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ABSTRACT 

 

Threatening stimuli have a privileged status in the brain, meaning they receive priority 

in the processing stream. This makes sense from an evolutionary perspective where 

quickly and accurately identifying threat is necessary for survival. However, how much 

priority the brain gives threatening stimuli has been shown to vary among individuals, 

even healthy adults, in the laboratory setting.  This has been shown repeatedly with 

threatening face stimuli, but researchers to date have used limited approaches to study 

intersubject variability. Some studies have correlated personality measures with brain 

activation, thereby ignoring behavioral variability. Other studies have looked at 

behavior but have only looked at behavior in pre-selected groups of subjects (namely 

high and low anxiety).  This thesis investigates intersubject variability in fearful face 

processing by using variability in behavior to guide analyses and find links to 

personality traits and neural activation.  

 

In Study I, we explored behavioral variability on a novel fearful face categorization 

task where faces were presented at varying expectation levels. Faster reaction times to 

fearful faces compared to neutral faces correlated with higher levels of cautiousness, as 

measured by a harm avoidance personality assessment. Faster reaction times to fearful 

faces also correlated with increased activation to unexpected fearful faces in a 

prefrontal-striatal network. 

 

In Study II, we explored behavioral variability on a fearful face repetition task where 

fearful and neutral faces were presented repeatedly and subjects were asked to 

categorize the face as fearful or neutral. A decrease in reaction time for repeated fearful 

faces was associated with less state and trait anxiety in our healthy subjects. 

Additionally the lack of behavioral advantage to categorize repeated fearful faces was 

also associated with more striatal and early visual activation to the first fearful face. 

The opposite was found for repeated neutral faces, where subjects who were faster to 

respond to the repeated neutral face had less activation to the repeated face. 

 

In Study III, we explored behavioral variability on a fearful face detection paradigm 

where subjects were asked to detect a briefly presented (33ms) fearful face that was 

directly followed by a neutral face mask. Fearful face detection sensitivity correlated 

with trait anxiety and other personality measures related to trait anxiety, but it did not 

correlate with state anxiety.  

 

In conclusion, our results demonstrate large amounts of behavioral variability on three 

different fearful face processing tasks in healthy adults. It is not the case that all healthy 

individuals showed a processing advantage for fearful faces, in fact, some healthy 

adults actually showed a processing disadvantage for fearful faces. In Study I, neither 

state nor trait anxiety correlated with the behavioral advantage for fearful faces, but 

harm avoidance did. While state and trait anxiety directly correlated with a lack of 

behavioral advantage for repeated fearful faces in Study II, trait anxiety directly 

correlated with a behavioral advantage for detecting briefly presented fearful faces in 

Study III. These results underscore that personality interacts with fearful face 



 

 

processing differently in different contexts. Behavioral variability was also associated 

with varying neural activation patterns in Studies I and II. These activation patterns 

were distinctly different from the activation patterns evoked by neutral faces 

demonstrating that behavioral advantages for fearful faces are uniquely neurally 

encoded. These results argue that there is no “normal” when it comes to fearful face 

processing and future studies should avoid lumping healthy individuals together on 

such tasks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

For everyone who was told they would never succeed. 

 



 

 

 



 

 

 

LIST OF STUDIES 

 

This thesis is composed of three empirical studies that are referred to in the text by their 

roman numerals (Study I – III). 

 

 

 

I.  The Interaction between Expectation and Sensitivity to Threatening Stimuli in 

Healthy Adults: An FMRI Study of Intersubject Variability.  

II.  Anxiety Prevents Fearful Face Repetition Advantage.  

III.  Fearful Face Detection Sensitivity in Healthy Adults Correlates with Anxiety-

Related Traits.  
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1 INTRODUCTION 

 

1.1 THREAT PROCESSING 

 

A threat is defined as something with the intention to inflict pain, injury, or 

damage. Even though modern man generally no longer has to worry about 

encountering direct threats on a daily basis, our brains and bodies are still well adapted 

to evaluate threat in the environment (Bolles and Fanselow, 1980, Tooby and 

Cosmides, 1990). A real-world example of this adaption would be how suddenly 

focused and startled you become when you see a long, slender, dark object on the path 

in front of you. This response occurs because you immediately perceive that the stick 

directly in front of you could potentially be a snake. 

Threat processing creates two related emotional states: fear and anxiety. 

Generally, fear is seen as the reaction to a real threat that is imminent, while anxiety is 

the reaction to a potential threat that may or may not occur (Lang et al., 2000, Barlow, 

2002). Both emotions are characterized by distress and negative feelings. In the context 

of the scenario laid out in the previous paragraph, fear would be the emotion felt when 

first approaching the stick and considering it might be a snake. Anxiety would be the 

emotion felt prior to seeing the stick if the area was known to have many snakes in it, 

so therefore, the expectancy of seeing a snake would be high, but no specific snake had 

been seen.  
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Fear as a motivational state generally leads to one of three actions: freezing, 

fleeing, or fighting (Eilam, 2005). Anxiety has been called “unresolved fear,” because 

fear itself is a way of coping with a direct threat by escaping or avoiding the threat; 

anxiety occurs when there is no way to escape or avoid the threat because it has not 

been encountered yet (Epstein, 1972, Eilam et al., 2011). 

 

1.1.1 Evolutionary Aspect and Privileged Status 

 

Just as in the real world example presented above where a person quickly 

identifies a potential threat, our brains give threat a privileged status that leads to 

enhanced processing (Ohman and Mineka, 2001, Davidson et al., 2004). This 

privileged status makes sense from an evolutionary perspective, where quickly and 

accurately identifying and responding to threatening stimuli has been essential for 

survival (Marks and Nesse, 1994). Indeed, this was first noted by Charles Darwin, who 

recognized the importance of emotions, including threat related emotions, in both man 

and non-human animals (Darwin et al., 1872).  

In the following sections, threat processing is more fully explored, including how 

such a basic trait could vary so much from person to person in the healthy population. 

 

1.2 THREAT SYSTEM ANATOMY 

 

Stimuli often used in the laboratory setting to signal threat include threatening 

words, pictures, sounds, and sensations. Through the study of such stimuli, scientists 

have begun to better understand the neural anatomy of threat processing in humans. 
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Our brain’s finely tuned ability to optimize threat detection is supported by a neural 

network focused on this task.  

 

 

1.2.1 High Road versus Low Road Processing 

 

In the case of threatening sounds, a relatively crude “low–road” detection 

system is in place where the sound goes directly from the ear to thalamus to the neural 

core of threat processing: the amygdala, without ever reaching the auditory sensory 

cortex (LeDoux, 1996). This work then led to the theory that even threatening face 

images were also processed automatically by the amygdala – never having to reach 

visual cortex. Indeed, many studies have reported that briefly presented threatening 

faces are processed without conscious awareness (Morris et al., 1998, Whalen et al., 

1998, Dolan and Vuilleumier, 2003, Whalen et al., 2004, Williams et al., 2006, Yang et 

al., 2007). However, other studies have argued that attention is essential to the 

processing of fearful faces (Pessoa et al., 2002, Bishop et al., 2007)  and that subjects in 

previous studies were actually better than chance at detecting threatening faces and 

were, therefore, consciously aware of the face on some level (Pessoa et al., 2005, 

Pessoa et al., 2006, Japee et al., 2009). Indeed, neuroanatomical evidence supports the 

view that there are no direct (“low-road”) connections from the visual thalamus to the 

amygdala that bypass the visual cortex (Pessoa and Adolphs, 2010). While this view 

may still be debated, the fact that the amygdala plays a large role in threat detection and 

processing is not. 
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1.2.2 The Amygdala 

 

The original lesion work of Klüver and Bucy (1937) found that monkeys 

missing bilateral amygdala were devoid of fear. Instead these monkeys were hyper-

exploratory and not scared to interact with their environment, including putting novel 

objects directly into their mouths. While Klüver and Bucy removed the amygdala from 

the monkeys in their experiments, doing the same in humans is impossible, due to 

obvious ethical concerns [although work with a patient with a surgically lesioned 

amygdala as treatment for self-mutilation gave the first hint (Jacobson, 1986)]. The 

science community had to wait until the seminal work of Ralph Adolphs to understand 

the function of the amygdala in humans. His famous patient, H.M., had naturally –

occurring bilateral amygdala damage. Once brain imaging technology was available to 

confirm this fact, it made her the perfect experimental subject. Adolphs found that 

patient H.M. could recognize the identity of fearful faces but she could not recognize 

the emotion of fear (Adolphs et al., 1994). This finding created an amygdala revolution 

and tipped researchers off that this small, almond-shaped grey matter structure deep 

within the temporal lobe might be important for threat processing in humans. Since 

those early studies, the amygdala has been extensively studied and confirmed as the 

hub of threat processing not only in the human brain, but also in the brains of other 

mammals, including rodents (Sarter and Markowitsch, 1985, Chozick, 1986, Davis and 

Whalen, 2001). 
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1.2.3 The Prefrontal Cortex: Keeping the Amygdala in Check 

 

While early work seated threat processing squarely in the amygdala, the story 

has since evolved to recognize a wide array of neural structures involved in threat 

processing.  The prefrontal cortex has emerged as an important component of threat 

processing that, through its many connections to the amygdala, appears to exert a 

regulatory influence over threat processing in the brain (Ochsner and Gross, 2005, 

Mechias et al., 2010, Etkin et al., 2011).  Two major functions of the prefrontal cortex 

that have been discovered in the laboratory setting include fear extinction and self 

regulation of fearful feelings.  
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Figure 1. Schematic drawing illustrating the location of the amygdala and the 

prefrontal cortex in the human brain. [Illustration was taken from the NIMH Post 

Traumatic Stress Disorder Research Fact Sheet and does not require permission for 

distribution] 

 

Fear extinction refers to the process of extinguishing a fear response associated 

with a previously innocuous stimulus. During the process of fear conditioning, this 

innocuous stimulus (usually a light or a tone in the laboratory setting) is paired with a 

threatening stimulus (usually a shock). During fear extinction, the innocuous stimulus 
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is no longer paired with the threatening stimulus, therefore, it no longer signals danger 

and it takes humans and rodents some time before the new association is made. This 

processing of extinguishing fear is mediated by the ventromedial prefrontal cortex 

(Milad and Quirk, 2002, Phelps et al., 2004).  

The prefrontal cortex has also been found to control conscious regulation of 

fearful thoughts (Ochsner et al., 2002, Hariri et al., 2003). The mechanism behind 

emotion regulation is thought to be similar to the mechanism beyond fear extinction, 

namely where the prefrontal cortex projects to the amygdala directly to diminish threat-

related responses. 

 

1.3 INTERSUBJECT VARIABILITY 

 

Enhanced processing of threat is a very basic and primitive trait conserved across 

many animal species, but the level of enhancement varies greatly across the healthy 

human population. Although such intersubject variability may seem surprisingly for a 

more basic trait, researchers have long known that quite a bit intersubject variability 

exists within the healthy human population. 

 

1.3.1 Genetics and Environment: Epigenetics 

 

Grasping the mechanism behind variability among healthy individuals was 

greatly helped along by the discovery of genes and the knowledge that the variability 

we recognized between us and others was actually encoded by varying patterns of the 

tiny building blocks of life: DNA (deoxyribonucleic acid). While the discovery of DNA 
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gave neural and behavioral variability a physical basis, one needed only look as far as 

identical twins to see that genes were only part of the story. And, indeed, the recently 

created field of epigenetics declares that the environment can directly interact with 

DNA, turning genes on and off (see review (Tsankova et al., 2007). Variability in genes 

and variability in environment interact with each other to create neural and behavioral 

variability among individuals. 

