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ABSTRACT 

Malaria infection caused by the parasite Plasmodium falciparum is a deadly torment, 
especially for young children and pregnant women residing in sub-Saharan Africa. 
Much of the parasites virulence is due to its ability to constantly vary the adhesive 
molecules expressed on the surface of infected red blood cells (iRBCs). This antigenic 
variation permits the parasite to successfully sequester in various organs and tissues, 
thereby causing adverse effects and the clinical symptoms of malaria as well as 
enabling evasion of the host immune response. However, protective antibodies against 
surface exposed antigens are developed via exposure to infection, explaining the partial 
immunity seen in adults living in endemic areas. Another important aspect of the 
deadliness of P. falciparum is its astounding ability to successfully proliferate and 
multiply within the RBC. Numerous genes encode proteins that allow the daughter 
merozoites to effectively invade new RBC. While antigenic variation is a well-studied 
phenomenon in pathogens, very little is known concerning the regulation of invasion 
genes. In this thesis, we have explored both epigenetic regulation and immune 
recognition of P. falciparim virulence genes. 
 
The var gene encoded P. falciparum erythrocyte membrane protein 1 (PfEMP1) 
VAR2CSA is the main adhesin involved in placental malaria. We investigated the 
differential recognition of various VAR2CSA DBL-domains by immune sera from 
pregnant women and found DBL5ε to be widely recognized in a gender and parity-
specific pattern. Further studies revealed that while the affinity of acquired antibodies 
to DBL5ε is similar between primigravidae and multigravidae, HIV co-infection impair 
the binding capability of these antibodies in women in their first pregnancy. 
Transcriptional regulation of var2csa as well as other var genes has been shown to be a 
complex and tightly regulated process. Our studies on duplicated var2csa paralogs in 
the P. falciparum strain HB3 revealed simultaneous transcription of both alleles. This 
suggests a less strict var gene regulation than previously thought and questions whether 
PfEMP1s are mutually exclusive expressed. Our findings support the presence of an 
active var gene expression site in the nuclear periphery but also suggest additional 
layers of gene regulation to be important, such as trans-factors and histone 
modifications. The five P. falciparum histone deacetylases are interesting therapeutic 
targets but have not been extensively characterized. By using reverse genetics 
techniques, we were able to create a conditional knockdown of the class II histone 
deacetylase PfHda1. The phenotypic change upon PfHda1 knockdown suggests this 
protein to be essential for cell cycle progression and successful proliferation but also for 
differential expression of invasion ligands. Moreover, dysregulation of var gene 
expression is seen in PfHda1 knockdown parasites, which provides insight into 
mechanisms behind virulence gene regulation in the context of histone modifications. 
To conclude, we here present a multi-faceted study of mechanisms behind multi-family 
gene expression important for parasite virulence and explore the complexity of 
antibody acquisition to VAR2CSA.  
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1 INTRODUCTION 

 
1.1  GLOBAL BURDEN OF MALARIA 

Before Alphonse Laveran identified parasites in the blood of malaria patients in 1880, it 
was thought malaria was caused by bad air, something that also gave the disease its 
name; mal’aria, bad air in Italian. The disease however, goes further back than the 19th 
century and references to malaria occur in texts as old as 2700 BC [1]. Almost 20 years 
after the findings of Laveran, Ronald Ross discovered that a Plasmodium species is 
transmitted by the bite of an infected mosquito [1]. The discoveries of Laveran and 
Ross paved the way for extensive efforts to eradicate the disease for many years to 
follow. Nevertheless, today approximately 225 million clinical cases are reported world 
wide with almost 1 million deaths occur every year [2]. Half of the worlds population 
still live in malaria endemic areas [3,4] despite massive efforts to eradicate malaria 
from 1945 [5]. 90% of malaria morbidity and mortality occurs in sub-Saharan Africa 
[6,7] affecting a population already vulnerable due to other diseases, widespread 
poverty, lack of infrastructure and inadequate health care. There are several inherent 
reasons to why sub-Saharan Africa is so badly affected by malaria, such as a high base 
case reproduction rate of infection due to a favorable climate and the extraordinary 
capacity of parasite transmission by Anopheles gambiae, the main vector mosquito in 
Africa [8]. 
 
Young children and pregnant women are most severely affected by malaria, with 
children under five encompassing the majority of deaths [4]. Not only is malaria one of 
the worlds biggest killers among infectious diseases, it also hampers the economic 
development in affected regions. Sachs and Malaney have demonstrated a striking 
correlation between malaria and poverty with the probability that one is increasing the 
other [8]. Aside from the huge cost of wasted human lives, malaria is also expensive for 
the individual in terms of cost for prevention, diagnosis, treatment and loss of income 
due to illness. Furthermore, malaria is costly for the society as a whole, with high 
expenditure for vector control, health facilities and proper drugs [8]. In 2010, 
international funding invested 1.8 billion US$ in malaria treatment and research when 
WHO estimates that at least another 4 billion US$ is needed in order to effectively 
control malaria [2].  
 
1.1.1 Controlling malaria  
 
As of yet, there is no effective vaccine to malaria and the parasite is rapidly becoming 
resistant to existing drugs. The first control measures against malaria were introduced 
shortly after the discovery that the disease is mosquito-borne. After measurements such 
as window and door screens, control of mosquito breeding sites and the use of DDT, 
several countries managed to eradicate malaria by 1946 [4]. The Global Malaria 
Eradication program, initiated by WHO in 1955 added chloroquine to the line of 
measurements, which helped another 27 countries to get rid of malaria by 1969 [4], 
making the disease what it still is today – a plague for tropical and subtropical poorer 
regions. Chloroquine was long the drug of choice for malaria treatment, until resistant 
emerged in South East Asia and South America in 1960’s [9], further spreading to 
Africa in the 1980’s [10]. This led to the use of sulfadoxine-pyrimethamine (SP) 
treatment, which caused resistant parasites already a year after introduction [10]. The 
1998 Roll Back Malaria effort included vector control such as long-lasting insecticide 
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treated bed nets and indoor residual insecticide spraying as well as improved diagnostic 
tools and treatment [2]. Artemisinin-based combination therapies (ACT’s) are mostly 
used as a first line treatment today but new treatment variations are required due to the 
constantly emerging drug-resistance [11]. A highly effective vaccine is severely needed 
in order to properly combat malaria. However funding for malaria vaccine development 
is scarce [12] and the complexity of the parasite life cycle ([13,14], antigenic variation 
[15] and lack of knowledge concerning parasite interaction with the human immune 
system [16] represents further challenges. Currently, the RTS,S vaccine that target the 
pre-erythrocytic stage, is the most advance developed vaccine. Phase II clinical trials 
indicate this vaccine to have a rather short-lived 30-50% protection against clinical 
malaria in African children [17,18,19,20]. Since repeated exposure to malaria induce 
partial immunity, a vaccine targeting the asexual parasite stage seems reasonable. 
However, while several blood-stage antigens are in clinical development as vaccines 
[12], no efficacy has been seen so far [21,22]. Ideally, a vaccine would involve antigens 
from various stages in the parasites life cycle and be effective against establishment of 
infection, induce protective antibodies against the asexual stage as well as hinder 
further transmission. Unfortunately for all children, pregnant women and other people 
affected by malaria, there is still a very long way there.  
 
1.2.     PLASMODIUM SPECIES 

There are five Plasmodium species known to infect humans, P. falciparum, P. vivax, P. 
ovale, P. malariae and P. knowlesi. P. falciparum is causing the majority of mortality 
and is also the parasite most prevalent in sub-Saharan Africa where it accounts for 75% 
of all malaria infections [2]. The previously largely neglected P. vivax is getting 
increased attention as an important cause of morbidity and mortality and is also the 
most widespread of the human malaria parasites [23]. So far, efforts to grow P. vivax 
longterm in vitro have failed, making extensive studies difficult to perform. P. vivax 
causes endemic malaria throughout most of the tropics as well as in certain temperate 
regions in central Asia. An estimated 130 to 390 million people are infected every year 
[4] and 2.6 billion people are at risk for infection [24]. P. ovale  and P. malariae are 
relatively rare and both cause a benign form of malaria. Whereas P. vivax and P. ovale 
can remain in the liver as hypnozoites for years before causing infection, the remaining 
three human parasites do not cause these kinds of relapses. Endemic P. ovale occur 
only in western Africa and at some isolated spots in Southeast Asia and Oceania. The 
geographical distribution of P. malariae is similar to that of P. vivax, however much 
less prevalent [25]. The fifth human Plasmodium species, P. knowlesi was recently 
found to not only infect macaque monkeys, but also being able to cause severe disease 
in humans residing in Malaysian Borneo [26].  It is likely however, that many earlier 
cases of P. knowlesi have gone surpassed due to its morphological similarity to P. 
malariae in blood smears [27]. P. knowlesi have repeatedly shown its capability to be a 
very fast killer despite the relatively low overall mortality rate, and is also restrained by 
its jungle-dwelling vector, Anopheles hackeri  [28,29,30,31].   
 
