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ABSTRACT 
Insulin resistance is a condition in which adequate amounts of insulin fail to give an adequate response in 
target tissues. This thesis is based on five different studies, aiming to investigate different aspects of 
insulin resistance and the assessment methods thereof in children and in adults. The rationale for 
performing these studies is that insulin resistance is a key component of the metabolic syndrome and 
crucial in the development of type 2 diabetes. Concomitant with the increase in obesity worldwide, 
insulin resistance has become an important and increasingly more common pathological condition, which 
needs to be efficiently diagnosed and treated. 
 

• In Study I we investigated proxy measures of insulin sensitivity assessment as compared to the 
reference standard Frequently Sampled Intravenous Glucose Tolerance Test (FSIVGTT) in 
obese children and adolescents. The Homeostasis model assessment (HOMA-IR), the 
Quantitative Insulin Sensitivity Check Index (QUICKI) and fasting insulin were compared to 
the Sensitivity index (Si) of the FSIVGTT with the sample stratified by sex, puberty status and 
median of Si. This study demonstrated that fasting indices have a low validity in identifying 
insulin resistance in this group, and we generally discourage the use of these methods.  
 

• Study II was performed in the same obese pediatric population with the aim of showing that 
HOMA-IR and QUICKI are interchangeable. The numerous comparisons between these 
methods should thus be avoided. Also, the high physiologic fluctuations in insulin levels further 
undermine the robustness of these methods. Studies I-II provide evidence that fasting indices as 
simple screening tools for insulin resistance in children and adolescents should, if used at all, be 
interpreted with caution.  

 
• The third and fourth studies were performed with the aim of developing and validating models 

for the kinetics of C-peptide and Nonesterified fatty acids (NEFAs) respectively during an 
intravenous glucose challenge. An insulin modified FSIVGTT was performed on healthy 
normal weight young adults, with sampling of C-peptide and NEFAs included at all sampling 
points. In Study III a model was developed which assesses first phase C-peptide secretion, 
indirectly also estimating insulin secretion. Assessing insulin secretion is useful in 
understanding diabetes development, in assessing progression to a diabetic state and in 
monitoring the effect of therapeutic regimens.  

 
• In Study IV a novel NEFA model was validated on a subject level, with curves well fitting the 

diverse range of NEFA responses to a glucose challenge. Validation of the model using static 
parameters derived from the dynamic counterparts showed high correlation of the model’s 
dynamic parameters to static parameters. NEFA levels are elevated in insulin resistance and 
affect glucose homeostasis on both the short and long term. This NEFA model may provide a 
complementary way of estimating insulin sensitivity, with focus on the lipotoxic aspect of 
diabetes development. 
 

• Study V provides a clinical perspective on insulin sensitivity by examining metabolic features of 
a cohort of long-term cancer survivors treated with stem cell transplantation including total body 
irradiation, as compared to healthy controls matched for age and sex. The study shows an intact 
β-cell function, but decreased insulin sensitivity, after a median follow-up of 18 years. An 
adverse body composition with higher proportion fat mass than in controls was seen in cancer 
survivors. Lower levels of growth hormone, higher levels of leptin and lower levels of 
adiponectin were found, all of which may explain the adverse body composition and the reduced 
insulin sensitivity. 

 
In summary, several aspects of insulin resistance and insulin secretion have been studied. Existing 
methods of insulin secretion and sensitivity assessment have been investigated and implemented, and 
new methods described. We hope this will contribute further knowledge on diabetes development and 
treatment strategies.  
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1 INTRODUCTION 

 
 
The world wide obesity epidemic is closely followed by an increase in insulin 
resistance, which in combination with impaired insulin secretion ultimately leads to 
type 2 diabetes (1). Insulin resistance has been extensively researched as a crucial 
component of the so-called metabolic syndrome (2), involving obesity, dyslipidemia 
(high triglycerides and low high-density lipoprotein cholesterol), hypertension and 
microalbuminuria in the definition from the World Health Organization (3), and along 
with this an increased risk of cardiovascular disease (4, 5). It is important both from a 
health economic and health care perspective to identify insulin resistant individuals, 
and numerous methods of insulin sensitivity assessment have emerged. This thesis has 
insulin resistance as its unifying theme, yet the five included studies can be divided into 
three distinct groups (Figure 1). Each group contributes to the thesis work and 
education in research by involving different methodologies, study populations and 
clinical perspectives. As the title suggests, both clinical and methodological aspects are 
covered, however apart from the first two studies, the focus is not primarily on children 
but includes a more general perspective on insulin resistance.   
 
Most insulin sensitivity assessment methods focus on the homeostasis of glucose and 
insulin. Gold standard methods exist, but the complicated and relatively invasive nature 
of these tests has lead to the development of simpler tests in the form of fasting indices. 
These crude fasting indices have been examined in many studies, yet there is no 
consensus on which method to use. Thus, Study I explores the validity of fasting 
indices as compared to a gold standard method in a population of obese children and 
adolescents. An extension of this is described in Study II, in which recommendations 
for further insulin sensitivity assessment are investigated by contrasting fasting indices 
and fasting insulin to the gold standard method.  
 
The second group of studies differs from the others in its methodology, which is 
focused on the modeling of biological systems. It includes two modeling studies, in 
which the kinetics of C-peptide (Study III) and nonesterified fatty acids, NEFAs, 
(Study IV) respectively, are investigated. A C-peptide secretion model can contribute 
valuable knowledge on insulin secretion, which itself is difficult to measure. ß-cell 
impairment eventually leads to diminished insulin secretion and diabetes, which makes 
this a relevant issue to explore. Glucose and NEFAs are intrinsically linked together, 
and there is evidence that the pathogenesis of insulin resistance is linked to elevated 
NEFA levels. A model of glucose and NEFA kinetics contributes further insights into 
diabetes pathogenesis and may provide a tool complementary to traditional 
glucose/insulin models in assessing and understanding insulin resistance. 
 
Insulin resistance is found not only in obesity but also in other medical states, one being 
in cancer survivors who have undergone stem cell transplantation including total body 
irradiation. With the advancements in cancer therapy, long-term cancer survivors 
constitute a growing population at risk of developing the metabolic syndrome or 
components thereof. Study V, the third subgroup of this thesis, constitutes a clinical 
application in which insulin sensitivity, insulin secretion and body composition in long- 
term survivors of childhood cancer are explored.  
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Figure 1. Overview of the five substudies included in the thesis, with insulin resistance as the unifying theme.  
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2 INSULIN  

Insulin is a vital anabolic and regulatory hormone and is synthesized in the β-cells of 
the islets of Langerhans, which are scattered in groups throughout the pancreas. The 
human insulin gene is located on the short arm of chromosome 11. The insulin gene is 
transcribed and processed into messenger RNA, which is subsequently translated into 
preproinsulin. Within minutes, the preproinsulin molecule is cleaved from its signaling 
peptide to form proinsulin, which at this point is bound to the endoplasmic reticulum. 
After release from the endoplasmic reticulum, vesicles transport proinsulin to the Golgi 
apparatus, where it is sorted and packaged into secretory granulae. The proinsulin 
precursor molecule is then modified further by proteolytic enzymes, which cleave the 
center portion of the molecule from the C- and N-terminal ends, releasing C-peptide 
and insulin in equimolar amounts. The function of C-peptide seems to be to give the 
proinsulin the folding which is necessary for insulin to bind to its receptor. However 
studies also indicate that C-peptide has bioactive properties on its own and can have 
beneficial effects on endothelial function, blood flow and inflammation and thereby 
reduce diabetic complications in kidney and nervous tissue (6). The resulting secretory 
granulae thus contain an insulin polypeptide chain, consisting of 51 amino acids bound 
together in B- and A-chains by disulfide bonds and C-peptide. Insulin is stored as a 
hexamere, with six insulin molecules bound to a zink atom, while the active form of the 
hormone is a monomer. This storage form is effective and stable as long as pH levels 
are kept below neutrality. When stimulated, the β-cell releases insulin granulae by 
exocytosis, with granula membranes fusing with the plasma membrane of the β-cell 
thereby releasing its contents. The hexamere structure is dissolved by the higher pH 
value of the extracellular fluid and insulin is transported through the capillary wall and 
into the blood stream to exert its action.  
 

2.1 INSULIN SIGNALING AND GLUCOSE TRANSPORT 

The insulin signaling pathway, leading to glucose uptake primarily in skeletal muscle 
has been researched extensively. A better understanding of the signaling mechanisms 
may provide means to understand the pathogenesis of type 2 diabetes, as well as to 
identify possible novel treatment strategies. In insulin responsive tissues there are 
insulin receptors at the cell surface plasma membrane. These consist of two 
extracellular insulin-binding α-subunits and two β-subunits which span through the 
membrane. When insulin binds to the insulin receptor (IR), autophosphorylation on 
tyrosine residues occurs. This activates the tyrosine kinase of the β-subunits. 
Phosphorylated tyrosine residues on the activated insulin receptor protein serve as 
docking sites for the down-stream signaling molecules, the most extensively researched 
being the insulin receptor substrate (IRS) proteins, which are tyrosine phosphorylated 
by the β-subunits. The predominant IRS’s in human skeletal muscle are IRS-1 and IRS-
2, and these seem to have specific signaling roles. The tyrosine-phosphorylated IRS-1 
mediates a cascade of signals to enzymes further downstream by binding to various 
other signaling proteins. Phosphatidylinositol 3 (PI-3) kinase (7) is an important step in 
this sequence. PI-3 kinase activates phosphatidylinositol-dependent protein kinase 
(PDK) and in turn the serine/threonine kinase Akt (also known as protein kinase B, 
PKB). Among other functions, Akt phosphorylates AS160 and these steps are 
necessary in promoting GLUT4 translocation (8).  A simplified representation of the 
insulin signaling cascade is shown in Figure 2, ultimately leading to glucose 
transporter proteins translocating to the cell surface.   
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Figure 2. Schematic representation of insulin binding to its receptor, initiating a signaling cascade leading to 
glucose transporter (GLUT4) translocation and glucose uptake.  

 
Glucose transport is the rate-limiting step for glucose metabolism. As glucose cannot 
pass the hydrophilic barrier of the cell membrane, access needs to be facilitated by the 
help of glucose transporters. The two main glucose transporter families in humans are 
sodium dependent transporters and facilitative glucose transporters (GLUT) (9, 10).  
Sodium dependent glucose co-transporters are involved primarily in glucose absorption 
in the gut and in the kidneys and will not be further discussed here. Several different 
GLUT family members have been identified, GLUT 4 being the most important form 
in skeletal muscle (11-13). In response to insulin or exercise intracellular vesicles 
containing GLUT4 fuse with the cell surface membrane in order to aid glucose 
transport into the cell. There are known impairments in GLUT4 action in insulin 
resistant skeletal muscle (14, 15). However, such impaired insulin-stimulated glucose 
transport into skeletal muscle seems not to be caused by a decrease in GLUT4 
production predominantly, but rather by impairments in insulin signaling (8).  
 

2.2 MOLECULAR MECHANISMS OF INSULIN RESISTANCE 

Insulin stimulates the uptake of glucose in muscle and fat, as well as suppresses glucose 
production by the liver. When one or both of these functions of insulin action is 
impaired, insulin resistance at the skeletal muscle or fat level and/or hepatic level 
develops. Insulin resistance is defined as a state where normal levels of insulin fail to 
give an adequate response in tissues. However, besides its glucoregulatory role, insulin 
is also important in the metabolism of proteins and lipids, in ion fluxes, and as an 
anabolic hormone affecting cell growth and differentiation, inhibition of lipolysis, 
protein degradation and apoptosis. It seems that there is a selective insulin resistance 
affecting metabolic aspects of insulin action, but being distinctly different from 
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mitogenic aspects of insulin action (16).  Various cellular and molecular defects 
underlying the pathology of insulin resistance have been identified (17), on the level of 
the insulin receptor, in signaling pathways and in glucose transport.  
 
The IRS plays an important part in the insulin signaling cascade. The ability of the 
insulin receptor to phosphorylate tyrosine residues on the IRS-1 is reduced in type II 
diabetic muscle, which leads to diminished signaling in the entire pathway following 
the initial events (18). The exact molecular background to why the insulin receptor fails 
to tyrosine-phosphorylate the IRS molecule is not known. It has been shown, however, 
that if IRS is extensively phosphorylated on serine residues this will block access of 
tyrosine residues (19). Serine phosphorylation of IRS also reduces the ability of IRS 
proteins to attract PI3-kinase, which limits its activation (20-26), and causes an 
increased rate of degradation of IRS protein (27).  Thus, serine phosphorylation 
interferes with the insulin signaling downstream and can occur in response to several 
different serine kinases and also other factors (Table 1). Further, insulin stimulated 
activation of phosphatidylinositol 3-kinase (PI3-kinase) is down-regulated in type 2 
diabetics (18). The phosphorylation of other important signaling molecules, such as 
Akt/PKB and AS160 is also reduced in diabetic muscle (28). Since Akt/PKB regulates 
a number of metabolic processes a diminished activation will lead to changes in 
glycogen storage and protein metabolism. 
 
