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ABSTRACT

This thesis concerns the role of ubiquinone, the only endogenously synthesised
lipid soluble antioxidant, in the cellular defence against peroxidation of proteins
and lipids.

The aims of the present investigations were to study the biosynthesis of
ubiquinone in two different organelle fractions, i.e. microsomes and
peroxisomes and to characterise the enzyme reactions of the three flavoenzymes,
lipoamide dehydrogenase, glutathione reductase and thioredoxin reductase in the
reduction of ubiquinone.

A semipreparative HPLC method was established to rapidly isolate different
polyprenols with high purity. The isolated compounds could be used for studies
of different enzyme reactions in the mevalonate pathway, and as standards for
quantitative HPLC-analysis. Compared to conventional chromatographic
methods this new technique was much more rapid and polyprenols with higher
purity was isolated.

It was demonstrated that both peroxisomes and microsomes were involved in the
biosynthesis of ubiquinone. Two enzymes involved in the synthesis of
ubiquinone,  trams-prenyltransferase and  nonaprenyl-4-hydroxybenzoate
(NPHB)-transferase, were investigated. The results clearly showed differences in
the regulation of the synthesis of ubiquinone in those organelles. The specific
activity of trams-prenyltransferase in peroxisomes was 30% of the total activity
found in both organelles.

The characteristics of the regeneration of ubiquinol by the flavoenzymes,
lipoamide dehydrogenase, glutathione reductase and thioredoxin reductase were
investigated. These enzymes belong to the same family of enzymes and are
defined as homo-dimeric pyridine nucleotide-disulfide oxidoreductases. The
reduction of ubiquinone by lipoamide dehydrogenase and glutathione reductase
was shown to be highly elevated by addition of zinc to the reaction mixture,
whereas this reaction by thioredoxin reductase was inhibited by zinc. For
lipoamide dehydrogenase and glutathione reductase the pH optimum for the
reaction was found at acidic pH, but at physiological pH for thioredoxin
reductase.

The reduction of ubiquinone by thioredoxin reductase was confirmed to be
selenium dependent by use of full-length bovine and rat, E. coli (lacking
selenocysteine), recombinant human (selenocysteine replaced by alanine), and
truncated rat thioredoxin reductases, as well as with stable cell lines
overexpressing thioredoxin reductase.

Altogether, the novel biological findings in this thesis are that; ubiquinone is not
only synthesised in microsomes but also to a high extent in peroxisomes;
ubiquinone is efficiently reduced by glutathione reductase and thioredoxin
reductase; the reduction of ubiquinone by thioredoxin reductase is entirely
selenium dependent.
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1 INTRODUCTION
1.1 General introduction

The biomembranes of mammalian cells consists of a hydrophobic lipid
bilayer that is able to keep apart the interior of the organelle from the
exterior and uphold transmembrane gradients for different kinds of ions,
like protons, calcium, sodium and potassium but also of other organic
molecules like carbohydrates and proteins. The membrane is not only
separating the different environments but actually contains components
that build up the gradients. The cellular metabolism, that constitutes cell
function, consists of a constant interaction between reactive, polarized
molecules that are able to form new combinations and build up new
constitutive components of the cell or form and store energy necessary for

the metabolism.

Well aware of the necessity for molecular interaction and metabolism of
formation and handling of reactive molecules I will, in this theses, deal
with the potential hazard for the cell with the reactive intermediates. Any
molecule with a reactive center or a free radical may form a covalent
binding to a structural part of the cell or to its DNA or RNA and disturb
cellular function. In the worst scenario the cell may be injured and
collapse. It is obvious that the cell needs systems to protect it self from
these oxidative attacks and systems that repair or regenerate damaged
components of the cell. The role of ubiquinol for this cellular defence is

the topic of this thesis.

Reactive molecules that may cause an oxidative hazard to the cell is
constantly formed. Five percent of the oxygen used in cell respiration form
oxygen radicals and other metabolic processes like cytochrome P450

catalyse hydroxylations that produces an excess of these reactive oxygen
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species (ROS). Oxidative stress is a common term used to describe a state
caused by reactive oxygen species. ROS formation, e.g. superoxide
radicals (O;"), hydrogen peroxide (H,O,) and hydroxyl radicals (OH)
(Cadenas 1989; Cadenas & Davies 2000; DiGuiseppi & Fridovich 1984),
are seen in many different locations i.e. the mitochondrial respiratory
chain, reduction by superoxide dismutase (SOD), the Fenton reaction, and
reduction by the cytochrome P450 systems (Droge 2002). ROS are not
only harmful for the cell but also crucial for normal metabolism playing an
essential role in the biosynthesis of complex organic molecules,
detoxification of xenobiotic chemicals, and defence against pathogens
such as virus, bacteria or other microorganism (Droge 2002; Finkel 1998;

Kamata & Hirata 1999; Moran et al 2001; Rhee 1999).

Macromolecules such as DNA, proteins, and lipids that are damaged by
high oxidative stress may eventually lead to apoptosis or cell death. ROS
can affect proteins and lipids by peroxidation (Ernster 1993). Lipid
peroxidation is a threat to the integrity of the biomembrane and to the
structure and function of the membranous organelle itself. Rupture of
lysosomal compartments is a direct threat to the existence of the cell. The
lipid peroxidation in cellular membranes is a chain reaction that is self-

propagating once initiated by different ROS (Fig. 1).

The target of ROS in the initial step is the unsaturated fatty acids of the
phospholipids in the biomembrane. In this first step a carbon centered lipid
radical (L) is formed that immediately can react with oxygen and form a
lipid peroxyl radical (LOO'). In the phase called propagation this lipid
peroxyl radical can react with unsaturated fatty acids of other, closely

located phospholipids in the membrane.
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Figure 1. A simplified scheme of the lipid peroxidation. Fe**-O,", perferryl radical;
OH, hydroxyl radical; L, carbon centred lipid radical; LH, unsaturated fatty acid;
LOO;, lipid peroxyl radical; LOOH, lipid hydroperoxide; QH,, ubiquinol; QH,
semiquinones; Q, ubiquinone; VitE-OH, vitamin E or o-tocopherol; VitE-O, o-
tocopheryl radical.

