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ABSTRACT 

Nanomedicine is the use of nanoscale or nanostructured materials in medicine that due 

to their structure have unique medical effects. Prominent applications of nanomedicine 

are the use of nanomaterials for the delivery of drugs and nucleic acids (to correct gene 

defects). Nanomaterials offer several attractive features as delivery vehicles: First, their 

size in the nano-regime endows them with more desirable pharmacokinetic and 

biodistribution profiles in vivo. Second, they are amenable to diverse chemical 

engineering that enables loading of a wide range of substances. Third, they can protect 

therapeutic agents from premature degradation or from inducing undesired side effects.  

 

In this thesis, two types of synthetic nanomaterials, namely silica and polythiophene, 

were investigated for their biocompatibility and applications in gene delivery.  

 

In Paper I, human red blood cell hemolysis and premyelocytic leukemia HL-60 cell 

cytotoxicity induced by silica nanoparticles with distinct physicochemical properties 

were studied, suggesting that silica nanoparticles potentially induce membrane 

permeability through a universal mechanism of action. Moreover, plasma protected 

against silica nanoparticle-induced membrane damage primarily by shielding the 

surface of silica particles.  

 

In Paper II, the cytotoxicity and oxidative stress induced by amorphous silica 

nanoparticles were compared to nanoparticles with similar size but different chemical 

compositions. Overexpression of the liver phase II enzyme microsomal glutathione 

transferase 1 (MGST1) in human breast carcinoma MCF-7 cells reversed the 

cytotoxicity and oxidative stress induced by some silica nanoparticles but did not 

protect against the cytotoxic effects induced by zinc oxide nanoparticles.  

 

In Paper III, amino-functionalized silica nanoparticles were used to deliver plasmid 

DNA (pDNA) into human breast carcinoma MCF-7 cells, with the nonporous particles 

delivering pDNA at higher efficiency than their mesoporous counterparts (with 2.4 nm 

pore diameter).  

 

In Paper IV, polythiophene nanoparticles were used as vectors to deliver small 

interference RNA (siRNA) into human osteosarcoma U2-OS cells and human cervical 

carcinoma HeLa cells. The cationic polythiophenes were considerably more efficient 

delivery vectors than their zwitteronic counterparts.  

 

In conclusion, studies to improve the understanding of the biocompatibility and 

delivery efficiency of nanomaterials, are crucial to assist the rationale design of 

nanomaterials for delivery applications. 
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1 NANOMEDICINE: A BRIEF INTRODUCTION 

 

‘Nano-’ is a prefix derived from the Greek ‘!"!#$’ signifying ‘dwarf’, and refers to a 

billionth (10
-9

) in the metric system. Nanomedicine is the use of nanoscale or 

nanostructured materials in medicine that, due to their size or structure, have unique 

medical effects 
1
. The field of nanomedicine is therefore highly multidisciplinary in 

nature, integrating knowledge from nanosciences to medical sciences 
2
.  

 

One of the most prominent applications of nanomaterials in biomedicine is their use for 

delivery of pharmaceutical agents such as drugs and nucleic acids into the human body. 

In the year 2003 alone, drug delivery systems accounted for 59% of more than 2,000 

patent filings in the arena of nanomedicine 
1
. In april 2006, Nature Materials estimated 

that 130 nanotechnology based delivery systems were being developed worldwide 
3
. 

Some examples of nanomaterial-based delivery that already exist on the market are 

shown in Table 1. Nanomaterials offer several advantages as delivery vectors. First, 

their small size per se allows them to escape the recognition and clearance by the 

reticuloendothelial system (RES) and to cross biological barriers. This endows them 

with the capability to alter the pharmacokinetic and biodistribution profiles of 

therapeutic agents in vivo 
4
. A certain size range of nanomaterials is also particularly 

useful since it allows passive accumulation of nanomaterials in tumors by exploiting 

the characteristic large vasculature and defective lymphatic drainage of tumor tissues, 

an effect termed enhanced permeation and retention (EPR) 
5
. Second, their chemical 

versatility makes them suitable for loading a wide range of substances enabling 

multifunctionality 
6
 (Figure 1). For instance, nanomaterials can be engineered for both 

diagnostic and therapeutic purposes, holding great promises for personalized medicine 
7
. Moreover, appropriate designs can be made to achieve specific functionalities such as 

active targeting of cells as well as controlled release of therapeutic cargo upon the 

stimuli of choice (e.g. thermal, pH, enzymatic, photochemical triggered processes), in 

order to protect therapeutic agents from undesired interactions with the body and 

maximize their bioavailability at specific target sites over a period of time 
8
. In 

summary, the primary driving forces for nanomaterial-based delivery to meet medical 

needs are: (a) the ability to improve pharmacokinetic and biodistribution profiles, (b) 

the amenability to diverse chemical engineering, and (c) the protection of therapeutic 

agents from undesired reactions. 

 

Table 1. Examples of nanomaterial therapeutics on the market (nanomaterials used for 

the delivery of pharmaceutical agents) 
1
. 

 

Therapeutic 

Agent  

Nanomaterial 

Formulation 

Company Indication 

Ambisome Liposomal 

Amphotericin B 

Gilead, Fujisawa Fungal infections 

Doxil/Caelyx Liposomal Ortho Biotech, Cancer, Kaposi 
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doxorubicin Schering-Plough sarcoma 

Visudyne Liposomal 

verteporfin 

QLT, Novartis Age-related 

macular 

degeneration 

Copaxone Copolymer of 

alanine, lysine, 

glutamic acid and 

tyrosine 

TEVA 

Pharmaceuticals 

Multiple sclerosis 

Renagel Crosslinked 

poly(allylamine) 

resin 

Genzyme Chronic kidney 

disease 

Emend Nanocrystalline 

aprepitant 

Elan Drug 

Delivery 

Antiemetic 

Rapamune Nanocrystalline 

sirolimus 

Elan Drug 

Delivery 

Immuno-

suppressant 

Triglide Nanocrystalline 

fenofibrate 

SkyePharma Lipid regulation 

Abraxane Paclitaxel protein 

bound 

nanoparticles 

Abraxis 

BioSciences, 

AstraZeneca 

Cancer 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Multifunctional nanoparticles 
6
. 

 

Moreover, a wide range of other biomedical applications of nanomaterials include in 

vivo imaging and diagnostics, regenerative medicine, infection biology, 

neuroelectronics, biosensors and so on 
1, 9-11

. Many of which make use of properties of 

materials that differ on the nanoscale (as compared to bulk materials of the same 

composition) owing to surface chemistry and/or quantum effects, giving rise to novel 

optical, electric, and magnetic properties 
1
.  

 

This thesis focuses on the biomedical applications of nanomaterials for gene delivery.  
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2 NANOMATERIALS AND THEIR PHYSICOCHEMICAL 

PROPERTIES 

 

An introduction to the world of nanosciences started with Richard Feynman’s classic 

talk in 1959 "There’s plenty of room at the bottom – an invitation to enter a new field 

of physics" 
12

. Nanomaterials are generally defined as materials in size ranging from 1 

to 100 nm at least in one dimension, although it has been pointed out that novel size-

dependent properties rather than arbitrary size thresholds is a more appropriate 

definition in some contexts 
13

. Therefore the broad definition of nanomaterials 

encompasses materials from a few nanometers to several micrometers in size. 

Nanoparticles have all three dimensions in this scale, whereas nanotubes have two 

dimensions and nanosurfaces have one dimension in this scale. Importantly, 

nanomaterials can be in the same size range as elements of living cells, including 

subcellular organelles and biomacromolecules (proteins, lipids, nucleic acids) (Table 

2).  

 

Table 2. Nanomaterials are in the same size range as elements of living cells. 

 

 

 

A water molecule is around 0.1 nm in width and length. 

 

 

A glucose molecule has a diameter around 1 nm.  

 The DNA double helix has a width around 2 nm and one 

nucleotide unit measures 0.33 nm long 
14

. 

 

 

 

An antibody is around 10-20 nm in diameter 
15

. 

 

 

 

 

Cellular structure and intracellular organelles: the 

thickness of cell membranes is around 7 nm 
16

, and the 

diameter of the nuclear pore is around 50 nm 
17

; the 

nucleus is around 3-10 µm, the mitochondrion 3 µm, and 

the endosome 200-500 nm in diameter. 