 While we have a greater understanding of the broad mechanism behind 

neural and behavioral variability in humans, the specific details mostly remain elusive. 

However, two genetic variants coding for variability in emotion processing have been 

discovered and studied extensively. 

 

1.3.1.1 5HTTLPR polymorphism 

 

One genetic variant studied comprehensively is a polymorphism in the 

promoter region of the serotonin transporter genotype (5HTTLPR). In short, healthy 

individuals with the short allele produce less serotonin than healthy individuals with the 

long allele, and this effect is heightened with two short alleles, as compared to one short 

and one long allele (Lesch et al., 1996). Healthy individuals with two short alleles also 

have been shown to score higher on neuroticism (Schinka et al., 2004, Sen et al., 2004), 

show an increased risk for depression following stressful life events (Caspi et al., 2003, 

Eley et al., 2004), can better recognize fearful faces (Defrancesco et al., 2011), and 



 

9 

 

show heightened amygdala response to fearful faces (Hariri et al., 2002) compared to 

healthy individuals with two long alleles. 

 

1.3.1.2 COMT polymorphism 

 

Another genetic variant related to threat processing that has been studied, 

albeit less extensively, is Catechol-O-MethylTransferase (COMT): a gene related to 

how catecholamines are broken down in the brain, which directly affects dopamine 

availability. The widely studied COMT allelic variation is a substitution between valine 

(val) and methionine (met). In short, individuals with the met allele have a 1/3 decrease 

in catecholamine function (Lachman et al., 1996), leading to more tonic dopamine 

(Bilder et al., 2004). This genotype (met/met) has been associated with increased 

prefrontal functioning (Egan et al., 2001), but also slower reaction times to categorize 

angry faces compared to the val/val genotype (Weiss et al., 2007) . 

 These two genetic variants account for at least some of the variance in 

threat processing in healthy individuals, but they interact with the environment (e.g. life 

stressors, as outlined above), with each other (Lonsdorf et al., 2011), and with other 

genes. While genetics are one piece of the individual variability puzzle, behavioral and 

neural variability get more at the current state, or the phenotype, of an individual. 

 

1.4 INTRASUBJECT VARIABILITY 

 

While this thesis predominantly focuses on intersubject variability, it is important 

to note that intrasubject variability does exist. As discussed previously, life stress can 
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have a large impact on the brain and how it functions. PTSD, or Post-Traumatic Stress 

Disorder, illustrates this point well. 

 

 

1.4.1 PTSD as an Extreme Example on Intrasubject Variability 

 

In PTSD, a person having just experienced a traumatic life event will 

persistently re-experience the event, avoid things that remind them of the event, and 

experience heightened arousal (American Psychiatric Association. and American 

Psychiatric Association. Task Force on DSM-IV., 1994). These symptoms persist and 

become so debilitating for the person that they can no longer function as well in life as 

they could before the traumatic event. Researchers have extensively studied PTSD and 

its neuronal substrates. Perhaps unsurprisingly, they have pinpointed altered function 

and structure in areas related to the threat processing: prefrontal cortex and amygdala 

(see reviews (Rauch et al., 2006, Liberzon and Sripada, 2007)). These results indicate 

that even just one event can radically alter intrasubject variability and threat processing 

in the brain. 

 

1.4.2 Impact of Age on the Brain Throughout a Lifetime 

 

While PTSD is an extreme example of intrasubject variability sparked by one 

event, all brains undergo structural and functional changes related to ageing. Age 

related brain changes are a universal source of intrasubject variability. Recent work has 

shown that the prefrontal cortex is particularly sensitive to age – only reaching full 

potential in the early 20s (Gogtay et al., 2004). Additionally, as the brain ages, there are 
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declines in cognitive performance (Jones and Conrad, 1933, Salthouse, 2009) and many 

structures see age-related atrophy (Sowell et al., 2003). 

 

1.5 BEHAVIOR AND FMRI 

 

Many studies in cognitive neuroscience research use functional magnetic resonance 

imaging (FMRI) as a way to measure differences in brain activation that occur during 

different behavior tasks. The empirical research presented in this thesis correlates 

variability in behavior across a task with variability in brain activation across a task for 

each subject individually.  

 

1.5.1 Timing in FMRI vs Behavior 

 

FMRI is a technology that has changed how we view the brain, precisely 

because it allows us to actually view what is going inside the brain in real time. While 

this technology has given us detailed insight into where things are happening in the 

brain, it unfortunately only gives broad insight as to when things happen in the brain. 

The temporal limitations of FMRI mean that data cannot capture responses directly 

related to neuronal firing, which is known to peak and resolve long before a single 

snapshot of the brain in FMRI has been acquired. This is not a huge limitation when 

one wants to know what brain areas are generally involved in a task – as FMRI is 

measuring how these areas gather more oxygenated blood and therefore we know the 

general areas where large numbers of neurons are firing because those neurons are 

using oxygen. But if one wants to better understand what is happening directly in 
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relation to behavior, FMRI is limiting. Fast behavioral responses, like those responses 

found in the research presented in this thesis, generally happen in less than one second. 

This means the subject has not only visually recognized the object, but they have also 

started and completed a motor response based on how the visual object was processed – 

all within one second. One complete snapshot (or volume) of the whole brain has not 

even been acquired by FMRI by the time the behavioral response is made. For the 

empirical work presented in this thesis, a complete snapshot of the brain is collected 

every two seconds.  

The neural firing related to the processing of the visual object and the motor 

response creates an increase of oxygen in the blood surrounding these neurons. Oxygen 

is slow to return to homeostatic levels in the blood in that area, which is how 

researchers can capture areas where large numbers of neurons have fired recently. 

However, FMRI has lowered sensitivity when it comes to smaller populations of 

neurons firing and also changes occurring rapidly. FMRI can accurately locate an area 

where a large population of neurons has recently fired, but it cannot tell you about the 

changes in firing occurring within quick spurts of time, namely less than 1-2 seconds, 

or in smaller areas, namely <1 mm
3
 (Heeger and Ress, 2002, Logothetis, 2008) . 

 

1.5.2 Difference between correlation and causation 

 

Another additional limitation of studying how FMRI is related to behavior is 

that we can only make correlational and not causal statements using functional imaging 
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data. We are unable to state that the brain activation patterns we see during a particular 

set of behaviors cause that particular set of behaviors, only that those areas are activated 

during the behavior at that specific time. Critics have questioned how much can be 

inferred from FMRI research, as the results are limited to correlations found in a 

specific laboratory setting and do not show that specific areas cause behavior (Hajnal et 

al., 1995, Uddin et al., 2006). However, other FMRI researchers argue that functional 

imaging results are an important tool to better understanding how the brain functions 

but only when such experiments are designed and interpreted correctly (Sarter et al., 

1996, Weber and Thompson-Schill, 2010) and/or combined with knowledge from other 

sources and other techniques (Silvanto and Pascual-Leone, 2012). 

We agree that FMRI is only one piece of the puzzle. The work presented in this 

thesis focuses on behavioral variability on specific tasks and looks for correlations with 

this variability and FMRI activation as well as personality measures. We believe taking 

this multimodal approach paints a more comprehensive picture of intersubject 

variability than FMRI presented alone. 

 

 

1.6 THREATENING FACES 

 

Threatening faces are one of the most frequently used visual threatening stimuli 

in the laboratory setting. This is for a good reason, as threatening faces are important 

social cues for humans; they represent either direct or indirect threats. Fearful faces 

represent an indirect threat to the viewer, because the person displaying the fearful 
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expression is afraid of something in the surrounding environment. Angry faces with a 

direct gaze indicate a direct threat to the viewer, because the person displaying the 

angry expression is upset with the viewer. Both emotions are easily distinguished from 

each other (see Figure 2 for an example), and these differences have been eloquently 

quantified by Ekman and Friesen (1978) using the Facial Action Coding System 

(FACS). Fearful faces are generally associated with a raising of the eyebrows and upper 

lids and an opening of the mouth. The configuration of a fearful face not only allows 

the person displaying this emotion to communicate their fearfulness to others, but it 

also allows that person to gather more sensory information about the potential threat 

through opened eyes, opened mouth, and opened nostrils (Susskind et al., 2008). Angry 

faces are generally associated with a lowering of the brows, raising of the upper lids, 

narrowing of eyes, and pressing together of the lips. While research on the 

physiological function of an angry face is lacking (Shariff and Tracy, 2011), the 

communicative function of an angry face is to convey dominance to others (Marsh et 

al., 2005a, Marsh et al., 2005b, Wilkowski and Meier, 2010). 
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Figure 2. Examples of faces displaying fear and anger. The top panel is the same 

female actor displaying the two facial emotions. The bottom panel is the same male actor 

displaying both emotions as well. Faces are from the Karolinska Directed Emotional Faces 

(KDEF) set (Lundqvist, 1998) and have been masked to remove hair and other extraneous 

visual information. 

 

 

1.7 FACE PROCESSING IN THE HUMAN BRAIN 
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The human brain has a localized system focused on processing faces that is 

centered around the fusiform face area (FFA) (Kanwisher et al., 1997, Haxby et al., 

2000). The FFA is a strip of occipital cortex that has been shown to reliability and 

consistently activate in response to face images. Additionally, the inferior occipital 

gyrus (referred to as the occipital face area, OFA) and posterior superior temporal 

sulcus (pSTS) have also been shown to reliability and consistently activate in response 

to faces (Rossion et al., 2003, Ishai et al., 2005). These areas along with the FFA create 

the core system of face processing (Haxby et al., 2000, Gobbini and Haxby, 2007). It 

has been shown that threatening faces enhance processing within this system (Morris et 

al., 1996, Vuilleumier et al., 2001, Pessoa et al., 2002).  

 

 

1.8 INTERSUBJECT VARIABILITY IN THE PROCESSING OF 

THREATENING FACES 

  

The privileged status of threatening face stimuli can either distract from or 

enhance performance on a task. The level of distraction or enhancement differs among 

individuals, even healthy subjects.  

 

1.8.1 Intersubject Variability in How Threatening Faces Distract 

Attention and Decrease Performance 

 

First, threatening faces can distract the brain from task-relevant information. 

Ladouceur et al., (2009) demonstrated that healthy individuals scoring high on a trait 
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anxiety measure were less able to filter out distracting threat information (fearful faces) 

as evidenced by increased reaction times on a task containing fearful face distracters 

compared to a task containing neutral face distracters.  Peers & Lawrence (2009) found 

that subjects scoring low on attentional control were more distracted by fearful faces 

than subjects scoring high on attentional control. However, this distraction effect was 

independent of anxiety levels. These studies underscore that some healthy individuals 

have difficulty disengaging their attention from threatening faces, and this effect can be 

modulated through an interaction of anxious personality traits, perceptual load, and 

attentional control that is not well understood. 

 

 

1.8.2 Intersubject Variability in How Threatening Faces Attract 

Attention and Increase Performance 

 

The second way that threatening face stimuli selectively affect processing is 

through enhancing performance on tasks. One example is the classic dot probe 

paradigm where subjects receive a threatening face immediately preceding a target and 

this target is either placed in the same location as the face or in the opposite visual field. 

If the threatening face is in the same visual field as the target, high anxiety patients 

have been found to respond faster to the target (Bradley et al., 1999). Additionally, 

healthy individuals with higher levels of anxiety showed this same bias towards targets 

presented following a threatening face (Mogg & Bradley, 1999). However, in another 

study of healthy individuals, a bias away from angry faces was found as the number of 
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trials increased, and this bias was associated with increased activation in the 

occipitotemporal cortex (Monk et al., 2004). These studies further demonstrate the 

variability healthy adults display during tasks involving threatening faces. However, 

threat was not task-relevant in these paradigms. Task-relevant threat is more akin to the 

type of threat we approach in our daily lives, and therefore investigating this type of 

threat may be a better model to simulate how subjects interact with their everyday 

environment.  