The final product of each chain reaction of lipid peroxidation is lipid
hydroperoxides (LOOH). The breakdown of the lipid membrane may lead
to increased fluidity as well as inactivation of membrane proteins and
receptors. The permeability of the membrane is also hampered making the
maintenance of cellular compartments impossible. Unless the cell can
protect itself against these reactions and maintain, an appropriate cellular
life would be impossible. It has to balance the formation of radical from

different sources by regulation of the defence systems.

Cellular defence aims to trap and neutralise (reduce) the free radicals
formed. This can be done by either scavenging of the radicals by
molecules that can participate in a redox reaction or by enzymatic

conjugation and excretion of the reduced and conjugated molecules. To



protect the cell against the cellular damages caused by lipid peroxidation
defence mechanisms scavenging free radicals and lipid hydroperoxides are
of great importance. As an example the initiation of the lipid peroxidation
was inhibited by the reduced form of ubiquinone (Q), ubiquinol (QH>)
(Fig. 1) (Ernster 1993; Forsmark-Andree et al 1997). Furthermore, the
lipid peroxyl radical formed, was in these investigations, trapped by
another lipid soluble antioxidant, vitamin E (0-tocopherol) that terminated
the propagation phase. It was also proposed that ubiquinol is a scavenger
of this radical (Ernster & Dallner 1995). The lipid soluble antioxidant,
Vitamin E, is easily taken up via the intestinal system and transported to
the liver and from this organ transported in VLDL via the blood to
different organs in the body (Herrera & Barbas 2001; Traber 1999). There
are today no enzymatic systems known, that can regenerate vitamin E to
its reduced form from o-tocopheryl radical, but both vitamin C (ascorbate)
and ubiquinol have been shown to efficiently do this (Beyer 1994; Ernster
& Dallner 1995). Several factors affect the function and the levels of these
lipid soluble antioxidants. One important factor is selenium which has
been suggested to have functional connections to vitamin E and ubiquinol
since selenium deficiency is associated with lower concentrations of
vitamin E and ubiquinol (Chen & Tappel 1995; Scholz et al 1997;
Vadhanavikit & Ganther 1993; Vadhanavikit & Ganther 1994).

To maintain a high capacity of this very important antioxidative function
of ubiquinol it is required that this molecule is either synthesised in

sufficient amounts or that it is regenerated by other enzyme systems.



1.2 The mevalonate pathway

The mevalonate pathway is a sequence of enzyme catalysed events that
besides cholesterol, that is the main known lipid product generated in this
pathway, also contributes to the production of several other neutral lipids
i.e. ubiquinone, dolichol and dolichyl phosphate (Fig. 2). Furthermore, this
pathway is also involved in the regulation of features such as signal
transduction by isoprenylation of proteins, isopentenylation of tRNA for
efficient selenoprotein synthesis, and N-linked glycosylation of proteins
(Diamond et al 1996; Faust & Dice 1991; Goldstein & Brown 1990;
Schroepfer 1981).

Acetyl-CoA
Signal transduction +
HMG-CoA Selenoprotein synthesis
T l HMG-CoA reductase T
Isoprenylated
proteins, i.e. Ras Mevalonate i8A-t-RNA
T IPP —> DMAPP —> Isopentenyl adenosine
All-trans-GGPP l .
\ cis-Prenyl transferase
FPP Polyprenyl -PP
Tyrosine trans-Prenyl / \
¢ transferase
4-OH-benzoate Polyprenyl-PP Dolichol DOI'CIVI -P
Polyprenyl-4-hydroxy- N-Iinkefd glytcz_asylation
benzoate transferase Squalene Of proteins
Polyprenyl-4-hydroxy-benzoate \
l Cholesterol
Ubiquinone

Figure 2. Schematic scheme of the mevalonate pathway.



In the initial part of the mevalonate pathway the formation of the branch-
point product, farnesyl pyrophosphate (FPP), is mainly regulated by the
enzyme HMG-CoA reductase (Goldstein & Brown 1990). Although, this
pathway has been one of the most intensely studied there are still many

unsolved questions that further need to be clarified.

The first reaction in this pathway, that was demonstrated in cytosol, was a
condensation of two acetyl-CoA catalysed by the enzyme acetoacetyl-CoA
thiolase, also accepted as the committed step in the isoprenoid biosynthesis
(Schroepfer 1981). Thompson and Krisans demonstrated also that this
reaction was catalysed by a peroxisomal thiolase and suggested that this
organelle may be involved in the isoprenoid production (Thompson &

Krisans 1990).

The next reaction in this pathway is the formation of HMG-CoA catalysed
by HMG-CoA synthase, present mainly in cytosol but also in
mitochondria (Ayte et al 1990; Clarke et al 1987; Clinkenbeard et al 1975;
Goldstein & Brown 1990). HMG-CoA is the substrate for the most studied
enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutaryl-CoA
reductase (HMG-CoA reductase). This enzyme catalyses a two step
reduction of HMG-CoA to the formation of mevalonate. The enzyme was
primarily found to be located in the endoplasmic reticulum, integrated in
the membrane with its catalytic site facing the cytosol but later on also
discovered in peroxisomes (Keller et al 1985; Keller et al 1986; Kovacs et
al 2001). HMG-CoA reductase is well investigated and is regarded to be
the major rate-limiting enzyme in the biosynthesis of cholesterol, highly
feedback regulated by its metabolites i.e. oxycholesterols (Goldstein &
Brown 1990; Ness & Chambers 2000; Akerlund & Bjérkhem 1990). The

amounts and the activation of this enzyme are regulated by different



mechanisms e.g. phosphorylation/dephosporylation causing
inactivation/activation (Beg et al 1987; Clarke & Hardie 1990),
transcriptionally by regulation of the Sterol Regulatory Element Binding
Protein (SREBP) (Ericsson & Edwards 1998; Hua et al 1996; Kawabe et al
1994), and by proteolytic degradation (McGee et al 1996; Miller et al
1989; Parker et al 1986). Pharmaceutical drugs called statins are used to
efficiently inhibit the enzyme HMG-CoA reductase in order to regulate the
high levels of cholesterol in persons with hypercholesterolemia causing
atherosclerosis, one of the most common diseases in the western world
(Alberts 1988; Vaughan et al 2000). Although, these drugs are lowering
the cholesterol levels in blood it may also have other unexpected effects
that today is not completely evaluated. Thus, some investigations have
shown that the incidence of cardiac incompensation is increased among
people on statins. Furthermore, other investigators have reported a lower
incidence of colon cancer in patients supplemented with statins (Agarwal

et al 2002; Viner et al 2002).

