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ABSTRACT 
Hutchinson-Gilford progeria syndrome (HGPS) is a very rare genetic disease that 
presents some features of accelerated aging. Children with the disease are born 
appearing healthy but start to develop signs of the disease within their first years of life. 
The disease affects multiple tissues, and the symptoms include growth retardation, 
alopecia, lack of subcutaneous fat, scleroderma-like skin changes, bone abnormalities 
and joint stiffness. Heart disease and other atherosclerotic complications are the most 
common cause of death, which occurs at a median age of 13 years. Ninety percent of 
HGPS cases are caused by a de novo point mutation in the LMNA gene (c.1824C>T, 
p.G608G). The LMNA gene encodes, by alternative splicing, the different isoforms of 
A-type lamins. These intermediate filaments are the main proteins of the nuclear 
lamina, a meshwork of proteins located underneath the inner nuclear membrane. The 
nuclear lamina serves important functions in determining the shape and size of the 
nucleus as well as being involved in fundamental cellular processes such as DNA 
replication and transcription. 

This thesis is focused on gaining a deeper understanding of the cellular effects 
caused by the most common HGPS mutation. For this purpose, we developed an 
inducible mouse model that carries a human mini gene for lamin A with the c.1824C>T 
mutation. The mini gene caused over-expression of both wild-type human lamin A and 
human progerin, the mutated form of the lamin A. Targeting the expression of the 
transgene to keratin 5-expressing tissues resulted in a progressive skin phenotype. The 
phenotype evolved from an intermediate stage with hyperplasia of the interfollicular 
epidermis and increased proliferation to an end stage with hypoplastic epidermis, 
fibrotic dermis and loss of subcutaneous fat. The end stage of the condition resulted in 
mice that had similar abnormalities to those seen in the skin of HGPS patients. This 
mouse model was used to further investigate the molecular effects of the HGPS 
mutation in the skin. 

To examine whether expression of the lamin A c.1824C>T mutation influences 
the hair cycle or the expression pattern of lamin B, we first characterized the normal 
hair cycle and expression patterns for lamin A/C and B. Immunohistochemical 
stainings of the dorsal skin of FVB/NCrl wild-type skin from animals of different ages 
showed strong expression of lamin A/C and B in the basal cells of the epidermis, the 
outer root sheath of the hair follicle and the dermal papilla in all phases of the hair 
cycle. Analyzing the progression of the phases of the first hair cycle and the expression 
of lamin B in our HGPS mouse model, we could not distinguish any effects of progerin 
expression.  

The lamin A c.1824C>T expressing mutant mice were also used to study the 
effects of the expression of this mutant lamin during embryogenesis. Animals with 
embryonic expression of progerin developed a rapidly progressing phenotype. In 
summary, our inducible models will be useful for testing different treatments and could 
also be used for tissue-specific expression in other tissues affected in HGPS. 
The work presented in this thesis provides insights into the molecular mechanism 
underlying the skin symptoms seen in patients with HGPS.  
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1 INTRODUCTION 
All people are destined to age. However, how and when the symptoms of aging appear 

is different for different individuals. Aging is a complex process, and the diverse 

development of symptoms is probably due to various genetic and environmental 

factors. The biological basis of aging is not fully known, but intensive research in the 

field increases the understanding of underlying mechanisms. 

One way to study the features of aging is to study progeroid syndromes. 

Connections between these syndromes and physiological aging can shed light on 

fundamental mechanisms. Progeroid syndromes that only affect one tissue are called 

unimodal progeroid syndromes (Martin, 1982), while segmental progeroid syndromes 

affect several, but not all, tissues in the body (Martin, 1978). 

Hutchinson-Gilford progeria syndrome (HGPS) is classified as a segmental progeroid 

syndrome. Children born with the disease display several symptoms of accelerated 

aging (DeBusk, 1972; Brown, 1992).  
 

1.1 THE NUCLEAR ENVELOPE 

The nucleus of a cell is bordered by an envelope, which separates the contents of the 

nucleus from the cytoplasm. The structure of the nuclear envelope and transport across 

it are highly regulated and organized. The nuclear envelope consists of two separate 

membranes, the outer membrane and the inner membrane. The outer membrane is 

directly connected to the rough endoplasmatic reticulum and is often coated with 

ribosomes. The inner membrane is connected to the filamentous proteins of the nuclear 

lamina. The nuclear pore complexes, which allow protein transport into and out of the 

nucleus, connect the two membranes. Located underneath, and also connected to, the 

inner membrane is the nuclear lamina (Evans et al. 2004). The nuclear lamina is an 

intermediate type filamentous network of primarily lamin proteins with both structural 

and regulatory properties. As well as determining the size and shape of the nucleus, the 

lamina is involved in DNA replication. Furthermore, the lamina determines the position 

and the function of the nuclear pore complexes, and it has also been shown to bind to 

other proteins attached to the nuclear envelope. The binding of heterochromatin and the 

presence of anchoring sites for chromatin domains and transcription factors to the 

nuclear periphery suggest that the lamina has an additional role in DNA transcription 

(Stuurman et al. 1998; Moir & Spann 2001; Burke & Stewart 2002).  
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The A-type lamins, one of the major components of the nuclear lamina, have 

been shown to bind a number of different proteins in vitro. These proteins include 

emerin (Clements et al. 2000; Lee et al. 2001), lamin associated protein (LAP 1 

(Foisner & Gerace 1993), Lap2α (Dechat et al. 2000), nesprin 1 (Mislovw et al. 2002), 

nesprin 2 (Zhang et al. 2005), actin (Sasseville & Langelier 1998), pRb (Ozaki et al. 

1994), sterol regulatory element-binding protein (SREBP) 1 (Lloyd et al. 2002), SUN1 

(Crisp et al. 2006), SUN2 (Crisp et al. 2006), one or more components of RNA 

polymerase II dependent transcription complexes (Spann et al. 1997) and DNA 

replication complexes (Spann et al. 1997). Together with the SUN proteins and nesprin, 

lamin A and C participate in the LINC complex (LInk the Nucleoskeleton with the 

Cytoskeleton). In the LINK complex, nesprins in the outer nuclear membrane interact 

with the SUN proteins in the lumen of the nuclear envelope, which in turn interact with 

nesprins in the inner nuclear membrane and with lamins A and C. This protein complex 

thereby links the nucleoskeleton with the cytoskeleton (Crisp et al. 2006). 

 

1.2 THE LAMIN FILAMENTS 

Lamins are divided into types A and B according to their expression pattern, behavior 

during mitosis and biochemical properties. Two genes encode the B-type lamins: 

LMNB1 encodes lamin B1 and LMNB2 encodes lamin B2 and B3. Lamin B3 is only 

expressed in spermatocytes, whereas the other B-type lamins are expressed in all cells 

during development and adulthood. The different A-type lamins are encoded by the 

LMNA gene and are mainly expressed in terminally differentiated cells (Röber et al. 

1989). The two main isoforms of the LMNA gene, lamin A and lamin C, are identical 

except in the C-terminal end where lamin A has a unique 90 amino acid region, while 

lamin C has a unique 6 amino acid sequence (Fisher et al. 1986). Lamin A is encoded 

by exons 1-12, while lamin C is encoded by exons 1-10.  

 The lamins are type V intermediate filaments and consist of a central α-helical 

rod domain flanked by a small globular domain at the N-terminus and a larger globular 

domain at the C-terminus. Through coil-coiled interactions between the rod domains, 

lamins A and B1 form homodimers that, in turn, form homopolymers by head to tail 

associations. (Fisher et al. 1986; Strelkov et al. 2004) (Fig. 1). These polymers are the 

building blocks for the nuclear lamina. The lamin A and B type lamins forms separate, 

but interacting, meshworks in the nuclear lamina (Shimi et al. 2008). 
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1.3 LAMINOPATHIES  

Diseases caused by mutations in genes encoding proteins associated with the nuclear 

envelope are collectively called nuclear envelopathies (Somech et al. 2005). The 

nuclear envelopathies include the primary and secondary laminopathies. Primary 

laminopathies are diseases caused by mutations in the LMNA gene, while secondary 

laminopathies are caused by mutations in the LMNB1, LMNB2 or FACE-1 (Zmpste24 

in mice) genes.   

 

1.3.1 Primary laminopathies 

Genetic studies have shown that mutations in the LMNA gene cause about a dozen 

distinct clinical disorders, often divided into four groups by phenotype. The four 

different groups are the following: muscular dystrophies, lipodystrophies, neuropathies 

and segmental premature aging disorders.  