In the realm of task-relevant threat, enhanced detection of threatening faces in 

healthy individuals has been documented during tasks where subjects searched a visual 

array for a threatening face (Hansen and Hansen, 1988) (Fox et al., 2000). However, 

others studies have found no such enhancement for threatening faces in healthy 

individuals (Purcell et al., 1996, Juth et al., 2005) , adding more evidence to support the 

claim that there is variation in how healthy adults process threatening faces. Emerging 

evidence from recent non-spatial threatening face detection tasks further support this 

claim. Healthy subjects with greater anxiety were also better able to correctly identify a 

fearful face when less emotional intensity is shown in that face (Richards et al., 2002), 

and they were more accurate at categorizing fearful faces (Winton et al., 1995, 

Surcinelli et al., 2006).   

 

 

1.8.3 How To Quantify Intersubject Variability? 
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These studies demonstrate that not only do threatening faces have a processing 

advantage in the brain (resulting in either distraction or enhanced performance), but that 

this advantage is variable among healthy individuals. However, these studies have 

either preclassified subjects in advance based on anxiety level or they have directly 

correlated personality measures with FMRI activation. These two approaches largely 

ignore the continuum of intersubject behavioral variability.  

One group of researchers has taken a different approach and has used 

behavioral variability to guide analyses. Pessoa and colleagues used signal detection 

theory to classify their subjects into one of two groups: subjects who were better than 

chance at detecting briefly presented fearful faces and those who were no better than 

chance (Pessoa et al., 2005, Pessoa et al., 2006, Japee et al., 2009). They found that 

subjects who were better than chance, compared to those who were not, showed 

increased activity in the amygdala and in ventral visual cortex. These studies 

demonstrate that there is a difference in neural activation between healthy adults who 

can detect the presence of fearful faces and healthy adults who cannot, but it is still 

unclear what neural mechanisms underlie behavioral variability to process fearful faces 

in healthy adults. 

These studies point to the possibility that healthy adults can be categorized and 

studied based on their differences in behavior to threatening faces. If one could apply 

this idea to the study of threatening faces, could we use the continuum of behavioral 

responses within a healthy adult population to guide analyses and paint a more 



 

20 

 

comprehensive picture? If threatening faces were presented in different contexts, could 

we learn even more about the threat processing system, how it varies among healthy 

individuals, and how it relates to personality? 
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2 AIMS 

 

AIM 1: TO QUANTIFY BEHAVIORAL VARIABILITY DURING FEARFUL 

FACE PROCESSING TASKS 

 

SPECIFIC AIMS: 

 Quantify the reaction time (RT) bias to fearful faces versus neutral 

faces across varying expectation conditions for each subject 

individually (Study I) 

 Quantify the repetition speed advantage for repeated presentations of 

fearful faces and neutral faces separately for each subject individually 

(Study II) 

 Quantify the fearful face detection sensitivity for each subject 

individually (Study III) 

AIM 2: TO INVESTIGATE THE INTERACTION OF BEHAVIORAL 

VARIABILITY AND PERSONALITY 

 

SPECIFIC AIMS: 

 Investigate how personality measures related to threat processing 

interact with: 

o The RT bias to fearful faces in varying expectation contexts 

(Study I) 

o The repetition advantage for fearful faces (Study II) 

o Fearful face detection sensitivity (Study III) 
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AIM 3: TO INVESTIGATE THE NEURAL UNDERPINNINGS OF 

BEHAVIORAL VARIABILITY FOR FEARFUL FACES  

 
SPECIFIC AIMS: 

 Investigate the neural sources of:  

o The RT bias to fearful faces in varying expectation contexts 

(Study I)  

o The repetition advantage for fearful faces (Study II) 

MAIN QUESTIONS  

Given the lack of previous research investigating the natural spectrum of variability in 

behavior during the processing threatening faces in healthy adults, we aimed to 

quantify this variability and explore its relationship to personality and neural activation 

(see Figure 3 for schematic).  To do this we quantified behavioral variability on three 

different fearful face processing tasks where threat was task relevant: 1) expectation, 2) 

repetition, and 3) detection. We then used this behavioral variability to guide our 

analyses of personality and neural activation.  
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Figure 3. Schematic outlining the aim of this thesis. To better understand individual variability 

in the processing of threatening faces, we used variability in behavior to drive our analyses. We 

then took this variability and investigated its connection to personality and brain activation 

during the behavioral task (as measured by FMRI activation).  This unique approach allowed us 

to fully study variability among healthy adults.  
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3 THESIS ANATOMY 

 

  

This thesis contains 3 empirical studies that are presented in detail. 
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4 METHODS 

 

4.1 SUBJECTS 

 

For Studies I and II, twenty-four right-handed healthy volunteers (15 females; 

mean age 28 years ±6.6 SD, standard deviation) participated.  For Study III, twenty-one 

right-handed healthy volunteers (16 females; mean age 25 years ±7.6 SD) participated. 

All subjects gave written informed consent in accordance with protocols approved by 

the National Institute of Mental Health Institutional Review Board. Additionally, all 

subjects had no past neurological or psychiatric history as assessed by a physician.  

 

4.2 PERSONALITY ASSESSMENTS 

  

All subjects completed the Spielberger State Trait Anxiety Inventory (STAI) at 

the beginning of the experiments (Spielberger and Gorsuch, 1983). For Studies I and II, 

a subset of subjects completed two additional questionnaires measuring personality 

types related to anxiety: 16/24 completed the NEO Five Factor Inventory (NEO-FFI), 

and 13/24 completed the Harm Avoidance subscale of the Tridimensional Personality 

Questionnaire (TPQ-HA) (Cloninger et al., 1991, Costa and McCrae, 1992). For Study 

III, all subjects (N=21) completed the assessments outlined above as well as the 

Liebowitz Social Anxiety Scale: Self Report  (LSAS-SR) (Liebowitz, 1987). 

 

4.3 STUDY DESIGN 
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 Studies I and II used different portions of the same overall event-related 

FMRI experiment. Subjects were instructed to categorize each face as fearful or neutral 

as accurately and quickly as possible by pressing one of two buttons. To manipulate 

expectation of fear, we presented fearful and neutral faces in runs containing different 

ratios of the two face types. There were three different expectation run types: 1) runs 

containing 80% fearful faces and 20% neutral faces (80F:20N); 2) runs containing 20% 

fearful faces and 80% neutral faces (20F:80N); and 3) runs containing 50% fearful 

faces and 50% neutral faces (50F:50N).  Each run contained 50 trials (for schematic of 

a single trial see Figure 4). At the beginning of each trial, the white fixation cross 

turned red (cue) for 250 ms.  Four seconds (s) later a face was presented centrally for 

250 ms. The cue itself indicated only the upcoming presentation of a face, and not its 

emotional content. Subjects were verbally and visually notified of the expectation run 

type (i.e. 80F:20N, 50F:50N, or 20F:80N) at the beginning of each run.  

 

 

 

 

 

  

 

Figure 4. Experimental Design for Studies I and II. 
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Study I only used the first presentation of a given face type presented after the opposing 

face type. This method allowed us to separate out effects due to expectation from 

effects due to repetition. Study I focused solely on the effect of expectation and Study 

II focused solely on the effect of repetition.  During the 80F:20N and the 20F:80F runs, 

the 80% face type was presented repeatedly in a row. For Study I, we only investigated 

the 1
st
 presentation of a face type following the opposing face type; therefore repeated 

80% and 50% face types were not included in the analysis. For Study II, we only 

investigated the 1
st
, 2

nd
, and 3

rd
 repetitions of the 80% face type.  See Figure 5 for a 

schematic.  

 

Figure 5. Experimental Design for Study II. 

 

For Study III, we used the same behavioral paradigm as a previous study 

(Pessoa et al., 2006). Each trial began with a white fixation cross shown for 300 ms, 

followed by a 50 ms blank screen, followed by a pair of faces presented consecutively 

(see Figure 6 below). The first of the two faces was either a fearful, happy, or neutral 

…..

…..

80% Fear, 20% Neutral Run

1st Unexpected 

Neutral Face

1st Expected 

Fearful Face
2nd Expected 

Fearful Face
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target face presented for 33 ms. The second of the two faces was always a neutral face 

presented for 117 ms and served as a mask for the first face. Subjects were instructed to 

press a button denoted as “fear” when they perceived the first face to be fearful and to 

press another button denoted as “no fear” when they did not perceive the first face to be 

fearful. Subjects were also instructed that the first face would appear rapidly and the 

pair of faces could appear as one single face. They were asked to make the fear/no fear 

decision as fast and as accurately as possible, and then wait for a confidence rating 

screen to appear. A confidence rating screen appeared after every pair of faces and was 

presented for 1.5 s. Subjects were asked to rate their decision of fear/no fear by pressing 

1 of 3 buttons: 1 = low confidence, 2 = middle confidence, and 3 = high confidence. 

Subjects had 1.5 s to make the “fear/no fear” decision and another 1.5 s to rate their 

confidence in that decision.  The total trial duration was 3.5 s.  Each subject was shown 

54 images of each target face type (fearful, happy, and neutral).  

 

Figure 6. Experimental Design for Study III. 
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4.4 STIMULI 

 

The stimuli consisted of faces chosen from the Karolinska Directed Emotional 

Faces (KDEF) set (Lundqvist, 1998), as well as from a set of faces developed and 

validated at the National Institute of Mental Health (NIMH) (Ishai et al., 2004). A 

portion of faces from Study III were also obtained from the Ekman set (Ekman, 1976).  

 

4.5 BEHAVIORAL ANALYSIS 

 

4.5.1 Behavioral Analysis Study I 

 

For Studies I and II, accuracy ratings were high (>85% correct for each 

stimulus type for each subject), so the focus of our behavioral analysis was reaction 

time (RT). All RT statistical results were computed using a repeated measures 2 x 3 

ANOVA (ANalysis Of VAriance) (Valence x Expectation Run Type) and post-hoc 

analyses were conducted using a Fisher Least Significant Differences Test.  

To quantify RT differences across our subject population, we created a Valence 

Bias measure for each subject which was calculated from the RTs to fearful faces in all 

three expectation run conditions subtracted from the RTs to neutral faces in all three 

expectation run conditions.  The cumulative Valence Bias measure used was calculated 

as: 
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Valence Bias =  

RT [(80F:20N) Neutral – Fearful]  

+ RT [(50F:50N) Neutral – Fearful]  

+ RT [(20F:80N) Neutral – Fearful] 

In addition to the Valence Bias measure, which showed a continuum of scores across 

subjects (continuum shown in Figure 7A), we also categorized the subjects into one of 

two groups. Subjects with a Valence Bias greater than zero were categorized as “Fear 

Fast Responders”, being faster overall to categorize fearful compared to neutral faces. 

Subjects with a Valence Bias less than zero were categorized as “Fear Slow 

Responders”, being slower overall to categorize fearful compared to neutral faces. 

4.5.2 Behavioral Analysis Study II 

 

 The group analysis RT statistical results were computed using a 2x3 repeated 

measures ANOVA (Valence x Repetition) and post-hoc analyses were conducted using 

a Fisher Least Significant Differences Test.  

