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ABSTRACT 
The human body contains an enormous amount of bacteria, which are important in 
processes such as colonization resistance, digestion of food particles, and in the 
development of the immune system. Most host-microbe interactions are not harmful. 
Each individual harbors a unique and site-specific microbiota which is considered to be 
relatively stable within an individual over time. For many years, the indigenous 
microbiota was characterized using culture-based methods. The use of culture-based 
methods is quite time consuming and not completely comprehensive: a large fraction of 
the bacteria are not detected because of unknown growth conditions. Through the use of 
high-throughput sequencing technologies, based on analysis of the 16S rRNA gene, 
knowledge about the microbiota residing within human has increased. 

In this thesis the 454 pyrosequencing technology was used in order to 
characterize the human indigenous microbiota in infants and adults. By developing 
primers specific for a certain region of the 16S rRNA gene and by the addition of a 4-5 
nucleotide long barcode to each primer the 454 pyrosequencing was developed to fit 
multiple samples in a single run. 

When the microbiota was analyzed in infants during the first two years of 
life, it was observed that mode of delivery had an impact on the early microbiota 
composition as well as chemokine levels. The diversity within the Bacteroidetes phylum 
was higher in vaginal delivered infants through the first six months of life and the major 
genus Bacteroides was detected significantly more frequently in the vaginally delivered 
infants. Moreover, a significant association between the presence of the genus 
Bacteroides in the infants’ stool at one and three months and high levels of the Th1-
associated chemokines CXCL10 and CXCL11 was found. This thesis provide evidence 
that the Bacteroidetes are transferred from mother to child during vaginal delivery and 
that impaired colonization of this phylum may lead to an altered Th1/Th2 balance. The 
findings could help to explain the association between mode of delivery and allergy 
development in children. The etiology of allergy is, however, multifactorial, with many 
variables contributing to the final expression of atopic disease. The prevalence of 
allergic disease has increased markedly, especially in the Western world, and a 
combination of genetics and environmental factors has been proposed as a cause of this 
rise. Specific genera have been suggested to be part of this etiology, but with differing 
results. In this thesis, a specific genus was not correlated to allergic disease, but instead a 
low diversity of the total microbiota early in life was associated with development of 
allergic disease at two years of age. 

In this thesis, the stability of the gastrointestinal microbiota in healthy adults 
and following perturbation with antibiotics was also analyzed. A relatively, but not 
completely stable microbiota was found in adults. Following antibiotic treatment, 
dramatic short-term effects were observed in throat and fecal samples. Long-term 
perturbations were also observed in the microbiota and also a dramatic increase and 
persistence in antibiotic resistance genes causing macrolide resistance was seen.  
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INTRODUCTION 
 
For decades, the major aim within the field of microbiology was to develop antibiotics 
and vaccines to target pathogenic bacteria. However, most host-microbe interactions are 
not harmful. The human body contains a high density of microbial communities: it is 
estimated that the human body harbors about 100 trillion bacterial cells and that this 
number outnumbers the number of human cells by 10 to 1 (Savage 1977). The majority 
of microbes that reside within our bodies have remained largely unknown because of 
unknown growth requirements necessary for their cultivation. However, after 
introduction of molecular-based methods, especially recent high-throughput sequencing 
technologies, knowledge of the indigenous microbiota that resides within the human 
being has increased. Most studies have focused on the intestinal environment, although 
an increasing number of body sites are being investigated. Different molecular 
approaches have been applied to directly assess the diversity and composition of human-
associated bacterial communities without the necessity for cultivation (Eckburg et al 
2005, Suau et al 1999, Zoetendal et al 1998). By increasing our knowledge regarding the 
microbiota that resides at different locations in a healthy human we are able to better 
detect dysbiosis, which means a microbial imbalance, and relate it to disease 
development. A healthy gut microbiota is a metabolically active community and lives in 
symbiosis with its host protecting it from harmful pathogenic bacteria. However, 
dysbiosis of the indigenous microbiota that can occur, for example due to lack of 
exposure to bacteria early in life, may result in the development of disease. Indeed, 
several disease states have been associated with the indigenous microbiota, e.g. allergic 
disease (Forno et al 2008, Wang et al 2008), type 1 diabetes (Wen et al 2008), obesity 
(Ley et al 2005, Ley et al 2006, Turnbaugh et al 2009), stomach cancer (Dicksved et al 
2009, Parsonnet et al 1991), atherosclerosis (Koren et al 2011), inflammatory bowel 
disease (Dicksved et al 2008, Ott et al 2004, Seksik et al 2003, Willing et al 2010), and 
necrotizing enterocolitis (Fell 2005).  

To date the human indigenous microbiota is not fully described, although we 
do know that within each anatomical niche in the human being, a complex, specialized 
microbiota is found (Figure 1) (Costello et al 2009, Dethlefsen et al 2007). Although 
there are more than 50 bacterial phyla on Earth, the human microbiota is dominated by 
only four phyla, namely the Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria 
(Dethlefsen et al 2007). However, other phyla are also represented, e.g. the Chlamydiae, 
Cyanobacteria, Deferribacteres, Deinococcus-Thermus, Fusobacteria, Spirochaetes, 
Verrucomicrobia, and the candidate phyla TM7 and SR1 (Dethlefsen et al 2007). 
Archaea are also found in the human microbiota and the most abundant species found in 
the colon is the Methanobrevibacter smithii (Eckburg et al 2005, Gill et al 2006). 
Methanobrevibacter oralis has also been detected in the oral cavity, but only in relation 
to disease (Lepp et al 2004). 
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Corynebacterium, Rothia, Actinomyces, Prevotella, Capnocytophaga, Porphyromonas, 
and Fusobacterium. Bik et al. found similar results regarding the most abundant genera 
when 10 healthy individuals were analyzed (Bik et al 2010). They also found that at least 
15 bacterial genera were conserved among all 10 individuals, with significant 
interindividual differences at the species and strain level. Interestingly, in a recent study 
several phylotypes found in the oral cavity were correlated with their presence in 
atherosclerotic plaques, and several bacteria were associated with disease biomarkers for 
atherosclerosis, suggesting that bacteria from the oral cavity could contribute to the 
development of cardiovascular disease (Koren et al 2011). The healthy microbiota has 
also been characterized in the distal oesophagus (Pei et al 2004) and showed a similar 
bacterial composition as the one found in the oral cavity with a dominance of 
Streptococcus, Rothia, Prevotella, Veillonellaceae, and Granulicatella.  
 
The gastric microbiota 
Because the environment in the stomach is harsh and acidic, the stomach has been 
considered to harbor few bacteria with approximate 100 to 104 cells per 1 gram gastric 
content (Martins dos Santos et al 2010). The role of Helicobacter pylori in gastric 
disease has been well documented (Marteau and Chaput 2011), however the role and 
presence of other gastric bacteria have not been extensively studied. A few studies have 
determined that the gastric microbiota composition is highly diverse (Bik et al 2006, Li 
et al 2009). Bik et al. (2006) found that the gastric microbiota differed significantly from 
the oral and esophagus flora and that it harbored 128 phylotypes including H. pylori (Bik 
et al 2006). This indicates a distinct microbiota in the stomach (Bik et al 2006). Other 
genera, besides H. pylori, that have been found to dominate the stomach include 
Streptococcus, Prevotella, Veillonella, and Rothia (Bik et al 2006, Li et al 2009). A 
gastric cancer microbiota has been found to harbor low abundances of H. pylori and a 
dominance of other bacteria, such as Streptococcus, Lactobacillus, Veillonella, and 
Prevotella (Dicksved et al 2009). See more about H. pylori in the chapter “The stability 
of the human microbiota”. 
 
The intestinal microbiota 
The intestinal microbiota is by far the most studied and also the gut is the most densely 
colonized habitat. The number of bacteria differs throughout the intestine with a gradual 
increase in bacterial counts from the duodenum (approximate 104-105/gram content) 
down to the colon (approximate 1011/gram of feces) (Martins dos Santos et al 2010). 
Most studies conducted have analyzed the fecal content because it is easier to obtain a 
fecal sample than a biopsy. One issue often discussed is whether the fecal microbiota is 
truly representative of the gut microbiota as a whole. Although it has been postulated 
that the fecal microbiota represents the gut microbiota (Eckburg et al 2005), this does not 
necessarily reveal the mucosa-associated microbiota. The adult microbiota in fecal 
samples has been shown to be dominated by genera within the Firmicutes and 
Bacteroidetes phyla. A phylogenetic core gut microbiota has also been recently 
suggested (Tap et al 2009). It has been estimated that the core intestinal microbiota 
contains between 1000-1150 prevalent bacterial species, and around 160 species that are 
shared between individuals (Qin et al 2010). 
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Other microbiota niches within the human being 
The skin is also a major microbial habitat that is colonized by bacteria along with fungi 
and viruses. The primary role of the skin is to act as a physical barrier against foreign 
organisms and other substances, such as toxic compounds (Grice 2011). Historically, 
Staphylococcus epidermidis and other coagulase-negative staphylococci (CoNS) have 
been regarded as the primary bacterial colonizers of the skin. Other skin colonizers 
include genera within the phylum Actinobacteria, such as Corynebacterium, 
Propionibacterium and Brevibacterium and the genus Micrococcus (Grice 2011). By 
16S rRNA gene analysis the skin microbiota has been shown to have a high diversity 
(Gao et al 2007, Grice 2011). 

The healthy vaginal microbiota is dominated by different species of lactic 
acid bacteria (LAB), such as lactobacilli (Vasquez et al 2002, Verhelst et al 2004). 
However, other bacteria such as Atopobium sp., Megasphaera sp., and Leptotrichia sp., 
can reside in the vagina as well (Zhou et al 2004). An imbalance in the vaginal 
microbiota composition is thought to lead to a syndrome of bacterial vaginosis, and 
different species have been associated with this imbalance for example Gardnerella 
vaginalis, Mobiluncus sp., Mycoplasma hominis, species of Clostridiaceae, and 
Atopobium vaginae (our own unpublished observation) (Verstraelen et al 2004, Zhou et 
al 2007). 
 
