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ABTRACT 
 

 

     This dissertation is concerned with the synthesis of 7- and 8-membered N-heterocycles, 

particularly 1,4-pyrrolobenzodiazepines. A non-chromatographic method for conversion of 

carbonyl-functionalities to the corresponding thiocarbonyls is described. 

     A formal total synthesis of the pyrrolobenzodiazepine natural product DC-81 was 

developed starting from vanillin. The tricyclic core structure was successfully obtained in 6 

steps and several approaches for transformation of this key diamide to obtain the target 

molecule DC-81 was investigated.  

     A convergent and concise synthesis of the pyrrolobenzodiazepine natural products 

fuligocandin A and B was developed employing Eschenmoser sulfide contraction as a key 

step. Fuligocandin B could be obtained in optically active form and the method was applied to 

obtain a number of vinologous amides. 

     The thionating power of a reagent obtained from P4S10 and pyridine was investigated and 

the actual structure of the crystalline reagent could for the first time be conclusively 

determined and confirmed by X-ray crystallography. A range of carbonyl compounds have 

been converted to the corresponding thiocarbonyl derivatives without the need for 

chromatographic purification.  

     The final part of this thesis features synthetic studies towards 7- and 8-membered 

heterocycles starting from anthranilnitrile. Accordingly, addition of Grignard reagents to N-

acylderivatives of anthranilonitrile resulted in the formation of 1,4-benzodiazepin-3-ones and 

the method was also applied to obtain the higher homologue 1,5-benzodiazocin-4-one. 

Furthermore, the imino-intermediates initially formed by reaction of anthranilonitrile and 

Grignard reagents could be transformed to dibenzo-1,5-diazocines. Thus, an unusual briged 

N-heterocycle was isolated and its structure was confirmed by X-ray crystallography.  

 

 

 

 

Keywords: 1,4-Pyrrolobenzodiazepines, DC-81, 1,4-benzodiazepin-3-one, 1,5-benzodiazepin-
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1. Introduction  

 
 

 

 

 

1.1.  Natural Products and Organic Synthesis 
 

     Nature is full of organic compounds known as natural products, that is, secondary 

metabolites that are produced by a plant, animal or organism but not essential for its growth or 

development in contrast to primary metabolites.
  

Alkaloids constitute a subgroup of natural 

products which usually contain cyclic structures with basic nitrogen atoms and several of the 

compounds discussed in this thesis belong to this particular class. So, why does the plant, 

animal or organism spend valuable energy on producing these substances? At first, natural 

products were considered to be mere waste products but later they were found to possess a 

variety of valuable properties. Many alkaloids are neuro- or cyto-toxins which are primarily 

part of a chemical defence strategy against other organisms such as microbes, herbivores and 

in some cases even against competing plants, functioning as herbicides.
1
 Nevertheless, many 

alkaloids contain several functional groups and thus are able to interact with various 

biological targets. The chemical structures of natural compounds and alkaloids display an 

enormous structural diversity and one may wonder why some structures are rather 

symmetrical and simple (e.g. urea, 1) whereas others have wacky and complex architecture 

(e.g. manzamine, 2) (Figure 1.1). One could argue that this could be a result of evolution and 

more complex substances could have evolved as a result of their beneficial increase in 

potency. Accordingly, the plant (or organism) may have to put more effort into constructing 

the more complex substance, but only in small amounts since it interacts more efficiently with 

its biological target. Some of these complex compounds display extreme potency as in the 

case of brevetoxin (3); a neurotoxin produced by algae and associated with the so called red 

tide catastrophes which have been responsible for massive killings of fish and other marine 

life forms.
2
 Digitalis (Digoxin) is another deadly poison, nevertheless when consumed in an 

appropriate amount it possesses useful cardiotonic properties. In fact, if you consume some 

sort of pharmaceutical substance, it is a fair chance that it contains an alkaloid, or derivative 

thereof, since a vast number of natural products are used as medicinal drugs. Thus, natural 

products attain powerful properties which can be both healing and perilous, or as Paracelsus 

wrote in the sixteenth century “In all things there is a poison and there is nothing without a 

poison. It depends only upon the dose if something is toxic or not”. 
3
 

 

     Complex molecules have been produced by nature for a long period of time, whereas it 

was only in the beginning of the nineteenth century that humans begun to synthesize organic 

(carbon containing) molecules.
4
 Thus the birth of organic chemistry is often associated with 

Wöhler’s synthesis of urea (1). This was a milestone in chemical and biological science which 

proved that a product of biological metabolism could be produced from the mineral world 

without involvement of a biological process. Ever since, a myriad of methods and reagents 

have been developed as tools for the synthetic chemist. This dissertation is about synthesis of 

natural products and development of synthetic methods which can be used to obtain both 

natural products and designed molecules. 
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Figure 1.1. Urea, manzamine and  brevetoxin 1; R = -CH2C(=CH2)CHO 

 

 

 

 

 

 

 

1.2. 1,4-Benzodiazepines 
  

    

    1.2.1. Discovery and Historical Perspective 

 

     Compounds containing the 1,4-benzodiazepine (Bzp) core (4) have been known for their 

anxiety-relieving and sedative properties for a long period of time (Figure 1.2).
5
 Valium 

(diazepam) (5) is perhaps the most renowned example but other variants, such as Xanax (6) 

(alprazolam) and Ativan (7) (lorazepam) are more commonly prescribed today.
6
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Figure 1.2. 
 
 
 

     The first synthetic benzodiazepine, chlorodiazepoxide (8), was serendipitously discovered 

in the mid 1950’s by researchers at Hoffman LaRoche searching for new tranquilizers 

(Scheme 1.1).
7
 Their target compound, containing a benzoxadiazepine ring system (9), was 

never obtained and the actual products isolated from the reactions were in fact quinazoline-3-

oxides (e.g. 10). Upon treatment with base, 10 underwent an unexpected rearrangement to 

form the biologically active chlorodiazepoxide 8, which later was marketed as Librium.
8
 The 

anxiety-relieving effects of benzodiazepines have been widely exploited in clinical practice 

although the uses have declined due to risk of addiction after long-term use.
9 

The use of 

serotonin re-uptake inhibitors (SSRI) and other drugs have currently come to replace the use 

of benzodiazepines to some extent.
6   
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Scheme 1.1. 
 

     It was discovered in 1975 that benzodiazepines act by potentiating the inhibitory effects of 

the GABA neurotransmitter.
10

 GABA is the most abundant neurotransmitter in the brain and 

it mediates most inhibitory responses in the vertebrate brain.
11

 Bzp bind to and modulate the 

GABAA subreceptor, thereby enhancing the action of GABA. This leads to a wide variety of 

pharmacological responses in addition to the well-known tranquilizing and muscle relaxing 

effects. For example, compound 11 has recently been investigated as a clinical candidate for 

treating respiratory syncytical viral (RSV) infections
 
whereas Bzp 12 has shown antiprotozoal 

activities (Figure 1.3).
12 

In addition, bzp are found useful in the field of peptidomimetics. The 

nitrogen atoms in the seven-membered ring are perfectly spaced to mimic endogenous 

peptides, hence some Bzp have found applications as non-peptide peptidomimetics.
13
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Figure 1.3. 

 

 

     In spite of the remarkable variety of 1,4-benzodiazepine-2-one derivatives investigated to 

date, reports on 1,4-benzodiazepin-3-ones are limited. However, recent years have seen an 

intensified interest in these compounds.
14

 For example, Lotrifiban (13) has been used as an 

antithrombotic agent in clinical trials.
15

 

 

 

1.2.2. Naturally Occurring 1.4-Benzodiazepines 

 
     Benzodiazepine alkaloids constitute a group of secondary metabolites derived from 

anthranilic acid. One of the earliest benzodiazepine alkaloids to be isolated was cyclopenin 

(14), produced by the fungus Penicillium cycliopium (Figure 1.4).
16

 Later on, a number of 

benzodiazepine alkaloids have been isolated e.g. anacine (15), asperlicin (16), benzomalvin A 

(17) and sclerotigenin (18).
17

 The CNS activities associated with synthetic benzodiazepines 

have not been found among the natural benzodiazepines,
18

 however many of them show a 

number of other useful biological properties; cyclopenin-type alkaloids exhibit antibiotic and 

phytotoxic properties whereas asperlicin has proved to be a potent cholecystokinin (CCK) 

antagonist.
17c, 18-19
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Figure 1.4. 1,4-Benzodiazepine alkaloids. 

