, which 

shows that either change affects the ability of the NT domain to dimerize in a pH-

dependent manner. The inhibitory effect could be mediated by shielding charged 

residues and forcing the protein into a more condensed structure to hide the 

hydrophobic core at high salt concentrations, or by global destabilization in the case of 

the D40E84 double mutant. Based on these data, we were able to formulate a role for 

the NT domain in spidroin assembly: The decrease in pH and salt during spidroin dope 

extrusion causes MaSp1 dimerization of the N-terminal domains. While two spidroin 

molecules are aligned by the parallel, covalent C-terminal domains, each NT domain 

links one half of this dimer to another dimer via its antiparallel dimerization ability. The 

arising crosslink pattern can in theory give rise to an infinite chain of MaSp1 molecules. 

Shear force and altered salt concentration triggers conversion of the C-terminal domain 

to its fiber-promoting form which initiates fiber formation. 
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5.3.2 The structure of monomeric MaSp1 NT (Paper XI ) 

 
5.3.2.1 The A72R NT mutant is monomeric 

In order to pinpoint the structural mechanisms behind pH-dependent NT dimer 

formation, the structure of its monomeric form had to be determined. Since X-ray 

crystals structures only show the dimeric form of NT, we designed a non-dimerizing 

mutant, in which alanine 72, located at the center of helix 3 and extended into the 

dimer interface, was replaced by arginine (A72R). The positive charge and bulky side-

chain of arginine should prevent dimer formation and thus facilitate study of the 

monomer at a wide pH range. 

This was confirmed by tryptophan fluorescence spectroscopy and HDX-MS studies 

which show that neither the pH-dependent change in W10 fluorescence nor additional 

protection of helix 2 and 3 from deuteration occur in A72R at low pH. Interestingly, 

A72R also fails to exhibit the observed tightening of the subunit core at pH 6, 

suggesting that it is a result of dimer formation rather than a prerequisite. 

 

5.3.2.2 Monomeric and dimeric NT show distinct structural differences 

Structure determination of A72R by both NMR and X-ray crystallography proved 

successful, yielding NT structures at low and high pH. An additional NMR study of wt 

NT at pH 7.2 in the presence of 300 mM NaCl further confirmed that the A72R 

replacement did not affect the monomer structure. Therefore, a direct comparison of all 

structures is possible. 

Under all conditions, NT retains the overall architecture of a 5-helix bundle observed in 

the dimer structure. However, in monomeric form, helix 1, 4 and 5 are rotated relative 

to helix 2 and 3, which requires the relocation of W10 from a hydrophobic crevice into a 

solvent-exposed conformation, thus explaining the observed differences in tryptophan 

fluorescence. However, no differences could be observed between the structures of 

A72R at pH 6 and 7, which suggests that the rotation of the helices only occurs in 

connection with dimerization, not as an isolated movement in connection to the pH 

change.  

 

5.3.2.3 A possible mechanism for dimer formation 

Since dimer formation must be regulated by conserved acidic residues, we compared 

their localization in monomeric and dimeric NT. In the NT dimer, the two highly 
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conserved residues D40 at the beginning of helix 2 and E84 at the end of helix 3 can 

form an intramolecular handshake interaction [50]. This interaction is lost in monomeric 

NT, where the two carboxylates are more than 10 Å apart, and this is accompanied by 

unwinding of the last half-turn of helix 3. This could be due to the lack of positive 

charges R60 and K65 on the opposing subunit, which are predicted to form salt bridges 

with the negatively charged cluster composed of residues D39, D40 and E84. ESI-MS 

and HDX-MS show that D40 and E84 are crucial for dimer formation, but are predicted 

to have a pKa below pH 6 and are therefore unlikely to act as a pH sensor between pH 

6 and 7. 

To compare the structural changes upon dimerization, we constructed a hypothetical 

dimer composed of monomers by superimposing helices 2 and 3 in monomeric NT with 

the corresponding helices in each subunit in the wt NT dimer. The hypothetical dimer 

shows that the rotation of helix 5 causes steric clashes with helix 5 on the other subunit 

(Figure 11). The conserved glutamic acid residues E84 and E79 as well as the non-

conserved E119 are protected from the solvent in the wt NT dimer, but become more 

solvent-exposed in the hypothetical dimer. 

