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ABSTRACT 
 
Bone defects in the craniofacial area are a clinical challenge and can be the result of 
trauma, tumour resection or congenital malformations. The golden standard for 
reconstruction is autologous bone grafts, but bone may not always be readily available 
and donor-site morbidity might follow. Alternatives to autologous tissue are sought in 
the field of tissue engineering, where a range of biomaterials, bone forming cells and 
growth factors are combined, searching to engineer the missing tissue. The use of bone 
morphogenetic proteins (BMPs) together with different carriers has been explored ever 
since Marshall Urist discovered the BMPs in 1965. In this thesis we use BMP-2, 
together with different carriers in an attempt to reconstruct cranial defects in different 
species. 
In paper Ia we look into ectopic bone induction with BMP-2 and heparin/chitosan in a 
rat model. The resulting bone induction is compared to BMP-2 and type I collagen, and 
found to be superior in the BMP-2 and heparin/chitosan group. In the following clinical 
study, paper Ib, BMP-2, heparin/chitosan and titanium mesh are used for the 
reconstruction of large cranial defects in humans. The patients demonstrate a 
postoperative inflammatory reaction and week bone formation, and the results are 
disappointing and discourage the use of heparin/chitosan in a clinical setting. The 
healing of cranial defects in minipigs with BMP-2 and hyaluronan-based hydrogel is 
studied in paper II. The defects treated with BMP-2 and hyaluronan-based hydrogel 
demonstrate 119 percent ossification, indicating complete healing and bone overgrowth 
to some extent. Animals treated with hydrogel alone show 58 percent ossification and 
53 percent ossification in the control group, showing a significant difference in induced 
bone volumes between the BMP-treated animals and animals treated with hydrogel 
alone. Bone healing of cranial defects in rats comparing hyaluronic acid hydrogel and 
type I collagen is studied in paper III. Immunohistochemistry and histomorphometric 
analysis show more active bone formation in the BMP-2 and hydrogel group with 
significant increase in bone formation two to four weeks after surgery compared to 
BMP-2 and collagen or hydrogel alone. In the last study (paper IV) cranial 
reconstruction after neurosurgery with BMP-2 and hydrogel is studied. Boreholes are 
randomized into treatment with BMP-2 and hydrogel, hydrogel alone, autologous bone 
and Tisseel™ or Spongostan™ (negative control). Bone healing in holes treated with 
BMP-2 and hydrogel or autologous bone and Tisseel™ is significantly increased 
compared to negative control. 
In conclusion tissue engineering of bone with heparin/chitosan and hyaluronan-based 
hydrogel with BMP-2 show good bone inductive capacity, superior to type I collagen 
and BMP-2.  Hyaluronan-based hydrogel has more attractive qualities regarding the 
inflammatory response and BMP-2 and hydrogel produce bone comparable to bone 
autografts. 
 
 
Keywords: Bone morphogenetic protein, bone induction, heparin, chitosan, hyaluronan, 
hydrogel 
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1 INTRODUCTION 
 
1.1 TISSUE ENGINEERING 
The term “tissue engineering” dates back to the 1980s when scientists with 

backgrounds in engineering, medicine and biology started to look into the concept of 

tissue creation and repair. The most cited definition was proposed by Robert Langer 

and Joseph P. Vacanti in a review paper, published in Science in 1993: “Tissue 

engineering is an interdisciplinary field that applies the principles of engineering and 

the life sciences toward the development of biological substitutes that restore, maintain, 

or improve tissue function”1. This thesis is based on five papers looking into tissue 

engineering of bone, ectopic and in the craniofacial area, based on the cooperation 

between scientists in the different fields of medicine, chemistry and veterinary 

medicine. It ranges from preclinical studies in rats and minipigs to clinical studies in 

humans. 

 

1.2 BONE TISSUE 
Bone tissue contains three cell types which synthesize, remodel and maintain the 

intercellular mineralized matrix. Osteoblasts produce the organic part of the matrix 

called osteoid. It is composed of type I collagen, proteoglycans and glycoproteins, and 

contributes to the deposition of the inorganic components like hydroxyapatite. 

Endogenous glycoproteins present in bone are alkaline phosphatase (ALP), osteonectin, 

osteopontin, bone sialoprotein, fibronectin and osteocalcin2,3 . The collagen fibers are 

initially haphazardly arranged and when the osteoid is mineralized it is referred to as 

woven bone. When the bone is remodeled the collagen fibers are deposited in the long 

axis of the bone and mineralization of this mature osteoid produces lamellar bone. 

Osteoclasts are multinucleated giant cells, responsible for resorption and remodeling of 

the matrix, a constantly ongoing process in living bone. Osteocytes are matured 

osteoblasts, trapped within cavities of the bony matrix, and are actively involved in the 

maintenance of the matrix. The osteocytes are connected by a network of canaliculi 

(small canals) enabling cellular communication through thin cytoplasmic extensions. 

Blood vessels transverse the matrix and provide nutrients and oxygen to the cells. The 

bone forming cells take part in matrix turnover as well as in the production and 

secretion of regulating growth factors such as insulin-like growth factors, transforming 

growth factors and bone morphogenetic proteins.  

http://en.wikipedia.org/wiki/Insulin�
http://en.wikipedia.org/wiki/Bone_morphogenetic_protein�
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The skeleton is formed by two distinct processes, intramembranous and endochondral 

ossification. Intramembranous ossification involves primarily the development of flat 

bones such as the skull, and mesenchymal cells differentiate directly into osteoblasts. 

Endochondral ossification refers to the process of epiphyseal cartilaginous growth of 

the long tubular bones. The cartilage is progressively replaced by osteoid, which is then 

mineralized4. 

 

 
Figure 1. Transmission electron microscopy showing direct bone formation. 
Osteoblasts (OB) are polarized toward the bone matrix displaying an active 
morphology with extensive endoplasmic reticulum (arrow), producing type I collagen, 
osteoid (OI).An osteocyte (OC) is trapped in the mineralized bone matrix (MB). Scale 
bar 10 µm. 
 

Bone is composed of compact (cortical) bone and trabecular (cancellous) bone. 

Compact bone has a porosity of 5–30% and accounts for 80% of the total bone mass of 

an adult skeleton. Trabecular bone accounts for the remaining 20% of total bone mass 

and has nearly ten times the surface area of compact bone and a porosity of 30–90% 5. 

Bone is composed of 60% mineral. The mineral content of bone is mostly 

hydroxyapatite, with small amounts of carbonate, magnesium, and acid phosphate6. All 

bones are covered with a periosteum on the outer surface and lined with an endosteum 

along the bone marrow cavity. These well vascularized and sensate connective tissues 

contain bone progenitor cells, capable of differentiation towards osteoblastic lineage 

and secretion of growth factors.  

http://en.wikipedia.org/wiki/Skeleton�
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Figure 2. Compact lamellar bone (left), trabecular wowen bone (right). Scale bar 50 

µm. 

 

1.3 STEM CELLS 
Stem cells are defined by their capacity of self-renewal, and the capacity to differentiate 

into different cell lineages under appropriate conditions. Stem cells divide 

asymmetrically, into a more differentiated daughter cell and into a clone to maintain the 

stem cell population. Human stem cells can be categorized into three main types: 

embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem 

cells (iPSCs). A stem cell is totipotent if it is capable of giving rise to a whole animal, 

including germ cells, all types of the three germ layers (i.e. ectoderm, mesoderm and 

endoderm) and extraembryonic tissues. Zygotes are totipotent. A pluripotent cell can 

produce all cell types of the germ layers but not extraembryonic tissues, while a 

multipotent cell can produce cells of the same germ layer only. Adult stem cells are 

described as multipotent 7. Bone marrow derived stem cells were the first adult stem 

cells shown to have multi-lineage potential. Bone marrow contains at least two distinct 

stem cell populations; hematopoietic stem cells giving rise to all blood cell types, and 

mesenchymal stem cells (MSCs). MSCs can differentiate into tissues of the embryos 

mesoderm including bone, adipose, cartilage and muscle8-10 . Markers for skeletal stem 

cells have been identified and isolated based on a minimal surface phenotype noted for 

expression of CD146, CD105 and alkaline phosphatase 11. Skeletal stem cells represent 

a central model system for investigating skeletal diseases, as tools for in vitro and in 

vivo models, for cell therapy- based strategies, or as targets for drugs. 

 

1.4 BONE MORPHOGENETIC PROTEINS 
Bone morphogenetic proteins (BMPs) are biologically active signaling molecules 

which were first described by Dr Marshall Urist in 1965. He discovered that extracts of 
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bovine bone induced ectopic bone formation subcutaneously in rats12. BMPs are 

naturally present in the extracellular matrix (ECM) and can bind to heparin sulfate, 

heparin and type IV collagen13,14. Molecular cloning of BMP-1 through BMP-4 in 1988 

was an important step in BMP research and opened up new possibilities in research and 

clinical trials with BMPs15 . BMPs are members of the transforming growth factor-beta 

(TGF-beta) superfamily and have great osteoinductive potential16. At least 40 different 

subtypes in the TGF-beta family have been described to date, and these have been 

divided into groups according to their primary amino acid sequence17. The human BMP 

family has 15 members (BMP-1 through BMP-15) and among these BMP-2, BMP-4 to 

BMP-7 and BMP-9 have been shown to induce intramembranous and endochondral 

bone formation18. Of these, BMP-2, BMP-6 and BMP-9 appear to have important roles 

in the induction of mesenchymal cell differentiation into osteoblasts19. In terms of bone 

formation, BMPs regulate intramembranous as well as endochondral ossification 

through chemotaxis and mitosis of mesenchymal cells, induction of mesenchymal 

commitment to osteoblasts or chondrocytes, promotion of further osteoblast or 

chondrocyte differentiation, and programmed cell death20. Other members of the TGF-

beta family, such as chordin and noggin, have inhibitory effect on bone formation by 

inactivating BMPs21. BMPs are synthesized by osteoblasts as 400-500 amino acid 

peptides, each consisting of a leader sequence, a propeptide, and a mature 

osteoinductive domain at the carboxy-terminal. Prior to secretion from the osteoblasts, 

BMP molecules are cleaved between the propeptide and mature regions to release the 

active BMP dimer22. BMP then binds to serine/threonine kinase receptors (BMP type I 

and II) that are displayed on the stem cells’ surface. Following ligand binding, the type 

II receptor homodimer cross-phosphorylates the type I receptor in the GS region, 

activating its kinase domain. The type I receptor kinase then initiates downstream 

signaling by phosphorylating and activating intracellular messenger proteins called 

Smads. Distinct type I and type II receptors have been identified. The specific Smad 

protein to be activated depends on the type of BMP ligand and the type I receptor it 

binds to. BMP-2, for example binds to BMP-Ia and BMP-Ib receptors, whereas BMP-7 

binds to ALK-2 or BMP-Ib receptors. Osteoinduction appears to be mediated by R-

Smads (Smads 1, 5 and 8). Smads 1 and 5 are activated by BMP-Ia and BMP-Ib 

receptors, whereas Smads 1, 5 and 8 can be activated by ALK-2 receptors. Once 

activated, R-Smads combine with Smad 4 to form a nuclear signaling complex that is 

capable of altering specific patterns of gene expression to promote cell proliferation and 

stimulate the concentration dependent transformation of daughter cells into 
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chondroblasts or osteoblasts. Smads 6 and 7 compete for phosphorylation of Smad 4, 

and appear to be involved in the inhibition of osteoinduction23. 