 

 

 

1.2.3. 1.4-Pyrrolobenzodiazepines  
 

 

1.2.3.1. Structure and Biological Activity 

 

     The pyrrolo[2,1-c][1,4]benzodiazepine (PBD) scaffold (19) (Figure 1.5) is present in a 

number of naturally occurring, anti-tumor antibiotics produced by Streptomyces and 

Micrococci species.
20 

In 1963, Leimgruber and co-workers isolated the first natural PDB 

containing the amino-carbinol function and named it anthramycin (20) due to its structural 

similarity to anthranilic acid.
21

 Later on, these workers also achieved the total synthesis of this 

tricyclic compound whose structure also has been confirmed by X-ray crystallography.
22
       

     Hitherto, eighteen "anthramycins" have been isolated from natural sources and all but three 

are biologically active.
23
 Among the most thoroughly investigated monomeric members of 

this family are anthramycin (20), DC-81 (21), tomaymycin (22) and sibiromycin (23). 

Sibiromycin was first discovered in Siberia and represents one of the most potent natural PBD 

discovered to date. A number of reviews concerning the biological activity and total syntheses 

of natural and synthetic PDBs are available in the literature.
20, 23-24

 
 

 

     The tricyclic core (19) of these compounds consists of the aromatic ring A, the 7-memberd 

1,4-diazepine ring B and the pyrrolidine C. The N10-C11 imine functional group is rather 

unstable, for example in aqueous solution the imine function establishes equilibrium with its 

carbinolamine (Figure 1.6). Another important feature of the PBD core is the stereocenter at 

C11a. All natural PDB derivatives possess the S form, which allow them to adopt a right 

handed twist, tailor-made for interaction with α-helical (B-form) DNA. In fact, racemization 

at this stereocenter significantly reduces the biologically activity.
25 

Thus, the unique structure 
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of the PBD scaffold makes them a valuable source for development of DNA interacting 

agents.  
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Figure 1.5. 1,4-Pyrrolobenzodiazepine alkaloids. 

 

 

     More recently a number of new PBDs, namely circumdatines A-J, were found in 

Aspergillus fungi from both terrestrial and marine sources. Notably, the previously reported 

structures of circumdatines A and B have recently been revised from betaine- (24) to the 

unique oxepin framework (25 and 26) (Figure 1.6).
26

 Another interesting member of PBD 

family is the natural alkaloid tilivalline (27) which have demonstrated cytotoxic properties 

toward mouse leukaemia.
27

 In addition to the cytotoxic and anti-tumour properties, some PBD 

derivatives also exhibit CNS-activity. Particularly, PBDs methylated at N10 (e.g. 28) have 

shown promise as anxiolytic drug candidates.
28

 Furthermore, recent studies have shown that 

some PBDs (e.g. 29) act as selective GABA(A) modulators and anti-viral agents.
29 
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Figure 1.6. 

 

 

 

     As has been already mentioned, all members of the PBD family are biologically active, 

demonstrating antibiotic, anti-viral and anti-tumour properties. However, further 

pharmacological investigations have shown that the anti-tumor activity is probably most 

clinically significant.
24b 

 As discussed in 2.2.1., selectivity poses one of the major challenges 

in chemotherapy and one strategy to overcome this problem involves design of compounds 

that recognize and bind to specific DNA sequences of oncogenic DNA. The PDBs act as 

DNA minor groove binders and exert high sequence specificity in combination with 

extremely potent anti-tumour activity. The mechanism of action is based on alkylation of 

specific DNA sequences leading to disruption of vital functions such as transcription or 

replication.
24b

 As a result of these events the cell is destined for apoptosis. Extensive studies 

of DNA-PBD adducts have revealed an amidine linkage between the C10 of PDB and 

guanine-NH2 of DNA (30, Scheme 1.2.). However, the details of the alkylation mechanism 

are presently unknown. The fact that PDB N10-C11 imine-carbinolamine bond is in 

equilibrium complicates the situation. Actually, three electrophilic species have been 

proposed; imine 31, carbinol amine 32 (or corresponding methyl ether) and the ring-opened 

compound 33. A mechanism involving a direct attack of guanine on imine 31 (Scheme 1.2) is 

most probable.
23, 30

 Two additional mechanisms have, however, been proposed. One of them 

involves an attack of guanine on carbinolamine 32 (or its 11-methyl ether) eliminating water 

via an SN2- type reaction.
31

 Alternatively, the diazepane ring is fragmented to afford aldehyde 

33 which upon imine formation with guanine subsequently cyclizes to give the DNA-PBD 

adduct 30.
32
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Scheme 1.2.  
 

 

 

1.2.3.2. Synthetic Analogues of PBDs  

 

     Clinical studies have shown that PBDs lack toxicities that are often associated with cancer 

therapeutic agents, for example bone marrow depression or hepatic toxicity.
33

 Nevertheless, 

dose-limiting cardio-toxicity and some other undesired effects have precluded their continued 

clinical applications.
34

 The cardio toxicity of PBDs has been associated with the oxidative 

dearomatization, or more precisely, the formation of quinone-imine intermediates (34 and  35) 

(Scheme 1.3.),
24a

 thus efforts have been made to synthesize analogues nonconvertible to these 

harmful compounds.  
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Scheme 1.3.  
 

 

     One approach involves replacement of the anthranilate ring (ring A) with a 5 or 6-

membered heterocycle such as 36 (Figure 1.7).
24a

 The cardio-toxicity was successfully 

reduced but unfortunately this approach also reduced the anticancer activity.  In recent years 

novel PBD analogues have been developed by an approach which involves linking a PBD 

with another known DNA-interacting agent e.g. hybrid 37 consisting of DC-81 linked to an 

indolecarbonyl moiety.
35

 

     Finally, a promising development is the use of dimeric DNA-crosslinking agents 

consisting of two monomeric PBDs linked together by means of a spacer. Activity studies of 

these dimeric derivatives have demonstrated a remarkable increase of both cytotoxicity and 

sequence selectivity. One of the best candidates, SJG-136 (38), is currently under phase II 

clinical evaluation.
36
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Figure 1.7. 
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1.2.3.3. Biogenesis of 1,4-Pyrrolobenzodiazepine Alkaloids 

 
     Hurley et al. have studied the biosynthesis of a number of PBDs through isotopic feeding 

experiments with focus on anthramycin (20), tomaymycin (22)and sibiromycin (23) (Figure 

1.8).
37

 Studies have shown that all three compounds arise from a common biogenetic origin, 

the amino acid tryptophan. Hence, it is proposed that tryptophan (39) is transformed, through 

the kynurenine pathway, to 3-hydroxy anthranilic acid (40) which constitutes the PBD A-ring. 

The pyrrrolidine, C-ring, is derived from tyrosine (41) through an L-dopa intermediate that is 

transformed to pyrrolidine intermediate 42. Furthermore, methionine (43) acts as a 

methylating agent. In the case of sibiromycin, the sugar unit is proposed to be derived from 

D-glucose (44). 
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1.3. Synthetic studies towards DC-81, a PBD Alkaloid    

       (Manuscript I) 
  

 

 

1.3.1. Isolation and Background 

 

     Continuous interest in pyrrolobenzodiazepine alkaloids attracted our attention toward the 

anthramycin natural product DC-81 (21, Figure 1.9). DC-81 was isolated for the first time in 

1983 by Japanese researchers investigating extracts from the actinomycete Streptomyces 

roseiscleroticus.
38

 Like most of the members of the anthramycin family, DC-81 is a potent 

anti-tumour antibiotic (vide supra). 

N

O

N

H
N
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N

O

OH OH

NH2

O

H

MeO

HO
H

20
anthramycin

21
DC-81

 
Figure 1.9. 

 

 
1.3.2. Previous Synthetic Efforts towards DC-81 

 
     Various strategies have been proposed and implemented for the synthesis of DC-81 (21). It 

has been found that the formation and reactivity of the imine function (N10-C11) is a 

frequently encountered problem, the imine formation is therefore preferably introduced late in 

the synthesis using mild methods. In addition, the hydrogenolysis of the O-benzyl ether 

protecting group is problematic in some cases.
39

 Another point to consider in the synthesis of 

DC-81, is that racemization of C-11a must be avoided. The synthetic routes toward 1,4-

pyrrolobenzodiazepines have previously been reviewed e.g. by Thurston et al.
20, 24c

 and 

scheme 1.4 provides a short overview of the four main conceptual approaches; route a, b, c 

and d. The overview comprises 1,4-pyrrolodiazepines as a group with emphasis on DC-81 

syntheses.  
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Scheme 1.4. Compound 46; R = OMe, H.  

 

     A literature survey shows that route a, notable for giving direct access to imines of type 

45, represent the most widely employed method. This route is in turn divided into two 

different approaches; intermolecular cyclization via either aza-Wittig
40 

or reductive 

cyclization reactions of azido- or nitro aldehydes A (Scheme 1.4.)
41 

Molina et al. achieved an 

elegant synthesis of DC-81 starting from 47 employing aza-Wittig methodology which does 

not require the protection of the phenolic hydroxy group (48) (Scheme 1.5).
40a 

More recent 

developments of the aza-Wittig route have involved the use of solid support techniques.42 
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O

NMeO

HO
O

H
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79%
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47 48
 

Scheme 1.5.  