The mevalonate is further phosphorylated in two steps forming the
mevalonate-5-pyrophosphate catalysed by mevalonate kinase and
phosphomevalonate kinase a reaction that requires both ATP and Mg2+ for
optimal activity. These enzymes were purified from liver cytosol, but high
levels of the mevalonate kinase activity were also demonstrated in

peroxisomes (Biardi et al 1994; Stamellos et al 1992; Tanaka et al 1990).

The mevalonate pyrophosphate decarboxylase catalyse the formation of
the product isopentenyl pyrophosphate (IPP) that is, the five-carbon
compound, known to be the main substrate for FPP synthesis (Alvear et al

1982; Chiew et al 1987)



The enzyme, isopentenyl pyrophosphate isomerase (IPP isomerase) is
mainly associated with the cytosol, but later studies have also indicated
enzyme activities in mitochondria and peroxisomes (Ericsson et al 1992;
Runquist et al 1994). The isomerisation reaction of IPP to dimetylallyl
pyrophosphate (DMAPP) requires the presence of either Mg®* or Mn®".
The condensation of DMAPP and one IPP lead to the formation of geranyl
pyrophosphate (GPP). A further condensation of one IPP to GPP forms
FPP. These reactions are catalysed by farnesyl pyrophosphate synthase
(FPP synthase) (Poulter & Rilling 1981). Both GPP and FPP were shown
to feedback down regulate the IPP isomerase activity in vitro (Rilling &
Chayet 1985). Another possibly important function of the synthesis of the
DMAPP is the isopentenylation of tRNAS"* necessary for effective
synthesis of selenoproteins i.e. glutathione peroxidase (GPx) and
thioredoxin reductase (TrxR) (Diamond et al 1996; Faust et al 1980,
Moustafa et al 2001; Warner et al 2000).



1.3 Ubiquinone

Ubiquinone was discovered 1955 by Morton and co-workers (Festenstein
et al 1955). By investigation of the physiological and chemical properties,
Crane et al. proved that this compound contain a quinoid part and they
were also able to isolate this lipid from mitochondria of bovine hearts
(Crane et al 1957). At the same time Morton et al. introduced the name
ubiquinone, based on that this compound is ubiquitously present in all
biological systems (Morton et al 1957). In 1958, Folkers and his
colleagues synthesised the complete structure; 2,3-dimetoxy-5-methyl-6-
all-trans-polyprenyl-1,4-benzoquinone, and produced it by fermentation
(Wolf et al 1958). Later it was shown that ubiquinone was an essential
component in the mitochondrial respiratory chain (Ernster et al 1969;
Mitchell 1975). However, it has been established that ubiquinone is
present also in all extramitochondrial membranes including the plasma
membrane with other vital functions for the cell (Kalén et al 1987; Zhang
et al 1996). The distribution of ubiquinone in different subcellular

fractions of rat liver cells is shown in table 1.

Table 1. Subcellular distribution of ubiquinone-9
in rat liver cells.

Fraction Q9

Nuclear fraction 0.2

Mitochondria 1.4

Microsomes 0.15

Lysosomes 1.9

Golgi vesicles 2.6

Peroxisomes 0.3

Plasma membranes 0.7
(Kalén et al 1987; Zhang et al 1996) The values are

given in pg/mg protein.



Ubiquinone consists of a redox active quinone ring that in different species

has a condensed all-frans-isoprenoid side chain with various lengths (Fig.

3).

|
O

Ubiquinone

} »2H +e

OH

CHO. ,,l\\\‘, _CH,

CH,0™ ™7

OH

CH;
|

(CH,—CH=C—CH,)H Ubiquinol

Figure 3. The chemical structures of the oxidized and reduced form of ubiquinone.

The predominant form of ubiquinone in humans has the longest known

isoprene side chain with ten isoprene units (Q10) (Olson & Rudney 1983).

Thus, other species show different homologues with various chain lengths

indicating not only species variations but also functional varieties of

ubiquinone depending on the length of the hydrophobic side chain (Table

2).

Table 2. Different ubiquinone homologues in various species.

Homologue Occurrence
Qo0 African Millipede
Q5 E. Coli
Q6 E. Coli, S. cerevisiae
Q7 E. Coli, Torula
Q8 E. Coli, Algae
Q9 Mouse, Rat
Q10 Human, Pig, Tobacco leaf
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1.3.1 Biosynthesis of ubiquinones
The intracellular biosynthesis of ubiquinone, illustrated in figure 4,
involves several events i.e. synthesis of the quinoid ring from aromatic

amino acids and the synthesis of the isoprenoid side-chain.

Tyrosine Peroxisome

Mitochondria l
4-OH-benzoate

Cholesterol

A

FPP

Ubiquinone
Dolichol

Acetyl-CoOoA —» —>» Mevalonate —» IPP —» GPP —» FPP

Tyrosine

T =

4-OH-benzoate

GPP FPP ——» Cholesterol

\ § Dolichyl-P

Polyprenyl-PP Dolichol

Ubiquinone ER

—

Golgi apparatus

Figure 4. Schematic illustration of where mevalonate pathway enzyme reactions are
located in the cell.