Figure 1. Schematic figure of the lamin filaments. The lamin filaments consist of a central rod 
domain flanked by small globular head domain at the N-terminal and a larger globular tail domain at 
the C-terminal. The lamins form dimers by coil-coiled interactions between the rod domains. Head to 
tail associations of the dimers form polymers, which form the lamin filaments.  
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The muscular dystrophies include Emery-Dreifuss Muscular Dystrophy 

(EDMD), Dilated cardiomyopathy (DCM) and Limb-Girdle Muscular Dystrophy 

(LGMD). Patients with EDMD classically have early contractures of the elbows, 

rigidity of the spine and slowly progressive weakness in the upper arms and lower legs 

(Emery & Dreifuss 1966). In DCM, skeletal muscles are minimally affected or 

unaffected, while in LGMD patients, the skeletal muscles around the shoulders and 

hips are primarily affected. As in EDMD, both DCM and LGMD have a predominant 

dilated cardiomyopathy with an early onset ventricular conduction block (Fatkin et al. 

1999; Muchir et al. 2000). 

Lipodystrophies are a group of diseases characterized by the absence or 

reduction of subcutaneous adipose tissue. The lipodystrophies caused by LMNA 

mutations include Familial Partial Lipodystrophy of Dunnigan type (FPDL) and 

Mandibuloacral Dysplasia (MAD). Patients with FPDL are born with a normal 

distribution of fat but beginning at puberty exhibit a gradual loss of adipose tissue from 

the extremities, associated with insulin resistance and diabetes mellitus (Dunnigan et al. 

1979). In MAD partial lipodystrophy, extreme insulin resistance and hypermetabolism 

have been observed. In addition, patients with MAD suffer from skeletal abnormalities, 

joint contractures and atrophic skin (Novelli et al. 2002, Simha et al. 2003), features 

also implicated in accelerated aging.  

Patients with Charcot-Marie-Tooth disease type 2 (CMT2) have normal or 

slightly reduced motor nerve conduction velocities, loss of large myelinated fibers and 

axonal degeneration, classifying the disease as a neuropathy (Chaouch et al. 2003).  

The segmental progeroid syndromes caused by mutations in the LMNA gene 

include HGPS, atypical HGPS, MAD, RD and atypical Werner syndrome. This thesis 

is focused on HGPS and RD, and these two diseases will be described below. Atypical 

HGPS has similar, but lack some or have additional, symptoms to classical HGPS. 

Werner syndrome is often called “progeria of the adult” and is classified by the 

premature appearance of features associated with normal aging and cancer. Individuals 

with Werner’s syndrome develop normally until the end of the first decade, and 

symptoms typically start to develop in the second or third decade of life. The main 

clinical features in Werner’s syndrome include scleroderma-like skin, short stature, 

premature arthrosclerosis, diabetes mellitus, osteoporosis and premature thinning 

and/or graying of scalp hair. The classical form of Werner’s syndrome is caused by 

mutations in the WRN gene, which encodes a RecQ helicase (Yu et al. 1996).  
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1.3.2 Secondary laminopathies 

Some diseases classified as primary laminopathies are also classified as secondary 

laminopathies, given that the same disorder can be caused by mutations in different 

proteins. These diseases include EDMD, RD and MAD. EDMD was first shown to be 

inherited in an X-linked manner before autosomal inheritance was described (Emery 

and Dreifuss, 1966). The gene responsible for X-linked EDMD encodes emerin, a 

protein of the inner nuclear membrane (Bione et al. 1994; Manilal et al. 1996; Nagano 

et al. 1996). RD can be caused by mutations in either LMNA or in the Zmpste24 

(FACE-1) gene, the endoprotease responsible for the last step in the processing of 

prelamin A (described below). Compound heterozygous mutations in Zmpste24 have 

also been described as causing MAD (Shackleton et al. 2005). 

Other secondary laminopathies can be caused by alterations in the LMNB1 or 

LMNB2 genes. Duplication of the LMNB1 gene causes Autosomal-dominant 

Leukodystrophy, a neurodegenerative disease that exhibits a progressive loss of myelin 

in the central nervous system (Schwankhaus et al. 1994; Padiath et al. 2006). Mutations 

in LMNB2 cause Acquired Partial Lipodystrophy, a sporadic progressive lipodystrophy 

(Worman & Bonne 2007; Capell & Collins 2006; Hegele et al. 2006).  

Nuclear envelopathies can also be caused by mutations in proteins associated 

with the nuclear envelope. Mutations causing disease have been reported in several 

different genes, e.g., LBR, LEMD3, SYNE1, TMPO, TOR1A and LAP2α (Worman et 

al. 2010).  

Taken together, a number of human diseases have been described that are 

caused by mutations or alterations in genes encoding lamins or proteins associated with 

the nuclear envelope, and this number is likely to continue to grow over time.  

 

1.4 POST-TRANSCRIPTIONAL PROCESSING OF LAMIN A 

Mature lamin A, one of the major isoforms encoded by the LMNA gene, is produced 

after a series of rapid post-translational modifications. The C-terminal end of the lamin 

A precursor protein (prelamin A) contains a CaaX motif (C= cysteine, a= any aliphatic 

amino acid, X= any amino acid). In prelamin A, the CaaX motif is composed of the 

amino acids CSIM. The processing of prelamin A starts by farnesylation of the cysteine 

in the CaaX motif, followed by an endopeptidase cleavage step where the last three 

amino acids (-aaX) are removed (Beck et al. 1988; Holtz et al. 1989; Beck et al. 1990; 

Sinensiy et al. 1994; Zhang & Casey 1996). The cleavage step is followed by 
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carboxymethylation of the cysteine, which results in the insertion of the prelamin A 

into the inner nuclear membrane (Stuurman et al. 1998; Leung et al. 2001; Corrigan et 

al. 2005; Winter-Vann & Casey 2005). The last step involves removal of the last 15 

amino acids by proteolytic cleavage, yielding mature lamin A (Kilic et al. 1997; 

Corrigan et al. 2005; Rusinol & Sinensky 2006). Figure 2, show a schematic picture of 

the processing, including the enzymes responsible for each step. Through different 

splicing at the C-terminal end lamin C lacks the CaaX motif and is not subjected to this 

processing, while the lamin B proteins go through the entire process except the final 

cleavage step (Fransworth et al. 1989; Stuurman et al. 1998; Kitten & Nigg 1991). 

 

 
 

 

 

 

 

 

Figure 2. The post-transcriptional processing of normal lamin A and lamin A Δ50. Modification of the 
prelamin A to form mature lamin A involves several enzymes in a multi step processing. The only step that 
differs between normal lamin A and lamin A Δ50 is the last step, which is eliminated in the mutant lamin A 
due to the 50 amino acid deletion. 
(FTase = farnesyltransferase) 
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1.5 THE HUTCHINSON-GILFORD PROGERIA SYNDROME 

Hutchinson-Gilford progeria syndrome (HGPS or progeria) is a very rare and fatal 

genetic disease. The name of the disease is derived from the Greek words progērōs 

meaning “prematurely old”, and the disease is characterized by certain features of 

accelerated ageing. The reported incidence of progeria is about 1 in 4-8 million live 

births (DeBusk 1972; Brown 1992). It affects both sexes equally, and patients have 

been reported from all over the world. Children with progeria are born looking healthy 

but start to develop symptoms of disease within their first year of life.  

 

1.5.1 Clinical features of HGPS 

In general, the first signs of disease noticed in HGPS patients are a failure to thrive, 

along with short stature and low weight. After the growth retardation, the skin 

phenotype is normally the first symptom noted. During the second or third year of life, 

the skin becomes tight over the abdomen and thighs. The children also have wrinkly 

skin that develops into thin, dry and atrophic regions, sometimes accompanied by 

hyperkeratosis. Between 6 months and 2 years of age, most patients start to lose their 

hair. By the age of 3 years, the children usually have almost complete alopecia, except 

for some downy hairs. The skin phenotype is also characterized by scleroderma and 

loss of subcutaneous fat. In older patients several symptoms are seen, including a thin 

epidermis, fibrosis in dermis with thickened and disorganized collagen bundles, a 

reduced number of sweat and sebaceous glands and atrophic subcutaneous tissue 

(Gillar et al. 1991; Erdem et al. 1994; Stables & Morley 1994; Rodriguez et al. 1999; 

Jansen & Romiti 2000; Sarkar & Shinton 2001; Hennekam 2006; Merideth et al. 2008; 

Ackerman & Gilbert-Barness 2002).  

The symptoms of disease also include hyperpigmentation in the skin of the 

scalp and the limbs and prominent scalp veins. The patients also display a pyriform 

chest, prominent eyes, a small and beaked nose, micrognathia, thin lips, protruding ears 

lacking earlobes, dystrophic fingernails and a high-pitched voice. In addition, they have 

alterations in the oral soft tissue, abnormal dentition with hypodontia, crowding of the 

present teeth with double rows and delayed dental eruption. Children with HGPS have 

normal intelligence, but they do not enter puberty (DeBusk 1972; Nair et al.2004; 

Gordon et al. 2007; Mazereeuw-Hautier et al. 2007; Merideth et al. 2008; Domingo et 

al. 2009) 
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The phenotype also includes coxa valga and joint contractures resulting in a 

horse-riding posture and difficulty in moving the knees, elbows and fingers. 