 

 

 
Figure 3. Bone morphogenetic protein (BMP) ligands bind to the BMP receptors 
BMPRI and BMPRII, and BMPRII then phosphorylates and activates BMPRI. 
Phosphorylated BMPRI subsequently phosphorylates receptor-activated Smad proteins 
(R-Smads), which associate with common mediator-Smad (co-Smad) and enter the 
nucleus, where they regulate gene expression. The Smad proteins regulate promoter 
activity by interacting with transcriptional co-activators or co-repressors to positively or 
negatively control gene expression. The BMP signal can be blocked by extracellular 
antagonists, such as noggin, which bind BMP ligands and prevent their association with 
the BMP receptors, as well as by intracellular proteins, such as inhibitory Smads (I-
Smads), which prevent the association between R-Smads and co-Smads. From Liu A., 
Niswander L.A. Bone morphogenetic protein signaling and vertebrate nervous system 
development, Nature Reviews Neuroscience 6, 945-954 (December 2005) 
 
BMPs also promote angiogenesis during ossification via a mechanism that involves 

osteoblast-derived VEGF-A24. Studies in cell and animal models have shown that 

BMP-induced neovascularisation is critical for bone induction, probably playing an 

essential role in enabling the recruitment of BMP receptor-positive cells22. 

 

 

 

 

http://www.nature.com/nrn/journal/v6/n12/full/nrn1805.html�
http://www.nature.com/nrn/journal/v6/n12/full/nrn1805.html�
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1.5 BIOMATERIALS 
A biomaterial is any matter, surface, or construct that interacts with biological systems. 

The development of biomaterials, as a science, is about fifty years old. 

 

 
Figure 4. Multiple roles for biomaterials in stem cell tissue engineering, source: 
http://www.nature.com/ 
 
Biomaterials can be used as vehicles or carriers for growth factors, scaffolds for tissue 

regeneration with three dimensional properties providing a volume in which 

vascularization, new tissue formation and remodeling can occur. The different types of 

biomaterials can be divided into four different groups comprising inorganic materials, 

naturally-derived polymers, synthetic polymers and composite materials25.  

 

1.5.1 Inorganic materials 
Inorganic materials include ceramics, such as compositions of calcium phosphate like 

hydroxyapatite (HAP) and tricalcium phosphate (TCP). It also includes non-ceramics 

like calcium phosphate based cements. Other inorganic materials include calcium 

sulfates, metals and bioglasses. HAP has been used clinically in prosthetics since the 

1980s26. HAP is brittle and difficult to mould, and HAP alone with BMP-2 shows lack 

of bone induction because of the lack of resorption of HAP and the tight binding 

affinity to BMPs. It is therefore often combined with TCP for a more resorbable and 

porous BMP carrier with greater deal of bone formation27. The porosity of the scaffold 

is important for the ingrowth of cells, and it has been demonstrated that the minimum 

http://www.nature.com/�
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channel (or pore) diameter required for cell penetration into HAP scaffolds is 

approximately 80 µm28. 

 

1.5.2 Naturally-derived polymers 
Naturally-derived polymers include collagen, hyaluronic acid, fibrin, chitosan, heparin, 

alginate and other animal or plant-derived polysaccharides. The most widely used 

natural polymer is type I collagen, which is derived from bovine or porcine bone, skin 

or tendon. It can be used as demineralized bone matrix (DBM), as gels and cross-linked 

sponges, but considering its origin there is a risk of pathogen transmission. Collagen 

scaffolds loaded with BMPs have been successfully used to achieve bone formation. 

This has led to the development of collagen-based BMP products for the treatment of 

long bone fracture non-unions and lumbar interbody fusion29. For BMP-2 a collagen 

sponge reconstituted from bovine tendon is used in the commercially available form 

(InductOs, Wyeth). Hyaluronic acid (HA), or hyaluronan, is a non-sulfated, linear 

polysaccharide composed of repeating disaccharide units of glucuronic acid-N-acetyl-

D-glucosamine. It is a major component of the extra cellular matrix (ECM) and present 

in nearly every mammalian tissue and fluid. It plays a role in wound healing30 and it 

has been found in high concentrations in the early fracture callus, in lacunae 

surrounding hypertrophic chondrocytes in the growth plate and in the cytoplasm of 

osteoprogenitor cells31,32.It is typically derived from rooster comb for commercial 

purposes. Hyaluronic acid is negatively charged and can form ionic bonds with 

positively charged BMPs to increase affinity33,34. Disadvantages of hyaluronic acid 

include rapid resorption unless crosslinked or chemically modified to decrease its 

intrinsic hydrophilicity25,33,35-37. Hyaluronic acid scaffolds have been used for the 

delivery of various growth factors including TGF-beta and BMP-238-40. Hyaluronan has 

previously been shown to induce the expression of its own receptor, CD44, specifically 

in mesenchymal stem cells41.  The hyaluronan/CD44 interaction induces adhesion and 

migration of mesenchymal stem cells to hyaluronan, which suggests a dual capacity of 

hyaluronan-based biomaterials by functioning as both a matrix for attraction of 

mesenchymal stem cells and as a carrier and protective container for differentiation 

factors. Chitosan is a linear polysaccharide of (1-4)-linked D-glucosamine and N-

acetyl-D-glucosamine residues that is commercially derived by partial deacetylation of 

chitin obtained from crustacean shells42. It´s a non toxic, resorbable material that has 

been shown to promote wound healing. Due to its cationic nature, it forms water 

insoluble ionic complexes with a wide range of polyanionic compounds. Chitosan 
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increases the mechanical strength when incorporated into a collagen scaffold due to 

ionic complex formation between the positively charged chitosan and the negatively 

charged collagen ions43. Heparin is a natural polymer that occurs in the human body at 

very high concentrations in the tissues surrounding the capillaries of the lungs and the 

liver. Heparin is a mucopolysaccharide with a high negative charge due to the presence 

of sulfate groups on the back bone. It is used clinically to delay blood clotting, and it 

also takes part in various biological activities such as cell adhesion, migration and 

recognition44. Many growth factors show a very high affinity for heparin owing to 

specific binding sites for growth factors on heparin. This binding stabilizes growth 

factors and enables their sustained release at the site of tissue regeneration. In addition 

to this, the bioactivity of some growth factors is enhanced upon binding with heparin45. 

Heparin has been shown to stabilize growth factors (including BMP-2), protect them 

from enzymatic degradation and inactivation, and enhance their biological activities by 

enhancing BMP-induced osteoblast differentiation in vitro and in vivo  and by 

protecting BMPs from degradation and inhibition by BMP antagonists46. Fibrin is 

derived from blood, and fibrin formation takes place during the activation of 

coagulation, stabilizing the haemostatic plug and providing the temporary matrix for 

subsequent cellular responses of wound and vessel repair 47. Fibrin glue and fibrin-base 

scaffolds allow the immobilization of a wide range of growth factors for controlled 

delivery, including bFGF, nerve growth factor (NGF), VEGF and BMP-248 . 

 

1.5.3 Synthetic polymers 
Synthetic polymers have the advantage of being well-characterized materials that can 

be modified for specific uses in tissue engineering and are free of viral and infectious 

agents. The most predominant polymer is the class of poly(alfa-hydroxy acids) that are 

approved by the Food and drug administration (FDA)49. Of these the most used 

polymer for growth factor delivery are polylactic acid (PLA), polyglycolic acid (PGA) 

and their copolymers poly(lactic-co-glycolic) acid (PLGA).  These scaffolds can be 

processed into highly porous scaffolds or microspheres50. They can be used for delivery 

of definite amounts of growth factors. These polymers break down by hydrolysis 

producing acidic breakdown products that might affect the wound healing detrimentally 

due to a decrease in the local pH and inflammatory response. Polyethylene glycol 

(PEG) is one of the most popular carrier materials for drug delivery due to its 

biocompatibility, hydrophilicity and rapid biodegradability51. 
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1.5.4 Composite materials 
Composite materials include varying combinations of ceramics, natural polymers and 

synthetic polymers to build optimized systems that take advantage of the benefits of 

each material. In this way the controlled release properties of synthetic polymers can be 

combined with the biocompatibility of natural polymers. Examples of this strategy 

include hyaluronic acid-impregnated PLA-sponges, collagen-PLG-alginate composites, 

PLGA-gelatin composites and alginate-PLA composites51,52. Mineral components can 

also be combined with natural polymers such as collagen or hyaluronic acid. 

Ideally, a carrier material would enhance retention of BMP at the local site, stimulate 

bone healing by osteoconduction, provide mechanical support, be readily available, 

would not cause an inflammatory reaction, would not be very expensive and would 

resorb over time. In this way the effectiveness and handling properties of BMPs would 

be enhanced and the applied dosage could be lowered, leading to lower costs53. 

 

1.6 DELIVERY SYSTEMS 
To deliver drugs in a controlled manner over extended periods of time different 

delivery systems are used. In a delivery system, growth factors are encapsulated in a 

polymeric covering which modulates the rate of release54. The growth factors are also 

protected from the proteolytic environment which can cause a cleavage in the protein 

structure. Some well-studied delivery systems are microspheres, hydrogels, 

membranes, granules, foams and implant coatings using a variety of materials such as 

gelatin55, collagen56, fibrin, chitosan57 and PLGA58.  

