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ABSTRACT 
 
Cholesterol is essential for normal growth and development in mammals. However, 

excess cholesterol can be harmful leading to diseases such as atherosclerosis and 

gallstones. Once formed the ring structure of cholesterol cannot be catabolised by the 

body and must therefore be converted to other compounds for excretion. In most 

vertebrates the faecal route of cholesterol excretion is through the formation of bile 

acids (BA) and the solubilisation of free cholesterol in bile. Cholesterol is converted 

into the primary bile acids cholic acid (CA) and chenodeoxycholic acid, the ratio of 

which is determined by the enzyme sterol 12α-hydroxylase (CYP8B1). Both 

cholesterol and BAs regulate their own synthesis, and other biological processes, 

through the actions of transcription factors such as the sterol regulatory element binding 

proteins (SREBP), the liver X receptor and the farnesoid X receptor. 

 

A Cyp8b1 knockout mouse model has been created, which lacks the ability to 

synthesize CA. Using this model we investigated the regulatory effects of CA and 

cholesterol on metabolism and found that a reduction in CA resulted in decreased 

cholesterol absorption, increased cholesterol synthesis and was protective against large 

increases in hepatic cholesterol levels. Our results suggest an inhibitor of CYP8B1 may 

reduce cholesterol levels and thereby reduce the development of cardiovascular disease.  

 

The gene involved in cholesterol synthesis most responsive to regulation by CA and 

cholesterol treatment was squalene epoxidase (Sqle). Therefore the promoter of this 

gene was investigated further. In analogy to the human SQLE promoter the murine 

promoter was activated by SREBPs. A 205bp region of the promoter, containing three 

novel sterol regulatory elements, was found to be responsible for SREBP-2 regulation.  

 

While investigating the promoters of other genes involved in cholesterol synthesis 

mevalonate kinase was found to share a short common promoter with the cob(I)alamin 

adenotransferase gene (MMAB) catalysing the synthesis of AdoCbl, a cofactor for 

methylmalonyl CoA mutase. In mice the expression of Mmab was increased by statin 

treatment. Therefore, statins may represent a novel treatment for patients with 

methylmalonic aciduria type B, resulting from mutations in this gene. 

Kommentar [SM1]:  It’s a 
common mechansims throughout 
the mammalia, the man and 
mouse stuff isn’t wrong per se, 
but putting it in a broader contect 
is good wrt PhD stuff. 
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1 INTRODUCTION 
 

1.1 CHOLESTEROL 
 

Cholesterol is the most common steroid found in animals and is the precursor for most 

other animal steroids. As well as functioning as a precursor to steroid hormones and 

bile acids (BA), cholesterol is an essential structural component of animal cellular 

membranes, accounting for between 10% and 50% of the total lipid content. 

Cholesterol is a rigid structure and its presence stabilises the cell membrane, reducing 

its fluidity. Another important role for cholesterol is the lateral organisation of 

membrane associated proteins into functional clusters called lipid rafts1. These rafts 

may have a role in cholesterol efflux as the ATP-binding cassette (ABC) A1 transporter 

and scavenger receptor B-1 (SR-B1) have been localised to lipid rafts. 

 

1.2 CHOLESTEROL SYNTHESIS 
 

Most nucleated cells in mammals are capable of synthesizing cholesterol for their own 

use; however, the majority of cells also obtain cholesterol from lipoproteins synthesized 

by the liver and intestine. The brain is unique in that it does not obtain cholesterol from 

lipoproteins and transvascular diffusion, but synthesizes all of the cholesterol it 

requires. The brains ability to synthesize cholesterol is impressive, considering that it 

makes up only 2% of whole body mass and yet accounts for almost 25% of the 

cholesterol found in the body. 