 

 

     Routes b, c, and d proceed via common the diamide precursor 46 which is transformed to 

the imine 45 using chemo-selective hydride-based reduction. However, this procedure is 

hampered by the over-reduction of the imine function as well as azepane ring cleavage.
39
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     Route b, devoleped by Mori et al, is based on palladium catalyzed carbonylation of 2-halo 

anilides (B) (Figure 1.4)
43

 For example, tomaymycin (22) has been synthesised using this 

route which often is hampered by low yields and complex mixtures of products. 

 

     Heating isatoic anhydride (C) (Figure 1.4, route c) together with L-proline in a suitable 

solvent (DMF or DMSO), represents an extremely facile entry to the PDB skeleton.
44

 This 

approach, via isatoic anhydride 49, initially developed by Wright and Brabander, represents 

the key step in Wang’s total synthesis of DC-81.
45

 Alkylation of the diamide (50), with 

methyl chloromethyl ether followed by reduction of 51 using LiBH4 gave imine 52 (Scheme 

1.6). Nevertheless, this method is hampered by over-reduction, resulting in a moderate 

isolated yield of imine 52 (50% isolated, 95% based on recovery of starting material). In an 

alternative route employing radical chemistry, diamide 50 has been constructed via isatoic 

anhydride.
46  
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Scheme 1.6. Reagents and Conditions: (a) L-proline, DMSO, 120ºC (b) NaH, MOMCl, THF, 

90ºC (c)    LiBH3, THF, -10ºC (d) Pd/C, 1,4-cyclohexadiene, EtOH, rt 

 

 

     A more recent approach (route d, Figure 1.4), utilizes a PIFA mediated nitrene insertion as 

a key cyclization step providing diamide 53 from 54 (Figure 1.7).
47

 The idea of C-H insertion 

is appealing since it does not require the acyclic substrates to possess an ortho-substituent. 

This approach is particularly useful for the preparation of analogues with densely substituted 

aryl nuclei, analogues possessing a difficult substitution pattern and especially for the 

synthesis of heteroaromatic analogues of PBDs. However, for the preparation of DC-81 (21) 

by this route is, in my opinion, less convenient since nitration of O-benzylated vanillin easily 

introduces the required ortho-substituent. The crucial imine function was installed by 

dehydrogenation of the corresponding amine using NMO/TPAP in acetonitrile. This reagent 

mixture is frequently used to attain C10-N11 amine dehydrogenation. 
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Scheme 1.7.  
 

 

     Notably, Vanderwal et al.
48

 very recently reported a original approach toward 

porothramycins 55 (starting from vanillin 56 and the nitro compound 57), via a Zincke 

pyridinium ring-opening/ring-closing cascade of 58 to key precursor 59, which thereafter can 

further be elaborated to 55 according to a published method (Scheme 1.8).
49
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Scheme 1.8. Vanderwal´s formal total synthesis of porothramycins. 
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1.3.3. Results and Discussion 

 

 
1.3.3.1. Synthesis of the PDB Core Structure  

 

     The aim of our studies was to develop a practical and readily scalable total synthesis of 

DC-81 (21) using route c (Scheme 1.4) starting from vanillin (56). Thus, initial O-benzylation 

(60) and nitration gave nitro-benzaldehyde 61 which could be recrystallized from acetone 

with minimal loss of the desired product (Scheme 1.9).  
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Scheme 1.9. Reagents and conditions: (i) Benzyl bromide, K2CO3, DMF, rt; (ii) HNO3/AcOH,  

                  ~10ºC → rt; (iii) AgO2, NaOH (aq) , 70 ºC → reflux; (iv) Pt/C (5%), H2, EtOH, rt. 

 

     Next, aldehyde 61 was treated with KMnO4 according to a literature procedure, in our 

hands the reaction turned out to be messy and low-yielding (< 50% yield).
50

 However, a 

lesser-known method, Delépine aldehyde oxidation (not to be confused with Delépine 

reaction which is an amine synthesis) gave the o-nitrobenzoic acid derivative 62 in nearly 

quantitative yield (98%).
51

  

 

     Reduction of the nitro group of 62 posed two problems: 1.) the presence of 

hydrogenolysis-sensitive O-benzyl ether and 2.) the presence of both acidic and basic 

functions in the anthranilic acid derivative 63, a factor which complicates the work-up. 

According to literature, 62 has been transformed to 63 using sodium borohydride-nickel(II) 

chloride system or tin(II) chloride in methanol.
45, 52

 However, with tin(II) chloride reduction 

only small amounts of 63 were obtained after a tedious workup. Consequently, a more general 

method was developed for the reduction of aromatic nitro groups in the presence of 

hydrogenolysis-sensitive functionalities (e.g. O-benzyl, N-benzyl and halo aryl groups) using 

1 atm catalytic hydrogenation over platinum on carbon (5%).
53

 Hence, hydrogenation of 62 

gave 63 in quantitative yield, after a simple workup. 

 

     Conversion of the substituted anthranilic acid 63 into the anhydride 64 was accomplished 

employing triphosgene (bis(trichloromethyl) carbonate) in THF (Scheme 1.10). The crude 

product was conveniently purified by titruation in acetone, giving pure 64 in 97% yield. 

Alternative methods using ethyl chloroformate instead of the rather unpleasant triphosgene 

gave unsatisfactory results.
54

 Subsequent heating of the isatoic anhydride derivative 64 with 

L-proline in DMSO gave the desired PBD 50. 
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Scheme 1.10. Reagents and conditions: (i) triphosgene, THF, rt; (ii) L-proline, DMSO,                  

 100ºC.  

 
 

 

1.3.3.2. Attempts to Attain the Imine Function of DC-81 
 

     With the newly developed selective thionation reagent (P2S5-Py2) (65) in hand (further 

discussed in 3.2.), we chose to pursue the elusive imine 22 via monothione 66. Thus, treating 

diamide 50 with P2S5-Py2 in hot acetonitrile gave monothione 66 in 85% yield (Scheme 1.10). 

Desulfuration of the methylated monothione 67, using Raney Ni gave inconsistent results. In 

most cases, amine 68 was the only product isolated from the reaction. Desulfuration of the 

methylated monothione 67 had previously been accomplished using Al-Hg
 
or HgCl2/MeOH 

in a very low yield.
55
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Scheme 1.11. Reagents and conditions: (i) MeCN, 60ºC, 4h; (ii)MeI, rt, THF, 30 min.  

 

 

     Chlorination of diamide 46 to 69 is difficult to accomplish,
56

 thus refluxing diamide 46 in 

POCl3 with catalytic amount of pyridine or phosphorus pentachloride gave no reaction, 

whereas microwave heating of an identical mixture induced an interesting rearrangement, 

giving the chloroimine 70 (Scheme 1.12).
57
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Scheme 1.12. Reagents and conditions: (i) POCl3, pyridine, µw (700W) (60%).  

 

     At this point the attention was turned to an alternative pathway, proceeding via amine 68. 

A Japanese group has developed a useful method for the selective reduction of primary and 

secondary amides using NaBH4/AcOH system in dioxan.
58

 Thus following this procedure, the 

secondary amide function of compound 50 was selectively reduced to afford amine 68 

(Scheme 1.13). 
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Scheme 1.13. Reagents and conditions: (i) NaBH4, AcOH, dioxane, 15ºC → reflux.  
 

 

 

     The dehydrogenation of the amine 68 to the imine 52 proved to be the most challenging 

step, particularly since we wanted to avoid the use of ruthenium based methods. Attempted 

one-pot N-chlorination of 68 using NCS followed by base-induced elimination using DBU 

gave a complex mixture of products. Next, the transformation was attempted using the Parikh-

Doering reaction used for the oxidations of alcohols to aldehydes.
59

 In this Swern-based 

procedure, DMSO is activated by sulfur trioxide-pyridine complex in presence of 

triethylamine and in this manner acts as an oxidising agent. This method was appealing since 

it is conducted at room temperature and uses inexpensive chemicals as well as having a 

convenient work-up. After running the reaction overnight TLC showed that all starting 

material was consumed, however the NMR spectrum of the crude product was not in the 

agreement with the structure 52. A number of additional methods were attempted, such as 

dehydrogenation using MnO2, DDQ, TCCA, various hypervalent iodine reagents, selective 

Raney nickel desulfurization of thioimidates etc., however none of these methods provided 

the desired imine in satisfying amounts.  

 

 

1.4. 1,5-Benzodiazocines  
  

     1,5-Benzodiazocines (71) are higher homologues of the well-known 1,4-benzodiazepines 4 

and members of this family possess a broad spectrum of pharmacologically useful activities. 