Just as in Study I we were interested in quantifying behavioral differences 

across our healthy cohort. To do this we created a Repetition Advantage measure for 

both fearful and neutral faces separately. The behavioral advantage reported in the 

literature for repeated presentations of a stimulus have utilized the first presentation of a 

visual stimulus as a benchmark to compare to the subsequent repeated presentations. 

Following this logic, our behavioral measure of the repetition advantage for the second 

and third presentations of the expected face type were compared to the first 
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presentation of the face type.  This allowed us to index the magnitude of the speed 

advantage for repeated presentations within each subject for second and third 

repetitions separately. Therefore, for each subject, there were four separate behavioral 

indices calculated: 1) Second Fearful Face Repetition Advantage, 2) Second Neutral 

Face Repetition Advantage, 3) Third Fearful Repetition Advantage, and 4) Third 

Neutral Face Repetition Advantage. Each index was simply calculated by subtracting 

the RT to the second or third repetition from the first presentation for fearful and 

neutral faces 

Table 1. How the four different behavioral indices were calculated for Study II. 

 

4.5.3 Behavioral Analysis Study III 

 

For Study III data were analyzed using receiver operating characteristic (ROC) 

curves (Green and Swets, 1966, Macmillan and Creelman, 1991). We created ROC 

curves for each subject individually in a manner previously described (Pessoa et al., 

2005, Pessoa et al., 2006, Japee et al., 2009). These curves were calculated using the 

probability of reporting ‘fear’ given that the target was not a fearful face [P(‘Fear’|not 

Behavioral Index Calculation

Second Fearful Face Repetition Advantage
RT (80F:20N 1st Fearful Face –

80F:20N 2nd Fearful Face)

Second Neutral Face Repetition Advantage
RT (20F:80N 1st Neutral Face –

20F:80N 2nd Neutral Face)

Third Fearful Repetition Advantage
RT (80F:20N 1st Fearful Face –

80F:20N 3rd Fearful Face)

Third Neutral Face Repetition Advantage
RT (20F:80N 1st Neutral Face –

20F:80N 3rd Neutral Face)
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Fear), i.e. false alarm]and the probability of reporting ‘fear’ given that the target was a 

fearful face [P(‘Fear’|Fear), i.e. hit] for every confidence rating (three levels for 

reporting ‘fear’ and three for reporting ‘no fear’).  We used these six different 

proportions of false alarms and hit rates to create the ROC curve. We calculated each 

subject’s fear detection sensitivity (A’) by measuring the area under the ROC curve. 

 

4.6 FMRI ACQUISITION 

 

For Studies I and II, whole brain MR images were collected on a 3T GE Signa 

scanner (GE Medical Systems) using an 8-channel GE head coil. Standard parameters 

for echoplanar imaging data were used, including: FOV 200 mm, 64 x 64 matrix, 25 

axial slices of 5-mm thickness, 3.125 mm in-plane resolution, 2.0 s TR, 30 ms TE, 90º 

flip angle. MP-RAGE scans, collected in the same session, were acquired for 

anatomical comparison using the following parameters: FOV 22.0 mm, 256 x 256 

matrix, minimum full TE, 1.2-mm slice thickness.  

 

4.7 FMRI ANALYSIS 

 

All imaging data were preprocessed, analyzed, and displayed with the AFNI 

(Cox, 1996) software package. Individual subject data were preprocessed as follows: 

slice timing correction, volume registration, smoothing via a 6-mm full width half max 

filter, normalization, and applying a six-parameter rigid motion correction. 
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Next, a variable shape deconvolution model was computed for each subject 

individually. In order to model the fixed length expectation (cue) period that preceded 

every face stimulus as well as the response period that followed every face, individual 

subject imaging data were deconvolved using a 16-s tent function. This tent function 

was time-locked to the TR (i.e. a stick function with 8 sticks), started 4 s before the face 

in order to model the onset of the cue, and concluded 12 s after the presentation of the 

face. This analysis method allowed us to estimate the BOLD (Blood-Oxygen-Level-

Dependent) signal at each timepoint in the trial individually. The six different stimulus 

types (i.e. 2 valences x 3 expectation runs) were modeled separately. Additionally, we 

modeled the 2nd, 3rd, and 4th occurrences of each face type (i.e. repetitions in a train of 

stimuli). In preparation for the group analysis, each subject’s individual beta weights 

were resampled to a 3 x 3 x 3 mm voxel size and transformed to Talairach space 

(Talairach and Tournoux, 1988) using AFNI. 

For the group analysis, beta weights for each subject were entered into a 

correlation analysis in order to determine which brain areas (across subjects) had 

activations that correlated with the measures of behavioral variability calculated for 

each subject.  

For Study I, the Valence Bias (i.e. the measure of RT bias towards either face 

type, fearful or neutral) was correlated with each of the six stimulus types (two face 

types and three expectation run conditions) at every timepoint in the trial separately. 

Data were cluster-corrected for multiple comparisons across all voxels and for the 
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multiple tests performed (8 timepoints x 3 expectation runs x 2 valences = 48 tests).  

This was achieved using a Monte Carlo simulation (via AFNI’s AlphaSim program) 

with an individual voxel threshold p-value of 0.001 and corrected to a p-value of 0.01, 

resulting in a cluster threshold of 33 voxels (cluster volume of 891 mm
3
). In order to 

better understand the interaction between Valence Bias and time, regions-of-interest 

(ROIs) were created using the peaks from clusters in the correlation analysis. These 

ROIs were created using a 5-mm radius sphere and timecourses for the two Valence 

Bias groups (i.e. Fear Fast and Fear Slow Responders) extracted from the 20F:80N 

expectation runs, which were the only expectation runs to yield significant correlations 

of Valence Bias and brain activation. We performed post-hoc pair-wise t-tests for each 

timepoint in the waveforms extracted from the ROIs. These t-tests were Bonferroni 

corrected for the multiple tests performed (i.e. 8 timepoints x 2 face types = 16 tests). 

For Study II, the four RT advantage indices were correlated with their 

associated contrasts, e.g. the 2
nd

 fear face RT advantage [i.e., RT(1
st
 Fear – 2

nd
 

Fear)]was correlated directly with the contrast between activation evoked by the 1
st
 

Expected Fearful Face and activation evoked by the 2
nd

 Fearful Face [i.e., % Signal 

Change (1
st
 Fear – 2

nd
 Fear)]. This analysis was done at each timepoint individually as 

it was for Study I. Data were cluster-corrected for multiple comparisons across all 

voxels and for the multiple tests performed (8 timepoints x 2 valences x 3 repetitions = 

48 tests) as described above for Study I.  
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5 RESULTS 

 

 

5.1 VARIABILITY IN BEHAVIOR 

 

5.1.1 Behavioral Variability for Fearful Faces Presented in Varying 

Expectation Contexts 

 

The average Valence Bias for our 24 subjects was 22.22 ± 204.11 (SD) and 

ranged from -369.34 to +366.04; this range indicated that overall some subjects were 

faster to respond to fearful faces but others were slower (all subject population 

demographics found in Table 2). To further explore the relationship between Valence 

Bias and FMRI signal changes within the 20F:80N expectation runs, we created two 

different groups: Subjects with a Valence Bias greater than zero were categorized as 

“Fear Fast Responders”, being faster overall to categorize fearful compared to neutral 

faces (N=15), and subjects with a Valence Bias less than zero were categorized as 

“Fear Slow Responders”, being slower overall to categorize fearful compared to neutral 

faces (N=9) (see Figure 7A for illustration of the Valence Bias variability) (subject 

population demographics by group found in Table 3) .  

Figure 7B shows the RT data for the three different expectation run types for 

the two groups. While the Expectation Run x Valence x Group interaction was not 

significant [F(2,44) = 0.833, p = 0.441], the interaction of Valence and Group was 

[F(1,22) = 51.10, p = 3.62x10
-7

]. Post-hoc analyses revealed that the RTs for the Fear 

Fast and Fear Slow Responders were significantly different for fearful faces (p = 0.04); 
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Fear Fast Responders were faster to respond to fearful faces and Fear Slow Responders 

were slower to respond to fearful faces. However, RTs for neutral faces were not 

significantly different between the two groups (p = 0.72). Therefore, while the two 

groups were established based on the overall difference in RT between fearful and 

neutral faces [Fear Slow Responders were faster to respond to neutral than fearful faces 

overall (p = 4.5x10
-5

) and Fear Fast Responders were faster to respond to fearful than 

neutral faces overall (p = 3.9x10
-5

)], only the response to fearful faces was significantly 

different between the two groups.  

Figure 7. Valence Bias Group Classification and Behavior from Study I.
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 Table 2. Demographics of Subject Population from Study I 

All Subjects N = 24 

Mean Reaction Times in milliseconds 

80F:20N Fear     820.10 ± 118.75 

80F:20N Neutral   925.87 ± 126.92 

50F:50N Fear   877.25 ± 135.01 

50F:50N Neutral   871.84 ± 110.09 

20F:80N Fear      899.95 ± 134.05 

20F:80N Neutral  821.81 ± 103.10 

 

Age                                                                                                27.8 ± 6.6 

 

Female:Male Ratio                                                                        15:9 

 

Valence Bias Scores 22.22 ± 204.11 

 

Mean Personality Measure Scores (N = number of subjects with scores) 

 STAI (N = 24) 

Trait Anxiety        32.2 ± 9.3 

State Anxiety       28.6 ± 8.5 

 NEO FFI (N=16) 

Neuroticism         13.6 ± 8.0 

Extraversion        32.4 ± 7.0 

Openness to Experience   33.7 ± 5.0 

Agreeableness     32.4 ± 5.7 

Conscientiousness  36.5 ± 5.6 

 TPQ-HA (N=13) 

Harm  Avoidance     9.9 ± 5.9 

HA 1: Anticipatory worry & pessimism  2.8 ± 2.2 

HA 2: Fear of Uncertainty  3.5 ± 1.5 

HA 3: Shyness with strangers  1.8 ± 1.8 

HA 4: Fatigability & asthenia  1.8 ± 2.0 

 

Mean Percentage Correct 

80F:20N Fear     95 ± 5% 

80F:20N Neutral   88 ± 9% 

50F:50N Fear   91 ± 8% 

50F:50N Neutral   95 ± 5% 

20F:80N Fear      87 ± 10% 

20F:80N Neutral  96 ± 5% 
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Table 3. Demographics of Subject Population by Valence Bias Group from Study I 

 

Demographics by Valence Bias Group 

 Fear Fast Responders 

(N = 15) 

Fear Slow Responders  

(N = 9) 

Mean Reaction Times in milliseconds 

80F:20N Fear     775.45 ± 97.46 894.53 ± 118.12** 

80F:20N Neutral   913.23 ± 145.33 946.94 ± 92.49 

50F:50N Fear   817.54 ± 106.67 976.76 ± 121.11** 

50F:50N Neutral   865.07 ± 119.07 883.13 ± 99.01 

20F:80N Fear      848.87 ± 108.10 985.09 ± 134.78** 

20F:80N Neutral  815.18 ± 97.09 832.86 ± 117.66 

   

Age  27.9 ± 8.1 27.4 ± 3.1 

   

Female:Male Ratio  10:5 5:5 

   

Valence Bias Scores 151.63 ± 118.66 -193.46 ± 106.80 

 

Mean Personality Measure Scores (N  =  number of subjects with scores) 

 STAI (N  =  24)   

Trait Anxiety        32.4 ± 9.8 (N = 15) 31.8 ± 8.8 (N = 9) 

State Anxiety       29.5 ± 9.3 27.1 ± 7.3 

 NEO FFI (N = 16) 

Neuroticism         15.3 ± 9.1 (N = 10) 10.8 ± 5.2 (N = 6) 

Extraversion        31.3 ± 6.2 34.3 ± 8.4 

Openness to Experience   34.7 ± 4.9 32.0 ± 5.2 

Agreeableness     31.5 ± 5.9 33.8 ± 5.6 

Conscientiousness  36.4 ± 6.2 36.7 ± 5.0 

 TPQ-HA (N = 13) 

Harm  Avoidance     11.9 ± 5.8  (N = 9) 5.5 ± 3.7 (N = 4) 

HA 1: Anticipatory worry & pessimism  3.2 ± 2.3 2.0 ± 1.8 

HA 2: Fear of Uncertainty  4.1 ± 09 2.0 ± 1.6** 

HA 3: Shyness with strangers  1.9 ± 2.1 1.5 ± 1.0 

HA 4: Fatigability & asthenia  2.7 ± 1.9 0 ± 0.0* 

 

Mean Percentage Correct 

80F:20N Fear     96 ± 5% 93 ± 5% 

80F:20N Neutral   87 ± 11% 89 ± 8% 

50F:50N Fear   91 ± 9% 90 ± 7% 

50F:50N Neutral   95 ± 5% 96 ± 4% 

20F:80N Fear      86 ± 11% 89 ± 9% 

20F:80N Neutral  97 ± 5% 94 ± 4% 
 

 

 

* p < 0.05  ** p < 0.01,  t-test uncorrected 
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5.1.2 Behavioral Variability for Repeated Fearful Faces 

For Study II, we first looked to see if there was an overall repetition advantage 

for fearful faces versus neutral faces. When all 21 subjects were grouped together, there 

was an interaction between valence and repetition [F(2,46) = 6.37, p=0.04; Figure 8].  