Furthermore, the bone phenotype includes osteoporosis (Stables & Morley 1994; de 

Paula Rodrigues et al. 2002; Sevenants et al. 2005).  

Death generally occurs due to cardiovascular complications at a mean age of 13 

years. Initially, the patients do not demonstrate any cardiovascular problems, but with 

age the cardiovascular function is reduced. After exercise, patients develop short 

breath, increased pulse and increased blood pressure. At autopsy, the intima and media 

are found to have a relatively small diameter, but an increased tunica thickness and 

occasionally plaque formations are found. Additionally, the media also show extensive 

loss of vascular smooth muscle cells (Makous et al. 1962; Nair et al. 2004; Merideth et 

al. 2008; Stehbens et al. 1999; Stehbens et al. 2001; Gordon et al. 2005). 

 

1.5.2 Molecular basis of HGPS 

HGPS is a genetic disease, and in 90% of cases, it is caused by a de novo single 

nucleotide mutation in exon 11 of the LMNA gene (c.1824C>T, p.G608G) (Table 1). 

The mutation is a heterozygous base substitution, and, because it localizes to exon 11, it 

only affects the lamin A protein. The substitution does not affect the amino acid 

sequence, but it increases the use of a cryptic splice site in exon 11. This splice site 

activation leads to the production of an incorrectly spliced mRNA with an internal 

deletion of 150 nucleotides at the end of exon 11. The reading frame is kept intact, but 

the final protein has a 50 amino acid deletion close to the C-terminal end (lamin A Δ50 

or progerin) (De Sandre-Giovannoli et al. 2003; Eriksson et al. 2003).  

Prelamin A Δ50 still retains the CaaX-box, but the internal deletion contains the 

recognition site for zmpste24, the enzyme responsible for the last step in the processing 

of prelamin A to mature lamin A. The initial steps still take place, but with the last step 

abolished the result is a truncated prelamin A protein that still carries the incorporated 

farnesyl and methyl groups (Dechat et al. 2007) (Fig. 2). This farnesylated and 

methylated truncated protein is referred to as progerin or lamin AΔ50 (De Sandre-

Giovannoli et al. 2003; Eriksson et al. 2003). 

 

1.5.3 Cellular phenotype of HGPS 

Progerin acts in a dominant negative way by disrupting the normal function of lamin A. 

Because progerin stays farnesylated, it has been suggested that it permanently binds to 
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the nuclear membrane and thereby disrupts the normal function of the lamina. This 

disruption results in a nucleus with visible blebs or lobulations of the nuclear envelope, 

disrupted heterochromatin structure, loss of peripheral heterochromatin and a thickened 

lamina. All of these structural changes could lead to extensive transcriptional 

abnormalities. In addition, HGPS cells show mislocation and clustering of the nuclear 

pore complexes, which might impair normal trafficking of proteins and mRNA in and 

out of the nucleus (Eriksson et al. 2002; Goldman et al. 2004). Cells from HGPS 

patients have been shown to have a transcriptional misregulation and a large number of 

genes with altered expression (Csoka et al. 2004). Studies have also shown a defect in 

genomic stability with increased double-strand breaks as a consequence (Liu et al. 

2005; Liu et al. 2006). Cells from HGPS patients accumulate progerin in an age-

dependent manner when they are grown in culture (Goldman et al. 2004; McClintock et 

al. 2006). This accumulation correlates with more severe structural changes and a 

reduced growth rate (Goldman et al. 2004). 

 

1.6 RESTRICTIVE DERMOPATHY 

Restrictive Dermopathy (RD) is a rare and lethal congenital disorder. The disease is 

considered to be similar to HGPS but with a more acute progression (Rodríguez & 

Eriksson, 2010).  

 

1.6.1 Clinical features of RD 

Patients with RD display very characteristic symptoms, including intrauterine growth 

retardation and decreased fetal movement due to a thin and taut skin. The patients are 

often born prematurely and show typical facial dysmorphisms with a small, pinched 

nose, posteriorly rotated and low-set earlobes, lack of eyebrows and eyelashes, 

micrognathia and a mouth fixed in an “o” position. The tautness of the skin causes 

akinesia or hypokinesia, and patients usually die within the first week of life due to 

reduced respiratory movements (Mok et al. 1989, Smigel et al. 2009). Histological 

studies of the skin from RD patients have revealed skin pathology, including thin 

epidermal layers with regular structure and a flat epidermal-dermal junction, as well as 

immature and poorly developed sebaceous glands and hair follicles. The pathology also 

affects the dermis with parallel collagen bundles and a nearly complete absence of 

elastic fibers. (Khanna et al. 2008; Smigiel et al. 2009). 
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1.6.2 Molecular basis of RD  

RD can be caused by mutations in either the LMNA gene or in the gene coding for 

ZMPSTE24, the enzyme catalyzing the last cleavage step in the processing of prelamin 

A. Common among the different mutations is the cellular accumulation of prelamin A. 

Mutations in ZMPSTE24 can be homozygous or compound heterozygous. All known 

cases of mutations in the enzyme result in the complete loss of both zmpste24 and 

mature lamin A, which is followed by prelamin A accumulation. The disease can also 

be caused by heterozygous mutations in the LMNA gene. These mutations result in the 

partial or complete loss of exon 11, including the recognition site for zmpste24, with a 

corresponding accumulation of truncated prelamin A as a result (Table 1) (Navarro et 

al. 2004).  

The similar molecular genetics between HGPS and RD, together with 

similarities in the clinical symptoms, indicate a common disease mechanism with a 

correlation between the cellular levels of progerin/prelamin A and the severity of the 

phenotype. 

 
Table 1. Mutations causing HGPS and RD. 

Disorder Gene Mutation
Effect on 
zmpste24 

Effect on 
lamin A/C

Reference

HGPS LMNA p.G608G progerin
De Sandre-Giovannoli et al. 2003

Eriksson et al. 2003

LMNA p.G608S progerin
Eriksson et al. 2003
Cao & Hegele 2003

RD LMNA IVS11+1G>A
prelamin A ! 90
deletion exon 11

Navarro et al. 2004

ZMPSTE24
p.I19Y fsX28 
homozygous

premature
termination

codon

prelamin A 
accumulation

Moulson et al. 2005

ZMPSTE24 p.L91_L209del / p.L362 fsX18
premature
termination

codon

prelamin A 
accumulation

Navarro et al. 2004
Navarro et al. 2005

ZMPSTE24 p.P99L fsX38 / p.L362 fsX18
premature
termination

codon

prelamin A 
accumulation

Navarro et al. 2005

ZMPSTE24 p.I198Y fsX20 / p.L362F fsX19
premature
termination

codon

prelamin A 
accumulation

Moulson et al. 2005

ZMPSTE24 c.627 + 1G>C
partial loss 

deletion exon 5
prelamin A 

accumulation
Sander et al. 2008

ZMPSTE24
p.E239X

homozygous

premature
termination

codon

prelamin A 
accumulation

Chen et al. 2009

ZMPSTE24
p.L362F fsX19
homozygous

premature
termination

codon

prelamin A 
accumulation

Moulson et al. 2005

ZMPSTE24
p.L362 fsX18
homozygous

premature
termination

codon

prelamin A 
accumulation

Navarro et al. 2004
Navarro et al. 2005

ZMPSTE24 p.L362 fsX18 / p.Q417X
premature
termination

codon

prelamin A 
accumulation

Navarro et al. 2005

ZMPSTE24
p.I198Y fsX20
homozygous

premature
termination

codon

prelamin A 
accumulation

Moulson et al. 2005

Intermediate 
syndromes

LMNA p.G608G progerin Navarro et al. 2004

LMNA p.V607V progerin Moulson et al. 2007

LMNA
c.1303C>T 

homozygous
Mutant lamin A 
p. Arg435Cys

Youn et al. 2010
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1.7 LAMINS AND AGING 

Physiological aging is a complex process most likely involving many different 

molecular mechanisms. A link between nuclear morphology and age has been shown in 

the nematode C. elegans, in which age was accompanied by major changes in the 

nuclear architecture. Age-related changes included progressive alterations of the 

nuclear shape with a loss of heterochromatin and an abnormal distribution of the 

nuclear envelope proteins in wild-type animals (Haithcock et al. 2005) 

The first indication of a link between lamins and physiological aging came from 

a study of fibroblasts. The study showed that small amounts of the same mutant lamin 

A protein seen in HGPS patients were present in healthy individuals. However, neither 

the amount of mutated protein nor the amount of mRNA encoding it increased with the 

age of the donor (Scaffidi & Misteli, 2006). Other, more recent studies have shown that 

when fibroblasts from healthy donors age in culture, the amount of mutated protein or 

mRNA increases with the number of passages (Cao et al. 2007; Rodriguez et al. 2009). 

In vivo studies have confirmed that progerin levels in skin increase with age, and it 

seems to be expressed in cells that have reached terminal differentiation or senescence 

(McClintock et al. 2007). 

