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To Mom and Dad





 A cheerful heart is good medicine
Proverbs 17:22
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absTracT

Metabolic control is essential for the individual and is strictly regulated via a wide 
range of factors. One important mechanism in maintaining an adequate blood sugar 
level is the regulation of insulin release and gastric emptying rate by gastrointestinal 
(GI) hormones.

The aims of this study was to (1) investigate the effects of the two incretin hormones 
GIP and GLP-1 on insulin secretion and small bowel motility in a rat model of diabetes 
type 2 and (2) to investigate the effect of GIP and GLP-1 on gastric emptying, metabolic 
control and appetite after intake of a mixed meal in man. In addition, I (3) studied the 
effects of ghrelin on smooth muscle contractility in rat and (4) its effect on gastric 
emptying in humans after intake of a mixed meal.

The effect of GIP and GLP-1 on insulin secretion was studied in isolated perfused 
pancreas in a rat model of diabetes type 2. Migrating motor complex (MMC) is a 
marker for small bowel motility recorded by electromyography. The effect of GIP and 
GLP-1 was studied in both diabetic and non-diabetic rats. In man, gastric emptying 
during GIP or GLP-1 infusion was investigated scintigraphically after intake of 
a 99Tc-labelled omelette. Simultaneously, appetite ratings were measured using visual 
analogue score (VAS) and blood samples collected for later analysis of GI hormones, 
e.g. insulin, glucagon, PYY, GLP-1, GIP and ghrelin by radioimmunoassay (RIA).

GIP and GLP-1 stimulated insulin secretion in normal rats. The basal insulin level 
was higher in diabetic rats and insulin response to glucose stimulation was severely 
impaired. The potentiatory effect of both GIP and GLP-1 on glucose-induced insulin 
secretion was preserved in diabetic animals, being even more pronounced than in 
controls. In diabetic and non-diabetic animals GIP and GLP-1 showed a similar 
inhibition of small bowel motility. GIP induced a small acceleration of gastric emptying 
in man, whereas GLP-1 potently inhibited gastric emptying. Both peptides showed a 
trend towards increased insulinogenic index. GIP did not affect appetite, while GLP-1 
decreased hunger and increased satiety.

The effect of ghrelin was studied on isotonic contractions of smooth muscle strips of the 
gastric fundus and jejunum in an organ bath. MMC was studied during intravenous 
infusion of ghrelin in normal, atropinised and vagotomised rats. The effects of ghrelin 
on gastric emptying, VAS and GI hormones were studied in the same way as for GIP 
and GLP-1.

Ghrelin caused dose-dependent contraction of the fundus and jejunum. Pre-treatment 
with atropine abolished the response. Ghrelin also dose-dependently shortened the 
MMC. In man, ghrelin accelerated gastric emptying followed by increased hunger and 
deceased satiety. The effect was independent of growth hormone (GH) secretion.

In conclusion, there is an insulinotropic effect of GIP and GLP-1 in both normal 
and diabetic rat and in man. Novel finding is that GIP accelerates gastric emptying, 
whereas GLP-1 inhibits it. Ghrelin stimulates motility in vitro and in vivo in rat and 
accelerates gastric emptying in man. Moreover, both GLP-1 and ghrelin seems to have 
independent effects on appetite, which make them interesting tools for the study of 
diabetes type 2, diabetes type 1 as well as obesity. 
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Fig 1. Schematic demonstration of the incretin effect. Blood glucose and insulin responses after either intravenous or 
intrajejunal glucose infusion in normal subjects. Plasma glucose levels after intravenous glucose infusion are similar 
to intrajejunal glucose infusion, but the latter generates a larger insulin response.

inTroducTion 

The increTin effecT
Oral intake of glucose induces a greater insulin response than intravenous (i.v.) glucose, 
though resulting in the same blood glucose elevation [1-3] (fig 1). Early estimates 
assumed that 50% of the insulin response after oral glucose intake was released by 
gastrointestinal (GI) factors [4]. Today, three criteria are used to determine whether a 
hormone should to be classified as an incretin [5, 6]:

(1) The hormone must be released from gut endocrine cells after ingestion of nutrients, 
especially of glucose. 
(2) The circulating hormone must stimulate insulin secretion at a concentration which 
is achieved after ingestion of a nutrient.
(3) The hormone releases insulin only at elevated glucose levels ( known as glucose-
dependence).

development of concept
Already in 1906 it was discovered that the duodenum yielded a chemical excitant for 
internal pancreas secretion [7], but it took almost 25 years until the importance of the gut 
in the regulation of insulin secretion was called to attention. It was then demonstrated 
that extract from the duodenal mucosa could lower blood glucose [8]. Interest in 
the incretin concept was raised again 30 years later, when two independent groups, 
using radioimmunoassay (RIA) to show evidence that glucose per oral stimulated 
insulin secretion far more potently than the same amount of glucose i.v. [5, 6]. The 
first incretin hormone was isolated and sequenced 1970 [9] and it was named gastric 
inhibitory polypeptide (GIP), due to its inhibitory effect on gastric acid secretion in 
dogs. After insulinotropic action of GIP in man had been demonstrated [10] the name 
was changed to “glucose-dependent insulinotropic polypeptide”. Fifteen years later, 
a strong insulinotropic effect was seen with glucagon-like peptide (GLP-1) a new 
intestinal peptide identified by cloning the pre-proglucagon. The discovery of GLP-1 
has been the start of a new possibility to treat diabetes, based on the incretin concept. 
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GLP-1 analogues or inhibitors of degradation of GLP-1 have now been approved for 
the US market and are commercially available for treatment of type 2 diabetes since 
2005 [11]. 

Quantification of the incretin effect
The incretin effect is quantified by comparing the insulin response to oral and 
intravenous glucose loads. In healthy subjects, the contribution of the incretin effect 
on insulin response ranges between 25 and 73 % [12-15], depending on the amount of 
glucose given. In patients with diabetes type 2.

Interaction between the gut and the endocrine pancreas
The interaction between the gut and the endocrine pancreas is complicated and not 
fully understood. Both GIP and GLP-1 are secreted from the gut lumen after intake 
of glucose, carbohydrate, fat and protein [16-18]. These peptides have different 
actions on the small intestine; at least GLP-1 acts as a “brake” on gastric emptying 
and gut motility [19-22]. GIP and GLP-1 are both glucose-dependent in their action 
on the β-cell and insulin secretion. The blood glucose threshold for the peptides is 
4.5 mmol/L [23]. Incretin hormones do not only induce insulin secretion, but also 
interact with pancreatic islets via neurocrine action [24]. In parasympathetic neurons, 
the transmitter substances acetylcholine (Ach), vasoactive intestinal polypeptide (VIP), 
pituitary adenylate cyclase activating polypeptide and gastrin-releasing peptide are 
localized. In sympathetic neurons, on the other hand, we can find norepinephrine, 
galanin and neuropeptide Y. All these neurotransmitters stimulate or inhibit insulin 
release and glucagon secretion [25]. 

GiP and iTs recePTors
GIP is a 42 amino acid peptide secreted from the K-cells [26-28] in response to nutrient 
ingestion [29, 30]. The main stimuli of GIP secretion are carbohydrates and a lipid-rich 
meal [18, 31-33]. K-cells are found in the proximal gut. The K-cells express glucokinase 
and are believed to have a glucose-sensing system, similar to the mechanism seen 
in the pancreatic β-cell [34]. GIP secretion reaches peak concentrations already 15-30 
min after intake of a meal, long before the nutrients are present in the gut [18, 31-33]. 
Therefore it is highly likely that the vagus nerve is involved in the stimulation of 
secretion [35]. Shortly after GIP is released into the circulation the full-size peptide 
(1-42 amide) is cleaved by the enzyme dipeptidyl-peptidase IV (DPP IV) [36, 37] at the 
NH2-terminal part resulting in the truncated GIP (3-42 amide) [38-41]. The biological 
activity is lost for the truncated GIP (3-42 amide) and the metabolite can even act as 
an antagonist to the GIP receptor [38, 42, 43]. The half-life of the intact GIP (1-42) is 
approximately 7 min.