 

1.6.1 Microspheres 
Microspheres are spherical particles ranging from 1-100 µm that can be implanted at 

the site of injury or injected into the wound. Both degradable and non degradable 

polymeric materials can be used in the microspheres58. They are usually used together 

with a different scaffold material. In recent publications 3D scaffolds made of 

poly(propylene fumarate)/diethyl fumarate  photopolymer incorporating BMP-2 loaded 

PGLA microspheres were used to reconstruct bony defects59. In another study an 

injectable calcium phosphate-chitosan fibrous scaffold was used to deliver BMP-2 and 

umbilical cord mesenchymal stem cells in alginate microbeads60. 
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1.6.2 Scaffolding systems 
Scaffolding systems serve as a structure for cell attachment/growth and also as a 

growth factor delivery system. The scaffold retains and locally releases the protein 

during formation of new tissue25,61-63. The delivery of growth factors is controlled either 

by passive diffusion from the scaffold, or by the degradation rate of the scaffold. The 

composition of the scaffold and the subsequent release of growth factors can be altered 

to match the healing process, and the magnitude of release can be controlled by the 

amount of growth factor added in the scaffold. Examples in the recent literature include 

apatite-coated collagen scaffolds shown to increase the bone formation with BMP-2 

compared to non-modified collagen scaffolds64. In another study of bone healing in 

calvarial defects in rats a calcium-deficient hydroxyapatite porous scaffold with 

sulfated chitosan coating was used for improved release of BMP-265. The mechanical 

behavior of polymer scaffolds is important for their use in tissue engineering, and new 

ways of testing are being presented. Image-guided failure assessment (IGFA), which 

combine synchrotron radiation computed tomography (SR CT) and in situ micro-

compression testing is a useful tool for assessing structural and mechanical scaffold 

properties66. Multiple examples of new scaffolding systems are continuously presented 

in the literature trying to create the optimal conditions for tissue engineering. 

 

1.6.3 Hydrogels 
Hydrogels are cross-linked polymeric structures that are water-expandable, 

biocompatible, tissue-like in elasticity and permeability, which make them favorable 

candidates for tissue engineering applications38. The high water content allows 

diffusion of low-molecular weight compounds and reduces the interfacial tension with 

other fluids, but also leads to low mechanical strength. To compensate for this cross-

linking and copolymerization of hydrogels with bulky hydrophobic monomers has been 

performed. Hydrogels have been mixed with aqueous solutions of poly(vinyl alcohol-

vinyl acetate) and poly(acrylic acid) in different ratios, and then studying the effects of 

cross-linking agents such as glyoxal and glutaraldehyde on the mechanical properties of 

the resulting hydrogels. The results demonstrated that cross-linked hydrogels showed 

higher storage modulus values when compared with non cross-linked hydrogels67. 

Synthetic as well as natural materials have been used to form hydrogels that can be 

used as scaffolds for tissue engineering. The former includes materials such as 

polyethylene oxide (PEO), polyvinyl alcohol (PVA) and poly allylamine (PAA)68 and 

the latter includes alginate, chitosan, collagen, agarose, hyaluronic acid, fibrin and 
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many more38,69-71. Biocompatibility, biodegradability, sustained release, protection 

from proteolytic cleavage and choice of polymerization with large numbers of synthetic 

and natural materials make hydrogels good candidates for growth factor-delivery 

systems. In the recent literature there are examples of hydrogels used for surface 

modification of free form-based scaffolds followed by BMP-2 loading to enhance bone 

regeneration72. Another study presents a nanofiber mesh tube for guiding bone 

regeneration of segmental bone defects in a rat model combined with peptide-modified 

alginate hydrogel injected inside the tube for sustained release of BMP-273.  

 

1.7 CLINICAL APPLICATIONS OF BONE TISSUE ENGINEERING 
In cranial reconstructions after neurosurgery healing problems can occur, because the 

blood supply to the bone flap is disturbed, which ultimately may lead to necrosis in 

approximately 5% of the bone flaps74. Different techniques are used to reconstruct 

calvarial defects including bone transplants and a variety of inert or bioactive 

biomaterials75. The use of autologous bone grafts may be restricted due to limited 

amounts of donor bone, the enhanced morbidity and significant bone resorption76,77. 

Complications are mainly related to the non-vascularised nature of an implant or free 

bone graft and therefore, vascularised bone grafts are state of the art for the treatment of 

large bone defects78. In 2004 Lendeckel et al. healed a large calvarial defect in a child 

with the use of resorbable macroporous sheets, fibrin glue and autologous fat derived 

stem cells79. The healing was uneventful despite long lasting infection and CT-scans 

showed near complete calvarial continuity three months after the reconstruction. 

Reconstruction of facial bones is another challenge due to their three dimensional 

properties. In 2004, Warnke et al. reported a case study, where an extended mandibular 

discontinuity was replaced by a custom made bone transplant composed of mineral 

blocks, bone marrow and BMP 780. The contents were placed within a titanium mesh 

cage and implanted in the latissimus dorsi muscle of the patient to allow bone 

formation and blood vessel infiltration. Seven weeks later the vascularized composite 

graft was transplanted to the jaw using microvascular techniques. Mesimäkis research 

group used a microvascular flap using autologous fat derived stem cells, beta-tricalcium 

phosphate and bone morphogenetic protein-2 to reconstruct a defect following 

hemimaxillectomy81. Other investigators believe that adequate delivery of growth 

factors will recruit enough local or migrating precursor cells. In 2001 Moghadam et al. 

showed that critical size bone defects in the mandible can be healed with only growth 

factors and scaffolding materials82. This approach was further investigated by Arnander 
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et al. in 2006, creating a composite graft suitable for microvascular transfer to the 

forehead using an acellular degradable scaffold containing BMP-283. 

In craniofacial cleft repair there are some studies describing the use of BMP-2 and 

different scaffolding materials84-87. The dose of BMP-2 is high (1.5 mg/mL), and 

associated with local swelling in some of the patients. The challenge still remaining is 

to get closer to physiological doses of growth factor, and still achieve healing of the 

defect without adverse side effects. Another issue when it comes to larger defects is the 

need for vascular supply. Accelerating angiogenesis as well as osteogenesis would be a 

significant advance in the field of tissue engineering. 
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2 HYPOTHESIS AND AIMS 
 
The main hypothesis is that bone induction with BMP-2 differs in temporal aspects, 

bone forming capacity and mechanism depending on the carrier material used. 

 

The main objective of this thesis is evaluation of different carriers for BMP-2 in cranial 

bone reconstruction in different species.  

 

The specific aims are: 

 

Ia and b. To evaluate heparin/chitosan as a carrier for BMP-2 in bone induction in 

a preclinical and clinical setting. 

II. To evaluate hyaluronan-based hydrogel as a carrier for BMP-2 in bone 

induction in a large animal study. 

III. To compare hyaluronan-based hydrogel to type I collagen as a carrier for 

BMP-2 in bone induction in a small animal study. 

IV. To compare hyaluronan-based hydrogel and BMP-2 to autografts in a 

clinical study. 
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3 MATERIALS AND METHODS 
 
3.1 SCAFFOLDS AND SCAFFOLD PREPARATION 

 
3.1.1 Heparin/Chitosan gel 
The heparin/chitosan gel was used in study Ia. A suspension of chitosan (4.5 g) 

(Primex, Haugesund, Norway) with a degree of N-acetylation of 16% was dissolved in 

water (100 g) by drop-wise addition of hydrochloric acid (4 M). The reaction was 

performed at room temperature and under stirring until a clear solution with a pH value 

of 4.7 was obtained. The solution was kept overnight in a closed vessel. Heparin (1.8 g) 

(Pharmacia, Uppsala, Sweden) was dissolved in water (25 g). The heparin solution was 

added to the chitosan solution under stirring and a viscous gel was obtained. One 

milliliter of the resulting gel contained 12 mg of heparin and 30 mg of chitosan. The 

product was macroscopically homogenous and stable. Within 30 minutes, BMP-2 

(Wyeth Lederle, Madison, N.J.) was added by stirring to final concentrations of 50 µg 

of BMP-2 per mL of gel or 250 µg of BMP-2 per mL of gel. The gels were transferred 

to 1-mL syringes and kept at room temperature for approximately 10 to 15 minutes. 

 

3.1.2 Heparin/Chitosan sponge 
The heparin/chitosan sponge was used in study Ia and Ib. The heparin/chitosan 

complex (40 g), see above, was poured into Petri dishes with a diameter of 9 cm. The 

Petri dishes were freeze-dried, which resulted in a white, sponge-like material. 

 

3.1.3 Collagen gel 
The collagen gel was used in study Ia. Bovine type I collagen (Vitrogen 100, 

Cohesion, Palo Alto, Calif.),was used as a BMP-2 carrier and prepared as described by 

the manufacturer. Briefly, 8 ml of chilled Vitrogen collagen was mixed with 1 mL of 

10x phosphate buffered saline solution and 1 mL of 0.1 M sodium hydroxide. The pH 

of the mixture was monitored and adjusted to 7.4 by adding a few drops of either 0.1 M 

hydrochloric acid or 0.1 M sodium hydroxide. The neutralized collagen solution was 

stored at 4ºC. Within 30 minutes, recombinant human BMP-2 (Wyeth Lederle, 

Madison, N.J.) was added by stirring to final concentrations of 50 µg of BMP-2 per mL 

of gel or 250 µg of BMP-2 per mL of gel. In one group, the BMP-2 was treated with 

1000 IE of heparin (Pharmacia, Uppsala, Sweden), before mixing with the collagen gel 
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as described above. The solutions were transferred to 1 mL syringes and kept at room 

temperature for 10 to 15 minutes. 

 

3.1.4 Collagen sponge 
In study III type I collagen sponge (InductOs, Wyeth Pharmaceuticals, UK) was used. 

The sponge was cut into circles with a diameter of 8 mm and treated with 25 µg BMP-2 

(InductOs, Wyeth Pharmaceuticals, UK). 