 

1.8 SKIN STRUCTURE 

The skin is the largest organ in the body and has four major functions: i) Protection. 

The skin protects the body against ultraviolet light and mechanical or chemical insults. 

It also provides a barrier for microorganisms and prevents dehydration. ii) Sensation. 

The skin contains various receptors for touch, pressure, pain and temperature. iii) 

Thermoregulation. The skin protects the body from heat loss by the presence of hair 

and subcutaneous adipose tissue. Evaporation of sweat and increased blood flow 

facilitates heat loss. iv) Metabolism. The epidermis synthesizes vitamin D, and the 

subcutaneous adipose tissue constitutes a major store of energy (Wheater’s Functional 

Histology A Text and Colour Atlas). 

The basic structure of the skin can be divided into three different layers: the 

epidermis, the dermis and the hypodermis (Fig. 3). The epidermal layer is the 

outermost layer and is in turn divided into multiple layers. The thick dermal layer, 

composed of fibro-elastic tissue, supports the epidermis, contains many sensory 

receptors, and is highly vascular. Located underneath the dermis is the hypodermis, 

which mainly contains adipose tissue.  
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The interfollicular epidermis of the skin is a multilayered stratified squamous 

epithelium, which maintains homeostasis by proliferation of adult stem cells in the 

basal layer (Fig. 3). As basal cells detach from the basement membrane, they leave the 

cell cycle, initiate a multi-step program of terminal differentiation and gradually move 

upwards to the skin surface. The gradual differentiation of the keratinocytes creates the 

different layers of the epidermis (Fuchs & Byrne 1994; Alonso & Fuchs 2003).  

 

 
 

 

 

1.9 THE HAIR CYCLE 

The hair coat, which keeps most mammals warm and dry, requires a steady supply of 

new hairs throughout the animal’s lifetime. To produce new hairs, existing follicles in 

the skin undergo cycles of degeneration and regression throughout life. Hair follicles 

are continuous with the interfollicular epidermis and are composed of a number of cell 

layers. The outer root sheath, the outermost epithelial layer, maintains contact with the 

basement membrane separating the follicle from the dermal cells (Fuchs, 2007).  

Figure 3. Graphic illustration of the different layers of the skin. The stem cells responsible for the 
constant renewal of the epidermis are located in the basal layer. In the spinous layer tight-junctions 
between the cells are important for the function of the epidermal barrier. 
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The hair cycle is divided into three phases: anagen, catagen and telogen. The 

phases of the hair cycle begin in a wave from the top of the head and spread caudally 

towards the tail and laterally down the sides of the animal. The anagen phase is 

characterized by growth of the hair follicle and proliferation of the cells in the bulb. 

During each anagen, the hair follicle produces an entire hair shaft, and the length of the 

phase determines the length of the hair. Each anagen is followed by a catagen phase, 

characterized by hair follicle regression. During catagen, the lower “cycling” portion of 

the follicle regresses in a process that includes reduction of the epithelial cells of the 

bulb and outer root sheath by apoptosis. The hair cycle is completed by entrance to the 

telogen phase, a resting phase in which the follicles are inactive (Müller-Röver et al. 

2001; Alonso & Fuchs, 2006).  

 

 

 
 

 

1.10 THE ADULT STEM CELLS IN THE SKIN 

The cyclic growth of hair follicles and the constant renewal of the epidermis and 

sebaceous glands are maintained by adult stem cells. These three different 

compartments of the skin are believed to contain their own stem cells (Fig 4) (Fuchs & 

Horsley 2008).  

Figure 4. Graphic illustration of a hair 
follicle in late anagen phase. The lower 
part of the follicle, under the bulge, is the 
cycling portion that will regress in the 
catagen phase.  
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The stem cells located in the lowest permanent part of the hair follicle, called 

the bulge region, are activated at the onset of anagen to generate a new hair follicle 

(Cotsarelis et al. 1990). During the transition to anagen, the growing phase of the hair 

follicle, most bulge cells remain quiescent, while a small number of cells are activated 

(Tumbar et al. 2004). The stem cells from the bulge migrate along the outer root sheath 

to the base of the follicle, where they become activated (Oshima et al. 2001). 

Association with the dermal papilla at the base of the follicle is important to trigger cell 

proliferation. When the dermal papilla moves away from the bulge, the epidermal stem 

cells in this region return to quiescence, while the cells connected to the base of the 

follicle remain highly proliferative. Through local differences in the microenvironment, 

the proliferative cells progress to produce the hair and the inner root sheath (Oshima et 

al. 2001). In addition to the bulge stem cells, a population of Lgr5+ cells located in the 

bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of 

anagen hair follicles have been shown to have stem cell properties (Jaks et al. 2008). 

The interfollicular epidermis contains stem cells that maintain the constant 

renewal of the skin. The endothelial cells of the epidermis are organized in columns 

where basal cells occasionally divide to produce cells with a more transient 

proliferative capacity (Mackenzie, 1970). Both symmetric and asymmetric cellular 

divisions have been observed in the epidermis. They are both believed to supply new 

cells through the formation of layers. Symmetric division relies on detachment of the 

cells from the basement membrane for differentiation (Mackenzie, 1970; Smart, 1970; 

Lechler & Fuchs, 2005), while in asymmetric division basal cells orient their spindle 

asymmetrically towards the basement membrane. Such division leads to one 

proliferative basal daughter and one suprabasal daughter detached from the basement 

membrane (Lechler & Fuchs, 2005).  

Stem cells of the sebaceous gland are believed be unipotent and only contribute 

to homeostasis of the sebaceous glands (Horsley et al. 2006). 

In adult hair follicles, a primitive epidermal stem cell pool has been localized to 

a region above the follicle bulge. These cells express the marker Lgr6 but none of the 

known markers for bulge stem cells. Prenatal Lgr6+ cells have been shown to establish 

the hair follicle, sebaceous gland, and interfollicular epidermis. In adult tissue, Lgr6+ 

cells contribute to the generation of the sebaceous gland and interfollicular epidermis, 

while their role in follicle lineages reduces with age (Snippert et al. 2010). 

In normal skin homeostasis, the stem cells from the bulge and germlayer do not 

contribute to the renewal of the interfollicular epidermis and vice versa. However, 
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when homeostasis is disrupted, cells from all compartments aid in tissue repair and 

contribute to the production of all skin structures (Ito et al. 2005; Levy et al. 2007; 

Fuchs & Horsley, 2008).  

 

1.11 ANIMAL MODELS TO STUDY HUMAN DISEASE 

For studies of rare diseases, such as HGPS and RD, animal models are essential. The 

most common animal used for studying human genetic diseases is mus musculus, also 

known as the house mouse. A number of different methods can be used to induce a 

human disease in a mouse and thereby create a model organism. The methods can be 

divided into two major approaches: the non-directed and mutation driven and the 

directed and disease driven (Simmons, 2008).  

The non-directed approach attempts to randomly induce mutations in the 

animals by exposure to mutagenic doses of radiation or other chemical compounds. 

Screening of the animals is made in an attempt to find individuals with phenotypes that 

resemble symptoms of human diseases (Hardouin & Nagy, 2000).  

There are a number of directed approaches to induce a mutation in a mouse 

model. The method chosen depends on the type of mutation involved and for what 

purpose the model is created.  

Transgenic models are generated by adding foreign genetic information to the 

nucleus of embryonic cells, thereby inducing gene expression. The transgene will be 

inserted randomly into the genome and, depending on the site of insertion, will be 

expressed at different levels. To decrease the effects of insertion, yeast or bacterial 

artificial chromosomes (YAC or BAC, respectively) are used. Their larger size makes 

them less susceptible to genomic positional effects and more likely to contain 

regulatory sequences necessary for normal gene regulation (Schedl, 1993; Lamb & 

Gearhardt, 1995).  

The knock-out and knock-in models are useful when a single gene or a specific 

mutation is known to be the primary cause of a disease. Knock-out models are also 

used to investigate the function of a specific gene. Both approaches target a mutation to 

an endogenous gene by homologous recombination. Knock-out models carry a gene 

that has been inactivated, resulting in reduced expression of the gene, while knock-in 

models carry a transgene inserted into an exact location in the genome where it is 

expressed (Simmons, 2008).  
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Some genes are critical early in development, and therefore knock-out 

experiments are not useful due to early embryonic death. The Cre/loxP models are one 

way to overcome this problem because they activate conditional knock-out mutations. 

In Cre/loxP models, the Cre recombinase mediates recombination between two loxP 

sequences. To target a gene for a conditional knock-out mutation, an exon, for example, 

or a larger region of the endogenous gene can be replaced with a homologous gene 

segment flanked by loxP sequences. Mice carrying this targeted mutation are later 

mated with a strain carrying a Cre transgene under the control of a specific promoter. 

Offspring of this cross containing both transgenes will express Cre in tissues where the 

specific promoter is active. When Cre is expressed, it induces recombination at the loxP 

sites, deleting the contained sequence. By choosing a specific promoter to control the 

expression of Cre, it is thereby possible to direct the knock-out of a gene to a specific 

tissue or at a specific stage of development (Strachan & Read, 2004).  