There are two isoforms of the human GIP receptor, 466 and 493 amino acids. The 
receptors are expressed in islet β-cells, adipose tissue, heart, and brain. GIP glucose-
dependently stimulates insulin secretion via activation of specific G protein-coupled 
receptors (GPCR) expressed directly on islet β-cells [44]. GPCR activation is followed 
by adenylyl cyclase activation, an increase in intracellular Ca2+ and arachidonic acid 
efflux. Activation of the GIP receptor also stimulates cyclic AMP formation and protein 
kinase A activation.
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GLP-1 and iTs recePTor
GLP-1 is a product of the pro-glucagon gene and is mainly expressed in mucosal L-
cells located in the distal intestine (ileum and colon) [45, 46]. GLP-1 is expressed in 
pancreatic alpha cells, as well as in neurons from several brain areas (hypothalamus, 
pituitary, nucleus of the tractus solitarius, reticular nucleus) [23]. GLP-1 secretion 
is stimulated by intake of carbohydrates and fat [47, 48]. The secretion is glucose-
dependent [49, 50]. GLP-1 exists in two bioactive forms, GLP-1(7-37) and the most 
common GLP-1(7-36 amide) [44, 51]. The peptides are equipotent, with an equal 
plasma half-life and identical biological activity through activation of the same 
receptor. Plasma levels of GLP-1, similar to GIP, elevate rapidly after food intake. 
GLP-1 concentration peaks within 30 min after a meal [52]. The rapid response is 
probably caused by vagus nerve activation [35]. The peptide has a half-life of a few 
min [53], due to effective cleavage by the enzyme DPP IV.

The GLP-1 receptor (GLP-1R) is a 463 amino acid receptor and has been found in 
pancreatic islets, kidney, lung, heart, and multiple regions of the peripheral and 
central nervous system. GLP-1 acts on the β-cell by binding to the specific, seven-
transmembrane receptor [54]. Activation of this G-coupled receptor causes an increase 
in intracellular cAMP concentration [55] and activation of protein kinase A (PKA). 
GLP-1 acts directly through the cAMP/PKA pathway to enhance and sensitize β-cells 
resulting in glucose-stimulated insulin secretion (fig 2).

Fig 2. Model of the proposed ion channels and signal transduction pathways in a pancreatic ß-cell involved in 
the mechanisms of insulin secretion in response to glucose and GLP-1. The key elements of the model are the 
requirement of dual inputs of the glucose-glycolysis signaling pathway resulting in the generation of ATP and an 
increase in the ATP:ADP ratio, and the GLP-1 receptor (GLP-1R)-mediated cAMP PKA pathways to effect closure of 
ATP-sensitive potassium channels (K-ATP) consisting of the inward rectifier Kir6.2 and the sulfonylurea receptor 
SUR1. The closure of these channels results in a rise in the resting potential (depolarization) of the ß-cell, leading 
to opening of voltage-sensitive calcium channels (L-type VDCC). A major component of the depolarizing current is 
carried by NSCCs that import Na+ (and Ca2+). In response to activation of NSCC and influx of Na+ there is import 
of Ca2+ by the Na+/Ca2+ exchanger (Na:Ca Exch). Release of intracellular membrane stores of calcium (Ca2+ stores) is 
induced by intracellular free Ca2+, so called calcium-induced calcium release. The influx of Ca2+ through the open-end 
L-type VDCC triggers vesicular insulin secretion by the process of exocytosis. Phosphorylation of vesicular (granule) 
proteins by PKA may also trigger insulin secretion. Repolarization of the ß-cell is achieved by opening of calcium-
sensitive potassium channels (Ca-K). It is believed that the GLP-1 receptor is coupled to a stimulatory G-protein (Gs) 
and a calcium-calmodulin-sensitive adenylate cyclase (AC).
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insulin secreTion and blood glucose uPTake
Insulin is a 51 amino acid hormone that was isolated for the first time in 1922 by Banting 
and Best [56]. It is synthesised as an 86 amino acid proinsulin molecule in the pancreatic 
β-cell [57]. After glucose stimulation, proinsulin is cleaved enzymatically and insulin 
and the cleaved-off chain, the C-peptide, are co-released into the circulation. Insulin 
secretion is strictly glucose-dependent, but several other mechanisms also stimulate 
or inhibit the release (table 1). No secretion is seen at blood glucose levels below 
(4.4-5.6 mmol/L) [57]. The secretion is bi-phasic with the first peak seen within min of 
a meal intake. Binding of insulin to the insulin receptor activates phospho-inositide-3-
kinase (PI 3-K), via insulin receptor substrate. Downstream of PI 3-K phosphoinositide-
dependent protein kinase mediates activation of protein kinase B (PKB). Activated 
PKB regulates glucose uptake by recruiting the glucose transporter GLUT-4 to the 
plasma membrane [58].

Table 1. Regulation of insulin release in humans

Stimulants Amplifiers of glucose-induced
insulin release  Inhibitors 

Glucose
Mannose
Leucine 
Vagal stimulation
Sulfonylureas

1. Enteric hormones: 
    GLP-1
    GIP
    CCK
    Secretin
    Gastrin 
2. Neural amplifiers: beta-adrenergic
    stimulation 
3. Amino acids: arginine

1. Neural: 
    alpha-adrenergic effect
    of catecholamines 
2. Humoral: somatostatin 
3. Drugs: 
    diazoxide
    phenytoin
    vinblastine
    colchicine 

increTins as TheraPy for diabeTes TyPe 2
In patients with diabetes type 2 there seems to be a reduced or absent incretin 
effect [12, 59-61]. The insulinotropic effect of GLP-1 is preserved in much greater 
extent than that of GIP [50]. Infusion of GLP-1 to type 2 diabetes patients can normalize 
fasting [62-65] and postprandial [63, 66] blood glucose. Short-term studies with 
repeated daily injections [67] or continuous subcutaneous  administration of GLP-1 to 
type 2 diabetes patients has shown consistent blood glucose lowering, but the rapid 
degradation of GLP-1 prevent the natural peptide being used as therapy. Instead there 
has been centered focus on finding a degradation resistant GLP-1 receptor agonist or 
increasing endogenous GLP-1 by inhibition of DPP-IV. 

One interesting synthetic GLP-1R agonist is exenatide (exendin-4). Exendin-4 was 
originally isolated from the venom of a lizard, Heloderma suspectum [68]. It is encoded 
by a distinct gene not present in the human genome [69]. Exendin-4 exhibits 53% 
amino acid identity relative to the  GLP-1 sequence, and is resistant to DPP-IV cleavage.
Moreover, there is liraglutide, an acylated human GLP-1 analogue that has completed
phase 2 clinical trials. Liraglutide binds to albumin. It can be administered once daily, 
and exhibits a prolonged pharmacokinetic profile [70] relative to native GLP-1 or 
exenatide [71, 72]. A third interesting substance is vildagliptin, an orally administered 
DPP-IV inhibitor [73].
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Ghrelin and iTs recePTors
Ghrelin is a 28 amino acid gut peptide mainly produced by X/A-like cells in the 
mucosa of the gastric fundus [74-77], but ghrelin cells are found throughout the whole 
GI tract, most abundantly in the stomach and then gradually decreasing aborally. 
Ghrelin producing cells are also present in the pancreas [75-78]. The peptide was 
identified 1999 and found to be a growth hormone (GH) releasing peptide [79]. The 
named origins from “ghre”, which is the Indo-European root of the word “to grow” 
followed by “relin” a suffix used for releasing substances. Independently of this 
finding, another group isolated the same peptide and published the sequence under 
the name motilin-related peptide [80]. The peptide exists in two forms, acylated and 
des-acylated. The latter is less common and believed to be biologically inactive, but 
recent data suggests a role in energy homeostasis and GI motility [81-84]. 