The functions of the human gut microbiota 
For the host, the indigenous microbiota serves several beneficial roles. The main 
functions of the intestinal microbiota can be divided into trophic, protective and 
metabolic functions (Guarner 2006). The indigenous microbiota aids in the control of 
epithelial cell proliferation and differentiation and also in the development and 
homoeostasis of the immune system (Trophic functions). The microbiota protects against 
pathogens through a mechanism called colonization resistance (Protective functions), a 
mechanism that is not well developed in infants, but increases with age (Adlerberth and 
Wold 2009). Finally, the microbiota aids in the break-down of food particles and 
fermentation of non-digestible dietary residue and endogenous mucus, salvage of energy 
as short-chain fatty acids (SCFAs), production of vitamin K, and the absorption of ions 
(Metabolic functions) (Guarner 2006). The microbiota has also been shown to promote 
angiogenesis (Stappenbeck et al 2002). In exchange the microbes are provided with an 
environment rich in nutrients, which are necessary for their survival. In other words the 
human microbiota maintains a symbiotic relationship with their host. 
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AIMS OF THE THESIS 
 
This thesis focuses on characterization of the dynamics of the human indigenous 
microbiota during infancy as well as in adults and its relation to health and disease. This 
was addressed by studying the development of the indigenous intestinal microbiota in 
infants and how early microbiota disturbances may have the potential to affect the 
development of allergic disease. The stability of the human microbiota in adults and 
what happens when this stability is disturbed by antibiotic treatment was also 
investigated. The specific aims of the thesis were:  
 
To develop a method based on 16S rRNA gene pyrosequencing for monitoring of 
microbial communities (Paper I). 
 
To monitor the development of the intestinal microbiota in infants born vaginally and 
through caesarean section and relate delivery mode and specific bacteria to components 
of the immune system (Paper II). 
 
To assess the microbial diversity and characterize the intestinal bacteria during the first 
year of life in infants who either developed atopic eczema or did not have any allergic 
manifestation up to two years of age (Paper III). 
 
To assess the impact of a commonly used antibiotic treatment for Helicobacter pylori on 
the bacterial community composition in throat and stool samples over a four-year time 
period (Paper IV). 
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METHODOLOGICAL CONSIDERATIONS 
 
Until recently, complex environments, like the human gut microbiota, have mainly been 
characterized using culture-based methods. However, it is estimated that more than 80% 
of the bacteria residing in the gut are missed by culture-based methods (Eckburg et al 
2005). Also, the need for comparison of complex microbial communities in many 
different samples increased the need for rapid screening approaches. Therefore, several 
molecular screening approaches have recently been developed for determining microbial 
community composition and diversity. These include different microbial community 
fingerprinting techniques based on characterization of 16S rRNA genes, such as 
terminal-restriction fragment length polymorphism (T-RFLP) (Paper IV), denaturating 
gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis 
(TGGE). A fingerprinting method generates a pattern of the microbial community within 
a sample. These relatively low resolution fingerprinting approaches are now becoming 
replaced by high-throughput DNA sequencing technologies such as 454 pyrosequencing, 
acquired by Roche Diagnostics (Indianapolis, USA). The method will be referred to as 
454 pyrosequencing throughout (Paper I-IV).  

454 pyrosequencing has added more knowledge about complex microbial 
environments through its ability to analyze the microbial composition rapidly in many 
samples with greater depth of sequence coverage. The advantage with sequencing 
compared to the other fingerprinting methods mentioned above is the ability to classify 
the sequences according to taxonomy. However, depending on the scientific question 
raised the use of a high-throughput sequencing technology might not always be 
necessary. For example in order to study the stability of the dominant microbial 
members and to cluster the dominant bacteria in a large number of samples, T-RFLP 
remains a cheaper and faster alternative. Also, traditional culturing approaches still have 
some advantages over high-throughput sequencing. For example, in a clinical setting, we 
are routinely able to culture clinically important species such as Bacteroides, 
Staphylococcus, and Enterococcus and once cultured we can determine their phenotypes 
of interest, for example antibiotic resistance. We also have the possibility to type 
clinically relevant isolates to the clonal level and study them specifically (Jernberg et al 
2007, Sjölund et al 2003). However, as sequencing techniques become more rapid and 
less expensive other applications could be achievable based on sequencing alone. It is 
possible that in the future high-throughput sequencing technology can be used as a first 
screening tool in samples such as large patient materials. This can then be combined 
with other methods capable of characterization down to species and clonal level. 
Sequencing of genomes and total DNA including functional genes, a so-called 
metagenomics sequencing approach, could also give information about virulence, 
metabolic functions, antibiotic resistance genes and other key functions which is of 
importance in better understanding of the role of members of the community as well as 
providing better detection tools and treatment options. However, the most important 
issue is to choose the most relevant method to address a specific scientific question. 

In this thesis, microbial communities in human samples were analyzed using 
the fingerprinting techniques T-RFLP and 454 pyrosequencing, based on 16S rRNA 
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gene analysis. When the projects included in this thesis were started 454 pyrosequencing 
was just becoming available. Today there are many additional sequencing technologies 
available e.g. the Illumina Genome Analyzer (Bennett 2004), the SOLiD system 
(Metzker 2010), and Ion Torrent (Rothberg et al 2011). Those methods employ different 
sequencing technologies and generate shorter sequence read lengths compared to 454 
pyrosequencing. When the number of sequence reads obtained from the 454 
pyrosequencing, Illumina, and SOLiD were compared it was found that the fraction of 
junk data, which could not be aligned was largest when using the SOLiD system and that 
less sequence coverage was required for detection when using the 454 pyrosequencing 
platform (Suzuki et al 2011). In summary, these platforms are useful for many different 
applications, including amplicon sequencing, transcriptome sequencing and 
metagenomics. 
 
The 16S rRNA gene 
The 16S rRNA is a component of the 30S subunit of the ribosome in bacteria and 
archaea. It is a suitable gene to use as a phylogenetic target since it is evolutionarily 
conserved and does not transfer between organisms (Olsen et al 1986, Woese 1987). It 
can therefore provide a taxonomic identification tool ranging from the domain level to 
approximately the species level. The 16S rRNA gene is about 1600 nucleotides in length 
(Olsen et al 1986) and contains 9 variable regions with interspersed conserved regions 
(Figure 2 and Paper I) (Baker et al 2003). A limiting factor to be considered when using 
the 16S rRNA gene is that it is present in 1-15 copies per bacterial genome and that there 
might be a divergence in gene copies within a single organism (Klappenbach et al 2000). 
However, this can be avoided by analyzing a gene that exists in a single copy instead, 
e.g. the rpoB gene (Klappenbach et al 2000). Certain very diverse bacteria might be 
complemented with analysis of a single copy gene because of the high divergence within 
the organism. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Characterization of unknown organisms by rRNA gene sequences requires a 
collection of reference sequences of known organisms. The two largest 16S rRNA gene 
databases are the Ribosomal Database Project (RDP) (Cole et al 2009) at 

Figure 2. The variability within the 16S rRNA gene (Paper I). 
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http://rdp.cme.msu.edu/ and Greengenes (DeSantis et al 2006) at 
http://greengenes.lbl.gov/cgi-bin/nph-index.cgi. These databases provide 16S rRNA 
gene sequences, alignments, analysis services and other related products. The RDP 
database is currently comprised of more than 1.9 million 16S rRNA gene sequences 
(September 2011). 

Many different primer pairs covering different regions of the 16S rRNA 
gene have been designed and evaluated. Primer pairs specific for certain taxa have been 
designed as well as primers that are more universal. Since the 16S rRNA gene databases 
are continually expanding there is a constant need for development and re-evaluation of 
the primers that are used and which variable regions of the 16S rRNA gene are the most 
suitable to use. Because the sequence length using high-throughput sequencing is usually 
short and does not cover the whole 16S rRNA gene it is important to choose a region 
covering as many taxa as possible. There is still no consensus regarding which region to 
use, which makes comparisons between studies more difficult. A few regions, such as 
the regions around V2, V4, and V6 have been more popular to use and a few studies 
have assessed region suitability (Chakravorty et al 2007, Liu et al 2008, Sundquist et al 
2007, Wang et al 2007). The V2 and V4 regions have been described to generate the 
lowest error rate when assigning taxonomy (Liu et al 2008, Wang et al 2007). Recently it 
was suggested to use fragments covering different regions (V4, V5+V6, and V6+V7) for 
richness estimations in a microbial community (Youssef et al 2009). Another study 
suggested that an average of the V1-V3 region and the V7-V9 region would generate 
results similar to Sanger sequencing, however with a much deeper coverage depth 
(Kumar et al 2011). In this thesis two different primer pairs were used in the 454 
pyrosequencing analysis: the forward primer 784 and the reverse primer 1061 (primer 
pair 1), covering the V6 region (developed in Paper I and used in Papers I and IV) and 
the forward primer 341 and reverse primer 805 (primer pair 2) covering the V3 and V4 
regions (Herlemann et al 2011) (used in Papers II-III). The primers were 
complemented with adapters needed for the 454 sequencing procedure and also sample-
specific barcodes. In Paper I, 59 bp of the V6 region was sequenced and it was 
concluded in this paper that this was the most variable region. In Paper IV a longer 
sequence of the V6 region (about 200 bp) was analyzed. In Papers II and III, where the 
primer pair 2 was used, a 200 bp of the V4 region was analyzed instead. The two primer 
pairs were compared regarding coverage to 16S rRNA gene sequences (the sequences 
were downloaded from the RDP database and covered both primer regions). Primer pair 
1 failed in covering several phyla including the Verrucomicrobia phylum, which is one 
common phylum found in human microbiota analysis. Another advantage using the 
second primer pair is the generation of longer sequence reads (~450 bp), so those 
primers could be used using the GS FLX Titanium (see below) in future analysis. 

The length of the sequence needed, how many sequences necessary, and 
which region to use depends on the scientific question raised though (Hamady and 
Knight 2009). For example, it has been estimated that for defining the major phyla found 
in a sample, relatively few sequences are needed (Hamady and Knight 2009). 
Sequencing a short region such as 100 bp of the 16S rRNA gene targeting a specific 
bacterial community might be as good choice as covering the entire 16S rRNA gene (Liu 
et al 2007, Sundquist et al 2007). However, analyzing around 1000 sequences/samples 
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has been suggested to provide a good balance between the number of samples and the 
sampling depth (Hamady and Knight 2009). Of course many rare species will be missed, 
but this sequence number will probably cover species that are found ≥ 1% (Hamady and 
Knight 2009). The taxonomic assignment is influenced by the region of the 16S rRNA 
gene, which assignment method used and the length of the 16S rRNA gene (Liu et al 
2008). Analyzing variable regions of the 16S rRNA gene might not be the best choice 
for community characterization, however an excellent choice for OTU diversity 
estimations. 