Some derivatives exhibit similar phychoactive properties to benzodiazepines and thus have 

been used as benzodiazepine drugs.
60 

In addition, properties such as cholesterol-lowering and 

hormone-like activities have been reported.
61

 In recent times, material chemists have explored 
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the electrochemical properties of diaryldibenzo[b,f][1,5]-diazocines (72) which were found 

useful as a basis for molecular machines and artificial muscles.
62 

 In general, eight membered 

rings are difficult to prepare since their formation is usually hampered by unfavourable 

entropic factors and transannular interactions.
63

 Synthetic routes toward 1,5-benzodiazocines 

have been reviewed.
64

 The crucial cyclization step has been affected using various strategies 

e.g. aza-Wittig cyclization,
65

 intramolecular dehydration,
66

  and ring expansion reactions,
67

 

however special conformational restrictions are usually required in order to obtain reasonable 

yields from direct cyclization of acyclic precursors.
63, 68

 For example, Banfi and later also 

Buchwald et al. provided efficient approaches toward medium-sized N-heterocycles (73) 

employing ring expansion of an β–lactam 74 with an neighbouring nitrogen nucleophile 

(Scheme 1.14).
69

 In recent years, ring closing metathesis has provided a useful entrance to 

medium and large sized rings.
70
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Figure 1.10. 
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Scheme 1.14. Buchwald’s approach toward medium sized N-heterocycles. 

 

 

     Tröger’s base (75), a bridged variant of a dibenzo[b,f][1,5]diazocine, has a chiral aromatic 

cleft structure with a unique ability to host guests and as a result act as a supramolecular 

receptor (Figure 1.11).
71

 Although most applications of Tröger’s base are within the field of 

supramolecular chemistry, pharmacological applications have also been reported.
72

 More 

recently, the interest in
 
Tröger’s bases has extended to the bridged structure 76, containing an 

additional nitrogen available for further interactions and modifications.
73

 Synthetic studies 

towards analogues of compound 76 are discussed in 4.2. 
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Figure 1.11.  
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2. Fuligocandin A and B  
(Papers II-III) 

 

 

 

 

 2.1. Isolation and Background 
 
     Myxomycetes, true slime molds, belong to the lowest classes of eukaryotes and are using 

spores for reproduction. Despite their simplicity, these organisms are able to synthesize 

complex secondary metabolites for example pyrroloiminoquinones (77), 

bisindolylmaleimides (78) and molecules of terpenoid types e.g. 79 (Figure 2.1).
74
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Figure 2.1. 
 

 

 

In 2004, Ishibashi et al. collected the fruit bodies of the myxomycete Fuligo candida in Kochi 

prefecture, Japan.
75

 Upon detailed investigation these workers isolated several new interesting 

compounds, namely, cycloanthranilyl-proline (46) and three previously unknown derivatives 

(80-82) thereof (Figure 2.2). Interestingly, cycloanthranilyl-proline 46 was synthesized prior 

to isolation from natural sources (see 2.4.1).
44

 Compounds 80, 81 and 82 were named 

fuligocandin A, B and C, respectively.
76

 The organic phase of the extract contained 

fuligocandin A as the major constituent, which could be isolated as colourless plates whereas 

fuligocandin B appeared as a yellow pigment. Fuligocandin C is a water soluble, unstable 

compound which readily undergoes conversion to fuligocandin A (80) via decarboxylation.
75

 

 



  

 22 

N
H

N

O

O
N
H

N

O

N
H

N

O

O O

N
H

80 8146

N
H

N

O

O

OH
O

82

HHHH

 
 

Figure 2.2. Structures of cycloanthranilyl proline (46) and fuligocandines A-C (80-82). 

 

 

 

     Curiously, a new chlorine-containing myxomycete natural product, namely 

dehydrofuligoic acid (83), has recently been isolated from the Fuligo septica f. flava (Figure 

2.3).
77
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Figure 2.3. 
 

     

 

2.2. Biological Activity of Fuligocandin B 
 

 

2.2.1. Cancer Therapy Targeting TRAIL 
 

     An ideal cancer therapy should be able to induce apoptosis in cancer cells with no negative 

effect on normal cells. A potentially useful method for achieving this goal is to target 

signalling pathways related to tumor-cell-selective apoptosis. Consequently, the so-called 

tumor necrosis factor related apoptosis inducing ligand (TRAIL) signalling pathway is of 

great current interest since it induces apoptosis in tumor cells but not in normal cells.
78

 The 

TRAIL mechanism is not fully understood, but it is suggested that initially TRAIL binds to 

specific death receptors, which are mainly expressed in cancer cells, hence triggering a 

cascade of reactions that eventually lead to apoptosis (Figure 2.4) 
79

 However, a growing 

problem in cancer therapy is that a considerable variety of cancer cells, especially some 

highly malignant tumors, have developed resistance to apoptosis induction by TRAIL. 

Successful use of TRAIL for cancer therapy is dependant on overcoming this resistance. 

Chemotherapy in combination with irradiation poses one method commonly used to combat 

resistance, albeit it suffers from serious drawbacks due to lack of selectivity. 
78, 80
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2.2.2. Fuligocandin B and TRAIL  

 

     As described in the previous section, tumor-selective strategies for overcoming resistance 

to TRAIL-induced apoptosis are of great potential in cancer therapy. This prompted 

Hasegawa and co-workers to initiate a screening program aimed at finding natural compounds 

that have strong synergism with TRAIL but low toxicity to normal cells.
76, 80b

 Indeed, upon 

investigation of an extract of Fuligo Candida they found a compound that exhibits anti-tumor 

activity toward TRAIL-resistant leukaemia cells via a novel p53- independent mechanism. 

The exact mechanism is so far unknown but the study indicates that fuligocandin B (81) 

initially up-regulates Cox-2 expression which catalyzes the transformation of arachidonic acid 

(PG’s) to prostaglandins PGH2 which in turn increase the production of 15d-PGJ2 that 

enhance sensitivity to TRAIL and eventually will lead to apoptosis (Figure 2.4).
76
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Figure 2.4. Mechanism of action proposed for fuligocandin B via TRAIL.  

 

 

 

2.3. Previous Synthetic Efforts towards Fuligocandin A and B 
 

 

2.3.1. More’s Approach 

 

     In 2009, during the course of our own investigations, More et al. reported on the first 

synthesis of fuligocandin A, which was prepared in 6 steps.
81

 Diazotization of anthranilic acid 

(84) followed by treatment with sodium azide afforded the azide derivative 85 which upon 

subsequent amidation gave compound 86.  

 



  

 24 

84

NH2 N3

O O

OH OH N

N3

O

85 86

85%92%

OHO

H

i ii

 
 

Scheme 2.1. Reagents and conditions: (i) NaNO2, HCl, NaN3, MeCOONa (ii) a) 

   SOCl2 b) L-proline, NEt3.   

 

 

     Activation of compound 86 with ethyl chloroformate followed by homologation with 

diazomethane gave α–diazo ketone 87 which could be isolated as both syn and anti rotamers 

(5.2:1) (Scheme 2.2). Next, using an interesting carbene insertion protocol, previously 

developed by Padwa, the diketo compound 88 was obtained. The crude azidoketone was 

treated with triphenylphosphine and cyclized via aza-Wittig reaction to fuligocandin A (80). 

Synthesis of other fuligocandines has not yet been reported using this method. 
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Scheme 2.2. Reagents and conditions: (i) ethyl chloroformate, NEt3, CH2N2 (ii) MeCHO,     

SnCl2 (iii) PPh3. 

 

 

 

2.3.2. Arai’s  Approach 

 

     In 2010, Arai and co-workers reported a successful strategy toward both fuligocandin A (5 

steps) and B (6 steps), using Meyer-Schuster rearrangement as the key step.
82

 First, N-

protected anthranilic acid (89) was reacted with L-proline methyl ester to give 90 (Scheme 

2.3.). Hydrolysis of the methylester and subsequent cyclization, induced by the peptide 

coupling agent PyBOP and Hünig’s base (DIPEA), afforded PBD 91. Elaboration using 

propynyl lithium gave the alkynyl-substituted PBD 92 in 46 % yield.  
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Scheme 2.3. Reagents and conditions: (i) L-proline methyl ester hydrochloride (ii) a) LiOH 

b) PyBOP, DIPEA (iii) propynyl lithium 
 

 

 

     Cleavage of the N-Boc protecting group under standard conditions (TFA) simultaneously induced 

Meyer-Schuster rearrangement giving fuligocandin A (80) as the required Z-isomer (Scheme 2.4.). 

However, the enantiomeric excess was only 40 % due to racemerization at C11a. Performing 

the reaction at lower temperature (-20 ºC) somewhat reduced this undesirable reaction and 

ultimately 70 % ee could be achieved. 