Ghrelin binds to a specific GPCR, with seven transmembrane domains that exist in 
two isoforms, growth hormone secretagogue receptor (GHS-R) 1a and 1b. The GHS-R 
1a is active, whereas type 1b is inactive [85]. GHS-R exists in both the nervous system, 
including the arcuate and ventromedial nuclei, and in regions of the hypothalamus 
[85, 86] and in peripheral organs such as gut, pituitary, myocardium, spleen, pancreas 
and adrenals [86-89].  Ghrelin, as well as synthetic GHS, possesses strong and dose-
related GH-releasing effects, but has been found to have a wide range of biological 
activities, including stimulation of somatostatin, promotion slow-wave sleep [90] in 
humans, stimulating appetite and food intake [91, 77], stimulation of adipogenesis 
and protection against cardiovascular damage [93]. Ghrelin has also been reported 
to stimulate gastric motility [93, 94] and acid secretion [95]. This effect is blocked by 
pre-treatment with atropine or bilateral cervical vagotomy [93, 96] indicating that 
the motor effect of ghrelin is mediated via vagal mechanisms. On the other hand, 
ghrelin has recently been shown to accelerate gastric emptying in patients suffering 
from diabetic gastroparesis [97, 98], a complication due to autonomic neuropathy. 
These findings point towards non-vagal pathways of action. This is further supported 
by identification of both ghrelin and ghrelin receptors in the myenteric plexus of the 
enteric nervous system (ENS) [99]. 

GasTroinTesTinal moTiliTy
Anatomy of the stomach and the small intestine
The human stomach is divided into two functionally different regions, the proximal 
(fundus) and distal part (antrum), divided by a “midgastric transverse band” 
[100, 101]. The distal part of the stomach and the proximal part of the small intestine 
are separated by the pyloric sphincter. The small intestine is approximately 4-6 m long 
and divided in three segments, duodenum, jejunum and ileum. 

The GI tract consists of two muscle layers, the longitudinal and the circular, which are 
built up by smooth muscle cells with the myenteric plexus in between. The circular 
layer is mainly mediates contractility, while the longitudinal layer controls transit. 
Efferent neurons innervating smooth muscle cells in the gut wall constitutes the ENS 
and controls the motor and secretory actions of the digestive channel [99]. 
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Slow-waves
The basal myoelectrical activity, or slow waves, of the GI tract is mediated by 
pacemaker cells, i.g. Cajal-cells, distributed throughout the whole intestine [102]. One 
gastric pacemaker zone is located in the corpus of the stomach and generates slow-
waves (3 waves/min) in man [103, 104] (Fig 3). The slow-waves propagate in aboral 
direction and diminish throughout the GI tract.

In the small intestine there is a pacemaker area located distally of the pylorus and it 
generates slow-waves at a frequency of 10-12 waves/min [105]. The start of a muscle 
contraction is initiated by an action potential caused by a slow-wave [104] and can be 
modulated by neuro-hormonal input (Table 2) and locally by the ENS. Contractions 
of the stomach and the small intestine follow two distinct patterns, the interdigestive 
(fasting) and the digestive (fed) motility. 

Table 2. Gut hormones controlling gastric emptying and small bowel motility. Some of these peptides are also 
regulatory factors of insulin secretion, appetite and food intake [22, 94, 106-117].

Peptide Gastric emptying Peptide Gastric emptying
Amylin - - - Neurotensin ++
CCK - - - Orexin A +
Gastrin - - - Oxyntomodulin - -
GIP - PP -
GLP-1 - - - PYY - -
GLP-2 - Secretin - - -
Glucagon - - - Somatostatin - - -
Ghrelin +++ Tachykinins + +
Glicentin - - VIP - - -
Motilin +++

Fasting and fed motility
At the end of food intake a cyclic pattern of motor activity occurs, which migrates from 
the distal part of the stomach towards the ileum. This pattern, the so-called migrating 
motor complex (MMC), was first observed in dogs and later in other species, including 
man [118-122]. The MMC consists of a re-cycling pattern that is divided into three 
parts; phase I, a period of quiescence when no spikes are seen, phase II with sporadic 
spiking and phase III (the “activity front”) when the intestine contracts at its maximal 
frequency [118, 121, 123]. Eating disrupts the MMC and the pattern is changed to 
random contractions, similar to phase II (fig 4) 

Fig 3. One gastric pacemaker zone is located at the upper 
part of the great curvature in the corpus of the stomach 
and generates slow-waves with a frequency of three waves 
per minute. This is the maximum frequency of gastric 
contractions . The frequency of the slow-waves is gradually 
reduced throughout the whole GI tract.
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gasTric emPTying
The human stomach has three major functions. First, during food intake the tension 
of the stomach increases, and as a response to this the fundus and proximal corpus 
relax to retain food. The relaxation keeps the intraluminal pressure constant during 
the meal, despite the increased volume [124, 125]. The proximal adaptation to the 
stomach content is then followed by a tonic contraction, pushing liquids and solids 
to the distal part of the stomach. Second, the gastric contents are degraded in the 
stomach by a mixing chyme with gastric secretions. The digestion is partly carried out 
by digestive enzymes and partly by mechanical contraction starting in the middle of 
the corpus, propagating distally, and ending with contraction of the antrum [103]. The 
third function is to empty the gastric contents into the duodenum at a controlled rate. 
The rate is dependent on the resistance of the pylorus and the contraction strength 
of the muscle in the stomach. Gastric emptying is also controlled by neurons and 
hormones [108, 126]. Liquids enter the duodenum more quickly than solids. Liquids 
are emptied from the stomach at first order kinetics [127], with a half-emptying time 
of 15-20 min in man. Emptying of solids follows a bi-phasic pattern. During the first 
phase, the lag-phase, the stomach content is redistributed from the fundus. When the 
food is broken down to smaller particles (1-2 mm), the stomach starts to empty it in a 
linear fashion, the linear emptying phase [128, 129] (fig 5).

Fig 4. The migrating motor complex (MMC). During fed state the small intestine contracts randomly, which is 
interrupted by food intake, and the cyclic pattern of the interdigestive phase occurs. The interdigestive phase is 
characterised by three distinct patterns; phase I, a period of quiescence when no spikes are seen, phase II with sporadic 
spikings and phase III, which is the “front” or MMC when the intestine contracts at its maximal frequency.

Fig 5. Emptying of solids follows a bi-phasic pattern. 
The first phase, which is the time it takes for the stomach 
to empty it-self 10 %, is the lag-phase. After the first phase 
the gastric starts to empty the contents in a linear way, 
called the linear emptying phase and continues until 90 % 
of the content of the stomach has been released in to the 
intestine.
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Food inTake and obesiTy
GI peptides are secreted the after intake of a meal, to control gastric emptying and 
small bowel motility, but many of them are also potent regulators of hunger, satiety 
and appetite, all in concert to control the caloric intake and energy balance. The most 
important peptides known today to alter food intake and body weight are CCK, ghrelin, 
GLP-1, oxyntomodulin, PP and PYY [106]. These peptides regulate food intake both 
locally on the GI tract, but also centrally by signalling to the nucleus arcuatus and the 
nucleus tractus solitarius in the appetite regulating area in the hypothalamus [108]. 