A way to overcome the problem of transgenic products that might be toxic 

when expressed during development or have negative effects on reproduction is 

through the use of inducible systems. In these systems an inducible promoter, which 

can be switched on or off by controlling the supply of a chemical ligand, is used to 

control the expression of a transgene (Strachan & Read, 2004). One of these systems is 

the tetracycline-regulated model, used in this thesis and explained in more detail below. 
 

1.12 ANIMAL MODELS FOR HGPS AND RD 

Several different approaches have been used to produce mouse models for 

laminopathies (Stewart et al. 2007). Three relevant models for studying HGPS and RD 

are the BAC transgenic model (Varga et al. 2006), the Zmpste24-/- knock-out model 

(Bergö et al. 2002; Pendas et al. 2002) and the LmnaHG/+ model (Yang et al. 2006)  

The BAC transgenic mouse model carries the human LMNA p.G608G mutation 

and over-expresses human lamin A/C and progerin in all tissues. The mice show no 

external phenotype but display a progressive loss of vascular smooth muscle cells in the 

media of the large arteries. This phenotype closely reassembles the most lethal aspect 

of the phenotype seen in patients with HGPS, but the animals do not die prematurely 

(Varga et al. 2006).  

The Zmpste24-/- is a complete knock-out model without any expression of the 

zmpste24 enzyme, resulting in defective prelamin A processing. These animals look 

normal at birth but develop skeletal abnormalities with spontaneous bone fractures. In 
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addition, they exhibit progressive hair loss, abnormal teething, muscle weakness and 

premature death at 20-30 weeks of age (Bergö et al. 2002; Pendas et al. 2002).  

The LmnaHG/+ is a progerin knock-in model, in which one of the Lmna alleles 

only express progerin, and not lamin A or C. These animals are small in size and 

exhibit loss of subcutaneous fat, progressive hair loss, skeletal abnormalities with 

spontaneous rib fractures and reduced survival. Homozygous animals LmnaHG/HG 

display a more severe phenotype and die at 3-4 weeks of age with poorly mineralized 

bones, micrognathia and craniofacial abnormalities (Yang et al. 2005; Yang et al. 

2006).  

 

1.13 TETRACYCLINE REGULATED ANIMAL MODELS 

Mouse models with tetracycline controlled gene expression are model systems with the 

ability to induce transgenic expression both temporally, by adding or removing 

doxycycline, and spatially, by using a tissue specific promoter. It is a binary transgenic 

system, which consists of two critical components: the regulatory part and a response 

element (pTRE element) targeting the expression of a gene of interest. The regulatory 

part is composed of the regulatory protein tTA or rtTA (the Tet-Off or Tet-On system, 

respectively) under the control of a tissue-specific promoter. The response element 

consists of a pTRE element (tetop) linked to the gene of interest. When the regulatory 

part and the response element co-exist in the same cell, the gene of interest is expressed 

upon binding of tTA or rtTA to the pTRE element. Both the Tet-On system and the 

Tet-Off system are regulated by tetracycline or its derivate doxycycline. In the Tet-Off 

system, the tTA binds to the pTRE element and activates transcription in the absence of 

doxycycline, while the Tet-On system works the opposite way, with rtTA binding to 

the pTRE element in presence of doxycycline (Gossen & Bujard, 1992; Zhu et al. 

2002) (Fig. 5). 

The Tet-On/Off systems have the advantages of regulating a specific gene both 

spatially and temporary in vitro and in vivo. This regulation is convenient when a gene 

product is believed to have toxic effects during embryogenesis, or when it can have 

negative effects during reproduction. It also makes it possible to study the primary 

effects of a gene product in one specific cell type in a tissue. Additionally, these 

systems make it possible to study the reversal of an existing phenotype by inhibiting the 

transgenic expression after the phenotype has developed. 
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Figure 5. Schematic figure of the regulation of the Tet-Off and Tet-On systems. In this thesis I have 
been using the Tet-Off system. 

Tet-Off Tet-On 
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1.14 TREATMENT POSSIBILITIES OF HGPS  

Today there is no available cure for HGPS. A few patients have been treated with 

growth hormones, which resulted in increased body height and weight (Merideth et al. 

2008). However, this approach only aims to improve part of the phenotype, and other 

treatments need to be found and evaluated.  

One possible target for treatment is the post-transcriptional processing of 

prelamin A to become mature lamin A. In May 2007, a clinical trial using 

farnesyltransferase inhibitors (FTIs) was initiated. FTIs blocks farnesylation of 

proteins, including the processing of lamin A, and thereby inhibits the production of 

progerin. FTIs had previously been developed for anti-cancer therapies, but their use on 

HGPS cells resulted in the prevention and even the reversal of the misshapen nuclear 

morphology (Capell et al. 2005; Glynn et al. 2005; Mallampalli et al. 2005; Toth et al. 

2005; Yang et al. 2005; Basso et al. 2006). Treatment of the two HGPS mouse models 

Zmpste24-/- (which have no functional zmpste24 enzyme) and LmnaHG/+ (where one 

allele of Lmna was engineered to produce progerin only) resulted in a milder phenotype 

(Fong et al. 2006; Yang et al. 2006). In addition, treatment of the BAC-transgenic 

model (carrying the LMNA p.G608G mutation) with FTIs resulted in the prevention of 

both the onset as well as the late progression of the cardiovascular phenotype normally 

seen in these animals (Capell et al. 2008).  

In the presence of FTIs, an alternative processing of lamin A can occur. In this 

processing, the farnesylation is substituted with an alternative prenylation by 

geranylgeranyltransferase, nevertheless resulting in production of progerin. To prevent 

this, treatment of combined statins and aminobisphosphonates has been shown to 

inhibit both geranylgeranylation and farnesylation of progerin and prelamin A (Fig 6.). 

This combination has also been used for cancer treatments and has been shown to 

improve the phenotype of Zmpste24-/- mice and HGPS cells (Varela et al. 2008). An 

ongoing clinical trial involving 45 children with HGPS combines FTIs, statins and 

aminobisphosphonates (http://www.progeriaresearch.org/clinical_trial.html). Because 

other laminopathies also show an accumulation of progerin or un-processed prelamin 

A, the approach of blocking farnesylation might represent a therapeutic strategy 

suitable for other diseases as well as HGPS. 
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Additional targets for treatment could include different strategies to prevent the 

production of mutant forms of lamin A. This could be achieved through the use of 

modified oligonucleotides, so called morpholinos, or RNA interference (RNAi). RNAi 

treatments, with a short hairpin RNA (shRNA) designed to specifically target the 

mutant mRNA, have been shown to reduce the expression of progerin in HGPS 

fibroblasts and reduce the cellular phenotype. Maintaining expression of the shRNA 

and administration to targeted cells are current limitations of this strategy (Huang et al. 

2005). Morpholinos that target the cryptic splice site is another strategy to prevent the 

production of progerin. This approach has been used to restore the nuclear morphology 

in HGPS cells as well as to rescue the normal nuclear localization and the cellular 

levels of lamina-associated proteins. The treatment could also reestablish normal 

expression of several misregulated genes (Saffidi & Misteli, 2005). Morpholinos have 

been delivered successfully over a continuous period of time in animal models and in 

humans, thereby overcoming one of the limitations of RNAi-based treatments (Sazini 

& Kole 2003). 

Figure 6. Schematic figure of the isoprenylation pathway and possibilities for treatments.  
(FPP = farnesyl-pyrophosphate, FTase = farnesyltransferase, FTI = Farnesyltransferase 
inhibitors, HMG-CoA = hydroxymeythylglutaryl co-enzyme A, PP = pyrophosphatase) 
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2 METHODOLOGY AND MATERIALS 
2.1 LABORATORY ANIMALS 

Two different minigene constructs under the control of a tet-operator were generated to 

create the different founder lines (Fig. 7). One carrying the wild-type sequence of 

human lamin A (tetop-LAwt) and the other carrying the lamin A c.1824C>T, p.G608G 

mutation (tetop-LAG608G). Mice carrying these minigenes were intercrossed with mice 

carrying the keratin 5 transactivator (K5tTA) (Diamond et al. 2000) (paper I). In paper 

II-IV only the minigene with the lamin A c.1824C>T, p.G608G mutation was 

intercrossed with the K5tTA to get bitransgenic animals. Mice were intercrossed on 

doxycycline (100 µg/ml, 2.5% sucrose), which was removed at the day of birth 

(postnatal day 0, d0) or at weaning on d21 (paper I-III). The drinking bottles containing 

doxycycline were changed every third day and wrapped in foil in order to protect the 

light-sensitive antibiotic. In paper IV embryonic expression of the transgene was 

studied and mice were intercrossed on regular water (without doxycycline). 