A bacterial species has for long time been defined practically as a group of 
strains, including a type strain, that have at least 70% overall sequence identity 
(traditionally defined by DNA-DNA hybridization kinetics) and at least 97% in 16S 
rRNA gene sequence identity (Gevers et al 2005). However, the most recent 
recommendations for 16S rRNA gene sequence similarity is a threshold range of 98.7-
99% when testing a novel isolate (Stackebrandt 2006). Within the 16S rRNA gene 
analysis field, the term operational taxonomic unit (OTU) or phylotype have been used 
to describe organisms based on their phylogenetic relationships to other organisms. 

 
T-RFLP 

T-RFLP is a robust and rapid molecular method that has been used to study microbial 
community composition and diversity in complex communities, e.g. soil and feces. T-
RFLP has for example successfully been used to monitor shifts in the microbial 
composition following antibiotic treatment (Paper IV (Jernberg et al 2005, Jernberg et 
al 2007)). T-RFLP is a PCR based method where one of the 16S rRNA gene primers is 
fluorescently labeled. By digesting the PCR product using different restriction enzymes 
different terminal restriction fragments (TRFs) are generated. These fluorescently 
labeled fragments are separated either by polyacrylamide gel (Paper IV) or by capillary 
electrophoresis in an automated sequencer. By doing in silico digestion of 16S rRNA 
genes it is possible to get putative identifications for the microbial species corresponding 
to specific terminal restriction fragments. Also, by using several restriction enzymes it is 
easier to discriminate between different bacteria (Dunbar et al 2001). The length or peak 
height and area of the TRFs are calculated and by including a size standard in every lane 
it is possible to compare samples from different runs. From these results it is then 
possible to calculate the richness and evenness of dominant species of a microbial 
community (see more regarding richness and evenness below). The most common way 
to analyze T-RFLP data is by multivariate statistical analyses methods such as principal 
component analysis (PCA), correspondence analysis (CA) or cluster analysis. T-RFLP is 
a good method for comparing different communities, not necessarily for species 
identification. For more detailed information regarding species it is preferable to 
combine T-RFLP with cloning and sequencing (Dunbar et al 2001). In Paper IV T-
RFLP was used in combination with 454 pyrosequencing and the results for the 
dominant microbial community members corresponded well when comparing the 
methods. 
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Bioinformatic analyses 
Considering the large amount of sequence data that is generated by new high-throughput 
sequence technologies and that most available analysis tools are not capable of handling 
all those sequences, the need for bioinformatics tools that can analyze all the data is 
necessary. Several steps are involved in the processing of sequencing data generated 
from a 454 pyrosequencing run. Immediately following a run, very low quality 
sequences need to be directly removed (Margulies et al 2005). Other basic ways to filter 
out noise include checking for correct barcodes and primer sequences. After that the 
sequences proceed through different steps as described in the following sections. 

The error rate per base for 454 pyrosequencing has been shown to be similar 
to that for Sanger sequencing (Huse et al 2007). Noise occurs due to biases that are 
introduced during the PCR amplfication and sequencing steps step. This can include the 
formation of chimeras, which are misjoinings of unrelated sequences, or generation of 
insertions or deletions within homopolymers (see below). If the noise is not removed this 
leads to inflated estimates of the number of OTUs and thereby an overestimation of 
diversity (Kunin et al 2010, Quince et al 2009). Frequent insertions and deletions in long 
homopolymers, which are long stretches of repeated bases, is a known problem with the 
pyrosequencing technology (Quinlan et al 2008). One way to address this problem is to 
use specialized software tailored to remove pyrosequencing noise. One example is the 
software package called AmpliconNoise (Quince et al 2011), capable of separately 
removing 454 sequencing errors and PCR single base errors (Quince et al 2011) (used in 
Paper II and III).  

Different aspects of diversity can provide important information about the 
dynamics and structure of an ecological community. The diversity in a community can 
be assigned using different methods and which method to use depends on what is being 
measured. α-diversity measures the diversity within a sample in terms of e.g. richness or 
evenness, while β-diversity measures diversity between samples (differences in 
communities). Species richness is a measure of the number of e.g. OTUs or species and 
can either be observed or estimated (usually larger than the observed). In Paper II, the 
diversity index “Chao1” was used for estimated richness (Figure 5) (Chao 1984). 
Evenness, reports how even abundance the different components of the community have. 
Pielou’s evenness index was used in Paper II (Figure 5) (Pielou 1966). A commonly 
used method to use when measuring α-diversity is the Shannon-Weiner index (Magurran 
2005) (Paper I-IV), which is a combined richness-evenness measurement, although 
other approaches including the Simpson method (Magurran 2005) and rarefraction 
curves may also be used. When measuring β-diversity, methods such as UniFrac 
(Lozupone and Knight 2005) (Paper I-IV), Bray-Curtis (Paper IV), Pearson correlation 
coefficient, or Spearman's rank correlation coefficient (Paper II) are commonly used. 
One limitation of diversity measurements is that there is no consensus regarding the 
species or OTU definition, which makes it difficult to compare data between different 
studies. Using different diversity measurements results in different results and it is 
important to carefully consider and define what each method generates. 
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Another aspect to consider when analyzing sequencing data is that there is 

no consensus regarding how taxa are identified. Different algorithms have been used for 
clustering OTUs, with varying results (Hamady and Knight 2009). For example, two 
different methods for selecting OTUs are the nearest-neighbor algorithm and the 
furthest-neighbor algorithm, but the two methods can generate very different results 
(Hamady and Knight 2009). In the nearest-neighbor algorithm a sequence is added to an 
OTU if it is similar (above a certain threshold) to any sequence already present in that 
OTU, whereas in the furthest-neighbor algorithm a sequence is added to an OTU if it is 
similar to all sequences within that (Hamady and Knight 2009). Using nearest-neighbor 
algorithm in 454 pyrosequencing analysis usually then generates fewer OTUs. This is 
especially important to think about when analyzing diversity. In this thesis furthest-
neighbor algorithms were employed for selecting OTUs (Paper I-IV). 

In Papers II and III the Bioconductor R package EdgeR (Robinson et al 
2010) was used to statistically test for over or under-representation of bacterial lineages 
among sample groups. This was done at the phylum, class, genus, and OTU (3% 
dissimilarity) levels. The employed test corrects for multiple testing, and the P-values are 
converted to False Discovery Rate values (Q-values), so the test measures significance in 
terms of false discovery rate (meaning fraction of positives expected to be false 
positives) instead of the false positive rate. This test automatically accounts for 
differences in sequencing depths for the different samples. When analyzing complex 
microbial communities many features are analyzed in parallel and this could lead to false 
positive findings, therefore it has been suggested to use this type of measurement and 
include Q-values (Storey and Tibshirani 2003).  

Figure 5. Pielou´s evenness index and Chao1 index values for all 24 infants as well as for the mothers. 
Statistical significance was measured using Wilcoxon signed rank test and * indicates P < 0.05, 
**indicates P < 0.01, *** indicates P < 0.001. Paper II. 
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THE DEVELOPMENT OF THE HUMAN GUT 
MICROBIOTA 

 
The GI-tract of a newborn healthy infant is considered sterile (Mackie et al 1999) and 
during the first years of life the infant GI-tract microbiota develops towards that of an 
adult. The infantile gut microbiota has been well characterized using culture-based 
studies, which reveal that the first colonizers of the infantile gut are facultative anaerobes 
such as Escherichia coli, enterococci, streptococci, and CoNS (Benno et al 1984, Rotimi 
and Duerden 1981, Stark and Lee 1982, Yoshioka et al 1983). The early facultative 
anaerobes create a reduced environment by consuming oxygen and thereby favoring the 
growth of Bifidobacterium, Bacteroides and Clostridium sp. (Mackie et al 1999, Stark 
and Lee 1982). Studies based on 16S rRNA gene methodology confirm the early culture-
based studies regarding early colonizers and a dominance of Bifidobacterium and 
Bacteroides (Paper II Figure 6A, B (Eggesbo et al 2011, Favier et al 2002, Hong et al 
2010, Hopkins et al 2005, Park et al 2005, Penders et al 2006b, Vaishampayan et al 
2010, Wang et al 2004), although they also reveal new information regarding bacteria 
that are difficult to culture, such as the genus Ruminococcus, and also the time of 
acquisition. A few studies have reported low abundances of the genus Bifidobacterium in 
the infant microbiota (Hall et al 1990, Palmer et al 2007).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The mean relative abundance of the most dominant genera found in the twelve 
vaginal delivered infants (A) and twelve caesarean section delivered infants (B) over time 
as well as in their mothers. Ve, Verrucomicrobia; Pr, Proteobacteria; Fi, Firmicutes; Ba, 
Bacteroides; Ac, Actinobacteria. Paper II. 



 

15 
 

Swedish infants have been shown to have a delayed colonization with E. coli 
today (Adlerberth et al 2006, Nowrouzian et al 2003). Skin staphylococci has been found 
in higher abundances in the infant gut earlier today, suggested to be a consequence of the 
reduced colonization by E. coli (Adlerberth et al 2006, Eggesbo et al 2011, Lindberg et 
al 2011). Recently infants were found to be initially colonized with staphylococci and 
high abundances of E. coli in their gut microbiota similar to the classical culture studies 
(Eggesbo et al 2011). In Paper II, unclassified Enterobacteriaceae was found as 1 
week; however whether these OTUs correspond to E. coli or not remains to be defined 
(Figure 6A, B). 

Over time the anaerobic bacteria outnumber the aerobic bacteria by 
approximate 1000:1. Palmer et al. found that during the first week to the first month of 
life the microbiota was very variable from individual to individual (Palmer et al 2007). 
In concordance with recent studies (Eggesbo et al 2011, Palmer et al 2007) Paper II 
demonstrate that microbial succession differs markedly between individuals during the 
first year of life and that the inter-subject differences declined over time, probably as a 
result of differences in time of weaning and incidental exposure of bacteria from the 
environment. The community composition converges to an adult-like state within two 
years. However, even at 2-2.5 years of age the diversity is still lower than in adults, 
indicating that the flora is still not fully developed (Figure 7) (Paper II (Koenig et al 
2011)).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Factors influencing the microbiota during infancy 
The origin of the different aerobic and anaerobic bacteria successively colonizing the 
infant is not certain, but common external factors investigated include mode of delivery, 
the environment including family members, and the diet. These factors will be briefly 
discussed in the following sections. 