 

 

 

Cells: A typical human red blood cell has a disk diameter 

of 7-8 µm, a human macrophage is about 20 µm in 

diameter, and a human egg about 100 µm in diameter. 

 

Synthetic nanomaterials include several important classes of nanomaterials, such as 

carbon nanotubes, metal nanoparticles, oxide nanoparticles, quantum dots, polymers 

and liposomes 
18

. They can be further engineered to derive a large pool of derivatives. 

Synthetic nanomaterials have wide applications in nanotechnology and nanomedicine. 

This thesis focuses on two categories of synthetic nanomaterials: silica nanomaterials 

and polythiophenes.  
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2.1 SILICA NANOMATERIALS 

Silica is one of the most abundant materials on earth, and occurs in its natural form as 

quarts sand, rocks, and clays. These primary raw materials are chemically treated to 

produce direct silica sources, such as sodium silicate, silicon tetrachloride, and 

alkoxysilane. These are in turn used to produce synthetic silica products, such as silica 

gel, precipitated silica, silica sol/colloidal silica, and fumed silica 
19

. Moreover, the 

silica surface is populated with Si-OH groups known as silanol groups (some of these 

silanol groups ionize to Si-O
-
 upon contact with water), which can be used to 

functionalize the surface with a variety of desired modifications 
20

. Synthetic and 

engineered silica nanomaterials have numerous applications in various areas such as 

electronics, sensor technologies, coatings and additives, and are also of considerable 

interests for diagnostic and therapeutic applications in medicine 
19

. Due to their 

chemical properties and biocompatibility, they are also commonly applied as surface 

coatings to other functional materials 
21

. 

 

Mesoporous silica nanomaterials, a type of silica materials exhibiting porous structures 

on the mesoscopic scale (2-50 nm), offer attractive properties for loading and releasing 

large quantities of biomedical agents such as drugs, genes and proteins 
22, 23

. Figure 2 

shows the mesoporous structures of these materials by means of transmission electron 

microscopy (TEM). Mesoporous structures are typically synthesized by introducing 

self-assembling micellar templates to a sol-gel synthesis of silica 
24

. The organic 

micellar templates (e.g. amphiphilic surfactants) can self-assemble into different 

structures (cubic, hexagonal, cylindrical) and are removed by thermal calcination or 

solvent extraction after synthesis of silica species, revealing the mesoscale pores 

supported by a silica wall 
24-26

. This results in materials with very high surface area (> 

1000 m
2
/g) that is advantageous for accommodating large amounts of therapeutic load.  

 

 

 

 

 

 

 

 

 

 

Figure 2. TEM images of common mesoporous structures. Courtesy: Dr. Alfonso 

Garcia-Bennett. 

 

 

2.2 POLYTHIOPHENES 

Polythiophenes constitute an interesting class of synthetic polymer materials, resulting 

from the polymerization of thiophenes (Figure 3). They can be synthesized chemically 

or electrochemically 
27, 28

. Synthetic polymers have traditionally been regarded as poor 
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electronic conductors and are often used as insulators. However, polymers can be made 

electrically conductive when electrons are added or removed from the conjugated #-

orbitals via a process called doping. The discovery of conductive polymers was 

awarded the Nobel Prize in chemistry in 2000 
29

. Moreover, conductivity is not the only 

interesting property resulting from electron delocalization, the same mechanism also 

confer optical properties. Polythiophenes are utilized for a number of applications such 

as conductive films, electrochemical transistors, as well as diagnostic and imaging tools 
30, 31

.  

 

 

 

         

 

 

Figure 3. The chemical structure of polythiophenes. 

 

 

2.3 PHYSICOCHEMICAL PROPERTIES OF NANOMATERIALS IN 

RELATION TO THEIR PHARMACOKINETIC PROFILES 

The behavior of nanomaterials in vivo is the result of a combination of many different 

factors, including their size, surface charge, porosity, shape, mechanical flexibility, 

biodegradability, and so on. Therefore, the following discussion is only of reference 

and not of absolute term. 

 

Size.  

 

Particle size has a significant impact on their blood circulation time 
32

. Very small 

particles (< 10 nm) are quickly excreted through the kidneys whereas large particles (> 

200 nm) are easily recognized and cleared by phagocytes of the RES. The optimal 

particle size for intravenous therapeutics is suggested to be around 100 nm owing to 

their extended blood circulation time, whereas the upper limit would be around 1.5 µm 

since larger particles are expected to clog capillaries 
33

. Due to the EPR effect of tumor 

tissues, particles ranging from 100-200 nm in size accumulate more readily in solid 

tumors 
34

. Smaller particles are more prone to cross biological barriers, and it has been 

shown that particles less than 11.7 nm have the potential to cross the tight junctions of 

the blood brain barrier in rodents 
35

. The excretion of injected particles were also shown 

to be size-dependent, with the 50 nm particles excreting faster than 100 and 200 nm 

fluorescence labelled silica particles via the urine and bile 
36

. 

 

Surface charge/hydrophobicity.  

 

Surface charge is an important factor that affects the behavior of nanoparticles. 

Generally, the RES has better clearance of positively charged particles than negatively 

charged particles, with neutrally charged particles being the least affected and therefore 

having the longest blood circulation time 
33

. Hydrophobic particles tend to have more 
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interactions with proteins and cells than their hydrophilic counterparts. A hydrophilic 

polymer extended surface such as polyethylene glycol (PEG) is therefore often used to 

shield nanoparticles from immune responses 
33

. 

 

Porosity.  

 

Materials with pore diameters less than 2 nm are termed microporous, with pore 

diameters between 2-50 nm are termed mesoporous, and with pore diameters larger 

than 50 nm are termed macroporous. Mesoporous materials are most useful for 

biomedical applications since a large proportion of therapeutic agents are within this 

size range. Porous materials have a significantly higher total surface area but a lower 

external surface area than their nonporous counterparts, potentially affecting their 

interactions with biological systems 
37

. Intravenous injections in immune-competent 

mice showed that mesoporous silica nanoparticles exhibited a higher accumulation in 

the lung than nonporous silica nanoparticles of similar size. These mesoporous 

nanoparticles were transiently associated with the lung and then redistributed out of this 

organ without significant internalization 
38

.  

 

Shape.  

 

Shape also plays a significant role for the biological behaviors of nanomaterials. 

Particles with different shapes experience distinct hydrodynamic forces in the blood 

flow. Non-spherical particles (compared to spherical particles) have a higher tendency 

to move towards the blood vessel walls, referred to as margination effect 
33

. Shape is 

also important during the filtration process through the spleen and kidney, as well as 

during phagocytosis 
33

.  

 

Mechanical flexibility.  

 

The rigidity of particles can influence their ability to pass through blood vessels, as well 

as through the filters of the spleen and kidney. Rigid particles are also taken up to a 

higher extent by macrophages compared to their soft and flexible counterparts 
33

.  

 

Biodegradability.  

 

Similar to the size-dependency, nanomaterials biodegraded into small molecular weight 

components exert different pharmacokinetic profiles. For example, silicic acid, the 

dissolution product of silica (at high pH), can be efficiently excreted from the human 

body through urine 
39

.   
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3 BIOCOMPATIBILITY ASSESSMENT 

 

It is of vital importance to assess the biocompatibility of nanomaterials before they can 

be used for medical applications. Moreover, understanding the relationship between the 

physicochemical properties and the biocompatibility/toxicity of nanomaterials will 

further assist the rationale design of these materials with improved biocompatibility.  

 

 

3.1 TARGET ORGAN BIOCOMPATIBILITY/TOXICITY 

Common routes of administration for nanomaterial-based delivery systems are through 

systemic injection, inhalation, or oral absorption. Systemic injection results in direct 

exposure to the circulation system, whereas inhalation or orally administered agents 

may also end up in the blood stream owing to the ability of nanoparticles to cross 

biological barriers 
40

. Indeed, it has been shown that following inhalation, nanoparticles 

are capable of crossing the alveolar-capillary barrier and entering the bloodstream, 

especially in the presence of inflammation as it increases the permeability of the 

endothelium 
41

. Similarly, nanoparticles can enter the circulation and subsequently be 

distributed to other tissues/organs following gastrointestinal absorption 
42

. Therefore it 

is of primary importance to understand the blood biocompatibility (red blood cell 

hemolysis, blood coagulation, interactions with white blood cells, serum biochemistry) 

of nanomaterials.  