1.2.1 Plasmodium falciparum life cycle 

The life cycle of the protozoan parasite Plasmodium falciparum is complex, and 
involves both a human host and a mosquito vector. Human infection is initiated when 
an infected female Anopheles mosquito injects 10-100 sporozoites into the human 
dermis, from where they continue to the blood stream before finally reaching the liver. 
Not every infectious mosquito bite results in infection as some sporozoites remain in 
the dermis and others enter the lymphatic circulation and are degraded in the lymph 
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nodes [32,33]. Once in the liver, the parasite invades hepatocytes and within the next 
10-12 days replicates to form up to 30 000 merozoites. These are then released into the 
blood stream and subsequently invade red blood cells (RBCs), commencing the 48h 
asexual intraerythrocytic developmental cycle (IDC). The clinical manifestations of 
malaria take place during the IDC where parasites develop from young ring-stages to 
trophozoite stages before entering schizogony. The infected RBC (iRBC) is 
subsequently ruptured and 12-32 merozoites that can invade new RBCs are released.  
Upon various environmental cues [34] some parasites differentiate into sexual male and 
female gametocytes that, when ingested by a feeding mosquito, fuse in the mosquito 
midgut to form a zygote. The zygote then develops into a motile and invasive ookinete. 
After successfully traversing the midgut epithelium the ookinete develop into the 
oocyst stage that after multiple nuclear divisions render several thousands haploid 
sporozoites [35]. These subsequently migrate into the salivary glands and ducts of the 
mosquito, completing the life cycle of this deadly parasite [36].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. P. falciparum life cycle. Illustration by Jannike Simonsson. 
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1.3  TRANSCRIPTIONAL REGULATION IN PLASMODIUM FALCIPARUM  

Transcriptional control in P. falciparum differs significantly of that from other 
eukaryotes despite retaining many of the canonical characteristics of eukaryotic 
transcription. The malaria parasites genome is extremely AT-rich, especially in the 
intergenic sequences [14], this perhaps being the reason for the believed paucity of 
specific transcription factors. Recently however, a family of DNA-binding putative 
transcriptional regulators was identified in apicomplexans [37]. These ApiAP2 proteins 
contain a version of the Apetala2/ethylene response factor (AP2/ERF) DNA binding 
domain, which is present in numerous plant transcription factors [38]. Currently, 27 
members of the ApiAP2 family have been indentified in P. falciparum [14] and the 
various targets and functions are being unraveled. They are expressed not only 
throughout the asexual life stages but have also in been found to be important in 
gametocytogenesis [39], in the formation of ookinetes [40] and in the liver stages [41]. 
In P. falciparum, PfSip2 (PFF0200c) is implicated in var gene silencing via its role as a 
DNA tethering protein involved in heterochromatin formation [42]. 
 
Epigenetics is referring to inheritable changes in phenotype or gene expression caused 
by mechanisms other than changes in DNA sequence. DNA methylation, which 
generally plays a role in gene regulation in eukaryotes by addition or removal of methyl 
groups to or from bases in DNA, seems to be absent in P. falciparum despite the 
presence of a gene containing the DNA methyltransferase motif [43,44,45]. The RNA 
interference machinery is also lacking in the Plasmodium genome [14,46].  In 
Plasmodium, chromatin-mediated gene regulation is achieved through chromatin 
remodeling, posttranslational modifications (PTMs) of histones and replacement of 
core histones by histone variants. Change in nucleosome occupancy is common in 
eukaryotes where H2A is exchanged against H2A.Z in order to help promoter regions 
stay free from repressive nucleosomes [47]. This was recently shown to be the case also 
in P. falciparum and H2A.Z promote transcription by recruiting histone 
modifying/remodeling complexes and facilitating access for transcription factors [48].  
PTMs include acetylation, methylation, phosphorylation, ubiquitination, poly-ADP-
ribosylation and sumoylation [49]. The highly dynamic “histone code” is created by 
specific combinations of these, rendering the chromatin more or less accessible for 
downstream processes. In P. falciparum, the most plentiful marks are histone 
methylation and acetylation [50]. Histone acetylation is linked to active genes and 
lessens the attraction between the basic histone protein and acidic DNA by adding an 
acetate group to a basic amino acid on the histone tail. The reaction is catalyzed by 
histone acetyltransferases (HATs) of which several have been indentified in malaria 
parasites [51]. The P. falciparum genome contains five annotated histone deacetylases 
(HDACs) genes, encoding for enzymes that remove acetate groups from histone tails. 
HDACs in general can be divided into four different classes based on their primary 
structure. The I, II and IV enzymes share a zinc-dependent catalytic mechanism 
whereas the class III, sirtuins, utilize a NAD-dependent mechanism to catalyze the 
deacetylation reaction [52]. Class I HDACs are homologous to the yeast enzyme 
RPD3, exclusively found in the nucleus, acting on chromatin [53,54] whereas the class 
II HDACs have been shown to shuttle in and out of the nucleus and also deacetylase 
non-histone substrates [55,56]. These are generally larger proteins, sharing homology 
with Hda1 from yeast. Drug-target studies on PfHDAC1 shows it to be effectively 
inhibited by the human HDAC inhibitor Trichostatin A and SAHA [57,58] and the 
resulting hyperacetylation affects the global gene expression [59,60,61]. A recently 
published study showed that the drug Apicidin inhibit both class I and II HDACs in P. 
falciparum, which cause severe deregulation of the whole transcriptional cascade [60]. 
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The class III sirtuins are related to the yeast Silent information regulator 2 protein and 
have been described among prokaryotes, eukaryotes and archaea [62]. P. falciparum 
Sir2a and 2b both belong to class III and have been extensively characterized. Among 
other things, they act important regulators of the var gene family [63,64,65]. Class IV 
enzymes, homologous to HsHDAC11 are less common among metazoans and also 
remain mostly uncharacterized. No class IV enzyme has been annotated in P. 
falciparum [14].  
 
Histone lysine methylation is involved in both transcriptional activation and silencing. 
There are at least ten members of histone lysine methyltransferases (HKMTs) [66] in 
Plasmodium, as well as two families of lysine demethylases (LSD1 and JHDMs) [67]. 
The P. falciparum histones can also be modified via arginine methyltransferases 
(PRMTs) [68], ubiquitinating and de-ubiqutinating ezymes as well as by ATP-
dependent chromatin remodeling proteins [69]. The PTMs creating the histone code are 
subsequently recognized by various effector molecules such as bromo- and 
chromodomains, Royal superfamily, plant homeodomain (PHD) fingers just to mention 
a few [70]. Despite the presence of several PTM-binding modules in malaria parasites, 
only one has so far been characterized ([69]. This PfHP1 is involved in H3K9me3 
binding and dimerization, and has been shown to associate with both subtelomeric and 
intrachromosomal silent var genes [71].  
 
These regulatory processes are all part of enabling successful proliferation and 
progression through the P. falciparum cell cycle. Gene expression in the malaria 
parasite is a complex continuous cascade where 60% of the genes are only expressed 
once during the life cycle, in close concordance with the function of the resulting 
protein [72]. This tightly synchronized but yet dynamic regulatory machinery ensures 
the establishment of successful infection by this deadly malaria parasite. 
 
1.4  MALARIA PATHOGENESIS 

In malaria endemic areas, non-sterile immunity against malaria is gradually developed. 
Older children and adults are less likely to develop severe disease but nevertheless 
remain vulnerable to infection and often sustain parasitemia without any clinical 
symptoms.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Acquisition of partial immunity to malaria infection 
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The situation is quite different in non-endemic areas where people of all ages are at 
high risk to develop complicated malaria. Clinical symptoms of malaria include fever, 
general malaise as well as other flu-like symptoms such as headache, body ache, 
vomiting, diarrhea, coughing and stomach ache. Hypoglycemia, hyperlactatemia, 
anemia and altered consciousness are other signs of malaria infection [73]. Non-treated, 
the infection can quickly develop into severe malaria since parasitemia can augment by 
several orders of magnitude within a few hours.  
 
1.4.1 Immunological response to malaria infection 

Mosquito-injected sporozoites are exposed to the human immune response for only a 
short period of time, and so far there is no evidence for naturally acquired protective 
immunity to this stage [74]. Despite this, volunteers inoculated with attenuated 
sporozoites produce antibodies that at least gradually protect from malaria infection 
[75]. The mechanisms behind this protection are unclear however, but it is possible that 
protection is due to the lower number of merozoites released from the liver when the 
amount of infective sporozoites is reduced. These sub-clinical levels of blood-stage 
malaria would then enable partial immunity to form and protect against severe infection 
[76]. The RTS,S vaccine consists of hepatitis B surface antigen (HBsAg) particles 
fused to the thrombospondin domain of the circumsporozoite protein (CSP) which is 
expressed on sporozoites and liver stage schizonts [77,78]. As mentioned above, this is 
the most advanced vaccine candidate to date.  
 
Passive transfer of antibodies from the mother to the fetus protects the newborn for the 
first months of life [79]. After that, immunity to malaria is acquired via exposure to 
infection and the host immune response to this pathogen is very complex and poorly 
understood. Humoral immunity consists mostly of cytophilic IgG antibodies that are 
activating various functions of neutrophils and monocytes. Protective antibodies may 
target various stages of the P. falciparum life cycle, such as merozoite invasion and 
iRBC sequestration, and may also mediate phagocytosis of iRBC [80].  CD4+ T cells 
are an important part of the humoral immunity as helper cells for B-cells [81]. They are 
also part of the cell-mediated immunity to malaria by releasing inflammatory cytokines 
such as IFN-γ and IL-12 that activate macrophages and other cells to produce TNF, 
nitric oxide and reactive oxygen species [82]. Innate immunity cells such as dendritic 
cells, natural killer cells, Kuppfer cells and macrophages help stimulate and regulate the 
adaptive immune response via cytokine production [83]. There is a fine line however 
between protective adaptive immune response and excessive inflammation and severe 
pathology of the disease [84]. Despite the extensive knowledge of immune mechanisms 
to blood-stage infection, very little efficacy of vaccine candidates based on blood-stage 
antigens is obtained [21,22].  
 
1.4.2 Severe malaria 
 
Severe disease is most often characterized by high parasite density in a wide range of 
organs, tissues and blood vessels. Determinants of severe disease include host factors 
such as age, immune status, transmission rate and gender. Host genetic factors also play 
a part in disease severity. These include genetic variability in genes encoding host 
erythrocyte receptors as well as endothelial receptors, such as CD36 [85,86], ICAM1 
(intercellular adhesion molecule 1) [87,88,89], PECAM1 (platelet endothelial cellular 
adhesion molecule 1) [90] and CR1 (complement receptor 1) [91,92] even though 
studies show non-uniform results. Malaria has also been suggested to be the selective 
force for various RBC disorders in human populations such as sickle cell disease and 
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α-thallasemia [93,94]. The manifestations of severe disease include unrousable coma, 
acute respiratory distress syndrome (ARDS), severe anemia, renal failure, 
splenomegaly and circulatory collapse. A subset of these, as well as the special case of 
pregnancy-associated malaria (PAM) will be described in more detail below. 
 