Figure 7. Increase in fecal microbiota α-diversity over time. Distributions of Shannon 
diversity indices displayed for all 24 infants (VD and CS infants) at one week, one, three, six, 
twelve, and 24 months, and for their 24 mothers. *** indicates P < 0.001, and ** indicates P < 
0.05. Fifty percent of the data points reside within boxes, 75% within whiskers, and medians 
are indicated by horizontal lines within boxes (circles indicate individual values). Paper II. 
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Mode of delivery, environment and transmission routes 
One important factor reported to shape the infant microbiota is the mode of delivery. The 
incidence of caesarean section (CS) has increased from 5% in the 1970s to more than 
60% in some hospitals in China from recent reports (Sufang et al 2007). The percentage 
of CS in Sweden during 2000-2010 has been reported to be 17% according to the World 
Health Organization. Since a dysbiosis in the microbiota has been linked to for example 
energy balance (Bäckhed et al 2004, Martens et al 2008, Samuel et al 2008) and 
maturation of the immune system (Are et al 2008, Mazmanian et al 2005), early changes 
in the microbiota might predispose the infant to disease later in life. An association 
between CS delivery and the development of atopic disease has been shown in several 
studies (Bager et al 2008, Salam et al 2006, Thavagnanam et al 2008). 

Caesarean section delivered infants have a different gut bacterial 
composition early in life compared to vaginally delivered infants (VD), including less 
abundance of Bacteroides and bifidobacteria (Fanaro et al 2003, Penders et al 2006b) 
and a delayed colonization of  Bacteroides, E. coli, and bifidobacteria (Adlerberth et al 
2006, Adlerberth et al 2007, Bennet and Nord 1987, Grönlund et al 1999, Hall et al 
1990, Hallström et al 2004, Neut et al 1987). In Paper II, the most striking difference 
between VD and CS infants was the impact on the Bacteroidetes phylum (Figure 8A, B). 
The VD infants were significantly more frequently colonized by the genus Bacteroides. 
Because of reduced competition other bacteria than Bacteroides are able to colonize and 
grow in CS delivered infants. Other such bacteria that have been shown to colonize are 
members of the Enterobacteriaceae such as Klebsiella, Enterobacter, and clostridia 
(Adlerberth et al 2006, Adlerberth et al 2007). Colonization of the genus Enterococcus 
has previously not been shown to depend on delivery mode, suggesting other sources in 
addition to the maternal intestinal microbiota. In Paper II, however, a higher relative 
abundance of Enterococcus was found in the CS infants at one month of age, suggesting 
that the reduced competition favors the growth and colonization of enterococci (Figure 
6B). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Development of the infant fecal microbiota at the phylum level. The mean relative 
abundance (%) of the most dominant bacterial phyla found in the twelve VD infants (A) and twelve CS 
infants (B) over time, as well as in their mothers. Paper II. 
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The establishment of the oral microbiota also seem to differ between CS and 
VD infants with a higher number of taxa found in the three-month-old VD infants (Lif 
Holgerson et al 2011). That the environment is a potential source for infant gut bacteria 
is shown in studies from developing countries, usually with poor sanitary and crowded 
conditions, where infants are earlier colonized with Enterobacteriaceae, especially E. 
coli, lactobacilli and enterococci (Bennet et al 1991, Mata 1971, Rotimi et al 1985). 
Other bacteria such as Staphylococcus aureus and CoNS have been found in low 
abundances in the infant gut in developing countries (Adlerberth et al 2007, Bennet et al 
1991, Lindberg et al 2000, Mata 1971). When the intestinal microbiota in Estonian and 
Swedish infants was compared it was found that lactobacilli and eubacteria colonize 
earlier in Estonian infants suggesting geographical differences in infant microbiota 
composition (Sepp et al 1997). 

It is speculated that the earliest colonization events for an infant are to a 
large extent determined by the opportunistic colonization by bacteria to which a baby is 
exposed in its environment (Palmer et al 2007). Parallel temporal patterns between a 
twin pair suggest that the environment is a factor strongly contributing to the microbiota 
composition (Palmer et al 2007). Bacterial communities at certain body sites have been 
shown to be more similar between human family members than unrelated individuals 
(Dethlefsen et al 2007). Also, it is suggested that single children not growing up with 
any siblings harbor a slightly different microbiota composition (Adlerberth and Wold 
2009). The human gut microbiota has co-evolved with its host, as mirrored in the 
relationships of gut communities of different primates (Ochman et al 2010). Dominant 
members of anaerobic Firmicutes and Bacteroidetes of the gut microbiota do not appear 
to grow outside this environment and hence need to be transmitted between human hosts 
(Ley et al 2006a). Also, studies on mice show that the microbiota composition is 
inherited from the mother and that mice that were kept within the same household had a 
more similar microbiota composition than mice from different households (Ley et al 
2005). 

Common environmental exposures are likely to include the maternal 
vaginal, fecal, or skin microbiota, as suggested by the observed similarity of some 
infants’ early stool microbiota to these samples (Paper II (Dominguez-Bello et al 2010, 
Palmer et al 2007, Vaishampayan et al 2010)), which is consistent with evidence of 
vertical transmission of microbes (Caufield et al 2007, Linz et al 2007, Mandar and 
Mikelsaar 1996). The best studied strain for vertical transmission is E. coli and it has 
been shown that most of the E. coli strains colonizing the infant gut originate from the 
mothers gut (Adlerberth et al 1998, Fryklund et al 1992), but other contamination 
sources could be the hospital staff (Bettelheim and Lennox-King 1976, Fryklund et al 
1992). Infantile intestinal S. aureus colonization has been strongly linked to the parental 
skin S. aureus carriage (Lindberg et al 2004) and lactobacilli and group B streptococci 
are suggested to come from the maternal vaginal flora (Matsumiya et al 2002, Tsolia et 
al 2003). The overall intestinal microbiota composition has been compared in mothers 
and their children, however with no consensus regarding bacterial transmission (Paper 
II (Dominguez-Bello et al 2010, Palmer et al 2007, Turnbaugh et al 2009, 
Vaishampayan et al 2010)). To what extent the transmission occurs from mother to 
offspring is not clear though. Differences in microbiota composition depending on 
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delivery mode indicate a mother-child transmission. The genus Bacteroides has been 
proposed to be transmitted from the maternal gut (Adlerberth et al 2007, Vaishampayan 
et al 2010). A recent study based on pyrosequencing of 16S rRNA genes demonstrated 
that the microbiota of VD neonates (<24 hours post delivery) resembled the vaginal 
microbiota of their own mother and was undifferentiated across multiple body habitats 
(skin, oral, nasopharynx, and feces), while in CS it resembled the mother’s skin 
microbiota (Dominguez-Bello et al 2010). While this study provided evidence that 
microbiota from the birth channel is transferred from mother to child providing an 
innoculum for the initial microbiota, it remains to be shown to what extent specific gut-
specialist members are successfully transmitted during vaginal delivery. In Paper II, 
specific lineages of the intestinal microbiota, as defined by 16S rRNA gene sequences, 
were transmitted from mother to child during vaginal delivery. For the phylum 
Bacteroidetes a greater overlap in 16S rRNA gene sequences between babies and their 
own mothers were found than between babies and other mothers for up to six months 
(Figure 9); this could not be shown within other phyla such as the Firmicutes and 
Actinobacteria. Bifidobacterium have been suggested to be transmitted from the mother 
(Tannock et al 1990) and recently a mother-to-child transmission of B. longum was 
shown supporting gut transmission (Makino et al 2011). However, in Paper II a 
significant overlap in the mothers’ and babies’ gut bifidobacteria rRNA sequences were 
not found regardless of delivery mode. Hence, Bifidobacterium might mainly be 
transmitted from the breast milk, and to a lesser extent from the intestinal microbiota, as 
suggested but not confirmed previously (Tannock et al 1990). The reason for this could 
be that different subsets of the microbial community utilize different transmission routes. 
It is possible that late colonizers of the infant intestinal microbiota to a higher extent are 
taken up from other sources such as family members and food. The lack of significant 
overlap in Bacteroidetes sequences between mothers and their babies after six months of 
age may indicate a transient colonization of the maternal strains. This corroborates a 
recent study that compared intestinal Bacteroides sequences of a single mother and her 
infant, where the phylotypes of the mother were present in the infant at one month but 
had been replaced by other phylotypes at 11 months of age (Vaishampayan et al 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Mother-child overlap in Bacteroidetes sequence clusters for vaginally delivered infants. The 
fraction of Bacteroidetes OTUs found in the infant that are also found in the mother are displayed for all 
infants positive for Bacteroidetes at three (A) and six (B) months. Black bars indicate comparisons with 
the infant’s own mother; grey bars average of comparisons with the other mothers. Paper II. 
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Gestational age 
Preterm delivery causes considerable morbidity and mortality. It is unclear what factors 
contribute to preterm delivery, although intra-uterine infections have been shown to play 
a major role (Goldenberg et al 2000) and might be caused by uncultured microbes. The 
microbiota in preterm infants has been investigated and has been shown to differ from 
healthy full-term infants (Hallström et al 2004, Millar et al 1996, Sakata et al 1985, 
Schwiertz et al 2003). Acute chorioamnionitis is the most common lesion reported in the 
placenta after spontaneous preterm birth and is thought to be caused by microbial 
invasion of the amniotic cavity (DiGiulio et al 2008). Neonatal necrotizing enterocolitis 
(NEC) causes morbidity and mortality among very low birth weight infants and a 
difference in bacterial composition has been proposed to cause NEC, although this has 
not been proven (Morowitz et al 2010). 
 
Diet 
There seems to be a minor difference in microbiota composition between breast-fed and 
formula-fed infants (Adlerberth and Wold 2009). There are some bacteria, such as 
Clostridium, Streptococcus, Bacteroides and Enterobacteriaceae that have been found 
more prevalent in formula-fed babies (Adlerberth and Wold 2009, Fallani et al 2010, 
Mackie et al 1999). 