 

In studies with mice, it was shown that nanoparticles are taken up extensively by the 

liver and spleen, where they are passively entrapped in the fenestrations of the 

endothelium of these organs 
38

. Physical sequestration accumulates particles in these 

organs, such as liver, the powerhouse of biotransformation and immune clearance 
43

. 

Enzymatic reactions (e.g. Phase I and II) in the liver may result in detoxification or 

aggravated hepatoxicity 
43

. Therefore, the impact of liver enzymes constitutes an 

interesting aspect for the biocompatibility/toxicity investigations of nanomaterials as 

drug and gene delivery systems. 

 

For a more comprehensive assessment of the biocompatibility/toxicity of 

nanomaterials, please refer to an excellent review by Zhao and Castranova 
44

. 

 

 

3.2 MECHANISMS OF POTENTIAL CYTOTOXIC EFFECTS 

As the saying goes, ‘the dose makes the poison’. In biocompatibility/toxicity 

evaluations, it is important to investigate dose-response relationships as well as high 

dose scenarios where toxic responses are revealed, as these can be used to determine 

appropriate dosages and acceptable limits 
45

. It is also important to keep in mind that, 

the same substance may have different mechanisms of action depending on the 

magnitude of the exposure 
46

. 
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The imbalance between reactive oxygen species (ROS) and antioxidant defense termed 

oxidative stress has been proposed to be the dominant paradigm for potential 

nanoparticle-induced toxicity at the cellular level 
47

, although not all studies confirm 

this general notion 
48

. ROS can be generated from the reactive surface of some 

nanoparticles (e.g. the photocatalytic properties of TiO2 nanoparticles) 
49

, the 

mitochondria as the main intracellular ROS generating source of eukaryotic organisms, 

and/or the multi-component enzyme NADPH oxidase as the main ROS generating 

machinery of phagocytic cells against foreign invaders 
50

. Depending on the level of 

oxidative stress, cellular responses may vary from adaptation and damage repair to 

senescence and cell death (Figure 4). At low levels of oxidative stress, the cell or 

organism adapts by up-regulating their defence systems. Increased levels of oxidative 

stress may switch mitotic cells into senescence cells that can survive for longer periods. 

Failure to cope with such oxidative stress may cause cells to die through apoptosis, 

which protects surrounding tissues from further damage. Under more severe conditions 

of oxidative stress, cells may undergo necrotic cell death exposing surrounding tissues 

to further inflammatory responses 
46

. Important pathways involved in the regulation of 

oxidative stress include mitogen-activated protein kinases (MAPK), nuclear factor 

kappa B (NF-!B), and nuclear factor like 2 (Nrf2) signalling pathways. Lipids, proteins 

and DNA are primary cellular targets of oxidative stress. Furthermore, damages from 

oxidative stress have implications in aging, cardiovascular diseases, neurodegenerative 

diseases, cancer, and so on 
51

.   

              

 
Figure 4. The hierarchical model of oxidative stress. Adapted from Meng et al., 2009 

52
. 

 

On the other hand, other mechanisms of nanoparticle-induced toxicity such as 

nanoparticle-induced inflammation and/or genotoxicity have also been observed 
53, 54

. 

The mechanisms of nanoparticle-induced oxidative stress, and whether oxidative stress 

is the primary cause of cellular destruction or rather stem from the injury triggered by 

other mechanisms, remain to be interesting areas of investigation 
55

. 

 

 

3.3 BIOLOGICAL DEFENSE SYSTEMS 

Evolutionary forces have shaped biological systems with a multitude of physical and 

chemical defense systems. Here, two of these defense systems, blood plasma/serum and 

liver enzymes, are highlighted.  
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3.3.1 Blood plasma/serum  

Blood plasma is the blood fluid that holds blood cells in suspension. It contributes to 

about 55% of the total volume of whole blood. Blood serum is blood plasma without 

clotting factors such as fibrinogen. Blood plasma/serum contains glucose, electrolytes, 

hormones, antigens, and thousands of different proteins (whose abundance varies by 

twelve orders of magnitude 
56

), many of which serve important functions to defend the 

body against potential dangers. For example, metallothioneins sequester heavy metals 

through their cysteine residues 
57

; albumins exhibit important antioxidant properties 
58

.  

 

This thesis focuses on the so-called plasma/serum ‘corona’ over particle surfaces. Upon 

contact with biological fluids such as blood plasma/serum, particles are immediately 

coated by the adsorption of biomolecules such as proteins and lipids, forming a 

‘corona’ over the particle surface 
59

. The biological corona has been suggested to be 

determined by the size and surface properties of the original particle surface 
60

. A 

quantitative approach to characterize surface adsorption energy included parameters 

such as hydrophobicity, hydrogen bonds, polarity/polarizability, and lone-pair 

electrons, to simulate the interaction forces of nanomaterials in biological systems 
61

. 

Studies have also shown that the corona can be loosely divided into two components: a 

long-lived ‘hard’ corona, with a durable coating of high affinity proteins bound for at 

least a few hours over the bare nanoparticle surface; and a short-lived ‘soft’ corona with 

typically short exchange times and loosely bound proteins 
56, 60

. Examples of the hard 

corona proteins include albumin, apolipoproteins, glycoproteins, plasminogens, 

fibrinogens, and complement factors 
56

. The protein corona is a dynamic phenomenon: 

proteins in the corona not only exchange with proteins in the biological fluids in a static 

environment 
59

; the protein corona also evolves when particles navigate in the body and 

pass from one biological fluid to another 
62

. The surface of nanoparticles is therefore 

modified by a dynamic layer of biological factors, which affect their recognition, 

behavior, and toxicity 
63

.  

 

3.3.2 Liver enzymes 

Liver is the most important organ for the detoxification of xenobiotics by enzymes. 

Phase I enzymes, particularly cytochrome P450, catalyze the oxidative and reductive 

reactions of xenobiotics. Many products of phase I reactions then become substrates of 

phase II enzymes, which catalyze conjugation reactions to convert their substrates into 

more polar products in order to facilitate their excretion through the urine and bile 
43

.  

 

Microsomal glutathione transferase 1 (MGST1), a phase II enzyme extensively studied 

for its ability to detoxify substances of both endogenous and exogenous origin, is 

highlighted here 
64

. In cells, it is primarily located in the endoplasmic reticulum and the 

outer mitochondrial membranes 
65

. The structure of MGST1 is a homotrimer, each 

subunit with a molecular weight of 17.3kDa and a binding site for glutathione (GSH) 
66

. Its active site is located at the residue cysteine 49, where covalent binding to GSH 

induces conformational changes and thereby activates the enzyme 
67

. MGST1 has 
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broad substrate specificity, as the enzyme has been shown to be activated by N-

ethylmaleimide (NEM) 
67

, trypsin 
68

, radiation 
69

, heat 
70

, and oxidative stress 
71, 72

. 

MGST1 displays both glutathione transferase and glutathione peroxidase activities. 

Using its glutathione transferase activity, MGST1 catalyzes the conjugation of GSH to 

its electrophilic hydrophobic substrate and converts it into more polar metabolites 
64

. 

The reaction is the first out of four steps in the mercapturic acid pathway 
73

. These 

GSH-conjugates are then transported out of the cells via transmembrane multidrug 

resistance proteins (MRP) and subsequently excreted out of the body 
74

. Using its 

glutathione peroxidase activity, MGST1 catalyzes the GSH dependent reduction of 

lipophilic hydroperoxides and lipid hydroperoxides 
67, 75, 76

 (Equation 1).  

 

Glutathione peroxidase activity: 2GSH + ROOH $ GSSG + ROH + H2O                 (1) 

 

The glutathione peroxidase activity of MGST1 plays an important role in the context of 

oxidative stress. MGST1 has been shown to be activated by oxidative stress both on the 

transcriptional level as well as by protein modification 
64

.  It can protect cells against 

lipid peroxidation by displaying its glutathione peroxidase activity towards lipid 

hydroperoxides and lipid ozonides 
75, 76

. It can also protect against downstream 

products of lipid peroxidation by conjugation of their toxic end products, e.g 4-

hydroxyalk-2-enals 
76

. Indeed, MGST1 has been shown to protect against injury from 

oxidative stress in HEK293 cells 
77

, MCF7 cells 
78, 79

, and retinal pigment epithelium 
77

. 