 

3.1.5 Aldehyde-modified hyaluronic acid hydrogel 
Aldehyde-modified hyaluronic acid was used in study II, III and IV and was prepared 

as described by Bergman et al88. Aldehyde-modified hyaluronic acid was dissolved in 

phosphate buffered saline to a concentration of 26 mg/mL and filter sterilized. A BMP-

2 solution of 0.5 mg/mL was prepared by adding 24 mL of deionized water to a 

lyophilized powder containing 12 mg of recombinant human (rh) BMP-2 in a 

formulation buffer of pH 4.5 (InductOs; Wyeth, Madison, N.J.). Hydrazide-modified 

polyvinyl alcohol was prepared as described previously by Ossipov et al89.  Hydrazide 

modified polyvinyl alcohol was dissolved to a concentration of 4 mg/mL in the BMP-2 

solution and filter sterilized. For gels without BMP-2, hydrazide modified polyvinyl 

alcohol was dissolved in the formulation buffer alone, which contained 0.833% 

glycine, 0.167% sucrose, 0.033% polysorbate 80, 0.01% sodium chloride, and 0.025% 

L-glutamic acid. Heat-sterilized hydroxyapatite in powder form was added to each 

polymer solution to an amount of 0.25 g/mL and the resulting suspensions were mixed 

vigorously. Equal volumes of aldehyde-modified hyaluronic acid/hydroxyapatite and 

hydrazide modified polyvinyl alcohol/hydroxyapatite suspensions were added to 3-mL 

dual-cartridge syringes that were sealed and stored at 4°C until use. Gels of 2.5 mL 

were formed in situ by injecting the suspensions using the dual cartridges equipped 

with mixing tips (study II). In study III 0.1 mL of premixed hydrogel with or without 

25 µg BMP-2 was used. In study IV 1 mL of premixed hydrogel with or without 250 

µg BMP-2 was used. 

 

 

Figure 5. The dual-compartment syringe was 
used for the preparation of aldehyde-modified 
hyaluronic acid hydrogels by mixing equal 
volumes of the gel precursors. The syringe is 
equipped with a static mixing tip.  
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3.2 ANIMAL STUDIES 

 
3.2.1 Ethical permission animal studies 
In study Ia the ethical application was approved by the local ethical committee at 

Karolinska Institute (registration no. N70/05). In study II all procedures were 

approved by the Ethical Committee for Animal Experimentation, Uppsala, Sweden 

(Dnr C35/8). Study III was approved by the local ethical committee in Stockholm, 

Sweden (Dnr N 30/08). 

 

3.2.2 Animals and surgical procedures (Paper Ia, II and III) 
In study Ia adolescent male Sprague-Dawley rats weighing 250 to 300 g were used in 

the in vivo experiments. The rats were anesthetized with Temgesic (0.16 mL/kg body 

weight; Reckitt Benckiser, Slough, United Kingdom). Three carriers in gel formulation 

were tested: type I collagen, heparin/type I collagen, and heparin/chitosan. Each carrier 

was mixed with 0 µg of BMP-2 (buffer alone), 10 µg of BMP-2, or 50 µg of BMP-2 

before the animal procedures. Forty-five rats were divided into nine groups, with ten 

implantations per group. Both hind legs of each animal were used for the injections. 

The results were derived from two independently performed experiments. The gels 

were injected into the quadriceps muscle using a 22-gauge needle. The animals were 

allowed to move freely after the procedure. They were killed by means of carbon 

dioxide four weeks after injection. Freeze-dried formulations of the same carriers (type 

I collagen, heparin/type I collagen, and heparin/chitosan) were tested with 0 µg of 

BMP-2, 10 µg of BMP-2, or 50 µg of BMP-2 by implantation into both legs in 15 rats 

with five implantations per group. Heparin/chitosan and type I collagen freeze-dried 

sponges were cut into 4 x 6 mm pieces. The 4 x 6 mm heparin/chitosan sponges 

contained 6.1 mg of chitosan and 2.42 mg of heparin. Buffer with 0 µg of BMP-2, 10 

µg of BMP-2, or 50 µg of BMP-2 were added to the sponges. For the heparin/type I 

collagen carrier, BMP-2 was treated with 1000 IE of heparin before being added to the 

collagen sponge. The sponges were kept at room temperature for at least 15 minutes 

before implantation into the quadriceps muscles in the rats through a 15 mm skin 

incision.  

In study II 14 male health-certified minipigs (Ellegaard Göttingen Minipigs, Dalmose, 

Denmark) 14 months of age and with a mean weight of 23.2±3.4 kg were used. They 

were allowed to acclimatize for 19 days before surgery at the Department of Clinical 

Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden. The pigs 
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were fed a diet without antimicrobials (sodium dodecyl sulfate–sodium nitro prusside) 

and had free access to water. The pigs were randomized into three groups: group 1, 

craniotomy and application of 5 mL of hydrogel with 1.25 mg of BMP-2 (n=6); group 

2, craniotomy and application of 5 mL of hydrogel without BMP-2 (n=6); and group 3, 

craniotomy and no further treatment (n=2). The protocol ran for a total of 15 weeks.  

Anesthesia was induced with a combination of medetomidine (Domitor; Pfizer, New 

York, N.Y.), tiletamine, and zolazepam (Zoletil; Virbac Animal Health, Carros, 

France). Intramuscular buprenorphine (Temgesic; Reckitt Benckiser, Parsippany, N.J.) 

was provided for additional analgesia at a dosage of 0.1 mg/kg body weight. One dose 

of antibiotics (Ceftiofur 0.5 g; Pfizer) was administered intramuscularly. The animals 

were intubated and general anesthesia was maintained with isoflurane. A skin flap 

measuring 4 x 5 cm was raised including the underlying periosteum under local 

anesthesia (Marcaine; AstraZeneca Pharmaceuticals, Wilmington, Del.) A cranial bone 

defect measuring 2 x 4 cm was marked on the parietal and frontal bone including the 

sagittal and coronal sutures. A craniotomy was performed using Midas Legend 

equipment (Medtronic, Minneapolis, Minn.) on the inner layer of bone overlying the 

dura mater. The dura was injured and mended with Surgicel (Ethicon, Inc., Somerville, 

N.J.) in three pigs. To achieve a closed defect, we put in bone transplants using the 

bone that was removed from the same individual to cover the lateral sinuses, and we 

made a periosteal flap to cover the anterior sinuses. Five milliliters of hydrogel was 

applied to the defect per pig, except for animals in the control group, where the defect 

was left without treatment. The skin overlying the defect was sutured subcutaneously 

and intracutaneously with resorbable 2-0 Vicryl (Ethicon). Buprenorphine was 

administered intramuscularly twice daily for three days. After surgery, the pigs were 

weighed two times per week and blood samples were taken four weeks after surgery 

and before the animals were euthanized. At the end of the study (i.e., three months after 

surgery), the pigs were euthanized under general anesthesia with an overdose of 

pentobarbital sodium. All animals underwent a complete necropsy within 30 minutes 

after death, and the heads were separated from the bodies for further analyses. 
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Figure 6. The craniotomy and reconstructive procedure. (Left) A skin flap is designed 
over the parietal and frontal area. (Center) The flap is raised including the underlying 
periosteum. (Right) Craniotomy measuring 2 x 4 cm is performed and the underlying 
dura mater is exposed. The defect is filled with 5mL of hydrogel. The gelation time is 
less than 2 minutes, and the defect is closed. 
 
In study III adolescent male Sprague Dawley rats (n=45) weighing 250-300 g were 

used. They were kept at the animal department at Karolinska University Hospital in 

cages with free access to food and water. A 12:12 h light/dark schedule (lights on at 

7.00 a.m.) was used and the room temperature was 20 ± 2°C. There were three to four 

animals per cage, and they received veterinary supervision. The rats were divided into 

four groups. Group 1 (N= 15): Defect filled with 0.1 mL gel with 25 µg BMP-2; Group 

2 (N=15): Defect filled with 0.1 mL gel without BMP-2; Group 3 (N=12): Defect filled 

with type I collagen sponge and 25 µg BMP-2, and Group 4 (N=3): Defect was left 

empty.  

A critical size cranial defect was created in anesthetized (Isofuran, Abbott Scandinavia, 

Sweden) adolescent male Sprague Dawley rats. A skin flap was raised and a 

craniotomy with 8 mm diameter was created in the parietal and frontal bones using 

Midas Legend equipment (Medtronic). Constant irrigation with saline was applied and 

care taken to avoid injury to the underlying dura. The defect was treated according to 

the protocol. The skin flap was sutured in place using resorbable 3-0 Vicryl (Ethicon). 

The animals were allowed to move freely after the procedure. Subcutaneous 

buprenorphine (Temgesic, Schering-Plough) was provided for additional analgesia at a 

dosage of 0.05 mg/kg b.w. every eight hours for three days postoperatively. Three 

animals per group were sacrificed at one-, two-, three-, and four-week time-point by 

CO2 and the skull was fixed in formaldehyde. In the hydrogel groups, with and without 

BMP-2, three animals per group were kept for 10 weeks.  



 

  19 

  

3.3 HUMAN STUDIES 

 
3.3.1 Ethical permission human studies 
The study Ib was approved by the local ethical committee at Karolinska Institute (Dnr 

03-244). The study IV was approved by the local ethical committee in Stockholm, 

Sweden (Dnr 2010/118-31/3). Informed consent was obtained from the patients. 

 

3.3.2 Patients and surgical procedures (Paper Ib and IV) 
In study Ib three patients were treated. The first patient had a frontotemporal defect 

(56 cm2) after a postoperative infection and necrosis of the bone following surgery for 

brain tumor. She had received radiation to the operating field. The patient underwent 

reconstruction with titanium mesh and heparin-chitosan with 12 mg of recombinant 

human BMP-2 (InductOs; Wyeth-Lederle, Ltd.). The second patient had a 

frontotemporal defect (54 cm2) after unsuccessful reconstruction following surgery for 

a cerebral aneurysm. She underwent reconstruction with titanium mesh and heparin-

chitosan sponge with 12 mg of recombinant human BMP-2. The third patient had a 

parietal defect (117 cm2) after a postoperative infection following partial 

hemicraniectomy resulting from cerebral hemorrhage. The reconstruction was 

performed with titanium mesh and heparin-chitosan sponge with 10 mg of recombinant 

human BMP-2.  

In study IV 12 patients treated for meningeoma, cerebral aneurysm or cerebral cyst 

were randomized into either treatment group or control group. In the treatment group 

the holes made during craniotomy were randomly treated with hydrogel with BMP-2 

(250 µg/mL) or hydrogel alone. The remaining hole/s, used as paired controls in the 

same patient, were treated with Spongostan™ (Ethicon) or Tisseel™ (Baxter) mixed 

with autologous bone dust obtained from the drilled holes. In the control group the 

holes were treated according to local standard procedure; either with Spongostan™ 

(Ethicon) as haemostatic agent or with Tisseel™ (Baxter) mixed with autologous 

cranial bone collected from the drilled holes.  