The human breast milk has been shown to contain several different bacteria 
such as the genera Staphylococcus, Streptococcus, Micrococcus, Lactobacillus, 
Enterococcus, Lactococcus and Bifidobacterium and it is suggested that these bacteria 
might be endogenously derived, not contaminated from the breast skin (Albesharat et al 
2011). A vertical transfer of maternal lactic acid bacteria (LAB) from the maternal gut to 
the breast milk and further from the breast milk to the infant gut has been suggested 
(Albesharat et al 2011). The origin of these bacteria is debated however. Similar strains 
of enterococci, lactobacilli and S. aureus have been found in breast milk and the infant 
gut (Kawada et al 2003, Martin et al 2003).  

The microbiota composition seems to change following weaning (Ahrne et 
al 2005, Fallani et al 2011, Hopkins et al 2005, Wang et al 2004). For example, the 
lactobacilli population has been shown to differ before and after weaning with dominant 
strains before weaning similar to strains found in vaginal and oral flora, and dominant 
strains following weaning that are commonly found in food (Ahrne et al 2005). This 
indicates that the diet may have an impact on the intestinal microbiota composition. This 
is further suggested in a study were the microbiota composition changed in infants who 
consumed cow´s milk that was supplemented with fish oil (Nielsen et al 2007). 
However, the effect of the diet on the infant microbiota composition is controversial 
(Balmer and Wharton 1989, Benno et al 1984, Favier et al 2002, Harmsen et al 2000, 
Hopkins et al 2005, Lundequist et al 1985, Martin et al 2003, Penders et al 2006b, Stark 
and Lee 1982, Yoshioka et al 1983). In Paper II, the difference in presence of 
Bacteroides between VD and CS could not be explained by differences in nutrition since 
most infants were breastfed until three months of age. Interestingly, a recent study 
(Koenig et al 2011) showed that the Bacteroidetes phylum increased dramatically 
following the introduction of peas and other table foods. This indicates that this phylum 
and perhaps other phylum as well may be boosted and increase in abundance by the diet. 
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Children in Burkina Faso, who consume a more fiber rich diet, have been shown to have 
a different bacterial gut composition, especially an enrichment of Bacteroidetes, when 
compared to European children, probably as a consequence of differences in diet habits 
(De Filippo et al 2010). Another factor linking the Bacteroidetes phylum to diet is that 
the genus Bacteroides has been shown also to be implicated in obesity, with both a low 
total bacterial diversity and depletion of Bacteroidetes (Ley et al 2006, Turnbaugh et al 
2009). Lifestyle factors related to the anthroposophic way of life have been shown to 
influence the composition of the gut flora (Alm et al 2002, Dicksved et al 2007). For 
example, children raised with an anthroposophic lifestyle had a higher gut microbial 
diversity when compared to children raised in a farm (Dicksved et al 2007). This is 
probably due to a difference in diet or a low consumption of antibiotics, which are 
characteristics of an anthroposophic lifestyle (Alm et al 1999). 
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THE ROLE OF THE GUT MICROBIOTA IN THE 
DEVELOPMENT OF ALLERGIC DISEASE 

 
Atopic allergy is the most common chronic disease among children in the developed 
world. It is estimated that more than 25% of the population in industrialized countries 
suffers from IgE-mediated allergies (Valenta 2002). Exposure to environmental antigens, 
such as dust mite and animal and food proteins, can cause allergic disease. However, it is 
not known why some individuals develop disease while others do not. Early life events 
occurring during critical windows of immune vulnerability can have a long-term impact 
on immune development and immune diseases such as allergy (Björkstén 1999, 
Jenmalm 2011, Prescott 2003). Microbial exposure is a major driving factor for the 
development of the immune system and immune regulatory responses (Okada et al 
2010).  
 
The gut-associated immune system 
As the GI-tract harbors more bacteria than any other site of the body, the intestinal 
immune system is exposed to a high density of bacteria. The immune response toward 
mucosal encountered foreign antigens are induced in the mucosal associated lymphoid 
tissues (MALT), including the gut associated lymphoid tissue (GALT) (Nagler-
Anderson 2001). The GALT consists of Peyer´s patches (PP) in the small intestine and 
lymphoid follicles in the colon (Nagler-Anderson 2001). Immune cells such as T-cells, 
B-cells, dendritic cells (DCs) and macrophages are present in GALT (Iweala and Nagler 
2006). Different factors aid in the prevention of antigen entry through the epithelial 
barrier. The single layer of mucosal epithelial cells is the main site for antigen entry, but 
also acts as a barrier. Between the cells are tight junctions, allowing only ions to enter 
(Nagler-Anderson 2001). In this cell layer, different cell types are found, namely 
enterocytes, goblet cells, enteroendocrine cells, Microfold (M) cells and Paneth cells 
(Winkler et al 2007). The goblet cells are responsible for the production of mucus, 
creating an effective barrier (Deplancke and Gaskins 2001). In this mucus, several 
components, such as mucins, defensins, and secretory IgA (sIgA) antibodies, prevent 
bacteria from adhering (Brandtzaeg 1995, Deplancke and Gaskins 2001). The mucus 
layer is composed of two sub-layers; an inner, stratified mucus layer that is firmly 
adherent to the epithelial cells and an outer, nonattached layer (Johansson et al 2011). 
The inner mucus layer is dense and normally does not allow bacteria to penetrate 
(Johansson et al 2008). These two mucus layers are organized around the highly 
glycosylated MUC2 mucin, which forms a large, net-like polymer. On the MUC2 
mucin, numerous O-glycans are found, and these glycans serve as nutrients for the 
bacteria but may also act as attachment sites. This is suggested to contribute to the 
selection of the species-specific colon flora (Johansson et al 2011). Low pH in the 
stomach, peristalsis, and the indigenous microbiota are other barriers. Antimicrobial 
peptides produced by the epithelial cells include enzymes, e.g. lysozyme, as well as C-
type lectins, and defensins that are capable of killing bacteria. The connective tissue, the 
lamina propria (LP), is located beneath the epithelial cells. M cells and DCs transfer 
luminal antigens to cells in the lamina propria. In the next step, the DCs can present the 
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antigens to lymphocytes in PPs. The adaptive immune system is characterized by two 
major types of T lymphocytes that express either CD4 or CD8 on their surface. The 
CD4+ cells function generally as T helper cells (Th) and CD8+ cells function as T 
cytotoxic (Tc). When a Th cell is presented to an antigen, different kinds of cytokines 
are produced, leading to for example a Th1, Th2, Th9 or a Th17 response (Akdis and 
Akdis 2009). These Th cell responses are important in infection control.  

Normally, ingested or inhaled antigens should not give rise to a strong 
inflammatory immune response, a phenomenon called oral tolerance (Weiner 2000). 
However, failure to induce oral tolerance may initiate hypersensitive responses to food 
antigens (van Wijk and Knippels 2007). The indigenous microbiota seems to be 
important in developing oral tolerance. For example, germ free animals, which lack 
microbes, have difficulties in developing oral tolerance (Sudo et al 1997). How this 
tolerance is achieved is, however, not clear, although it is known that regulatory T cells 
(Treg cells), IL-10, and TGF-β are important for down regulating responses towards 
autoantigens and harmless environmental antigens (Akdis and Akdis 2009). The 
presence of a microbiota seem to be important in the development of a Treg cells, as it 
has been shown that germ-free mice have been shown to have a lower Treg cell activity 
compared to conventionally raised mice (Östman et al 2006). 
 
Allergy 
Common allergic manifestations during the first year of life include eczema and food 
allergies. There are different factors that are important in the development of allergic 
disease, such as time of exposure, the dose, and the allergen route, as well as other 
environmental factors. According to the phenomenon called the “atopic march” (Spergel 
and Paller 2003), eczema and food allergies in children eventually disappear and are 
replaced at school age by allergic asthma and rhinoconjunctivitis to inhaled allergens 
(Wood 2003). Allergy is defined as a hypersensitivity reaction initiated by specific 
immunological mechanisms (Johansson et al 2004). Hypersensitivity reactions are 
divided into four types (Type 1-IV) and they develop either in the course of humoral or 
cell-mediated responses (Goldsby 2003). Each type of response involves certain 
mechanisms, cell types and mediator molecules. Atopy is defined as a personal and/or 
familial tendency to become sensitized and produce IgE antibodies in response to 
ordinary exposures to allergens (Johansson et al 2004). Atopic allergy is a 
hypersensitivity reaction type 1. The atopic manifestation focused on in this thesis is 
atopic eczema (Paper III). The incidence of infant eczema is 20-30% in affluent 
countries, and in a population predisposed to allergic disease this number increases to 
40-50% (Bohme et al 2003, Lowe et al 2007). 

When a hypersensitivity reaction type 1 (allergic reaction) occurs, an 
allergen (antigen) induces a humoral response, resulting in the generation of IgE 
antibody-secreting plasma cells and memory cells (Gould and Sutton 2008). When the 
same antigen is encountered again, the immediate allergic response is thought to occur 
when the allergen cross-links IgE bound to high affinity IgE receptors (FcɛR1) on mast 
cells (Gould and Sutton 2008). A degranulation then occurs with the release of 
inflammatory mediators such as histamine and leukotrienes. These mediators cause 
itching, smooth-muscle contraction (e.g. bronchoconstriction), vascular leakage from 
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blood vessels, and tissue damage. This effect could be either localized or systemic, 
causing symptoms such as rhinitis, conjunctivitis, and asthma (Valenta 2002). Cytokines 
and chemokines are secreted by e.g. mast cells and the late-phase reaction is initiated 
(Gould and Sutton 2008). This phase is characterized by a strong T-cell infiltration and 
eosinophil activation hours to days afterwards and is typical in allergic individuals 
suffering from chronic disease (e.g. atopic dermatitis) (Valenta 2002). 

It has been discussed whether allergic infants harbor a different cytokine and 
chemokine profile and abundance than non-atopic infants. Atopy has been associated 
with a Th2 deviated cytokine response to allergens, with high levels of IL-4, IL-5, IL-9, 
and IL-13 (Jenmalm et al 2001). It has also been associated with low or equal levels of 
Th1 cytokines such as IFN-γ and IL-12 (Imada et al 1995, Jenmalm et al 2001). Children 
that later develop disease also seem to have a delayed maturation of their immune 
system and a prolonged Th2-deviation during childhood (Böttcher et al 2002, Prescott et 
al 1999). However, the proposed Th1/Th2 deviation during allergic disease is rather 
simplified. Other T cells have been shown to be implicated in allergic disease as well, 
such as Treg cells, complicating the immune response during allergic disease. 