 

92

N
H

N

O

OH2 N
H

N

O

80

N

N

O

O

H
H

+

+ HO

TFA
CH2Cl2

.
11a

H

 
 

Scheme 2.4. Meyer-Schuster rearrangement. 

 

 

 

     Finally, aldol condensation between 80 and TIPS-protected indole-3-carbaldehyde 

furnished fuligocandin B (81) (61% ee) in 63% yield (Scheme 2.5). 
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Scheme 2.5.  
 

 

 

 

2.4. Results and Discussion  
 

 

2.4.1. The PDB Core 
 

     In planning the synthsis of fuligocandin A and B, the method toward PDB 46 developed 

by Wright and Brabander (Scheme 2.6.) was viewed as the most straightforward and thus 

became our starting point.
44

 Thus, isatoic anhydride was heated with L-proline in DMSO and 

the desired S-enantiomer of PDB 46 could be isolated in an excellent yield. 
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Scheme 2.6.  

 

 

 

2.4.2. Initial Efforts towards Fuligocandin A 

 

     With PDB 46 in hand, attempts were made to prepare fuligocandin A (80) by manipulating 

the carbonyl of the secondary amide in order to attain coupling with an active methylene 

compound, essentially using a variation of Claisen condensation. Thus, inspired by Yamazaki 

et al. who obtained compound 93 by heating tetrahydro-2-methoxy pyridine 94 with methyl 

acetoacetate in presence of base, we set out to prepare compound 95 (Scheme 2.7).
83

 The plan 

was to further elaborate imidate 95 with methyl acetoacetate in the presence of a base to give 

96, followed by Krapacho decarboxylation in hope to obtain fuligocandin A (80). However, 

failures in advancing diamide 46 to the imidate 95 by attempted alkylation using both 

Meerwein’s salt and dimethyl sulfate forced us to abandon this approach. 
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Scheme 2.7. 

 

 

2.4.3.  Second Approach towards Fuligocandin A 

 

     Next, focus was aimed at an alternative strategy, namely Eschenmoser sulfide contraction 

– a reaction which would constitute a key coupling step. This approach involved initial 

regioselective thionation of PDB 46 (A) giving thioamide 97 followed by alkylation using 

chloroacetone to compound 98 (B) and subsequent extrusion of sulfur, resulting in a new 

carbon-carbon bond (C) and thereby  fuligocandin A (80) (Scheme 2.8.).   
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Scheme 2.8. 

 

 

2.4.3.1. Eschenmoser Sulfide Contraction 

 

     The observation that alkylated thioamides form new carbon-carbon bonds via extrusion of 

sulfur in presence of base was first described by Knott in 1955.
84

 During his seminal studies, 

Knott intended to prepare 99 from 100, but failed to isolate the desired zwitterionic 

intermediate 99 as it was readily converted into vinylogous amide 101 via extrusion of sulfur 

(Scheme 2.9).  
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     The method remained unexplored until it was used by R. B. Woodward and A. 

Eschenmoser as a key coupling reaction in their synthesis Vitamin B12.
85

 A few years later, 

Eschenmoser further developed the general utility of this method by transforming a number of 

thioamides to vinylogous amides and urethanes.
86

 Since then, the Eschenmoser sulfide 

contraction has emerged as an important synthetic tool and has been used in the synthesis of a 

number of natural products, some of which are shown in scheme 2.10.
87

 Anatoxin (102) is one 

of the most potent agonist known for the nicotinic acetylcholine receptor.
88

 Pumilotoxin C 

(103) and gephyrotoxin (104) are amphibian alkaloids, known for their use as highly toxic 

dart poisons.
87, 89
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Scheme 2.10. Synthesis of selected alkaloids using Eschenmoser sulfide contraction. 

 

 

     This reaction usually requires the use of both base and thiophile and it is strongly 

dependant on the structural features of the reactants. Reaction involving secondary thioamides 
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requires forcing conditions, e.g. elevated temperatures, long reaction times, the use of strong 

bases (such as t-BuOK) and triphenylphosphine as thiophile. In contrast, tertiary amides 

undergo contraction readily under mild conditions (eq. 1) (Scheme 2.11).
90
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Scheme 2.11.  

 

     In addition, thiocarboxylic acids have also been used in Eschenmoser coupling reactions, 

resulting in 1,3-dicarbonyl compounds (eq. 2).
87

 Interestingly, Hussain et al. recently reported 

the use of selenoamides in place of thioamides (eq. 3).
91

 

 

 

2.4.3.2. Mechanistic Considerations 

 

     The Eschenmoser sulfide contraction can proceed via either oxidative or alkylative 

precoupling.
2b

 The latter variant begins by alkylation of thioamides (I) with enolisable α-

halocarbonyl compounds (II), followed by cyclization of the thiocarbonyl ylide (III) to the 

epi-sulfide (IV) which upon thiophile promoted extrusion of sulfur gives vinylogous amides 

(V) (Scheme 2.12). 

 

 

 



  

 30 

N
S

N
S O

O

Cl

H

base

N
S

O
H

base

N
H

O

R3P

-[R3P=S]

O

S

H
N

I
II III

IVV

 
 

Scheme 2.12. R = phenyl or alkoxy.  

 

 

     Reversibility of the thioamide alkylation is a frequently encountered problem when the 

electrophile (II) bears a nucleophilic leaving group.
92

It is nevertheless possible to avoid retro-

alkylation by employing a non-nucleophilic leaving group, such as triflate.
87
 

 

 

 

2.4.3.3. Regioselective Thionation  
 

     The Eschenmoser-strategy required synthesis of monothione 97, a compound previously 

obtained by treating diamide 46 with Lawesson’s reagent. However, by using literature 

methods, based on Lawesson’s reagent, we experienced lack of selectivity and difficulties 

during the workup.
93

 In fact, these drawbacks prompted us to explore the potential of an 

alternative thionating agent, namely the crystalline P2S5-Py2 complex which, as it happened, 

was under development in our lab (See 3.2). Our efforts turned out fruitful and the 

monothione 97 was attained in an excellent yield as a bright yellow solid without the need of 

chromatographic purification (Scheme 2.13).  

 

 

N

N

O

O
H

H

N

N

O

S
H

H

P2S5-Py2

MeCN, 60 ºC
85%

9746  
 

Scheme 2.13. 
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2.4.3.4. Preparation of Fuligocandin A 

 

     Initial alkylation of 97 with chloroacetone gave 98 which was isolated in quantitative yield 

(Scheme 2.14). Thereafter, a plethora of Eschenmoser coupling conditions described in the 

literature was screened but fuligocandin A (80) remained elusive.  

     At this point we envisioned that the use of DMSO as reaction solvent could enhance the 

prospects of the reaction by exposing the carbanion in the coupling step. The use of DMSO 

would also facilitate the SN2 alkylation step, enabling a facile one-pot protocol. Preliminary 

experiment was conducted in DMSO using DBU as a base and triethyl phosphite as sulfur 

scavenger. Indeed, analysis of the crude mixture indicated the characteristic NMR signals of 

the desired vinylogous amide (
1
H at 5.29 ppm and 

13
C at 91.0 ppm). However, the yield was 

rather low (40%) and purification was complicated by difficult-to-remove triethyl phosphite 

and its sulfur analogue (triethyl thiophosphonate). Interestingly, substituting DBU to DABCO 

resulted in a cleaner reaction. At this point it is worth mentioning that a frequently 

encountered problem with Eschenmoser sulfide contraction is removal of the sulfur scavenger 

and its sulfur analogues which often require resort to chromatography. This even prompted A. 

Eschenmoser to develop a dual reagent containing both amine base and thiophile which has 

the advantage that it can be separated from the product by aqueous wash.
86b

 More recently, 

the use of solid-supported triphenylphosphine has been reported.
94

 However, we could solve 

this problem by using trimethyl phosphite in place of triethyl phosphite, this measure 

simplified the workup considerably as trimethyl phosphite as well as the by-product trimethyl 

thiophosphonate could be removed by co-evaporation with ethanol. As a result, fuligocandin 

A (80) was isolated in 98% yield.  
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Scheme 2.14. Proposed mechanism of the formation of fuligocandin A from 97. 
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     Unfortunately, the stereocenter at C11a was lost under the conditions employed, and 

fuligocandin A was isolated as a racemate. This is in agreement with the observations of Arai 

et al. and also More et al., who reported that racemization readily occurs at this center under 

basic or acidic conditions (See 2.3.2.).
81-82

 

 

 

 

2.4.3.5. Convergent Synthesis of Fuligocandin B 

 

     The synthesis of a target compound can be planned and executed via either linear or 

convergent routes (Figure 2.5). The convergent strategy has several advantages i.e. higher 

overall yield due to the use of shorter routes and better supply of starting materials. 
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Figure 2.5. 