1.4.2.1  Cerebral malaria 
 
The mortality rate of cerebral malaria (CM) is close to 20% [95] and the pathogenesis 
is believed to be caused by massive parasite sequestration in brain microcapillaries via 
the receptor ICAM1 [96]. The immune response to malaria involves a significant 
increase of type 1 cytokines such as TNF-α and IFN-γ and these are causing an 
upregulation of surface expressed adhesion molecules such as ICAM1 and VCAM1 
(vascular cell adhesion molecule 1). The heavy parasite load caused by sequestration 
via these receptors in the brain cause local hypoxia, vascular occlusion, inflammation 
and damage of the blood-brain barrier [97]. Unrousable coma is characteristic for CM 
and may arise either gradually or abruptly after severe seizures. The former is more 
common in adults whereas the latter is mostly seen in children [95]. In surviving CM 
patients, neurological sequelae and permanent brain injuries are widespread. This is 
most prevalent in children and includes epilepsy, speech and language difficulties, 
motor deficits and concentration disorders [98,99,100,101].  
 
1.4.2.2  Respiratory distress 
 
Acute respiratory distress syndrome (ARDS) in malaria is linked to high mortality and 
is one of the most severe manifestations of malaria caused by. ARDS is more common 
in adults than in children, and pregnant women and non-immune individuals are most 
vulnerable [102]. 20-30% of patients with complicated malaria develop ARDS 
[103,104] which via airflow obstruction, increased phagocytic activity and reduced 
lung function can lead to life-threatening hypoxia and respiratory failure [105]. ARDS 
is a common complication in PAM and can occur before, during or even after labor 
[103,104]. The pathogenesis of ARDS is not completely understood but studies have 
shown iRBC to sequester in lung capillaries [106,107]. This results in accumulation of 
monocytes and both pro-inflammatory and anti-inflammatory cytokines as well as 
endothelial cytoplasmic swelling and edema [108]. ARDS often co-exist with high 
parasitemia, acute renal failure, hypoglycemia, metabolic acidosis and bacterial sepsis, 
all which can worsen the prognosis for the patient [109,110]. 
 
1.4.2.3  Severe Anemia 
 
Severe anemia is the major cause of malaria-related hospital admissions as well as 
morbidity and mortality in sub-Saharan Africa. It is defined as a hemoglobin level 
lower than 5g/dl or hematocrit beneath 15%. There are various mechanisms leading to 
anemia in malaria infection and the condition is further worsened by nutrition 
deficiencies, which are common in affected populations [111,112]. Rupture of iRBC, 
impaired erythropoiesis and loss of unifected RBC (uRBC) loss all contribute to 
amemia in malaria infection [113,114]. The spleen filters out altered RBCs, hence the 
need for the malaria parasite to sequester by binding to various endothelial receptors. 
Also, uRBC are often tagged by parasite molecules that are released during invasion 
[115,116,117], which leads to their destruction by the spleen. Phagocytosis of uRBC is 
also likely to contribute to anemia [118] as is hemozoin, released by the parasite during 
schizont rupture. The presence of heme-products alters the rigidity of surrounding 
RBC, thereby targeting them for splenic clearance [119].  Consequently, splenomegaly 
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is very common in malaria patients due to consequential splenic clogging by infected 
cells [120]. 
 
1.4.3  Placental Malaria 
 
125 million pregnancies are at risk for malaria infection each year, and malaria during 
pregnancy cause 200 000 infant deaths annually in sub-Saharan Africa [121,122]. 
Despite having developed partial immunity to malaria through multiple infections since 
childhood, pregnant women are experiencing an increased susceptibility to infection. 
This is most pronounced in the first pregnancy and protective immunity is gradually 
built up in subsequent pregnancies [121,122,123,124,125]. The sex-specific, parity-
dependent IgG recognition of variant surface antigens (VSA) seen with immune sera 
from pregnant women is characteristic for malaria in pregnancy and antibodies are 
protecting against adverse outcomes in later pregnancies [126,127,128]. The humoral 
immune response plays a huge role in the protection against placental malaria. 
Antibodies have been found to inhibit parasite binding to CSA [129] and opsonization 
of iRBC by macrophages is also an important protection mechanisms [58,130,131,132]. 
The majority of studies on malaria in pregnancy are from endemic areas. In low-
transmission areas, women of all parities are equally susceptible to severe disease since 
less of a protective immune response has been produced [133]. The increased 
susceptibility to malaria in pregnant women is thought to be caused by pregnancy-
associated immunological and hormonal changes [134,135] as well as the new niche for 
malaria parasites that the placenta constitutes.  
 
Placental sequestration 
P. falciparum parasites infecting pregnant women have the ability to sequester in the 
placenta and thereby avoiding both clearance by the spleen [136]. Mature iRBC are 
binding to chondroitin sulphate A (CSA) that is abundant on the syncytiotrophoblasts 
and in the intervillous space of the placenta. Hyaluronic acid (HA), also present in the 
placenta, [137,138] has been shown to be targeted for sequestration by parasites and it 
has also been suggested that non-immune IgG are acting like a bridge between adhesins 
on the iRBC surface and neonatal Fc receptors on the placenta [139]. Even though 
other proteins have been suggested to be involved in placental binding [140,141], 
VAR2CSA has repeatedly been shown to be the main culprit in mediating malaria in 
pregnancy [142,143,144,145]  
 
Consequences for the mother, fetus and infant 
Placental malaria is causing miscarriage, low birth weight, stillbirth and congenital 
malaria as well as maternal severe disease, anemia and increased morbidity [146]. Low 
birth weight (LBW) alone is causing half of the deaths attributed to malaria in 
pregnancy [147] and is defined as a birth weight less than 2.5 kg. Fetal growth 
restriction is the main cause for LBW and is probably caused by placental insufficiency 
due to the presence of parasites and substantial amounts of pigments in placental cells 
and fibers [148]. Acute infection however, particularly with high density of parasites is 
closely associated with pre-term delivery [149,150], which is also increasing risk of 
LBW. Maternal anemia is common in PAM and is further worsened by micronutrient 
(eg, iron and folic acid) deficiency [151]. Anemia might also be caused by the placental 
increase of pigmented monocytes, since these cells discharge inflammatory mediators 
that can hinder erythropoesis [152,153]. Increased amounts of cytokines are needed to 
eliminate parasites from the placenta but pro-inflammatory cytokines has also been 
shown to endanger the pregnancy, causing an immunological paradigm [154,155]. 
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Thus, a precarious balance between the Th1 and Th2 response needs to be maintained 
in order to ensure a healthy pregnancy without parasites in the placenta.  
 
Timing of infection 
The severity of malaria infection in pregnancy depends on when in pregnancy it occurs. 
It is difficult to say however whether problems in late pregnancy might be caused by 
earlier infection. Malaria during the critical time of trophoblast invasion impairs 
remodeling of uterine spiral arteries and this is likely to hinder sufficient placental 
blood circulation later in pregnancy [156,157]. The mechanistic effects of large 
deposits of iRBC, monocytes and fibrins causing decreased blood flow as well as 
placental inflammation also hampers adequate nutrient transport to the fetus 
[158,159,160]. Placental malaria can also have severe effects on the newborn child. 
Congenital malaria is today recognized as a large problem and can cause both 
symptomatic and asymptomatic disease in neonates [161] with both fever and death 
being likely outcomes. Moreover, children are likely to be more susceptible to malaria 
later in life due to maternal malaria, but the mechanisms behind this is unknown. 
[162,163,164]. Also, transplacental transfer of maternal IgGs to other pathogens (such 
as measles, S. pneumoniae etc) is decreased when the mother is infected with malaria 
[165] whereas the effect on transfer of antimalarial antibodies remains unclear [146] as 
studies have shown ambiguous results.  
 
Intermittent preventative treatment in pregnancy (IPTp) 
The WHO guidelines for IPTp recommend at least two doses of SP given after 
quickening and with four weeks apart [166]. This strategy minimizes fetal toxicity of 
the drugs but leave women susceptible to malaria both during trophoblast invasion and 
placentation early in pregnancy as well as during the peak fetal growth later in 
pregnancy. As with all antimalarials, parasites resistant to SP is prevalent and 
alternative drugs are few due to unknown effects on the fetus. Artemisinin compounds 
are currently not recommended as treatment during the 1st trimester, but are considered 
safe for uncomplicated and severe malaria treatment later in pregnancy [167]. 
However, more studies on fetal toxicity are needed to complement both the IPTp and 
treatment drug collections. In addition, IPTp administration requires antenatal clinic 
(ANC) visits, something that not all women in malaria-endemic areas have access to. 
Therefore, the need is great for a functional vaccine against placental malaria. 
 
1.4.4  Malaria co-infection with HIV 
 
Malaria endemic areas overlap with areas where HIV is of high prevalence. In sub-
Saharan Africa, 23 million people live with HIV [168] and nearly 250 million cases of 
malaria occur each year in the same area [2]. Malaria is the third largest cause of HIV-
related morbidity, just after bacterial infections and drug-related events [169]. There is 
a higher prevalence of clinical malaria in HIV-infected children than in children 
without HIV and severe malaria is much more common in children over 1 year of age 
with HIV [170,171]. In non-pregnant adults, HIV infection is linked to increased cases 
of clinical malaria and higher prevalence and density of parasitemia [172,173,174] 
something that is especially severe in patients with extensive immunosupression [175]. 
This is signifying the importance of also considering HIV infection when discussing 
malaria treatment strategies and public health policies. 
 
HIV and placental malaria 
In pregnant women, HIV changes the pattern of acquisition of immunity where 
multigravidae generally are protected against malaria in pregnancy due to previous 
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pregnancies. When co-infected with HIV, this acquired protection disappears and 
renders women of all parities susceptible to severe disease [176]. HIV infection 
increases the risk of both clinical and placental malaria as well as the risk of maternal 
anemia, LBW and pre-term delivery [177]. Importantly, co-infection with HIV also 
undermines the efficacy of IPTp, indicating a need to evaluate current guidelines for 
both drug of choice and dosing regimen [178]. There are several mechanisms proposed 
to how HIV impairs the immune response to malaria in pregnant women. Studies are 
indicating that while there is no generalized suppression of immune response in 
pregnant women, the IL-12 mediated IFN-γ pathway is impaired by HIV infection, 
enabling the intracellular malaria parasite to proliferate without risk of being cleared by 
an active cellular response involving macrophages [179,180]. The humoral response 
towards several important P. falciparum antigens is also severely affected by HIV, 
which is most pronounced in women with advanced HIV infection [181]. Not only is 
HIV affecting the severity of malaria infection in pregnant women but malaria appears 
to also increase the HIV viral load [182,183,184]. Malaria infection causes up-
regulation of pro-inflammatory cytokine production and increases the amount of 
macrophages and monocytes, both cell types targeted by the HIV virus [185,186]. The 
effect of malaria and HIV co-infection on mother-to-child-transfer (MTCT) is 
unknown. Studies have shown contradictory results, leading to the hypothesis that co-
infection can be either protective or enhance MTCT, depending on the characteristics 
of placental infection and severity of HIV infection [187]. Important protective 
antibody functions such as phagocytosis are hampered by HIV infection in 
multigravidae [130,131,132] and a decrease in binding affinity of antibodies towards 
DBL5ε of VAR2CSA is shown in primigravidae [188]. Hence, changed antibody 
properties upon co-infection with HIV are important to consider within both treatment 
and preventative strategies.  
 