�

Aims

The overall aim of this study was to investigate the effect of GI hormones on smooth 
muscle contractility in rat and in man and to investigate in an interdisciplinary way 
the role and effect of gut peptides on the endocrine systems. More specifically, the 
aims were:

•	 To investigate the effects of GIP and GLP-1 on insulin secretion and small 
bowel motility in a rat model of diabetes type 2. 

•	 Investigate the effect of GIP and GLP-1 on gastric emptying after intake of a 
mixed meal, and monitor hunger and satiety feelings, as well as blood glucose 
levels and insulin secretion in humans.

•	 Investigate the effects of ghrelin on (i) the contractility of smooth muscle strips 
in vitro as well as effects on (ii) the migrating myoelctrical complex (MMC) in 
vivo.

•	 To study the effect of ghrelin on gastric emptying in normal humans after 
intake of a mixed meal and to monitor the effects of ghrelin on hunger, satiety, 
and on gut hormones CCK, GLP-1, PYY, and motilin. 

•	 To study gastric emptying in GH-deficient (GHD) patients before and after 
GH.

•	 To localize the distribution of GHS-R in different regions of the human 
stomach.
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maTerials

animals
The regional animal ethics Committee in northern Stockholm approved the 
experiments.

Paper I
Twenty diabetic male GK-rats, bred at Karolinska University Hospital, and sixteen 
male Wistar rats obtained from B&K Universal (Sollentuna, Sweden) were used for 
perfusion of isolated pancreas. Sixteen male Wistar (B&K) and 16 male GK (Karolinska 
University Hospital Solna) rats were used for the MMC experiments. All animals had 
a similar weight, approx. 300 g, and were fed ad libitum with free access to water. The 
rats were kept under standardized conditions (temperature 22°C, humidity 60% and 
regulated lighting in 12-h cycles).

Paper III
A total of 37 male Sprague–Dawley rats (B&K Universal), weighing 200–300 g, were 
used for the two different experimental methods. The animals were kept under 
standard conditions as above.

Human sTudies
Subjects
All study protocols were approved by the ethics Committee of theKarolinska Institutet 
North, and all subjects gave written informed consent.

Paper II and Paper IV
Solid scintigraphic gastric emptying and plasma concentrations of the gut peptides 
were measured. In paper II, infusion of GIP (NeoMPS, Strasbourg, France) were 
studied in eight healthy volunteers, (5 men, 3 women, 29.3 ± 3.4 yr), with a mean body 
mass index (BMI) of 22.3 ± 0.5kg/m2, and infusion of GLP-1 (NeoMPS) were studied 
in nine different healthy volunteers, (8 men, 1 woman, 30.1 ± 3.0 yr), with a BMI of 
23.6 ± 0.8 kg/m2.

In paper IV, ghrelin were studied in eight healthy, non-smoking volunteers (5 men, 
3 women, 26.5 ± 1.6 yr), with a mean BMI of 24.0 ± 1.1 kg/m2 and in six GH deficient 
(GHD) patients (3 men, 3 women, 58.3 ± 3.0 yr) before and after 6 months of GH 
substitution therapy. All patients had GH of adult onset. 
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meThods

isolaTed Pancreas Perfusion
Each animal was anesthetised with an intraperitoneal injection (i.p.) of sodium 
thiopental (100 mg/kg, Apoteksbolaget AB, Stockholm, Sweden). The pancreas was 
dissected free from adjacent tissues, as previously described [130]. A cannula was 
inserted in the abdominal aorta to enable administration of perfusion medium, which 
consisted of Krebs-Ringer buffer [131]. After a 10-min basal period with glucose 
3.3 mmol/L a 30-min stimulation period with glucose 16.7 mmol/L was initiated. 
Finally, the pancreas was perfused with glucose of 3.3 mmol/L for the last 10 min. 
Samples were collected and stored at -20°C for subsequent radioimmunoassay (RIA) 
of insulin.

organ baTh
Rats were sedated by intraperitoneal (i.p.) injection of sodium–pentobarbital 
(50 mg/kg, Apoteksbolaget AB). The abdomen was opened and the proximal jejunum 
was quickly removed and placed in cold modified Krebs–Ringer buffer [93]. Segments 
of jejunum, 1.5 cm long, were mounted in 5-ml organ bath chambers containing 
continuously oxygenated (5% CO2 : 95% O2) modified Krebs–Ringer buffer at 37°C. 
Isometric tension was continuously recorded with a PowerLab recording unit and 
further analysed using Chart 4.1TM software (ADInstruments, Oxfordshire, UK). 

In the beginning of each experiment, acetylcholine chloride (Ach 10−5 M) was applied 
to achieve a maximal contraction. All experiments were ended with a single dose 
of Ach (10−5 M) to verify the tissue vitality, and as positive control. Test substances 
were applied every 2 min to establish a cumulative dose–response curve followed 
by washing and recovery for minimum 20 min. Results were expressed as percent of 
maximal contraction induced by Ach.

gasTroinTesTinal moTiliTy in vivo in raTs
Small bowel motility
The animals were anaesthetised by i.p. pentobarbital (50 mg/kg, Apoteksbolaget AB) 
and the abdomen was opened via a midline incision. All rats were supplied with 
three bipolar insulated stainless steel electrodes (SS-5T, Clark Electromedical Instr., 
Reading, UK) implanted into the muscular wall of the small intestine, 5 (D), 10 (J1) 
and 15 (J2) cm distal from the pylorus. All animals were supplied with a catheter 
in the jugular vein for administration of test substances. Electrodes and catheter 
were tunnelled subcutaneously to exit at the back of the animal’s neck. The animals 
recovered for 7 days before experiments were performed. Experiments were then 
carried out in conscious animals after an overnight fasting period in wire-bottomed 
cages with free access to water. The electrodes were connected to EEG pre-amplifiers 
(7P5B) operating a Grass Polygraph 7 B (Grass Instr., Quincy, MA, USA), with time 
constant set at 0.015 s, and the low and high cut-off frequencies at 10 and 35 Hz, 
respectively, and paper-speed 10 mm/min. For more details and analyses of small 
bowel motility see paper I and III.
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In paper I, GIP (20, 100 or 200 pmol/kg/ min or GLP-1 (1, 2, 5 
or 20 pmol kg/min) were administrated and in paper III ghrelin 
(100, 400 or 1000 pmol/kg/min) was administrated. In paper III I also pre-treated 
animals with a bolus of atropine 1 mg/kg. Futher more, the effect of ghrelin infusion at 
1000 pmol/kg/min was studied in vagotomised animals.

gasTric emPTying
After an overnight fast an indwelling catheter was placed in each antecubital vein in 
each test person for administration of substances and plasma sampling. Concomitantly 
with the intake of a 310 kcal omelette labelled with 12-15 MBq 99mTc-macroaggregated 
albumin (Pulmonate plc; Amersham International, Little Chalfont, UK) and a glass 
of fruit punch, either saline or test substance (dissolved in 0.9% saline containing 
0.1% albumin (Albumin Kabi, 200 g/L, Kabi, Stockholm, Sweden), subjected to sterile 
filtration, and stored at -70°C until use) was started in one of the i.v. catheters and 
continued for 180 min. 

Anterior and posterior 1-min acquisitions were performed with the subject in standing 
position. Acquisitions were then obtained every 5 min during the first 50 min and 
thereafter every 10 min during 70 min and finally one acquisition at 180 min. Image 
data were collected using a gamma camera (General Electric Maxicamera 400 T, 
General Electric, Milwaukee, WI, USA). The following parameters were calculated: lag 
phase, defined as the time period from termination of the meal until 90% radioactivity 
remained in the stomach; gastric emptying rate, defined as percentage of radioactivity 
decreasing per min during the linear slope after termination of the lag phase; and half-
emptying time (T50), defined as the time after termination of the meal when 50% of 
the gastric radioactivity had been emptied. Time 0 was defined as the time of the first 
acquisition (10 min after beginning the meal and the infusion of peptides. For more 
details see Grybäck et al. [132].