 

     With the synthesis of fuligocandin A (80) completed the aim was to prepare fuligocandin 

B (81) by coupling the halide 105 with thione 97 under previously established conditions. 

The ylide
95

 106 was readily made from 1,3-dichloroacetone (107) but all attempts to couple 

this ylide via a Wittig reaction with 3-formylindole failed (Scheme 2.16). However, 

attachment of an electron withdrawing protecting group enabled the Wittig reaction (Scheme 

2.15). Accordingly, aldehyde 108 was protected with benzenesulfonyl chloride or p-

nitrobenzenesulfonyl chloride (NsCl) to give 109a and 109b, respectively. Both aldehydes 

(109a and 109b) underwent a smooth Wittig reaction with the phosphorus ylide 106 at gentle 

reflux in methanol. Interestingly, conducting the experiment in other solvents, for example 

benzene, DMSO, H2O and DMF gave no reaction or poor yields of the required indole 

derivatives 105. An attempt using N-Boc-protected indole-3-carbaldehyde failed due to the 

rapid cleavage of the N-Boc protecting group.  
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Scheme 2.15. Reagents and conditions: (i)PPh3, THF, rx, 24h (89%)  (ii) Na2CO3,  

H2O/MeOH, rt, 12h (98%) (iii) 109a: PhSO2Cl, NaOH, TBAHS, rt,10h (89%)  

(iv) 109b: NsCl, Et3N, DMAP, rt, 12h (98%) (v) MeOH, rx, 48h (105a: 69%, 105b: 80%). 
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     Coupling of the monothione 97 and the indole-fragment 105 according to the procedure 

described in the previous section to obtain fuligocandin A (DABCO, P(OMe3)) gave the 

deprotected fuligocandin B, albeit in low yield (<20 %) (Scheme 2.16). In the event, TLC 

analysis indicated that consumption of the starting materials was incomplete, but it also 

revealed that the desired coupled product 110 appeared in the absence of both DABCO and 

P(OMe)3. Guided by this observation, the sulfide contraction was conducted under purely 

thermal conditions resulting in the formation of the protected fuligocandin B 110. Fortunately, 

the optical activity was preserved under these thermal conditions and the optical rotation of 

110 was determined to be +611º.  
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Scheme 2.16.  

 

 

     The reversibility of the alkylation step was a problem and the reaction did not proceed to 

completion. NaI has been reported to shift the equilibrium toward the alkylated product but in 

this case it did not improve the outcome of the reaction. The Eschenmoser sulfide contraction 

and also the Wittig reaction was more successful with the use of the nosyl-protecting group 

instead of the less electron withdrawing phenylsulfonyl-group.  

 

 

 

2.4.3.6. Fukuyama’s Deprotection Method 
 

     At this stage, removal of the nosyl protecting group was all that remained for the 

completion of the synthesis. This step was complicated by the risk of loosing the optical 

activity due to racemization at C11 as well as the possibility of Michael addition. Attempts 

using Cs2CO3 and MeOH effectively removed the protecting group but, unfortunately, these 

conditions also lead to racemerization of the final product. 

     In 1995 Fukuyama and co-workers reported on an exceptionally mild and high yielding 

deprotection strategy for 2-and 4-nitrobenzenesulfonamides using thiolates in DMF.
96

 

Accordningly, sodium phenylthiolate (1 eq.) was added to a solution of the protected 

fuligocandin B (110) in DMSO, whereupon fuligcandin B (81) was obtained in racemic form 

(Scheme 2.17). Undesired racemization was avoided by the use of excess (2 eq.) thiophenol in 

relation to sodium hydride. Supposedly, racemization is prevented by excess thiophenol, 

acting as a Brønsted acid and neutralizing the basic species formed as a result of the 
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deprotection. Experiments using thiolate of the less malodorous reagent mercaptopyridine 

gave unsatisfactory results. Thus, the optical rotation of 3 was determined (+140º) and is in 

agreement with data previously reported by Nakatani et al. (+149º).
75
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Scheme 2.17. 

 
 

 

     The mechanism proposed for Fukuyama’s deprotection involves initial thiolate attack on 

ipso carbon, which proceeds via the Meisenheimer complex 111 (Scheme 2.18). Accordingly, 

extrusion of SO2 results in formation of the deprotected amine and (4-nitrophenyl)(phenyl)- 

sulfane 112.
97

  

 

 

 

N

S
O

O

NO2

N
N

S
O

O

S

NO2

SO2

NO2

PhSS

111

112

 
 

 

Scheme 2.18. 
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2.5. Generalisation of the One-pot Eschenmoser Protocol 

 

     After obtaining fuligocandin A and B using the modified Escehnmoser sulfide contraction 

procedure, we were prompted to further study the scope of this one-pot protocol. A number of 

vinylogous amides were prepared in good yield and the position of the double bond was 

determined by NOE studies in selected cases.    
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   TABLE 1. Vinylogous amides via Eschenmoser sulfide contraction.  
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3. Thionation of Carbonyl Compounds   

Using the P2S5-Py2 Complex  

(Paper IV) 
  

 

 

 

3.1. Thiocarbonyl Compounds 
 

     Thiocarbonyl compounds and particularly thioamides are present in several biologically 

active and pharmacologically useful compounds. For example, the anti-tuberculosis drug 

ethionamide (121) is presently the most proscribed drug for treating drug-resistant 

tuberculosis (Figure 3.1).
98

 Furthermore, a number of well-known drugs containing amide 

moieties have been thionated in the past e.g. diazepam (5, Valium), sildenafil (122, Viagra) 

and acyclovir (123).
99

 Thiosildenafil was recently found as an additive in “natural” 

supplements, marketed as aphrodisiac for treating erectile dysfunction.
100 
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Figure 3.1. 

 

 

     Recent findings suggest that the noxious gas H2S is an endogenous ligand that appears to 

be involved in several biological processes including neuromodulation, inflammation and pain 

perception.
101

 These findings have increased the interest in H2S releasing drugs containing 

sulfur moieties such as thioamides. The naproxen (124) derivative ATB-346 (125) represents 

one of the H2S releasing drug candidates in development (Figure 3.2).
102
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Figure 3.2. 

 

 

     In addition to the pharmacologically useful activities, thioamides are versatile synthetic  

intermediates, particulary as synthons for preparation of sulfur-nitrogen heterocycles (see 

3.1.2.). 

 

 

3.1.1. Stucture and Reactivity of Thioamides 
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Figure 3.3. Amide and thioamide. 

 

 

 

     Replacing the oxygen of an ordinary amide with sulfur introduces a number of new 

properties. Sulfur is not nearly as electronegative as oxygen, in fact, it has more or less equal 

electronegativity as carbon. Furthermore, the larger covalent radius of sulfur, compared to 

oxygen, results in less efficient overlap in S3p-C2p π-bond, thus the C=S bond is weaker than 

the C=O bond.
103

 Thioaldehydes and thioketones are usually very unstable and must be 

prepared in situ,
 
however thioamides and thioesters are stabilized by the extra conjugation 

from the nitrogen or oxygen lone pair and are therefore easier to handle.
104

  

     Thioamides are more reactive than amides, for example they are readily reduced to amines 

using Raney nickel. On the other hand, thioamides are more resistant to hydrolysis than 

ordinary amides. Thioamides react with electrophiles either at sulfur or at nitrogen, however 

N-alkylation is rare and likely to proceed via kinetically controlled S-alkylation followed by 

rearrangement under appropriate conditions.
103

 In the presence of acid, thioamides are 

protonated at sulfur in a similar manner as amides. 
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3.1.2. Synthetic Applications of Thioamides  

 

     The stability of thioamides relative to other thiocarbonyl compounds combined with their 

diverse reactivity makes them valuable synthons. Their reactivity, as ambident electrophiles 

and nucleophiles, in rearrangements and pericyclic reactions as well as in radical chemistry, 

has been widely used to solve synthetic problems.
105 

Recent developments involve a variant of 

Liebeskind-Srogl coupling that use palladium catalyzed coupling of thioamides with aryl-

boronic acids.
106

 Thus, e.g. pyridine -2(1H)-thione will undergo carbon-carbon cross coupling 

with phenylboronic acid to give 2-phenylpyridine in high yield. Similarly, 2-thiouracil has 

been coupled with e.g. 2-furyltributylstannane to 2-furyl2-pyrimidine-4-one. Moreover, 

thioamides are widely used as starting materials for the preparation of heterocycles, thiazoles 

in particular.
105b

 Perhaps the most reliable route to thiazoles is the Hantzsch reaction (not to 

be confused with the Hantzsch pyridine synthesis) discovered in 1887.
107

 Versatility of the 

key thioamide function allows for an unusual variation during the heterocyclization step 

(compounds A-D, Scheme 3.1). The useful Hantzsch thiazole synthesis belongs to the 

category B reaction. 