1.5     PLASMODIUM FALCIPARUM VIRULENCE 

The parasites ability to invade red blood cells and the cytoadherence of mature 
parasites to the host endothelium are both important virulence factors of P. falciparum. 
While the selective expression of the var gene family is central for sequestration, 
multigene families involved in invasion can also be variantly expressed. Further 
knowledge concerning these two processes is imperative in order to decipher regulatory 
mechanisms behind parasite virulence.  
 
1.5.1  Invasion 
 
RBC-invasion efficiency of P. falciparum is closely linked to the morbidity and 
mortality caused by this parasite. The invasion process starts with the egress of formed 
merozoites from its infected host cell, an intricate process that involves an increase in 
intracellular pressure and multiple biochemical changes [189]. In order for parasites to 
egress successfully, disruption of both the parasitophorous vacuole membrane (PVM) 
as well as the host-cell membrane is needed and these processes are in large mediated 
by various proteases [190,191,192,193] and kinases [194]. After egress, the merozoite 
needs to find, attach to and enter its new host cell, something that occurs in various 
steps. It is important that this extracellular stage is brief in order for merozoites to avoid 
recognition and clearance by the host immune response [195].  
 
Initial attachment 
P. falciparum merozoites have a plasma membrane and the basic cellular machinery of 
eukaryotic cells, as well as a plastid [196,197]. Additionally, it also contains several 
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invasion-specialized organelles located at the apical end, such as rhoptries, micronemes 
and dense granules [196,198,199,200,201]. The polar merozoite can attach to 
erythrocytes at any point of its surface and multiple merozoite surface proteins are 
implicated in this initial contact. The abundant merozoite surface proteins (MSPs) 
constitute a family of immunogenic proteins that are important in the initial contact of 
merozoite binding to erythrocytes [202,203,204]. MSP-1 has been most extensively 
studied and is a blood-stage vaccine candidate albeit rendering only low levels of 
protection [205,206]. The merozoite then reorients in order for the apical tip to face the 
erythrocyte membrane. An irreversible tight junction is formed and enables the parasite 
to enter the erythrocyte with the help of its actin-myosin motor [207] and simultaneous 
shedding of the merozoite protein coat [208]. The apical membrane antigen, AMA-1 is 
implicated in apical reorienteation of the merozoite [209] via interaction with rhoptry 
neck protein RON2 [210]. AMA-1 is essential for the invasion process, not only in P. 
falciparum but also in Toxoplasma gondii [210,211]. 
 
Secondary interaction 
Several proteins located at the apical end of the merozoites play various secondary 
interaction roles in the invasion process, including the erythrocyte binding antigens 
(EBAs) and the reticulocyte binding-like homologue (PfRh) proteins [195,212]. The 
EBAs belong to the duffy binding like (DBL) family, which are orthologous of P. vivax 
DBL-proteins. PfRhs include PfRh1, 2a, 2b, 3, 4 and 5, and belong to the conserved 
multi-gene family reticulocyte binding-like (RBL) proteins.  These proteins bind 
various receptors on the erythrocyte surface and mediate different invasion pathways, 
enabling the parasite to switch means of entering the host cell [213,214,215,216]. 
Invasion phenotypes are typically either dependent or independent on sialic acid (SA) 
residues of erythrocyte receptors. EBA-175, EBL1 and EBA-140 bind to glycophorin 
A, B and C respectively and mediate SA-dependent invasion [217,218,219]. EBA-165 
is suggested to be a pseudogene and the receptor for EBA-181 is unknown albeit being 
SA-dependent [220]. The ligands for the PfRhs are unidentified except for the recent 
discovery that PfRh4 bind to CR1 and mediates a SA-independent invasion pathway 
[221,222]. While PfRh3 seems to be a pseudogene, studies show PfRh1 to bind 
erythrocytes in a SA-dependent manner [223,224]. Erythrocyte binding was recently 
demonstrated to be mediated by PfRh2a and 2b and both have been suggested to be 
important for merzoite invasion [215,225,226]. Interestingly, the native PfRh2a/b is 
processed near the N-terminus, yielding two different sized fragments that differ in 
their dependence on SA-residues on the RBC [227]. The atypical PfRh5 is smaller in 
size than the other PfRh’s and lack a transmembrane domain, leading to the hypothesis 
that it is part of a larger protein complex [228,229]. Unlike the other PfRh’s, PfRh5 
disruption has been shown to be unachievable in all parasites tried so far, indicating 
essentiality for parasite invasion [228]. Both the EBA and PfRh gene families described 
above are highly polymorphic, which might affect both receptor affinity and specificity. 
This is important in order to overcome the host immune response but also the many 
host receptor polymorphisms that are present in various geographical areas. Several 
studies have shown invasion genes to be variantly expressed between parasite strains 
and that the various pathways they enable are redundant as individual EBAs and PfRhs 
can be knocked out with a resulting switch in pathway [212,215,220,224,230,231]. 
Copy number variation (CNV) in these genes has been observed in parasites, and been 
linked to various levels of expression [215,231]. Not only genetic differences but also 
epigenetic changes play important roles in invasion gene expression and enable the 
parasite to switch between sialic acid-independent and dependent growth 
[216,232,233]. The mechanisms behind these epigenetic changes are so far unknown 
but might involve chromatin modifications such as methylation and acetylation as well 
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as repositioning to active or silent expression zones in the nuclear periphery. Studies on 
EBAs and PfRhs indicate that they function not only similarly but also cooperatively, 
giving the notion of a combination vaccine based on members from both families 
[234].  
 
Inside the RBC 
Once the merozoites have successfully invaded a new red blood cell, several less 
studied molecular processes and modifications of the host cell take place in order for 
the parasite to successfully proliferate in this environment. A new PVM is formed as 
the parasite enters the host cell and keeps the parasite apart from the host cell 
cytoplasm. The dense granules are believed to release various proteins and chemicals 
that help creating a favorable environment for proliferation [200,201,235] but as of yet, 
only a few of these have been indentified [236,237,238,239,240]. The invasion process 
appears highly structured and complicated and of an obvious interest from a therapeutic 
point of view. Several invasion proteins are currently considered potential vaccine 
candidates. Much is still unknown however concerning regulatory mechanisms behind 
expression of invasion genes. 
 
1.5.2  Sequestration 
 
All P. falciparum isolates studied to date sequester and even though sequestration is 
known to affect pathogenesis only a fraction of malaria infections leads to severe 
disease. Countless studies have investigated what specific binding types are causing 
life-threatening disease such as cerebral malaria. The malaria parasite drastically 
modifies its RBC host, altering both the rigidity and adhesive properties of the iRBC. A 
myriad of parasite proteins are exported to the iRBC surface and these are enabling 
various types of sequestration. Foremost, mature iRBC can cytoadhere to endothelial 
receptors in various organs and tissues. However, iRBC also adhere to both uninfected 
(rosetting) and infected red blood cells (autoagglutination). While cytoadhesion enable 
the parasite to proliferate successfully without being cleared by the spleen, rosetting 
obstruct the blood flow and is speculated to protect the parasite against immune cells 
and alleviate erythrocyte invasion by merozoites by keeping uninfected cells near 
[241].  
 
1.5.2.1  Erythrocyte membrane modifications 
 
The parasite modifies the host cell immediately after invasion. Internal modifications 
such as an extensive tubovesicular network (TVN) that extends from the parasite 
vacuole helps to guarantee adequate nutrient transport into the parasite as well as waste 
transport out [242,243,244]. The permeability of the RBC membrane also changes, 
allowing for easier transport of various molecules in and out of the infected cell. Other 
dramatic changes to the RBC membranes take place, with the primary purpose of 
aiding the parasite to evade the host immune system. The various proteins exported to 
the RBC membrane constitute important virulence factors and contributes to the 
pathology of P. falciparum. Instead of using its endogenous trafficking system, the 
parasite assembles novel membrane structures in the RBC cytoplasm, such as the 
mentioned TVN and Maurer’s Clefts (MCs) [245,246,247,248,249]. MCs are disc-
shaped structures, tethered to the RBC membrane and are involved in delivering 
virulence proteins to the RBC membrane [250,251]. While normal RBCs are 
remarkably deformable in order to move through tiny capillaries, the rigidity is rapidly 
altered upon infection by P. falciparum. Various membrane modifications by parasite 
proteins are contributing to this increased rigidity [252,253]. The ring-infected 
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erythrocyte surface antigen (RESA) stabilizes the membrane skeleton via its 
associations with spectrin, which is present in the RBC membrane [236] and thereby 
curb further invasion of other merozoites [254]. Proteins such as the skeleton binding 
protein 1 (SBP1), membrane-associated His-rich protein 1 (MAHRP1), mature-stage 
erythrocyte surface antigen (MESA), P. falciparum erythrocyte membrane protein 3 
(PfEMP3) and Pf332 are all involved in the formation and morphology of Maurers 
clefts, RBC membrane rigidity and/or trafficking of PfEMP1 [244]. The knob-
associated His-rich protein (KAHRP) is expressed in mature RBCs and self-associate to 
form electron dense structures that interact with spectrin and actin in the RBC 
membrane [255,256]. While not essential, these so called knobs are important for 
surface presentation of PfEMP1 [257,258]. The amount of proteins exported by P. 
falciparum widely exceeds that of other Plasmodium species, and this is mostly due to 
expansion of various gene families such as the var, stevor, and rif genes [259].  
 