Interestingly, this is in partial agreement with molecular dynamics simulations of the wt 

NT dimer which predict that deprotonation of E79 and the non-conserved E119 above 

pH 6 allow water molecules to enter the dimer interface, causing outward rotation of 

helix 5, and thus destabilizing the dimer. Our data suggest that above pH 6, the 

repulsive charge from E79, which is predicted to have a pKa between pH 6 and 7, 

prevents helix 5 from moving into the position that it occupies in the wt dimer. This is 

supported by ESI-MS experiments that show that the non-charged E79Q mutant is 

able to dimerize at both pH 7 and 6. Similarly, protonation of E119 could also reduce 

repulsion in this region. However, its low degree of conservation as well as the 

observation that replacement of E79 alone is sufficient to allow dimerization suggests 

that this residue is not crucial for pH-dependent dimerization. 
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Figure 11. Dimerization of NT requires structural rearrangement of the monomer subunit and burial of 

glutamic acid residues. Comparison of the crystallographically determined wt NT dimer (left) and a 

hypothetical dimer constructed from wt monomeric NT subunits (right) as side and top view. Helix 1-4 in 

each dimer are shown as surface representation and helix 5 as cartoon. The side chains of E79, E84 and 

E119 are shown as a sphere models, clashing residues on helix 5 as stick representation. The 

hypothetical dimer was constructed by superimposing helices 2 and 3 in monomeric NT with the 

corresponding helices in each subunit in the wt NT dimer. 

 

Together with the experimental evidence from the monomeric NT structure, 

conclusions about the pH-dependent dimerization mechanism can be formulated. 

Between pH 4 and 8, salt bridges involving the D39, D40, and E84 cluster together with 

R60, and K65 allow the association of two NT monomers via helix 2 and 3. However, 

the negative charge of E79 at pH 7 prevents helix 5 from moving into a clash-free 

position. At pH 6, its protonation allows the block of helix 1, 4, and 5 to rotate towards 

the interface and form interactions with its counterpart on the other subunit, excluding 

water from the interface and stabilizing the dimer (Figure 11). 
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5.3.3 The MaSp-1 N-terminal domain as a solubility tag (Paper XII) 

5.3.3.1 MaSp1 NT as solubility-enhancing tag for protein purification 

During expression and purification of recombinant NT domain variants, the wt NT 

domain could be easily expressed with high yields and stored at concentrations in the 

mM range without loss of folded, soluble protein. It appears likely that the NT domain, 

besides its dimerization ability, could function as a solubility tag that helps to stabilize 

MaSp proteins during storage in the ampullate gland. 

To test this hypothesis, constructs were generated that encompassed one or two NT 

domains and SP-C33Leu, an SP-C variant composed of poly-leucine instead of poly-

valine, which retains regular SP-C function while being less aggregation-prone . To be 

able to compare the efficiency of using the NT domain as solubility-enhancing tag, 

constructs in which SP-C33Leu was fused to the commonly used solubility tag 

thioredoxin (Trx) were also generated. All constructs included an N-terminal His6-tag for 

affinity purification. SP-C33Leu could be released from the fusion protein by CNBr 

cleavage and recovery in a two-phase system of chloroform/methanol/water. 

 

5.3.3.2 Fusion with MaSp1 NT increases protein expression and yield 

While the SP-C33Leu construct tagged with Trx was expressed only at low levels, all 

the constructs tagged with one or two NT domains were expressed with high yield. The 

construct encompassing two NT domains was recovered from the soluble fraction of 

the bacterial lysate, while the fusion protein with a single NT domain could be purified 

from the membrane fraction with the addition of the detergent. This indicates that the 

hydrophobic SP-C33Leu is inserted into the bacterial membranes when fused to a 

single NT domain, and thus anchors the entire construct to the lipid fraction. The use of 

a single Trx tag alone, on the other hand, does not provide enough solubility.  

To test whether intact SP-C33Leu can be released from the purified fusion protein, we 

subjected the CNBr-cleaved SP-C33Leu to ESI-MS analysis and sequencing by CID. 

Spectra of SP-C33Leu in 100% ethanol show pure SP-C33Leu with four or three 

charges, as well as a dimeric form with seven charges (Figure 12 A). CID of the 

[M+3H]3+ peak confirmed that full-length SP-C33Leu had been recovered (Figure 12 B). 