Animals were used in accordance with the guidelines for care and use of 

experimental animals at the Karolinska Institutet. All animal work was approved by 

Stockholms Södra Djurförsöksetiska Nämnd. The mice were housed within the animal 

facilities at the Karolinska Institutet, Huddinge, Sweden. A standard diet and water was 

supplied ad libitum. Bitransgenic animals and controls were supplied with dissolved 

pellets on the floor from d21. 

 

 
 
 
 
 

Figure 7. Schematic figure of the minigene constructs. The top construct, tetop-LAwt , overexpresses 
human wild-type lamin A. The bottom construct, tetop-LAG608G, overexpresses human wild-type lamin 
A and human progerin.  
(tetop = pTRE element, IRES = internal ribosomal entry site, eGFP = enhanced green fluorescent 
protein, polyA = polyadenylation sequence) 
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2.2 PCR GENOTYPING 

A small piece of the tip of the tail of each pup was clipped for DNA isolation. The 

DNA was extracted using standard phenol:chloroform method and precipitated by 

isopropanol. Presence or absence of the transgenes was confirmed by PCR with primers 

for the lamin A minigenes (tetop-LAG608G and tetop-LAwt) and K5tTA. Primers for myc 

were used as a positive control to analyze the quality of the DNA and the amount of 

genomic DNA in the extraction.  

 

2.3 ANIMAL TISSUE COLLECTION AND PROCESSING 

Animals for tissue collection were sacrificed by an overdose of isoflurane and cervical 

dislocation, after which the skin was harvested. The tissue was frozen in liquid nitrogen 

and stored at -80°C for further RNA or protein preparation. Tissues were also collected 

for β-galactosidase staining; see below. The tissues used for immunohistochemistry, 

immunofluorescence and histopathology staining were fixed in 4% paraformaldehyde 

(PFA) overnight at 4°C. After the overnight incubation, the tissues were dehydrated in 

70% ethanol and further processed in a vacuum infiltration processor (V.I.P., Huddinge 

hospital). After the dehydration process, the tissues were embedded in paraffin and 

sectioned using a microtome. Four or five micrometer thick sections were dried and 

mounted onto glass slides. The slides were then subjected to the different staining 

methods. 

In addition to skin, collection of the gastrointestinal system, teeth, lower jaws, 

liver, pancreas, spleen, thymus, mammary glands, salivary glands, brown fat, tear 

glands, kidneys, adrenal glands, reproductive organs, skull, tongue, brain, trachea, 

lungs and the respiratory mucosa of the nasal cavity was collected for pathological 

analysis (paper I). 

 

2.4 STAININGS FOR HISTOPATHOLOGY 

To be able to analyze distinctive histological structures, different staining methods were 

used. Sections of tissue were attached to Superfrost slides (Menzel-Gläzer).  

The hematoxylin and eosin (H&E) stain was used in most cases for examination 

of pathologies. H&E is a common staining method where the hematoxylin component 

stains the nucleus blue/black, while the eosin stains cell cytoplasm and most connective 

tissue fibers in varying shades and intensities of red, pink and orange (Wilson and 

Gamble, 2002).  
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In the wound healing study in paper III, Masson’s trichrome technique was used 

to distinguish collagen fibers in the wounded area. In Masson’s trichrome staining, the 

nucleus is stained blue/black and the cellular cytoplasm, muscle and erythrocytes are 

stained red, while collagen is stained blue, and a darker blue corresponds to older/more 

dense collagen (Jones, 2002).  

To distinguish collagen in young animals with transgenic expression during 

embryogenesis in paper IV, the van Gieson technique was used. In the van Gieson 

technique, the nuclei is stained blue/black and collagen is stained red, while other 

tissues are stained yellow (Jones, 2002).   

All histological stainings were done according to standard procedures.  

 

2.5 IMMUNOFLUORESCENCE STAINING  

To analyze the expression of certain proteins in different cells and in different 

compartments of the skin, immunofluorescence staining was used. The use of 

secondary antibodies conjugated with different fluorophores made it possible to 

analyze more than one protein in the same sample. This makes it possible to search for 

co-expression of two proteins within the same cell. For immunofluorescent staining, 4-

µm thick sections were re-hydrated in a series of incubations in decreasing 

concentrations of ethanol. To expose the epitope in the sections, a subsequent step of 

antigen retrieval was necessary. Several different methods for antigen retrieval have 

been tested for even and accurate stainings by different antibodies. The antigen retrieval 

methods use either a microwave oven to heat the sections in citrate buffer or a pressure 

cooker with EDTA. After antigen retrieval, the sections were blocked in normal goat 

serum followed by mouse-to-mouse blocking reagent (SCYTEC Laboratories, this step 

was only necessary if the primary antibody was raised in mouse). The primary antibody 

was incubated overnight at 4°C. On the following day, the sections were washed in 

PBS and incubated with the secondary fluorophore-conjugated antibody. Following a 1 

hour incubation in the dark at room temperature, the slides were washed and mounted 

with Vectashield mounting medium containing DAPI (Vector laboratories). DAPI 

binds to DNA, and when excited it emits a blue light, thereby staining all cell nuclei in 

a tissue section blue. The sections were analyzed with a direct fluorescence microscope 

(Axioplan 2, Zeiss) or a laser inverted confocal microscope (LSM 510, Zeiss).  

Immunofluorescent stainings were also made on primary keratinocytes that had 

been isolated from mice of different ages. Using a Shandon Cytospin 4 (Thermo 
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Electron Corporation), 100,000 cells were centrifuged onto a glass-slide. Cells were 

dried and fixed by an incubation in 4% PFA for 30 minutes. Using 1% NP-40 in PBS 

(Surfact-Amps NP-40, Pierce Biotechnology), cells were permeabilized. After 

permeabilization, the cells were blocked in 5% normal goat serum and 0.1% Birj 

(Surfact-Amps 58; Birj, Pierce Biotechnology), followed by incubation with the 

primary antibody at 4°C overnight. The samples were incubated with the secondary 

fluorophore-conjugated antibody at room temperature in the dark before mounting and 

analysis in a fluorescence microscope.  

 

2.6 IMMUNOHISTOCHEMISTRY 

Immunohistochemistry is an alternative method to analyze expression of proteins in a 

tissue section. By this method it is easier to see histological structures in the tissue and 

it is also possible to estimate expression levels of a protein. To achieve uniform staining 

a microwave oven was used for antigen retrieval to heat the tissue in citrate buffer. 

After the antigen retrieval endogenous peroxidase activity was eliminated by incubation 

in methanol containing hydrogen peroxide. Before incubation with the primary 

antibody the sections were blocked by normal goat serum in PBS. The primary 

antibody was diluted in BSA and incubated at 4°C overnight. After washing the 

secondary biotinylated antibody was added. The Vectastain ABC kit (Vector 

laboratories) was used to visualize the peroxidase according to manufacturer’s 

recommendations. Nuclear counterstaining was accomplished by haematoxyline (htx) 

staining and sections were analyzed in a bright-field microscope.  

 

2.7 BRDU LABELING AND LABEL-RETAINING CELL ANALYSIS 

Bromodioxyuridine (BrdU) is an analogue to thymidine that, when present, incorporate 

into newly synthesized DNA during cell division. To assay the number of stem cells in 

the skin four day old bitransgenic and wild-type mice received five BrdU injections at 

24-hour intervals (paper III). After the multiple injections almost all of the cells in the 

skin were labeled. During every cell division the BrdU label gets diluted, and after a 

chase period of 70 days, only the cells that have rarely divided kept their labels. Label 

retention is consequently a marker of the proliferation history of a cell. Because stem 

cells are slow cycling by definition, these label-retaining cells were considered stem 

cells (Braun et al. 2004). Animals were sacrificed 70 days after the last injection and 
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dorsal skin was collected. BrdU incorporation was detected by immunofluorescence 

staining on 4µm thick sections counterstained with K5. 

 

2.8 WOUND HEALING 

One important function of the epidermal stem cells is to actively contribute to wound 

repair (Ito et al. 2005). After a wounding of the skin the stem cells proliferate and their 

daughter cells migrate in order to close the open wound. To study the wound healing in 

our animals we introduced a 3mm wound on the backs of bitransgenic and wild-type 

animals (paper III). The wound healing was analyzed after four and seven days of 

recovery. After the recovery period the animals were sacrificed by an overdose of 

isoflurane and cervical dislocation, and the wounds with surrounding skin were 

excised. To mark proliferating cells BrdU was injected one-hour prior to sacrifice. 

BrdU is incorporated into DNA during DNA synthesis in dividing cells and with a 

short-term chase period only proliferating cells are marked. After the wounds had been 

excised they were processed for histological analysis with H&E and Masson’s 

trichrome staining. BrdU incorporation was detected by immunofluorescent staining on 

4µm thick sections counterstained with K5. 