Interestingly, an increase in the expression of MGST1 has been observed with aging 
80

, 

chronic obstructive pulmonary disease 
81

, and various tumors 
82-86

, all of which appear 

to be associated with increased oxidative stress. Up-regulation of MGST1 mRNA and 

protein synthesis has been suggested to be an early stage biomarker of various diseases 

associated with oxidative stress 
86-88

. 
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4 GENE DELIVERY  

 

Gene therapy is the therapeutic approach aiming at the permanent, or transient, 

correction of a gene defect by intracellular delivery of nucleic acids. Major therapeutic 

targets for gene therapy include cancer, monogenic hereditary diseases, infectious 

diseases and respiratory diseases 
89-93

. However, delivery issues remain one of the most 

important bottlenecks in the development of gene therapy 
93

. Gene vaccination is 

another application of gene delivery, where the introduction of antigen encoding genes 

into target cells triggers cellular and humoral (antibody) immune responses 
94

.  

 

 

4.1 GENE DELIVERY VECTORS 

Initial delivery of genes exploits the natural mechanisms of viruses as delivery vehicles. 

Despite the higher delivery efficiency of viral vectors, they often suffer from toxicity 

and immunogenicity-related issues 
95

. Non-viral vectors are emerging as safer 

alternatives to viral vectors. Major research efforts are directed towards understanding 

the mechanisms associated with the enhancement of gene delivery efficiency 
95, 96

 as 

well as the development of safe and efficient novel gene delivery vectors 
97

.  

 

Classical non-viral vectors include lipids, cationic polymers and cell penetrating 

peptides, whereas more recent applications explore the use of nanomaterials such as 

silica nanoparticles, gold nanoparticles, magnetic nanoparticles, and carbon nanotubes 

for gene delivery 
93, 98

. Endogenous nano-size vesicles, so called exosomes, have also 

been explored as delivery vehicles 
99

. Moreover, combined approaches are being 

investigated in the pursuit of multifunctional platforms to improve their performance in 

targeting and efficiency 
100, 101

. 

 

In general, delivery vectors shall be able to carry out the following steps: (1) form 

stable complexes with nucleic acids, (2) enter target cells by endocytosis-mediated 

uptake, (3) escape the endosomes to reach the cells’ cytoplasm, (4) in certain cases, 

such as delivery of DNA, the complexes or the released nucleic acids enter the cells’ 

nucleus, and (5) execute targeted and efficient gene regulation 
29

. These are depicted in 

Figure 5 and explained in more details in the following sections. 

 

 

 

 

 

 

 

 

 

 



 

 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Critical steps in gene delivery: (1) formation of stable complexes between the 

delivery vectors and oligonucleotides; (2) endocytosis mediated uptake of the stable 

complexes; (3) endosomal escape; (4) oligonucleotides release; (5) nuclear uptake of 

oligonucleotides and their subsequent replication with host DNA; (6) transcription to 

mRNA; (7) translation to protein. 

  

 

4.2 INTRACELLULAR UPTAKE AND TRAFFICKING 

Complex formation.  

 

Gene delivery vectors often bear cationic charges to enable electrostatic interactions 

with anionic nucleic acids. Following interactions with the vectors, the extended 

nucleic acids are reversibly converted into compact particles, known as nucleic acid 

condensation 
102

. Thermodynamic analysis suggested that multivalent cations present 

on the vector associate with the anionic nucleic acid phosphate groups, which causes 

local bending of the nucleic acid (forming rods and toroid-like structures) and results in 

a reduction of entropy 
103

. This process often makes nucleic acids more stable and 

resistant towards degradation by serum nucleases 
104

.  

 

Endocytosis.  

 

Endocytosis refers to the cellular uptake of macromolecules and solutes into 

membrane-bound vesicles derived by the invagination and pinching off of pieces of the 

cell plasma membrane. In non-phagocytic cells, there are at least four different 

pathways: clathrin-mediated endocytosis, caveolin-mediated endocytosis, 

macropinocytosis, and clathrin/caveolin-independent endocytosis. They differ in the 
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composition and size of the membrane vesicle, as well as the fate of the internalized 

particles. Most of these pathways can involve receptor-ligand interactions. 
105

. 

 

The ‘trojan horse’ of delivery.  

 

For cationic lipid-based vehicles, nucleic acids are thought to be released from 

endosomes into the cytoplasm through exchange and fusion between lipids in the 

liposome and the endosomal membrane 
106

. A different model has been proposed for 

the endosomal escape of cationic polymer-based vehicles, such as polyethylenimine 

(PEI). According to the ‘proton sponge hypothesis’, the unsaturated amino groups on 

these vectors sequester protons, and protons are therefore continuously pumped into the 

endosome promoting passive entry of chloride ions and subsequent osmotic swelling 

and endosome rupture 
107

. Disassembly of nucleic acids from the delivery vectors can 

occur after endosomal release in the cytosol or in the nucleus 
108-110

. For novel vectors, 

such as inorganic nanoparticles, the mechanisms of cellular uptake and endosomal 

escape are important areas of investigation. 

 

Nuclear transport.  

 

The transport of certain vector-nucleic acid complexes or released nucleic acids across 

the nuclear envelope occurs through the nuclear pores. While very small particles can 

freely diffuse through the nuclear pore, larger molecules enter the nucleus through a 

nuclear pore complex (NPC) that can be enlarged to about 55 nm in diameter 
17

. 

Studies indicate that DNA can traverse the NPC by itself in a process driven by 

nucleotide triphosphate hydrolysis and/or energy released upon binding to nuclear 

components 
111, 112

. Moreover, nuclear localization signals are common strategies used 

to facilitate nuclear delivery 
113

. 

 

 

4.3 GENE REGULATION 

Gene regulation is the process that cells and viruses use to regulate the expression of 

genes into gene products. The regulation of gene expression by exogenous delivery of 

nucleic acids includes plasmid DNA (pDNA), small interference RNA (siRNA), 

antisense oligonucleotides, splice correction oligonucleotides, and so on. Delivery of 

pDNA and siRNA represents two complementary approaches to restore or silence a 

specific cellular function 
114

. The completion of the human genome sequencing in 2001 
115, 116

, enabled groundbreaking progress for gene regulation. 

 

Circular double-stranded pDNA molecules are to be introduced into the cell nucleus. 

Besides the therapeutic gene(s), pDNA may also contain other sequences such as 

promoter/enhancer elements. For example, tissue-specific promoter sequences can be 

used to restrict the gene expression to specific target tissues 
117

.  

 

Double-stranded RNA sequences of 21-24 nucleotides, known as siRNA, are 

introduced into the cell cytoplasm to allow sequence-specific gene silencing. In the 
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cytosol, siRNA binds to a protein complex termed the RNA-induced silencing complex 

(RISC), which mediates the unwinding of the siRNA duplex to bind to the target 

mRNA 
118

. 

 

Luciferase and green fluorescent protein (GFP) are often used as reporter genes for the 

proof of principle of gene regulation due to their sensitivity and ease of detection. 

However, restoring or silencing of functional genes is the main purpose of gene 

therapy. The major types of genes targeted in gene therapy clinical trials are listed in 

Table 3. 

 

Table 3. Types of genes regulated in gene therapy clinical trials in 2007 
119

.  

 

Gene types Example Percentage Number 

Antigen ALVAC-HIV 20.3% 266 

Cytokine IL-2 18.9% 247 

Tumor suppressor p53 12% 157 

Growth factor GM-CSF 8.2% 107 

Suicide Survivin-T34A 8.2% 107 

Deficiency SCID-X1 7.9% 103 

Receptor TCR 5.1% 67 

Marker CD4+ 4.1% 54 

Replication 

inhibitor 

Ribozyme 3.7% 48 

Other P-glycoprotein  11.5% 153 
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5 PRESENT INVESTIGATIONS 

 

5.1 AIMS OF THE THESIS 

The overall objective of this thesis is to investigate the biocompatibility of synthetic 

nanomaterials of medical relevance and to explore their applications in gene delivery. 