Craniotomy was made using the Midas Legend equipment (Medtronic). Three to five 

separate boreholes of 14 mm diameter in the tabula externa and 12 mm in tabula interna 

were interconnected with a rotating drill pin. Tacoseal™ (Nycomed), Surgicel™ 

(Ethicon) and bipolar coagulation were used for topical haemostasis on the dura, 

avoiding the site of the boreholes. The dura was stitched to the edges of the craniotomy 
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defect with 4-0 Vicryl™ (Ethicon) and Tisseel™ (Baxter) was applied under the bone 

edges for haemostasis. The dura was incised and the tumour or the aneurysm was 

removed. Floseal™ (Baxter) or Surgicel™/Tisseel™ was applied in the cavity; the 

cavity was rinsed and filled with water. The dura was subsequently mended producing 

a sealed closure using a running 4-0 Vicryl™. In some cases after tumor removal, 

bovine dura substitute replaced the normal dura (Lyodura™, B Braun). The bone flap 

was repositioned and the flap was attached to the surrounding bone by using 

Craniofix™ (Aesculap) or micro plates (Synthes). The holes were treated according to 

the protocol. The periosteum or muscle was stitched back in place over the craniotomy, 

and the skin flap was repositioned and sutured with 3-0 Vicryl™ (Ethicon) 

subcutaneously followed by skin staples (Covidien). 

 

 
Figure 7. The holes made during craniotomy were treated according to the protocol. In 
this patient the top left hole was randomized to treatment with Spongostan™, the top 
right hole to Tisseel™ and autologous bone, the lower left hole to treatment with 
hydrogel and BMP-2 and the lower right hole to hydrogel alone. 
 

3.4 RADIOLOGICAL ANALYSES 

 
3.4.1 Radiography 
In paper Ia radiography of the hind legs was performed after four weeks. 

 

3.4.2 Computed tomography 
In paper Ib computed tomography was performed one to 13 months postoperatively. 

In paper II the cranium was examined with high-resolution computed tomography. 

The technique was used to compare the bone volume of bony regenerates at the site of 

the former calvarial defect. Computed tomography was performed with a 64-slice spiral 
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computed tomography scanner (Somatom Definition; Siemens, Forchheim, Germany) 

with the following scan parameters: collimation, 0.6 mm; pitch, 0.6; 200 effective mA; 

120 kV; reconstructed slice thickness, 1.0 mm; reconstruction increment, 0.6 mm; 

kernel, H30. To estimate the volumes of the created defects and to determine volumes 

of new bone formation, measurements were performed from serial computed 

tomographic scans over an area of 20 x 40 mm centered over the sagittal suture and 10 

mm from the dorsal aspect of the cranium. The volume was calculated using the 

software volume program in the workstation multimodality workplace (Siemens). The 

density of the regenerated bone was calculated using the same program and equipment. 

In paper III the skulls were examined with computed tomography using a General 

Electric Lightspeed 64 channel VCT.  Exposure settings were 120 Kv, Ma 80, and 

Pitch 0.531. Slices were reconstructed with soft algorithm 0.625 thickness and 

increment. The acquired dataset was then analysed in Advantage Windows workstation 

Volume viewer version 7.4.71.  

In paper IV all the patients went for postoperative CT scans. After three and six 

months the bone healing was assessed by new CT scans. The skulls were examined 

with computed tomography using a General Electric Lightspeed 64 channel VCT. 

Spiral exposure settings were 100 Kv, Ma 70, and Pitch 0.96. Some examinations were 

acquired using axial mode and equivalent exposure settings resulting in DLP (Dose 

Length Product) in the range of 74-90. Slices were reconstructed with bone plus 

algorithm 0.625 thickness and increment. The acquired dataset was then analysed in 

Advantage Windows workstation Volume viewer version 4,5_02. The boreholes were 

analysed after thresholding for > 80 Hounsfield units (HU). The holes were rotated to 

be seen “en face” and their area measured. The substance filling the holes > 80 

Hounsfield units (HU), which was interpreted as bone, was also analysed in orthogonal 

planes.  

 

3.4.3 Volumetric Bone Mineral Density and Bone Volume 
In paper Ia computed tomographic scanning was performed on dissected specimens 

with gel implants to calculate induced ectopic bone volume and bone mineral density 

four weeks after implantation. The muscles were scanned using multiple computed 

tomographic scans, with an interscan distance of 1 mm. The volumetric bone mineral 

density is given as the average of all scans detecting calcified tissue. The bone volume 

(in cubic millimeters) was calculated as the average area (in square millimeters) of all 
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computed tomographic scans detecting calcified tissue multiplied by the number of 

scans detecting calcified tissue (one scan per millimeter). 

 

3.5 TISSUE PROCESSING AND IMAGING 

 
3.5.1 Light microscopy 
In paper Ia the quadriceps muscles were dissected out and the tissues were 

demineralized in decalcifying solution (Stephens Scientific, Riverdale, N.J.) for 48 

hours. Demineralized specimens were fixed in 4% paraformaldehyde and embedded in 

paraffin. 5-µm thick sections were cut and stained in hematoxylin and eosin. 

In paper II the heads of the minipigs were cleaved sagittally in the middle of the 

reconstructed area in the parietal and frontal cranial bone. The macroscopic 

appearances were documented by digital images and the craniotomy area was further 

cut into smaller pieces and placed in 4% aqueous solution of phosphate-buffered 

formaldehyde. The specimens were decalcified in 3.4% sodium formate 

(weight/volume) and 15.1% formic acid (weight/volume), trimmed, dehydrated, 

embedded in paraffin, cut into approximately 6-µm-thick sections, coded, and stained 

with hematoxylin and eosin and Mason Trichrome for light microscopy. 

In paper III the skulls were decalcified in formic acid and sodium citrate for one week 

followed by dehydration and embedding in paraffin. 4 µm-thick sections were stained 

with Masson Trichrome for histological analysis.  

 

3.5.2 Transmission Electron Microscopy 
In paper II samples from the craniotomy area were preserved in 2% glutaraldehyde 

plus 1% paraformaldehyde in 0.1 M sodium cacodylate buffer. The specimens were 

then decalcified in 4% ethylenediaminetetraacetic acid containing 0.5% glutaraldehyde, 

postfixed in 2% osmium tetroxide, dehydrated, and embedded in LX-112 resin. 

Approximately 5 µm-thick sections were cut, stained with toluidine blue, and examined 

with light microscopy. Areas of interest, identified with light microscopy, were further 

subjected to thin-section and transmission electron microscopic analyses. Sections were 

analyzed using a Tecnai 10 microscope (Fei Company, Eindhoven, The Netherlands) 

and documented by a Megaview III digital camera (SiS Company, Münster, Germany). 
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3.5.3 Immunohistochemistry 
In paper III immunohistochemistry was performed on paraffin-embedded sections 

using rabbit anti-CD146 monoclonal antibodies (Abcam) and peroxidase-DAB 

staining. Photographs were taken with Nikon Eclipse TE 2000-U using NIS Elements F 

3.0 program. 

 

3.5.4 Histomorphometric analysis 
 In paper III the histomorphometric analysis was based on photomicrographs taken 

with a Zeiss dissection microscope (Zeiss, Germany) and analyzed by use of Adobe 

Photoshop CS4 (Adobe Systems Inc.) The areas of newly formed osteoid and 

mineralized bone were measured on pictures from representative sagittal sections in the 

central part of the reconstructed cranial defect and measurements were divided by area 

of corresponding created original bone defect. 

 

3.6 BLOOD ANALYSES 
In paper II ethylenediaminetetraacetic acid–preserved blood was analyzed for 

hemoglobin, hematocrit, and total and differential white blood cell counts with an 

electronic cell counter validated for porcine blood (Cell-Dyn 3500; Abbott, Wiesbaden, 

Germany). Serum amyloid A (in micrograms per milliliter) was measured in serum 

samples using a commercially available enzyme-linked immunosorbent assay (Tridelta 

Phase range serum amyloid A kit; Tridelta Development Ltd., Greystones, Co. 

Wicklow, Ireland). Serum samples were analyzed for activities of aspartate 

aminotransferase, serum alanine aminotransferase, glutamyl transpeptidase (in 

microkatals per liter), and glutamate dehydrogenase (in nanokatals per liter) by use of 

automated equipment (Roche Cobas Mira; Roche Diagnostics, Indianapolis, Ind.). 

In paper IV blood samples were taken daily for three days postoperatively analysing C 

reactive protein and white blood cell counts. After three and six months blood samples 

were repeated. 

 

3.7 STATISTICAL ANALYSES 
In paper Ia the non-parametric, one-sample Wilcoxon test was used. Statistical 

significance was calculated using the R statistical program (Advanced Research 

Computing at Virginia Tech, Blacksburg, Va.). 

In paper II the statistical analysis was performed on the volume and density variables 

between the three experimental groups using analysis of variance. Because the number 
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of observations was small, the nonparametric Kruskal-Wallis test was used as a 

supportive statistical method. In addition, a t test and Mann-Whitney U test were used 

to determine where the differences were between the groups. All statistics were 

calculated using the R statistical program version 2.7.2 (http://www.R-project.org). 

In paper III a General Linear Model was used to analyze the data in IBM SPSS 

Statistics (Version 19). Interactive effects were analyzed and Scheffe’s post-hoc test 

was used for multiple comparisons to determine statistical significance between 

specific groups. The results are presented as mean +/- standard deviation. A p-value < 

0.05 was considered as statistical significant.  

In paper IV SPSS19 (IBM Statistics) was used. Not enough data was available for a 

repeated measures analysis. Subsequently, using all available data, a Univariate 

General Linear Model Analysis with 2 fixed factors was performed with 1 output; bone 

area, and 1 covariate; patient, as it may be a confounding factor. The analysis was made 

with 2 levels: time (3 and 6 months), and with 4 levels: material (1: hydrogel and BMP-

2, 2: hydrogel alone, 3: Tisseel™ and autologous bone, 4: Spongostan™) and 1 

covariate; patient, as it may be a confounding factor. 

 

 

 

http://www.r-project.org/�
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4 RESULTS AND COMMENTS 
 
4.1 BONE INDUCTION WITH BMP-2 AND HEPARIN/CHITOSAN (IA AND 

IB) 
Different doses of BMP-2 were evaluated together with type I collagen alone, type I 

collagen and heparin, and heparin/chitosan both in gel formulation and in sponge. The 

carriers and growth factor were implanted in the quadriceps muscle of rats and 

evaluated after four weeks. Previous to the animal studies the heparin/chitosan 

interaction was evaluated with enzymatic assays showing that heparin in complex with 

chitosan is not hydrolyzed by heparinase I. On treatment with heparinase III, at least 50 

percent of heparin remained after 10 days indicating a slower enzymatic degradation of 

heparin in complex with chitosan, thus potentially stabilizing the growth factor and 

enhancing the activity of BMP-2. The animal studies showed abundant ectopic bone 

formation in the heparin/chitosan group together with 50 µg of BMP-2. No ectopic 

bone was detected for any BMP-2 doses when using type I collagen alone. When 

heparin was added to the type I collagen system, minor amounts of bone were induced 

using 50 µg of BMP-2 but not at lower doses. The heparin/chitosan complex, without 

exogenous BMP-2 added, induced a small amount of ectopic bone, which implies the 

stabilization in situ of endogenous bone-inductive factors by the complex. When using 

the heparin/chitosan complex as a carrier for BMP-2, ectopic bone was formed with a 

good yield in a dose-dependent fashion.  