 

N

S

R

R'

N
R

R'

Sn

N

S

R

N

S n

R

N

S n

or

n

EE

E

E =
E1 E2

A

B

C

D

 
Scheme 3.1. Various heterocyclizations by reactions of a common thioamide precursor with 
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3.1.3. Conventional Methods towards Thiocarbonyl Compounds 
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Figure 3.4. 
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     The generally most applied synthetic route toward thiocarbonyl compounds is thionation 

of the corresponding carbonyl compound (Figure 3.4.). This transformation proceeds 

particularly well with amides and thus a number of reagents have been developed for this 

purpose. Heating of the corresponding amide with P4S10 (126) in an appropriate solvent, such 

as toluene or xylene, represents one of the most widely used methods.
108

 More recently,  

Lawesson’s reagent (127a) have to a great extent come to replace the use of P4S10.
109

 The 

thionating properties of the reagent 127a was first studied by Schumacher in the late 

1960’s.
110

 However, the scope and limitations of the reagent was largely unknown for a 

decade when the work of a Danish group brought widespread attention to the general utility of 

the reagent.
111

  

Lawesson’s reagent is usually more selective than P4S10 and in case of primary amides, less 

hampered by nitrile formation. However, the drawbacks associated with these methods have 

resulted in the development of a large number of modified reagents (e.g. 127b and 127c, 

Figure 3.5.) and procedures which are further discussed in 3.2.2.  
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Figure 3.5. 

 

 

 

3.2 The P2S5-Py2 Complex 
 

 

3.2.1. Structure and Reactivity 

 

     P4S10 react readily with refluxing pyridine to form the zwitterionic reagent 65. In spite of 

the fact that P4S10 in pyridine has been utilized to thionate carbonyl compounds for a long 

period of time, the structure of this reagent has been determined only recently (paper 3). 

Previously, Meisel et al. suggested the structure 65 after analyzing 
31

P NMR data and 

comparing it to the known derivatives.
112

 Weintraub proposed another structure (128) this was 

later also retained by Söder and Stratman.
113

 The structure 65 has now been unequivocally 

confirmed by X-ray crystallography (Paper 3) (Figure 3.7). Interestingly, the related structure 

129 was also determined by X-ray crystallography in a recently reported paper. The 

thionating power of this reagent, prepared by heating elemental sulphur (S8) together with 

P4S10 in pyridine, is still unknown.
114
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Scheme 3.6.  
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Figure 3.7. The molecular a) and crystal structure b) of 65. The crystal structure 

                             contains two symmetry independent molecules a). 

 

 

     The results reported in paper 3 illustrate the reactivity profile of reagent 65 towards a wide 

range of amides and electron rich carbonyl compounds (e.g. 130) (Figure 3.8). The ratio is 

usually 1.1 eq. reagent to 4 eq. carbonyl compound, thus the central sulfur atom is supposed 

to be devoid of thionating power. In cases when two amide functions are present, selectivity 

could be attained by fine-tuning the conditions (e.g. 131 and 97). Ester carbonyl groups 
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remain generally unreactive towards the reagent 65 and this is also true for most ketones, 

however particularly electron-rich ketones could be thionated in some cases (e.g. 132). 

Thioaldehydes are usually very sensitive toward di- tri- and oligo-merization and therefore 

difficult to isolate as monomers. Hence, the trimer 133 was obtained when 65 was reacted 

with benzaldehyde 134, in accordance with previously reported results from thionating 

134.
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Figure 3.8. 
 

     The P2S5-Py2 reagent (65) is moisture-sensitive and the degradation-product 135 was 

isolated after dissolving/suspending 65 in acetonitrile and adding a small amount of water. 

Big beautiful crystals were deposited and the structure 135 was confirmed by X-ray 

crystallography (Figure 3.9).   
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Figure 3.9. 

 

 

 

3.2.2. The P2S5-Py2 Reagent versus Conventional Methods  

 

     The utility of reagent 65 as a thionating agent is reported in Paper 3. A variety of amides 

were thionated in acetonitrile or pyridine, or in some cases even as a melt in dimethylsulfone. 

The thermal stability of this reagent may be one of its most striking features. This allow 

reactions to occur at temperatures in the range 165-175 ºC (i.e. in dimethylsulfone), whereas 

LR have been reported to decompose at temperatures above 110 ºC.
109b, c

 Moreover, the 

reagent 65 has fair solubility in hot acetonitrile and good solubility in hot pyridine.  

 

     Conventional methods involving P4S10 or Lawesson’s reagent are usually heterogeneous 

reactions.
105a

 This have prompted the development of more soluble variants of LR (127a) e.g. 

Davey’s reagent (127b) and Belleau’s reagent (127c) (Figure 3.5), as well as flourous 
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variants.
105a, 115

 P4S10 have also been modified in the past, thus methods involving addition of 

various bases e.g. Na2CO3 (Brillon’s reagent), NaHCO3 (Scheeren’s reagent), R-Li, (TMS)2O 

or even silicon oil have been reported, although some of these are difficult to reproduce.
104a, 

115a, 116 
Furthermore, the low solubility of LR have induced several

 
research groups to use LR 

in combination with microwaves
 
or ultrasound.

104a
 

     Using the reagent 65, selectivity could be attained in several cases when two carbonyl 

functions where present in the starting material. For example, 131 and 97 were formed in 

good yield when performing the reaction in hot acetonitrile. Compound 97 have been 

thionated several times in the past using LR. In our hands, tedious chromatographic 

purification was always required to separate the dithionated by-product or remains of starting 

material. Using the reagent 65 in hot acetonitrile, the monothionated product could be isolated 

by filtration in 85% yield. The fully thionated species 136 and 137 could be isolated by 

adding an additional amount (0.25 eq) of the reagent. 
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Figure 3.10. 

 

 

     Nitrile formation is problem often encountered when thionating primary amides using 

P4S10, but sometimes also with LR.
111b, 117 

With the reagent 65, this was never a problem e.g. 

amide 138 was thionated to 139 in 85% yield.  

     The purification of products from the reactions with Lawesson’s reagent are often tedious 

and associated with painful chromatographic separation to remove spent reagent and foul-

smelling by-products.
105b

 Actually, the drawbacks associated with LR have prompted Ley et 

al. to develop a solid-phase supported thionating agent.
117

 A recent example of the difficulties 

associated with conventional methods is provided by researchers attempting to thionate 

derivatives of the alkaloid luotonin A (140a, Figure 3.11).
118

 

 

140a Luotonin A; X = O, R = H
140b Thioluotonin A; X = S, R = H

N

N

N

X

R

 
 

Figure 3.11. 
 

 

     Finally, it should be stressed that chromatographic purification was not required after any 

of the thionations using reagent 65. Degradation products of reagent 65 are water-soluble and 

therefore aquous work-up gave sufficiently pure products.  
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4. 1,4-Benzodiazepines and 1,5-Benzodiazocines  

from Anthranilonitrile  

(Manuscript V and Paper VI) 
 

 

 

 

4.1. Addition of Organometallics to Anthranilonitrile 
 

     Anthranilonitrile (141), produced industrially from 2-nitrotoluene (142) by gas phase 

reaction with ammonia and dehydration catalyst,
119

 is relatively non-toxic and thus a useful 

starting-material for the preparation of benzo-fused nitrogen heterocycles.
120

 The two 

nitrogen-containing functional groups are readily transformed into moieties that cyclisize 

under appropriate conditions, forming e.g. quinazolines or 1,4-benzodiazepines.
121
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Scheme 4.1. 
 

 

     Reactions involving addition of organometallic reagents to anthranilonitrile (141) has been 

a subject of continuous interest in our group. We have previously shown that treating 

anthranilonitrile with two equivalents of an organometallic reagent (e.g. Grignard or lithium 

reagent), leads to the formation of an dianion 143, that readily reacts with various 

electrophiles to afford N-heterocycles e.g. quinazolines (144) and 1,4-benzodiazepines (145) 

(Schenme 4.2.).
121-122  

 The protonated imine 146 is surprisingly stable and could be isolated in 

crystalline form.  
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Scheme 4.2. (R = aryl; R1 = H or Me; R2 = alkyl; R3 = H or alkyl; R4 = alkyl) 

 

 

4.2. 1,5-Benzodiazocines from Addition of Grignard Reagents to    

       Anthranilonitrile (Manuscript V)  
 

     During the course of the work toward quinazolines and benzodiazepines it was found that 

prolonged heating of dianion 143a resulted in the formation of 147 (Scheme 4.3.). Exposed to 

PdCl2, dimer 147 gave the well-known dibenzo[b,f][1,5]-diazocine 148.
64b, 123

 Similar 

transformations have been studied by Leganza et al. (Scheme 4), thus anion 149 gave the 

dimer 150 which could be transformed to an analogue of compound of 147, namely 151.
124

 

Interestingly, X-ray studies revealed the presence of palladium, still coordinated to the 

nitrogens of the molecule.  
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     Heating of dianion 143b, prepared from anthranilonitrile and methylmagnesium bromide, 

did not result in the formation of dimer 152 (Scheme 4.4.). However, the bridged compound 

153 (the structure was confirmed by X-ray crystallography) was isolated after refluxing 143b 

in THF. This type of transannular ether N-heterocyclic system is rare and there are only 

scattered reports of similar benzodiazocines in literature.
125

 In an interesting study by 

Stefanovic et al. a base-induced ring-opening of isatin (154) gave intermediate 155 which 

condensed to the 1,5-benzodiazocine 156 - an unstable molecule that converts back to isatin 

readily under acidic conditions (Scheme 4.5.).
125a

 

 

N
H

O

O

HN

NH

-O
O

O-

O

O

NH2

O

O-O

H+, H2O

OH-, H2O

H+, H2O

OH-, H2O

154 155 156  
 

Scheme 4.5. 