A cellular nutrient sensor, mTOR (molecular target of rapamycin), has been identified 
as an important component in integrating cellular metabolism with growth factor 
signaling (29-32). mTOR phosphorylates and modulates the activities of p70 S6 kinase 
among others in response to insulin and amino acids. The activation of mTOR and 
p70SK1 kinase causes serine phosphorylation of IRS-1, with a concomitant decline in 
the IRS-1 associated PI 3-kinase activity. This has been suggested to negatively 
regulate insulin signaling and sensitivity (22, 33, 34). This is also thought to occur in 
response to nutrients and possibly hyperglycemia.  In the overfed state, e.g. obesity and 
type 2 diabetes, hyperinsulinemia may hyperactivate the mTOR/p70 S6 pathway, 
causing serine phosphorylation of IRS-1, its degradation and further decline in PI 3 –
kinase activity. It also appears that various serine kinases, such as c-Jun amino terminal 
kinase (JNK), stress activated protein kinases, tumor necrosis factor α (TNF-α) and 
protein kinase C (PKC), among others, can promote serine phosphorylation of IRS-1.  
 
JNK has been shown to be activated by NEFAs, stress and inflammation (35-38), with 
a resulting diminished insulin signal along the metabolic pathway (39, 40). Also, 
activation of the pro-inflammatory kinase that phosphorylates the inhibitor of NF-κB, 
inhibitor kappa B kinase β (IKKβ), has been found to induce insulin resistance (41-43). 
Via a mechanism that involves impairment in the IRS-1/PI 3-kinase signaling pathway 
IKKβ has been implicated in the pathogenesis of insulin resistance.  
 
TNF-α levels are increased in adipose tissue of obese, insulin resistant individuals and 
have thus been suggested to play a role in insulin resistance development in obesity 
(44-46). TNF-α has been shown to inhibit insulin signaling by inducing serine 
phosphorylation of IRS-1 (47), again leading to a decrease in IRS-1 associated PI 3-
kinase activity. A further hypothesis is that mitochondrial dysfunction or reduced 
mitochondrial content with a concomitant decrease in mitochondrial NEFA oxidation 
will lead to accumulation of fatty acyl Coenzyme A and diacylglycerol, which may 
cause insulin resistance (48-50). Mitochondrial size and number are reduced in obesity 
and type 2 diabetes, and a reduced expression of a number of genes related to 
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mitochondrial growth and function have recently been identified in type 2 diabetics (51, 
52).  Another pro-inflammatory molecule, PKCθ has also been found to cause serine 
phosphorylation of IRS-1 (53, 54), supporting the role of serine kinases in the 
development and pathogenesis of insulin resistance.   
 
A molecular mechanism which may potentially contribute to insulin resistance is an 
altered balance between the amounts of different PI 3-kinase subunits (55). These exist 
as heterodimers, with a regulatory subunit (p85) tightly associated with a catalytic 
subunit (p110). The main function of these kinases is to produce phosphatidylinositol 
triphosphate, PIP3, which is a major signaling component of the cell. The regulatory 
subunit, p85, stabilizes the p110 subunit (56-58) and maintains it in a low activity state 
(59). In the normal state there is an excess of free p85 as compared to p110, and also a 
balance between the free p85 and the p85-p110 heterodimer, the latter being 
responsible for the PI 3-kinase activity. An imbalance in this system is thought to result 
in either increased or decreased PI 3-kinase activity. In this way excess p85 leads to 
increased insulin resistance. Causes of imbalance between PI 3-kinase subunits have 
been found to be induced by steroids (60), growth hormone (61), human placental 
growth hormone (61, 62), short-term overfeeding (63), obesity and diabetes (35).    
 

Table 1. Causes of IRS-1 serine phosphorylation (16).  

Mechanism Activation 
mTOR P70S6 kinase-amino acids, hyperinsulinemia, nutrition 
JNK Stress, hyperlipidemia, inflammation 
IKKβ Inflammation 
TNF-α Obesity, inflammation 
Mitochondrial dysfunction  
PKCθ Hyperglycemia, diacylglycerol, inflammation 
 
In summary, in spite of its importance as a health care problem, the molecular 
mechanisms of insulin resistance are as yet incompletely understood. Potential 
mechanisms have however been found, and a combination of these and other still 
unidentified factors may be necessary to induce clinically overt insulin resistance. 
Future studies are needed to explore this hypothesis.  
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3 ASSESSING INSULIN SENSITIVITY 

In healthy normal individuals blood glucose levels are kept within a relatively tight 
range, which is maintained through periods of fasting as well as of feeding (Figure 3). 
This is achieved by a balance between glucose production and substrate control in the 
fasting state, and glucose absorption, production and uptake in the postprandial state. 
Insulin is a major player in this tightly controlled system by suppressing glucose 
production and stimulating glucose uptake. To assess insulin sensitivity numerous 
methods have been developed, most of which define insulin sensitivity on the basis of 
the ability of insulin to regulate blood glucose levels and glucose metabolism. Some of 
the most commonly used methods, namely the hyperinsulinemic euglycemic clamp, the 
Frequently Sampled Intravenous Glucose Tolerance Test (FSIVGTT), the HOMA-IR 
and QUICKI will be described here. 
 
 

 
 

Figure 3. Glucose homeostasis is tightly regulated, with insulin stimulating the uptake of glucose primarily in 
skeletal muscle and adipose tissue, and inhibiting hepatic glucose production. This is counter-regulated by 
glucagon, which promotes glucose release.   

 

3.1 HYPERINSULINEMIC EUGLYCEMIC CLAMP 

The clamp method was developed by DeFronzo et al (64) and is accepted as a reference 
standard for the direct determination of insulin action. In the fasting state glucose 
production, mainly from the liver, equals glucose disposal in tissues. Insulin suppresses 
hepatic glucose production and stimulates glucose uptake, resulting in lower blood 
glucose. The clamp technique uses this situation by letting a fixed exogenous insulin 
administration induce hyperinsulinemia, which down-regulates hepatic glucose 
production. It then lets a variable exogenous glucose infusion counter the fall in blood 
glucose caused by the exogenous insulin infusion. Assuming that the hyperinsulinemic 
state is sufficient to suppress hepatic glucose production completely, the rate of glucose 
infusion necessary to maintain, “clamp”, a predetermined glucose level provides an 
index of the net effect of insulin on glucose production and utilization. A healthy 
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insulin sensitive subject will thus require higher glucose infusion rates as compared to 
an insulin resistant subject.  
 
In practice, a peripheral catheter is inserted in each arm, one for sampling and one for 
infusion. Insulin is administered intravenously at a fixed infusion rate, and glucose is 
simultaneously administered at a variable rate aiming to maintain plasma glucose at a 
certain level. Glucose levels are tested every 5 to 10 minutes during the clamp in order 
to adjust the infusion rate accordingly. 
 
The validity of the glucose clamp depends on achieving steady-state conditions, usually 
assumed to be attained at an arbitrary time point at the end of the clamp study, e.g. 120 
minutes. The clamp method also assumes that hepatic glucose production is completely 
suppressed by the steady-state hyperinsulinemia. In normal insulin sensitive subjects 
this can be expected, however in insulin resistant subjects hepatic glucose production 
may not be completely suppressed. This can be overcome by choosing a higher insulin 
infusion rate. Alternatively, radiolabeled glucose tracers may be used in order to 
determine the origin of the plasma glucose levels. It must also be kept in mind that 
comparisons between different subjects are only valid if the same insulin infusion is 
used for all subjects, and that this infusion level is in a range where the glucose disposal 
rate can vary according to differences in insulin sensitivity. Thus the insulin infusion 
rate must be matched to the insulin sensitivity of the population being studied. 
 
The main advantage of the clamp is that it estimates whole body glucose disposal at a 
given level of insulinemia under steady-state conditions. The approach is also 
straightforward, and the number of assumptions is limited. Limitations of the clamp 
however include the time consuming and labor intensive nature of the test, requiring 
skilled personnel to manage technical difficulties. This renders the clamp unsuitable for 
large epidemiological studies or routine clinical applications.  
 

3.2 FREQUENTLY SAMPLED INTRAVENOUS GLUCOSE TOLERANCE 
TEST ANALYZED BY THE MINIMAL MODEL (FSIVGTT- MMOD) 

The Frequently Sampled Intravenous Glucose Tolerance Test (65) (FSIVGTT) was 
developed by Bergman in 1979 and is a well validated method for insulin sensitivity 
assessment in adults as well as in children (64, 66-70). After an overnight fast, the 
subject receives a peripheral catheter in each arm. Baseline samples of insulin and 
glucose are taken, and at time 0 minutes glucose is infused in a given amount per kg 
body weight. Blood samples for determination of insulin and glucose are taken every 
minute during the first minutes of the test after which sampling is gradually spaced out 
following a standard protocol of 180 minutes. In the so-called modified protocol, at 
time 20 minutes a given amount of insulin per kg body weight is injected as an 
intravenous bolus dose (schematic representation shown in Figure 4). The insulin 
infusion is recommended in subjects whose endogenous insulin response may be 
insufficient to deal with the glucose load in such a way that the method can 
discriminate between the high glucose values and calculate a sensitivity index. An 
FSIVGTT glucose curve is represented in Figure 5, showing the typical glucose and 
insulin responses during the challenge.  
 
The most established method for analysis of FSIVGTT data is to use minimal model 
assessment  (FSIVGTT-MMOD) (71, 72), in which insulin and glucose data are 
entered into the so called MINMOD computer program to generate an insulin 
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sensitivity index, Si. The minimal model is defined by two coupled differential 
equations and includes four model parameters. The first equation describes plasma 
glucose dynamics in a single compartment, and the second equation describes insulin 
dynamics in a “remote compartment”.  The structure of this model allows the 
MINMOD program to calculate model parameters which determine best fit to glucose 
disappearance during the FSIVGTT. The Si is derived from two of these model 
parameters and is defined as the fractional glucose disappearance per insulin 
concentration unit. 
 

 

 
 

Figure 4. The FSIVGTT method shown schematically. Following a basal collection period, an intravenous 
bolus dose of glucose is given, and frequent sampling of insulin and glucose samples begins. After 20 minutes, 
an intravenous insulin bolus dose is given. Sampling is spaced out during the total glucose challenge of 180 
minutes. Not drawn to scale.  

In addition to Si, the FSIVGTT-MMOD can be used to estimate glucose effectiveness, 
termed Sg. This is a measure of glucose ability per se to enhance its own disposal and 
inhibit hepatic glucose production in the absence of an incremental insulin effect, i.e. at 
basal levels. Also, the Acute Insulin Response, AIR, may be determined which is a 
measurement of the insulin response (calculated as the area under the curve) during the 
first ten minutes of the test.  
 
Advantages of the FSVIGTT-MMOD include being easier to perform than the glucose 
clamp method, steady-state conditions are not required, and the protocol is simply 
implemented without constant adjustments of intravenous infusions. Coefficients of 
variation for Si are comparable to insulin sensitivity estimates using the glucose clamp 
(73, 74), and reasonable correlations have been found between the reference glucose 
clamp and minimal model analysis of the FSIVGTT in healthy subjects, with weaker 
correlations in insulin resistant populations (69, 75, 76). Although sometimes used in 
relatively large studies, the FSVIGTT is still a costly and relatively complicated 
procedure. Another limitation may be the fact that the model relies on a simplification 
of the physiology of glucose homeostasis, such as grouping together the effects of 
insulin to promote peripheral glucose utilization and suppress hepatic glucose 
production. As insulin sensitivity/resistance varies, the relative contribution of hepatic 
glucose production to Si may vary to a significant extent (77). Also, due to the dynamic 
nature of the minimal model, estimates of Si are less reliable in individuals with 
impaired insulin secretion and/or significant insulin resistance. In these subjects, Sg 
may also be overestimated to accurately predict the disappearance of glucose during the 
FSIVGTT (78-80). Further, FSIVGTT-MMOD analysis may produce nonsensical 
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negative or zero Si values in subjects who have a profound insulin resistance and 
minimal insulin secretory capacity (76, 79, 81). 

 
Figure 5. FSIVGTT curve from the MINMOD program showing the rapid increase in glucose after the bolus 
injection, followed by a first, endogenous insulin peak, and after 20 minutes a second insulin peak after the 
exogenous injection. Glucose levels gradually decline and may even descend below baseline levels.  

3.3 SIMPLE FASTING INDICES FOR INSULIN SENSITIVITY 
ASSESSMENT 

Fasting indices are derived from fasting steady-state conditions. In principle, after an 
overnight fast a single blood sample is taken for determination of fasting glucose and 
insulin. Alternatively, three samples at five-minute intervals may be taken and a mean 
calculated. In the healthy state, fasting represents a basal steady state where glucose is 
homeostatically maintained within a normal range, so that insulin levels are held within 
a narrow range and hepatic glucose production is constant. This means that basal 
insulin secretion rate by the pancreatic β-cells determines a relatively constant 
insulinemic level that will vary in accordance with insulin sensitivity/resistance such 
that hepatic glucose production matches whole body glucose disposal under fasting 
conditions. Fasting indices rely on the fact that subjects are strictly fasting and in basal 
steady-state conditions in regards to glycemia, insulinemia and hepatic glucose 
production. Fasting indices reflect primarily hepatic insulin sensitivity, but assuming 
that hepatic and skeletal muscle insulin sensitivity are proportional to each other this 
may provide an estimation of muscle insulin sensitivity as well. An obvious advantage 
of fasting indices is the inexpensive, simple set-up, which has made them extensively 
used in large epidemiological studies and in clinical practice. Limitations are explored 
in Studies I-II.  
 