 

2.9 KERATINOCYTE ISOLATION 

To analyze the properties of the cells in the epidermis keratinocytes were isolated from 

bitransgenic animals and wild-type littermates (paper III). The animals were sacrificed 

by an overdose of isoflurane and cervical dislocation, and the fur was trimmed with an 

animal hair clipper. The skin was removed and placed into Ca2+ free PBS. A scalpel 

was used to remove subcutaneous tissue and to divide the skin into stripes. The stripes 

were floated on trypsin with the epidermis upwards in a Petri dish for two hours at 

32°C. After incubation the epidermis was scraped into S-minimal essential medium (S-

MEM) supplemented with soybean trypsin inhibitor and BSA. The mixture was gently 

stirred with a magnetic stirrer for 20 minutes at room temperature. To get a single cell 

suspension the mixture was filtered through a 70 µm cell strainer and viable cells were 

counted after staining with tryphan blue. 

 

2.10 FLUORESCENCE-ACTIVATED CELL SORTING 

To study the population of stem cells in the skin the isolated keratinocytes were 

analyzed by fluorescence-activated cell sorting (FACS) (paper III). This method allows 
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measuring the expression of two different proteins within the same cell by the use of 

specific antibodies. In keratinocytes the co-expression of the two proteins α6-integrin 

and CD34 mark cells with stem or progenitor cell characteristics (Trempus et al. 2003, 

Tumbar et al. 2004, Silva-Vargas et al. 2005). For the FACS analysis single cell 

suspension of isolated keratinocytes were blocked before incubation with PE-Cy5-

conjugated anti-α6 integrin (CD45f, BD biosciences) and PE-conjugated anti-CD34 

(RAM34, eBiosciences) antibodies. The antibodies were diluted in 2% FBS (Chelex 

treated to remove Ca2+) and incubated for two hours at 4°C. From each sample a 

minimum of 32,000 events were analyzed with a FACScalibur flow cytometer (BD 

biosciences).  

 

2.11 COLONY FORMATION 

When stem cells are cultivated in vitro they form large self-renewing colonies while 

their non-stem cell daughters divide only a few times before undergoing terminal 

differentiation (Barrandon and Greeen, 1987). To analyze the ability of primary 

keratinocytes to form colonies in vitro 30,000 isolated primary keratinocytes were 

plated onto collagen IV pre-coated six-well plates (paper III). The plates were pre-

seeded with a feeder layer of growth arrested, by γ-irradiation (30 Gy), NIH-3T3 cells. 

The cells were grown in epidermal keratinocyte medium (CnT-02, CELLnTEC) for 16 

days before they were rinsed with PBS and fixed in 4% PFA. To visualize the colonies 

the cells were stained with Rhodamine B (Sigma-Aldrich). Size of colonies was 

measured using a ruler and the amount of colonies of different sizes was recorded. 

 

2.12 EPIDERMAL PERMEABILITY ASSAY 

One of the most important functions of the skin is to serve as a barrier between the 

body and the environment. The epidermal permeability barrier is developed between 

embryonic day 16 and 17 (Hardman et al. 1998). To investigate if the formation of the 

epidermal barrier was delayed in bitransgenic animals in paper IV, where they had 

transgenic expression during embryogenesis, an epidermal permeability assay was 

performed. To know the age of the embryos, females in breeding were checked for a 

mating plug. The morning a mating plug was noted was considered embryonic day 0.5. 

At embryonic day 17.5 the female was sacrificed by cervical dislocation and the 

embryos were harvested. The embryos were sacrificed by an overdose of isoflurane and 

washed in PBS. After washing, the skin was dehydrated in methanol before being 
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rehydrated in water. After rehydration the animals were soaked in Toluidine Blue 

(0.1%) and washed in PBS before being photographed with a digital camera. Toluidine 

Blue is a dye that will penetrate skin with a poor epidermal barrier, staining it blue, 

while skin with a functional epidermal barrier will remain unstained.  

 

2.13 WESTERN BLOT 

To quantify protein levels in animals at different ages western blots were performed 

(paper I and IV). Protein was extracted from mouse skin in 8M urea supplemented with 

5% RIPA buffer and homogenized with Lysing Martrix D (Qbiogene) and Fastprep 

220A (Qbiogene). To achieve enhanced protein separation a large western blot system 

was used consisiting of 1mm thick and 20 cm long 4%/7.5% discontinuous Laemmli 

slab gel. The gel was run for 11 hours at 20 mA using a cooling system to achieve well-

separated bands. Proteins were transferred to a nitrocellulose membrane (Hybond-C+, 

Amersham Biosciences) according to standard procedure using a Semidry Transfer Cell 

(BIORAD). After transfer the membrane was blocked in 5% milk in TBS-T before 

overnight incubation at 4°C with the primary antibody. Primary antibodies used for 

western blot were: anti-lamin A/C (N-18, Santa Cruz Biotechnology) and anti-β-actin 

(AC-15, Sigma). After washing the membranes were incubated with the HRP 

conjugated secondary antibody, diluted in 5% milk in TBS-T. After washing ECL plus 

(Amersham Biosciences) was added to the membranes for 5 minutes at room 

temperature. Directly following this step the membranes were exposed to film for 

different lengths of time. Quantification of the proteins was performed on western films 

by the use of Versa Doc Imaging systems (Bio-Rad) and analyzed using the Quantity 

One software (Bio-Rad). The relative band intensities were normalized to the 

housekeeping gene β-actin from the same lane and only bands from the same film were 

compared to each other. Care was taken to avoid quantification on films that had longer 

exposure times. 
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3 AIMS OF THE THESIS 
This thesis is focused on gaining a deeper understanding of the effects caused by the 

expression of the most common HGPS mutation (LMNA c.1824C>T, p.G608G), 

thereby improving our understanding of the molecular mechanisms behind HGPS. A 

deeper knowledge of the LMNA c.1824C>T mutation would not only be important for 

patients with progeria and their families but also would allow us to gain insight into the 

role the LMNA gene might play in physiological aging. 

 

The first aim of this thesis was to develop a transgenic mice model that exhibited 

inducible and tissue specific expression of the lamin A c.1824C>T mutation in order to 

produce a good model for the study of HGPS (Paper I). 

 

The second aim was to investigate the effects of progerin on the progress of the hair 

cycle and to determine if expression of progerin influences the expression of lamin B, 

thereby broadening our understanding of the skin phenotype seen in the lamin A 

c.1824C>T expressing mice. To accomplish the second aim, we first characterized the 

normal hair cycle and expression patterns for lamin A/C and B (Paper II).   

  

The third aim was to increase our understanding of the molecular mechanisms in HGPS 

by studying the effects of over-expression of the lamin A c.1824C>T mutation on the 

epidermal stem cells. In addition, we sought the molecular mechanisms behind the stem 

cell effects and the connection between progerin expression and senescence (Paper III). 

 

The fourth aim was to investigate the effects from over-expression of the lamin A 

c.1824C>T mutation during embryogenesis. In addition, we wanted to test if over-

expression of the HGPS mutation during embryogenesis would result in a more severe 

HGPS phenotype that would present with symptoms similar to RD (Paper IV).  
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4 RESULTS AND DISCUSSION 
4.1 PAPER I 

HGPS is a very rare disease with devastating symptoms for the patients. To gain insight 

into the molecular basis of the disease and to investigate possible interventions for the 

patients, animal models are essential. In this study, we generated two transgenic mouse 

lines. One of the lines expresses a minigene of human wild-type lamin A, and the other 

line expresses a minigene of human lamin A carrying the most common HGPS 

mutation (LMNA c.1824C>T, p.G608G). The two minigene constructs were under the 

control of an inducible promoter. By using the tet-off system, expression of the 

minigenes was limited to a specific tissue and was temporally regulated. 

The clinical picture in HGPS involves multiple organs. Skin is one of the first 

organs to display a typical disease phenotype, including scleroderma, loss of 

subcutaneous fat and alopecia. Based on this, we decided to use the tetracycline-

inducible transactivator line K5tTA (Diamond et al. 2000) to direct the expression of 

our minigenes to the basal cells of the interfollicular epidermis and the hair follicle.  

Analysis of RNA from skin samples of bitransgenic animals with the lamin A 

c.1824C>T, p.G608G mutation showed the appearance of progerin RNA, indicating 

that the mouse splicing machinery recognized the human HGPS mutation as a splice 

site. At the protein level, the appearance of human progerin was determined by western 

blot in bitransgenic animals. The expression pattern of the transgene was evaluated by 

immunofluorescence staining with an antibody specific for human lamin A/C and 

counterstained with an antibody for K5. A connection between expression levels of the 

minigene and phenotype progression was noted. Founder lines with low expression 

showed no pathological changes in animals as old as two years. Even and high 

expression of the minigene was detected in bitransgenic animals from both lamin A 

wild-type- and lamin A c.1824C>T-carrying mouse lines in K5-expressing cells in the 

skin analyzed by immunofluorescent staining. The immunofluorescent staining was 

confirmed by western blot, with accumulation of human progerin and human prelamin 

A present in the skin of bitransgenic animals.  