1.5.2.2  Cytoadherence  
 
An important factor of P. falciparum parasites is their ability to adhere to vascular 
endothelium in organs such as brain, intestine, liver, lung, skin and to 
syncytiotrophoblasts in the placenta. However, it is still not clear how the parasites use 
of different human receptors is connected to disease severity. CD36 is perhaps the most 
described receptor for adhesive iRBC and is expressed ubiquitously on the 
endothelium, platelets, monocytes and dendritic cells [260,261]. Most clinical isolates 
bind CD36 [262,263,264] but despite the obvious importance of this receptor, no 
association to severe disease has been shown as of yet [265,266]. ICAM1 has been 
associated with severe disease as was found to be heavily expressed in the brain of 
deceased CM patients [96,267]. Expression of ICAM1 can be upregulated by 
proinflammatory cytokines, which are common in severe disease as a natural response 
to infection [96,268]. P. falciparum parasites also bind other endothelial receptors such 
as thrombospondins (TSP), PECAM1 and VCAM1 among many others 
[269,270,271,272,273]. P. falciparum receptors present in the placenta are also of  
interest since they are so clearly linked to the severe syndrome placental malaria. The 
sulfated glycosaminoglycan CSA is the best described receptor for infected erythrocyte 
binding in the placenta [274] and it normally functions as a reversible immobilizer for 
cytokines, hormones and other molecules [146]. While P. falciparum isolates binding 
CSA rarely bind other common iRBC receptors such as CD36 [275], HA is another 
receptor proposed to mediate placental binding [276,277].  
 
1.5.2.3  Rosetting  
 
The adhesion of a P. falciparum infected red blood cell to uRBCs is termed rosetting 
and was discovered in the late 1980s [278,279]. Later studies showed this phenomenon 
to be present in both clinical and laboratory isolates and that rosetting is linked to 
severe malaria in African children [270,280,281]. Interestingly, rosetting is a phenotype 
that greatly varies between isolates and studies have shown that it is associated with 
cerebral malaria, severe malarial anemia and respiratory distress [282,283,284]. 
Malaria isolates infecting pregnant women and bind to syncytiotrophoblast cells in the 
placenta do not form rosettes however [285] despite being able to cause severe disease. 
The main parasite rosetting ligand is the protein PfEMP1 [286,287] that will be 
discussed in greater detail below. Multiple erythrocyte receptors can mediate rosetting. 
CR1 is a glycoprotein expressed at various levels on the surface of erythrocytes and is 
an important ligand to PfEMP1 [286]. It has been found that CR1 density 
polymorphism [286,288] and cr1 gene alterations [286] both are important 



 

 14 

determinants for severe disease. Human populations with low levels of CR1 as well as 
populations completely lacking CR1 are to a high extent protected against severe 
malaria [92,289,290]. Heparin sulphate (HS) is present on RBCs and heparin as well as 
other sulphated glycans both inhibit rosette formation and disrupt already formed 
rosettes [291,292]. Blood group ABO antigens are important for rosetting levels and 
size of rosettes. Blood group A is particularly linked to more frequent and larger 
rosettes among both laboratory strains and clinical isolates whereas blood group O 
results in lower levels and smaller rosettes [281,291,293,294,295]. Immunoglobulins, 
especially IgM, also appear to play important parts in rosetting, acting like bridges 
between the parasite ligand and RBC receptor [296,297,298,299]. 
 
1.5.2.4  P. falciparum surface exposed antigens  
 
PfEMP1 in general and VAR2CSA in particular 
The main parasite adhesin PfEMP1s is encoded by approximately 60 hyper-variable 
var genes per parasite genome [300] and are considered to be the most important 
virulence factor in P. falciparum. The multi-domain protein varies in size from 200-350 
kDa and undergoes highly controlled regulation leading to antigenic variation, which 
constitutes an important parasite defense against the human immune response [15]. 
PfEMP1s mediate sequestration via a multitude of receptors in the endothelium and on 
red blood cells. All members contain two exons where the polymorphic extracellular 
domain (exon 1) comprise the N-terminal segment (NTS), a variable number of Duffy-
binding-like (DBL) adhesive domains and cysteine rich interdomain region (CIDR). 
There are four types of CIDR domains (α, α1, β and γ) and seven types of DBL 
domains (α, α1, β, γ, δ, ε and x) and these different types are mediating the various 
binding specificities of PfEMP1s.  
 
var genes are mainly located in the polymorphic subtelomeric regions [14,300], and 
can be divided into various groups based on their 5’ upstream open reading frame, 
chromosomal location and transcriptional orientation [301,302]. The three main groups 
(ups A, B and C), two intermediate (B/A and B/C) as well as the unusual single var 
gene containing ups E are conserved in P. falciparum, indicating strict patterns of 
recombination of var genes [303]. Recombination occurs both in the mosquito 
abdomen as well as during human infection, rendering the var gene repertoire hyper-
variable with very low levels of conservation between isolates [304,305,306].  
 
The unusually conserved ups E var gene is located in the subtelomeric region of 
chromosome 12 and encodes VAR2CSA. It is by far the best-characterized var gene, 
mainly due to its important role in the pathogenesis of placental malaria. Single 
P.falciparum parasites may have several copies of slightly variable var2csa 
[301,310,311,312], which has not been seen for other var genes. Identification of 
multiple var2csa alleles in field isolates indicate that multiple alleles are more common 
in pregnant women than in other individuals and that these isolates accumulate during 
the course of pregnancy [311,312]. The level of antibodies towards VAR2CSA also 
correlates with the var2csa copy number [312], indicating that host immunity is driving 
the selection of parasites containing several var2csa. The domain architecture of 
VAR2CSA is different from other PfEMP1s, does not contain CIDR domains and 
instead consists of DBL1-3x and DBL4-6ε. Due to this unusual PfEMP1 structure, 
VAR2CSA has distinctive binding properties compared to other PfEMP1s, which bind 
a variety of receptors present in organs and tissues such as CD36, ICAM1, PECAM1, 
and VCAM1, all extensively discussed above.  While the various domains have been 
thoroughly examined in terms of elicited protective antibody response and binding 
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capacities [188,313,314,315,316,317,318], later studies indicate the whole length 
protein to be important for high affinity binding to placental receptors [319,320]. 
However, studies on the various individual DBL-domains of VAR2CSA have shown 
several of these to bring forth a protective immune response against pregnancy-
associated malaria. VAR2CSA is an important vaccine candidate that could possibly 
save the lives of both pregnant women and their unborn children.  
 
Others surface exposed antigens  
Other hypervariable gene families are proposed to encode proteins that are exposed on 
the iRBC surface. These families share chromosomal localization features with the var 
genes. The multigene family stevor encode STEVOR (subtelomeric open reading 
frame) proteins [321], that were recently shown to be expressed on the surface of 
schizont infected RBC and on the merozoite surface [322]. Variation in STEVOR 
expression appears important for the immunogenic properties of the parasite and might 
have a role in mediating immune evasion [323]. Often adjancent to stevor are the 150-
200 gene copies of the rif (repetitive interspersed family) [14].  RIFINS are expressed 
on the surface of iRBC and protective antibodies are acquired with exposure [324,325]. 
Even though the function of RIFINS is still not understood, a member of the rif gene 
family have been found to dominate transcription in both sporozoites and gametozytes 
[326]. Also the function of the surface associated interspersed protein (SURFIN) family 
remains unknown. SURFINs have been localized to the surface of iRBCs and on 
merozoites [327]. The family of 13 pfmc-2tm genes is encoding proteins found in the 
PV, PVM and MC in late stage parasites [328] and possibly participates in iRBC 
adhesion [329]. 
 
1.5.3  Antigenic variation 
 
Antigenic variation is employed by a multitude of human pathogens. By altering 
molecules exposed to the host, species like African trypanosomes [330] and Giardia 
lamblia [331,332,333] as well as Plasmodium are able to pertain a long-lasting 
infection and increase chances for transmission. While the above-described adhesins 
are essential for successful proliferation and escape from splenic clearance, they are 
also targets for the host immune response. Hence, the parasite needs to constantly 
change the surface exposed antigens, and is doing so by means of highly controlled 
antigenic variation. This has been best described for PfEMP1 but also other surface 
exposed antigens are suggested to undergo antigenic variation in P. falciparum, 
however. Antigenic variation is regulated epigenetically in the sense that activation and 
silencing of individual genes are inherited without any changes in the DNA sequence. 
 
1.5.3.1  Antigenic variation of PfEMP 
 
The ∼ 60 var genes that a single P. falciparum genome contains is considerably less 
than the hundreds of variants surface vsg genes encoded by African trypanosomes. In 
order to not exhaust this relatively small repertoire, the family is constantly evolving by 
ectopic recombination [334]. Individual P. falciparum parasites supposedly express 
only a single var gene at a time, while remaining family members are in a silent state 
[335,336]. Recent data support a strict regulation of var gene expression, albeit not as 
strict mutually exclusive [310,337,338]. In order for the parasite to optimally use the 
var gene repertoire, there seems to be a highly structural pattern of transcriptional 
change [339], at least in vitro. Switching rate could be individual to each var gene, 
where var genes located internally on the chromosomes experience significantly slower 
off rates than subtelomeric var genes [340]. A more recent study however suggest the 
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switching pattern to be dependent on the var gene repertoire as a whole [339] and that 
switches never occur between closely related var genes.  
 