 

Isoprenoid biosynthesis is a complex procedure involving a large number of enzymes 

located both in the cytosol and the cytosolic surface of the endoplasmic reticulum (ER) 

as overviewed in Figure 1. Cholesterol is one important product of this pathway, 

however other products include geranyl-geranyl-pyrophosphate and solanesyl-

pyrophosphate, involved in protein isoprenylation and ubiquination. The process begins 

with the conversion of acetyl-CoA by HMG CoA synthase (EC 2.3.3.10) to HMG 

CoA. HMG CoA is reduced by HMG CoA reductase (HMGCR) (EC 1.1.1.88), the 

rate-limiting step in isoprenoid biosynthesis, to CoA and mevalonate. The transcription 

and activity of HMGCR is regulated by cholesterol concentration via a negative feed 

back mechanism. When cellular cholesterol concentration is low HMGCR is actively  
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Figure 1 An overview of isoprenoid biosynthesis from acetyl-CoA to cholesterol 

 

transcribed, but when cholesterol is abundant the protein Insig-1 binds to the sterol 

sensing domain of HMGCR leading to its ubiquitination and degradation2. HMGCR 

has a half-life of 2-3 hours that can be increased in the absence of exogenous 

cholesterol3. Mevalonate kinase (MVK) (EC 2.7.1.36) converts mevalonate to 

mevalonate-5-phosphate, which subsequently through a number of steps is converted to 

farnesyl-pyrophosphate. Farnesyl-pyrophosphate represents the substrate of squalene 

synthase (EC 2.5.1.21), and is converted to squalene. Squalestatins targeted against 

squalene synthase are available as anti-fungal treatments e.g. terbinafin (Lamisil®). In 

the only oxidation step in cholesterol biosynthesis, squalene is oxidised by squalene 

epoxidase (SQLE) (EC 1.14.99.7) forming 2,3-oxidosqualene. Having an extremely 

low specific activity compared to HMGCR or squalene synthase4, SQLE is considered 

to be a secondary rate-limiting step in cholesterol biosynthesis and a potential target for 
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anti-hyperlipidemic drugs5,6. In contrast to HMGCR it is regulated by exogenous and 

endogenous sterols and not by nonsterol derivatives of mevalonate7,8. Many compounds 

have been found to inhibit SQLE including Green Tea9, NB-59810, FR19473811,12 and 

selenium compounds13. The activity of SQLE is believed to be determined by changes 

in enzyme concentration resulting from an altered transcription level5. Although it is 

known that murine Sqle is regulated by cholesterol the precise mechanisms by which 

this strong regulation occurred were unclear and required further investigation. 

Lanosterol synthase (EC 5.4.99.7) catalyses the cyclization of squalene to lanosterol, 

which is in turn converted to cholesterol by further enzymatic steps. 

 

1.3 INTESTINAL PROCESSING OF DIETARY CHOLESTEROL 
 

The average Western diet contains 300-500 mg of cholesterol per day. This dietary 

cholesterol mixes with cholesterol released from the gallbladder, resulting in a total of 

800-1200 mg of cholesterol presented intestinally, of which 30-50% is absorbed. 

Cholesterol is a hydrophobic compound requiring chemical detergents to aid its 

solubilisation and thereby its absorption in the gut. It has been demonstrated that the 

presence of BAs in the gut is a prerequisite for the absorption of lipids and lipid soluble 

vitamins from the diet14. In man and mouse models, an increase in CA has been shown 

to increase cholesterol absorption from the diet15,16. In the intestine the amphipathic 

BAs mix with cholesterol, lipids and fat-soluble vitamins from the diet to form mixed 

micelles, which are able to pass through the unstirred water layer to the intestinal 

enterocytes17. At the enterocytes the micelles disperse and their contents are available 

for absorption. The solubilisation of cholesterol by bile, its uptake and processing by 

enterocytes can be seen schematically in Figure 2. 

 

1.3.1 Intestinal absorption of cholesterol 
 

Cholesterol absorption is a selective, active protein-mediated process. Although the 

exact cholesterol transport protein remains elusive, a number of proteins are known to 

be involved in cholesterol absorption. Cholesterol, plant sterols and marine sterols are 

all absorbed from the diet. However, sterols other than cholesterol are selectively 

removed from enterocytes and transported back to the intestinal lumen by the ABC half 

transporters G5 and G8.  