Post-hoc analyses revealed a selective repetition advantage for fearful faces compared 

to neutral faces, but only for the 2
nd

 repetition (1
st
 fear compared to 2

nd
 fear : p=0.02; 

2
nd

 fear compared to 2
nd

 neutral : p 0.0001).  

 

Figure 8. Overall reaction time for repeated fearful and neutral faces for all subjects 

from Study II. 

Next we wanted to make sure that the repetition advantage for fearful faces for 

individual subjects was not purely a consequence of a repetition advantage for all 

repeated faces, regardless of valence. To test for this effect, we correlated the 2
nd

 

Fearful Face RT Advantage with the 2
nd

 Neutral Face RT Advantage and did the same 
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thing for 3
rd

 faces as well. In both 2
nd

 and 3
rd

 RT Advantages, we found no significant 

correlation between the RT Advantage for fearful faces and the RT Advantage to 

neutral faces [(2
nd

 face : r=0.30, p=0.16; Figure 9)(3
rd

 face: r=0.23, p=0.28; Figure 10)]. 

These results reveal that the overall speeded response to repeated fearful faces was 

independent from the overall speeded response to neutral faces. Therefore, the RT 

Advantage for repeated fearful faces represents the selective advantage for repeated 

fearful faces. 

 

Figure 9. The 2
nd

 Neutral Face RT Advantage behavioral index plotted against the 2
nd

 Fearful 

Face RT Advantage behavioral index. 

 

RT Adv for both 

Fear and Neutral

No RT Adv for 

either Fear or 

Neutral

RT Adv for Neutral 

but not Fear

RT Adv for Fear 

but not  Neutral
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Figure 10. The 3rd Neutral Face RT Advantage behavioral index plotted against the 3
rd

 Fearful 

Face RT Advantage behavioral index. 

 

5.1.3 Behavioral Variability for Fearful Face Detection 

  

To quantify fear detection sensitivity we computed the area under the ROC 

curve (A’) for each subject (See ROC curves plotted for all 21 subjects in Figure 11; 

the center diagonal line represents chance performance). The average A’ was 0.73±0.11 

(0.52-0.93). Only two subjects had A’ values that were not significantly different from 

0.5 (the value expected by chance). Therefore, the vast majority of our subjects (19/21) 

could reliably detect a fearful face presented for 33 ms. Because we wanted to assess 

variability in fear detection sensitivity, we correlated A’ values among our subjects 

with personality traits related to threat processing. 

RT Adv for both 

Fear and Neutral

No RT Adv for 

either

RT Adv for 

Neutral but 

not Fear

RT Adv for Fear 

but not  Neutral
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Figure 11. ROC curves for all 21 subjects in Study III plotted together.  

 

5.2 BEHAVIOR AND PERSONALITY 

 

5.2.1 Behavioral Variability for Fearful Face Expectation and 

Personality Traits 

 

We looked to see if Valence Bias correlated with our personality measures 

(correlation results found in Table 4). Valence Bias did not correlate with State 

Anxiety, Trait Anxiety, or with the five personality traits measured by the NEO-FFI. 

Valence Bias did, however, correlate positively with measures of Harm Avoidance for 

the 13 subjects who completed this questionnaire (r = 0.79, p < 0.0014; see Table 4). 

Those subjects who responded faster to fearful faces were more harm avoidant. 

Although Valence Bias did not correlate with State Anxiety, Trait Anxiety, or 

Neuroticism, these three personality measures correlated positively with Harm 
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Avoidance [State Anxiety (r = 0.84, p < 0.0003), Trait Anxiety (r = 0.85, p < 0.0002), 

and Neuroticism (r = 0.85, p < 0.002)]. Therefore, subjects scoring higher on the 

overall Harm Avoidance scale also scored higher on other anxiety-related scales.  

 
Valence 

Bias 

STAI State 

Anxiety 

STAI Trait 

Anxiety 

NEO-FFI 

Neuroticism1 

NEO-FFI 

Extraversion1 

NEO-FFI 

Openness to 

Experience1 

NEO-FFI 

Agreeableness1 

NEO-FFI 

Conscientiousness1 

Harm 

Avoidance2 
HA12 HA22 HA32 HA42 

Valence Bias x 
 

 

State Anxiety 0.32 x  

Trait Anxiety 0.20 0.75 X  

Neuroticism1 0.45 0.70 0.91 X  

Extraversion1 -0.38 -0.59 -0.75 -0.78 x  

Openness to 

Experience1 
0.33 0.42 0.26 0.42 -0.32 x  

Agreeableness1 -0.03 -0.32 -0.18 -0.08 0.48 -0.03 X  

Conscientiousness1 -0.12 -0.53 -0.58 -0.55 0.38 -0.19 0.24 x  

Harm Avoidance2 0.79 0.84 0.85 0.85 -0.83 0.48 -0.19 -0.46 x  

HA12 0.55 0.60 0.79 0.82 -0.70 0.59 -0.04 -0.35 x x  

HA22 0.84 0.54 0.47 0.56 -0.60 0.44 -0.01 -0.02 x 0.73 x  

HA32 0.43 0.83 0.85 0.78 -0.77 0.33 -0.27 -0.73 x 0.61 0.38 x  

HA42 0.70 0.68 0.53 0.50 -0.55 0.16 -0.27 -0.33 x 0.28 0.50 0.50 x 

 

Table 4: Behavior and Personality Assessment Correlations for Study 1.  

1
R values found in these cells were calculated with data from sixteen subjects 

2
R values found in these cells were calculated with data from thirteen subjects 

 

 

 

 

 

5.2.2 Behavioral Variability for Repeated Fearful Faces and Personality 

Traits 

 

The RT Advantage for repeated fearful faces correlated with State and Trait 

Anxiety EXCLUSIVELY [(2
nd

 Fear RT Advantage x State Anxiety: r= -0.44, p=0.03; 
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A

DC

B

Figure 12A), (2
nd

 Fear RT Advantage x Trait Anxiety: r= -0.44, p=0.03; Figure 12B)]; 

this correlation was not seen for neutral faces (Figure 12C and 12D). Additionally, the 

RT Advantage measure for both fearful and neutral faces was not found to correlate 

with other personality measures.  

 

Figure 12. State and Trait Anxiety plotted against the 2
nd

 and 3
rd

 RT Advantage for Fearful and 

Neutral Faces. 
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5.2.3 Behavioral Variability for Fearful Face Detection and Personality 

Traits 

 

Personality measurement means and spreads (Table 5) reflected the previously 

reported values for healthy adults: state anxiety (our sample: 30.10±8.62; previous: 

36.17±10.96) and trait anxiety (our sample: 35.95±9.46; previous: 36.15±9.53) 

(Spielberger and Gorsuch, 1983), neuroticism (our sample: 16.67±8.87; previous: 

15.57±7.47) (McCrae and Costa Jr, 2004), harm avoidance (our sample: 10.52±7.31;  

previous: 10.6±6.0) (Cloninger et al., 1991), and overall social anxiety (our sample: 

30.81±15.75; previous: 29.3±20.9) (Blair et al., 2008, Goldin et al., 2009). 
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Table 5. Personality Measure Scores and Correlations with Fearful Face Detection Sensitivity. 

All Subjects N = 21 

 

Personality Measure Scores Mean  ± SD 

Correlation with 

33ms A’: 

r value (p value) 

 

Spielberger State and Trait Anxiety Inventory  

(STAI) 
State Anxiety       30.10 ±8.62 0.17 (0.45) 

Trait Anxiety        35.95±9.46 0.65 (0.002) 

 

 NEO – Five Factor Inventory (FFI)  

Neuroticism         16.67 ±8.87 0.55 (0.01) 

Extraversion        32.05 ±6.76 -0.20 (0.38) 
Openness to Experience   33.05 ±6.29 0.36 (0.11) 

Agreeableness     34.24± 6.58 -0.05 (0.84) 

Conscientiousness  36.14 ±6.61 -0.40 (0.07) 
 

Tridimensional Personality Questionnaire - 

Harm Avoidance Subscale (TPQ-HA) 

Harm  Avoidance     10.52±7.31 0.50 (0.02) 

HA 1: Anticipatory worry & pessimism  4.20±3.72 0.62 (0.003) 
HA 2: Fear of Uncertainty  2.95±1.77 0.39 (0.08) 

HA 3: Shyness with strangers  2.05±1.94 0.23 (0.31) 

HA 4: Fatigability & asthenia  1.81±2.40 0.37 (0.10) 
 

Liebowitz Social Anxiety Scale: Self Report  

(LSAS-SR) 
  

Overall Social Anxiety 30.81±15.75 0.48 (0.03) 

Fear of Performance 9.81±3.98 0.39 (0.08) 

Avoidance of Performance 6.52±4.18 0.46 (0.04) 

Fear of Social Interaction  8.05±4.38 0.40 (0.07) 

Avoidance of Social Interaction  6.43±4.95 0.47 (0.03) 

Total Fear      17.86±7.88 0.42 (0.06) 

Total Avoidance  12.95±8.77 0.48 (0.03) 
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Detection sensitivity (A’) for fearful faces significantly correlated with trait 

anxiety [r(19)=0.65, p=0.002] (Figure 13A).  However, A’ did not correlate with state 

anxiety [r(19)=0.17, p=0.45] (Figure 13B), although state and trait anxiety scores were 

intercorrelated [r(19)=0.48, p=0.03]. Further, there was a significant difference between 

their correlations with A’ (one sided t-test, p=0.04), confirming that the effect of trait 

anxiety on fear detection sensitivity was separate from the effect of state anxiety.  

As predicted, fear detection sensitivity also significantly correlated with other 

personality measures related to threat detection: neuroticism [r(19)=0.55, p=0.01, 

Figure 13C], harm avoidance [r(19) =0.50, p=0.02, Figure 13D], harm avoidance 

subscale 1: anticipatory worry and pessimism [r(19)=0.62, p=0.003],  overall social 

anxiety [r(19)=0.48, p=0.03] , avoidance of performance [r(19)=0.46, p=0.04], 

avoidance of social interaction [r(19)=0.47, p=0.03], and total avoidance [r(19)=0.48, 

p=0.03] (See Table 5 for correlations between all personality measures and 33 ms A’). 