SvanteNorgren
Date: 2008-11-17

Name Value FSD         Units
AIRg 5.324000E+02 [mu.l^-1.min]
DI 2.021200E+03 1.024500E-02 []
SI 3.796400E+00 1.024600E-02 [(mu/l)^-1.min^-1]
Sg 1.807200E-02 3.891200E-02 [min^-1]

P(2) 5.038500E-02 5.182900E-02 [min^-1]
P(3) 1.912800E-05 5.379800E-02 [(mu/l)^-1.min^-2]
GB 8.460000E+01 [mg/dl]
IB 1.040000E+01 [mu/l]
G(0) 2.646100E+02 2.142681E-02 [mg/dl]
GEZI 1.412400E-02 5.126100E-02 [min^-1]

Beta-Cell function 1.733300E+02 [mu/mM]
Insulin resistance 2.172400E+00 [mM.mu/l^2]
Rsquared 99.28 %
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3.3.1 HOMA-IR 

The Homeostasis model assessment, HOMA-IR, is derived from a mathematical 
assessment of the interaction between β-cell function and insulin resistance and was 
developed by Matthews et al in 1985 (82). It was developed as a computer-based model 
in which an array of fasting plasma insulin and glucose concentrations representative of 
varying degrees of β-cell deficiency and insulin resistance were plotted. The resulting 
array estimates insulin resistance and β-cell function on the basis of fasting insulin and 
glucose drawn from a given subject. The model assumes a feedback loop between the 
liver and β-cell, so that glucose concentrations are regulated by insulin-dependent 
hepatic glucose production, whereas insulin levels depend on the pancreatic β-cell 
response to glucose concentrations. Thus, impaired β-cell function reflects a diminished 
response of the β-cell to glucose-stimulated insulin secretion, and insulin resistance is 
reflected by a diminished suppressive effect of insulin on hepatic glucose production. 
Since the method was first published it has been widely used and is simplified to: 
HOMA-IR=(fasting plasma insulin x fasting plasma glucose)/22.5. The denominator 
22.5 is a normalizing factor, i.e. the product of normal fasting plasma insulin of 5 
µU/ml and a normal fasting plasma glucose of 4.5 mmol/l= 22.5, so that an individual 
with “normal” insulin sensitivity has a HOMA-IR=1. There is also a newer, updated 
model, however the original model is the most widely used due to its simplicity. 
HOMA-IR data are typically not normally distributed and need to be logarithmically 
transformed when used. HOMA-IR has been used in >500 publications, and is 
recommended in large cohort studies, cross-sectional epidemiology studies and 
physiologic studies in the normal population (83). HOMA-IR is the most widely used 
surrogate measure in children, however the accuracy of HOMA-IR as well as of fasting 
insulin is low (84) and it is thus not recommended for screening purposes (66).  
 

3.3.2 QUICKI 

The Quantitative Insulin Sensitivity Check Index, QUICKI, was developed in 2000 
(81) with the aim of finding a new, simple test which could replace the clamp and 
FSIVGTT in large studies and in clinical practice. It is an empirically derived 
mathematical transformation of fasting glucose and insulin concentrations. Clamp and 
FSIVGTT studies were performed on 28 non-obese, 13 obese and 15 diabetic subjects. 
From these data a sensitivity analysis was carried out, and a novel index was 
determined which could be calculated using a single sample of fasting insulin and 
fasting glucose. A log transformation was included since the linear correlation to clamp 
data was improved when the skewed fasting insulin levels were log transformed. This 
correlation is however not maintained in diabetic subjects whose fasting hyperglycemia 
and impaired β-cell function is insufficient to maintain euglycemia. To account for this, 
log (fasting glucose) to log (fasting insulin) was incorporated into the formula. The 
reciprocal of this sum further transforms the data, generating an index which has a 
positive correlation with the clamp: 1/[log (fasting plasma insulin) + log (fasting 
plasma glucose).  The correlation of QUICKI to clamp results was reported to be high 
and it was concluded that it was a valid proxy measure of insulin sensitivity. As is the 
case for HOMA-IR, the advantage of using QUICKI lies in the simple and inexpensive 
procedure, however in children the use of fasting indices, including QUICKI, is not 
recommended (66).  
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4 OBESITY AND METABOLIC ABNORMALITIES IN 
CHILDREN 

Overweight and obesity are increasing health problems in children and adolescents 
worldwide. Based on measured height and weight in 1.6 million adolescent men in 
Sweden between 1969 and 2005, overweight tripled from 7.1% to 20.5%, obesity 
quintupled from 0.9% to 5.1% and morbid obesity increased ten-fold from 0.1% to 
1.3% (85, 86). Also, the morbidly obese (BMI≥35) as share of the obese group 
increased from 13% to 25% during the same period (86). In Sweden, data from a 
nationally representative survey performed in 2008 in 7-9 year-old children show a 
17% prevalence of overweight with a corresponding figure of 3% for obesity (87). 
Although there have been implications that this trend is levelling off (88), this is still 
highly alarming. The most established definition of overweight and obesity is the Body 
mass index (BMI), calculated as the weight in kilograms divided by the height in 
meters squared (kg/m2). Cut-offs for adults have been defined by the World Health 
Organization to define overweight (≥25 kg/m2) and obesity (≥30 kg/m2) respectively 
(89), whereas in children and adolescents gender and age specific cut-offs have been 
defined by the International Obesity Task Force as to relate childhood BMI to the 
adulthood counterpart (90).   
 
The complication of the metabolic syndrome has been increasingly recognized in 
children and adolescents, and has been reported to be as high as 50% in certain obese 
populations (91, 92). Until recently there has been no unified definition of the 
metabolic syndrome in the pediatric population, but the International Diabetes 
Federation (IDF) has now released such guidelines (93). A further study has suggested 
new criteria with age- and sex-specific cut-offs (94), and it is widely recognized that a 
consistent definition must be used. A recent study investigating the prevalence of the 
metabolic syndrome in European youth found this condition in 0.2% of 10-year old 
children and 1.4% of 15-year old children (95) using the IDF criteria. Although this is a 
low prevalence, a large proportion of the children (15-20%) had ≥2 risk factors or were 
centrally obese.  
 
In certain pediatric populations a very high prevalence of glucose metabolic 
disturbances has been documented, yet in Sweden the number of children with type 2 
diabetes is still low. However, in a yet unpublished Swedish study, impaired fasting 
glucose was found in 52.5% and impaired glucose tolerance in 20.6% of the obese 
children studied (n=139, personal communication Anna Mattsson). No cases of silent 
diabetes were found. Alarmingly, even in the youngest children (<10 years of age) 
impaired fasting glucose was found in 66.7% and impaired glucose tolerance in 14.3%. 
The prevalence of severe obesity with a BMI SDS score ≥2 and two or more criteria of 
the metabolic syndrome was found in 45%. As childhood metabolic syndrome often 
accompanies the growth transition with a three-fold increased risk of the metabolic 
syndrome in adulthood (96), this is especially concerning. Many of these children will 
thus be exposed to the adverse effects of obesity for a prolonged period of time, where 
puberty constitutes a particular risk period where physiological changes further 
decrease insulin sensitivity. Not only obese children are at risk for metabolic 
disturbances, but also children born small for gestational age, girls with polycystic 
ovary syndrome and children having undergone oncologic treatments among others. 
Early detection and treatment is thus crucial in order to reduce future morbidity and 
mortality.  
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5 NONESTERIFIED FATTY ACIDS AND INSULIN 
RESISTANCE 

Fat storage in the form of triglycerides in adipose tissue constitutes a major fuel reserve 
in the body. Breakdown of triglycerides into glycerol and nonesterified fatty acids 
(NEFAs) liberates energy substrates as well as mediates other important pathways, 
such as influencing insulin action and glucose metabolism, acting as transcription 
factors and regulating insulin production. The breakdown of triglycerides, termed 
lipolysis, is carried out in a step-wise manner in which diglycerides, monoglycerides 
and lastly glycerol and NEFAs are produced. One molecule of triglyceride results in 
one molecule of glycerol and three molecules of NEFA, which are then oxidized to 
yield energy in the form of ATP. Some NEFAs are re-esterified into new triglycerides 
within the adipocyte. Hormone sensitive lipase, which catalyzes the first step of the 
lipolysis process, is regarded as the rate-limiting step and is regulated hormonally. The 
hormonal regulation of lipolysis in the short term is by catecholamines, insulin and 
natriuretic peptides, whereas in the long term growth hormone has a regulatory role. 
Lipolysis is however also regulated by a number of different factors besides hormones: 
paracrine factors (cytokines, adenosine, prostaglandins), age, gender, nutrition, physical 
activity, adipose region and genetics (97). 
 
   

 
 

Figure 6. Genetic and environmental factors are involved in the pathogenesis of type II diabetes, a condition 
which is caused by a combination of insulin resistance and inadequate insulin secretion. The raised levels of 
glucose and NEFAs seen in this condition give rise to gluco- and lipotoxic effects on tissues, leading to further 
deterioration of insulin sensitivity and insulin secretory capacity. 

Historically, type 2 diabetes has been considered to revolve around a glucose-insulin 
axis. It has however become apparent that NEFAs also play a very important role in the 
development of insulin resistance and thus eventually type 2 diabetes (Figure 6).  As 
described above, NEFAs are released from adipocytes during periods of low energy 
intake. However, if plasma NEFA levels are elevated for more than a few hours, insulin 
resistance will develop (98). This may have desirable physiological effects such as 
preserving carbohydrate for use by vital tissues such as the brain, or during pregnancy 
when maternal relative insulin resistance preserves glucose for the growing fetus. 
However, in abundance of energy, the NEFA induced insulin resistance becomes 
counterproductive and has pathological consequences. The exact mechanism by which 
NEFAs induce insulin resistance in skeletal muscle is not known. The Randle cycle 
(99), first described in 1963, hypothesized that glucose and NEFA levels have an 
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inverse reciprocal relationship, so that glucose uptake is reduced when tissue energy 
needs are being met by NEFA oxidation and vice versa (Figure 7). The oxidation of 
NEFAs was thought to result in reduced glucose oxidation and increased levels of 
intracellular citrate, which would decrease glycolysis and glucose uptake. The Randle 
cycle has only been partially confirmed by in vivo and in vitro studies (98, 100-102), 
however, and other mechanism have been sought.  
 

 
Figure 7. Schematic representation of how glucose and NEFAs interact in skeletal muscle, such that raised 
NEFA levels leads to the preferential oxidation of this substrate instead of glucose, and vice versa.  

A further hypothesis is that NEFAs induce insulin resistance in human skeletal muscle 
at the level of insulin-stimulated glucose transport or phosphorylation by impairing the 
insulin-signaling pathway (103-105). The accumulation of metabolites such as 
diacylglycerol (DAG), an intermediate of triglyceride metabolism, is thought to play an 
important role. DAG activates protein kinase C (PKC) (106), which phosphorylates 
serine and threonine residues on the insulin receptor (107, 108) and IRS-1 (108, 109), 
and this may interfere with insulin signaling. The activation of the nuclear factor (NF)- 
κB pathway has also been shown to be affected by increasing DAG levels 
intracellularly (110). This pathway is linked to NEFA-induced insulin resistance in 
rodents (41, 111), and also plays a role in the development of coronary artery disease 
(112). NEFAs may also decrease insulin sensitivity by inducing oxidative stress (113), 
in which reactive oxygen species activate PKC and the NF-κB pathway, again leading 
to decreased insulin sensitivity (110, 114).  
 
NEFAs also have direct effects on the liver. Insulin suppresses hepatic glucose 
production mainly by inhibiting glycogenolysis (115). NEFAs induce insulin resistance 
in the liver by inhibiting the suppression of glycogenolysis by insulin, leading to 
hepatic overproduction of glucose and thus hyperglycemia (116, 117). Insulin also 
stimulates NEFA uptake in the liver and production of intracellular triglycerides, and 
hepatic insulin resistance thus leads to elevated plasma NEFA levels. A general 
increase in visceral fat could also contribute to insulin resistance by an increased 
amount of inflammatory mediators being secreted from the adipocytes, such as tumor 
necrosis factor (TNF)-α (118), interleukin-6 (119), resistin (120), leptin (121) and 
adiponectin (122).  
 