 



 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Enterohepatic regulation of BA and cholesterol metabolism. I. Intestinal 

lumen: Solubilisation of cholesterol (Chol), triacylglycerols (TAG), plant sterols (PS) 

and fatty acids (FA) by bile acids (BA). II. Enterocytes: Absorption, de novo synthesis, 

esterification and packaging of cholesterol into chylomicrons. III Hepatocyte: De novo 

cholesterol and BA synthesis regulated by the transcription factors, SREBP, FXR and 

SHP. IV. Integrated regulation: Enterohepatic recycling of BA and regulation of net 

faecal cholesterol and BA excretion. 
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Two newly discovered proteins have been suggested to be involved in the absorption of 

cholesterol: Mucin 1 (Muc 1) and Niemann-Pick C1 Like 1 protein (NPC1L1), as in 

murine knockout models the loss of either gene resulted in a decreased cholesterol 

absorption of 80% and 85%, respectively18,19. NPC1L1 is believed to be a good 

candidate for the cholesterol transporter protein. It is expressed at the brush border 

membrane of intestinal enterocytes, and cholesterol absorption in NPC1L1 knockout 

mice is unaffected by Ezetimibe, an inhibitor of intestinal cholesterol absorption. 

 

1.3.2 Processing of cholesterol by enterocytes 
 

As free cholesterol is toxic, once it is taken up by enterocytes cholesterol is rapidly 

esterified by acyl-CoenzymeA:cholesterol acyltransferase 2 (ACAT2) (Figure 2). The 

newly formed cholesteryl esters (CE) are then available for packaging into 

chylomicrons for transport around the body. Chylomicrons, the largest of the 

lipoproteins, are comprised mainly of triacylglycerols (TAG) (80-95%) with some CE. 

They express apoB-48, apoE and obtain apoC-II from circulating high density 

lipoproteins (HDL) in plasma. Striated muscle and adipose tissue use lipoprotein lipase 

to hydrolyse the TAG contained within the chylomicrons. With the progressive loss of 

TAG, the chylomicron shrinks and returns apoC-II to HDL, forming an enriched apoE 

chylomicron remnant that is rapidly taken up by the liver. In healthy individuals the 

half life of chylomicrons is only 10-15 minutes20.  

 

1.4 HEPATIC TURNOVER OF CHOLESTEROL AND LIPOPROTEIN 
SYNTHESIS 

 

Chylomicron remnants, rich in cholesterol and apoE, are taken up by the liver via the 

low density lipoprotein receptor (LDL-R) and LDL receptor–related protein (LRP)21. 

The liver, capable of dealing with this large influx of cholesterol, handles incoming 

cholesterol in a number of ways. The first and most rapid response is the esterification 

of free cholesterol by ACAT2. This allows the storage of CEs in cytoplasmic droplets 

until it is required. The CEs can be used for the production of very low density 

lipoproteins (VLDL) or hydrolysed for the synthesis of BAs. Cholesterol can also be 

removed from the liver to the bile canaliculi by ABCG5/G8, where it is solubilised in 

the bile and either lost through feacal excretion or re-absorbed (Figure 2). In addition to 

dietary cholesterol the liver synthesizes a large amount of cholesterol each day, which 
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can be used for VLDL and BA synthesis. Although the liver can cope with a large 

influx of cholesterol, the storage of large amounts of cholesterol and other lipids may 

long-term lead to fatty liver and liver cirrhosis. 

 

1.4.1 From very low density to low density lipoproteins 

 
Lipids such as sterols and TAG are not soluble in the aqueous environment of plasma. 

Therefore they are packaged into lipoproteins for transport around the body. 

Lipoproteins are water-soluble particles with a lipid core (CE and TAG) surrounded by 

a protein and polar lipid bilayer (phospholipids, free cholesterol and apolipoproteins) 

and are classified according to their size and density. 