Visual analogue scores
Measurements of hunger, desire to eat, fullness and prospective food consumption 
were assessed with 100 mm visual analogue scores (VAS) [133] at -20, 10, 30, 60, 120 
and 180 min in the healthy volunteers.

Blood samPle collecTion
Blood samples were collected in pre-chilled EDTA tubes every 10 min from –20 until 
60 min and at 90, 120, and 180 min for measurements of plasma concentrations of gut
hormones and glucose levels. Samples were centrifuged at 4°C for 10 min at 3000rpm. 
Plasma was collected and stored at -20°C until analysis. Plasma glucose concentrations 
were measured during the experiments using a glucose oxidase method and a 
Glucose Analyzer (Yellow Springs Instrument Model: YSI 2300 STAT plus analyzer, 
Ohio, USA). Individuals displaying fasting glucose in the range of diabetes or clearly 
outspoken glucose intolerance were excluded from further analyses. 
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insulinogenic index
An insulinogenic index was obtained based on the results from paper II and calculated 
as AUC for insulin release divided by AUC for glucose levels after infusion of GIP or 
GLP-1 and intake of a mixed meal [134].

ria
Insulin was analysed with an enzyme immunoassay (DAKO Insulin Kit K6219, 
Copenhagen, Denmark). Plasma glucose concentrations were measured during the 
experiments using a glucose oxidase method and a Glucose Analyzer (Yellow Springs 
Instrument Model: YSI 2300 STAT plus analyzer, Ohio, USA). Individuals displaying 
fasting glucose in the range of diabetes or clearly outspoken glucose intolerance 
were excluded. Total GIP was measured using the C-terminally directed antiserum 
R65 [135, 136]. Intact, biologically active GIP was measured using an assay as described 
in [41] and [61]. The plasma concentrations of GLP-1 were measured againststandards 
of synthetic GLP-1 (7–36) amide using antiserumwhich is specific for the amidated C-
terminus of GLP-1 [51]. Ghrelin (total) was measured with a commercially available 
RIAkit (Linco Research, St. Charles, MO) [94].RIAs of PYY in plasma were performed 
using antiserum code no. 8412–2II [137], which reacts equally with PYY1–36 and
PYY3–36. Synthetic human PYY 1–36 (Peninsula Laboratories, St. Helens, UK) was 
used for standards. 125I-PYY1–36 (code no. IM259) was from Amersham Biosciences 
(Buckinghamshire, UK) [138]. CCK was assayed using an antibody (92128) raised in 
rabbits against an O-sulfated human CCK-12 analogue [139]. Plasma concentrations 
of motilin were determined on EDTA plasmaextracted with ethanol against standards 
of human motilin as previously described [140].

Pcr and rna PreParaTion
Tissue collection
Human tissue for RNA preparation was collected during surgery, were segments from 
corpus and antrum were quickly removed and placed in RNAlater. Pancreatic islets 
were obtained from Wistar and GK-rats euthanised with CO2. A 10 ml collagenase 
mixture (Sigma-Aldrich, Munich, Germany) was injected carefully into the bile duct. 
The expanded pancreas was cut out and put into Hanks buffer. The pancreatic tissue 
was incubated and washed.  Small bowel tissue was obtained from animals anesthetised 
with i.p. pentobarbital (50 mg/kg, Apoteket AB). The tissue was surgically removed 
and quickly placed in RNAlater (Qiagen, Hilden, Germany). 

RNA extraction
About 50 mg of each tissue was homogenised and total RNA purified using RNeasy 
mini-kit and RNase-free DNase set (Qiagen). The quality and concentration of the 
RNA was controlled by 1% agarose-gel electrophoresis and spectrophotometry 
(λ260:λ280).

Pcr                   
Total RNA was reverse transcribed to cDNA using random primers and a thermal 
cycler (Eppendorf, Hamburg, Germany). The thermal profile and primers were 
selected with the software Primer-3 (Whitehead Institute, Massachusetts Institute of 
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Technology Centre for Genome Research, Boston, MA). Protocols, primer sequences, 
annealingtemperature, and size of PCR products are given in paper III and IV.Detection 
of the PCR amplification products was carried outby size fractionation on 2% agarose 
gel electrophoresis.

sTaTisTics
Values are expressed as mean ± S.E.M. P < 0.05 was considered statistically 
significant.

Paper I
Mann-Whitney U-test was used for analyses of perfusion of isolated rat pancreata 
and non-linear regression for analysis of myoelectric activity. In order to achieve 
dose-response curves for calculation of pD2 values.

Paper II and paper IV
Wilcoxon signed rank test for matched pairs and ANOVA for repeated measurements 
was used to analyse the data with time (12 time-points) and treatment (saline or 
active substance) as dependent factors (peptide data and gastric emptying plot). With 
regards to the VAS differences were evaluated as delta-values between the control 
and peptide infusion group.

Paper III
ANOVA followed by Tukey’s multiple comparison test and the Student’s t-test were 
used.
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Fig 6. Effects of GIP (10 nmol/L) and GLP-1 (10 nmol/L) on insulin response to 16.7 mmol/L glucose in isolated 
perfused pancreas of control Wistar rat (A and C) and in diabetic GK rat (B and D). Glucose concentration was 
3.3 mmol/L except where stated otherwise. Results are expressed as mean ± SE of 4-6 experiments. 

resulTs

Perfusion of isolaTed raT Pancreas
In non-diabetic Wistar rats, a glucose level of 16.7 mmol/L elicited a bi-phasic insulin 
response, that was potently enhanced by 10 nmol/L GIP and 10 nmol/L GLP-1 (10-fold 
each, P < 0.05) (Fig 6A and C). 

Furthermore, at non-stimulatory glucose concentration (3.3 mmol/L) GIP and 
GLP-1 elicited peaks of insulin secretion of maximum 291 ± 100µU/min and 
284 ± 49 µU/min, respectively, compared to the basal level of around 13 µU/min. In 
GK rats both peptides elicited marked insulin release at 3.3 mmol/L glucose with 
maximum peaks of 3262 ± 349 for GIP and 2080 ± 312 µU/min for GLP-1. Basal insulin 
level was higher in GK rats (around 100 µU/min) and insulin response to 16.7 mmol/L 
glucose was severely impaired (Fig 6B and D). Interestingly, the potentiatory effect 
of both GIP and GLP-1 on glucose-induced insulin secretion was preserved in GK 
rat pancreas, being even more pronounced than in control animals (131- and 50- fold 
AUC, P < 0.05 and P < 0.01 for GIP and GLP-1, respectively).
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organ baTh
Ghrelin caused concentration-dependent contractions of jejunum segments, with a 
pD2 of 7.97 ± 0.47. At 10−6 M, ghrelin contracted the muscle strips to 97 ± 7% of the 
maximal contraction amplitude with Ach (fig 7). Atropine (10−6 M) blocked the effect 
of ghrelin. The ghrelin receptor antagonist (10−6 M) blocked the effect of ghrelin at 10−8

M, but had no effect on the higher ghrelin concentrations. The contractile response 
to ghrelin at 10−8 was 40.6 ± 9.0% of maximal Ach response, while after additional 
administration of the antagonist the contractile response was 12.1 ± 2.8%, P < 0.05.

gasTroinTesTinal moTiliTy in vivo
GIP and GLP-1
In normal Wistar rats, the administration of GIP decreased the time occupied by 
phase III of MMC in proportion to the dose, at all three recording points. GLP-1 had 
a similarly inhibiting effect on the MMC but was more potent. No differences were 
seen between GK and Wistar rats. In diabetic GK rats, the administration of GIP 
decreased the time occupied by phase III of MMC in proportion to the dose, at all 
three recording points. GLP-1 had similar inhibitory effect on the MMC as GIP, but 
was more potent. No differences were seen between GK and Wistar rats.