Besides having effects on insulin sensitivity, NEFAs also have effects on insulin 
secretion. Since NEFAs can cause insulin resistance in skeletal muscle as well as in the 
liver, it would be expected that all overweight or obese subjects, who to a great extent 
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have raised levels of NEFAs, would have elevated glucose levels. This is however not 
the case. The reason for this seems to be that NEFAs are potent insulin secretagogues 
and can compensate for the insulin resistance they produce in obese insulin-resistant 
subjects with intact β-cell function, since acutely raised NEFA levels stimulate insulin 
secretion (123), but also extended NEFA elevations potentiate glucose-stimulated 
insulin secretion in healthy subjects (124-126). In subjects who are genetically 
predisposed to type 2 diabetes, however, NEFAs are not fully able to compensatorily 
increase insulin secretion for the insulin resistance they induce. Thus, NEFAs play an 
important role both for the secretion and sensitivity of insulin. 
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6 WHAT IS MODELING? 

Models are simplified representations of systems and can be used for the study of 
complex processes, which occur simultaneously (127). The different processes and 
their interactions can be described in mathematical terms by equations. The 
simultaneous solving of these equations becomes a representation of the behavior of the 
system, which can then be used to predict or describe the system.  
 
The rationale for developing and using models is that it may be too costly, impossible 
or impractical to probe the real system. Modeling is the process of developing a model 
or set of equations to simultaneously represent the structure and behavior of a system. 
Modeling biological systems is based on observations of the system, for example to 
determine the kinetics of a certain drug after administration (Figure 8). As the structure 
of a biological system most often is unknown, a model developed to fit data from the 
system also becomes a hypothesis of how the system works, and the model will be 
refined and evolve as further studies provide more evidence on the underlying 
construction. There may be some limitations to modeling biological systems, such as 
incomplete data due to limitations on sampling sites, sampling times and number of 
studies that can be performed. Further, data may be imprecise and there may be 
constraints related to the biology of the system or to the experimental techniques. 
 

 

 

Figure 8. Modeling is based on using the observed response of a system to determine how the system works 
after a given input.  

 

Within the frame of this thesis we have developed and validated two compartmental 
models. These assume that the compound or compounds of interest, in this case 
glucose, insulin, C-peptide and NEFAs, are distributed throughout the system in 
discrete entities, called compartments. A compartment is considered to contain 
kinetically indistinguishable material and may be defined in terms of a physical space 
(such as the plasma pool for example) or in conceptual terms (such as all particles that 
turn over at a specified rate).  
 

6.1 BUILDING A MODEL 

There are a number of steps involved in the development of a biological model. A 
schematic representation of the modeling process is shown in Figure 9, and the steps 
will be described in this section with the C-peptide model of Study III used as an 
example. As in research in general, the modeling process starts by identifying a 
problem or scientific question, which is then formulated to yield a hypothesis. In this 
case, the identification of a means of assessing insulin secretion by the use of C-peptide 
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is the problem we attempt to solve. We then define the system we are going to study, in 
this case the kinetics of C-peptide in a healthy normal weight population. We here 
define and set the boundaries for the investigation, such as the time (first twenty 
minutes of an FSIVGTT), the inputs and outputs (C-peptide concentrations and 
parameters). Also, we identify the purpose of the model, as this will form a basis of 
how the model should be developed. In the C-peptide model, the purpose is to calculate 
the secretion rate of C-peptide. When these initial conditions are set, the literature 
should be searched for existing models so that the model can be tested against new 
data, as opposed to developing a completely new model which may turn out to have 
only minor differences to older ones. In our case, the existing Boston C-peptide model 
was further elaborated for our purposes. In case a completely new model must be 
developed this can be done either by starting with the simplest possible model and 
adding features successively to fit the data, or by developing a model including all 
known information, then scaling it down stepwise to fit the data and lastly validate the 
model in another data set.  
 
 

 
 

Figure 9. The modeling process starts with defining the actual problem to be solved. Following a number of 
steps either a new model is established, which contributes valuable knowledge and can be tested in other 
populations, or the model is rejected and must be reformulated and go through the modeling process once 
again. 

In the next step, experimental data (C-peptide samples from our 15 study subjects) are 
to be compared to the model predictions. This is done by converting the model into a 
format which can be solved by a modeling computer package. In the present study, the 
so-called WinSAAM modeling program has been used. The following needs to be 
entered into the modeling program: model equations, parameters and their initial 
values, values for compartments at the start of the study, data, link between data and a 
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corresponding component of the model, possible changes in the experimental 
conditions of the study, conversion of units for observed data and calculated values and 
lastly functions. When the model has been set up and solved, comparison is made 
between observed data and model-calculated values. Initially, this can be done by 
graphically comparing the shape of the predicted curve to the observed data. Fitting 
data may be done manually by testing multiple values for a given parameter to see how 
this affects the model fit. This makes it easier to understand all parts of the curves and 
of the model. Once a model fit is obtained which seems close, a process of iteration is 
carried out which fits the data further. Refining the model may then have to be done to 
resolve possible errors and differences between observed and modeled data. When the 
fitting process is deemed successful, it needs to be critically evaluated with respect to 
how well the parameters are determined and the correlation between parameters. This 
can be done by looking at standard deviations of the parameters and making sure these 
are limited. When the model is finally consistent with the experimental data, it can be 
tested under different conditions as well as be published in order to be available for 
others to test and use.  
 

 

6.2 WHY MODEL BIOLOGICAL SYSTEMS? 

Modeling is increasingly being applied to the study of biological systems. The 
challenge in this approach is not to set up an arbitrary function which happens to fit the 
data, but to use modeling to understand the biological system being studied. Modeling 
can be used to determine the structure of a system, meaning how the different parts of 
the system relate to one another. This relationship may be between species of an 
ecological system, a nutrient in blood and some specific tissue, or a certain metabolite 
distributed throughout a cell. A model can be used to determine the relationship as well 
as the sequence of events which occur between various substances of interest. This 
information may in some systems be known already, whereas in others the structure 
can only be inferred from the data. Also, models can be used to determine parameters 
of interest, such as the size of a plasma pool, the clearance rate of a compound of 
interest, or transport rate of a substance between compartments. In this case it is 
important that the model is consistent with known biological information, so that 
parameters can be accurately assessed. Another purpose of a model may be to 
determine the interactions of parts of a system, for example linking the metabolism in 
one tissue with the metabolism of another, or to link the metabolism of a nutrient in one 
form with the metabolite in a second form.  
 
When a model exists, it may be used to simulate and predict levels of a drug in the 
blood following various dosing regimens. The response of the system to the various 
inputs can be simulated on the short as well as long term. A useful application in this 
sense may be simulating likely scenarios before commencing complicated and 
expensive experimental data collections. This will not replace the actual experiment, 
but help avoid experiments with insufficient or inappropriate data, which in the end will 
not hold for testing the hypothesis. Another use for biological models may be to help 
identify sites of change in a given system when studied under different conditions. The 
varying conditions may result in large changes in the kinetic curves and in many 
pathways of the system, or it may only cause a subtle change in the data caused by a 
large change in a single parameter. In this case, models help to identify which 
parameters change between the conditions and the degree of change. Conditions may 
be a healthy vs. a diseased subject, a treated vs. untreated subject, or a normal vs. a high 
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intake of a specific nutrient.  Lastly, models may provide a valuable tool for education 
purposes, such as demonstrating the properties of a system, teaching principles such as 
feedback loops or saturation kinetics and to test theories. 
 

6.3 WHAT IS AN IDEAL MODEL? 

As described, we create models to help examine our understanding of systems. Once a 
model has been created and seems to adapt to different circumstances of application, 
one needs to look at exactly how efficiently the model actually adapts to different 
settings and how the setting-specific index values sensibly characterize the situations. 
This involves investigating how well a model seems connected to the domains of its 
origin. On the one hand, parameters may be closely linked to the empirical processes 
visible in the data from which the model was developed. On the other hand, the 
parameters may be a property of the underlying hypothesis captured in the structure of 
the model, and possibly only loosely related to the original data. In the first case, where 
parameters are very tightly connected to the empirical setting, such models may serve 
little purpose beyond offering a summarization of the data. In the second case, where 
parameters are very loosely connected to the empirical setting, the parameters may 
describe how well the model, rather than the biological system studied, responds to 
different circumstances. Neither of these two alternative situations offers much 
understanding of the system. Instead, the ideal would be to see some relationship 
between the model parameters and their empirical counterparts, yet not an absolute 
concordance between them. Also, there should be some basis linking a model to other 
models in the same domain. In absence of this, one must wonder if model indices really 
bear any association to the physical system under investigation.  
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7 CLINICAL APPLICATION: LONG-TERM CANCER 
SURVIVORS 

Insulin resistance is a known feature of obesity, type 2 diabetes, polycystic ovary 
syndrome among other clinical states. Beginning in the late 1980s, several studies have 
also shown an increased risk of the metabolic syndrome, with insulin resistance as a 
common component, in long-term survivors of first childhood cancer (128), and later 
also survivors of adult-onset cancer (129). With the increasing survival rates, this group 
constitutes an at-risk population of growing importance. Many studies have focused on 
one or more components of the metabolic syndrome, with few reports on the syndrome 
as a whole (130). Studies have found insulin resistance, hyperinsulinemia and impaired 
glucose tolerance after several childhood malignancies (128, 131-135), and patients 
treated with stem cell transplantation and total body irradiation seem to be at a 
heightened risk (136). Differences in cancer types and treatment strategies might lead 
to differences in etiology, however combining knowledge of the metabolic syndrome 
gained from studies of survivors of childhood and adult cancers could contribute 
valuable insight into the pathophysiology of the metabolic syndrome and intervention 
strategies thereof. 
 
It is not clear what causes the metabolic derangements in cancer survivors. Hormonal 
changes which may contribute include damage to the hypothalamus-pituitary axis, 
leading to deficiencies in growth hormone, thyrotropin, gonadotropin and 
adrenocorticotropin and thus secondary deficiencies in thyroid hormones, sex 
hormones and adrenal hormones, all of which are associated with the metabolic 
syndrome or its components. The hypothalamus and pituitary are very sensitive to 
radiation, which is a common treatment in childhood cancer and may explain some of 
the disturbances. The specific effects of chemotherapy on the hypothalamus and 
pituitary have not been studied extensively, but there may be effects of chemotherapy 
contributing as well.  
 
The development of the metabolic syndrome among cancer survivors has also been 
shown to be associated with signs of early atherosclerosis (137, 138), which may lead 
to an increased risk of cardiovascular disease. There is also a direct cardiovascular 
toxicity of some cancer treatments, which further elevates this risk. Further, survivors 
of some childhood cancers have been shown to have reduced energy expenditure 
during exercise and rest (139, 140), as well as decreased physical activity (141), which 
may contribute further to obesity and insulin resistance.   
 
In conclusion, long-term survivors of childhood cancers constitute a group with an 
increased risk of the metabolic syndrome including insulin resistance, the exact 
background of which is not known. Currently, there are no specific guidelines for the 
treatment of these disturbances in cancer survivors and recommendations are thus the 
same as for the general population. The identification of a candidate etiological factor 
might however aid in developing more specific means of diagnosis and therapies and 
thus reduce complications. The fifth study of this thesis investigates insulin sensitivity 
and insulin secretion in long-term survivors of childhood hematologic malignancies 
with respect to body composition and hormonal disturbances in growth hormone and 
adipokines.  
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8 RATIONALE FOR PERFORMING STUDIES 
INCLUDED IN THIS THESIS 

8.1 STUDY I 

A number of methods of insulin sensitivity assessment have been developed, the most 
validated ones being relatively complicated, time- and labor consuming to perform, 
especially in children for whom a long fast, several hours of bed rest and multiple blood 
samples may be difficult. Establishing a robust yet simple test for insulin sensitivity 
assessment is attractive for both patients and caretakers. Less invasive, simple methods 
relying on only a single sample of fasting glucose and insulin have thus been developed 
(81, 82). Controversy however exists regarding the validity of these simple measures, 
and validation studies have been performed in various populations (see Table 7). Obese 
children and adolescents are an at-risk population for developing insulin resistance, and 
the validation of simpler fasting indices in this group is of great clinical interest. Study I 
was thus performed in order to investigate the validity of fasting insulin, HOMA-IR 
and QUICKI as proxy measures of insulin sensitivity as compared to the FSIVGTT-
MMOD.  
 

8.2 STUDY II 

Since the development of fasting indices HOMA-IR and QUICKI, these two methods 
have been compared in a number of publications (see Table 7). However, where some 
have found these methods to be interchangeable, others have found one or the other 
method to perform better and have promoted the use of HOMA-IR before QUICKI or 
vice versa. Further, some authors find fasting insulin to be an equally good measure of 
insulin resistance as fasting indices in itself, whereas others state that calculating 
indices is superior to merely using fasting insulin. There have also been different views 
on the necessity of taking three fasting samples and using the mean for calculating 
indices as opposed to using a single sample. Study II was performed to test the 
hypothesis that fasting indices HOMA-IR and QUICKI are interchangeable. Further, 
fasting insulin was compared to fasting indices to establish if adding glucose to a 
formula adds any information. Lastly we investigated the quality of single sampling to 
using the mean of repeated samples.  
 