IgE antibodies to allergens, secreted by B cells, can be detected with a skin 
prick test or by analyzing circulating IgE antibodies (Johansson et al 2004). Th1 and Th2 
cytokines have traditionally been analyzed to assess immune responses. However, they 
are usually detected in very low amounts in the circulatory system and sometimes very 
close to detection limit. Analyses of circulating chemokines, on the other hand, have 
been shown to be an alternative, since they are more easily detected in peripheral blood 
(Abrahamsson et al 2011, Sandberg et al 2009). Chemokines are a family of around 50 
small proteins, that play a major role in chemoattraction of leukocytes to the 
inflammation site (Mantovani et al 2004, Pease and Williams 2006). The chemokines are 
divided into four groups and the majority of chemokines are members of the CC or CXC 
families. The other two families described are the C and the CX3C family (Pease and 
Williams 2006). Chemokines are produced by several cell types, e.g. epithelial cells and 
macrophages (Mantovani et al 2004). The receptors for chemokines are expressed on the 
surface of several cell types involved in inflammation, such as lymphocytes, monocytes, 
DCs, and natural killer cells (Pease and Williams 2006). In this thesis, the Th2-
associated chemokines CCL17, CCL22 and the Th1-associated chemokines CXCL10 
and CXCL11 were measured and associated to different birth modes and bacteria (Paper 
II). Different disease states have been associated with increased chemokine levels. For 
example, atopic dermatitis has been associated with high CCL17 and CCL22 levels 
(Fujisawa et al 2002, Jahnz-Rozyk et al 2005, Kakinuma et al 2002). 

Genetic factors seem to be highly correlated with development of allergic 
disease. Complete chromosome regions and polymorphisms have been correlated to 
allergy development (Vercelli 2008). Furthermore, parental allergy is a strong risk factor 
for developing allergic disease (Bergmann et al 1997). Already in utero the fetus could 
be exposed to allergens that may be able to cross the placenta (Loibichler et al 2002, 
Salvatore et al 2005). IgE antibodies are also detected in fetal cells in the placenta and 
most probably originate from the mother (Holt 2008, Joerink et al 2009, Sverremark 
Ekström et al 2002). The incidence of allergy shows worldwide variation and has 
increased during the last century (Burr et al 1989, Butland et al 1997, Åberg et al 1995) 
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especially in industrialized countries (Bråbäck et al 1995). Even though there is a strong 
genetic link to allergic disease, rapid fast increase in allergic disease cannot be explained 
by only genetic changes, and must be considered in combination with changing exposure 
to environmental factors. The gut microbiota is considered an important environmental 
factor in this aspect (Björkstén 1999, Jenmalm 2011, Wold 1998). 
 
Neonatal and infant immune responses 
When an infant is born, it enters a world full of microbes, a process that requires that the 
immune system is able to control them. Transfer of maternal immunological memory 
seems to be an important factor for this control. The infant manages the first bacterial 
inoculums probably through a certain tolerance passed on via the mother through the 
induction of Treg cells (Mold et al 2008) and by passive immunization by first IgG and 
later IgA (Hanson and Silfverdal 2009). That there is some sort of transfer of 
immunological memory from the mother to the fetus is supported in several studies. 
Maternal antibodies, in particular IgG antibodies, are actively transferred through the 
placenta to the fetus and sIgA is transferred through maternal milk to the neonate 
(Böttcher et al 2000, Hanson and Silfverdal 2009, Jenmalm and Björkstén 2000). 

Allergen responses have been shown from gestational week 22, suggesting 
that in utero fetal exposure to an allergen may result in primary sensitization to that 
allergen (Jones et al 1996). This allergen responsiveness could also be due to non-
specific cross reactivity, however (Thornton et al 2004). Cord blood mononuclear cells 
(CBMCs) from infants that later have developed allergic disease have been shown to 
have an altered cytokine profile following allergen stimulation (Nilsson et al 2004, van 
der Velden et al 2001). The levels of IgG subclasses are even higher in newborn infants 
with an atopic mother, as compared to babies with non-atopic mothers, supporting the 
idea that the infants are influenced by the maternal immune profile (Jenmalm and 
Björkstén 2000). Another factor supporting this idea is that the maternal, but not 
paternal, total IgE levels correlate with elevated infant IgE levels and infant atopy 
(Johnson et al 1996, Liu et al 2003, Magnusson 1988). Several studies have shown 
evidence of transplacental transfer of allergens (Casas and Björkstén 2001, Holloway et 
al 2000, Szepfalusi et al 2000). In a farm study, environmental exposures during 
pregnancy protected against allergic sensitization, but had less effect during infancy, 
suggesting that allergic manifestations may be developed during pregnancy (Ege et al 
2006). Also, the neonatal immune system is suggested to be affected by the maternal 
microbial environment through epigenetic mechanisms (Jenmalm 2011). All this 
indicates that the infant already in utero may be predisposed to develop allergic disease. 
The question whether sensitization occurs prenatally or postnatally has been intensely 
debated during recent years, however (Bonnelykke et al 2008, Ege et al 2008, Rowe et al 
2007). 

The immune system in infants is immature and the absolute and relative 
numbers of the cells of the innate and adaptive immune systems; DCs, B- and T-cells, 
are low (Willems et al 2009). Neonatal B cells are of an immature phenotype, as 
evidenced by cell-surface marker characteristics and increased susceptibility to tolerance 
induction (Landers et al 2005, Siegrist and Aspinall 2009). CBMCs have also been 
shown to produce fewer Th1 associated cytokines (Yerkovich et al 2007). Th1 functions 
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are dampened during fetal life (Holt and Jones 2000) and it is debated whether infants 
are born somewhat Th2-skewed and that this predisposes to allergy development 
(Romagnani 2004). A Th2-skewing during infancy has been suggested in several studies 
(Abrahamsson et al 2011, PrabhuDas et al 2011, Prescott et al 1998, Saito et al 2010), 
but not all (Halonen et al 2009). The majority of studies indicate that infants are born 
Th2-skewed, however. Also, during pregnancy, the fetomaternal interface is surrounded 
by high levels of Th2 cytokines probably in order to redirect the maternal immune 
system so it does not react against the fetus (Sandberg et al 2009). If the in utero milieu 
is of importance, this Th2 profile during pregnancy might stimulate the infant immune 
system. Appropriate microbial stimulation may be required to develop a more balanced 
immune phenotype, including maturation of Th1-like responses (Vuillermin et al 2009) 
and appropriate development of Treg cell responses (Lloyd and Hawrylowicz 2009, 
McLoughlin and Mills 2011). Microbial stimulation has been shown to be important for 
immune maturation (Jenmalm 2011, Marchini et al 2005). A failure of Th2-silencing 
during maturation of the immune system may underlie development of Th2-mediated 
allergic disease (Böttcher et al 2002). Furthermore, sensitization at 2 years of age was 
correlated to high amount of Th2 cytokines in 6 month-old infants after allergen 
stimulation (Rowe et al 2007). Also, an enhanced development of IFN-gamma-
producing capacity during the first 3 months of life has been associated with farming, 
endotoxins in house dust, and cat and dog exposure (Roponen et al 2005). This may 
indicate that some microbial exposure early in life is capable of driving the developing 
immune system toward Th1 responses (Roponen et al 2005).  
 
Gut microbiota and allergy development 
The so-called hygiene hypothesis was described in 1989 by David Strachan that 
presumed that an increased number of siblings protects against allergy development 
(Strachan 1989), which has been confirmed in several epidemiological studies (Karmaus 
and Botezan 2002). According to this hypothesis, allergic disease is caused by altered 
microbial exposure during childhood. This changed microbial exposure may affect the 
maturation of the immune system. Furthermore, children growing up on a farm have a 
lower prevalence of atopic allergy (Kilpelainen et al 2000, Riedler et al 2001). 
Presumably they are exposed to microbial products such as endotoxin and bacterial 
DNA. Children who are frequently exposed to high levels of endotoxin are less allergic 
(Braun-Fahrlander et al 2002, Böttcher et al 2003, Roy et al 2003). Low exposure to 
endotoxin has been associated with increased risk of atopic eczema (Gehring et al 2001). 
Thus, exposure to these microbial products may prevent from developing allergic 
disease. Several studies support the hygiene hypothesis, however with inconsistent 
results (Penders et al 2007a). 

The gut microbiota differs between allergic and non-allergic infants during 
the first month of life (Björkstén et al 2001, Kalliomäki et al 2001, Penders et al 2007b, 
Sjögren et al 2009, van Nimwegen et al 2011), and allergic disease has been correlated 
with higher and lower abundances of specific taxa. For example, allergic infants were 
colonized less often with Bacteroides and bifidobacteria (Björkstén et al 1999, Hong et 
al 2010, Sepp et al 2005, Watanebe et al 2003) and more often with S. aureus (Watanebe 
et al 2003) and with a lower ratio of bifidobacteria to clostridia (Kalliomäki et al 2001). 
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Colonization with Clostridium difficile at one month of age was shown in a recent study 
to be associated with an increased risk of asthma at 6 to 7 years of age (van Nimwegen 
et al 2011). However, there have been contradictory results in more recent studies as 
well. Two large European prospective studies did not confirm any relationship with 
allergy to any particular bacterial group (Adlerberth et al 2007, Penders et al 2006a). 
Also, in Paper III, no association with the presence of any of these bacteria previously 
found and atopic disease was found. However a lower diversity of the phylum 
Bacteroidetes and its genus Bacteroides was found in infants who developed atopic 
eczema. Low levels of these bacteria have in previous literature been reported to be 
associated with allergic disease (Watanebe et al 2003). However, for other genera, such 
as Coprobacillus and Peptoniphilus, a higher abundance was found in the atopic versus 
the non-atopic infants (Paper III). Whether these genera actually cause allergic disease 
or if they merely reflect a disturbance of the intestinal microbiota is unclear. 