Transcriptional regulation of var genes occurs at various levels. All var genes contain 
two transcriptionally active promoters, where the first is producing mRNA and is 
located upstream of exon 1. The second promoter constituted by the var gene intron 
leads to expression of non-coding RNA [300,341] and is an important regulatory 
element as a silencer and in recognizing other var genes [342,343,344]. While only one 
or a few upstream promoters may be active at a time, the intron promoter has no such 
regulation and is consequently active in all var genes simultaneously [345]. The unique 
gene var2csa contains a small upstream open reading frame (uORF) that functions as a 
translational repressor [346]. This is hypothesized to aid in repressing var2csa when 
infecting a non-pregnant individual and thereby only establish a placental infection 
when in a pregnant host.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Overview of the various layers of regulatory processes controlling 
antigenic variation. (Inspired by Dzikowski and Deitsch, 2009, illustration by Jannike 
Simonsson and EM-picture by Ulf Ribacke). 
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Chromatin modifications are another important aspect of var gene regulation by 
rendering chromatin more or less accessible for transcription [69]. Active var genes are 
associated with H3K9ac and di- and tri-methylation of H3K4 in the ring stage and 
H3K4me2 in schizonts whereas H3K9me3 is enriched around silent genes 
[347,348,349]. The enrichment of di- and tri-methylation of H3K4 in trophozite and 
schizont stage is intriguing since var genes are no longer actively expressed that late in 
the IDC. It is possible that H3K4me2 / me3 therefore constitute an epigenetic memory 
by priming a certain var gene for the following cell cycle. The class III histone 
deacetylase PfSir2a has been suggested important for epigenetic control of var genes 
due to its association with transcriptionally inactive promoters [64,65,350,351,352]. 
Non-coding RNA could also play a role in chromatin assembly and thereby possibly in 
the transcriptional regulation of var genes [345]. 
 
The subnuclear organization represents another possible level of transcriptional 
regulation in antigenic variation. The P. falciparum nucleus is divided into two distinct 
compartments where the nuclear periphery consists of mostly electron-dense 
transcriptionally silent heterochromatin. Loose euchromatin that promotes DNA 
accessibility, which allows transcription factors to activate their target genes is located 
in the internal part of the nucleus [353]. However, the nuclear periphery contains active 
zones devoid of heterochromatin as well as the more prevalent inactive zones [354] and 
multiple studies have shown that var genes reposition to a specific transcription site in 
the nuclear periphery when active [63,310,343,355,356]. Whether or not this site co-
localizes with telomeric end clusters is under debate [63,310,357] however.  
 
 
1.6     GENETIC MODIFICATIONS OF P. FALCIPARUM; FORWARD AND 
REVERSE GENETICS 

The first transfection of intracellular P. falciparum occurred in 1995 [358] and this 
started a new era in malaria molecular biology. The full-genome sequencing of P. 
falciparum in 2002 [14] then paved the way for extensive genetic manipulations that 
promise to facilitate vaccine and drug design by exploring parasite biology. Over 50% 
of the approximately 5300 Plasmodium genes encode hypothetical proteins of unknown 
functions that lack orthologues in other eukaryotes [14]. While transient transfection 
has given great insight into regulation of gene expression [359], stable transfectants 
allow for more extensive functional studies. Various selective marker genes that each 
encode a protein that confers drug resistance enable a positive selection process that 
ultimately lead to parasites with a disrupted wild type locus.  
 
Despite the recent development of transgenic tools, there are several challenges with 
genetic modifications of P. falciparum iRBCs. First, the high AT-content of 
Plasmodium spp. DNA renders it highly unstable in E.Coli [360], which results in 
difficulties to prepare transfection constructs. Also, the targeting DNA needs to cross 
four membranes in order to reach the parasite nucleus [361], something that contributes 
to the low transfection efficiency seen in P. falciparum. The transient creation of 
micro-sized holes in the plasma membrane by electroporation is most commonly used 
in order to insert vector DNA into the parasite nucleus and this has been shown to work 
best on ring-stage parasites. The piggyBac transposon mutagenesis system allows for 
large-scale forward genetic screens [364]. While gene disruptions are not specific, the 
benefits of this system is its high efficiency and relatively short period of time it take to 
generate stable clones of insertional mutants. The piggyBac insertion approach have 
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been shown to work very well in P. falciparum [365] and adds to the increasing 
number of methods that enable the proteome of this deadly parasite to be unraveled. 
The function of malaria proteins can be elucidated by disruption of target genes via 
homologous recombination [362] but this approach is inadequate for essential genes. 
Hence, there is a great need for regulatable and inducible transfection systems in order 
to elucidate the function of these. Epp et al reports a regulatable expression system 
where a bidirectional promoter drive the expression of both the transgene and the 
selectable marker, allowing for significantly smaller constructs that therefore are more 
stable [363]. By changing concentrations of the selection drug, the copy number of 
concatameric episomes varies and thereby regulates the transgenes level of expression. 
In paper III, we successfully use the mutant version of the human rapamycin-binding 
protein FKPB12, called ‘destabilization domain’, or DD [366,367], fused to the C 
terminus of our target gene. By adding the small molecule Shield 1 (Shld1) that 
function as a DD ligand, the fusion protein is protected from the degradation that would 
occur with no addition of Shld1. While different P. falciparum proteins inherently will 
be knocked down at varying levels, this system is a useful tool for investigating 
functions of essential genes. By varying the concentration of added Shld1, protein 
degradation can be effectively tuned and controlled.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Inducible knockdown system using the DD-domain. (Illustration by 
Jannike Simonsson). 
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2     SCOPE OF THE THESIS 

 
The general objective of the studies presented in this thesis was to increase the 
understanding of acquired immune response to VAR2CSA as well as investigate gene 
regulatory mechanisms behind expression of P. falciparum virulence genes, with a 
focus on antigens involved in placental malaria.  
 
Specific aims: 
 
The specific aims of the presented papers were as follows: 
 

I. To explore the differential acquisition of immune IgGs towards 
VAR2CSA DBL-domains and investigate the impact of HIV co-infection 
on antibody affinity. 
 

II. To gain insights into gene regulatory mechanisms behind antigenic 
variation and the rationale of gene dosage by scrutinizing active 
transcription of duplicated var2csa alleles in individual parasites. 

 
III. To elucidate essentiality and gene regulatory functions of the P. 

falciparum histone deacetylase PfHda1 with the use of reverse parasite 
genetics. 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 20 

3     EXPERIMENTAL PROCEDURES 

While material and methods are thoroughly explained in each respective study included 
in this thesis (paper I-III), experimental procedures considered of extra importance are 
systematically described here. 
 
3.1 Plasmodium falciparum in vitro culture conditions 
 
Trager and Jensen published their success in cultivating P. falciparum parasites in 1976 
[368] and this was obviously a big landmark for malaria research. The candle-jar 
technique they describe was used for parasite cultivation for paper II. In brief, iRBC in 
complete media were grown at 37°C in open flasks in an airtight desiccator where lit 
candles consume excess oxygen and thereby creates a beneficial environment for the 
parasite to proliferate. Parasites used for paper I and III were cultured using similar 
complete media, however grown in petri dishes within airtight containers individually 
gassed with 5% O2 and 5% CO2 in N2. No significant difference between these similar 
methods in terms of parasite growth was seen and the reason for using the various 
methods was purely logistical. 
 
3.2 VAR2CSA DBL-domain recognition by immune sera from pregnant women 
 
The transfectant CHO-745 cells we used in paper I are comprehensively described in 
[369] and was further characterized in [277]. The serum samples used in this study 
were part of a large study that took place in Malawi and investigated interactions 
between HIV and malaria in pregnancy [181]. Using these sera, we measured 
VAR2CSA DBL-domain recognition by flow cytometry. Compared to an earlier study 
measuring non-immune IgG and IgM recognition of the various domains expressed on 
the same CHO-745 cells [277], experimental procedures were slightly modified. Fetal 
calf serum (FCS) was added to blocking steps and antibody incubations, something that 
significantly increased the amount of viable cells appropriate for analysis. While we 
originally used cells expressing all VAR2CSA DBL-domains (DBL1x, DBL2x, 
DBL3x, DBL4ε, DBL5ε and DBL6ε), we decided to continue to work with domains 
DBL3x, DBL5ε and DBL6ε. Due to the impracticality of testing large number of 
patient samples using all DBL-domain expressing CHO-745 cells, the three most 
interesting domains were chosen for a more thorough analysis. These three domains 
were all recognized in a gender specific pattern to a much higher extent than the other 
VAR2CSA DBL-domains. Further analysis showed especially DBL5ε to be interesting 
due to also being recognized in a parity dependent manner, something that is 
characteristic for immune acquisition within malaria in pregnancy. Also, the antibody 
levels to DBL5ε positively correlated to those against total variant surface antigens 
expressed by VAR2CSA expressing parasites (VSA-PAM). Hence, we chose to further 
analyze the properties of VAR2CSA DBL5ε-specific antibodies.  
 
3.3 Antibody affinity measurements 
 
In order to investigate antibody affinity to recombinant VAR2CSA DBL5ε, we used 
the surface Plasmon resonance (SPR) technique, measured with the biosensor analytical 
system Biacore. SPR occurs when polarized light strikes the gold-coated sensorchip 
and generates electron charge density waves called Plasmons. The reflected light is 
detected and measured using the Biacore system. There are multiple uses of the Biacore 



 

 21 

system and in addition to determinate affinity between two molecules, it can also 
measure kinetics for interaction, binding specificity and molecule concentration.  While 
the affinity of an interaction is evaluated from the level of binding at equilibrium as a 
function of sample concentration, it can also be determined from kinetic measurements 
where the equilibrium constant KD equals kd/ka (dissociation rate constant and 
association rate constant respectively). In our experiments however, there are several 
uncertainties. First, we do not know which molecules in the patient sera that bind to the 
VAR2CSA domain DBL5ε. Hence, we cannot know the concentration of molecules in 
the interaction. Therefore, we determined kd as a measurement of binding affinity and 
compared these from our various patient groups (primi- or multigravidae with or 
without HIV infection).  
 
After the target protein was coupled to the CM5 sensor chip, the amount of samples we 
could test before the protein either lost its conformation or was downgraded by 
exposure to the 10 mM glycine, pH 1.5 varied. To make sure the recombinant DBL5ε 
remained intact, our control sera from hyperimmune Malawian multigravid women was 
tested regularly. In order to measure only binding by immune antibodies specific to 
VAR2CSA DBL5ε, sera from malaria-naïve Melbourne donors and sera depleted from 
IgG as well as non-immune IgG and IgM was used as controls, none of these showing 
significant binding to our test protein. We also used the control protein 3D7 DBL6γ in 
order to adjust for the rare event of non-specific binding. The kd of individual samples 
was subsequently evaluated using the software BIAevaluation 3.0 (Biacore AB).  
 