8.3 STUDY III 

Type II diabetes develops when the pancreatic β-cells fail to secrete enough insulin to 
compensate for the insulin resistance in peripheral tissues. Assessing insulin secretion 
is thus important in evaluating the progression from a pre-diabetic to a diabetic state. C-
peptide and insulin are secreted from the pancreas in equimolar amounts, yet whereas 
insulin is extracted by the liver to some extent C-peptide does not undergo significant 
hepatic extraction. C-peptide can thus be used as an indirect marker of insulin 
secretion. Several C-peptide models have been developed using different mathematical 
approaches, a number of these using C-peptide secretion during the FSIVGTT. There 
are limitations to each of these previous studies, such as the complexity of the model or 
the need for additional experiments to supply C-peptide kinetics data (142). In study III 
a C-peptide model was developed for the indirect assessment of insulin secretion 
during the insulin modified FSIVGTT. The insulin modified protocol is preferable in 
settings where the subject’s endogenous insulin production may be insufficient to 
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handle the glucose load (67, 143). In order to be clinically useful a model for this 
purpose should be user-friendly and easy to implement. Study III was thus performed 
to develop a model with the above characteristics, and to validate this model by 
comparison to previous work in this area.  
 

8.4 STUDY IV 

Levels of NEFA affect insulin sensitivity and elevated NEFA levels are often seen in 
pathological conditions such as diabetes, obesity, hypertension and coronary heart 
disease (144). Glucose, insulin and NEFA levels are interrelated and show a 
characteristic pattern during the FSIVGTT. A model of NEFA kinetics has the potential 
to make a contribution to the understanding of NEFA metabolism in different 
pathological states. A model has previously been reported for this purpose, however it 
has not been tested and validated on a subject level but only on mean data (145). There 
is a great variability among different subjects regarding the NEFA response, and for a 
model to be valid it should be able to fit this diversity of responses. Study IV thus 
provides a subject level validation of a newly developed NEFA model which can 
describe the major features of the NEFA response to an FSIVGTT. 
 

8.5 STUDY V 

As therapeutic strategies for childhood cancer have been successively improved, the 
population of long-term survivors of cancer has grown. This population is at risk for 
developing metabolic abnormalities, including obesity, insulin resistance, hypertension 
and dyslipidemia (136). The exact mechanism behind the adverse metabolic effects of 
cancer treatment is not known, but identifying the etiological background would make 
it possible to target interventions. Persons having undergone stem cell transplantation 
(SCT) seem to be at an increased risk of developing glucose metabolic derangements 
(131, 132, 146-154). In general, insulin resistance is closely linked to obesity, however 
most SCT survivors are normal weight when assessed by BMI (151, 155). The role of 
obesity in insulin resistance development is thus not clear in this group and other 
factors may be more important, or possibly BMI may not be an adequate measurement 
of obesity in this group (156). Study V was thus performed to investigate insulin 
sensitivity, insulin secretion and body composition in a cohort of long-term survivors of 
childhood cancer as compared to healthy matched controls.  
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9 OBJECTIVES  

9.1 GENERAL OBJECTIVES 

The overall aims of this thesis were  
 

1. to examine existing methods of insulin sensitivity assessment,  
 

2. to develop new methods for the assessment and further understanding of insulin 
secretion and sensitivity and  
 

3. to apply these methods in a clinical setting. 
 

9.2 SPECIFIC OBJECTIVES 

Five specific questions have been addressed in this thesis: 
 

1. What is the validity of HOMA-IR, QUICKI and fasting insulin as proxies for 
insulin sensitivity as measured by the sensitivity index of the FSIVGTT-
MMOD? 

 
2. Is there a rationale for further comparisons of fasting indices and fasting insulin 

as proxies for insulin sensitivity assessment? 
 

3. Is it possible to develop an accurate yet simple model for insulin secretion 
assessment by the indirect use of C-peptide during the insulin modified 
FSIVGTT? 

 
4. What is the subject level validity of a novel model of NEFA kinetics during the 

FSIVGTT? 
 

5. What are the long-term consequences of stem cell transplantation including 
total body irradiation in terms of insulin sensitivity, insulin secretion and 
metabolic profile? 
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10 SUBJECTS AND STUDY DESIGN 

10.1 STUDY I-II 

Studies I-II included a population of 191 obese children and adolescents (109 females, 
82 males) who were all investigated at the National Childhood Obesity Center at the 
Karolinska University Hospital in Huddinge, Stockholm, Sweden. These subjects were 
all referred to the center because of their obesity, and were investigated as in-patients 
for one week aiming to determine causes and complications to their obesity. During 
this week numerous assessments were performed including an FSIVGTT, body 
composition assessment using DEXA, blood sampling, and assessment of pubertal 
stage and presence of acanthosis nigricans. Heredity for obesity, diabetes mellitus and 
cardiovascular disease was documented. Clinical characteristics are shown in Table 2. 
The sample was stratified by sex, pubertal status and median of Si for the statistical 
analyses.  
 
The Regional Ethics committee in Stockholm granted ethical approval for the studies, 
and parents and children gave informed consent. 
 

Table 2. Clinical characteristics of the study population for studies I and II.  

Variable Males (n=82) Females (n=109) Total (n=191) 
Age (years) 13.4±2.9 14.2±2.9 13.9±2.9 
Weight (kg) 100.9±32.9 97.8±21.4 99.1±26.8 
Height (cm) 164.2±15.7 161.3±10.9 164.0±13.2 
BMI (kg/m2) 36.5±6.7 37.3±5.7 36.9±6.2 
BMI-SDS 6.4±1.8 5.9±1.4 6.1±1.6 
Sensitivity index  
(10-4min-1 /(µU/ml)) 

0.36±0.25 
(0.30; 0.08-1.18) 

0.39±0.27 
(0.33; 0.08-1.65) 

0.37±0.26  
(0.32; 0.08-1.65) 

HOMA-IR 3.6±2.4 
(2.8; 1.2-14.4) 

3.7±2.5  
(3.3; 0.9-21.8) 

3.6±2.4 
(3.2; 0.9-21.8) 

QUICKI 0.33±0.03  
(0.34; 0.27-0.39) 

0.33±0.02  
(0.33; 0.26-0.41) 

0.33±0.02  
(0.33; 0.26-0.41) 

Fasting insulin 
(pmol/l) 

113.2±77.4  
(87.0; 35.0-460.0) 

112.8±56.7  
(106.0; 26.0-458.0) 

113.0±66.2 
(97.0; 26.0-460.0) 

Fasting glucose 
(mmol/l) 

4.4± 0.4  
(4.4; 3.5-5.6) 

4.3±0.5  
(4.2; 3.1-6.2) 

4.3±0.5 
(4.3; 3.1-6.2) 

Results shown as mean±SD, (median; minimum-maximum) 
BMI-SDS as described by Rolland Cachera et al (157) 
HOMA-IR= Homeostasis model assessment, as described by Matthews et al (82) 
QUICKI= Quantitative Insulin Sensitivity Check Index, as described by Katz et al (81) 
 

10.2 STUDY III-IV 

Studies III-IV included 15 healthy subjects (8 males, 7 females), 20-30 years of age 
who were all recruited by advertisement among medical students in the university 
hospital. Inclusion criteria were normal weight, healthy not taking any medication, no 
current pregnancy and no smoking. Clinical characteristics are shown in Table 3. 
Demographic data were collected and all subjects underwent an insulin modified 
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FSIVGTT and a hyperinsulinemic euglycemic clamp on two separate days. The 
FSIVGTT was complemented by C-peptide and NEFA samples at all sampling points.  
 
The Regional Ethics committee in Stockholm granted ethical approval for the studies, 
and all subjects gave written informed consent.  
 

Table 3. Clinical characteristics of the study population for studies III and IV.  

Variable Males (n=8) Females (n=7) Total (n=15) 
Age (years) 24.1±2.4 23.6±2.3 23.9±2.3 
Weight (kg) 72.9±8.4 55.7±6.5 64.9±11.5 
Height (cm) 181.1±6.1 167.9±6.1 174.9±9.0 
Body surface area 
(m2) 1.9±0.1 1.6±0.1 1.8±0.2 

BMI (kg/m2) 22.2±1.8 19.8±1.7 21.0±2.1 
Sensitivity index  
(mU/L

-1
 min

-1
) 

6.6±2.0 10.2±2.6 8.3±2.9 

Acute insulin 
response 313.7±67.3 308.7±163.5 311.3±117.2 

Glucose effectiveness  0.03±0.01 0.07±0.12 0.05±0.09 
Results shown as mean±SD 
 
 

10.3 STUDY V 

Long-term stem cell transplant survivors (defined here as alive 10 years after stem cell 
transplantation, SCT) treated with total body irradiation for acute lymphoblastic 
leukemia or lymphoblastic lymphoma were included in the study. These were recruited 
from those patients having undergone the pediatric SCT program at the University of 
Uppsala from October 1985 to June 1999. The cohort consisted of 18 long-term SCT 
survivors, 15 of which had been autografted and three of which had received an 
allogenic graft. Control subjects were selected by sending letters to 10 potential control 
subjects for each patient, randomly selected from a computerized registry of the 
population in Uppsala County. Controls were matched for age and sex. Of those who 
accepted by mail, the first one to reply to a phone call and deemed eligible for the study 
was chosen. Inclusion criteria were no known diseases, no medication other than 
contraceptives, no current pregnancy and no smoking. If none of the 10 controls 
accepted or were deemed eligible, a new set of 10 controls was selected and the process 
repeated. Clinical characteristics are shown in Table 4.  
 
Patients and controls were investigated at the University Hospital in Uppsala. During 
two consecutive days and one night, subjects underwent an FSIVGTT, an OGTT, 
DEXA as well as blood sampling for insulin, c-peptide, IGF1, IGFBP3, CRP, leptin 
and adiponectin. A GH curve was obtained by sampling every 30 minutes during the 
night (12 h) with the maximum peak value of GH used as a measure of GH secretion 
capacity.  
 

The Regional Ethical Review Board of Uppsala University granted ethical approval of 
the study, and all subjects gave written informed consent. 
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Table 4. Clinical characteristics of the study population in study V.  

Variable Patients median 
(interquartile range) 

Controls median 
(interquartile range) 

p 

Fasting insulin 
(mU/L) 

12.2 (7.3) 6.0 (2.8) 0.002 

HOMA-IR 2.2 (1.7) 1.2 (0.5) 0.005 
Sensitivity index 
(mU/L

-1
 min

-1
) 

2.98 (1.99) 4.54 (2.02) 0.043 

Acute insulin 
response 

717 (754) 342 (258) <0.001 

BMI (kg/m
2
) 21.6 (5.6) 24.5 (4.8) 0.093 

Lean body mass 
(kg) 

40.7 (12.5) 54.5 (18.6) <0.001 

%fat mass 34.9 (16.3) 24.3 (15.6) 0.011 
GH

max 
(mU/L) 9 (12.9) 20.7 (16.3) 0.002 

Leptin (µg/L) 18 (45.7) 4.8 (9.7) <0.001 
Results shown as median (interquartile range) 
HOMA-IR= Homeostasis model assessment, as described by Matthews et al (82) 
GHmax= Growth hormone maximum peak 
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11 MEASUREMENTS 

11.1 FSIVGTT 

The FSIVGTT was performed at 08:00 a.m. following an overnight fast. One 
peripheral intravenous catheter was inserted in each arm. Three fasting baseline 
samples for glucose and insulin were drawn at times -15, -10, and -5 minutes. At time 
0 minutes, 0.3 g glucose per kg body weight was administered intravenously over one 
minute as 30% dextrose. At time 20 minutes, 0.02 U insulin per kg body weight was 
administered as an intravenous bolus dose. Blood samples for determination of 
glucose and insulin were drawn at times 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 25, 
30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, and 180 minutes. MINMOD version 
3.0 (Richard Bergman, 1994) was used to calculate the Si in Studies I-II and 
MINMOD Millennium (158) was used for studies III-V.  
 

11.2 HYPERINSULINEMIC EUGLYCEMIC CLAMP 

The hyperinsulinemic euglycemic clamp was performed after an overnight fast at the 
Karolinska University Hospital in Solna. A peripheral catheter was inserted in each 
arm, one for sampling and one for infusion. Insulin was administered intravenously at a 
fixed infusion rate of 1.0 mU/kg/min. Glucose (200 mg/ml) was simultaneously 
administered at a variable rate aiming to maintain plasma glucose at 5.0 mmol/L. 
Insulin and glucose testing was performed every 10 minutes during the 120 minute 
clamp. 
 

11.3 MODELING PROCEDURE 

After data collection, modeling was performed using the WinSAAM program (can be 
downloaded for free from http://www.winsaam.com). In Study III, a C-peptide model 
was created investigating the C-peptide secretion during the first 22 minutes of the 
FSIVGTT. The modeling technique is based on numerical deconvolution as outlined by 
Cutler (145, 159, 160) and employs a 2-compartment model to describe C-peptide 
disposition (161-164). This approach assumes that pancreatic C-peptide secretion 
during the FSIVGTT is described by two simultaneous processes: a constant basal C-
peptide secretion and a first-phase C-peptide secretion described by a Gaussian 
function (142). The Gaussian function was chosen as it has been experimentally 
verified in vivo as describing the secretion profile and the rate of insulin secretion 
(142).  The parameters of the model are the following: P1 (picomoles per liter per 
minute) represents the height of the first-phase secretory pulse, P2 (per minute2) is 
related to the inverse of the pulse width at half-peak height, P3 (minutes) represents the 
time of the peak of the first-phase C-peptide secretion rate, P6 (picomoles per liter) is 
the initial C-peptide concentration and P7 (picomoles per liter per minute) is a Gaussian 
function representing a first-phase C-peptide secretion pulse. 
 