 

The CE found in VLDL is derived from both de novo cholesterol biosynthesis and 

chylomicron remnants taken up by the liver. Nascent VLDL particles emerge from the 

liver in an assembly process22,23, expressing apoB-100 on their surfaces and receive 

apoC-II and apoE from circulating HDL in analogy to chylomicrons. VLDL particles 

have a core rich in TAG (55-80%), which is hydrolyzed by peripheral tissues 

expressing lipoprotein lipase, causing the particle to shrink and become denser. The 

apoC-II and apoE are then recycled back to HDL. These modifications of the VLDL 

result in a particle called the intermediate density lipoprotein (IDL). If not taken up by 

the liver, the IDL looses more TAG, becoming LDL. VLDL has a half-life in 

circulation of about two hours; while the half-life of the cholesterol enriched LDL 

particles is 1-2 days. 

 

LDL is the main source of cholesterol for peripheral tissue. Cells requiring cholesterol 

express LDL-R on their surfaces. After the LDL particle is absorbed by the cell the 

cholesterol is processed in the lysosome releasing free cholesterol, which is converted 

to CE by ACAT. LDL not taken up by other tissues is removed from the circulation by 

the liver.  

 

1.5 HIGH DENSITY LIPOPROTEIN, MEDIATOR OF REVERSE 
CHOLESTEROL TRANSPORT 

 
Lipid poor TAG-rich nascent HDL, secreted by the liver and intestine, expresses a 

number of apolipoproteins on its surface including apoA1, apoE and the C apoproteins. 
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As well as acting as a reservoir for apoC-II and apoE, HDL is involved in reverse 

cholesterol transport (RCT), acquiring excess cholesterol from peripheral tissues and 

macrophages24,25. In man HDL exchanges TAG for cholesterol from VLDL and LDL, 

through the action of the cholesterol ester transfer protein (CETP). Tissues expressing 

the SR-B1 receptor, such as the liver and steroid hormone synthesizing tissues, are able 

to take up cholesterol from HDL. Cholesterol is the precursor of steroid hormones such 

as testosterone and estrogen. 

 

1.6 REGULATORY ROLES OF CHOLESTEROL 

 
1.6.1  Sterol regulatory element binding proteins 

 
Sterol regulatory element binding proteins (SREBPs) are a family of transcription 

factors that regulate cellular cholesterol and fatty acid homeostasis by responding to the 

cellular levels of free cholesterol26,27. There are three SREBP isoforms designated 

SREBP-1a, -1c and -2. SREBP-1a and -1c are encoded on the same gene, located on 

human chromosome 17. Through alternative transcription start sites SREBP-1a and –1c 

have alternative first exons, each of which is spliced to a common second exon28. 

SREBP-2 is derived from a second gene located on human chromosome 22. SREBPs 

bind as dimers to Sterol Regulatory Elements (SREs) in the promoters of a large 

number of genes, mostly activating their transcription. Sequences binding SREBPs 

appear to be rather heterogenous. Although there is some overlap in the genes regulated 

by SREBPs, SREBP-1c is thought to be the main regulator of the genes involved in 

fatty acid synthesis, whereas SREBP-2 regulates the genes involved in cholesterol 

biosynthesis. SREBP-1a is believed to activate genes involved in both processes29. As 

SREBP-1a is lowly expressed in vivo it was originally believed that SREBP-1c was the 

dominating SREBP1 isoform, although SREBP-1a is important in cell cultures. 

Subsequently it has been demonstrated that SREBP-1c homodimers are weak 

regulators of transcription and that heterodimers containing SREBP-1a are stronger30. 

Therefore the role that SREBP-1a plays in transcription may have been underestimated. 

 

SREBP-2 activates its own transcription in combination with another transcription 

factor nuclear factor Y (NF-Y)31. Synthesized in the ER SREBP-2 remains bound to the 

membrane though an Insig-1:SCAP (SREBP cleavage activating protein) complex. 

Insig-1, a membrane bound protein, has a sterol sensing domain similar to HMGCR.  
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Figure 3 Overview of the processing of SREBP in the cell. In the presence of high 

concentrations of cholesterol SREBP remains bound to the ER. When cholesterol 

concentration drops SCAP releases Insig-1 allowing the SCAP:SREBP complex to 

move to the Golgi where the mature form of SREBP is released by a sequential two 

step proteolytic cleavage by S1P and S2P. This mature SREBP can then move to the 

nucleus where it dimerises and binds to promoters containing SREs. 