Additionally, while all personality trait measures significantly correlated with each 

other (i.e. trait anxiety, neuroticism, harm avoidance, and social anxiety), state anxiety 

only significantly correlated with trait anxiety.  

 



 

50 

 

 

Figure 13. Fearful face detection sensitivity (A’) correlated with personality measures. 

 

In addition to A’, we also correlated each subject’s mean correct RT for fearful 

faces and non-fearful faces with our personality measures. We found that state anxiety 

negatively correlated with RT to correctly identify fearful faces (r=-0.55, p=0.01). This 

result indicates that subjects who were faster to correctly identify a face as fearful were 

also the subjects who had higher levels of state anxiety. This result was not driven by a 

global RT advantage independent of valence, because state anxiety did not correlate 

with RT to correctly identify a face as not fearful (r=-0.30, p=0.18). Also, RTs to 
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correctly identify faces as fearful or not fearful did not significantly correlate with any 

other personality measures.  

 

5.3 BEHAVIOR AND NEURAL ACTIVATION  

5.3.1 Behavioral Variability for Fearful Face Expectation and Neural 

Activation 

 

Given the large amount of variability in Valence Bias in our cohort of healthy 

subjects, we correlated the whole brain FMRI activity at each timepoint with our 

subjects’ Valence Bias scores. We looked at the whole brain FMRI responses for each 

of the six stimulus types (i.e. fearful faces in 20F:80N runs, neutral faces in 20F:80N 

runs, fearful faces in 80F:20N runs, neutral faces in 80F:20N runs, etc.) for each subject 

at all eight timepoints and correlated this activity with Valence Bias scores. This 

analysis allowed us to see which brain areas, across subjects, showed activations 

associated with RT differences. 

The results showed that Valence Bias scores correlated positively with FMRI 

signal intensity 8 s after the presentation of unexpected fearful faces (i.e. 12 s post-cue 

in 20F:80N runs) in a cluster (118 voxels) located in the left medial prefrontal cortex. 

The strongest correlation in this cluster was located in a peak voxel in left ventromedial 

prefrontal cortex (VMPFC, Figure 14A-D, r = 0.78; see Table 6 for coordinates and 

statistics for each peak voxel).  
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Table 6: Regions Showing Correlated Activity with Valence Bias.                                                                                                                 

All clusters significant at p < 0.01 corrected 

1 voxel = 3 mm x 3 mm x 3 mm = 27 mm
3
 

 

Additionally, within this cluster, a second peak was found in the left subgenual 

cingulate cortex (SGC, Figure 14A, B and F, r = 0.75). A second cluster (44 voxels) 

 

Positive Correlation with Valence Bias 

 

Timepoint Stimulus Anatomical Location 

Peak Voxel 

Talairach 

Coordinates 
Peak      

r value 

Peak        

t-statistic 

 Number of 

Voxels in 

Cluster  

(Volume mm3) x y z 

12 s post-

cue 

(8 s post-

face) 

 

20F:80N     

Fearful 

Face 

L Ventromedial 

Prefrontal Cortex 
-7 44 -1 0.78 5.94 

 

 

118 

(3186) 

   
L Subgenual 

Cingulate Cortex 
-1 14 0 0.75 5.27 

          

  
R Ventromedial 

Prefrontal Cortex 
17 35 -4 0.72 4.89  

44 
(1188) 

  
R Head of the 

Caudate Nucleus 
17 26 -1 0.72 4.97 

          

Negative Correlation with Valence Bias 

 

Timepoint Stimulus Anatomical Location 

Peak Voxel 

Talairach 

Coordinates 
Peak      

r value 

Peak         

t-statistic 

 Number of 

Voxels in 

Cluster 

 (Volume mm3) x y z  

4 s post-cue 

(0 s post-

face) 

 

20F:80N 

Neutral 

Face 

L Head of Caudate 

Nucleus 
-7 10 -1 -0.70 -4.58 

 

82 

(2214) 
  

R Nucleus 

Accumbens 
8 8 -7 -0.71 -4.73 

  

R Putamen 26 5 -4 -0.72 -4.85 
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also correlated positively with Valence Bias scores at this timepoint. This cluster 

contained two peaks: one was located in the right VMPFC (Figure 14C and E, r = 0.72) 

and the other was located in the right head of the caudate nucleus (Cd, Figure 14B and 

G, r = 0.72). No other timepoints displayed a significant correlation between Valence 

Bias scores and percent signal change for unexpected fearful faces. 
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Figure 14. Positive Correlation of Late Trial (8s after face) 20F:80N Fearful Face Activation 

with Valence Bias Scores.
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In addition to the late positive correlation with unexpected fearful faces, 

Valence Bias scores correlated negatively with FMRI signal intensity evoked by 

expected neutral faces in the 20F:80N runs 4 s after the cue was presented (i.e. 

coincident with the presentation of the neutral face). This negative correlation was 

found in a large cluster (82 voxels) encompassing both hemispheres that included peak 

voxels in the striatum of the basal ganglia: left head of the Cd (Figure 15A,B, r = -

0.70), right nucleus accumbens (NAcc, Figure 15A,C, r = -0.71), and right putamen 

(Put, Figure 15A, D, r = -0.72). No other timepoints displayed a significant correlation 

between Valence Bias scores and percent signal change for expected neutral faces.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Negative Correlation of Early Trial (4 s after cue) 20F:80N Neutral Face Activation 

with Valence Bias Scores. 

 

These results indicate that Valence Bias scores correlated positively with late 

activity evoked by unexpected fearful faces, such that increased activity in areas of the 

medial prefrontal cortex (including VMPFC and SGC) and caudate nucleus were 

predictive of faster RTs to fearful faces. This correlation occurred 8 s after the 

presentation of the face. In contrast, Valence Bias scores correlated negatively with 

early activity evoked by cues for expected neutral faces, such that increased activity in 

areas of the dorsal striatum bilaterally (Put and Cd) and right ventral striatum (NAcc) 
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were predictive of slower RTs to fearful faces. This correlation occurred 4 s after the 

presentation of the cue (i.e., coincident with the presentation of the neutral face). Even 

though the 80F:20N expectation runs, like the 20F:80N runs, included expected and 

unexpected faces, the only significant correlations were found in the 20F:80N 

expectation runs.  

Our correlation analysis revealed that Valence Bias scores correlated 

significantly with FMRI signal change only in 20F:80N runs. There was a positive 

correlation late in the trial for unexpected fearful faces and a negative correlation early 

in the trial for expected neutral faces. This result led us to further investigate the 

relationship between Valence Bias and FMRI signal change during the 20F:80N runs. 

We used peak voxels from significant clusters found in the correlation analysis (Table 

6) to create ROIs, and then extracted 20F:80N waveforms for Fear Fast and Fear Slow 

Responders within these ROIs (Figures 16 and 17).  

Prefrontal and subcortical areas included 16A) left and 16B) right ventromedial 

prefrontal cortex, 16C) left subgenual cingulate cortex, and 16D) right caudate. These 

timecourses illustrate that Fear Fast Responders (dark red lines) had more activation 

than Fear Slow Responders (light red lines) in these ventromedial prefrontal and 

subcortical areas late (i.e. 10 and 12  s post-cue, 6 and 8 s post-face) in unexpected 

fearful face trials. It is interesting to note that although these peak voxels were 

significant for the positive correlation between Valence Bias scores and percent signal 

change for unexpected fearful faces, these peak voxels also displayed an early (i.e. 2, 4, 
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and 6 s post-cue) trial enhancement for Fear Slow Responders (light blue lines) 

compared to Fear Fast Responders (dark blue lines) for expected neutral faces.
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Figure 16. Timecourses Extracted from Peak Voxels Displaying Late Positive Correlation 

Between Percent Signal Change for Unexpected Fearful Faces and Valence Bias Scores. (** =  

p < 0.01 corrected, * =  p < 0.05 corrected, + =  p < 0.10 corrected) 
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Figure 17. Timecourses Extracted from Peak Voxels Displaying Early Negative 

Correlation Between Percent Signal Change for Expected Neutral Faces and Valence Bias 

Scores. (** =  p < 0.01 corrected, * =  p < 0.05 corrected, + =  p < 0.10 corrected) 

 

 

Areas of the striatum of the basal ganglia included 17A) left caudate, 17B) right 

nucleus accumbens, and 17C) right putamen. These timecourses illustrate that Fear 

Slow Responders (light blue lines) had more activation than Fear Fast Responders 

(dark blue lines) early (i.e. 2, 4 and 6 s post-cue, 0 and 2 s post-face) in expected neutral 
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face trials. It is interesting to note that although these peak voxels were significant for 

the negative correlation between Valence Bias scores and percent signal change for 

expected neutral faces, the left caudate (A) also displayed a late (i.e. 12 s post-cue) trial 

enhancement for Fear Fast Responders (dark red lines) compared to Fear Slow 

Responders (light red lines) for unexpected fearful faces.  

To summarize, most of the ROIs identified by the correlation analysis 

demonstrated both early and late trial effects when the data were analyzed by breaking 

the subjects into two Valence Bias groups; importantly, early trial effects were seen 

only for expected neutral faces and late trial effects were seen only for unexpected 

fearful faces .  

 

5.3.2 Behavioral Variability for Repeated Fearful Faces and Neural 

Activation 

  

For both 2
nd

 and 3
rd

 Fear RT Advantage behavioral indices correlations with 

FMRI activation were always negative (Tables 7 and 8), meaning that as subjects were 

getting faster to the expected fearful face, they were activating areas more to the second 

face. Therefore, subjects who were faster to the repeated fearful faces showed less 

repetition suppression, i.e. less activation with repeated presentations of a visual 

stimulus category. 

The same was not true for neutral faces. While the 2
nd

 Neutral RT Advantage 

correlations included negative correlations along with positive (Table 9), all the 3
rd
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Neutral RT Advantage correlations were positive (Table 10). This means that as 

subjects were faster to the repeated neutral face, they were activating these areas less. 