Results were validated by extrapolating the model to the first 22 minutes of the C-
peptide response from the 8 subjects in the original description of the model, who had 
all undergone a full-length standard FSVIGTT. This was done by removing the second 
phase from the C-peptide secretion model and exploring the adequacy of a secretion 
sub-model comprising a first phase Gaussian pulse secretion identical to the subject’s 
phase in the full (240 minute) study and a constant secretion sub-model. Only the 



 

 33 

baseline secretion was allowed to adjust to accommodate the potential intrusion of the 
second (omitted) secretion phase. The allowance of baseline secretion adjustment could 
thus accommodate a possible overlap of the phases. The results of the current study 
were then re-fitted using just the first 22 minutes of the C-peptide data in order to show 
that valid and plausible parameters in agreement with previously reported data could be 
obtained. 
 
In Study IV, a recently published NEFA model (145) was validated on a subject level 
by testing the existing model on the 15 study subjects’ individual NEFA profiles. The 
general response of NEFAs to a glucose challenge is shown in Figure 10. The most 
important parameters of the model are SFFA (µmol/l/min) and KFFA (%/min). SFFA is a 
parameter describing the rate of provision of NEFA to the plasma pool. After an 
overnight fast, the assumption is that intestinal absorption of NEFAs is negligible. SFFA 
thus primarily represents the rate of lipolysis of adipose tissue and SFFA is the potential 
maximum rate of lipolysis. KFFA describes the rate at which NEFAs leave the plasma 
pool, and again, since patients are fasted, KFFA primarily represents oxidation of fatty 
acids. To test the plausibility of the model, static parameters were developed from the 
dynamic curves using statistical software. The static counterpart of KFFA, termed kffa, 
was determined from the slope of ln(NEFA) during the 10 minutes preceding the nadir 
of NEFA levels (shown in Figure 10). The static counterpart of SFFA, termed sffa, was 
determined by multiplying basal NEFA level, kffa and the linear NEFA incline 
following the nadir (shown in Figure 10). The relationship between the dynamic 
parameters and their static counterparts as well as MINMOD indices were then 
investigated using regression analysis.  
 
 
 

 
 

Figure 10. Typical NEFA curve during an intravenous glucose challenge. As glucose is injected, NEFA levels 
decline to a nadir, then slowly return to baseline and may also rebound above baseline levels. The derivation of 
the static parameters kffa and sffa also shown in the graph. 

11.4 BIOCHEMISTRY 

Samples from studies I-IV were analyzed at the accredited laboratory of the Karolinska 
University Hospital in Huddinge. For studies I-II, fasting insulin was analyzed using 
radioimmunoassay Insulin RIA 100 (Pharmacia Diagnostics AB, Uppsala, Sweden). 
For studies III-IV insulin was analyzed with electrochemiluminescense immunoassay, 
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ECLIA at Modular E (Elecsys, Roche Diagnostics, Scandinavia AB). The proinsulin 
cross reactivity with insulin ECLIA is 0.05 % according to the manufacturer. C-peptide 
was analyzed with electrochemiluminescense immunoassay, ECLIA (Elecsys, Roche 
Diagnostics, Scandinavia AB). Glucose was analyzed with the hexokinase enzymatic 
method Glukos HK (Roche) using a Roche Modular P-instrument. NEFAs were 
analyzed at the Centre for Inherited Metabolic Diseases at the Karolinska University 
Hospital in Huddinge with a Waco kit called NEFA-HR(2) on a Thermo T20xti. This is 
an enzymatic method with spectrophotometric detection using oleic acid as standard.  
 
For study V CRP, leptin, adiponectin and GH were analyzed at the accredited 
laboratory at the Uppsala Academic Hospital. CRP was analyzed with an antigen-
antibody complex method with spectrophotometric detection using the CRP Vario kit 
on an Architect instrument (Abbott). Leptin and adiponectin were analyzed using 
Human Leptin ELISA kit (LINCO) and Human Adiponectin ELISA kit (LINCO), 
respectively on a Wallac 1420 Multilabel Counter Viktor2 (Perkin Elmer). GH was 
analyzed with an electrochemiluminescense immunoassay method using a kit from 
Siemens MSD AB on a DCP Immulite 2500 instrument. IGF1 and IGFBP3 were 
analyzed at the Karolinska University Hospital using an Immulite 2000 assay 
(Siemens), which is a chemiluminescent immunometric assay.  
 

11.5 SEXUAL MATURATION, ANTHROPOMETRY AND BODY 
COMPOSITION MEASUREMENTS 

Sexual maturation in Studies I-II was determined by a pediatrician according to Tanner 
criteria (165, 166). Genital development in boys and breast development in girls were 
used for classification into pubertal groups. In Study V, having reached final height was 
regarded as a sign of completed puberty. 
 
In all studies, height and weight were measured in the morning. BMI was calculated as 
kg/m2. In Studies III-IV, body surface area was calculated as described by Du Bois 
(167). In Study I-II, subjects underwent DEXA assessment at the Karolinska University 
Hospital in Huddinge using the equipment from Lunar Radiation, Madison, WI, USA. 
In Study V, DEXA was performed at the University Hospital in Uppsala using Lunar 
Radiation, Madison, WI, USA.  
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12 STATISTICAL ANALYSIS 

Studies I-II and V were analyzed with the help of SPSS (version 14.0, SPSS inc., 
Chicago, IL, USA), studies I-II also with STATA (version 9.0, College Station, TX, 
USA) and Microsoft Excel including the application Analyse-It. Studies III-IV were 
analyzed using STATA (version 9.0, College Station, TX, USA). The statistical 
methods that have been used in this thesis are presented in Table 5. 
 

Table 5. Statistical methods used in each substudy respectively. 

Statistical method Study  
I 

Study  
II 

Study 
III 

Study 
IV 

Study  
V 

Descriptive statistics x x x x x 

Linear regression x x x x x 

Pearson’s correlation 
coefficient 

x x    

Spearmans’s correlation 
coefficient 

  x x x 

ROC analysis  x    

Bland-Altman  x    

Wilcoxon signed rank test     x 

Mann Whitney U test     x 

Fisher’s exact test     x 

McNemar test     x 
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13 RESULTS AND DISCUSSION 

In this thesis several aspects of insulin resistance have been explored, covering both 
clinical (studies I-II and V) and methodological aspects (studies III-IV). Existing and 
novel ways of insulin sensitivity assessment and insulin secretion have been 
investigated, and a clinical application in an at-risk population described.  
 
Studies I-V are reprinted at the end of this thesis. In the following section the main 
findings of the studies will be discussed including strengths, limitations and future 
directions.  
 

13.1 STUDIES I-II: USING FASTING INDICES IN INSULIN SENSITIVITY 
ASSESSMENT 

Although it is clear that insulin resistance is highly related to obesity and 
cardiometabolic risk in children (168), it is not clearly established how insulin 
resistance in childhood should be assessed, in which clinical disorders it is present and 
whether it can be prevented and treated (66). Although relatively extensively used and 
validated in adults, the validity of HOMA-IR and QUICKI has been subject to debate 
in children and adolescents. Further, there is controversy regarding which of these 
indices best reflects the insulin sensitivity in a subject, and whether fasting insulin in 
itself is just as good a measure as fasting indices. These issues constitute the 
background of Studies I-II.   
 
The major conclusion of Study I was that fasting indices should not be used in obese 
children and adolescents, or at least be used with caution. We base this on the poor 
validity of fasting indices in subgroups of our study. We found sex dependent 
explanatory power of Si, with generally higher explanatory power in males than in 
females. Also, the validity varied with pubertal stage with highest correlations in 
pubertal groups in both sexes (Table 6). Further, the validity was influenced by the 
degree of insulin sensitivity in females: while variations in HOMA-IR explained 33.7% 
of the variation in Si for subjects with high Si (insulin sensitive subjects) (p<0.001), the 
corresponding number for subjects with low Si (insulin resistant subjects) was only 
3.2% (p=0.197). Fasting insulin explained 14.1% of the variation in Si in female 
subjects with high Si, (p<0.004), with corresponding number for subjects with low Si 
being 0.3% (p=0.715). In males, no such heterogeneity was detected. Thus, sex, 
pubertal stage, degree of insulin resistance and possibly other factors not accounted for 
in this study contribute to varying validity and appear to render fasting indices non-
suitable for general use.  
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Table 6. Partial correlation coefficients of ln Si to ln HOMA-IR and ln fasting insulin respectively, adjusted for 
age and BMI. 

Ln HOMA-IR Ln fasting insulin 
 

 

Females 
r 
 

Males 
r 
 

Females 
r 
 

Males 
r 

Prepubertal 
 

0.16 
p=0.839 

n=6 

-0.43 
p=0.028 

n=28 

-0.61 
p=0.393 

n=6 

-0.38 
p=0.053 

n=28 
Pubertal 
 

-0.57 
p=0.004 

n=26 

-0.78 
p<0.001 

n=28 

-0.41 
p=0.049 

n=26 

-0.71 
p<0.001 

n=28 
Postpubertal 
 

-0.53 
p<0.001 

n=77 

-0.57 
p=0.004 

n=26 

-0.37 
p=0.002 

n=77 

-0.48 
p=0.019 

n=26 
Total 
 

-0.53 
p<0.001 
n=109 

-0.67 
p<0.001 

n=82 

-0.37 
p<0.001 
n=109 

-0.61 
p<0.001 

n=82 
 
The main conclusion of Study II was that focus should be directed at identifying and 
deciding on a general standard for insulin sensitivity assessment in clinical work and 
research practice. Numerous publications have been presented contrasting HOMA-IR 
and QUICKI as well as various other fasting indices, and an overview of some of these 
publications is presented in Table 7. Such comparisons yield no further information, 
since HOMA-IR and QUICKI show identical diagnostic accuracy as predictors of the 
FSIVGTT sensitivity index. This is illustrated by the ROC curves below, in which the 
QUICKI and HOMA-IR curves are superimposed (Figure 11). Insulin had a non-
significantly lower area under the curve (AUC) than fasting indices, indicating that 
fasting indices offer no advantage over fasting insulin alone as proxies for insulin 
resistance in euglycemic children. A further conclusion was that due to large intra-
individual physiologic variations in fasting insulin, HOMA-IR/QUICKI results will 
differ within each individual when measured at different times. This, in combination 
with the fact that insulin assays are not standardized and that testing of aliquots of a 
common sample analyzed in different laboratories shows disparate results (169) further 
discourages the use of this measure. Even in the presence of a general insulin assay 
standard, separate standards would need to be developed based on gender, ethnicity and 
pubertal stage (170-172). Thus, there is ample support for the general conclusion of 
Study I and II, discouraging the use of fasting indices as well as fasting insulin as 
proxies for insulin sensitivity in obese children and adolescents.   
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Figure 11. ROC curves illustrating the diagnostic accuracy of HOMA-IR, QUICKI, fasting insulin and fasting 
glucose in indentifying insulin resistance, here defined as below the population median of Si as determined by 
the FSIVGTT.  

Reasons for the confusion regarding the similarity between HOMA-IR and QUICKI in 
children are not clear. When looking at the HOMA-IR and QUICKI formulas and 
transforming them, the relationship becomes: QUICKI = 1/[log(HOMA-IR) + 
log(22.5)]. From our point of view, this mathematical relationship makes it obvious that 
these two fasting indices should be highly related, and as has been pointed out, 
QUICKI is the log transformation of HOMA-IR and should be regarded as such (83). 
As for the equal validity of fasting indices and fasting insulin, even obese children have 
a relatively narrow range of glucose levels (92, 173) whereas insulin levels may vary 
considerably (174), making the contribution of adding glucose to the formulas 
insignificant in comparison to the effect of insulin levels.  
 
An expert conference recently used evidence-based methods to investigate the state of 
the art related to insulin resistance in children (66). As for methods of screening criteria 
and methodology, the conference found no justification for screening children for 
insulin resistance, including obese children. As stated previously, invasive complicated 
methods are clearly not suitable. Fasting insulin and also fasting indices were found to 
be unreliable measures of insulin sensitivity. The fact that testing of insulin in different 
laboratories yields disparate results strengthens this conclusion. This is thus in 
agreement with the findings of Studies I-II. Merely the presence of obesity constitutes a 
risk for insulin resistance and should lead to intervention.  
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Table 7. Numerous publications in various study populations have been performed, with non-consistent 
conclusions regarding the superiority of one specific fasting index.  