The condensation of the isoprenoid moiety with the ring, 4-
hydroxybenzoate, is known predominantly to occur in the endoplasmatic
reticulum/Golgi system (Kalén et al 1990), but total biosynthesis was also
demonstrated in mitochondria (Trumpower et al 1974). After prenylation
of the ring, several modifications such as decarboxylation, hydroxylations,
O-metylations, and a C-metylation have to take place in order to yield a

functional ubiquinone (Fig. 5).

In mammals the aromatic amino acids tyrosine and phenylalanine are

proposed to be the precursors required for the synthesis of 4-
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hydroxybenzoate, necessary for ubiquinone biosynthesis (Booth et al

1960; Olson & Rudney 1983).

COOH COOH COOH COOH
Z2aN Polyprenyl-PP /L
= ﬂ lvans(er ( l C- hydroxylahon J O- melhyxdhon \u
X T / “R
OH OH OH H
4-Hydroxybenzoate PPHB
Decarboxylationl
(I] o
C-| hydroxylatlon C-methylation C-hydroxylation
I |
N S N
|-| CHO™ \ “R cHO” | ~ R cHo” \T R
o o (o} OH
lo methylation
o]
CH,O_ ]\/H\ _CHy
N /E\
CH,O ” R
Ubiquinone

Figure S. The eight last terminal steps in the biosynthesis of ubiquinone.
R=polyisoprenoid chain; PPHB=polyprenyl-4-hydroxybenzoate.

The synthesis of the isoprenoid side-chain in mammals is catalysed by
trans-polyprenyltransferase, an enzyme that has different intracellular
locations (Griinler et al 1994). In vitro studies showed that the substrate for
this reaction was unexpectedly GPP and not FPP (Teclebrhan et al 1993).
This enzyme condenses isoprene units in frans-configuration to its final
chain length. The polyprenyl-4-OH-benzoate transferase catalyses the
condensation of the polyprenyl side chain to the ring structure, 4-
hydroxybenzoate (Gupta & Rudney 1985; Kalén et al 1990).
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1.3.2 Uptake and distribution of ubiquinone

Different studies when radioactively labelled ubiquinone was used showed

that the dietary uptake of ubiquinone is limited and only a small amount of

exogenous ubiquinone was detected in various tissues (Ramasarma 1985;

Zhang et al 1995). Although, ubiquinone is administrated in its oxidised

form the major part (80-90%) is found in reduced antioxidant form,

ubiquinol (Zhang et al 1995; Aberg et al 1992). The mechanism for the

reduction of ubiquinone is so far not completely evaluated.

The predominant form of ubiquinone is in rat Q9 and in human Q10

(Dallner & Sindelar 2000). The distribution of those ubiquinones in

different organs is shown in table 3.

Table 3 Amounts of Q9 and Q10 in tissues

of rats and humans.

Q9 Q10

Tissue Rat Human Rat Human
Heart 202.0 2.5 16.9 114.0
Kidney 123.9 33 22.0 66.5
Liver 130.9 1.8 21.3 54.9
Muscle 42.6 1.0 3.1 39.7
Brain 374 1.0 18.9 13.4
Pancreas 37.2 1.6 2.8 32.7
Spleen 229 0.7 9.2 24.6
Lung 16.9 0.6 2.4 79
Thyroidea 43.5 1.2 6.6 24.7
Testis 324 0.4 4.7 10.5
Intestine 50.9 0.5 19.0 11.5
Colon 47.5 0.4 8.4 10.7
Ventricle 55.6 n.d 53 11.8

(Aberg et al 1992) The values are given in pg/g tissue,

n.d =not determinated
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1.3.3 Catabolism of ubiquinone

The endogenous catabolism of ubiquinone varies in different rat tissues
with half-life times from 49 to 125 hours (Table 4) (Andersson et al 1990;
Thelin et al 1992).

Table 4. Half-life time (hours) of ubiquinone in rat tissues.

Tissue Ubiquinone
Kidney 125
Thymus 104
Pancreas 94
Brain 90
Liver 79
Stomach 72
Spleen 64
Heart 59
Colon 54
Intestine 54
Muscle 50
Testis 50
Thyroid 49

(Andersson et al 1990; Thelin et al 1992)

Interestingly, the half-life times for cholesterol and dolichol in the liver is
almost the same as for ubiquinone but is 40- and 10-fold longer,
respectively, in brain (Andersson et al 1990). These findings indicate that
the biosynthesis and metabolism of these lipids are regulated in different

ways.

The catabolism of ubiquinone has only to a limited extent been studied.
The breakdown products of ubiquinone that so far have been identified
have the same ring structure but the side-chain was shown to be much

shorter and carboxylated (Imada et al 1970; Nakamura et al 1999). By
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these changes of the side-chain the product will be more hydrophilic and,

thereby, easier to excrete from the cell.

1.3.4 The functions of ubiquinone

Ubiquinone possesses many essential functions depending on its
localisation (Nohl et al 2001). Besides its most known function as an
electron carrier in the mitochondrial respiratory chain it is also an
antioxidant, involved in extramitochondrial electron transport, regulate
mitochondrial permeability pores, and destabilise membranes and
participate in plasma membrane electron transport necessary for the
control of intracellular pH among other things (Crane & Navas 1997,
Fontaine & Bernardi 1999; Gille & Nohl 2000; Villalba et al 2001)

1.3.4.1 The respiratory chain

As a component of the respiratory chain ubiquinone plays a vital role in
oxidative phosphorylation. Located in the inner mitochondrial membrane
ubiquinone shuffles electrons from complex I and II to complex III (Crane
2001; Mitchell 1975; Nohl et al 2001). The unique function of ubiquinone
in the mitochondria where it is the only non-protein component involved
in cell respiration, enable it to freely participate and transfer electrons
between cytochromes and flavoproteins. Therefore, ubiquinone plays an
essential role in the adenosine triphosphate (ATP) production (Schultz &
Chan 2001).