 

When cholesterol levels are high Insig-1 remains bound to SCAP, which in turn is 

bound to SREBP-2, thus anchoring SREBP-2 to the membrane of the ER (Figure 3)32. 

When cholesterol concentration drops there is a conformational change in SCAP, 

releasing Insig-1 and allowing the SCAP:SREBP-2 complex to travel along the 

membrane to the Golgi where SREBP is enzymatically cleaved in a two-step process 

by two membrane bound proteases, site 1 protease (S1P) and site 2 protease (S2P). The 

released amino-terminal active form of SREBP-2 then moves to the nucleus where it 

dimerises and binds to promoters containing SREs. Mature SREBPs bind to DNA and 

are phosphorylated, increasing both their transcriptional activity and rate of 

degradation33-35. The mouse SREBP-2 knockout model is embryonically lethal at day 

7–8, while SREBP-1 knockout mice are viable and healthy with an increased 

expression of SREBP-236. This would suggest therefore that while SREBP-2 can 
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compensate for a loss or reduction of SREBP-1 the reverse is not true, implying that 

some genes are solely responsive to SREBP-2. 

 

A number of genes involved in cholesterol and lipid metabolism have SREs in their 

promoters, including HMG CoA synthase37, HMGCR38, squalene synthase39, fatty acid 

synthase40 and LDL-R41. Putative SREs have also been identified in the promoter of 

NPC1L142. In addition to their role in regulating cholesterol and lipid metabolism 

SREBPs have also been shown to regulate the expression of genes involved in 

processes other than cholesterol and lipid metabolism43. In yeast SREBPs have been 

shown to act as oxygen sensors44, while in Drosophila melanogaster SREBP homologs 

are required for larval development45.  Phagocytosis and bacterial pore-forming toxins 

induce the proteolytic activation of SREBPs and enhance lipid synthesis46,47. Due to the 

short shared promoter with MVK, the MMAB gene encoding Cob(I)alamin 

adenosyltransferase may be another target for SREBP regulation. Cob(I)alamin 

adenosyltransferase catalyses the conversion of cobalamin (vitamin B12) to 

adenosylcobalamin, a cofactor required by methylmalonyl-CoA mutase. Regulation of 

this gene by SREBP-2, cholesterol and statins was investigated in this study. 

 

1.6.1.1 Nulcear Factor-Y 

 
Alone SREBPs are considered to be weak activators of gene expression and several in 

vitro studies indicate that they act coordinately with additional transcription factors, 

such as stimulating protein 1 (Sp1) and NF-Y to achieve full synergistic activation of 

their target genes48,49. NF-Y is a highly conserved transcription factor binding to 

CCAAT motifs in the promoters of a variety of genes including albumin, alpha-globin, 

collagen, and beta-actin. NF-Y is a trimeric protein that binds to DNA with a high 

specificity and affinity. The A subunit is the regulatory unit recognizing specific 

sequences50. The peptide sequences of subunits A and B are highly conserved during 

evolution as demonstrated by the fact that they are remarkably similar to the yeast 

transcription factors Hap2 and Hap3, both of which are required for specific binding to 

a CCAAT-like motif51. NF-Y has been shown to work in concert with SREBP-2 to 

activate the transcription of many genes involved in cholesterol biosynthesis including 

HMG CoA synthase, HMGCR, squalene synthase and Sqle37,52-54. However, binding of 

NF-Y to the murine promoter of Sqle, and this promoter’s precise regulation by 

SREBP-2 and NF-Y had not been previously investigated. 
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1.6.1.2 Stimulating protein 1 

 
Sp1 is a constitutive transcription factor interacting with a variety of gene promoters 

containing GC-box elements increasing or decreasing their transcription55. Sp1 is 

capable of synergistic transcriptional activity with promoters containing multiple Sp1 

binding sites by direct promoter interaction that loops the intervening DNA56,57. 