Study n Indices Clinical 
characteristics 

Statistical 
test 

Conclusion 

Sarafidis (175) 78 HOMA-IR, QUICKI, 
1/ HOMA-IR index, 
McAuley index, 
clamp 

Hypertensive 
diabetic adults 

Regression 
analysis 

HOMA-
IR>QUICKI, but 
QUICKI better 
reproducibility 

Keskin (176) 57 HOMA-IR, QUICKI, 
FGIR, OGTT 

Obese children 
& adolescents 

ROC HOMA-
IR>QUICKI 

Cutfield (177) 79 HOMA-IR, QUICKI, 
FSIVGTT 

Children (twins, 
SGA, 
premature, 
normal) 

Spearman HOMA-IR & f-
insulin > QUICKI 

Brady (178) 27 HOMA-IR QUICKI, 
revised QUICKI, 
FIRI, f-insulin, FGIR, 
Bennetts index, 
FSIVGTT 

Healthy males Pearson Revised 
QUICKI>HOMA-
IR, HOMA-IR & 
QUICKI equal 

Rabasa- 
Lhoret (179) 

148 HOMA-IR, QUICKI, 
revised QUICKI, new 
revised QUICKI, 
clamp 

Normal, obese, 
PCOS, IGT, 
type II diabetic 
adults 

Spearman QUICKI> 
HOMA-IR 
 

Uwaifo (180) 31 HOMA-IR, QUICKI, 
FGIR, Belfiore-FFA, 
c-peptide-to-insulin 
ratio, clamp 

Lean & 
overweight 
children 

Spearman QUICKI> 
HOMA-IR 
 

Brandou (181) 66 HOMA-IR, QUICKI, 
40/insulin ratio index, 
FSIVGTT 

Lean & obese 
children 

Least 
square 
fitting 

Equal result 

Conwell (182) 18 HOMA-IR, QUICKI, 
FGIR, f-insulin, 
FSIVGTT  

Obese children 
&  
adolescents 

Spearman Equal result 

Diamanti-
Kandarakis 
(183)  

59 HOMA-IR, QUICKI, 
clamp 

PCOS women Pearson Equal result 

Gungor (184) 156 HOMA-IR, QUICKI, 
FGIR, glucose-to-
insulin ratio, clamp 

Healthy children 
& adolescents, 
PCOS, IGT 

Spearman Equal result 

Henderson 
(185)  

20 HOMA-IR, QUICKI, 
f-insulin, clamp, 
FSIVGTT 

Healthy children Spearman Equal result 

Ruige (186) 638 HOMA-IR, QUICKI, 
f-insulin, FGIR, 
glucose-to-insulin 
ratio, Belfiore GLY, 
revised QUICKI, 
McAuley index, 
Belfiore FFA, clamp 

Lean, 
overweight, 
obese adults 

ROC Equal result 

Schwartz (174) 323 HOMA-IR, QUICKI, 
FGIR, insulin-
triglycerides, clamp 

Healthy 
adolescents 

ROC Equal result 

Yokoyama 
(187) 

140 1/HOMA-IR, 
QUICKI, clamp 

Type II diabetic 
& healthy adults 

Regression 
analysis 

Equal result 

Belfiore GLY= 2/[(insulin * glucose) + 1] Belfiore FFA= 2/[(insulin * NEFA) + 1] 
Bennetts index= 1/log(glucose) * log (insulin) FGIR= fasting glucose to insulin ratio 
FIRI= (fasting insulin * fasting glucose)/25 HOMA-IR= Homeostasis model assessment 
IGT= impaired glucose tolerance  ISA-FFA= antilipolytic insulin sensitivity index 
McAuley index= e [2.63-0.28 ln(insulin) – 0.3 ln (triglycerides)

] Revised QUICKI= 1/log(glucose) + log (insulin)+log(NEFA) 
QUICKI= Quantitative Insulin Sensitivity Check Index PCOS= polycystic ovary syndrome 
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13.1.1 Strengths and limitations   

A strength of studies I-II is the inclusion of a large number of very obese children and 
adolescents, all of which have undergone an FSIVGTT. However, the very wide age 
range introduces a limitation since subjects are at different stages of puberty, which is 
known to affect insulin sensitivity. We have tried to overcome this by stratification into 
pubertal subgroups.  
 
Study II states that numerous comparisons between fasting indices have been made, 
and that this is unnecessary. Yet the study itself again does this comparison, which may 
seem like a contradiction. However, the aim is not the actual comparison of the 
methods, but rather the proof that the methods are interchangeable, as this has been 
debated in a number of studies with no real consensus. Also, there is no cut-off level of 
Si or other measure to define insulin resistance, and we have thus chosen the arbitrary 
level of the Si median in stratifying groups. However, most of these very obese children 
and adolescents are most likely insulin resistant to some extent, making a stratification 
into subgroups of “insulin-resistant” and “insulin-sensitive” misleading. Again, the aim 
of the second study is not to identify insulin resistance per se but to limit further 
comparisons of HOMA-IR and QUICKI, and this relationship remains the same no 
matter which cut-off level is chosen.  
 

13.1.2 Future directions 

The study sample in Studies I-II is of considerable interest for research as it contains a 
large fraction of Sweden’s most overweight and obese children and adolescents. Data 
have been assembled from 1996-2002. The participants of this study are thus now (in 
2011) adolescents, young adults and possibly even in their 30s. Childhood obesity and 
metabolic risk factors track into adulthood (96, 188, 189), and it is likely that a large 
proportion of these participants remain overweight or obese. As a future study, it would 
be interesting to investigate the development of insulin resistance, diabetes and 
cardiovascular risk in this sample of individuals with long-standing metabolic 
derangements from childhood onwards and see to what degree fasting indices, fasting 
insulin and Si in childhood and adolescence correlates to later metabolic disease. 
Possibly, these measures could add information to risk assessment in insulin resistance 
and obesity in the long-term. Further, future research in this area should aim at 
standardizing insulin measurements and at identifying strong surrogate markers of 
insulin resistance (66).  
  

13.2 STUDIES III AND IV: USING MODELS TO ASSESS INSULIN 
SECRETION AND INSULIN RESISTANCE 

The ability of the pancreatic β-cell to secrete insulin in response to glucose during an 
FSIVGTT is an important determinant of the glucose tolerance of an individual. 
Reliable methods for insulin secretion assessment are thus needed to complete the 
picture provided by MINMOD indices such as insulin sensitivity and glucose 
effectiveness. The discovery that C-peptide and insulin are secreted in equimolar 
amounts has lead to the development of several models which through the indirect use 
of C-peptide can describe pancreatic insulin secretion (190). Insulin undergoes 
extraction when passing the liver whereas C-peptide does not undergo this extraction to 
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any larger extent, which means measuring peripheral serum insulin will not reflect the 
actual insulin amount released by the pancreas but also hepatic extraction. C-peptide 
can thus be used as a marker of insulin secretion. Study III presents a novel, user-
friendly method which describes C-peptide basal and peak secretion during the first 
phase of an insulin modified FSIVGTT in 15 healthy normal weight subjects. The 
model provided valid results for all 15 subjects, revealing an array of C-peptide 
secretion responses. Validation was carried out by extrapolating the model to the results 
of 8 subject from a previous full-length standard FSIVGTT study, which showed a very 
good fit. Further, the model parameters were in line with previously estimated 
parameters, strengthening the plausibility of the model. The main conclusion of Study 
III was thus that it is possible to accurately yet relatively simply assess first phase 
insulin secretion indirectly using C-peptide data from the first phase of a glucose 
challenge. This applies for the insulin modified as well as for the standard FSIVGTT 
protocol.  
 
Elevated NEFAs are typically present in insulin resistance and in many pathological 
conditions such as diabetes, obesity, hypertension and coronary heart disease. Study IV 
aims to elucidate the dynamics of NEFA metabolism, in order to understand the 
contribution of NEFAs in the etiology of these conditions. The model was recently 
presented (145), using mean group data from previous experiments (191, 192). Study 
IV provides a subject level validation of the model, which is important since NEFA 
responses to an FSIVGTT show a diversity of patterns. The model was well able to fit 
all 15 individual profiles, demonstrating the robustness. To test the plausibility of the 
model, a statistical program was used to derive static counterparts from the dynamic 
parameters at certain intervals of the NEFA profile. The correlation between static and 
dynamic parameters was tested, as well as the correlations of these two groups of 
parameters to MINMOD indices. The major findings were that (1) the model derived 
parameters were in agreement with static parameters derived from the NEFA 
concentration curves, (2) the dynamic parameters reflecting the provision and removal 
of NEFA to and from the plasma compartment were closely correlated and (3) the static 
parameters, derived form dynamic counterparts, were correlated to dynamic parameters 
of glucose and insulin kinetics derived using the MINMOD.  
 
A further finding was that at baseline the provision of NEFA to the plasma pool 
(reflecting predominantly lipolysis during fasting) was poorly related to the NEFA 
plasma concentration, indicating that plasma NEFA level per se is a poor estimate of 
the rate of lipolysis, even after an overnight fast. It also implies that the NEFA supply 
and demand system is not necessarily at steady state at baseline, which this model takes 
into account.  
 

13.2.1 Strengths and limitations 

The models were developed using the insulin modified FSIVGTT, meaning that an 
insulin infusion was given after 20 minutes. The purpose of the insulin modified test is 
to separate the glucose and insulin peaks, specifically in subjects whose endogenous 
insulin secretion is inadequate to respond to the glucose challenge of the FSIVGTT, 
e.g. diabetics or insulin resistant subjects. Using the insulin modified protocol may thus 
be regarded as a strength as it improves the precision of the estimation of the Si (193). 
However, it may also be argued that the insulin injection introduces a disturbance when 
estimating C-peptide and insulin secretion. We have overcome this potential distortion 
by using the first 22 minutes of the FSIVGTT, preceding the effects of the insulin 
injection, in the C-peptide model.  
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As for limitations, the sample size was quite small, with only 15 subjects. However, for 
method development purposes this is sufficient and well in line with similar previous 
studies (191, 192, 194, 195). Further, the study population is very homogenous in 
regards to age, body composition and insulin sensitivity. It may thus be argued that 
these models cannot be extrapolated to populations with glucose intolerance of some 
degree, or in subjects with a wider range of BMI. However, the models have now been 
developed and tested in this sample, and future studies are needed for validation in 
other more heterogeneous populations.  
 
In the NEFA model we assume that the glucose load and the insulin response it elicits 
completely shuts down lipolysis. However, lipolysis is most likely not absolutely down 
regulated, and a constant infusion of stable labeled glycerol isotope would have been 
necessary to measure this exactly, as glycerol (in contrast to NEFAs to some extent) is 
not re-esterified in adipose tissue and thus provides a measure of lipolysis.  
 

13.2.2 Future directions 

Further validation studies in more heterogeneous populations are needed for both the 
C-peptide and the NEFA model. Combining the NEFA model with stable labeled 
glycerol isotope may be done in the future as to investigate the extent to which lipolysis 
is in actual fact shut down.  
 

13.3 STUDY V: SURVIVING CANCER- AWAITING METABOLIC 
DISTURBANCES? 

The focus of Study V is the long-term risk for survivors of stem cell transplantation 
treatment including total body irradiation following hematologic malignancies in 
childhood. This group has been reported to be at an increased risk of developing insulin 
resistance, hyperinsulinemia and impaired glucose tolerance. The prevalence of obesity 
also seems increased in this group. Growth hormone (GH) deficiency has been 
suggested to explain some of these metabolic abnormalities, with a prevalence of GH 
deficiency in adult survivors of childhood cancer ranging between 35% and 91% (136).  
 
The results from our study (Table 8) indicate that even after a follow-up of as long as 
18 years, β-cell function is still intact. However, insulin sensitivity is lower as 
compared to controls, and there is significantly higher fasting insulin, C-peptide and 
HOMA-IR in patients. The compensatory insulin secretion maintains normoglycemia 
to the same extent in patients as in controls, with non-significant differences in the 
prevalence of impaired glucose tolerance in patients and controls. Although there was 
no significant difference in BMI in patients versus controls, percentage fat mass was 
higher in patients and lean body mass lower. This indicates that BMI is not a suitable 
means of assessing body composition in this group and that future studies should 
include valid measurements of whole body and visceral obesity.  
 
Growth hormone peak (GHmax) was significantly lower in the patients, however there 
were no differences in serum levels of IGF1 and IGFBP3. The levels of CRP and leptin 
were significantly higher in patients, whereas adiponectin levels were lower. Leptin and 
adiponectin data remained significant after adjustment for fat mass. Further, a HOMA-
IR >2.86 (196) was associated with BMI ≥25 (5/8 vs 0/10, p=0.007) and central obesity 
(6/8 vs 1/10, p=0.013). Si had an inverse correlation to percentage fat mass (r=-0.52, 
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p=0.032) but not to waist circumference. GHmax correlated inversely with percentage 
fat mass (r=-0.63, p=0-009) but not with Si. GHmax correlated negatively (r=-0.62, 
p=0.008) and fat mass positively (r=0.51, p=0.037) with time since SCT.  
 

Table 8. Main findings of Study V.    