Ghrelin
Ghrelin shortened the MMC cycle length at all three recording points in proportion 
to the dose. The cycle length in the duodenum was shortened from 17.2 ± 2.0 to 
9.9 ± 0.8 min during infusion of ghrelin (P < 0.01). At the two jejunal sites, the MMC 
cycle length was shortened from 17.5 ± 2.2 to 10.5 ± 0.8 min (P < 0.01) and from 
18.4 ± 2.5 to 10.4 ± 0.9 (P < 0.05). 

A small, but significant, reduction of the interval was seen at all three recording sites 
after administration of atropine at 10−6. The effect of ghrelin at 1000 pmol/kg/min was, 
however, blocked by atropine, and vagotomy also abolished the effect of ghrelin on 
the phase III interval (fig 8).

Fig 7. Recordings from the organ bath showing the effect of ghrelin at 10−9 to 10−6 M on isometric contractions of a 
segment of rat jejunum.
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gasTric emPTying
giP 
GIP had a small but significant accelerating effect on gastric emptying (P < 0.05). There 
were no differences of the lag phase or linear emptying rate among the three treatments, 
but GIP at both doses decreased the half-emptying time and the meal retention after 
120 min. There was an increased emptying rate of the proximal stomach with the low 
dose GIP whereas no effect was observed with the high dose. In the distal part of the 
stomach the emptying rate was decreased during infusion of the low dose of GIP, 
whereas the high dose increased the distal gastric emptying compared to saline. 

gLP-1
GLP-1 slowed gastric emptying compared to saline (P < 0.001). GLP-1 markedly 
prolonged the lag-phase, half-emptying time and food retention at 120 min. When 
separating the gastric emptying into fundamental events, emptying of the proximal 
part was delayed, whereas emptying of the distal part of the stomach was almost 
blocked by GLP-1.

Ghrelin
Infusion of ghrelin resulted in a marked increase in the emptying rate compared with 
saline (P < 0.001). Both the lag phaseand the T50 of solid gastric emptyingwere shorter 
during ghrelin infusion compared to saline (fig 9).

Fig 8. The effects of ghrelin without and with pre-treatment with atropine on the interval of phase III of the MMC. 
The black bar represents control (no ghrelin infusion), the dark gray bar ghrelin infusion (100 pmol kg/min), the light 
gray bar ghrelin infusion (400 pmol kg/min), the white bar ghrelin infusion (1000 pmol kg/min), and the striated bar 
represents ghrelin infusion (1000 pmol kg/min) after atropine administration (1 mg/kg). Mean ± S.E.M., n=8. 
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Visual analogue scores 
GIP and GLP-1
During GIP infusion no effect on hunger, desire to eat, satiety or prospective 
consumption was observed compared to saline. GLP-1 infusion decreased hunger, 
desire to eat and prospective consumption at t = 180 min compared to saline (P < 0.05) 
with a corresponding trend towards increased satiety.

Ghrelin
Hunger and desire to eat were significantly increased and fullness ratings lower 
during ghrelin infusion compared with saline (P < 0.05, for all). Prospective food 
consumption tended to increase (P = 0.06).

Correlation between gastric emptying and appetite
A linear correlation between gastric emptying and satiety and hunger was observed 
in all studies of gastric emptying after saline infusion (r = 0.13 ± 0.02 and -0.25 ± 0.04, 
respectively)(fig 10). After infusion of ghrelin there was also a linear correlation 
between gastric emptying and satiety and hunger (r = 0.18 ± 0.04 and -0.21 ± 0.04, 
respectively). After infusion of GLP-1 there was still a linear correlation between 
gastric emptying and satiety (r = 0.36 ± 0.05), but not between gastric emptying and 
hunger, indicating a greater importance of gastric fullness for perception of satiety 
than for hunger.

Blood glucose and insulin resPonses
Blood glucose
GIP infusion at 2 pmol/kg/min did not change glucose plasma levels compared to 
saline after meal taking. 5 pmol/kg/min on the other hand, inhibited the plasma 
glucose rise after the meal (P < 0.001).

GLP-1 infusion blunted the plasma glucose rise 30 min after meal intake and stayed 
low throughout the study. 

Fig 9. THe gastric emptying profile as stimulated by ghrelin (10 pmol/kg/min intravenuously, with a mean of 49 min, 
compared to to controls (NaCl), with a half-emptying time of 76 min, and GLP-1 (1.2 pmol/kg/min), displaying a 
half-emptying time of 217 min.

Fig 10. Scoring of hunger and satiety measured by a visual analogue score (VAS) plotted against gastric emptying rate 
in normal subjects given i.v. infusion of saline. Dotted line represents hunger and solid line represents satiety.
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Ghrelin increased gastric emptying followed by slightly elevated glucose and insulin 
levels for the first 60 min. After 60 min, the glucose level rose and stayed elevated 
throughout the ghrelin infusion.

Insulin
GIP infusion at 2 pmol/kg/min did not alter insulin plasma levels compared to saline. 
During 5 pmol/kg/min, on the other hand, insulin secretion was smaller compared 
to saline (P < 0.05), but when comparing the insulinogenic index, GIP 5 pmol/kg/min 
displayed a greater release (0.16 ± 0.06 mmol x min/L) than both GIP 2 pmol/kg/min 
(0.10 ± 0.01 mmol x min/L) and saline (0.08 ± 0.01 mmol x min/L). 

In the GLP-1 group, subjects displayed a markedly reduced insulin release as compared 
to control conditions. The insulinogenic index tended to be greater after infusion of 
GLP-1 (0.28 ±0.12 mmol x min/L), compared to saline (0.08 ±0.02 mmol x min/L) but 
not significant (P = 0.08).

Hormone levels
Infusions of GIP at low and high doses increased the total GIP plasma levels of 
the subjects, whereas plasma concentrations of GLP-1 and glucagon showed no 
differences.

Infusion of GLP-1 increased GLP-1 plasma levels of the subjects, lowered plasma 
glucagon and C-peptide, but had no effect on PYY or ghrelin.

Infusion of ghrelin to subjucts increased plasma concentrations 5-fold from a 
preinfusion concentration of 300-1500 pmol/liter. Plasma concentrations of GLP-1 and 
CCK increased more rapidly after intake of the solid meal, and there was a greater total 
amount of each peptide secreted in the postprandial period during ghrelin infusion. 
In contrast, motilin were not changed significantly by ghrelin infusion.

PCR
Expression of GIP and GLP-1 receptor in pancreas and small bowel in rat
RNA expression of the GIP receptor gene, as well as the GLP-1 receptor gene, was 
found in duodenum, gastric fundus, jejunum and in pancreatic islets in both the GK 
and the Wistar rat.

Expression of ghrelin and GHS receptor in human gut
Expression of the ghrelin gene, GHS-1a and GHS-1b was found in both the antrum 
and corpus.

Fig 11. Insulinogenic index. Both GIP and GLP-1 
showed a trend towards increased insulinogenic 
index after intake of a mixed meal.
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General discussion

GiP and GlP-1: from raT To man
I investigated the role of gut peptides on GI motility and the endocrine regulation in 
rat and in man. 

In isolated perfused pancreata from euglycemic Wistar rats an increase of glucose 
concentration in the perfusate from euglycemia to hyperglycemia induced a marked 
biphasic insulin response. In agreement with a study by Abdel-Halim et al [131] 
basal insulin secretion was increased while insulin response to glucose was severely 
impaired in the GK rat. GIP and GLP-1 enhanced insulin in response to hyperglycemia 
as much as 10-fold in Wistar rat, which reflects the established incretin function of 
these hormones. The novel finding is that both GIP and GLP-1 exerted a pronounced 
potentiation of glucose-induced insulin release in isolated pancreata of GK rats. Thus, 
in the GK rat, the insulinotropic effect of GIP and GLP-1 was preserved.