Therefore, subjects who were faster to the repeated neutral faces showed more 

repetition suppression. See Figure 18 for brain maps illustrating this valence by 

repetition difference. 
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Table 7. 2
nd

 Fearful Face RT Advantage x 1
st
 – 2

nd
 Fearful Face Activation 

 

 
2

nd
 Fear RT Advantage x  1

st
-2

nd
 Fearful Face Activation 

Timepoint 
Anatomical 

Location 

Peak Voxel 

Talairach 

Coordinates 

Peak t-

statistic 
Number 

of Voxels 

in Cluster  
x y z  

2-4 s post-cue 

 

L Calcarine 

Sulcus 
-4 -91 5 -4.80 44 

       

4-6 s post-cue (0-2 

s post-face) 
L Putamen -28 8 5 -5.55 152 

 L Superior 

Occipital Gyrus 
-13 -82 23 -4.71 62 

 
R Middle Frontal 

Gyrus 
35 17 35 -4.96 45 

 
R Superior 

Frontal Gyrus 
20 50 2 -4.21 32 

       

6-8 s post-cue (2-4 

s post-face) 

L Calcarine 

Sulcus 
-4  -91 2 -4.35 50 

       

8-10 s post-cue 

(4-6 s post-face) 

L Calcarine 

Sulcus 
-4 -91 5 -4.29 57 

       

Starting p value < 0.005, corrected to p<0.05 (32 voxels), p<0.01 (40 voxels) 
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Table 8. 3
rd
 Fearful Face RT Advantage x 1

st
 -3

rd
 Fearful Face Activation 

 
3

rd
 Fear RTAdvantage x  1

st
-3

rd
 Fearful Face Activation 

Timepoint 
Anatomical 

Location 

Peak Voxel Talairach 

Coordinates Peak t-

statistic 

Number of 

Voxels in 

Cluster  x y z 

2-4 s post-cue 

 
None      

       

4-6 s post-cue   

(0-2 s post-face) 
L Putamen -22 -1 -4 -4.48 134 

 R Anterior Insula 38 20 11 -4.50 56 

 R Putamen 26 -13 8 -4.78 50 

       

6-8 s post-cue      

(2-4 s post-face) 
L Putamen -31 -10 8 -5.74 183 

 R SMA 11 5 47 -4.52 36 

       

8-10 s post-cue 

(4-6 s post-face) 
L Putamen -28 -13 8 -4.76 108 

 R Posterior Insula 29 -25 7 -4.69 33 

       

10-12 s post-cue  

(6-8 s post-face) 
R Posterior Insula 44 -22 20 -4.34 129 

 R SMA 11 -22 47 -6.37 47 

 
R Supramarginal 

Gyrus 
38 -31 32 -4.39 46 

 
R Middle 

Cingulate Cortex 
2 2 32 -4.75 39 

       

12-14 s post-cue 

(8-10 s post-face) 

L Superior Frontal 

Gyrus 
-22 41 32 -4.95 44 

Starting p value < 0.005, corrected to p<0.05 (32 voxels), p<0.01 (40 voxels) 
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Table 9. 2
nd

 Neutral Face RT Advantage x 1
st
-2

nd
 Neutral Face Activation 

 

 

 
2

nd
 Neutral RT Advantage x  1

st
-2

nd
 Neutral Face Activation  

Timepoint 
Anatomical 

Location 

Peak Voxel Talairach 

Coordinates 

Peak t-

statistic 

Number 

of Voxels 

in Cluster  

x y z   

2-4 s post-cue 
L Middle Frontal 

Gyrus 
32 31 41 -5.67 141 

 L Angular Gyrus -28 -49 32 -4.49 62 

 L Globus Pallidus -22 8 -10 6.15 57 

 R Angular Gyrus 29 -40 32 -4.54 47 

 L Precuneus -10 -67 41 -5.98 46 

 L Lingual Gyrus -22 -91 -7 -4.96 39 

 R Precuneus 14 -67 44 -5.23 33 

       

4-6 s post-cue    

(0-2 s post-face) 
L Posterior Insula -40 5 -10 8.09 50 

 R Posterior Insula 41 -1 -13 6.95 45 

       

6-8 s post-cue    

(2-4 s post-face) 

R Middle 

Temporal Gyrus 
62 -25 -13 -5.16 43 

 

R Inferior Frontal 

Gyrus 

(Triangularus) 

50 17 17 -5.98 32 

       

8-10 s post-cue 

(4-6 s post-face) 
None      

       

10-12 s post-cue 

(6-8 s post-face) 
None      

       

12-14 s post-cue 

(8-10 s post-face) 
None      

Starting p value < 0.005, corrected to p<0.05 (32 voxels), p<0.01 (40 voxels) 



 

68 

 

 

Table 10. 3
rd
 Neutral Face RT Advantage x 1

st
-3

rd
 Neutral Face Activation 

 

 

 

 

 

 

 

 

 
3rd Neutral RT Advantage x  1

st
-3rd Neutral Face Activation  

Timepoint 
Anatomical 

Location 

Peak Voxel Talairach 

Coordinates Peak t-

statistic 

Number of 

Voxels in 

Cluster  x y z 

2-4 s post-cue 
R Middle Frontal 

Gyrus 
29 35 20 6.05 231 

 
R Anterior 

Cingulate Cortex 
14 23 26 5.06 40 

 R SMA 14 8 47 4.53 36 

 R Insula 32 5 8 4.03 32 

       

4-6 s post-cue    

(0-2 s post-face) 

R Middle Frontal 

Gyrus 
29 32 20 5.53 383 

 L Anterior 

Cingulate Cortex 
-7 26 14 6.61 36 

 R Angular Gyrus 53 -52 26 5.09 36 

       

6-8 s post-cue    

(2-4 s post-face) 
R Anterior Insula  23 26 5 4.58 68 

 
L Anterior 

Cingulate Cortex 
-7 47 8 4.84 32 

       

8-10 s post-cue 

(4-6 s post-face) 
None      

       

10-12 s post-cue 

(6-8 s post-face) 
None      

       

12-14 s post-cue 

(8-10 s post-face) 
None      

Starting p value < 0.005, corrected to p<0.05 (32 voxels), p<0.01 (40 voxels) 
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Figure 18. Activation maps illustrating that correlations between 2
nd

 and 3
rd

 Face RT 

Advantages and FMRI activation were negative for repeated Fearful Faces and positive for 

repeated Neutral Faces early in the trial.

Fear 1st – Fear 2nd

x  
2nd Fear RT Advantage

Fear 1st – Fear 3rd

x  
3rd Fear RT Advantage

Neutral 1st – Neutral 3rd

x  
3rd Neutral RT 

Advantage

Neutral 1st – Neutral 2nd

x  
2nd Neutral RT 

Advantage

Fear Faces: more activation to 

repeated face predicts RT 

advantage

Early in Trial - Related to Cue

Neutral Faces: less activation 

to repeated face predicts RT 

advantage
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6 DISCUSSION 

 

6.1 BEHAVIORAL VARIABILITY IN FEARFUL FACE PROCESSING 

 

All three studies demonstrated intersubject behavioral variability for the 

processing of fearful faces. In Study I, about two-thirds (15/24) of the subjects were 

faster to categorize fearful faces compared to neutral faces, while about one-third (9/24) 

were actually faster to categorize neutral faces. However, when we compared the RTs 

between subjects who were faster to categorize neutral faces and those who were faster 

to categorize fearful faces, we found that the RT differences were driven exclusively by 

responses to fearful faces. When RT data for Fear Fast and Fear Slow Responders were 

combined, there was no overall RT advantage for fearful faces. 

While studies have reported behavioral enhancement for threatening faces (e.g. 

better spatial detection, faster detection of a neutral target following a threatening face) 

in the healthy population (e.g. (Hansen and Hansen, 1988, Fox et al., 2000, Fox, 2002, 

Wilson and MacLeod, 2003), only one study to date has reported an overall RT 

advantage for categorizing fearful compared to neutral faces (Ishai et al., 2004). Our 

results are, therefore, largely consistent with the existing literature: An RT 

enhancement for fearful faces was seen only in a subset of our population but not in the 

population overall. 

In Study II, we found an overall repetition advantage for fearful but not neutral 

faces. While two other studies reported neural repetition effects for fearful faces 



 

73 

 

exclusively, neither of these studies reported a behavioral repetition effect for fearful 

faces exclusively (Ishai et al., 2004, Ishai et al., 2006). This may be due to differences 

in task as our task included a cue period and used an expectation block parameter to 

build repetitions rather than displaying an exemplar image first. 

In addition to the group effect, we also found intersubject variability in Study II. 

As the repetition advantage for fearful faces did not correlate with the repetition 

advantage for neutral faces, the repetition advantage for fearful faces was selective for 

fearful faces exclusively and not just a general repetition advantage for repeated stimuli 

independent of valence.  

 

6.2 HOW PERSONALITY TRAITS RELATE TO BEHAVIORAL 

VARIABILITY 

 

High anxiety levels have been associated with an attentional bias towards threat 

in clinical and subclinical populations (see review (Bar-Haim et al., 2007)).  In Study I, 

we found that Valence Bias scores did not significantly correlate with state or trait 

anxiety, as measured by the Spielberger State Trait Anxiety Inventory. However, 

Valence Bias scores did significantly correlate with Tridimensional Personality 

Questionnaire  Harm Avoidance (TPQ-HA) scores that were collected from a subset of 

our cohort (13/24 subjects), such that a more harm avoidant, cautious person was more 

likely to be hypersensitive to unexpected threatening stimuli. TPQ Harm Avoidance 
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scores also correlated positively with state and trait anxiety, which is consistent with 

findings from other groups (Caseras et al., 2003, Stewart et al., 2005) .    

 In Study II the fear repetition advantage inversely correlated with anxiety and 

the neutral repetition advantage did not. While it may be surprising that subjects 

scoring higher on anxiety measures showed no repetition advantage for fearful faces, 

this may be explained by a lack of extinction on the part of the high anxiety subjects. 

Anxiety patients display a lessened ability to extinguish fear memories (Lissek et al., 

2005). So it may be that our healthy adults with higher anxiety have a diminished 

ability to habituate to repeated fearful faces. 

Study III confirmed a prior report (Japee et al., 2009) that the non-preselected 

spectrum of trait anxiety scores in healthy adults correlated with a behavioral advantage 

for fearful faces, as measured by the ability to detect the occurrence of masked fearful 

faces. Additionally, we found that this behavioral advantage also correlated with other 

personality traits related to anxiety. This result implies that heightened fearful face 

detection sensitivity is a behavioral consequence of a wide range of personality traits 

related to threat processing and that this sensitivity is parametrically related to those 

personality traits.  

Interestingly, state anxiety was not found to correlate with fearful face detection 

sensitivity; however, state anxiety did correlate with the RT to correctly identify fearful 

faces. Subjects scoring higher on the state anxiety inventory were faster to correctly 

identify faces as fearful. This result is an indication that state anxiety plays a role in 
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speed of detection for briefly presented fearful faces but not in fearful face detection 

itself. Additionally, this result implies that fear detection sensitivity is related to 

underlying and more deeply rooted traits and is unaffected by fluctuations in mood. 

 Neuroticism is a personality trait related to a general increase in negative 

emotions (Costa and McCrae, 1980) and susceptibility for anxiety and depression 

(Clark et al., 1994). Therefore it is not surprising that subjects who were better able to 

detect fearful faces also scored high on this personality trait. The TPQ Harm Avoidance 

scale also measures amplified responses to negative stimuli via how much a person 

avoids high harm situations (Cloninger, 1986).  In our study, fearful face detection 

sensitivity correlated most strongly with the first subscale of the harm avoidance TPQ: 

anticipatory worry & pessimism. These findings give further evidence that fearful face 

detection sensitivity increases parametrically with increased susceptibility for negative 

emotions. While neuroticism and harm avoidance scales measure global tendencies 

towards anxiety and more negative emotions, we also tested whether fearful face 

detection sensitivity correlated with a more specific subtype of anxiety: social anxiety. 

Given that our stimuli were social in nature, we expected to see that subjects scoring 

higher on social anxiety would be those who showed enhanced fearful face detection 

sensitivity. This is exactly what we found, indicating that fearful face detection 

sensitivity is also related to this more specific subtype of anxiety.   

While Study III focused exclusively on healthy adults, the same effect has been 

seen in children, where the healthy trait anxiety spectrum was found to correlate with a 
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behavioral advantage for angry faces (Telzer et al., 2008). Additionally, that study 

discovered that trait anxiety also correlated with the neural enhancement for angry 

faces in the dorsolateral prefrontal cortex. These results in children suggest that the 

healthy spectrum of trait anxiety modulates not only the enhanced behavioral response 

to threatening faces, but also the enhanced neural response. 