1.3.4.2 The function as an antioxidant
More than 30 years ago reduced ubiquinone-6 was proposed to possess

antioxidant properties (Mellors & Tappel 1966a; Mellors & Tappel
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1966b). An effective role of ubiquinol as antioxidant was later
demonstrated to prevent lipid peroxidation in liposomes, lipid emulsions,
phospholipids, and LDL (Fiorentini et al 1993; Frei et al 1990; Landi et al
1990; Pobezhimova & Voinikov 2000; Takahashi et al 1995; Thomas et al
1997; Yamamoto et al 1990). Furthermore, supplemented ubiquinone-10
was also shown to protect DNA and membrane proteins (Ernster &

Dallner 1995; Tomasetti et al 2001; Tomasetti et al 1999).

The protective role of ubiquinol as an inhibitor of lipid peroxidation has
been widely discussed. According to some investigator ubiquinone was
shown to prevent lipid peroxidation at the same rate as vitamin E
(Yamamoto et al 1990). Other studies have shown an even higher
effectiveness of ubiquinol in prevention of LDL oxidation than vitamin E
(Frei et al 1990; Stocker et al 1991). This inhibition of lipid peroxidation
by ubiquinol was further confirmed by the use of submitochodrial particles
in which lipid peroxidation was initiated by ascorbate and ADP-Fe’*
(Forsmark et al 1991). Furthermore, ubiquinol was shown to be required in
order to maintain vitamin E in its reduced active form (Fig. 1) (Frei et al

1990; Kagan et al 1990; Mukai et al 1990; Nohl et al 1999).

For the antioxidant function of ubiquinol and because it is widely spread in
all membranes it is of high importance that the reduced form can be
regenerated at all these locations. Many investigators have so far studied
the regeneration of ubiquinone and different quinone reductases have been
proposed as reduction enzymes (Kishi et al 1999; Takahashi et al 1996;
Takahashi et al 1995). The most studied enzyme is DT-diaphorase, a
cytosolic homodimeric enzyme (Beyer et al 1996; Beyer et al 1997; Landi

et al 1997). Recently, it was shown i# vitro that the homodimeric enzyme
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lipoamide dehydrogenase efficiently could reduce ubiquinone (Olsson et al

1999).

1.3.5 Clinical relevance of ubiquinone

Several studies have shown that the ubiquinone concentrations are
decreased during ageing (Kalén et al 1989; Lonnrot et al 1995). In
addition, it has been shown that deficiency of ubiquinone is associated
with several disease conditions, i.e. cardiomyopathies, muscle
degenerative and neurogenerative diseases (Littarru 1995; Rosenfeldt et al
1999; Shults et al 1998). The lowered concentration of ubiquinone found
in these different diseases may suggest a very important function of this

compound in different biological systems.

The uptake of supplemented ubiquinone, under normal conditions, is
restricted and it is obvious that under normal conditions the endogenous
synthesis of ubiquinone is enough to provide all the cells with this
compound necessary for its membrane functions. However, under
conditions were ubiquinone is not synthesised or regenerated in adequate
levels a supplementation is probably required for the maintenance of its

functional properties.

One very severe disease, mitochondrial encephalomyopathy, caused by a
gene mutation leads to deficiency in synthesis of ubiquinone and thereby
dysfunction of the electron transfers in the respiratory chain (Rétig et al
2000). In a clinical trail supplementation with ubiquinone-10 was shown to
mostly restore the ubiquinol levels and to reduce the symptoms of the

disease (Ratig et al 2000).
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It was shown that oral supplementation to healthy subjects with 30 mg
Q10/day for 3 to 9 months increased the blood concentration form 1mg
Q10/1 to 2mg Q10/1 (Folkers et al 1994). This dietary uptake of ubiquinone
was suggested to only have a primary role in the blood but lower
importance in (other) different tissues. These elevated concentrations in
the blood may serve several important functions, i.e. an enhanced
protection of LDL from oxidation, a prevention of free radical damage
caused by neutrophils in inflammatory diseases, and prevention of
oxidative injury by endothelial cells resulting from ischemia-reperfusion
(Ernster & Dallner 1995; Kontush et al 1995). These and possibly other
protective functions against free-radical damage in the circulation may
account for the majority of the beneficial effects of ubiquinone
supplementation in experimental and clinical medicine. Furthermore,
supplementation of ubiquinone has shown to have beneficial effects on
diseases in the cardiovascular system (Langsjoen et al 1994; Langsjoen &

Langsjoen 1999).
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1.4 Regenerating enzymes systems

The redox status of the cell is of vital importance for cellular activities.
Many enzymes and transcription factors have to be kept in reduced form to
be functionally active and able to remain in the right configuration in the
cell. Several redox systems, such as the thioredoxin system, the
glutathione system and also many other systems participate in this mission

of keeping vital biological molecules in an optimal redox state.

Although this field has by now been insufficiently investigated we know
that several enzymes are involved in the redox processes. One important
group is the FAD-containing enzymes lipoamide dehydrogenase,
glutathione reductase and thioredoxin reductase, each enzyme catalysing
electron transfer between pyridine nucleotide, FAD and a disulfide moiety.
These enzymes are homodimeric enzymes with subunits that have a
molecular weight of about 55 kDa and belong to a family of pyridine
nucleotide disulfide oxidoreductases sharing both structural and functional
similarities (Burleigh & Williams 1972; Jones & Williams 1975; Krohne-
Ehrich et al 1977; Ronchi & Williams 1972; Williams 1992).

1.4.1 Lipoamide dehydrogenase

The first known function of lipoamide dehydrogenase was its participation
in the three o-ketoacid complexes located in the inner mitochondrial
membrane (Hayakawa et al 1969; Hirashima et al 1967). Figure 6
demonstrate the function of this enzyme (E;) in the pyruvate
dehydrogenase complex. By oxidation of the lipoic acid linked to a lysine
at E, it transfers electrons to NAD', generating NADH (Spencer et al
1984). Lipoic acid in its free form can be reduced to dihydrolipoic acid by
lipoamide dehydrogenase with NADH as cofactor (Biewenga et al 1996;
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Kamata & Akiyama 1990; Podda et al 1994). Two other enzymes of the
same family, thioredoxin reductase and glutathione reductase, can also
reduce this compound, but with NADPH as cofactor (Arnér et al 1996;
Pick et al 1995). In turn dihydrolipoic acid was demonstrated to be able to
reduce ubiquinone (Kozlov et al 1999). Lipoamide dehydrogenase was in
vitro also shown to effectively reduce ubiquinone (Olsson et al 1999). It is
obvious that these enzyme systems are connected and contribute to an

elevated level of resistance against oxidative stress in the cell.