Variable Patients median 
(interquartile range) 

Controls median 
(interquartile range) 

p 

Fasting insulin 
(mU/L) 

12.2 (7.3) 6.0 (2.8) 0.002 

HOMA-IR 2.2 (1.7) 1.2 (0.5) 0.005 

Sensitivity index 
(mU/L

-1
 min

-1
) 

2.98 (1.99) 4.54 (2.02) 0.043 

Acute insulin 
response 

717 (754) 342 (258) <0.001 

BMI (kg/m
2
) 21.6 (5.6) 24.5 (4.8) 0.093 

Waist 
circumference (cm) 

82 (19) 87 (16) 0.69 

Lean body mass 
(kg) 

40.7 (12.5) 54.5 (18.6) <0.001 

%fat mass 34.9 (16.3) 24.3 (15.6) 0.011 

GH
max 

(mU/L) 9 (12.9) 20.7 (16.3) 0.002 

Leptin (µg/L) 18 (45.7) 4.8 (9.7) <0.001 

Adiponectin (mg/L) 4.9 (2.1) 7.5 (4.0) 0.008 

Results shown as median (interquartile range) 
HOMA-IR= Homeostasis model assessment, as described by Matthews et al (82) 
GHmax= Growth hormone maximum peak 
 
 
The past four decades have shown a dramatic increase in cancer survival in children 
and adolescents. Cancer in children is luckily rare, with an age-standardized incidence 
of 140 cases per million children aged 0-14 years in Sweden (197, 198). In the Nordic 
countries an 80% 5-year survival (199) has been attained, however the survival figures 
vary with the specific cancer diagnosis and the clinical presentation within each 
diagnosis. In the age group of 25-35 years, 1 in 700 is a childhood cancer survivor 
(200). In Europe the number of survivors is expected to be 300,000-500,000 
individuals, and in Sweden the corresponding figure is 6,000-7,000. The advances in 
diagnosis and treatment leading to this increased survival rate are of course applauded, 
however there is also evidence that some cancer survivors may pay a high price in 
terms of late term complications. Individuals having undergone stem cell 
transplantation have been investigated in regards to how the transplantation has 
affected health, life situation and health-related quality of life (201, 202). Adult SCT 
survivors reported lower quality of life than the norm, and had significantly more 
psychiatric problems, cognitive difficulties and depressions; and the percentages being 
unemployed or preterm retired were higher. Besides these there is a number of other 
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complications after SCT in childhood, such as second malignancies, cardiac problems, 
pulmonary complications, impaired fertility, osteoporosis, obesity, dyslipidemia, 
hypertension, impaired glucose tolerance and insulin resistance (136).   
 

13.3.1 Strengths and limitations  

A major strength of Study V is that it constitutes the longest follow-up of SCT 
survivors to date, at least to our knowledge. A control group is included, which has 
undergone the same investigations as the patient group. Also, FSIVGTT is used for 
insulin sensitivity assessment and DEXA for body composition assessment, both of 
which are valid tests.   
 
Growth hormone levels were significantly lower in SCT survivors compared to 
controls, and it is thus proposed that GH deficiency may be an underlying cause of the 
adverse body composition of survivors. However, in obesity and overweight, GH levels 
may be low in endocrinologically healthy individuals. Thus, whether patients display a 
real GH deficiency or whether the low GH levels are caused by their adiposity is not 
clear. In line with this argumentation is the fact that there were no differences in IGF1 
and IGFBP3, which may be better markers for GH secretion. This may possibly 
undermine the conclusion that a real GH deficiency exists. To be able to draw a valid 
conclusion a more robust method of GH assessment would have to be used, such as an 
insulin tolerance test. However, GH assessment in this group is not straightforward. For 
example, a recent study has shown that cranially irradiated adult cancer survivors may 
have normal spontaneous GH secretion, but discordant peak GH responses to 
stimulation test (203). Further, it has been shown that IGF1 and IGFBP3 values may be 
normal or high despite low GH peaks in subjects treated with total body irradiation, 
suggesting a resistance to IGF1 caused by irradiation effects on bone (204). In 
summary, despite the adiposity and the normal IGF1 and IGFBP3 levels, the low GH 
levels in patients may still reflect a real deficiency. Also, we have not explored the level 
of physical activity, and this may confound our results as it has been shown that 
survivors of childhood cancer have a decreased level of physical activity (141). 
However, the differences in leptin and adiponectin cannot be explained by inactivity 
only, so there must be metabolic abnormalities existing in these individuals. 
 

Further limitations of this study include a possible selection bias in that 7 of 25 eligible 
survivors declined participation, and the fact that there was a disproportionally large 
number of males among decliners. Also, the control subjects were matched for age and 
sex, but not for BMI and visceral adiposity. In retrospect, matching could have been 
done for this aspect as well. The control group was surprisingly overweight, with 44% 
having a BMI ≥25 kg/m2. This is not representative of the normal population of this age 
group, in which <30% would be expected to be overweight (205). However, the results 
of the study would be strengthened in the case of a thinner control group, so we still 
believe our results to be valid.  
 

13.3.2 Future directions 

There are risk-based screening recommendations for long-term complications such as 
the metabolic syndrome in children (206). Currently, however, there are no available 
guidelines for screening for the metabolic syndrome in adult survivors of childhood 
cancer, and treatment recommendations are basically those which apply to “regular” 
metabolic syndrome patients. However, further knowledge on the etiology of the 
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metabolic syndrome in cancer survivors may lead to more specific therapies and 
prevention measures. Future studies thus need to identify the pathophysiological 
background and which interventions are best suited for these survivors, as well as to 
implement long-term follow up screening programs for early intervention. In line with 
this, we plan a further study with a similar but more extensive set-up, in which among 
other things lipid profile, adipokines, NEFAs, sex hormones, FSH, LH, thyroid profile, 
cytokines and level of physical activity using accelerometer and diary, will be explored.  
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14 CONCLUSIONS 

Following the discussion and taking into account the limitations stated, we have 
conducted five studies with results covering a wide range of issues regarding 
assessment of insulin sensitivity, development of novel models of insulin secretion and 
sensitivity assessment as well as a clinical perspective: 
 
(I) We have shown that fasting indices HOMA-IR, QUICKI and fasting insulin are 
relatively poor methods for assessing insulin sensitivity in obese children and 
adolescents. The validity of these methods varies by sex, by pubertal stage and in 
females by degree of insulin sensitivity. The use of fasting indices and fasting insulin 
for insulin sensitivity assessment in this group should thus be limited. Resources should 
be targeted at early intervention in obese children and adolescents, regardless of insulin 
sensitivity measurements. 
 
(II) We have documented that HOMA-IR and QUICKI have equal diagnostic accuracy 
in detecting insulin resistance as measured by the FSIVGTT, and fasting insulin has 
non-significantly lower accuracy in itself. The variation in insulin levels when tested at 
different times further strengthens the conclusion that the use of simple surrogate 
indices is limited. Conducting and reporting further comparisons should be avoided.  
 
(III) We have developed a novel method for the indirect assessment of insulin secretion 
by modeling C-peptide during the first phase of an insulin modified FSIVGTT. The 
assessment of insulin secretion is valuable for the understanding, diagnosis, treatment 
and follow-up of diabetes, which potentially makes this model a useful tool. Also, it 
can be used during the insulin modified FSIVGTT, which is preferred in settings with 
low insulin sensitivity or low endogenous insulin secretion.  
 
(IV) We have performed a subject level validation of a novel model for NEFA kinetics 
following an FSIVGTT. With a lipotoxic view of diabetes development, 
complementary to the glucotoxic view, parameters of NEFA kinetics add information 
on the dynamics of insulin action.    
 
(V) Lastly, we have shown that long-term survivors of stem cell transplantation and 
total body irradiation have intact β-cell function even after a follow-up of 18 years. 
Their insulin sensitivity is however lower than that of healthy controls, and their 
proportional fat mass is higher. Abnormalities in the secretion of or the sensitivity to 
leptin and adiponectin may play a role in the metabolic alterations of SCT survivors, as 
well as deficiency in GH secretion.   
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15 SAMMANFATTNING PÅ SVENSKA 
Insulinresistens är ett tillstånd där vävnaders känslighet för insulin är nedsatt, så att en 
egentligen adekvat insöndring av insulin inte räcker till för att ge önskad effekt i 
målvävnader.  Denna avhandling baseras på fem studier, vars mål är att undersöka olika 
aspekter av insulinresistens samt metoder för dess mätning. Insulinresistens är en viktig 
komponent av det metabola syndromet och kan ses som ett förstadium till typ 2 
diabetes. I takt med att förekomsten av övervikt och fetma ökat har insulinresistens och 
dess komplikationer följt i samma spår. Insulinresistens har således blivit ett allt 
vanligare tillstånd, som kräver effektiv diagnos och behandling. 
 

• En rad olika metoder för mätning av insulinkänslighet har utvecklats. En 
referensmetod är en form av intravenös sockerbelastning, (FSIVGTT= 
Frequently Sampled Intravenous Glucose Tolerance Test) och innebär att en 
sockerlösning samt en insulindos ges direkt i blodet till en fastande individ, 
varefter blodsocker och insulinvärden följs under 180 minuter. Då denna metod 
är komplicerad, dyr och relativt krävande för såväl patient som personal har det 
utvecklats en rad enklare metoder. Två av dessa kallas HOMA-IR och QUICKI, 
och baseras på ett enda blodprov med bestämning av fasteblodsocker samt 
fasteinsulin. Studie I och II jämför dessa enklare metoder med referensmetoden 
i en grupp feta barn och ungdomar.  Slutsatsen är att dessa enklare metoder inte 
ger ett tillförlitligt mått på insulinresistens i den aktuella patientgruppen, varför 
vi avråder från att använda dessa metoder. Den kroppsegna variationen av 
insulinnivåer bidrar till ytterligare osäkerhet, så att dessa mått, om de skall 
användas överhuvudtaget, skall tolkas med stor försiktighet. Vidare jämförelser 
mellan HOMA-IR och QUICKI är inte meningsfullt då metoderna har samma 
tillförlitlighet.  

 
• I Studie III och IV undersöktes 15 friska normalviktiga försökspersoner med 

en intravenös sockerbelastning som kompletterades med mätning av C-peptid 
och fria fettsyror. C-peptid bildas då den spjälkas av från ett förstadium till 
insulinmolekylen. För varje molekyl insulin som insöndras från 
bukspottskörteln till blodbanan insöndras en molekyl C-peptid. Insulin bryts 
dock ned i levern i högre grad än C-peptid, varför exakta insulinnivåer är svåra 
att mäta medan C-peptid därmed kan utgöra ett indirekt mått på 
insulinsekretionen. I studie III skapades därför en matematisk modell för att 
med hjälp av C-peptidnivåer indirekt kunna uppskatta insulinsekretionen från 
bukspottskörteln. Att kunna mäta insulininsöndringen är viktigt för att förstå 
utvecklingen av diabetes och effekten av olika interventioner.  

 
• Höga halter av fria fettsyror har visat sig bidra till utvecklingen av 

insulinresistens. I studie IV undersöktes en modell som beskriver hur fria 
fettsyror omsätts under en sockerbelastning, och hur detta kan ge mått på 
insulinkänsligheten. Modellen speglade väl fria fettsyrors omsättning under 
sockerbelastningen, samt gav rimliga mått på hur dessa bildas och förbrukas. 
Detta arbete syftar till att utveckla nya metoder som kan utöka förståelsen för 
fria fettsyrors roll i diabetesutveckling.  

 
• Insulinresistens förekommer inte enbart vid fetma, utan även hos personer som i 

barnaåren genomgått behandling mot cancer. Med allt bättre överlevnad vid ett 
flertal cancerdiagnoser är detta en växande grupp. Studie V undersöker 
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insulinresistens, insulininsöndring samt kroppssammansättning hos en grupp 
som i barndomen genomgått stamcellstransplantation på grund av olika typer av 
blodcancer. Slutsatsen av denna studie är att de stamcellstransplanterade 
patienterna efter en genomsnittlig uppföljningstid av 18 år har en lägre 
insulinkänslighet, som dock kompenseras av en ökad insulininsöndring, jämfört 
med friska kontroller. Patienterna hade också en högre andel fettmassa jämfört 
med friska kontroller. Rubbningar i insöndringen av tillväxthormon samt 
fettvävshormonerna leptin och adiponektin kan bidra till denna ofördelaktiga 
kroppssammansättning och utvecklingen av insulinresistens.  

 
Sammanfattningsvis har vi studerat flera aspekter av insulinresistens och 
insulininsöndring. Vi har visat att enkla, alternativa metoder för mätning av 
insulinresistens inte är tillförlitliga bland feta barn och ungdomar, samt att fokus 
framöver bör vara riktat mot utvecklingen av bättre, standardiserade metoder. Fortsatta 
jämförelser av befintliga metoder har begränsat värde. Vi har också utvecklat och 
validerat två nya matematiska metoder för mätningen av insulininsöndring samt 
insulinresistens. Målet är att dessa metoder ska utgöra komplement till befintliga 
tekniker och öka kunskapen kring diabetesutveckling. Slutligen har vi visat att 
stamcellstransplanterade långtidsöverlevare av cancer i barndomen har en ökad metabol 
risk, men efter lång uppföljning fortfarande intakt funktion av bukspottskörtelns 
insulininsöndring.  
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