When investigating the small bowel motility in vivo, both GIP and GLP-1 inhibited the 
MMC in proportion to the dose administered. GLP-1 was almost 10 times more potent 
than GIP. The effect was similar in diabetic and non-diabetic animals. The different 
potency of the two incretins finds support in previous observations in man, where 
GIP at 2 pmol/kg/min showed negligible effect on gastric emptying, whereas GLP-1 
inhibited gastric emptying at 0.3 pmol/kg/min [141, 142].

After investigation in vitro and in vivo I continued to study the effect of GIP and GLP-
1 on motility and metabolic control in man. In the rat, the two incretin hormones 
had similar effects on perfused isolated pancreata and on small bowel motility, even 
thought their potency differed, but the results in rat did not mirror in man. 

Most studies fail to show insulinotropic effects of GIP in man [142], suggesting that GIP 
is not a true incretin. My study confirms these observations, as I found that a low dose 
of GIP did not change insulin secretion, but lowered plasma glucose, whereas a high 
dose of GIP blunted the postprandial plasma insulin and glucose responses. Unlike 
previous studies, GIP showed a dose-dependent, increasing trend for the insulinogenic 
index [134], reflecting an insulinotropic effect of GIP in healthy volunteers. 

In my experiments, GIP had an inhibitory effect on small bowel motility in rat, whereas 
in man GIP increased gastric emptying. At first the stimulated gastric emptying was 
surprising considering the results in vivo. One previous study on gastric emptying 
in man after a mixed meal however show similar results [142]. This finding could be 
detected because previous studies of GIP have been performed with an oral glucose 
load [10] whereas only a few studies have been done with GIP and a mixed meal.

The different effects between rat and man can partly  be explained by different 
experimental design. In the rat the standard procedure is to infuse GIP after 
overnight fasting, whereas in man the infusion started at initiation of a meal. Thus,  
comparing interdigestive motility response to digestive.  GIP release is stimulated by 
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carbohydrates and proteins [16-18], indicating that the experimental protocol used 
in man is more physiological than in rat. GIP did not affect appetite, even thought it 
slightly increased the gastric  emptying.

Infusion of GLP-1 in man blunted the plasma glucose rise after meal intake and kept 
it low throughout the study period. But in spite of the low blood glucose, a small peak 
of insulin release after meal was still seen. When comparing the insulinogenic index, 
GLP-1 infusion elicited a higher index compared to saline, indicating an insulinotropic 
effect induced by the incretin, even in the absence of any postprandial glucose rise.

Since GLP-1 have an determined inhibitory effect on gastric emptying the true 
incretin effect of GLP-1 has lately been questioned, and a new concept, “physiological 
incretin effect” where the inhibitory action on gastric emptying is excluded, has been 
suggested [143]. Even though the insulin response after the intake of a meal was low 
in my experiments, the insulinogenic index was elevated, indicating an insulinotropic 
effect of GLP-1 in man, independent of the strong inhibition of gastric emptying. The 
existence of an independent insulinotropic effect of GLP-1 after a mixed meal has 
further been verified by a recent study [144]. In that study, healthy volunteers were 
given erythromycin in order to compensate for the inhibited gastric emptying. 

The gastric emptying rate is thought to be correlated to hunger and satiety. In placebo 
experiments I was able to show correlation between gastric emptying and both satiety 
and hunger. The relationship was further verified by the fact that GLP-1 via decreased 
gastric emptying also decreased hunger, desire to eat and prospective consumption 
and to some extent increased satiety. It is difficult to distinguish if the effect of GLP-1 
on appetite is a central effect or caused by the inhibition of gastric emptying. If there 
is an independent central or peripheral role for GLP-1 on appetite control, this will 
of course make GLP-1 an interesting tool, not only for diabetes type 2 and diabetes 
type 1, but also as a therapy for obesity. 

Ghrelin: from raT To man
In this study I investigated the effect of ghrelin on rat smooth muscle contractility 
and on gut motility in both rat and in man. I also looked into the effects of ghrelin on 
appetite and endocrine regulation.

In in vitro experiments on rat, ghrelin dose-dependently contracted smooth muscle 
strips from both the fundus and the small intestine. The effect could be blocked 
by pre-treatment with Ach. In vivo, ghrelin increased small intestine motility by 
decreasing the intervals between MMC. The in vivo effect was practically abolished 
by pre-treatment with atropine. Ghrelin had no effect in vagotomised animals. These 
findings together indicate the that effect of ghrelin is centrally regulated by the vagus 
nerve, but regulated locally by cholinergic neurons. 

In man, all subjects exhibited a clear increase in gastric emptying rate when given 
ghrelin i.v. Similar findings have been made in experimental animals [77, 145, 146]. 
Ghrelin increased gastric emptying followed by slightly elevated glucose and insulin 
levels for the first 60 min. After 60 min, the glucose level rose and stayed elevated 
throughout the ghrelin infusion.
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It is well documented, that ghrelin is a GH secretagogue [74, 79, 147, 148]. Thus, one 
possible mechanism by which ghrelin could influence gastric emptying is by altering  
GH concentrations. To test this hypothesis, I studied gastric emptying in GHD 
patients before or after GH substitution therapy. No significant effect was seen on any 
parameter of gastric emptying before and after substitution or when compared with 
healthy volunteers, indicating that the ghrelin effect on gastric emptying is most likely 
not mediated by GH. 

The increased gastric emptying rate in human was associated with increased hunger 
and desire to eat and decreased satiety after ghrelin infusion. Prospective food 
consumption also tended to increase.

Taken together, increased gastric emptying induced by ghrelin in man is most likely 
direct and does not seem to be mediated via GH or motilin. CCK and GLP-1 is elevated 
postprandially, but is possibly a consequence of the enhanced gastric emptying rate, 
and not induced by ghrelin per se.

clinical imPorTance
Gastric emptying is a complicated process where the emptying rate is carefully 
regulated by blood sugar levels as well as enteric nervous signalling and gastrointestinal 
peptide hormones. Of the different hormones involved in regulation of gastric 
emptying, ghrelin seems to be one of the most important peptides signalling hunger 
and stimulating gastric motor activity. GLP-1, on the other hand, is released after food 
intake to promote satiety and inhibit gastric emptying rate.

GLP-1 has for a long time been a hot candidate for treatment of diabetes type 2 , 
and the GLP-1R agonist exenatide is now commercially available. Treatment with 
exenatide has been associated with a reduction in hemoglobin A1c levels and weight 
loss but also with nausea and vomiting [149]. The side effects are most likely caused 
by the inhibition of gastric emptying that occurs already at 0.3 pmol/kg/min [141]. GIP 
has limited or no effect on gastric emptying. The insulinotropic response in diabetes 
type 2 patients to GLP-1 is preserved to much greater extent than that of GIP [50], but 
most previous studies have used GIP at doses approximately at 2 pmol/kg/min. The 
findings in my studies indicate that GIP has a preserved insulinotropic effect in the 
diabetic GK rat and in man at high dose, 5 pmol/kg/min, but is not associated with 
inhibited gastric emptying as seen with GLP-1 treatment. This makes GIP analogues 
or GIP receptor agonists interesting candidates for treatment of diabetes type 2.