Mutations that abolish Sp1 binding to the LDL-R promoter reduce its transcription58. In 

mice the loss of Sp1 is embryonically lethal at about day 11 of gestation59. As seen with 

the SREBP homolog, in Drosophila melanogaster the Sp1 homolog is required for the 

larval development60. Sp1, like SREBPs, can be phosphorylated altering its DNA 

binding and promoter activation61. 

 
1.6.2 Liver X receptor 

 
The Liver X receptor (LXR), a former orphan nuclear receptor, interacts with 

oxysterols, the oxidised derivatives of cholesterol. It is theorised that LXR regulates 

cholesterol metabolism after binding oxysterols, thus activating the receptor and 

inducing its binding to specific DNA responsive elements. There are two isoforms of 

LXR, α and β. LXRα is expressed in liver, kidney, intestine, spleen and adrenals, while 

LXRβ has a ubiquitous expression62. LXR, like the Farnesoid X receptor (FXR), forms 

a heterodimer with the retinoid X receptor before binding to DNA. LXRα and β null 

mice have been created, and differences in their responses to a cholesterol rich diet 

have been observed63,64.  

 

LXR regulates cholesterol metabolism, storage and efflux by controlling the expression 

of a number of genes involved in cholesterol metabolism. Both LXRα and β regulate 

the transcription of SREBP-1c and indirectly, the expression of a number of genes 

involved in lipid metabolism65, resulting in an increase in hepatic cholesterol ester 

formation. Activated LXR decreases hepatic cholesterol concentration in a number of 

ways. LXR activates the transcription of ABCG5/G8 decreasing the amount of 

cholesterol absorbed from the intestine and increasing the efflux of cholesterol from 

hepatocytes into bile. In mice, the expression of cholesterol 7α-hydroxylase (Cyp7a1), 

the rate limiting step in BA synthesis, is increased by LXRα thereby increasing the 

removal of cholesterol in the form of newly synthesized BAs63,64. LXR plays an 

important role in RCT by controling the expression of ABC transporters A1, G4, G1 
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and apoE in macrophages, enhancing the transport of cholesterol to HDL66. It is 

important to note that LXR is not the only protein able to bind oxysterols. The 

oxysterol binding protein (OSBP), and the family of OSBP related proteins, bind to 

oxysterols with a high affinity and appear to regulate a number of cellular processes67. 

Kandutsch first proposed the idea that cholesterol suppresses its own synthesis through 

oxygenated sterols68. The discovery that LXR, which regulates cholesterol metabolism, 

has oxysterols as specific ligands appears to fit this hypothesis. Kandutsch believed that 

24S-25-epoxycholesterol was the most important regulatory sterol, and LXR shows the 

highest affinity for this oxysterol of all the sterols tested so far69. When cholesterol 

concentration increases the rate of cholesterol synthesis drops, possibly resulting in a 

shunting of 2,3-epoxide back to SQLE producing 2,3;22,23-dioxidosqualene, which is 

itself ultimately converted to 24S-25-epoxycholesterol70. However, there is some 

evidence to suggest that while LXR is required for normal cholesterol metabolism, 

oxysterols are not the natural ligand for this receptor. Firstly, it has been show in cell 

cultures that the addition of cholesterol, in the form of liposomes, decreases de novo 

cholesterol synthesis without the generation of oxysterols71. Also, in vivo studies where 

oxysterol levels have been perturbed show a minimal effect on cholesterol synthesis 

and homeostasis72-74. While it is clear that oxysterols bind to and activate LXR the 

possibility exists that another ligand is the true regulator of cholesterol metabolism. 

 

1.7 BILE ACID SYNTHESIS 

 
In humans the bile salt pool size is 3-4g, of which 0.5g is lost each day through faecal 

excretion. As well as being used to synthesize BAs, free cholesterol is also solubilised 

in the bile and lost through excretion. However, a paradox exists as the biliary 

cholesterol present in the bile is available for intestinal re-absorption and BAs 

themselves represent the facilitating agent. 