The specific aims in papers I-IV are: 

 

• I: to study the blood cell toxicity/biocompatibility of silica nanoparticles, as 

well as plasma protection mechanisms; 

 

• II: to study the cytotoxicity/biocompatibility and oxidative stress induced by 

synthetic nanoparticles, as well as protection mechanisms by the liver phase 

II detoxification enzyme MGST1; 

 

• III: to explore the applications of amino-modified silica nanoparticles as 

vectors for the delivery of pDNA;  

 

• IV: to explore the applications of amino acid-modified polythiophenes as 

vectors for the delivery of siRNA.  
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5.2 METHODOLOGY 

Cell models and methods used in papers I-IV are described in detail in the respective 

‘Materials and methods’ sections. Below follows an overview of each cell model and 

method with references to the paper(s) in which they are used:  

 

 

Cell models: 

 

In Paper I, red blood cells freshly isolated from human volunteers and HL-60 human 

promyelocytic leukemia cells were used to study the ability of silica nanoparticles to 

induce permeability in biological membranes (hemolysis and cytotoxicity).  

 

In Paper II, MCF-7 human breast carcinoma cells, with and without overexpression of 

rat MGST1, were used as model systems to investigate whether MGST1 could protect 

against the cytotoxicity of SiO2, TiO2, CeO2, and ZnO nanoparticles. Human breast 

cells rather than hepatocytes were used, because these MCF-7 human breast carcinoma 

cells have low expression of MGST1 as well as cytosolic glutathione transferases 

(GSTs). The sense cells were stably transfected with a vector that contains rat MGST1, 

and the antisense cells with the antisense orientation of rat MGST1. The overexpression 

level of rat MGST1 in sense cells is ten times less than the expression level in the liver 
120

.  

 

In Paper III, MCF-7 human breast carcinoma cells were used to investigate the cellular 

delivery of pDNA using silica nanoparticles as vectors.  

 

In Paper IV, the human osteosarcoma cells U2-OS, either wild-type or stably 

transfected with a luciferase-encoding plasmid, were used to investigate the cellular 

delivery of luciferase siRNA using polythiophenes as vectors. Human cervical 

carcinoma HeLa cells were used for live-cell fluorescence microscopy, as the U2-OS 

cells contain a GFP construct that could interfere with the absorption and fluorescence 

emission of poly(3-[(S)-5-amino-5-methoxycarboxyl-3-oxapentyl]-2,5-thiophenylene 

hydrochloride) (POMT). 

 

 

Methods: 

 

Bicinchoninic acid (BCA) protein 

assay [I,II] 

 

Brunauer, Emmet and Teller method 

(BET) [I] 

 

C11-BODIPY
581/591 [II] 

 

A biochemical assay for determining the 

concentration of protein in solution. 

 

Calculates the surface areas of solids by 

physical adsorption of gas molecules. 

 

A fluorescent probe of lipid 

peroxidation. 



 

 17 

Circular dichroism (CD) 

spectroscopy [IV] 

 

 

 

1-chloro-2,4-dinitrobenzene (CDNB) 

assay [II] 

 

Chloroquine (CQ) [IV] 

 

 

Colony formation efficiency (CFE) 

assay [II,III] 

 

Confocal laser scanning microscopy 

(CLSM) [IV] 

 

Dichlorofluorescein diacetate 

(DCFH-DA) [I,II] 

 

3-(4,5-dimethythiazol-. 2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) 

assay [II,III] 

 

Dynamic light scattering (DLS) 

[I,II,III] 

 

 

Fluorescein isothiocyanate (FITC) 

labelling of nanoparticles [II] 

 

Formamidopyrimidine DNA- 

glycosylase (FPG)-comet assay [II] 

 

Flow cytometry (FACS) [II] 

 

 

 

Fluorescence microscopy analysis [II] 

 

 

Gel retardation assay [III] 

 

 

Hemolysis assay [I,IV] 

The measurement of differential 

absorption of circularly polarized light 

exhibits optically active chiral 

molecules. 

 

A spectrophotometric assay to measure 

GST activity. 

 

Leads to swelling and bursting of 

endosomes. 

 

Measures cell colonies as index of long-

term viability or proliferation ability. 

 

Optical imaging technique enabling 

scanning through cells. 

 

A fluorescence probe that measures 

hydrogen peroxide (H2O2) production. 

 

A colorimetric assay that measures the 

activity of a mitochondrial enzyme 

which is crucial for cell viability.  

 

Measures the size distribution of small 

particles in suspension by means of light 

scattering. 

 

The conjugation of fluorochrome for 

tracking of nanoparticles.  

 

Detection of oxidative DNA damage 

using a gel electrophoresis based assay. 

 

Laser based analysis of cells in flow 

using fluorochrome conjugated 

antibodies. 

 

Optical microscope that uses 

fluorescence to generate images. 

 

Affinity electrophoresis to study nucleic 

acid interactions with other substances.  

 

Assay for the rupture of red blood cells. 
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Inductively coupled plasma (ICP) 

analysis [II] 

 

Lactate dehydrogenase (LDH) assay 

[I,II] 

 

Limulus Amebocyte Lysate (LAL) 

endochrome assay [II] 

 

Luciferase assay [III,IV] 

 

 

Mitochondrial respiration [II] 

 

 

MitoSOX
TM [II] 

 

 

Newport Green
TM

 DCF [II] 

 

 

Nanoparticle tracking analysis (NTA) 

[IV] 

 

 

Scanning electron microscopy (SEM) 

[I] 

 

 

Statistical analyses [I,II,III,IV] 

 

 

Surface modification [I] 

 

 

Tetramethylrhodamine ethyl ester 

(TMRE) [II] 

 

ThioGlo% [II] 

 

 

Transmission electron microscopy 

(TEM) [I,II,III]  

 

Detection of metal and non-metal ions 

by electromagnetic induction. 

 

A colorimetric assay for the release of 

LDH as measure of membrane integrity.  

 

Enzyme based test to detect 

lipopolysaccharide (LPS) in solution. 

 

A reporter assay to assess gene 

regulation activity in transfected cells. 

 

Measurement of oxygen concentration as 

a function of mitochondrial respiration. 

 

A fluorescent probe that measures 

mitochondrial superoxide production. 

 

A fluorescent probe indicating the 

presence of metal ions. 

 

Combines laser light scattering 

microscopy with a charge-couple device 

camera for particle sizing in solution. 

 

Provides images of a sample surface by 

scanning it with a high-energy beam of 

electrons. 

 

Data analyses using methods of 

probability theory. 

 

Acid/base treatment of silica surface to 

enable modification of silanol groups. 

 

A fluorescent dye that measures 

mitochondrial membrane potential. 

 

A fluorescent dye that measures active 

thiols. 

 

Microscopic technique using a beam of 

electrons instead of light. 
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Trypan blue exclusion [I]  

 

 

Western blot analysis [II]  

 

 

 

X-ray diffraction (XRD) [I] 

 

 

X-ray photon electron spectroscopy 

[I] 

 

 

Zeta-potential [I,II,III] 

 

 

Dye exclusion test to measure cell 

membrane integrity. 

 

Gel electrophoretic separation of 

proteins and subsequent transfer to 

membranes for antibody detection. 

 

Tool to investigate structures on the 

atomic scale. 

 

Spectroscopic technique that measures 

the elemental composition and electronic 

state of the elements within a material. 

 

Measures the electrokinetic potential in 

colloidal systems.
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5.3 RESULTS 

Paper I. The hemolytic properties of synthetic nano- and porous- silica particles: 

the effect of surface properties and the protection by the plasma corona. 

 

In Paper I, the hemolytic properties of amorphous silica nanoparticles with primary 

sizes of 7-14 nm (hydrophilic versus hydrophobic), 5-15 nm, 20 nm, and 50 nm, and 

model meso/macroporous silica particles with pore diameters of 40 nm and 170 nm 

were investigated. A crystalline silica sample (0.5-10 µm) was included for 

benchmarking purposes. The results showed that the temperature and chosen solution 

could affect the hemolytic properties of silica particles, emphasizing the importance of 

hemolysis testing at physiological conditions. Although no single parameter (such as 

size, surface charge, total surface area) alone was observed to correlate significantly 

with hemolysis, surface modification experiments clearly demonstrate that surface 

properties are linked to the hemolytic activities of these particles. Moreover, 

hydrophobic modified particles completely inhibited the hemolytic activity of pristine 

hydrophilic particles. Furthermore, a significant correlation was observed between the 

hemolytic profile of red blood cells and the cytotoxicity profile of human 

promyelocytic leukemia HL-60 cells induced by nano- and porous- silica particles, 

suggesting that silica particles potentially induce membrane permeability through a 

universal mechanism of action. Importantly, the generated results suggest that the 

protective effect of plasma towards silica nanoparticle-induced hemolysis as well as 

cytotoxicity is primarily due to the protein/lipid corona shielding the silica particle 

surface rather than the functional activities of plasma (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Effect of heat-denatured plasma or plasma corona on hemolysis and 

cytotoxicity induced by silica particles: (A) hemolysis and (B) cytotoxicity induced by 

2 mg/mL silica particles. n=3-4. All values were significantly different (p<0.001) from 

those without plasma or corona. 
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Paper II. Microsomal glutathione transferase 1 protects against toxicity induced 

by silica nanoparticles but not by zinc oxide nanoparticles. 