 

 
Figure 8. The volumes of induced bone formation as calculated from small-animal 
computed tomographic scans are presented. Gel formulations of the carriers were used 
with10 implantations per group. The differences in induced bone volumes between 
heparin/type I collagen plus 50 µg of BMP-2 and heparin/chitosan plus 50 µg of BMP-
2 was analyzed statistically (p= 0.0019).  
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Similar bone formation and a more coherent bone structure was observed when using 

the sponge formulation of the heparin/chitosan complex compared to the gel. There was 

no difference in bone mineral density (330 to 350 mg/cm3) between the heparin/type I 

collagen and heparin/chitosan groups. Histological examination demonstrated osteoid 

with osteoblasts indicating active bone formation at this time point. No remains of 

implanted heparin/chitosan sponges were detected. A low to moderate inflammatory 

reaction, with lymphocyte infiltration but without the presence of giant cells, was seen 

in the surrounding muscular tissue. 

In the clinical study titanium mesh combined with heparin-chitosan as a BMP-2 

delivery vehicle was used to reconstruct cranial defects. The three included patients all 

demonstrated a postoperative inflammatory reaction, and two out of three patients had 

exposure of the titanium mesh. Week bone formation was seen in one patient.  

 

 
Figure 9. Computed tomographic scans of the frontotemporal defect in the first patient 
before surgery (left), four weeks after surgery (center), and 12 months after surgery 
(right) reveal weak bone formation. Although a calcified dura mater was seen after four 
weeks (arrow 1), no evidence of new bone formation was present at that time point or 
after 12 months. The dense computed tomographic signal at the reconstructed area 
corresponds to the titanium implant (arrow 2). 
 

Although the preclinical study showed good bone formation in an ectopic site with the 

tested carrier, the results in the clinical study are disappointing. The lack of uniform 

bone formation at the implantation site and the induced inflammatory reaction make 

this composition unfavorable in a clinical setting. 
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4.2 HEALING OF CRANIAL DEFECTS IN MINIPIGS WITH BMP-2 AND 
HYALURONAN-BASED HYDROGEL (II) 

 
After three months, computed tomographic and histological examinations of the 

minipig skulls were performed. The volumes of the created defects measured 19.6 ±7.2 

cm3 and varied due to different bone heights. The volumes of newly formed bone in 

animals treated with hydrogel and BMP-2 were 23.4 ±6.3 cm3 (119 percent ossification 

of the defects) as determined from serial computed tomographic scans indicating the 

complete healing of the defects and bone overgrowth to some extent. The volumes of 

new bone in animals treated with hydrogel alone and in animals with untreated defect 

were 11.4 ±3.4 cm3 (58 percent ossification) and 10.3 ±2.3 cm3 (53 percent 

ossification), respectively.  

 

 
Figure 10. Three-dimensional computed tomography (above) and sagittal computed 
tomography (center) with red rectangle and arrows indicate the location of the defect 
in representative animals of groups 1 through 3. Sagittal cross-sections (below) show 
the macroscopic appearance of the reconstructed area. 
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There was a statistically significant difference in induced bone volumes between the 

BMP-treated animals and the animals treated with hydrogel alone. The densities in 

Hounsfield units were measured in areas comprising compact bone in the defects, with 

no significant differences seen between the groups. 

 

 

 
Figure 11. (Left) Bars showing differences in induced bone volume between the 
treatment groups. Group 1, hydrogel with BMP-2; group 2, hydrogel alone; group 3, 
empty defect. There is a significant difference in bone volume between the groups. 
Analysis of variance, p= 0.003; Kruskal-Wallis, p=0.013. The independent t test gives 
the p values between groups as follows: groups 1 and 2, p=0.003; groups 1 and 3, p 
=0.040; and groups 2 and 3, p =0.702. Mann-Whitney U test gives the p values 
between groups as follows: groups 1 and 2, p=0.004; groups 1 and 3, p=0.095; and 
groups 2 and 3, p=0.643. Both the t test and the Mann-Whitney U test give a significant 
difference between groups 1 and 2. Only the t test gives a significant difference 
between groups 1 and 3. (Right) Bars showing bone densities. There is no significant 
difference in density between the groups. Analysis of variance, p=0.583; Kruskal-
Wallis, p=0.614. 
 
Histological examination revealed compact lamellar bone in the BMP group without 

intertrabecular fibrous tissue, as was seen in the other groups. The hydrogel was 

resorbed completely within three months and, importantly, caused no inflammatory 

reaction. 
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Figure 12. Sections of bone illustrating the histological picture. In the group treated 
with hydrogel and BMP-2 (above, left), trabecular and compact bone with a dominating 
structure of lamellar tissue is seen. The bone contains osteocytes (arrowheads) and is 
lined by osteoblasts (arrows). Intertrabecular adipose tissue with blood vessels is also 
seen. In the group treated with hydrogel alone (above, right), trabecular woven bone 
with areas of lamellar structure (arrows) is present. In empty defects (below, left), 
trabecular woven bone with high osteoblastic activity (arrows) and intertrabecular 
fibrous tissue (arrowheads) is observed (hematoxylin and eosin stain; scale bars=100 
µm). Transmission electron microscopy from the BMP group showing direct bone 
formation (below, right). Osteoblasts (OB) are polarized toward the bone matrix 
displaying an active morphology with extensive endoplasmic reticulum (arrow), 
producing type I collagen, osteoid (OI).An osteocyte (OC) is trapped in the mineralized 
bone matrix (MB). Scale bar =10 µm. 
 
The minipigs initially weighed 18 to 29 kg and gained an average of 9 kg during the 

experimental period. The laboratory tests showed raised liver counts, mainly aspartate 

aminotransferase, in four animals before the start of the study. These tests were 

normalized during the experimental period, and all other tests including hematocrit and 

white blood cell counts were normal. The examination of the pigs under anesthesia four 

weeks after surgery showed good healing of the flap and no swelling or redness in any 

of the cases except for one treated with hydrogel and BMP-2. Necropsy of the inner 

organs including brain, heart, liver, kidney, and bowels showed no pathologic changes. 
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4.3 BONE HEALING OF CRANIAL DEFECTS IN RATS COMPARING 
HYALURONIC ACID HYDROGEL AND COLLAGEN CARRIER (III) 

 
Temporal cellular and tissue morphological changes at the reconstruction sites were 

studied on histological sections from each group. In the hydrogel and BMP-2 treated 

animals bone was formed along the dura after one week, with larger quantities at the 

edges of the 8 mm defect. The hydrogel was seen in the defect and also in the 

subcutaneous layer, where large cavities were observed. At one and two week time-

points, undefined mononuclear cells infiltrated the hydrogel from the periphery. After 

three weeks the hydrogel was partly resorbed and replaced by increasing amounts of 

osteoid and smaller cavities. The bone volume increased further, and after four weeks 

more mature mineralized bone with bone marrow cavities were observed within the 

treated area, but also an overgrowth at a subcutaneous location occurred. No extended 

growth of bone tissue towards the dura mater and the brain was observed.  

 

 
Figure 13.  Masson Trichrome-stained histological sections from cranial defects treated 
with hydrogel and BMP-2 demonstrate the temporal cascade during bone formation. 
The hydrogel is initially infiltrated by undefined mesenchymal cells, resorbs, and 
ultimately replaced by osteoid and mineralized bone after three to four weeks. A 10-
week time point was included showing mature, fully integrated bone with fat-rich bone 
marrow cavities.  Bar = 500 µm. 
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In the collagen and BMP-2 group bone was initially formed along the dura. A transient 

presence of hypertrophic chondrocytes was seen after one week but not at later time 

points. This was in contrast to bone induced by hydrogel-delivered BMP where no sign 

of endochondral ossification was observed histologically. A minor overgrowth of bone 

at subcutaneous location was present after three and four weeks.  

 

 
Figure 14.  Histological examination from cranial defects treated with type I collagen 
and BMP-2 demonstrates areas with hypertrophic chondrocytes (arrows) after one 
week at lower (left, bar =500 µm) and higher magnifications (right, bar =100 µm). This 
indicates endochondral ossification in this group in contrast to defects treated with 
hydrogel and BMP-2 where no cartilage was present at any time point.  
 

In the hydrogel group, without BMP-2, the picture was similar as in the collagen-BMP-

2 group after one week, although showing a more limited increase in bone volume over 

the following three weeks. In the empty sham operated animals some bone formed 

along the dura, but incomplete bony healing of the defect was seen (data not shown). 

The final four week results from implants are further demonstrated by representative 

3D-CT scans of bone development. 
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Figure 15.  3D CT-scans illustrate the gross appearance of cranial defects in rats four 
weeks after treatment with hydrogel, with and without 25 µg BMP-2, and compared to 
untreated sham operated controls. The lower pictures are coronar cross-sections from 
CT-scans, which further show the pronounced overgrowth of bone in animals treated 
with hydrogel and BMP-2. 
 

Immunohistochemistry showed staining of the mesenchymal osteoprogenitor cell 

marker CD146 in the newly formed bone tissue in sections from BMP-2 treated 

animals, both in the hydrogel and the collagen groups. Weaker signals were seen from 

non-BMP treated animals. After one week CD146 positive cells co-localized with 

infiltrating blood vessels in the newly formed mesenchymal tissue. After three weeks 

the staining was less restricted to vessels and more intense in the newly formed bone 

marrow cavities in the hydrogel and BMP-2 groups whereas the presence of CD146 

diminished in the collagen and BMP-2 group at this later time point. A slightly 

different tissue distribution of CD146 was seen in animals treated with type I collagen 

and BMP-2 showing a line of positive cells along the edge of the bone. In the hydrogel 

group some staining was seen in the mesenchymal tissue next to the newly formed 

bone with little difference over time. A similar pattern was also seen in the sham 

operated control group (data not shown). 
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Figure 16.  Spatial and temporal distribution of the osteoprogenitor marker CD146 was 
investigated by immunohistochemistry and comparison was made between cranial 
defects treated with hydrogel and BMP-2 and treatment with type I collagen and BMP-
2. The results reveal a vascular staining pattern in both groups after one week, which 
indicates that osteoprogenitor cells are recruited through blood vessel formation during 
early bone formation. After three weeks the signals are even higher in the hydrogel and 
BMP-2 group and the distribution of CD146 positive cells are different, now localized 
within bone marrow-like tissue in between newly formed bone. CD146 staining 
intensity declined in the collagen and BMP-2 group after three weeks, which may 
indicate a lower BMP activity at this time point. Bar = 100 µm. 
 