3.4 Single cell cloning of parasites 
 
We used two different methods of cloning single cell parasites within the studies that 
this thesis comprises. In paper II, single infected RBC was picked by a 
micromanipulation technique using sterile glass capillaries (∼3-5 µm internal diameter) 
and a micromanipulator MN-188 in conjunction with an inverted Diaphot 300 
microscope. The single cells were directly deposited into RNA harvesting buffer and 
snap frozen on dry ice. For the downstream assay, the use of actual single cells were 
imperative and the precision of micromanipulation ensured that this was indeed what 
we were working with.  
 
In paper III, we instead used limiting dilution in order to obtain clonal parasites. Each 
transfected bulk population was dilution into three different dilutions and plated into 
96-well microtiter plates. Media containing drug was changed every 2-3 days and 
presence of parasites were monitored after 14-16 days of culturing using a parasite-
specific lactate dehydrogenase assay (pLDH) [370,371]. The parasite LDH is able to 
utilize 3-acetylpyridine NAD (APAD) as an NAD analogue whereas RBC cannot. 
Hence, by adding nitroblue tetrozolium (NBT) and phenylethyl sulfate as well as 
Malstat reagent to 20 µl of well contents and incubating at room temperature for ∼2 h, 
positive wells can be spotted without the need for a plate reader. The pLDH assay is 
very specific and sensitive as well as significantly faster than giemsa staining followed 
by microscopy. Six clones from each plate was subsequently transferred to 5 ml dishes 
and cultured for southern blot analysis and downstream assays. If parasite growth was 
only observed in wells with highest concentrations, plates were discarded and cloning 
experiment repeated, in order to ensure clonal parasite cultures.  
 
3.5 Real-time PCR 
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Real-time PCR was extensively used in both paper II and III. In paper II, we used this 
method in order to quantify relative gene copy number of var2csa and to discriminate 
between highly similar gene paralogs. In paper III, we investigated relative gene 
transcription levels in PfHda1 knockdowns in the sense of both invasion related genes 
and the var gene family. All used gene specific primers and probes were designed using 
Primer Express 3.0 and further assessed using ΔG estimations in NetPrimer. However 
important and useful, the real-time PCR technique is limited to the quality of material 
used as well as of proper assay design. Therefore, extensive efforts to ensure specificity 
of designed assays were taken by blasting towards all genomes used as design template 
as well as performing dissociation curves of amplified products. By using serially 
diluted DNA and modifying primer concentrations, amplification efficiencies were 
optimized. In the rare cases when amplification efficiencies differed more than 
insignificantly, this was taken into consideration when analyzing the data.  
 
Relative gene copy numbers was performed using specific primers for var2csa, Pf332 
and the single copy gene β-tubulin. After amplification reactions were performed in at 
least triplicates, relative gene copy number was calculated using the ΔΔCt method.  
By using primers and allele discriminative FAM or VIC labeled MGB-probes, we were 
able to distinguish between the highly similar duplicated var2csa and Pf332 genes in 
the parasite HB3. After extensive validation of assays, relative allele frequencies were 
determined from ratios of fluorescence from the allele specific probes via an initial pre-
read followed by amplification and a final post-read.  
 
For the relative gene quantification we performed in paper III, several endogenous 
controls were used. Due to the stage delay observed upon PfHda1 knockdown, 
parasites grown on and off Shld1 were harvested at slightly different time points. Also, 
since inhibition of histone deacetylases are likely to affect a large variety of genes, we 
made sure that our control genes did not change between the parasites we compared. 
Initially, primers targeting seryl-tRNA synthetase, adenylosuccinate lyase, arginyl-
tRNA synthetase and glutaminyl-tRNA synthetase were all used but since values were 
identical in balanced samples, we chose to use only seryl-tRNA synthetase for our final 
analysis.  
 
3.6 Fluorescent in situ hybridization 
 
Fluorescent in situ hybridization (FISH) has been extensively used in P. falciparum 
[338,345] and considerable improvements to the method have been developed by the 
Wahlgren group [355,372]. FISH is effective for visualization of the physical location 
of genes, either within intact nuclei or on whole chromosomes and is used in paper II to 
investigate var2csa localization. By using double stranded probes targeting both 
var2csa alleles in HB3CSA and the telomeric repeat regions (Rep20), we were able to 
assess gene localization. Five different scenarios were seen and clearly distinguishable; 
co-localization of duplicated var2csa and co-localization of these with Rep20, co-
localization of var2csa but no co-localization with Rep20, non co-localized var2csa 
where both co-localize with Rep20, non co-localized var2csa where none co-localize 
with Rep20 and non co-localized var2csa where one paralog co-localizes with Rep20 
and the other not.  
 
In order to visualize active transcription of the duplicated var2csa alleles in paper II, we 
developed a RNA-FISH assay. CSA-selected parasites were picked at 16 ± 4 h p.i. in 
order to cover peak var gene transcription. 100 bp single stranded antisense and sense 
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RNA probes with Sp6 promoter tails were designed to being able to distinguish 
between the highly similar var2csa paralogues in HB3CSA as well as incorporating 
also FCR3CSA and NF54CSA as controls. The various probes were generated by in 
vitro transcription with either fluorescein or biotin and Sp6 RNA polymerase. RNA is 
inherently more difficult to work with than DNA, and is easily degraded. Hence, great 
care was taken to store RNA probes at -70°C until use and to keep all reagents and 
bench spaces free from RNases. The methodology for RNA-FISH is thoroughly 
described in paper II and our results clearly shows the usefulness of this discriminative 
assay. 
 
3.7 Inducible knockdown using the DD-domain system 
 
The use of the human FKBP12-domain in transfection techniques [367] was rapidly 
adapted for use in P. falciparum [366] and has since then been used successfully in 
several studies (paper III; [194,373]. A thorough description of the generation of the 
DD-HA plasmid is found in [194]. In brief, the DD-domain was amplified and cloned 
into a single crossover vector with the Pfhsp86 3’UTR as an XhoI/Acc65I fragment. 
Triple HA-tags was then inserted into the DD vector, resulting in plasmid pJDD41 
(here callded DD3HA). A 1159 bp fraction of PF14_0690 was then amplified using 
primers F: 5’-AAGCTGCGGCCGCTGTTGTCCTTTTA and R: 5’-
AGGGTACTCGAGATTCCA GAAATTTA. Resulting PfHda1 fragment was then 
cleaved using NotI/Xho1 and ligated to the DD3HA vector. We transformed XL10-
Gold cells (Agilent Technologies) with this plasmid and checked for positive colonies 
that were then further expanded in order to test cleave and sequence the vector. Large 
amounts of the DD3HA_Hda1 plasmid was then generated using the same procedures 
and the resulting DNA was precipitated and used for transfection. Parasites were 
sorbitol-synchronized and used at ring-stage parasites at a 5-10% parasitemia. For 
transfection, 200 µl packed iRBC were transfected with ~100 µg plasmid DNA in 
cytomix (120nM KCl, 0.15mM CaCl2, 2mM EGTA, 5mM MgCl2, 10mM K2HPO4 / 
KH2PO4, pH 7.6, 25mM HEPES, pH 7.6) by electroporation. Transfected parasites 
were then moved into pre-warmed media containing 10% human serum. After 6 hours 
of recovery, media was changed and drug added (0.5µM Shld1 and 2.5nM WR99210 
(Jacobus Pharmaceutical Company)). The following day, fresh red blood cells were 
added for a hematocrit of 4%. Transfected parasites were maintained with 0.5µM Shld1 
and stable single crossover parasites were selected by cycling on and off WR99210. 
When off drug pressure, parasites carrying the plasmid episomally will dispose of it, 
which is seen as massive cell death when drug is added anew. The cell death will 
gradually decline after several cycles of 2 weeks on drug and 2 weeks off drug until 
single crossovers are obtained. Stable transfectants were then cloned by limiting 
dilution and correct integration subsequently confirmed using gel electrophoresis and 
southern blots. 
 
3.8 Assays for proliferation, invasion, cell cycle progression 
 
In order to carefully monitor the effect PfHda1 knockdown has on the growth 
phenotype of the parasite, several assays were performed. First, we wanted to look at 
parasite proliferation over several generations. To do this, we sorbitol-synchronized 
ring-stage NF54DD3HA_Hda1 and FCR3DD3HA_Hda1 parasites and washed them 
extensively in RPMI, in order to remove all traces of Shld1. Parasites were then plated 
in triplicates in a 12-well plate, at 0.05% parasitemia and 0.25% hematocrit. A low 
starting parasitemia as well as low hematocrit ensures to successful growth of parasites 
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for up to 3 generations without adding anything but fresh media. This minimizes any 
variation in our results that could be due to different treatment of cultures. For each 
strain, we either grew them completely off Shld1 or on 0.5µM (+), 0.125µM (+M), 
0.0625µM (+L) Shld1 as well as 2.5nM WR. Non-infected RBCs and wildtype 
parasites were used in parallel as controls. Parasitemia was subsequently monitored by 
SYBR stain and flow cytometry every second day until day 6 (third round of invasion).  
 
In order to specifically look at invasion efficiency upon PfHda1 knockdown, parasites 
were treated in a similar fashion as above. However, parasites were grown in 10 ml 
dishes either in the presence or absence of 0.5µM Shld1 (+) and (-) respectively. Initial 
parasitemia at ring stage was measured as described above and subsequently measured 
after one round of invasion.  
 
During these experiments, a clear delay in parasite growth was observed, which led us 
to study the parasite cell cycle in more detail. To do so, cultures were set up as 
described above for the invasion assay, and smeared every 4-8 hours for the next 80 
hours. Parasite morphology was then monitored with microscopy and cells determined 
as either ring, trophozoites or schizonts. We also carefully checked for abnormal cells, 
such as exoerythrocytic parasites and RBC ghosts but found most parasites grown 
without Shld1 to normally develop albeit at a slower pace than wildtype parasites. 
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4     ETHICAL CONSIDERATIONS 

Ethical approvals for the human components used in Paper I in this thesis were 
obtained from research ethical committees in Malawi and Melbourne University. 
Written informed consent was obtained from patients themselves.  
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5 RESULTS AND DISCUSSION 

5.1 Paper I 
 
 “Antibody responses to VAR2CSA DBL-domains suggests DBL5ε  as a potential 
vaccine candidate and indicate HIV infection to impair antibody affinity in 
primigravidae” 
 
Parasites infecting pregnant women have distinct binding phenotypes that enable them 
to sequester in the placenta, where they contribute to the pathogenesis of PAM. 
Multiple studies have shown that women in their first pregnancy are at highest risk to 
develop malaria but that protective antibodies are acquired throughout the pregnancy. 
These antibodies are gender-specific and levels increase with parity. The PfEMP1 
VAR2CSA is the main binding ligand for placental sequestration and is also a potential 
vaccine candidate. However, its large size calls for increased knowledge of elicited 
antibody response against parts of the protein, such as the different DBL- domains. The 
aim of this study was to study the dynamics of the acquired immune response involved 
in protection to PAM and investigate how HIV affects both the acquisition and function 
of protective antibodies. 
 