 

In Paper II, the cytotoxicity and oxidative stress induced by TiO2 (rutile/anatase), CeO2, 

SiO2 (amorphous) and ZnO nanoparticles of similar size (primary size less than 30 nm), 

was evaluated in human breast carcinoma MCF-7 cells with or without overexpression 

of MGST1. In the absence of serum, SiO2 and ZnO nanoparticles caused dose- and 

time-dependent toxicity whereas no obvious cytotoxic effects were induced by TiO2 

and CeO2 nanoparticles. Four additional SiO2 nanoparticles were tested and three out of 

four also showed pronounced cytotoxic effects. Notably, overexpression of MGST1 

reversed the cytotoxicity of two of the SiO2 nanoparticles tested but did not protect 

cells against ZnO-induced cytotoxic effects (Figure 7), suggesting different underlying 

mechanisms of action for the different nanoparticles. Moreover, the cytotoxicity of 

SiO2 nanoparticles was dramatically reduced whereas that of ZnO nanoparticles was 

only slightly reduced in the presence of serum, further suggesting different interactions 

between serum and the different nanoparticles. The results suggest a prominent role of 

lipid peroxidation in SiO2 nanoparticle-induced cellular damage, and the role of zinc 

ion dissolution for ZnO nanoparticle-induced cellular damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. MGST1 protects against SiO2 nanoparticle-induced cytotoxicity but not ZnO 

nanoparticle-induced cytotoxicity. MGST1 protection against nanoparticle-induced 
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cytotoxicity at 24 h was assessed using MTT assay for assessment of metabolic 

activity (A, B), LDH assay to monitor cell membrane damage (C, D), and CFE assay 

to monitor the late effects of particle exposure (24 h exposure, followed by a further 7 

day incubation) (E, F). MGST1 overexpressing cells are indicated by filled squares 

and solid line, antisense transfected cells by triangles and dashed line, and MCF-7 

wild-type cells by diamonds and dotted line. The results are expressed as mean values 

± standard deviations (n = 3-4); *<0.05, **<0.01, ***<0.01.  
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Paper III. Amino-modified silica nanoparticles as non-viral vectors for the 

delivery of plasmid DNA.  

 

In Paper III, the applications of amino-functionalized silica nanoparticles for gene 

delivery are investigated. In this study, amino-modified silica nanoparticles of primary 

size 20-50 nm were used to successfully deliver luciferase-encoding pDNA into human 

breast carcinoma MCF-7 cells, as confirmed by an increase in luciferase gene 

expression. The delivery efficiency was higher using amino-modified nonporous silica 

particles as compared to amino-modified mesoporous silica particles (pore diameter of 

2.4 nm), with similar size and loading of amino groups (wt%) (Figure 8). Moreover, the 

delivery efficiency was higher in the presence of serum than in the absence of serum. 

The binding of pDNA to amino-modified silica nanoparticles was confirmed with a gel 

retardation assay, and TEM images revealed the intracellular localization of these 

particle-DNA complexes to be in membrane-enclosed vesicles. Particle vectors alone as 

well as particle-DNA complexes showed good biocompatibility, with the nonporous 

particles/particle-DNA complexes slightly more toxic than their mesoporous 

counterparts. And both particles/particle-DNA complexes were slightly more toxic in 

the absence of serum than in the presence of serum.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Delivery of luciferase expressing plasmid using amino-functionalized 

nonporous and mesoporous silica particles in MCF-7 cells in the presence of serum. 

n=3. *<0.05, **<0.01, ***<0.001. 
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Paper IV. Delivery of small interfering RNA using an amino acid-modified 

polythiophene. 

 

In Paper IV, the polythiophenes (namely POMT and POWT) were used as vectors for 

the cellular delivery of siRNA. Human osteosarcoma U2-OS cells, wildtype or stably 

transfected with a luciferase-encoding plasmid, were used to confirm the delivery of 

anti-luciferase siRNA upon non-covalent complex formation with polythiophenes. 

Notably, the cationic POMT was highly efficient in the delivery of siRNA whereas its 

zwitteronic analogue POWT was considerably less efficient, underscoring the 

importance of polymer cationicity in the delivery efficiency of the vector. Figure 9 

demonstrates the successful delivery of anti-luciferase siRNA using POMT. 

Furthermore, mechanistic and biocompatibility studies were performed for POMT. Pre-

incubation of siRNA:POMT at 4°C substantially reduced delivery efficiency, implying 

that the siRNA:POMT complexes triggered energy-dependent uptake into mammalian 

cells. Pre-incubation of siRNA:POMT with chloroquine (which prevents endosomal 

acidification) did not enhance delivery efficiency, suggesting that endosomal escape 

was not a limiting factor in the delivery process. Circular dichroism spectroscopy 

indicated that POMT maintained a helical conformation even after complexation with 

siRNA, a feature that could potentially explain their efficient cellular internalization 

and endosomal escape. Moreover, HeLa cells were used to probe co-localization of 

Cy5-labeled siRNA and the autofluorescent POMT by live-cell fluorescence 

microscopy. The results suggested potential co-localization of Cy5-siRNA and POMT 

directly after transfection, which decreased after 24 h. Biocompatibility studies showed 

that siRNA:POMT complexes displayed negligible hemolysis of red blood cells 

(medical acceptance level is less than 5%) up to 24 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The optimal molar ratio for delivery of anti-luciferase siRNA, assayed at an 

siRNA concentration of 50 nM, was 1:50 siRNA:POMT. An unrelated siRNA at the 

same concentration did not induce any significant silencing at any molar ratio.  
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5.4 GENERAL DISCUSSION 

 

Physical, chemical and biological differences between conventional drug/gene and 

nanomedicine therapeutics. 

 

As mentioned in previous sections, nanomaterials offer a number of advantages as 

delivery vectors. Some physical, chemical and biological differences between 

conventional drug/gene pharmaceuticals and nanomedicine therapeutics are highlighted 

in Table 4. In Paper III and Paper IV, it was clearly shown that the pDNA or siRNA 

per se would not be able to execute its effect without the delivery vectors. The Papers 

(I-IV) in this thesis aim to further investigate the safety and efficacy of nanomaterials 

as delivery vectors, as well as factors affecting their behaviors.   

 

Table 4. Comparison between conventional drug/gene and nanomedicine therapeutics. 

 

Characteristics Drugs Genes Nanomedicines 

Synthesis Chemical synthesis Isolated from 

plant/animals or 

synthesized by 

means of genetic 

engineering 

Formation of 

complexes between 

drugs/genes and 

nanovectors 

Molecular weight 

or particle size 

Low molecular 

weight, less than 1 

nm 

High molecular 

weight, usually a 

few nanometers 

High molecular 

weight, usually 

around 1-100 nm  

Physical and 

chemical 

characteristics 

Characteristics of 

well-defined small 

molecular weight 

chemicals 

Complex 

physicochemical 

characteristics (e.g. 

tertiary structure) 

Characteristics of 

material science 

and particle 

science, including 

size, shape, 

mechanical 

properties, etc 

Interactions with 

cells  

Typically diffusion 

once inside the cell 

cytoplasm 

Typically degraded 

by cellular enzymes 

Typically confined 

intracellular 

location 

Interactions with 

the human body 

Poor 

pharmacokinetics 

often lead to major 

side effects 

Typically degraded 

by serum enzymes 

Improved 

pharmacokinetics 
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Physicochemical properties of nanomaterials in relation to their biocompatibility 

and gene delivery efficiency.  

 

The work in this thesis emphasizes the basic understanding of the physicochemical 

properties of nanomaterials in relation to their biocompatibility and gene delivery 

efficiency. Although there is no clear consensus in the literature, some patterns are 

emerging. However, a larger sample size or meta-analysis would be necessary for 

deriving meaningful conclusions from statistical analyses of correlations between their 

physicochemical properties and biological endpoints. Moreover, the physicochemical 

properties of nanomaterials are interdependent (for example, synthesis of well-defined 

nanoparticles with different sizes also results in different surface charges) 
121

, therefore 

computer simulations would be needed to fully appreciate such complex relationships.  