Histomorphometric analysis revealed an increasing amount of bone over time in the 

different treatment groups. Interactive effects were found between time and material 

(p=0.002), as well as main effects of time (p<0.001) and material (p<0.001). The 

multiple comparisons test (Scheffe’s) showed significantly higher bone area for 

hydrogel and BMP-2 compared to the other materials and also higher bone area for 

weeks two to four in comparison to week one. The linear model predicted an increase 

in bone area of 4.02 for hydrogel and BMP-2 in comparison to the sham control group 

(p<0.001). Type I collagen and BMP-2 also gave an increase in bone area in 

comparison to control only of 0.74, but this increase was not statistically significant 

(p=0.27). For hydrogel only, a decrease in bone area of -0.15 was predicted, but this 

was not significant either (p=0.83). 
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Figure 17. Areas of new bone formation were measured from histological pictures 
from each experimental group and different time-points and related to the calculated 
area of corresponding created cranial defect. A ratio > 1 thus means that excessive bone 
formation was induced. Histomorphometric analysis show the significant increase in 
bone formation in the hydrogel and BMP-2 groups as compared to other treatment 
groups two to four weeks after surgery. * p< 0.001. 
 
4.4 PROSPECTIVE RANDOMIZED STUDY OF CRANIAL 

RECONSTRUCTION AFTER NEUROSURGERY WITH BMP-2 AND A 
HYDROGEL CARRIER (IV) 

 
Bone healing was evaluated with CT scans after three and six months. Bone healing in 

holes treated with Tisseel™ with autograft or hydrogel with BMP-2 was significantly 

increased compared to negative controls (p < 0.001 and p = 0.008, respectively) 

whereas holes treated with hydrogel only did not heal significantly better (p = 0.066). 

Material was found to have a significant effect (p<0.001) whereas time and patient 

were found not to have a significant effect (p=0.14 and 0.28, respectively). In holes 

treated with hydrogel and BMP-2 an increase in bone area of approximately 49 mm2 

were obtained. Holes treated with Tisseel™ with autograft showed an increase in bone 

area of approximately 66 mm2. Holes treated with hydrogel without BMP-2 showed an 

increase in bone area of approximately 33 mm2. In one of the patients we noticed 

complete healing of all the holes after six months. 
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Figure 18. In one of the patients we noticed complete healing of all the holes after six 
months independent of treatment although the thickness of bone varied between the 
groups. A thin layer of bone is observed in the top left hole treated with hydrogel alone, 
as in the bottom left hole treated with Spongostan™. In the top right hole, treated with 
Tisseel™ and autologous bone, a thicker layer of bone is observed, as in the lower right 
hole treated with BMP-2 and hydrogel. 
 

The increase in bone area from three to six months was not significant in any group 

(p=0.72). Six patients had treatment with both hydrogel and BMP-2 and hydrogel 

without BMP-2 in different cranial holes. A paired analysis comparing bone formation 

showed a significant difference between the groups (p=0.043). 

 

 
Figure 19.  A significant increase in healing of bone were seen in holes treated with 
Tisseel™ and bone transplants (p < 0.001) and in holes treated with hydrogel and 
BMP-2 (p=0.008) as measured from CT-scans and compared to Spongostan™ , 
negative control group, and independent of time-points. 
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Figure 20. A second study was performed comparing hydrogel and BMP-2 to hydrogel 
only. Six patients had both materials and were included in a repeated measures general 
linear model. Time and material was evaluated as within-subject factors. A statistically 
significant difference between the results at three and six months was found (p=0.016) 
and between hydrogel and BMP-2 and hydrogel only (p=0.043). No interactive effect 
was found between time and material (p=0.786). The observed statistical power was 
81% for time and 59% for material. 
 
 Blood analyses showed slightly raised levels of C reactive protein and white blood 

cells in the early postoperative period. No difference was detected between the patients 

in hydrogel and BMP-2 group compared to controls. After three and six months the 

blood tests were normal in all the patients. No local or systemic side effects, including 

excessive bone over-growth or inflammatory reaction, were seen in treated patients. 

Three patients, one in the treatment group and two in the control group, had 

postoperative infections that required antibiotic treatment. One patient in the control 

group had the bone flap removed due to infection. 
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5  GENERAL DISCUSSION 
 
5.1 HEPARIN/CHITOSAN IN TISSUE ENGINEERING 
Heparin is known to have a positive effect in tissue engineering by stabilizing and 

activating growth factors, such as BMPs. In wound healing studies heparin is used to 

sustain the release of growth factors with affinity for heparin, for example in Platelet-

rich-plasma (PRP). PRP contains fibroblast growth factor 2 (FGF-2), platelet-derived 

growth factor-BB, and vascular endothelial growth factor (VEGF) that enhances the 

healing of skin wounds in mice90. Studies, in vitro, in a human wound-healing assay 

show that heparin does not stimulate reepithelialization, whereas the heparin/chitosan 

complex stimulates wound healing in human skin91. 

In a recent review article by Hudalla et al, it is stipulated that biomaterials covalently or 

non-covalently modified with heparin glycosaminoglycans can augment growth factor 

releasing strategies. In addition, recent studies demonstrate that biomaterials modified 

with heparin-binding peptides can sequester cell-secreted heparin proteoglycans and, in 

turn, sequester growth factors and regulate stem cell behavior92. Johnson et al. conclude 

that the addition of heparin alone to collagen does not promote bone ingrowth and the 

addition of heparin to collagen does not improve BMP-mediated bone regeneration. 

Delivery of precomplexed BMP-2 and heparin in a collagen matrix, on the other hand, 

results in new bone formation with mechanical properties similar to those of intact 

bone93. This is in accordance with our study where heparin is used to stabilize BMP-2 

and chitosan in turn stabilizes heparin thus prolonging the half-life of heparin and the 

BMP-2 induced bone formation. 

The interest in heparin is not only limited to enhancement of wound healing and bone 

formation, but also its effects on angiogenesis. In a recent study by Mammadov et al. a 

synthetic peptide functionalized with biologically active groups to mimic heparin is 

presented. Like heparin, the molecule has the ability to interact with growth factors and 

effectively enhance their bioactivity. The nanofibers formed by these molecules were 

shown to form a 3D network mimicking the structural proteins in the extracellular 

matrix. Because of heparin mimicking capabilities of the peptide nanofibers, 

angiogenesis was induced without the addition of exogenous growth factors in vitro94. 

 

Chitosan has played a major role in bone tissue engineering over the last two decades, 

being a natural polymer obtained from chitin, which forms a major component of 
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crustacean exoskeleton. In recent years, considerable attention has been given to 

chitosan composite materials and their applications in the field of bone tissue 

engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, 

biocompatibility, biodegradability, and the ability to be molded into various geometries 

and forms such as porous structures, suitable for cell ingrowth and osteoconduction. 

The composite of chitosan including hydroxyapatite is very popular because of the 

biodegradability and biocompatibility in nature95. The majority of studies regarding 

chitosan are performed in cell culture or in animal studies, with very few examples of 

human application. In our clinical study we experienced pronounced inflammatory 

reaction in all the patients and poor bone forming capacity leaving questions about 

chitosan as a carrier material in a clinical setting. 

 

5.2 HYALURONAN-BASED HYDROGEL IN CRANIAL BONE FORMATION 
Hyaluronic acid hydrogel has all the benefits of a hydrogel; it is biocompatible and 

injectable, allowing for minimally invasive procedures. It can be cross-linked to 

improve its mechanical qualities, and it produces no evident inflammatory reaction at 

the site of reconstruction or at the systemic level. Different growth factors can be 

delivered by the hydrogel and released in a sustained manner. In study II, III and IV 

aldehyde-modified hyaluronic acid was used in a small animal study, a large animal 

study and a human study to deliver BMP-2. The limitations of the hydrogel are the 

problems of defining the bone volume in size and shape; it depends on a surrounding 

wall or scaffold to limit the bone formation. 

The amount of BMP-2 needed for bone formation in different species is another issue. 

Comparison of healing rates between different species is difficult because higher order 

animals are known to be less responsive to a given concentration of BMP-2 than lower 

order animals96. In our studies we used 0.1 mL with 25 µg of BMP-2 (250 µg/mL) in 

the rat study, 5 mL with 1.25 mg of BMP-2 (250 µg/mL) in the minipig study, and 1 

mL with 250 µg (250 µg/mL) in the human study. This generated excess bone in both 

animal studies, but not in the human study where the bone healing was slower and 

probably could have benefitted from a slightly higher dose. 

The inflammatory response in study II and IV were measured. In the minipig study the 

level of serum amyloid A (in micrograms per milliliter), the equivalent of the human 

acute phase protein, C reactive protein, was measured before surgery, at four weeks 

after surgery, and at termination of the study. Normal levels of serum amyloid A and 

clinical examinations of the operation field without signs of redness and swelling, 
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except for one animal with infection, suggest that BMP-2 in conjunction with the 

hydrogel does not induce inflammation in minipigs. In the human study the levels of C 

reactive protein and white blood cells were slightly raised in the early postoperative 

period with no difference seen between the patients in hydrogel and BMP-2 group 

compared to controls. After three and six months the blood tests were normal in all the 

patients. No local or systemic side effects, including excessive bone over-growth or 

inflammatory reaction, were seen in treated patients. 

 

5.3 TYPE I COLLAGEN AS A CARRIER FOR BMP-2  
In study Ia and III type I collagen was used in comparison to heparin/chitosan and 

aldehyde-modified hyaluronic acid. As previously mentioned, type I collagen sponge is 

the only commercially available carrier for BMP-2 (InductOs, Wyeth). In the first study 

a poor result with very little bone formation in an ectopic location was seen, inferior to 

heparin/chitosan with BMP-2. In study III a significantly lower amount of bone was 

seen after two to four weeks comparing collagen to hydrogel and BMP-2, and 

immunohistochemistry showed a faster decrease in bone forming intensity in the 

collagen group. All together type I collagen seems to induce weaker bone formation 

than both heparin/chitosan and aldehyde-modified hyaluronic acid. One advantage of 

collagen compared to hydrogel is that bone formation is more restricted to the sponge 

and does not spill over into the surrounding tissue, an important issue when 

reconstruction is done close to vital structures. 