It is, however, debated whether low diversity of the gut microbiota in 
infancy is more important than the prevalence of specific bacterial taxa when trying to 
explain why the prevalence of allergic disease is increasing in affluent countries. A low 
diversity of the total intestinal microbiota has in a few studies been correlated to allergic 
disease (Paper III (Bisgaard et al 2011, Forno et al 2008, Wang et al 2008)). The theory 
is that the gut immune system reacts to exposure to new bacterial antigens and repeated 
exposure would enhance the development of immune regulation (Holt 1995, Wold 
1998). In Paper III, the bacterial phylum, Proteobacteria, appeared to be less abundant 
in the atopic infants. This phylum comprises Gram negative bacteria, typically with 
endotoxin (LPS) incorporated in their cell walls. Endotoxin elicits a Th1 response via the 
innate immune system by enhancing IL-12 production from monocytes and DCs 
(Doreswamy and Peden 2010). Low endotoxin levels were associated with an increased 
risk of atopic disease as described above. 

Differences in the postnatal microbial colonization may explain the 
association between CS delivery and the development of allergic disease (Salam et al 
2006, Thavagnanam et al 2008). A recent study showed that mode of delivery and 
birthplace had an impact on the development of atopic disease (van Nimwegen et al 
2011). Children who were born vaginally at home and had at least one atopic parents had 
lower odds to develop asthma and sensitization to food allergens compared to children 
who were born vaginally at the hospital (van Nimwegen et al 2011). It has also been 
found that CS delivered eczema infants had significantly higher abundance of especially 
Enterobacteriaceae compared to CS delivered non-eczema infants (Hong et al 2010). 

The influence of CS on immune development is largely unknown (Huurre et 
al 2008). Paper II provides evidence that CS delivery may impact the immune system. 
A significant association between the presence of the genus Bacteroides in the infants’ 
stool at one and three months of age and high levels of the Th1-associated chemokines 
CXCL10 and CXCL11 was found in Paper II. The Th1-chemokines CXCL10, and 
CXCL11 were analyzed with an in-house multiplexed Luminex assay (Paper II) 
(Abrahamsson et al 2011, de Jager et al 2005). There are unfortunately no appropriate 
chemokines associated with Treg cell responses, although this would have been 
interesting to analyze as well. Although the effect of Bacteroides on the chemokine 
levels seen in Paper II is hard to isolate from the effect of birth mode, which could 



 

27 
 

potentially involve differences in other genera, the observation that Bacteroides 
abundance at three months was directly associated with CXCL10 levels indicates that 
this genus may play an important role in the development of immune regulation (Figure 
10).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As discussed above, appropriate microbial stimulation during infancy is 
required for the development of a more balanced immune phenotype, including 
maturation of Th1-like responses and appropriate development of regulatory T cell 
responses (Lloyd and Hawrylowicz 2009, McLoughlin and Mills 2011, Vuillermin et al 
2009). The presence of Bacteroides may have an effect on the immune maturation and 
the lack of certain bacteria may prolong the possible Th2-deviation during infancy. 
Bacteroides species have in other studies been demonstrated to have an impact on the 
immune system via anti-inflammatory properties. Thus, B. fragilis prevented the 
induction of colitis via suppression of the pro-inflammatory cytokines TNF and IL-23 in 
an experimental colitis model (Mazmanian et al 2008) and also mediated a conversion 
from CD4+ T cells into IL-10 producing Foxp3 T regulatory cells during commensal 
colonization, eliciting mucosal tolerance in another mouse model (Round and 
Mazmanian 2010). Furthermore, B. thetaiotaomicron modulates the expression of a 
large quantity of genes involved in mucosal barrier reinforcement (Freitas et al 2005, 
Hooper et al 2001). As suggested, both bacteria and their eukaryotic host benefit from 
one another. This suggests that co-evolution has selected mechanisms promoting 
associations between bacteria and eukaryotic hosts. In a healthy individual, intestinal 
colonization of certain bacteria stimulates host production of antimicrobial peptides and 
secretory IgA and in turn protects the host from systemic translocation. For example, B. 
fragilis exerts strong effects on the immune system, mediated by the capsular 
polysaccharide (PSA), influencing T-cell mediated immune response and the Th1/Th2 
balance (Mazmanian et al 2005, Mazmanian et al 2008). 

Figure 10. Linear regressions of log (CXCL10) (mean of 6, 12 and 24 months) against log (relative 
Bacteroides abundance at three months) and birth mode. Circles represent samples for which 
CXCL10 was measured in at least one time point. P-values for the associations between 
Bacteroides abundance and birth mode with CXCL10 levels are 0.026 and 0.079, respectively. 
Paper II. 
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THE STABILITY OF THE HUMAN MICROBIOTA  
 
The human adult microbiota has been shown to host-specific (Dicksved et al 2007, 
Jernberg et al 2007) and is considered to be relatively stable within one individual and 
over time (Costello et al 2009, Jernberg et al 2007, Matsuki et al 2004, Savage 1977, 
Vanhoutte et al 2004, Zoetendal et al 1998). Among individuals, a high variability in 
different body sites, such as the gut, skin and oral cavity, has been found (Costello et al 
2009). The stable microbiota may, however, be disturbed and altered by several factors 
such as diet, drug intake, disease and aging. Also, host genotype has been suggested to 
determine the microbiota composition (Stewart et al 2005, Turnbaugh et al 2009, 
Zoetendal et al 1998). In Paper IV it was shown that the microbial communities in 
throat and fecal were more similar within individuals than between individuals, at least 
up to the one year sampling period. This unique individual community composition was 
particularly evident for the fecal samples where larger differences were observed 
between individuals. There was also a pronounced temporal change in fecal community 
structure and after four years the gut communities had diverged in both the control group 
(Figure 11) and the treated group. The majority of individuals analyzed in Paper II were 
above 70 years old; it is possible that the microbiota composition gradually changes with 
age and that the microbial diversity is higher in elderly individuals, but few studies have 
examined this issue. One study recently showed that subjects over 100 years of age seem 
to have a slightly different microbiota composition (Biagi et al 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Correlation plots showing OTU frequency at day 0 (x-axis), and day 8–13, 1 and 4 years (y-
axis) in throat (A) and fecal (B) samples in the controls (A, B, and C). Bray-Curtis values are indicated as 
numbers in the figure as a number. A Bray Curtis value of 0 suggest the two sites have the same 
composition and 1 means the two sites do not share any species. The color of the dots represent different 
phyla: yellow, Actinobacteria; green, Bacteroidetes; blue, Firmicutes; red, Proteobacteria; grey, other 
phyla. Percentages of inter-sample variation explained by the two axes are shown in the figures. Paper 
IV. 
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No specific grouping with respect to geographical origin and gender and the 
the microbiota in adults have been revealed, however a trend towards differences 
between countries are suggested (Lay et al 2005, Mueller et al 2006). However, 
differences in the microbiota composition seen in infants from different geographical 
regions, such as Estonia and Sweden suggests that geographical differences in 
microbiota composition exist (Sepp et al 1997). Also, a more frequent gut colonization 
with S. aureus in Swedish infants suggests that lifestyle could lead to differences in 
microbiota composition (Lindberg et al 2011). For example, an anthroposophic lifestyle 
was correlated with a higher fecal microbial diversity (Dicksved et al 2007). Even 
though specific factors could not be pin pointed in that study, one could speculate that 
the low intake of antibiotics, that are part of an anthroposophic lifestyle, might have an 
impact on the microbiota composition. 

In Paper IV a highly diverse microbiota was found in the throat with 152 
different phylotypes. In addition, our results from Paper IV indicate that the throat 
microbiota was more similar between individuals and more stable after antibiotic 
treatment and over long periods than the intestinal microbiota, suggesting that the throat 
environment is more selective for a specific host microbiota. That the same microbial 
habitat from different individuals shows great variability has been proposed in other 
studies as well (Dethlefsen et al 2007, Palmer et al 2007). An even higher diversity was 
found within the stomach with 262 phylotypes, however it could not be defined to what 
extent this represented resident or transient microbes (Paper I). The adult intestinal 
microbiota was characterized in Paper I, II and IV. In Paper I and IV the predominant 
phylum found in feces was Firmicutes, interestingly followed by Actinobacteria, 
Bacteroidetes, and Proteobacteria. The low abundance of the Bacteroidetes phylum 
found in our studies could be a result of strong inter-subject variability, which previously 
has been shown for this phylum (Eckburg et al 2005). The most dominant taxonomic 
groups found in feces were Lachnospiraceae Incertae Sedis, unclassified 
Lachnospiraceae, Bifidobacterium, Collinsella, and unclassified Ruminococcaceae. 

The differences in microbiota composition seen between individuals may be 
partly explained by differences in diet. That the diet has a large influence on differences 
in microbiota composition between individuals has already been demonstrated in infants 
whose microbial composition changed following weaning. The microbiota has also been 
linked to obesity in mice and humans (Ley et al 2005, Ley et al 2006). Obese individuals 
that were restricted to either a fat- or carbohydrate diet demonstrated a shift in their 
microbiota to resemble that found in lean controls (Ley et al 2006). In a recent study, 
specific factors in the diet were correlated to changes in abundance of specific species in 
the gut microbiota (Faith et al 2011). 

Probably, the factor that probably has the strongest impact on the indigenous 
microbiota composition is antibiotics. This was studied in Paper IV and will be 
reviewed in more detail in the following section. 
 
The impact of antibiotics on the indigenous microbiota 
One concern with the administration of antibiotics is the possibility of selection of 
antibiotic resistant strains of bacteria; not only in those which the antibiotic is directed 
towards but also among the indigenous microbiota (Sjölund et al 2003). Depending on 



 

30 
 

which antibiotics are used, since different antibiotics have different modes of action, the 
drug volume, the route of administration, and the degree of resistance in the community, 
the use of antibiotic could have different impacts on the microbial community (Jernberg 
et al 2010). The effect of short-term administration has been explored in several studies 
using culture-based methods (Sullivan et al 2001) and also more recently using 
molecular-based methods (Paper IV (Dethlefsen et al 2008, Jernberg et al 2005)). The 
use of antibiotics could lead to short-term disturbances with decreased colonization 
resistance (Vollaard and Clasener 1994) and sometimes the development of antibiotic-
associated diarrhea (AAD) (McFarland 1998). The decreased colonization resistance 
seen could lead to growth of potentially pathogenic bacteria already present in the gut, 
such as C. difficile (Sullivan et al 2001). 