In Studies I and III, fearful faces elicited a behavioral advantage, particularly 

for those subjects with higher levels of trait anxiety or harm avoidance. Other work has 

shown that fearful faces elicit a behavioral disadvantage when fearful faces are task 

irrelevant and distracting, particularly for those healthy subjects with higher levels of 

anxiety (Ewbank et al., 2009, Ladouceur et al., 2009). Those studies combined with the 

current studies suggest that anxiety and anxiety-related traits prime the processing 

stream to be biased towards threatening faces and this bias creates either an advantage 

for performance when the threatening face is task relevant, a disadvantage for 

performance when the threatening face is task irrelevant, and no increase in 

performance when the threatening face is repeated.  

 

6.3 HOW NEURAL ACTIVATION RELATES TO BEHAVIORAL 

VARIABILITY 

 

We found a large amount of variability in how quickly subjects responded to 

fearful relative to neutral faces in Study I. To understand the neural origins of this 

variability, we correlated Valence Bias scores with FMRI activations across the brain. 
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We found that, in runs where fearful faces were unexpected (20F:80N), 8 s after the 

presentation of the face, activity in the VMPFC, SGC, and Cd correlated positively 

with Valence Bias scores. Subjects who responded faster overall to fearful than to 

neutral faces showed higher activity in these regions, while subjects who responded 

slower overall to fearful than to neutral faces showed less activity in these regions. 

Activity in these regions was, thus, predictive of whether a subject would be faster or 

slower in responding to unexpected fearful compared to expected neutral faces.  

In contrast to the late positive correlation between activation to unexpected 

fearful faces and Valence Bias scores, in the same expectation runs (i.e. 20F:80N) we 

found an early negative correlation in response to expected neutral faces, which 

occurred 4 s after the cue. The faster subjects were to respond to fearful faces compared 

to neutral faces, the smaller was the activation in the striatum of the basal ganglia, 

including the Cd, Put, and NAcc.  

We placed the subjects into two groups (Fear Fast and Fear Slow Responders) 

to probe differences between them to unexpected fearful and expected neutral faces 

over time. The timecourses within the areas where activation significantly correlated 

with Valence Bias scores reflected the results from the correlation data. However, the 

group analysis also revealed that both early and late effects were common to most 

regions. That is, subjects who were faster to respond to fearful faces had an enhanced 

response late in the trial in these regions following an unexpected fearful face and also 

had an attenuated preparatory response early in the trial in the same regions preceding 
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an expected neutral face; the opposite was true for the subjects who were slower to 

respond to fearful faces. These results point to a network of regions in medial prefrontal 

cortex and dorsal and ventral striatum (including VMPFC, SGC, Cd, Put, and NAcc) 

that show similar effects. 

The co-activation of these regions is not surprising since neuroanatomical 

studies in nonhuman primates have shown that the VMPFC projects to both the dorsal 

and ventral striatum (Haber et al., 1995) as well as the SGC (Carmichael and Price, 

1996). The SGC also projects to the ventral striatum (Kunishio and Haber, 1994). The 

dense connections between these regions have been confirmed in the human brain 

using diffusion tensor imaging and functional connectivity mapping (Lehericy et al., 

2004, Leh et al., 2007, Di Martino et al., 2008, Johansen-Berg et al., 2008).  This 

evidence provides the anatomical underpinnings for an interconnected network.  

What drives the correlation of activity in this network with behavior? We 

propose that, in Study I, the medial prefrontal – striatal network encodes the affective 

value of unexpected fearful faces. Affective value is defined here as the biological 

relevance of an affective stimulus to guide behavior. Thus, subjects for whom fearful 

faces were more valued (i.e. Fear Fast Responders) engaged these regions more when 

fearful faces were unexpected, which in turn resulted in faster motor responses to those 

unexpected valued stimuli. On the other hand, subjects for whom fearful faces were 

less valued (i.e. Fear Slow Responders) deactivated these regions, which resulted in 

slower motor responses to the unexpected non-valued stimuli. Thus, activity in this 
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network appears to be directly proportional to the affective value fearful faces hold for 

a given subject when they are presented in an unexpected context.  

We know from previous work that these regions, the VMPFC in particular, are 

crucial in evaluating the value of stimuli based on context (Schoenbaum et al., 1998, 

Schultz and Dickinson, 2000, Schoenbaum and Roesch, 2005, Blair et al., 2006, Tobler 

et al., 2006). Human imaging studies have shown that the VMPFC is involved in the 

extinction of conditioned fear (Phelps et al., 2004) and skin conductance changes 

during a risky decision-making paradigm (Critchley et al., 2000) – where the VMPFC 

tracks how the affective representation of a stimulus changes based on context. Still 

others have shown that patients with lesions of the VMPFC have deficiencies in using 

new information to make advantageous decisions (Bechara et al., 1994, Bechara et al., 

2000),  have difficulty integrating emotion into their decision-making process during 

moral decisions (Koenigs et al., 2007), and have trouble judging harmful intentions of 

others (Young et al., 2010). Neuroimaging and postmortem evidence supports the role 

of the SGC in the pathology of social phobia and depression and also its role in 

negative mood (Mayberg et al., 1999, Furmark et al., 2002). Human imaging and 

monkey physiological studies have both demonstrated that the dorsal and ventral 

striatum respond to cues that signal an upcoming salient stimulus (Hikosaka et al., 

1989, Knutson et al., 2001, Samejima et al., 2005). These wide-ranging studies of the 

medial prefrontal - striatal network confirm its role in tracking the affective value of 

stimuli as context changes. 



 

80 

The early trial negative correlation between Valence Bias scores and activation 

evoked by expected neutral faces trials was not predictive of faster RTs to neutral faces, 

because the behavioral differences among our subjects were driven by fearful faces 

exclusively. As this negative correlation occurred early in the trial, we believe that this 

effect is related to the anticipation of the upcoming stimulus, i.e., the expected neutral 

face. It is important to note that in order to limit repetition effects we only included in 

our analysis trials in which a neutral or fearful face was immediately followed by the 

alternate face type. Thus, on expected neutral trials, subjects were highly certain that 

the upcoming stimulus would be a neutral face (since they had just received a fearful 

face on the previous trial). We know from other FMRI studies that expected stimuli can 

elicit an anticipatory response (Chawla et al., 1999, Kastner et al., 1999). In Study I, 

subjects who valued fearful faces less (i.e. Fear Slow Responders), showed a normal 

anticipatory effect, while those subjects who valued unexpected fearful faces more (i.e. 

Fear Fast Responders) showed greater suppression of this anticipatory response.    

It is important to note that activity in the medial prefrontal cortex and striatum 

does not encode the affective value of fearful faces in general, but rather represents the 

combination of the value of fearful faces and context, i.e., the likelihood of appearing 

(expected or unexpected). This is confirmed by the lack of correlation of activity in 

these regions with Valence Bias during runs where fearful faces were expected and 

neutral faces were unexpected (80F:20N expectation runs). The interaction between 

affect and expectation is further confirmed by research showing that low probability 
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threat produces more anticipatory anxiety (as measured via heart rate and skin 

conductance responses) than high probability threat (Deane, 1969, Epstein and 

Roupenian, 1970). 

In Study II, while we did not directly correlate FMRI activation with anxiety, 

we did see a negative correlation between the fearful face RT repetition advantage and 

activation to 1
st
 vs 2nd/3

rd
 repeated fearful faces in striatum and early occipital areas. 

This result means that subjects who had no repetition advantage for the repeated fearful 

faces (the subjects who had higher anxiety) were actually showing more activation to 

the first fearful face presented as to the repeated presentations. This result argues 

against the theory that these subjects are not habituating to the repeated fearful faces 

and that that lack of habituation is the mechanism behind their lack of repetition 

advantage for fearful faces. Interestingly, lack of habituation IS the neural mechanism 

behind the repetition advantage for neutral faces (particularly 3
rd

 repetitions). Although 

that lack of habituation is occurring in more attention and executive function-related 

areas such as the frontal cortex and angular gyrus. As this is the first study to 

investigate the neural correlates of intersubject variability in fearful face repetition, we 

are only just beginning to cover these mechanisms, but the one thing that is clear is that 

the repetition advantage for fearful faces is subserved by a different network than the 

repetition advantage for neutral faces.  

One brain area that was notably absent in the variability of threat processing in 

Studies I and  II was the amygdala, which is heavily interconnected with those regions 
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showing a correlation of neural activation with Valence Bias in Study I (Porrino et al., 

1981, Russchen et al., 1985, Vogt and Pandya, 1987, Carmichael and Price, 1995). 

Given that the amygdala has been shown to activate in response to fearful faces over 

other face types (Breiter et al., 1996, Morris et al., 1996), this was a surprising finding 

and suggests that the amygdala may respond relatively automatically to threat rather 

than tracking expectation and repetition (Morris et al., 1998, Whalen et al., 1998).  

 

6.4  WEAKNESSES 

 

Unfortunately we were unable to collect physiological measures during these 

fearful face processing tasks. Therefore, we can not make any claims about intersubject 

variability in physiological responses and how that variability might relate to variability 

in behavior. While we hypothesize that intersubject variability in fearful face behavior 

would correlate with physiological intersubject variability, this claim needs to be 

investigated directly using galvanic skin response (GSR), pupillometry, and/or heart 

rate.  

The results presented in this thesis are limited to fearful faces only. While we 

hypothesize that similar effects would be seen for angry faces, as they are also 

threatening stimuli, this hypothesis needs to be directly tested. Additionally, it is 

unclear if our result of large intersubject variability for fearful face tasks would also be 

found for other threatening stimuli outside of faces. Therefore, we can only speculate 



 

83 

 

that this behavioral and neural variability would be found for all types of threatening 

stimuli – not just fearful faces. 

 

6.5 FUTURE RESEARCH DIRECTIONS 

 

In addition to including physiological measures and investigating angry faces, 

there are many other potential avenues for future research. We believe there are three 

particularly important avenues for future research that build upon the work presented in 

this thesis. First, a natural extension of this work is to move into populations of patients 

with anxiety and other mood disorders. It may be that the continuum of behavior we 

have categorized here represents only a section of the full continuum. The opportunity 

to measure behavioral variability on these fearful face processing tasks in patients 

would greatly advance our understanding of how the brain can go awry in mood 

disorders. Second, future research should consider how genotypes are related to 

behavioral variability. As outlined in the introduction, both 5HTTLPR and COMT 

genetic variants are associated with variability in threat processing, therefore, we 

hypothesize these genotypes may be related to behavioral variability to process fearful 

faces. Future work should consider not only genotype, but also the number and 

magnitude of life stress events for each subject. These measures combined create a 

more accurate picture of how genes and environment interact. Third, while state anxiety 

only correlated with the fearful face repetition advantage behavioral measure, we 

believe it is important to directly test how fluctuations in state anxiety affect behavioral 
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performance on all tasks and how that performance varies among healthy individuals. 

A study including an intrasubject behavioral measure taken before and after a state 

anxiety induction could yield great insights into resiliency and how individuals deal 

with fluctuations in mood. 
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7 CONCLUDING REMARKS 

 

In conclusion, this thesis has shown that not only is it possible to use behavioral 

variability to guide analyses but that by doing so, one can gain a broader view of how 

intersubject variability in behavior is manifested in personality traits and also in neural 

activation patterns.  

Our results suggest the healthy population is much more variable in threat 

processing than originally thought. In fact, some of our subjects were actually slower to 

respond to fearful faces compared to neutral. Our results also suggest that personality 

and neural systems interact differently with threat in different contexts. Changes in 

expectation, repetition, and brief presentation all appear to tap into different aspects of 

personality and neural processing. This work strongly suggests that lumping healthy 

individuals together on threat processing tasks is not advisable or instructive. 
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