FAD ~— NAD®

% NADH + H*
Hydroxyethyl-TPP Lipoamide
K X Dlhydrollpoamlde
Pyruvate

Acetyl-
dihydrolipoamide Acetyl _CoA

Figure 6. Schematic illustration of the pyruvate dehydrogenase complex. E1 =
Pyruvate dehydrogenase; E2 = Dihydrolipoyl transacetylase; E3 = Lipoamide
dehydrogenase.

1.4.2 Glutathione reductase

Glutathione reductase is known to effectively reduce oxidised glutathione
(GSSG) with NADPH as cofactor and thereby maintain the essential pool
of reduced glutathione (GSH) (Meister 1995; Williams 1992). This
enzyme is located mainly in the cytosol. Comparisons between enzymes

isolated from various species showed high degree of similarities both
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structurally and functionally with lipoamide dehydrogenase (Greer &
Perham 1986; Krauth-Siegel et al 1982; Stephens et al 1983; Williams et
al 1982). The homology of these enzymes was demonstrated to be
associated with their redox active disulfide sites (Jones & Williams 1975;

Williams 1992).

GSH is a water-soluble compound consisting of the three amino acids,
glutamate, cysteine and glycine, that is involved in both non-enzymatic
and enzymatic reactions (Meister 1995). The main non-enzymatic
functions are to effectively reduce disulfides, serve as a thiol buffer and
conjugate hydrophobic compounds to facilitate an efficient excretion
(Hathcock 1985; Lu 1999; Sharma et al 2000; Suzuki & Sugiyama 1998).
Enzymatically GSH serves as an electron donor in several reactions
catalysed by i.e. glutathione transferases (GST) and glutathione
peroxidases (GPx) (Brigelius-Flohe 1999; Mannervik 1985; Mannervik &
Danielson 1988; Rinaldi et al 2002; Ursini et al 1995).

1.4.3 Thioredoxin reductase

Although, thioredoxin reductase belongs to the same family as lipoamide
dehydrogenase and glutathione reductase there are crucial structural
differences affecting the functions of this enzyme (Ronchi & Williams
1972; Thelander 1970; Williams 1992). The C-terminal part of
mammalian thioredoxin reductase is in comparison with the two other
enzymes elongated with about twenty amino acids and containing cysteine
and selenocysteine adjacent to each other (Williams 1992; Zhong et al
2000). The incorporation of selenium as selenocysteine in proteins has

ser/sec _ +
V.

been suggested to be facilitated by isopentenylation of the tRNA ia

the mevalonate pathway (Ding et al 1998; Warner et al 2000). The
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exceptionally broad substrate specificity is connected to this
selenenylsulfide as it is located closely to the active disulfide site
consisting of the conserved sequence Cys-Val-Asn-Val-Gly-Cys at the N-
terminal of the other subunit (Fig. 7) (Williams 1992; Zhong et al 2000).

The thioredoxin system consists of thioredoxin (Trx), thioredoxin
reductase (TrxR) and NADPH (Fig. 7). Trx are small ubiquitous dithiol
proteins that exist in both mammalian cells and in prokaryotes (Holmgren
1985). Examples of three distinct thioredoxins are the classical Trx
(cytosol), Trx2 (mitochondria) and SpTrx (testis) (Masutani et al 1996;
Miranda-Vizuete et al 2001; Spyrou et al 1997). The most studied
thioredoxin is the 12 kDa cytosolic form (Eklund et al 1991; Holmgren
1985). The functional role of Trx is depending on the essential and well-
characterized redox-active disulfide/dithiol moiety, -Cys-Gly-Pro-Cys-
(Gleason & Holmgren 1988; Holmgren 1989).

| NADP' | | FADH, | | TR, | X Trx-(SH), | | Protein-S, |
| NADPH + H* | FAD | x TIXR<(SH), | TS, | | Protein-(SH), |

Figure 7. A simplified scheme of the thioredoxin system.

All thioredoxins are reactivated by TrxR with NADPH as cofactor. One
specific function for Trx is as an electron donor to ribonucleotide
reductases (Miranda-Vizuete et al 1996; Padovani et al 2001; Reichard

1993). However, Trx is also important in a variety of other cellular
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activities, such as thiol redox control of enzymes, receptors and
transcription factors, redox signalling, and cellular growth including
tumor cell proliferation (Holmgren et al 1998). More interestingly,
thioredoxins were also shown to be involved in apoptosis, by regulation
of the apoptosis signal-regulating kinase-1 (ASK-1), in a redox-
controlled manner (Saitoh et al 1998). Additionally, thioredoxins can
reduce disulfides in proteins that have been formed by hydrogen peroxide
as well as directly scavenge free radicals (Nordberg & Arnér 2001).
Other more recently discovered functions of thioredoxins are the
reactivation of peroxiredoxins (Prx) (Chae et al 1994). Peroxiredoxins are
a relatively recently discovered family of antioxidant proteins. These
proteins are peroxidases and by its location in the cytosol, they catalyse the
degradation of hydroperoxides to either water or alcohol, depending on the

substrate (Chae et al 1994; Chae et al 1999; Rhee et al 1994).

TrxR was originally purified and characterised from E. coli (Thelander
1967; Williams et al 1967). Later on this enzyme has also been cloned and
sequenced (Russel & Model 1988). The molecular weight of the dimer
was shown to be 70 kDa and each of the subunits contain a NADPH and a
FAD binding domain in the active site specific for its homologues Trx, but
have also reactivity with other prokaryotic Trx, i.e. Anabena (Gleason &

Holmgren 1988).