Helicobacter pylori is a Gram negative rod colonizing the gastric mucosa in 
half of the world’s population (Torres et al 2000). Infection with H. pylori is usually 
asymptomatic, however few individuals develop gastric disease such as peptic ulcer 
disease and gastric cancer (Suerbaum and Michetti 2002). The treatment for H. pylori 
usually consists of two antibiotics in combination with a proton pump inhibitor. In this 
thesis (Paper IV) the throat and fecal microbiota was analyzed from patients that had 
received a commonly used treatment regimen consisting of clarithromycin and 
metronidazole in combination with omeprazole, for H. pylori (de Boer and Tytgat 2000, 
Dunn et al 1997, Graham 2000). Treatment with these antibiotics can lead to antibiotic 
resistance development among H. pylori strains (Dunn et al 1997). However, this 
treatment regimen has also been shown to lead to resistance among members of the 
indigenous microbiota (Adamsson et al 1999, Jakobsson et al 2007, Jönsson et al 2005, 
Sjölund et al 2003, Sjölund et al 2005). One mechanism for macrolide (e.g. 
clarithromycin) resistance is via erythromycin resistance methylases encoded by erm 
genes. These genes have been found in different genera with erm(B) having the largest 
host range (Roberts 2008). The erm(B) gene is normally found on transposons located in 
the chromosome or on plasmids (Roberts 2008) and encodes a ribosomal methylase that 
methylates the 23S ribosomal RNA and thereby prevents the antibiotic from binding 
(Portillo et al 2000). 

By using culture-based approaches the antibiotics studied in this thesis 
(clarithromycin and metronidazole) have been shown to result in short-term ecological 
effects on the indigenous gut microbiota (Adamsson et al 1999, Buhling et al 2001, 
Tanaka et al 2005). Adamsson et al. found that the numbers of culturable 
Bifidobacterium, Clostridium, and Bacteroides spp. significantly decreased in feces after 
treatment, while the numbers of enterococci significantly increased one week after 
treatment (Adamsson et al 1999). They also detected a persistent decrease of 
Bifidobacterium sp. and Bacteroides sp. 4 weeks after treatment. In Paper IV the 
antibiotic treatment impacted the indigenous microbiota differently in the individual 
treated subjects, probably due to the known unique bacterial community compositions in 
different individuals (Costello et al 2009, Donskey et al 2003, Eckburg et al 2005, 
Tannock et al 2000, Zoetendal et al 1998). However, there are some differences in the 
target bacteria for the two antibiotics. Metronidazole is known to be active against 
anaerobic bacteria and both antibiotics are active against the genus Streptococcus. It is 
also important to highlight that macrolide excretion is primarily accomplished through 
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bile, approximately 20–30% is excreted through the urine and the rest is excreted 
through feces. For metronidazole 10–15% is excreted into feces. At the phylum level it 
was found that Actinobacteria were strongly reduced, especially in feces, following 
antibiotic treatment, probably because clarithromycin is known to target this group 
(Williams et al 1992), while they are naturally resistant to metronidazole (Paper IV) 
(http://www.srga.org/). Increasing evidence has linked some members of the 
Actinobacteria to human health (Kassinen et al 2007, Moore and Moore 1995). For 
example, an increased abundance of Actinobacteria has recently been associated with 
obesity (Turnbaugh et al 2009). The antibiotic treatment affected some genera 
negatively, for example Actinomyces and Prevotella in throat samples and 
Bifidobacterium and Collinsella in fecal samples (Paper IV). Other genera were 
positively affected by the antibiotics, for example the genus Neisseria in throat samples 
and the genus Enterococcus in fecal samples. The effects of treatment that were 
observed on the bacterial communites in the throat and feces might be due to either 
clarithromycin or metronidazole or both in combination.  

In Paper IV as well as in other recent studies it has been shown that some 
antibiotics have generated long-term impacts on the microbiota (Dethlefsen et al 2008, 
Jakobsson et al 2007, Jernberg et al 2007, Jönsson et al 2005, Lindgren et al 2009, 
Löfmark et al 2006, Nyberg et al 2007, Sjölund et al 2003, Sjölund et al 2005). Long-
term impacts (six months) were seen in the gut microbiota after treatment with 
ciprofloxacin (Dethlefsen et al 2008). In this study, some taxa failed to recover to 
pretreatment levels for periods up to 6 months although the majority of the gut 
microbiota returned to pretreatment levels after four weeks. In Paper IV it was found 
that although the diversity of the microbiota subsequently recovered to resemble the pre 
treatment states, the microbiota remained perturbed in some cases for up to four years 
post treatment. A quantitative real-time PCR approach was employed to measure the 
abundance of the ermB gene in the samples over time (Paper IV). This approach has 
successfully been used in a previous study (Jernberg et al 2007). For relative 
quantification we used the 16S rRNA gene as a control gene. A study by Nadkarni et al., 
showed that the bacterial load was similar when an artificial mixture was analyzed by 
PCR and by colony counting, despite different species harboring different copy numbers 
of the 16S rRNA gene (Nadkarni et al 2002). A marked increase of erm(B) gene levels 
in the fecal samples was observed that persisted up to four years after treatment (Paper 
IV). 

Highly macrolide-resistant enterococci have previously been reported to be 
selected by treatment with clarithromycin and metronidazole as evidenced by the 
increase in erm(B) levels in cultured enterococci after treatment (Sjölund et al 2003). 
One resistant clone persisted for three years without any further antibiotic pressure 
(Sjölund et al 2003). In a study by Jernberg et al., clindamycin treatment resulted in a 
lower Bacteroides diversity in fecal samples, an enrichment of resistant Bacteroides 
clones, specifically B. thetaiotamicron, and an increase in resistance erm-genes up to 
two years after treatment (Jernberg et al 2007). The increase and persistence of erm(B) 
can either be explained by clonal expansion of stable, resistant isolates originally present 
in the intestinal microbiota pretreatment, or by erm(B) acquisition by new populations 
via horizontal gene transfer. Transfer of the erm(B) gene has been shown between 
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different Gram positive strains, such as Enterococcus strains in the gut (Lester et al 
2004) and Streptococcus strains in the throat (Nys et al 2005), but also for Gram 
negative strains such as between different Bacteroides strains (Gupta et al 2003, 
Shoemaker et al 2001). Epidemic spread of erm(B) has been shown to be the cause of 
increased macrolide resistance in Streptococcus pyogenes (Cresti et al 2002). Our results 
suggest a link between erm(B) gene levels and the increase in enterococci after 
treatment, indicating that the enterococci might be the bearers of antibiotic resistance 
(Paper IV).  

Selection of resistant strains among the normal microbiota found in the 
throat has also been found. Clarithromycin has been shown to also select for macrolide-
resistant bacteria in the throat microbiota (Jönsson et al 2005). In Paper IV, erm(B) was 
detected in throat samples from both patients and controls, although not in a high 
abundance in the controls. 

The human indigenous microbiota could thereby potentially serve as a 
reservoir of resistance genes and contribute towards antibiotic resistance development 
for example, by transferring resistance genes to other species (Courvalin 1994, Sullivan 
et al 2001). Different factors have impact on the spread of antibiotic resistance, with the 
most important factor being antibiotic usage (Jernberg et al 2010). Other important 
factors include the relative fitness of the resistant strain and the ability of the resistant 
strain to survive and expand (Jernberg et al 2010). Normally a resistant strain confers a 
fitness cost for carrying the resistant mutation and would be outcompeted by the 
sensitive bacteria when the antibiotic is removed (Andersson and Hughes 2010). 
However, by acquiring compensatory mutations, the resistant clone may compensate for 
the resistance becoming as fit as the sensitive part and thus still exist in the indigenous 
microbiota in the absence of antibiotics. 
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CONCLUDING REMARKS 
 
Knowledge regarding the composition of GI-tract microbiota has increased through the 
use of high-throughput technologies like 454-pyrosequencing, especially for the 
intestinal microbiota. However, the current view is still far from complete regarding 
other body sites as well as for the intestinal microbiota, especially in relation to disease 
outcome. By further development of sequencing methods, including longer sequence 
lengths, we will be able to extract more information regarding the microbiota and its 
interaction with the host. In this thesis different molecular approaches were used to 
monitor the dynamics of the total microbiota in different patient cohorts. We also 
correlated antibiotic resistance genes and components of the immune system to the 
microbiota. The major conclusions from this thesis are: 
 
In paper I, the 454-pyrosequencing technique was developed for amplicon sequencing 
and it was found to be a suitable method for analysis of the GI-tract microbiota. Thus, 
the use of high-throughput sequencing has revolutionized the field of clinical 
microbiology and increased our knowledge about the composition of the indigenous 
microbiota. However, this type of approach still demands considerable computing 
resources and bioinformatics skills to deal with the data. Therefore, depending on the 
scientific question raised other more traditional methods are still viable choices. 
 
In paper II, a difference in intestinal microbiota composition was found between 
vaginally delivered infants compared to infants born by caesarean section, especially 
regarding the Bacteroidetes phylum, with a lower prevalence in the CS delivered infants. 
The Bacteroidetes phylum is mainly transmitted from the infant’s own mother and the 
presence of the genus Bacteroides was also associated with a higher abundance of Th1-
chemokines at one and three months of age. This suggests that early differences in the 
gut microbiota may shape later immune responsiveness. 
 
In paper III, a lower diversity in the intestinal microbiota was found at one month of 
age in infants that later developed allergic disease. The rise in allergic disease is thought 
to be a cause of an altered microbial exposure, especially during infancy. It was not 
possible to clarify whether a low total diversity of the gut microbiota in early childhood 
is more important than altered prevalence of particular bacterial species in allergy 
development.  
 
In paper IV, a commonly used one-week antimicrobial treatment regimen resulted in 
marked ecological disturbances in the throat and gut microbiota with potential long-term 
consequences. By using 454-pyrosequencing in combination with T-RFLP and real-time 
PCR the ecological disturbances due to antibiotic treatment were thoroughly monitored. 
The findings underpin the importance of restrictive and proper use of antibiotics in order 
to prevent long-term ecological disturbances of the indigenous microbiota. In hospital 
environments, a decreased colonization resistance and persistence of antibiotic resistance 
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could potentially lead to an overgrowth and spread of multi-resistant potential 
pathogenic bacteria and thereby increase the risk of treatment failure.  
 
Thus, the results from this thesis have increased our knowledge of complex human 
microbial communities during infancy and over time in adults. The results from this 
thesis also provide new knowledge regarding the interaction between the immune 
system and specific bacteria. Improving our understanding of the microbiota residing in 
the human GI-tract and its interaction with the immune system is important to better 
understand how the immune system develops and also to better understand disease 
outcome. 
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