 

BAs are synthesized by two pathways, the classic (neutral) pathway and the alternative 

(acidic) pathway, (Figure 4). Each pathway involves a number of different enzymes, of 

which several are cytochrome P450 enzymes, located in the smooth and rough 

endoplasmic reticulum, peroxisomes, mitochondria and cytosol75. The first step of the 

neutral pathway is the 7α-hydroxylation of cholesterol by the rate-limiting enzyme 

CYP7A1. The liver receptor homolog-1 (LRH-1) activates the transcription of the 

CYP7A1 gene76-78. In humans, expression of CYP7A1 is suppressed by cholesterol  
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Figure 4 The major pathways of bile acid synthesis, the classical pathway initiated by 

CYP7A1 and the alternative pathway initiated by CYP27A1 
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treatment, while in mice it is increased through the action of the LXRα79.  In both 

species FXR, a BA activated nuclear receptor, inhibits CYP7A1 expression through the 

action of the short heterodimer partner (SHP)80, which seems to interfere with the 

transcriptional activation mediated by LXRα and LRH-1. Sterol 27-hydroxylase 

(CYP27A1) catalyses the first step in the alternative pathway of BA synthesis, the 27-

hydroxylation of cholesterol (Figure 4), and also participates in the classical BA 

synthesis pathway. 

 

In humans the BA pool is made up mainly of the primary BAs cholic acid (CA) and 

chenodeoxycholic acid (CDCA) and the secondary bile acids deoxycholic acid and 

lithocholic acid. CA and CDCA are the main products of the neutral pathway while 

CDCA is the main product of the acidic pathway. Sterol 12α-hydroxylase (CYP8B1) 

catalyses the hydroxylation of the steroid nucleus at the C12 α position required for CA 

synthesis81. The activity of CYP8B1 determines the overall ratio of CA to CDCA and 

thereby the hydrophobicity of the BA pool. As with CYP7A1, CYP8B1 expression is 

inhibited by FXR and SHP interfering with its activation by LRH-182.  

 

1.8 REGULATORY ROLES OF BILE ACIDS 

 
BAs appear to have a number of regulatory roles in addition to being biological 

detergents. As well as being natural ligands for FXRα, BAs are also ligands for G-

protein coupled receptor (GPCR) TGR5 and activate mitogen activated protein kinase 

(MAPK) pathways83. In addition to regulating BA synthesis, FXR has been shown to 

be required for normal liver regeneration84 and to control the growth of intestinal 

bacteria85,86.  

 

1.8.1 Farnesoid X receptor 

 
FXR is a nuclear receptor that binds to specific DNA regions as a heterodimer with 

RXR. FXR is expressed in the liver, intestine, kidneys, adrenals and to a much lesser 

extent in white adipose tissue87,88. FXR was named due to the small activation by 

farnesoid, however, BAs were subsequently discovered to be more potent activators of 

FXR at concentrations similar to that found in the serum and tissues80,89,90. There are 

two FXR genes, α and β, although FXRβ is only functional in rodents, rabbits and 

dogs. FXRα has four isoforms due to alternative promoters and splicing. 
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An FXR knockout mouse has been created which is viable, fertile and there is no 

indication that the loss of FXR is prenatally lethal91. These mice do, however, develop 

liver tumors, have an increased serum cholesterol triglyceride concentration and a pro-

atherogenic lipoprotein profile91,92. FXR/apoE double knockout mice show an 

increased atherosclerosic development93, while conversely FXR/LDL-R double 

knockout mice show a reduced development94. The role FXR plays in the development 

of atherosclerosis, therefore, remains unclear. 

 

1.8.2 Regulation of bile acid metabolism 
 

As previously discussed BAs regulate their own biosynthesis in a FXRα:SHP 

dependent manner, inhibiting the expression of Cyp7a1 and Cyp8b1 genes. However, 

BAs regulate their own synthesis by SHP independent pathways as well. In the 

intestine FXR stimulates the synthesis of fibroblast growth factor 19 in man and the 

analog fibroblast growth factor 15 in mouse. This growth factor is released into the 

blood where it travels to the liver and binds to fibroblast growth factor receptor 4, 

activating the JNK pathway and thereby inhibiting CYP7A1 expression95. 