First, we investigated antibody levels to variant surface antigens (VSA) expressed by 
the VAR2CSA expressing parasite CS2 by flow cytometry. Not surprisingly, 
multigravid women were shown to have significantly higher levels of VSA-PAM 
antibodies than primigravidae from the same area. We then went on to a more detailed 
analysis of the immune response to the different DBL-domains of VAR2CSA (DBL1x, 
DBL2x, DBL3x, DBL4ε, DBL5ε and DBL6ε. Using CHO-745 cells, that each express 
one of the VAR2CSA DBL-domains on its surface [369], we found DLB5ε to be 
particularly well recognized in a gender and parity dependent manner. DBL5ε is highly 
conserved among both laboratory strains and clinical isolates [374] and contain 
numerous regions that are targeted by protective antibodies [375]. Importantly, these 
antibodies are highly cross-reactive between isolates, further indicating DBL5ε as an 
interesting vaccine candidate [315]. Also, levels of DBL5ε antibodies correlate well 
with levels of adhesion-inhibitory antibodies [376] as well as with levels of IgG to total 
VSA-PAM as seen in our study.  
 
Further, we characterized the affinity of acquired DBL5ε antibodies. Affinity has 
recently been recognized as highly important for the understanding of receptor-ligand 
interactions for VAR2CSA [314,319]. Our results suggest that primigravidae and 
multigravidae acquire antibodies that bind DBL5ε with similar affinity but that HIV 
infection significantly impairs binding affinity in primigravidae. It is well known that 
HIV co-infection with malaria hampers the parity-dependent acquisition of protective 
antibodies, but less is known about the mechanisms behind this [181]. Our study 
suggests that HIV co-infection further endangers already highly malaria-susceptible 
women in their first pregnancy by reducing the potency of antibody binding. This 
signifies that not only antibody levels but also their functionality are important markers 
of protection to PAM, and adds another layer to the complexity of the acquired immune 
response that protect pregnant women from malaria.  
 
While several of the VAR2CSA DBL-domains have been implicated to bind to the 
placental receptor, CSA, very little is known about the molecular interactions in this 
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binding [369,377,378].  It has also been implicated that this interaction is not specific 
for VAR2CSA DBL-domains and that DBL-domains belonging to other PfEMP1s bind 
CSA to a similar extent [379]. Two recent important studies expressing recombinant 
full-length extracellular VAR2CSA has shown that its binding affinity and specificity 
to CSA is significantly higher than that of single DBL-domains [319,320]. This 
questions the previous model of VAR2CSA structure as “beads on a string” and instead 
indicates a higher-order structure of the VAR2CSA extracellular region that would lead 
to a native CSA-specific binding site. While the full-length VAR2CSA exhibits high-
affinity binding to CSA, it is clear that certain DBL-domains are indeed generating 
protective and highly functional antibodies. A functional vaccine should include DBL-
domains with as many highly conserved residues involved in receptor-ligand 
interactions as possible, and future research should focus on finding these residues. 
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5.2 Paper II 
 
“Simultaneously transcribed var2csa alleles in individual P. falciparum parasites 
questions mutually exclusive var gene expression and explores the potential of 
var2csa duplications for placental malaria”   
 
The aim of paper II was to investigate transcriptional functionality of duplicated genes, 
as a means to further understand mechanisms behind antigenic variation and to explore 
the relevance of multiple var2csa alleles for placental malaria pathogenesis. While 
earlier studies had shown various P. falciparum genomes to contain multiple var2csa 
copies [301,311], this study was the first to prove that the gene paralogs can be 
simultaneously transcribed in individual parasites. To do this, we designed a highly 
specific allelic discriminative real-time PCR assay that was able to distinguish between 
the var2csa alleles in the parasite strain HB3, as well as single alleles from other 
parasite lines. This assay could then be used both for bulk population as well as on 
single iRBC. In order to investigate var2csa transcripts in individual parasites, we 
developed a method for successful extraction of RNA from individual iRBC that were 
selected by micromanipulation and a nested PCR/ real-time PCR approach.  
 
Our findings that both var2csa alleles indeed can be transcribed simultaneously in 
single cells were confirmed by a discriminative RNA fluorescent in situ hybridization 
assay (RNA-FISH), which concurred with the PCR results. Moreover, the RNA-FISH 
revealed the two transcripts to co-localize to a high extent in the nuclear periphery. The 
presence of the 3’ poly(A) tail as well as the cytoplasmic localization seen for var2csa 
paralogs indicate them to be destined for translation. We also performed DNA-FISH in 
order to further elucidate the nuclear positioning of active var2csa genes, which 
supported co-localization of the two paralogs, this despite being located on different 
chromosomes. In the majority of cases, the signals also overlap with those of the 
telomere-end representative Rep20. One suggested layer of var gene regulation is 
nuclear repositioning and a var-specific active transcription site has been proposed to 
exist in the nuclear periphery [353]. Whether or not actively transcribed genes co-
localize with telomeric clusters has been debated [343,355,356,380]. Our study 
suggests that a specific active site appear to exist but that var genes can be actively 
transcribed regardless of whether they are located distant or adjacent to telomeric 
clusters, at least as seen with the resolution that is achieved by Rep20 labelling. 
 
The simultaneous transcription of more than one var gene indicates var gene regulation 
to be less strict as previously thought. It is likely that histone modifications play an 
important role in determination of transcriptional status of the var gene family and it is 
possible that nuclear co-localization of var2csa alleles results in their synchronized 
transcription by the state of chromatin accessibility.  
 
While our study did not investigate surface expression of the var2csa alleles, another 
study has shown more than one PfEMP1 on the surface of individual iRBC, mediating 
two distinguished binding phenotypes [338]. Whether or not this is true also for 
VAR2CSA paralogs remains to be proven. The var2csa specific 5’ uORF functions as 
a translational repressor and adds an extra layer of complexity to the possibility of 
surface co-expressed VAR2CSA paralogs. In high-transmission areas, parasites with 
multiple copies of var2csa seem to have a selective advantage and are more often 
found in pregnant women than in non-pregnant hosts (Sander Plos One 2009). Pregnant 
women infected with multi-copy parasites tend to have a higher parasite load and more 
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IgG to the VAR2CSA domain DBL4ε (Sander JID, 2011). While the mechanism 
behind this selection is unclear, it is possible that parasites with several VAR2CSA 
alleles benefit from either the ability to switch between which to use or use paralogs 
simultaneously and therefore are able to better establish and maintain prolonged 
infection in the placenta.  
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5.3 Paper III 
 
“PfHda1 functions as an important regulator of gene expression and cell cycle 
progression in P. falciparum” 
 
In this study, we used an inducible knockdown system to characterize the class II 
HDAC PfHda1. The fusion of a destabilization domain (DD) to the target protein 
marks the product for degradation. However, in the presence of the DD ligand Shld1, 
the fusion protein is protected from destruction. This system is attractive in particular 
for functional characterization of essential proteins where traditional knockout 
approaches are ineffective. Using this approach, we found that PfHda1 localizes in both 
the cytoplasm and the nucleus, something that is common for class II HDACs. Upon 
the removal of Shld1 degradation of PfHda1 commence early and is even more 
pronounced later in the cell cycle.  
 
A striking growth defect could be observed for parasites with less PfHda1, and this 
defect comprises both a cell cycle delay and significantly lower increase in parasitemia 
after one round of invasion. A more detailed study of the cell cycle progression 
revealed parasites grown off Shld1 to experience a longer cell cycle with the majority 
of parasites stalling before transition into S-phase.  
 
We also investigated differential gene expression and decided to focus on invasion 
related gene families due to the phenotype seen upon PfHda1 knockdown. The class III 
HDACs PfSir2a and 2b are known regulators of var gene expression, which led us to 
also investigate var gene transcription. Our findings show that decreased levels of 
PfHda1 leads to downregulation of PfRhs and EBAs, both families encoding important 
invasion ligands, possibly explaining the defective proliferation phenotype. However, 
since HDACs generally are considered to be silencing proteins, our results could 
indicate that the decrease in gene expression is not a direct result of PfHda1 loss but 
rather a downstream effect. var genes are clearly dysregulated in the absence of PfHda1 
with varying results in NF54 and FCR3 clones. It is clear however that a more in-depth 
analysis is needed to further elucidate how PfHda1 is connected to var gene regulation. 
Both var and invasion genes are encoding proteins that are important for parasite 
virulence. Our results that a chromatin-binding protein such as PfHda1 can affect 
transcription of both these groups are exciting, especially as very little is known about 
transcriptional regulation of invasion genes.  
 
Interestingly, PfHda1 has previously been found differentially transcribed between 
different parasites. In a study by Mok et al, two isogenic clones with specific and 
different binding phenotypes were shown to differentially express over 250 genes 
[381]. In one of the clones, 3D7AH1S.2, PfHda1 is clearly upregulated. Fewer other 
genes were upregulated in this clone compared to clone 3D7S8.4. It is tempting to link 
this general downregulation to increased levels of PfHda1 but it is likely that 
significantly more factors than that weighs in. Genes coding for transcription factors, 
RNA methylase and cell cycle genes were among those genes downregulated in 
3D7AH1S.2 and interestingly only one var gene were transcribed compared to the three 
vars in 3D7S8.4. Therefore, it would be useful to also investigate how increased levels 
of PfHda1 affect the regulation of gene expression in P. falciparum. The present study 
highlights the benefits of genetic tools such as inducible gene knockdown and 
establishes PfHda1 as an important protein in both cell cycle progression and as a 
transcriptional regulator.  
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