Thioredoxin reductases have also been purified from different mammalian
species, i.e. calf, rat and man (Holmgren 1977; Oblong et al 1993). The
mammalian TrxR has very broad substrate specificity and reduce not only
its homologous Trx, but also Trx from other species and several low
molecular weight compounds including selenium compounds (Bjérnstedt

et al 1997; Holmgren et al 1998), hydroperoxides (Bjornstedt et al 1995)
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and NK-lysin (Andersson et al 1996). Furthermore, TrxR1 is also an
electron donor to human plasma GPx in the detoxification of
hydroperoxides (Bjornstedt et al 1994). The most studied TrxR in
mammalian is the cytosolic form, but a mitochondrial TrxR have also been

found (Miranda-Vizuete et al 1999).
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2 PRESENT INVESTIGATION

21 Aims

e To develop a new method for rapid semipreparative isolation of
polyprenols with very high purity that could be used as substrates
and standards in studies of the biosynthesis of specific compounds

of the mevalonate pathway, i.e. ubiquinone.

e To study and characterise the reduction of ubiquinone by the
flavoenzymes lipoamide dehydrogenase, glutathione reductase and

thioredoxin reductase.

e To study the role of selenium in the regeneration of ubiquinol by

thioredoxin reductase.

2.2 Results
2.2.1 Development of a rapid HPLC method for separation of
polyprenols (Paper I)

In this paper, a semi preparative HPLC method was established in order to
rapidly isolate different polyprenols with high purity. The conventional
chromatographic methods are time consuming and the purity of the
polyprenols isolated is quite poor. By this new HPLC method we could
reduce the time for isolation and collect fractions of polyprenols with very

high purity (Fig. 8).
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Figure 8. Chromatogram of semipreparative HPLC isolation of polyprenols.

Due to the high hydrophobicity of isoprenoid alcohols with significant
chain lengths they are difficult to isolate in sufficient amounts and purity.
In conventional chromatography time saving results in overlapping of the
different polyprenols with decreased recovery and purity as a
consequence. The results obtained by this new semipreparative HPLC
method showed that 100 mg of material could easily be isolated within

days in contrast to several weeks to months with old techniques.
In this paper we separated products synthesized via cis-prenyltransferase
but, of course, products synthesized via trans-prenyltransferase can also be

isolated.

The substances isolated have been used for development of radioactive

substrates for the purpose to study different enzyme reactions in the
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mevalonate pathway. They were also used as standards for quantitative
HPLC-analysis.

2.2.2 The biosynthesis of ubiquinone in peroxisomes
(paper 1)

Since several enzymes from the mevalonate pathway, involved in both the
initial and the terminal phases have been detected in peroxisomes (Griinler
et al 1994; Thompson & Krisans 1990) the question was to presume
whether peroxisomes also might contribute to the biosynthesis of the

terminal part of ubiquinone (Fig 9).

Tyrosine Peroxisome

Mitochondria l
4-OH-benzoate

Ubiguinone

Cholesterol

A

FPP

Ubiquinone

Dolichol

Acetyl-CoA —» —>» Mevalonate — IPP —» GPP —» FPP

Tyrosine

< >

4-OH-benzoate

h
GRP FPP ——» Cholesterol

\ ﬁ Dolichyl-P
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Ubiquinone ER

—

Golgi apparatus

Figure 9. A schematic illustration of the locations of the mevalonate pathway reactions
in the cell. The biosynthesis of ubiquinone in peroxisomes is bolded.
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Many investigators have during decades shown that the biosynthesis of
ubiquinone is mainly located in the endoplasmic reticulum/Golgi system.
In this investigation we analysed two enzymes, one that is involved in the
synthesis of the isoprenoid side chain, frans-prenyltransferase, and the
other enzyme that mediates the transfer of the isoprenoid side chain to the
precursor ring, nonaprenyl-4-hydroxybenzoate (NPHB)-transferase.

These studies were performed in both peroxisomal and microsomal

fractions isolated from normal rat liver.

The trans-prenyltransferases in both of these organelles required trans-
geranyl-PP as substrate and not trams-farnesyl-PP. However, the
microsomal frans-prenyltransferase activity was highly activated in the
presence of Mg>", whereas the peroxisomal trans-prenyltransferase
activity reached the highest activity with Mn>*. Moreover, in the presence
of detergents, like digitonin, the microsomal frans-prenyltransferase
activity was activated, while the peroxisomal enzyme was inactivated.
These observations together with observations made after mechanical
treatment such as sonication or freezing/thawing indicated that the location
and the regulation of these isoenzymes differ. On a protein basis, the
specific activity of the total trans-prenyltransferase, 30 % was found in the
peroxisomal and 70% in the microsomal fraction. The effect of treatment
with the HMG-CoA reductase inhibitor, mevinolin was also investigated
and the enzyme activity in both of these locations was enhanced by this
compound. Treatment with clofibrate, a peroxisomal inducer, enhanced the

microsomal activity, whereas the peroxisomal activity was decreased.

NPHB-transferase activity was also found in the peroxisomes, with an
equal catalytic rate as in the microsomal fraction. Different regulatory

patterns of the two enzymes were shown after treatment of the rats with
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chemical compounds such as clofibrate and DEHP. By these treatments
only the peroxisomal activity was affected, by decrease of the activity.

Altogether, the results presented suggest that at least two enzymes
involved in the terminal part of the biosynthesis of ubiquinone are located

in the peroxisomes.