 

 Chemical composition and crystallinity.  

 

Currently, most nano-formulations that already exist on the market for in vivo delivery 

and imaging purposes are lipid and liposome based nanocomposites, polymers and iron 

oxide nanoparticles 
1
. Indeed, chemical composition is among the determining factors 

for the biocompatibility of nanomaterials for biomedical applications. In Papers I-III, 

the use of silica nanomaterials as biocompatible nanomaterials for biomedical 

applications was investigated. In Paper II, amorphous silica nanoparticles were also 

compared to cerium oxide, titanium oxide, and zinc oxide nanoparticles of similar size. 

Results from Paper II and others suggest that amorphous silica is considerably more 

biocompatible compared to many other materials such as zinc oxide, zirconia 
122

, etc. It 

is noteworthy that the crystalline form of silica is rather toxic and not suitable for 

biomedical applications 
122, 123

. In Paper IV, the novel utilities of polythiophenes for 

gene delivery in biomedicine are explored. The toxicity of polythiophenes is not well 

understood, however, it was shown that polythiophene conductive polymers improve 

the biocompatibility of electrodes on primary mouse neurons 
124

. Therefore, chemical 

composition and crystallinity has a strong impact on the biocompatibility of 

nanomaterials. Silica and polythiophene nanomaterials are potentially interesting 

materials for biomedical applications, with mesoporous silica nanoparticles entering the 

stage of preclinical development 
125

. Other potential platforms include gold, magnetic 

nanoparticles, and carbon nanotubes 
1, 18

.  

 

Size.  

 

There is substantial concern of a higher toxic potential at the nanolevel compared to the 

microlevel 
126

, due to the higher proportion of atoms exposed at the surface of 

nanomaterials (compared to bulk materials of the same composition) as well as the 

ability of smaller particles to penetrate deeper into the body. In Paper I, the 

biocompatibility of silica nanomaterials with different size, surface charge, total surface 

area, hydrophobicity, and porosity were compared. These results, although 

inconclusive, suggest that smaller size particles seem to be more hemolytic and 

cytotoxic than larger ones at the same mass dose. Similarly, other studies found size-
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dependent toxicity of amorphous silica particles in vitro and in vivo, with the smaller 

particles being more toxic. For example, smaller particles compared to larger ones were 

shown to be more cytotoxic in various cells by the MTT and LDH assays 
121, 127-129

, 

induce more apoptosis in human keratinocytes HaCaTa cells as detected by the annexin 

V-propidium iodide assay 
130

, and induce more oxidative stress (ROS generation, lipid 

peroxidation and GSH depletion) in human hepatic L-02 cells 
131

. Mice intravenously 

injected with 75 nm silica particles induced liver injury at 30 mg/kg body weight, 

whereas 311 and 830 nm particles had no effect at 100 mg/kg 
132

. Feeding of mice for 

10 weeks (total fed amount of 140 g/kg mice) with 30 nm silica nanoparticles induced 

higher levels of alanine aminotransferase (ALT) and fatty liver patterns compared to 

those of 30 µm silica microparticles (with similar liver retainment) 
133

. Smaller polymer 

nanoparticles of 45 nm also showed higher cytotoxicity compared to larger 90 nm 

particles in terms of ROS production, adenosine-5'-triphosphate (ATP) depletion, 

tumor necrosis factor (TNF)-& release as well as the reduction of mitochondrial 

membrane potential in different cells 
134

. Interestingly, it was reported that certain 

specific sizes can be substantially toxic, i.e. gold nanoclusters of 1.4 nm are remarkably 

more toxic than marginally smaller or larger gold nanoparticles potentially due to their 

interactions with the major grooves of DNA 
135

.  

 

Higher delivery efficiency in vivo is generally attributed to nanoparticles with a 

diameter around 100 nm, which are capable of circulating in the plasma for a few hours 

rather than seconds to minutes for smaller or larger particles 
4
. In addition to plasma 

circulation time that is a critical prerequisite for delivery, other factors such as cellular 

uptake are also important in governing the delivery efficiency of nanoparticle vectors. 

Size-restrictions affect cellular uptake via different mechanisms of endocytosis 

(clathrin-mediated endocytosis, caveolin-mediated endocytosis, macropinocytosis, and 

clathrin/caveolin-independent endocytosis) 
33, 105

. Nabiev et al. reported that the cell’s 

active transport machinery delivered nonfunctionalized nanocrystals to different 

regions of the cell in a size-specific manner 
136

. He et al. showed that the availability of 

particles to be internalized is better for the smaller particles among particle sizes of 190, 

420, and 1220 nm in various cells 
129

. Lu et al. showed by confocal laser scanning 

microscopy and ICP-MS that cellular uptake in human cervical HeLa cells was optimal 

for silica particles of 50 nm compared to 30, 110, 170 and 280 nm 
137

. Aoyama and co-

workers demonstrated an optimal diameter around 50 nm for the cellular uptake of 

calix[4]-resorcarene-coated macrocyclic glycocluster amphiphiles or quantum dots 
138

. 

Chan and co-workers also reported 40-50 nm diameter to be optimal for cellular 

internalization of pristine and protein-coated gold nanoparticles 
139, 140

. Theoretical 

models converge on similar conclusions that particles ought to have a minimum 

diameter between 40 and 60 nm in order to achieve effective cellular uptake 
141

. 

Therefore, a delivery system has an optimal physical size in the nanometer range that 

facilitates their cellular binding and uptake (while also depending on other parameters), 

at least in non-phagocytic cells. On the other hand, it was suggested that larger particles 

are also able to enhance gene delivery in cell culture systems in vitro, which might be 

explained by the concentration of nucleic acids at the surface of cultured cells as a 

result of gravity 
142

.  
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Surface charge.  

 

A positively charged surface is generally more toxic than a negatively charged surface, 

due to its potential interactions with many negatively charged biological molecules 

(such as glycolipids and nucleic acids) 
143

. However, Slowing et al. showed that when 

amorphous silica particles were functionalized with carboxylic acid, their zeta-potential 

was similar (from -45.9 to -47.3 mV) but hemolysis was inhibited. This indicates that in 

the case of silica, hemolysis is specific to the silica surface despite the negative surface 

charge. The results in Paper I further points to the specific effects of surface silanol 

groups on the hemolytic and cytotoxic properties of silica particles. Isoda et al. found 

that intravenously administered amino group or carboxyl group modified silica 

nanoparticles were much less toxic than unmodified particles as shown by the level of 

liver injury (serum alanine aminotransferase level, liver hydroxyproline content, 

fibrosis) in mice 
144

. These in vivo findings are also in line with the specific silica 

surface induced toxicity. For many other types of nanomaterials, such as polymers, 

higher positive charges are generally correlated with higher toxicity 
145-147

.  

 

Delivery vectors often carry positive charge to enable ionic complexation with nucleic 

acids. In Paper IV, it was demonstrated that the delivery efficiency of the cationic 

polythiophene was much higher than the zwitteronic polythiophenes. Cellular binding 

and uptake can be achieved either via non-specific adsorptive endocytosis (by 

providing excess positive surface charge) or specifically via receptor-mediated 

endocytosis 
148, 149

. On the other hand, the strength of the ionic interactions between the 

delivery vectors and the nucleic acids can be a limiting factor later during the 

disassembly of the complexes 
150

. In terms of in vivo delivery efficiency, the 

nanoparticle-nucleic acid complex is most desirable to be near neutral in order to avoid 

non-specific interactions with blood components, extracellular matrix and non-target 

cells or tissues in vivo.  

 

Porosity.  

 

Porosity may have an important role in determining the toxicity of nanoparticles. 

Slowing et al. suggested that mesoporous silica particles have reduced hemolytic 

activity (compared to nonporous silica particles) which correlates to their lower 

external surface area as a result of their porous structures 
37

. Similarly, lower hemolysis 

and cytotoxicity were generally observed for porous silica particles in Paper I, Paper III 

as well as a study by Rabolli et al. 
121

 in different cell types. However, more studies 

need to be performed to confirm this relationship.  