Another clinical aspect of GI hormones is treatment of motility disorders and for 
decreased appetite. Ghrelin is known to stimulate appetite in cancer patients with 
anorexia [150] and it accelerates gastric emptying in patients suffering from diabetic 
gastroparesis [97, 98]. Gastroparesis, a disorder where the stomach takes too long to 
empty its contents, is seen in at least 20 % of diabetes type 1 patients, and can also 
occur in patients with diabetes type 2 [151]. Symptoms of gastroparesis include early 
fullness, nausea, vomiting, and weight loss. Gastroparesis makes gastric emptying 
unpredictable, which can cause erratic blood glucose levels that are difficult to control 
[152]. When food that has been delayed in the stomach finally enters the small intestine 
and is absorbed, blood glucose levels suddenly rise, unbalanced by insulin.
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A different motility disorder associated with diabetic disease is diabetic 
diarrhoea (DD) [153]. Typically it occurs in patients with a long history (> 8 yr) of 
diabetes and insulin treatment [154]. Peripheral neuropathy is present in most patients, 
and autonomic neuropathy is common [155]. No studies have been done to study the 
effects on GLP-1 on both insulinotropic effect in diabetic patients and improvement of 
DD or decreased abdominal pain and discomfort. This group of patients may benefit 
from either GLP-1 or GLP-1 analogue therapy.
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summary and conclusions 

In this thesis I have showed that GIP and GLP-1 stimulated insulin secretion in 
normal rats. The basal insulin level was higher in diabetic rats and insulin response to 
hyperglycemic glucose stimulation was severely impaired, but the potentiatory effect 
of both GIP and GLP-1 on glucose-induced insulin secretion was preserved in diabetic 
animals, being even more pronounced than in control animals.

Diabetic GK rats and normal controls had a similar small bowel inhibitory response 
to infusion of GIP and GLP-1, indicating a preserved incretin-mediated inhibitory 
effect in the gastrointestinal tract in the GK rat. This finding suggests the presence of 
a functional GIP receptor in the GK rat, in contrast to what is seen in Diabetic Fatty 
Zucker rats.

GIP had a small accelerating effect of gastric emptying in man, whereas GLP-1 
potently inhibited gastric emptying. The low dose of GIP infusion did not affect 
insulin release after a mixed meal, but slightly lowered the plasma glucose. A higher 
dose of GIP, clearly reduced the insulin release and abolished the plasma glucose 
response. GLP-1 infusion reduced insulin release and lowered the blood glucose to 
levels below baseline. In spite of this, both peptides showed a trend towards increased 
insulinogenic index. GIP did not affect appetite, while GLP-1 decreased hunger and 
increased satiety.

Ghrelin caused dose-dependent contractions of rat fundus and jejunum. Pre-treatment 
with atropine abolished the response. Ghrelin also dose-dependently shortened 
the MMC at all recording sights. In man, i.v. administration of ghrelin stimulated 
gastric emptying. This effect is likely direct and not mediated by GH or motilin. 
The postprandial peak in plasma concentrations of CCK and GLP-1 was increased 
by ghrelin, possibly as a consequence of an enhanced gastric emptying rate. Ghrelin 
receptor agonists may achieve a role as prokinetic agents.

I have shown that gastric emptying rate is correlated to hunger and satiety. When the 
gastric emptying is accelerated the correlation is maintained, but deceleration and 
high retention of the gastric content is only related to satiety, indicating that gastric 
fullness is of less importance for perception of hunger than satiety.

In conclusion, there is an insulinotropic effect of GIP and GLP-1 both in normal and 
diabetic rats and in man. GIP accelerates gastric emptying in man and at the same 
time GLP-1 inhibits emptying rate. GIP and GLP-1 display insulinotropic properties, 
independent of gastric emptying rate. Ghrelin stimulates motility in vitro and in vivo
and accelerates gastric emptying in man. The effect is not mediated by GH. Both 
GLP-1 and ghrelin seem to have effects on appetite, independent of gastric emptying, 
which makes them interesting tools for further studies of diabetes type 2 and diabetes 
type 1, as well as for obesity and diabetic diarrhoea. 
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summary in swedish 

Att upprätthålla kontroll över sin metabolism är livsavgörande för den enskilda 
individen och sker via strikt reglering på flera olika nivåer. En viktig mekanism för 
att bibehålla stabila blodsocker nivåer över dygnet är genom att gastrointestinala 
(GI) peptidhormon påverkar frisättningen av insulin och kontrollerar 
magsäckstömningshastigheten. Målet med denna avhandling var först att undersöka 
vilken effekt de två inkretina hormonerna GIP (glucose-dependent insulinotropic 
polypeptide) och GLP-1 (glucagon-like peptide-1) har på insulinfrisättning och på 
tunntarms-motilitet i en djurmodell för diabetes typ 2. Därefter att undersökta vad 
dessa peptider har för effekt på människors magsäckstömningshastigheten, parametrar 
för metabolismen, samt på aptit. Utöver detta ville jag studera effekten av ghrelin på 
glatt muskel från råttor och på magsäckstömning efter måltid hos människor.

Effekten av GIP och GLP-1 på insulinfrisättning undersöktes i isolerade pankreas 
från friska och diabetiska GK-råttor. MMC (migrerande motorkomplex) är ett mått 
på tunntarms-motilitet och aktiviteten registrerades via elektroder inopererade i övre 
tunntarmens vägg. På råttor GIP och GLP-1 gavs intravenöst (i.v.). Djuren var vakna 
under hela försöket. Effekten av GIP och GLP-1 på magsäckstömning  hos friska 
frivilliga försökspersoner mättes scintigrafiskt efter intag av en radioaktiv 99Tc-märkt 
omelett. I samband med den scintigrafiska undersökningen graderades hunger och 
mättnad, samt togs blodprov för vidare analys av GI hormoner, som insulin, glukagon, 
PYY, GIP, GLP-1 och ghrelin. Även blodsocker mättes.

Vi har kunnat visa att både GIP och GLP-1 stimulerar frisättning av insulin i normala 
råttor. Basala insulin-nivåer är högre i GK-råttor och insulin utsöndringen vid 
hyperglykemi var kraftigt försämrad, men förmågan att potentiera insulinsekretionen 
vid glukosstegring var bevarad i GK-råttor och till och med högre än i kontrollgruppen. 
I både GK-råttan och kontrollråttan minskade tarm-motiliteten efter infusion av GIP 
eller GLP-1. I människor accelererade GIP magsäckstömningshastigheten något, 
medan GLP-1 bromsade upp den kraftigt. Båda peptiderna visade en trend mot ökad 
insulinogeniskt index, oberoende av magsäckstömningshastigheten. GIP hade ingen 
påverkan på aptiten medan GLP-1 minskade hungern och ökade mättnaden.

I organbad registrerades isotonisk kontraktion av segment från tunntarmen och 
magsäcken i närvaro av ghrelin. MMC studerades i friska djur efter i.v. infusion av 
ghrelin. I människor studerades effekten av ghrelin på magsäckstömning och aptit på 
samma sätt som för GIP och GLP-1. Ghrelin visade en dos-beroende kontraktion av 
segment från tunntarmen och magsäcken. Förbehandling med atropin förhindrade 
kontraktionen helt. Ghrelin ökade även hastigheten för MMC i tunntarmen i råttor. 
I människor ökade ghrelin magsäckstömningshastigheten och det fick till följd att 
försökspersonerna kände en ökad hunger och en minskad mättnad. Ghrelins effekt 
på magsäckstömning var oberoende av utsöndring av tillväxthormon. 

Slutsatsen man kan dra av dessa studier är att GIP och GLP-1 har en ökad inneboende 
förmåga att öka insulinfrisättningen hos både normala och diabetiska råttor. En ny 
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upptäckt är även att GIP har en accelererande effekt på magsäckstömningen. Dessutom 
påverkar både GLP-1 och ghrelin aptiten. Detta gör dessa peptider till intressanta 
redskap, inte bara för att vidare studera diabetes typ 1 och typ 2, utan även för att 
behandla fetma, gastropares samt diabetes orsakad diarré.
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