2.2.3 Regeneration of ubiquinol by flavoenzymes
(Paper lll, IV and V)

The antioxidant function of ubiquinol is predominately to protect against
lipid and protein peroxidation. Ubiquinone is synthesised in all cells and is
integrated in all membranes. Its reduced form, ubiquinol, can inhibit the
initiation of the peroxidation reaction by reducing the perferryl radical. It
can also terminate the propagation phase by regeneration of vitamin E or,
maybe act by itself to scavenge the lipidperoxyl radical formed in the
process. Although the antioxidant function requires that ubiquinol is
continuously regenerated the non-mitochondrial enzymatic systems
involved are only characterised to a limited extent. The aim of these
investigations was to characterise the reduction of ubiquinol by the three
flavoenzymes, lipoamide dehydrogenase, glutathione reductase and

thioredoxin reductase.

The reduction of ubiquinone by all three enzymes characterised was
shown to have similar rates of reduction of ubiquinone with both NADH
and NADPH as cofactors. However, the addition of zinc in the reaction
mixture containing NADPH as cofactor, enhanced both LipDH and GR
activity. Among other divalent ions tested only cadmium had the same

effect on the reduction rate of ubiquinone by LipDH and GR. In contrast,
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the reduction of ubiquinone by thioredoxin reductase was inhibited by

zinc.

The pH optimum of the rate of reduction of ubiquinone was for lipoamide
dehydrogenase and glutathione reductase acidic, pH 6 and 4.5,
respectively. Under these acidic conditions the activities were almost the
same for both enzymes as in the presence of zinc. This remarkable
behaviour may be physiologically relevant during ROS generating
conditions like ischemia/reperfusion. On the other hand, the pH optimum
for thioredoxin reductase was found to be at physiological pH. All
together, these observations indicate that ubiquinol-regeneration can
operate during various intracellular conditions, maybe at different
intracellular locations. Furthermore, the highest rate of reduction under

physiological conditions was achieved by TrxR1.

By changing the ratio between NAD(P)H/NAD(P)', regulatory
mechanisms were studied using lipoamide dehydrogenase as enzyme. An
inhibitory effect on the reduction of ubiquinone by this enzyme was only
achieved when the NADPH/NADP" ratio was low. When GR was used in
the reaction mixture it was shown that the reduction of ubiquinone was
competitively inhibited by the traditionally known substrate, oxidised
glutathione, but only at very high concentrations. The reduction of
ubiquinone was also studied using FAD alone. It was found that a very
low activity could be achieved. Thus, these results indicate that FAD plays
an important role as a part of the enzymes studied.
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2.2.4 The role of selenium in the reduction of ubiquinone by

thioredoxin reductase (paper 1V)

We also demonstrated the importance of selenium for the reduction of
ubiquinone by TrxRl1. In the study HEK293 cell lines overexpressing
TrxR1, normal bovine and rat TrxR1, non-selenium containing E. coli
enzyme, mutant human TrxR (selenocysteine replaced by alanine) and
recombinant truncated rat TrxR lacking the two amino acids Sec and Gly
at the C-terminal part were used. The results showed that there was almost
no reduction of ubiquinone when the enzymes lacking selenocysteine was
used in the reaction mixture. By incubation of the overexpressing HEK293
cell lines with selenite we also showed that the increase in TrxR1 activity
in homogenates was accompanied by an increase in reduction of
ubiquinone. In conclusion, those results strongly suggest selenium to be

essential for reduction of ubiquinone by TrxR1.
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3 GENERAL DISCUSSION AND FUTURE
PERSPECTIVES

In this work the biosynthesis and reduction of ubiquinone with focus on
the extra mitochondrial fraction of the compound was studied. It is
obvious that the mevalonate pathway is complex in several aspects. First
of all it is divided into several pathways that ends up in different products.
The regulation of the different pathways is not fully discovered, but the
fact that parts of the synthetic pathways are located in different subcellular
compartments indicate a necessity of compartmentalization to guaranty the
supply of ubiquinone in the different locations where it is needed. In this
thesis we have shown that ubiquinone biosynthesis also occur in the
peroxisomes suggesting a specific protecting role of this compound at this
location. As many other enzymes of the mevalonate pathway have been
discovered in this organelle it is reasonable to ask the question if not all of

the enzymes of this pathway are located here.

Although the amounts of ubiquinol in the membranes are considerable it
will not be enough for effective antioxidant function unless it can’t be
regenerated. The turnover of ubiquinol is much faster than can be
explained by replacement via de novo synthesis. It has been shown that
oxidative stress increases the amount of the oxidised ubiquinone in the cell
and, thereby, also possibly enhances the degradation of this compound. To
compensate for this depletion increased synthesis of ubiquinone,
regeneration of ubiquinol and uptake from the blood or all three functions

may occur.

In this thesis we investigated, as mentioned, other locations of ubiquinone

biosynthesis but more intensively the characteristics of the reactions of
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regeneration of ubiquinol by the flavoenzymes, lipoamide dehydrogenase,

glutathione reductase and thioredoxin reductase.

The results obtained when the characteristics of the reduction of
ubiquinone by glutathione reductase were investigated may suggest other
functions of this enzyme. This proposal is based on that the highest rate of
reduction of ubiquinone was shown at acidic pH and that zinc at

physiological pH increased the reduction rate almost 3-fold.

In the studies with thioredoxin reductase we also used transfected stable
cell lines overexpressing this enzyme. By this system together with
enzymes lacking selenocysteine, we showed that the reduction of
ubiquinone by this enzyme was selenium dependent. These results support
the findings that deficiency of selenium decrease the concentrations of
ubiquinone and vitamin E. The conclusion may be that if thioredoxin
reductase is not sufficiently saturated with selenocysteine the reduction of

ubiquinone is harmed and, thereby, the regeneration of vitamin E.

In the future it would be of great interest to also study cell lines
overexpressing lipoamide dehydrogenase or glutathione reductase. As
those latter enzymes are not selenium dependent these studies may add
more physiological and molecular aspects onto the regulatory mechanisms
of the reduction of ubiquinone. Other in vitro cell studies that could be
interesting are the effect of oxidative stress on the biosynthesis and

reduction of ubiquinone.

Supplementation of ubiquinone to different populations and species is

today widely studied. In the future one target is to find a model to study

33



the effects of supplementation on both biosynthesis of ubiquinone and

regeneration of ubiquinol.
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