Together, the data show that the NT domain can be used as potent solubility tag in the 

purification of hydrophobic peptides that are difficult to express and purify using 

conventional strategies. Furthermore, the data support the possibility that this feature of 

the NT domain could be part of its function in vivo by increasing the solubility of MaSp 1 

to facilitate storage in the ampullate gland. 
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Figure 12. Characterization of SP-C33Leu recovered from NT domain fusion proteins. (A) ESI-MS shows 

the presence of CNBr-cleaved SP-C33Leu. (B) CID of the [M+3H]3+ peak confirms the presence of full-

length SP-C33Leu. Reproduced from Paper XII. 
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6 CONCLUSIONS AND OUTLOOK (PAPER XIII) 
 
In this thesis, we have presented insights into the control of amyloid formation by 

autoregulatory elements in amyloidogenic (pro)proteins at the molecular level. This 

thesis proposes that C-peptide modulates insulin solubility via direct molecular 

interactions that can interfere with amyloid fibril formation, establishes that trapping an 

amyloidogenic segment in a β-hairpin conformation by the BRICHOS chaperone 

domain prevents the aggregation of SP-C, and demonstrates that dimerization of a 

solubility-conferring domain mediates pH-dependent assembly of spider silk. 

At the time of writing, three additional systems have been described in which amyloid 

formation is controlled by distinct autoregulatory elements. The N-terminal side of the 

yeast HET-s prion co-aggregates during amyloid formation by HET-S protein, which 

causes refolding of its C-terminal domain. This terminates fibril extension and thus 

controls non-genetic heredity in yeast [139]. The fungal surface modifier protein EAS 

can contain or release its amyloidogenic segment based on exposure to an air:water 

interface [140]. The human melanin synthesis scaffold protein Pmel17 contains 

glutamic acid residues that allow self-association only at the acidic pH found in 

melanosomes [141]. 

Additionally, two functional amyloid systems are suggested to employ autoregulatory 

strategies: The Drosophila CPEB homolog Orb2a contains a short 8-residue segment 

that changes the amyloid formation propensity of its glutamine-rich prion domain and 

thus initiates the formation of amyloid-like oligomers in Drosophila mushroom body 

neurons that facilitate long-term memory [142], and storage of peptide hormones has 

been suggested to occur in amyloid form, with currently undetermined aggregation and 

resolubilization steps [48]. 

The involvement of amyloid in such highly complex systems suggests a special role for 

its regulation in biology and leaves much to be investigated. Even within the limited 

scope of this thesis, several questions remain unanswered, as summarized below. 

 

1. We propose a mechanism by which intravesicular pH controls a balance of C-

peptide- and zinc-mediated insulin phase transitions. This implies that a possible 

reason this mechanism has gone unnoticed is the requirement for a double 

mutation to generate a loss-of-function phenotype. For the biogenesis of C-

peptide-related neonatal diabetes (i.e. impaired secretion of functional insulin 
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due to genetic causes), the ZnT8 transporter required for Zinc homeostasis in 

the secretory granules would have to be impaired [131] and one or more 

conserved glutamate residues in C-peptide must also be mutated. Additionally, 

previous studies have suggested that C-peptide glutamate residues are 

important for insulin folding [60]. This makes it difficult to attribute any effects of 

C-peptide mutations on the secretion of biologically active insulin to a specific 

misfolding mechanism. On the other hand, as demonstrated in Paper VIII, the 

detection of amyloid microdeposits requires targeted and meticulous 

investigations, and it is not impossible that C-peptide-related insulin aggregation 

has in fact gone unnoticed. Therefore, further studies on the subject are needed. 

2. The high β-sheet propensity of SP-C can easily be abolished by exchange of its 

valine residues for leucines. Yet, evolutionary pressure has apparently not 

corrected this “design flaw”. Our results obtained from the proSP-C and Bri2 

BRICHOS domains propose that it might be more advantageous to develop a 

protein domain with anti-amyloid activity that can be installed in different 

functional settings instead of tuning the aggregation propensity in each 

amyloidogenic protein individually. However, whether BRICHOS domains really 

have a general anti-amyloid function similar to the proposed “amyloid 

scavenger” protease insulin degrading enzyme [143] remains to be investigated. 

3.  The assembly-controlling functions of spider silk protein C- and N-terminal 

domains show that the secondary structure of a stretch of >3000 residues can 

be controlled by two <130 residue-domains. It has been proposed that storage 

of MaSp proteins occurs in “micelle” form, with the folded terminal domains 

function analogous to the polar head groups in lipid micelles [138]. However, no 

direct evidence for this model has been presented yet. Therefore, our 

understanding of the assembly of spider silk from the soluble dope is incomplete 

until the structural arrangements of spidroins in the ampullate gland storage 

form has been described in more detail. 

 

The above points represent new points of departure in the journey towards 

understanding the biology of amyloid. Personally, I am positive that eventually answers 

to these and the many other remaining questions will hold the key to a targeted, 

efficient approach for tackling amyloid disease. This is the reason we conduct our 

investigations. 
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