 

Gao et al. demonstrated pore-size dependent drug release rate and therefore anticancer 

activity using mesoporous silica nanoparticles in drug sensitive and drug resistant 

MCF-7 cell lines 
151

. Na et al. showed pore-size dependent delivery of siRNA in vitro 

and in vivo using mesoporous silica nanoparticles, particles with larger pores (23 nm) 

being more efficient than those with smaller pores (2 nm) 
152

. In Paper III, nonporous 
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silica nanoparticles were shown to have superior delivery efficiency compared to 

mesoporous silica nanoparticles with pore diameters of 2.4 nm. Several reasons could 

account for this observation: these mesoporous silica nanoparticles with 2.4 nm pore 

diameter have small pore spaces that could not be efficiently explored for the 

accommodation of cargo; the different distribution of functional groups over the 

surface of mesoporous and nonporous silica particles may subsequently affect their 

binding to nucleic acids as well as aggregation state; there might be less cellular 

association of mesoporous compared to nonporous silica nanoparticles as shown in a 

quantitative study using ICP-MS 
153

. Therefore, the dimensions of the pores could have 

a strong impact on the delivery efficiency of porous particles. 

 

The effect of plasma/serum. 

 

The effect of plasma/serum on nanoparticle behavior as well as their interactions with 

biological systems (particularly cytotoxicity and gene delivery efficiency) was 

examined in Papers I-III.  

 

In Paper I, the presence of a biological corona over silica particles was confirmed by 

means of X-ray photon electron spectroscopy (XPS). In Paper I, it was demonstrated 

that the plasma/serum corona is primarily composed of proteins, but lipids may also be 

involved. The zeta-potential of plasma corona coated particles tends to be fairly similar 

(-20±5 mV) despite the very different zeta-potential of pristine particles (-10 to -50 

mV). Monopoli et al. showed that the zeta-potential of 50 and 200 nm silica particles 

was modified by plasma corona (approx. from -25 to -10 mV), but the zeta-potential 

did not vary further with increasing concentrations of plasma (from 3% to 80%) 
56

. In 

Paper II, it was shown that the serum corona reduced the aggregation of nanoparticles 

(SiO2, TiO2, CeO2, ZnO) and in some cases (e.g. ZnO) enhanced their dissolution. 

Gualtieri et al. showed that 0.1% bovine serum albumin (BSA) reduced aggregation of 

silica nanoparticles 
154

 whereas studies by Monopoli et al. and Drescher et al. observed 

higher aggregation of silica and polystyrene nanoparticles in the presence of 

plasma/serum 
56, 155

. It was also shown that interactions of polymer-nucleic acid 

complexes with plasma proteins such as albumin leads to aggregation 
156, 157

.  

 

Interestingly, the coating of a pathogen with serum components is a mark for ingestion 

and destruction, a process termed opsonization, often resulting in phagocytosis and 

clearance from the circulation 
158

. Similarly, plasma/serum protein coating over 

polymer nanoparticles accelerated their removal by phagocytic cells 
157, 159

. Moreover, 

reduced cytotoxicity has been observed for nanoparticles in the presence of albumin 
160

. 

It is however questionable whether the reduced toxicity is due to the antioxidant 

activities of albumin or the coating of albumin over the reactive surface of these 

nanoparticles. Indeed, it was shown in Paper I-III that the presence of plasma/serum 

abolished or delayed the toxicity of pristine silica nanoparticles, amino-functionalized 

silica nanoparticles and ZnO nanoparticles. In Paper I, further evidence was presented 

that the plasma corona coating of the silica surface protected silica nanoparticles 

against hemolysis and cytotoxicity. The human plasma/serum may thus serve the 
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function to mediate the in vivo distribution and excretion of nanoparticles and reduce 

their toxic effects in the systemic circulation.  

 

On the other hand, reduced blood circulation time following the in vivo interactions of 

nanoparticle formulations with plasma proteins also impairs their delivery efficiency 
157

. Moreover, blood plasma/serum is also abundant in nucleic acid-degrading enzymes 

that can lead to a substantial loss of therapeutic effect 
161

. Therefore, research efforts are 

made towards using hydrophilic polymers (e.g. PEG) to shield nanoparticles from 

intensive interactions with blood proteins as well as searching for serum resistant 

formulations for delivery. For example, Lehto et al. showed that the delivery efficiency 

of a stearylated cell-penetrating peptide transportan 10 was maintained in the presence 

of serum proteins mimicking in vivo conditions 
162

. Silica particles provide promising 

serum resistant features for in vivo applications 
152

, although some discrepancy exists in 

our study and the literature. In Paper III, amino-functionalized silica particles displayed 

higher delivery efficiency for pDNA in MCF-7 cells in the presence of 10% serum than 

in the absence of serum, whereas Na et al. observed marginally lower delivery 

efficiency for siRNA in human cervical carcinoma HeLa cells with 10% serum than 

without serum 
152

. Nevertheless, Xiao et al. confirmed the protection of DNA by 

mesoporous silica particles from serum nucleases 
163

.    

 

In vitro vs. in vivo.  

 

Although numerous studies have used cell models to investigate the biocompatibility of 

nanomaterials and their applications for gene delivery, it is questionable how much 

knowledge from in vitro studies can be readily transferred to in vivo situations 
164

. First, 

in vitro systems lack the complexities of in vivo pharmacokinetics, physiological 

structures, and systemic responses. Second, particles, unlike small molecules, do not 

necessarily evenly distribute in fluids. On the contrary, they may exhibit distinct 

behaviors in body fluids and cell cultures 
142

. Third, cellular phenotypes (such as their 

repertoire of expressed receptors) may show significant variations in in vitro cell 

cultures 
165

. Nevertheless, in vitro studies may still prove to be useful in nanomedical 

research for identifying similar patterns of biologic activity and understanding the 

mechanisms of action 
166

. 

 

In addition to the in vivo approach for the administration of therapeutic nucleic acid 

formulations, the ex vivo approach first delivers the genetic material into cells grown in 

vitro (usually autologous cells from the same patient) and then introduce those 

transfected cells into the patient 
167

. 
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5.5 CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

Nanotechnologies hold great promises for numerous biomedical and diagnosis 

applications. Although nanomaterials have the potential to revolutionize the field of 

pharmaceutics and nucleic acid delivery 
168

, intensive research efforts are needed to 

develop safe, targeted, efficient delivery vectors. Importantly, studies to improve the 

understanding of their biocompatibility/toxicity and mechanisms of delivery are crucial 

to assist the rationale design of nanomaterials for delivery applications.  

 

In order to ensure the safety of using synthetic nanomaterials for delivery applications, 

thorough toxicology assessments linked to their physicochemical properties would be 

required. One of the primary concerns for future investigations is whether they cause 

cardiovascular adverse effects. It is noteworthy that small molecular drugs tend to 

cause more cardiovascular toxicity than hepatoxicity, especially in the long term 
169

. 

Interestingly, epidemiology studies of air pollution found fine particles (0.1-2.5 µm) 

associated with respiratory diseases and ultrafine particles (0.01-0.1 µm) associated 

with respiratory-cardiovascular diseases 
170

. It was suggested that nano-sized particles 

induce human vascular endothelial cell cytotoxic injury, inflammatory responses, and 

inhibition of cell growth, potentially causing cardiovascular diseases 
170, 171

. Radomski 

et al. reported nanoparticle-induced human platelet aggregation in vitro and rat vascular 

thrombosis in vivo 
172

, leading to possible systemic and cardiovascular risks. Moreover, 

it is important to identify which characteristic physicochemical properties may 

potentially cause cardiovascular toxicity. For example, surface charge is an important 

factor for the activation of the complement system and coagulation pathways 
173

.  

 

In the future, investigations directed towards the engineering of synthetic nanomaterials 

for gene delivery applications would be of considerable interests. For example, 

nanoparticles could be functionalized with PEG to better escape immune recognition 

and/or functionalized with targeting ligands for the active recognition of specific cells 

(e.g. targeting of folate receptors on tumor cells 
174

). Nanoparticles could be combined 

with cell penetrating peptides for enhanced delivery efficiency. Moreover, it would be 

of interests to investigate the mechanisms of delivery. Energy depletion and 

pharmacology inhibitors can be used to probe the mechanisms of cellular uptake, 

whereas in vitro liposome leakage assay can be used to mimic the process of 

endosomal escape. Last but not least, restoring or silencing of functional genes (e.g. 

tumor suppressor genes or oncogenes, respectively), as well as combined drug and gene 

delivery (e.g. to overcome drug resistance), can be investigated for specific therapeutic 

purposes. 
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