Bitransgenic animals with high expression of the lamin A c.1824C>T mutation 

had an external phenotype with thinned hair, growth retardation and premature death. 

By giving the animals soft food made from dissolved pellets, the median age was 

increased from 7 weeks to 29 weeks in bitransgenic animals, when doxycycline was 
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removed from the day of birth (d0). When doxycycline was removed at weaning (d21), 

the median survival age was 14 weeks. Bitransgenic animals with the wild-type 

minigene did not show any growth retardation or premature death.  

Histological analysis of lamin A c.1824C>T-expressing bitransgenic animals 

revealed a progressive phenotype. When the expression of the transgene was induced at 

d21, the animals first entered an intermediate hyperproliferative stage with regions of 

milder or more severe epidermal hyperplasia. The hyperplasia was associated with 

hypergranulosis and hyperkeratosis, evident after 6 weeks of transgenic expression. The 

hair follicles showed dystrophic changes as well as hyperplastic and irregularly 

matured sebaceous glands. The phenotype also included inflammatory cells in the 

dermis and, in more severe regions, dermal fibrosis. The disease evolved further, and 

within 17 weeks of transgenic expression the phenotype developed into an end stage. In 

this stage, the skin was characterized by epidermal hypoplasia, hypoplastic sebaceous 

glands, absence of hypodermis and a well-developed fibrosis in the dermis.  

To study the reason for the epidermal hyperplasia seen at the intermediate stage, 

immunohistochemistry stainings were performed with antibodies against keratins 5 and 

6 (K5 and K6). Mislocalization of keratin 6 indicated hyperproliferation, and further 

staining with an antibody against phosphohistone H3 confirmed increased proliferation. 

Skin samples with hyperplasia from the intermediate stage were also examined to test if 

normal epidermal differentiation was altered. Immunofluorescent stainings with the 

differentiation markers keratin 1 and 10 (K1 and K10), loricrin and filaggrin indicated 

normal differentiation. However, both the granular and spinous layers were thicker 

compared to wild-type mice.  

When other K5-expressing organs than the skin were analyzed, the only 

histopathological changes included possible mild hyperplasia in the stomach as well as 

more extensive changes in the lower incisors and surrounding tissue. The changes in 

the lower incisors consisted of food and other foreign material in the pulp, with acute 

inflammation and necrosis as a response.  

In this study, we estblished a mouse model that expresses progerin in the skin. 

The induction of lamin A c.1824C>T expression in the basal cells of the epidermis 

leads to a skin phenotype affecting multiple layers of the skin. Even if the dermis and 

the hypodermis do not express the transgene severe effects are seen in these skin 

compartments, suggesting secondary effects of the transgene expression.  

In summary, we have developed an inducible and tissue-specific mouse model, 

which expresses progerin in the skin. The expression of progerin induces a progressive 
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phenotype, beginning with hyperproliferation and ending with a phenotype resembling 

many of the clinical features of the skin reported in children with HGPS. Therefore, this 

model should be useful in studies contributing to extending the understanding of this 

disease as well as to examine possible treatments.  

 

4.2 PAPER II 

Major skin phenotypes are seen in patients with at least three different diseases caused 

by mutations affecting lamin A and C. These disorders include the premature ageing 

disorders HGPS and MAD as well as RD. To increase the understanding of the 

mechanisms behind these phenotypes, there was a need to improve our knowledge of 

normal lamin A/C and B expression in different cells of the skin during the hair cycle. 

One of the phenotypes seen in our bitransgenic animals expressing the lamin A 

c.1824C>T mutation is hair thinning. In light of this, we decided to examine if progerin 

expression alters the hair cycle or affects the expression of lamin B. To examine if there 

were any changes, we first classified the different stages in the normal hair cycle and 

the expression of lamin A/C and B.  

To classify the normal hair cycle, skin from wild-type FVB/NCrl mice was 

collected at different time points, from the day of birth (d0) to postnatal day 70 (d70). 

The longitudinal midline of the dorsal skin was divided into equally sized portions, 

beginning between the ears and reaching gradually to the base of the tail. The skin was 

sectioned and stained with H&E and analyzed in a bright field microscope. The 

classification of the different stages and sub-stages of the hair cycle were performed 

according to previously published morphology guidelines (Müller-Röver et al. 2001). 

Analysis of skin from d0 to d12.5 mice demonstrated a developing skin with various 

stages of anagen hair follicles. The first postnatal hair cycle was indicated by growing 

follicles and entrance into the first catagen phase, which started at d15. The first 

catagen phase was followed by the first telogen phase, which was seen in 19- and 20-

day-old animals. At d21, anagen follicles were already seen. This anagen phase lasted 

until d35, when the second hair cycle was initiated with follicles in the catagen phase. 

Catagen follicles were still present at d42 and d70. At d70, anagen follicles were first 

noted.  

To analyze the normal expression of lamin A/C and B in wildtype mice, we 

performed immunohistochemistry, using an antibody directed against lamin A/C and an 

antibody directed against B1 with minor cross-reactivity to B2 and B3. Strong 
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expression of lamin A/C and B was seen in the basal cells of the epidermis, the outer 

root-sheath and the dermal papilla in all stages of the hair cycle. When compared to the 

basal cells of the epidermis, the supra basal cells constantly showed lower expression of 

both lamin A/C and B. The hypodermal cells stained only weakly for lamin A/C and B 

in all phases, while the sebaceous gland had even staining of lamin A/C and B in 

catagen and telogen but a stronger staining of lamin B in the anagen phase.  

The strong expression of the lamins in the basal cells of the epidermis and the 

outer root-sheath supports the importance of these proteins in these compartments of 

the skin. This is of great interest when we look at our inducible transgenic mouse model 

for HGPS, because the transactivator K5tTA directs the expression of our transgene to 

these skin compartments. When these animals were investigated, we could not observe 

any difference in the hair cycle progression or the lamin B expression at d15, d19 and 

d21 when compared to wild-type controls. Expression of the lamin A c.1824 C>T 

mutation consequently neither leads to any immediate alterations of the first hair cycle 

nor has a great effect on lamin B expression.  

A number of factors can influence the progress of the hair cycle i.e. gender, 

strain background and nutritional and environmental factors (Paus & Cotsarelis 1999). 

Due to these factors it is not possible to make a guideline applicable for all conditions. 

In our study we kept these factors constant, regardless of gender. We did not see any 

significant differences in the hair cycle between mice of the same age or of different 

sexes. Although hair follicle morphogenesis and the first postnatal catagen, telogen and 

anagen phases followed a strict timeline we could see differently phased hair follicles 

in different regions of the skin at the same age. 

In summary, in this study, we have classified the normal hair cycle in 

FVB/NCrl wild-type mice and analyzed the normal expression patterns of lamin A/C 

and B in the different phases of the hair cycle. Additionally, we investigated the hair 

cycle and the expression patterns of lamin B in mice expressing the lamin A c.1824 

C>T mutation and did not find any obvious differences when compared to wild-type 

controls.  

 



 

 33 

5 CONCLUSIONS AND FUTURE PERSPECTIVES 
We have developed an inducible mouse model that carries a human minigene for lamin 

A containing the most common causal mutation for HGPS (LMNA c.1824C>T, 

p.G608G). The minigene causes over-expression of both wild type human lamin A and 

progerin. Targeting the transgene expression to K5-expressing tissues resulted in a 

progressive skin phenotype. The phenotype evolved from an intermediate stage with 

hyperplasia and hyperproliferation of the epidermis to an end stage with hypoplastic 

epidermis, a fibrotic dermis and loss of subcutaneous tissue. The end-stage phenotype 

in our mice corresponds to several clinical features of the skin of patients with HGPS. 

This mouse model was used to further investigate the molecular effects of expression of 

the lamin A c.1824C>T mutation in the skin.  

Using our model, we could conclude that progerin expression appears to not 

influence the normal progression of the first hair cycle or the expression of endogenous 

lamin B. To study the influence of the lamin A c.1824C>T mutation, we first 

determined the normal expression patterns of lamin A/C and B in the phases of the hair 

cycle as well as the normal hair cycle progression. The mouse model was also used to 

study the effect of the lamin A c.1824C>T expression on stem cells in the skin.  

The work presented in this thesis provides insights to the molecular 

mechanisms behind HGPS. However, additional research is still needed to understand 

the disease mechanisms behind HGPS. Future studies would involve continued 

investigation of the phenotype seen in mice with embryonic expression of the LMNA 

c.1824C>T mutation.  

Even if skin is one of the first tissues to present with a disease phenotype in 

patients with HGPS and remains a good system for studying the effects of stem cells, it 

is not certain that the results from these experiments can be extended to other tissues. 

To further understand the mechanisms behind HGPS and to obtain a more complete 

picture of the disease, it is important to study other affected tissues. Our mouse model 

provides a system to study individual organs separately by using different tissue-

specific promoters. Other subjects of interest could be bone remodeling, lipid 

metabolism, brain function and effects on the cardiovascular system. 
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