 

5.4 STUDY DESIGN – CRITICAL SIZE DEFECTS 
In study II, III and IV different types of critical size cranial defects were used. In 

study II a minipig model with a critical size defect of 2 x 4 cm was used. Because of 

the minipigs head anatomy with large frontal sinuses, this defect often interferes with 

the sinuses. Defects communicating with sinuses are prone to infection75, and in this 

study one out of fourteen pigs were excluded because of this. Another point is the 

different thickness of the minipigs´ cranium, something that affects the volume that 

needs to be reconstructed. This did not seem to affect the outcome of the study, since 

all the defects healed with over 100% ossification of the defect. In study III a circular 

defect with 8 mm diameter was made in the rat cranium in the frontal and parietal 

bones. This standardized defect works well as the resulting bone formation is easily 

compared to other studies with the same experimental design. In study IV we 

randomized the patients into two groups to ensure that there were no systemic side 
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effects of the treatment given in the experimental group. In the experimental group in 

turn, the patients were their own controls with the cranial holes randomized to 

treatment with BMP-2 and hydrogel, hydrogel alone or control. This model has not 

been presented earlier, and we found that it worked well in comparing different 

compounds in a clinical setting. 

 

5.5 BMP-2 TOGETHER WITH OTHER GROWTH FACTORS 
The bone forming process is a cascade of events which include the involvement of 

different types of cells and growth factors. Peptide growth factors stimulate the activity 

of osteoprogenitor cells and osteoblasts and may enhance osteogenesis97. The 

generation of a functional microvascular network within the generated tissue is 

important to provide oxygen and nutrients to facilitate growth, differentiation and tissue 

functionality98,99. Fibroblast growth factor (FGF) and VEGF are strongly expressed 

during fracture repair100 and the importance of angiogenesis in fracture healing and 

bone formation has previously been described101-103. During endochondral bone 

formation VEGF modulates angiogenesis, chondrocytes apoptosis, cartilage 

remodeling, osteoblast migration and endochondral growth plate ossification101,104-106. It 

has been stated that BMPs produce bone by a complex series of events involving BMPs 

2, 3, 4 and 6. Concurrently other cytokines may facilitate bone formation in other ways, 

e.g. FGF, which has an angiogenic effect that promotes neovascularisation, and PDGF 

and IGF-1 acting as local modulators96.  

In order to improve the effect of BMPs in tissue engineering and to lower the doses for 

bone regeneration, a combination with other factors is possible. There seems to be a 

synergistic effect of dual delivery of VEGF and BMP-2 in early bone regeneration 

described by Patel and others107-110. Platelet rich plasma (PRP) naturally includes FGF, 

TGF-beta1, PDGF, VEGF and IGF-1. The combination of PRP and BMP has been 

shown to result in improved vascular perfusion around bone defects, enhanced bone 

healing and density as well as a possibility of lowering the doses of BMP-2111. NELL1 

is another molecule that has been discussed by Aghaloo et al112. It plays a key role as a 

regulator of craniofacial skeletal morphogenesis, especially in committed chondrogenic 

and osteogenic differentiation, and might be an ideal molecule for combination with 

BMP-2 in calvarial defect regeneration. 
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5.6 INFLAMMATORY RESPONSE EVOKED BY BMP-2 
An inflammatory response, with elevated expression of pro-inflammatory cytokines 

such as interleukin-1, interleukin-6 and tumor necrosis factor-alpha (TNF-alpha), is 

proposed to initiate the bone healing cascade and induce bone healing113. The use of 

systemic factors such as non-steroidal anti-inflammatory drugs (NSAIDs, which inhibit 

cyclooxygenase and therefore prostaglandins required in the inflammatory phase) 

influence bone healing together with age (with decreased expression of mediators, 

hormonal changes, impaired osteoblast function)113, smoking114 and local factors. The 

role of TNF-alpha is debated. According to Lehmann et al. TNF-alpha signaling 

contributes to the regulation of chondrocyte apoptosis and a lack of TNF-alpha 

signaling leads to a persistence of cartilaginous callus and delayed resorption of 

mineralized cartilage, thus delaying bone healing115. Glass et al. state that TNF-alpha 

promotes muscle derived stromal cells (MDSC) migration, then osteogenic 

differentiation at low concentrations. However, TNF-alpha inhibits bone healing at high 

concentrations116. Thus, modulation of the inflammatory response is important, and 

different drugs  that suppress the TNF-alpha induced NF-κB activation, leading to 

reduced inflammatory response are studied117. The inflammatory response evoked by 

BMPs in certain applications has been found to be disadvantageous, especially in areas 

close to vital structures such as the brain or the spine. The difficulties of restraining the 

osteoinductive effects avoiding potential deleterious excessive bone growth balances 

with the need to obtain sufficient bone formation118,119. The safety of BMP-2 and BMP-

7 in spine surgery and cranial reconstruction is debated, especially when high doses of 

growth factor are being used120,121. In children with craniosynostosis facial oedema has 

been reported after reconstruction with BMP-2122. High doses of BMP-2 has been 

shown to induce inflammatory reaction, tissue swelling and increased osteoclast 

activity in a rat model123, further emphasising the need for carriers that allow doses 

closer to physiological levels. In cervical spine surgery high doses of BMP-2 are 

associated with adverse effects. Lowering the dose most likely reduces the risks of local 

inflammatory reaction, which is known to be BMP-2 dose-dependent124. 
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6 CONCLUSIONS 
 
Ia and b. Heparin in complex with chitosan has the ability to stabilize and activate 

BMP-2 in vivo in a preclinical setting and generate bone in good 

amounts. In a clinical setting the bone inducing capacity is poor and an 

inflammatory reaction is seen. 

II. Hyaluronan-based hydrogel and BMP-2 induce good amounts of cranial 

bone with no evident inflammatory reaction in a large animal study. 

III. Hyaluronan-based hydrogel presents a good alternative to type I collagen 

as a carrier for BMP-2 with more pronounced bone formation and a 

possibility of lowering the BMP-2 dose in a small animal study.  

IV. Hyaluronan-based hydrogel and microgram doses of BMP-2 can heal 

smaller critical size cranial defects in humans with effects that are 

comparable to bone transplants. 

 

The presented studies investigate different carrier materials for BMP-2 in different 

species. The examined carrier materials heparin/chitosan, type I collagen and 

hyaluronan-based hydrogel show different bone forming capacity and growth factor 

carrying potential, in favour of the hyaluronan-based hydrogel also in terms of evoked 

inflammatory response. In study IV we present a novel study design for clinical 

evaluation of cranial reconstruction in humans. 
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7 FUTURE PRESPECTIVES 
 
The use of growth factors in future tissue engineering applications is promising. Many 

different aspects will need to be considered including the material used as a carrier 

device. The development of more effective, sustained and controlled delivery systems 

in the near future is crucial. The material and the form in which it is used determines 

the properties of the growth factor delivery system such as bioactivity, release kinetics 

of the growth factor, biocompatibility, biodegradability, nonimmunogenicity, efficiency 

and cost-effectiveness of the overall delivery system. An ideal growth factor-delivery 

system should mimic the natural healing process which involves the complex 

participation of multiple growth factors that perform their functions in a specific 

sequence and at specific concentrations. Therefore, moving from single growth factor-

delivery systems to multiple growth factor-carrier devices is probably the next step in 

the development of growth factor-delivery systems51.  

In this thesis different carrier materials are used to deliver rhBMP-2 to a bony defect. 

Bone healing depends on the recruitment to and presence of mesenchymal stem cells in 

the area of reconstruction. When the number of MSCs is low precursor cells can be 

added to the site of reconstruction as described by Lendeckel and Mesimäki, where 

autologous fat derived stem cells were added79,81. This complicates the procedure, 

especially when cell culture is needed, and limits the use of the method.  

Bone allograft contains osteoinductive growth factors and other non-collagenous 

proteins present in the matrix, that support new bone formation125. However, the 

osteoinductive capacity of massive allografts is very frail. The high rate of fractures 

observed in clinical practice in structural bone allograft is the result of micro-cracks 

that cannot be repaired by the necrotic bone because there is no vascular supply126,127. 

The bone formation has been shown to be significantly greater using BMPs added to 

the allograft. Numerous animal studies have demonstrated increased bone-allograft 

integration when rhBMPs, mixed with a collagen type I carrier, were added to the site 

of interest128,129. When BMPs are used to induce bone formation around an implant, 

long-term observation studies have found evidence of bone lysis. Some authors report 

that BMPs are able to up-regulate osteoclast-like activity, leading to greater allograft 

porosity, stimulating graft remodelling and enhanced resorption of bone130,131. This has 

lead to studies of anti-catabolic bisphosphonates that interfere with osteoclast activity. 

Studies have shown that  treatment of cancellous bone grafts with BMP-7 and 
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zoledronate,  a bisphosphonate, increases both the bone formation rate and bone density 
132. This might prove important in further clinical orthopaedic studies. 

Instead of supplying exogenous BMPs to the site of reconstruction the growth factor 

can be locally produced by cells treated with gene therapy. The advantage of gene 

delivery include the ability to establish a local, endogenous synthesis of therapeutic 

substances produced by local cells133. Gene transfer requires vectors, that can be viral 

(adenovirus, parvovirus, retrovirus, lentivirus or herpes simplex virus for instance) or 

non-viral (naked DNA, DNA-protein complexes, DNA-polymer complexes, plasmid-

DNA)134. Problems included are immunogenicity, cytotoxicity, mutagenicity and 

general safety issues. Gene therapy for the regeneration of bone has so forth been 

studied in small animal models using a variety of different transgenes, including those 

encoding morphogens, growth factors, angiogenic factors, and transcription factors. A 

small number of studies demonstrate efficacy in large animal models. Developing these 

promising findings into clinical trials will be a long process, constrained by economic, 

regulatory and practical considerations135. 

Many different methods of tissue engineering can be used in combination or as a 

separate option. I personally believe in a combination of carriers and scaffold materials 

that work together with the growth factors needed, enabling a sequential release of the 

growth factors to imitate the natural healing process, and also reducing the dose of 

growth factor to more physiological levels. This will adjust the inflammatory response 

to a level where it works in conjunction with the growth factors initiating bone healing. 

The possibility to enhance the result by autologous fat derived stem cells is interesting, 

especially if the cells can be used in an autologous situation without pre-expansion or 

culture. 
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