 

 

     Further investigation of the diazocine 153 showed that addition of acetic acid induced ring-

opening to give the symmetrical dihydroxy derivative 157 (Scheme 4.6.). There is no general 

procedure for preparation of 2,6-dialkyldibenzo[b,f][1,5]diazocines, e.g. 158, and attempts to 

obtain this compound from 153 failed. However, NMR analysis indicated the formation of a 

partially dehydrated compound, namely 159, which rapidly decomposed at room temperature. 

At this point we investigated the nickel-catalysed addition of MeMgBr to S-methyl compound 

160a according to the method originally developed by Wenkert.
126

 The isolated product was 

identical to the unstable compound 159 previously obtained from 153.  

According to literature, treating 160b with various nucleophiles have resulted in 2,6-

disubstituted dibenzo[1,5]diazocines.
127  

Consequently, dichloride 160b, prepared from 

diamide 161 and PCl5, was treated with MeMgBr. Nevertheless, once again, 

dibenzo[1,5]diazocine 159 was isolated from the reaction, instead of the desired compound 

158.  
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4.3. Synthesis of 1,4-benzodiazepin-3-ones and 1,5-benzodiazocin-4-ones 
(Paper VI) 
 

5.3.1. Background 
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Scheme 4.7. (R= aryl; R1= alkyl or H; R2 = alkyl) 

 

 

     It has previously been shown that the dianion 143 is a suitable starting material for 1,4-

benzodiazepine-3-ones 145 (Scheme 4.7).
122, 128 

For example, addition of 2-bromoisobutyryl 

bromide to dianion 143 (R=Ph) gave 1,4-benzodiazepine 145 (R=Ph) which could be 

separated into two separate conformers (Figure 4.1).
128b

  

Benzodiazepine 145 could alternatively be obtained by treatment N-acyl anthranilonitrile 

(162) with Grignard reagents (Scheme 4.7.).
128c

 Quinazolines 144 were obtained as by-

products in both cases. 

 

N O
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Figure 4.1. The two isolable conformers (A and B) of 1,2-dihydro-2,2-dimethyl-5-phenyl-3H-

1,4-benzodiazepin-3-one (145).
128b
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4.3.2. Mechanistic Aspects  
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Scheme 4.8. (R= aryl; R1= alkyl or H; R2 = alkyl) 
 

 

     The mechanism leading to these rare 1,4-benzodiazepin-3-ones (145) obviously proceeds 

via a rearrangement (Scheme 4.8.). Mechanistic considerations involving intramolecular ring 

opening of a α-lactam intermediate (163) appeared to be supported by the formation of 1,5-

benzodiazocine 165 from β–lactam 166 (Scheme 4.9). However, evidence for the existence of 

α-lactam 163 was never obtained. Moreover, the fact that N-methyl anthranilonitrile could be 

converted to an N-methylated derivative of 145 (R=Ph) is in strong disagreement with the α-

lactam proposal.
122

 To this end, proposed ring-expansion of a 6-membered intermediate 164 

appears more appealing since this suggestion would also provide a common intermediate for 

the simultaneous formation of quinazoline by-products (144). 
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Scheme 4.9. 
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4.3.3. Current Work  

 

     1,4-benzodiazocin-3-ones are relatively rare compared to 1,4-benzodiazepin-2-ones and in 

paper IV we further investigated these intriguing products by addition of Grignard reagents to 

the N-acylated anthranilonitrile derivative 162.
 
A few factors were determined to affect the 

outcome of the reaction of 162 and organometallic reagents; the nature of α-halide X, the 

organometallic reagent (RM) and the substituents (R1 and R2) at the α-position.  

The nature of the halide was found to influence the size of the ring, thus in some cases (Y=Cl) 

quinazolines was obtained via intramolecular attack on the amide anion. This is in agreement 

with the findings of Párkányi who found that methyl N-chloroacetylanthranilate cyclized to N-

chloromethyl-4-quinazolinone (167) when treated with ammonia, while methyl N-

bromoacetylanthranilate gave 1,4-benzodiazepin-2,5-dione (168) under the same reaction 

conditions (Scheme 4.10.).
129
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Scheme 4.10. 
 

 

     Addition of alkyl Grignard reagents and lithium regents (n-BuLi, PhLi) to 162 gave 4-

amino-2-quinolinones via halogen-metal exchange at α–carbon as previously reported by 

Bergman et al.
128a

 Thus, in order to favour the formation of the desired benzodiazepine 145, 

bromo-substituted starting material 162 was treated with aryl-Grignard reagents (RM = 

PhMgBr or thienylMgBr). 
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Scheme 4.11. R = phenyl or thienyl, R1 = H or alkyl, R2 = alkyl.  
 

 

 

     A number of 1,4-benzodiazepines was obtained and it was found that in cases when α-

protons where present (R’=H), the isomer of 145, namely 169 was the major isolated product 

(Scheme 4.11). It is plausible that 169 is formed via a hydride transfer of the initially formed 

compound 145. Hence, in one case 145 (R = Ph, R2 = Et) was isolated and transformed to 169 

by addition of another equivalent of phenylmagnesium bromide. The imine bond of 169 is 
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susceptible to nucleophiles and the addition of a second Grignard reagent, resulting in 

compound 170, which was observed in some cases (R = Ph, R2=Et).  

     The methodology was also applied to synthesize the higher homologue of 145, namely 165 

which could be obtained by addition of Grignard reagents to N-β-haloacyl derivative 171 or 

alternatively by initial cyclization of 171 to β–lactam 166 (Scheme 4.9). 

     It is known that lithium reagents and cerium reagents may add twice to nitriles.
131

 

However, somewhat surprisingly addition of lithium reagents to 171 resulted in 

quinazolinones 172a and 172b (Scheme 4.12). According to a proposed mechanism isobutene 

and chlorine is lost via Grob fragmentation of intermediate 173.  
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Scheme 4.12. Grob fragmentation. 
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List of abbreviations 

 
Ac Acetyl 

AcOH Acetic acid 

Bn Benzyl 

Bzp Benzodiazepine 

Boc tert-Butyloxycarbonyl 

n-BuLi n-Butyl lithium 

DABCO 1,4-Diazabicyclo[2.2.2]octane 

DBU 1,8-Diazobicyclo[5.4.0]undec-7-ene 

DCM Dichloromethane 

DDQ Dichlorodicyanobenzoquinone 

DIBAL Diisobutylaluminium hydride 

DIPEA N,N-diisopropylethylamine (Hünig’s base) 

DMAP 4-(N,N-Dimethylamino)pyridine 

DMF Dimethyl formamide 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

EI Electron ionization 

ESI Electrospray ionization 

Et3N Triethyl amine 

EtOAc Ethyl acetate 

EtOH Ethanol 

FAB Fast Atom Bombardment 

GABA Gamma-aminobutyric acid 

HMPA Hexamethyl phosphorousamide 

IR Infrared (analysis) 

LAH Lithium aluminium hydride 

M Molar 

m-CPBA meta-Chloroperbenzoic acid 

MeI  Methyl iodide 

MeOH Methanol 

MnO2 Manganese dioxide 

mp melting point 

MS mass spectroscopy 

NaH sodium hydride 

NCS N-chlorosuccimide 

NMR Nuclear Magnetic Resonance 

NOE Nuclear Overhauser Effect 

PBD Pyrrolobenzodiazepine 

Ph Phenyl 

PhMgBr Phenylmagnesium bromide 

PIFA Phenyliodine bis(trifluoroacetate) 

PyBOP          benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

RaNi Raney nickel 

rt room temperature 

TCCA Trichloroisocyanuric acid 

TEA Triethylamine 

THF Tetrahydrofuran 

SO2 sulfur dioxide 
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Appendix: 
1
H NMR and 

13
C NMR spectra for Fuligocandin A and B 
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