 

As well as regulating BA synthesis, FXR regulates BA transport. By suppressing 

Na+/taurocholate cotransporting polypeptide (NTCP) and inducing the bile salt export 

pump (BSEP) as well as the multidrug resistance associated protein 2 (MRP2), FXR 

increases the removal of BAs from hepatocytes while reducing their uptake. In the 

enterocytes FXR represses the apical sodium dependent bile acid transporter (ASBT), 

thereby reducing the reabsorption of BAs, and simultaneously inducing the basolateral 

organic solute transporters (OST) α and β increasing the transport of BAs into the 

circulation (Figure 2). 

 

BAs are cytotoxic compounds and therefore their concentration must be kept low. 

Pregnane X receptor, a target for FXR activation96, enhances the activation of genes 

involved in the breakdown of BAs, thereby protecting the liver. So far no direct link 

between FXR and human disease has been detected. However, mutations in genes 

regulated by FXR have been linked to inherited disorders such as the Dubin-Johnson 

syndrome and progressive familial intrahepatic cholestasis type 2 and 397.  
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1.8.3 Bile acid regulation of lipid metabolism 
 

In humans, treatment with the BA sequestrant cholestyramine induced the production 

of VLDL, while CDCA treatment reduced hypertriglyceridemia98. In rodents FXRα 

interferes with the LXR activation of Cyp7a1, thereby reducing the consumption of 

cholesterol and increasing LDL cholesterol. FXR, through SHP, down regulates the 

expression of SREBP-1c99, considered to be the global regulator of lipogensis29. In 

this way, FXR regulates hepatic fatty acid and triglyceride biosynthesis and VLDL 

production. FXR also binds to the promoter of murine fatty acid synthase activating 

its transcription100. In mice, activation of FXR is reported to prevent the formation of 

gallstones, while the loss of FXR increases susceptibility to gallstone formation101. 

FXR is expressed in both white adipose tissue in mice and differentiated 3T3-L1 

cells, but not in undifferentiated preadipocytes102. Embryonic fibroblasts derived from 

FXR null mice have an impaired adipocyte differentiation103, while treatment with an 

FXR agonist enhances the differentiation of induced 3T3-L1 cells102. FXR null mice 

do not show any regulation of adipocyte related genes when treated with an FXR 

agonist.  

 

1.8.4 Bile acid regulation of glucose metabolism  
 

Although cholestyramine treatment in type-ΙΙ diabetic patients improved glycemic 

control104, the precise mechanisms by which BA signalling via FXR regulates glucose 

metabolism remains unclear. In rodents, during fasting FXRα expression is increased 

by two transcription factors, peroxisome proliferator-activated receptor γ and hepatic 

nuclear factor 4α105, implying an inhibitory role for insulin. However, in diabetic mice 

FXRα expression is decreased and insulin normalises expression106. Activation of FXR 

may increase glycogen levels and FXR null mice are glucose intolerant and insulin 

insensitive107. Obese leptin-deficient ob/ob knockout mice given an FXR agonist have 

lower concentrations of insulin than non-treated animals103. The current understanding 

of the role of FXR in glucose homeostasis is unclear and its significance as a target in 

the treatment of patients with type II diabetes awaits further studies. 
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1.8.5 Bile acids and energy homeostasis 
 

BAs appear to play a role in energy homeostasis. In mice, treatment with BAs 

increases energy expenditure in brown adipose tissue, in a way that is dependent on 

cAMP-dependent thyroid hormone activating enzyme type 283. Human skeletal 

myocytes treated with BAs also show increased oxygen consumption. These effects 

are FXR independent, mediated by the GPCR TGR5 receptor and induction of the 

MAPK pathway.  

 
1.9 CHOLESTEROL AND BILE ACIDS IN HEALTH AND DISEASE 
 

Alterations in normal cholesterol and BA synthesis result in a number of rare 

conditions affecting the overall health of the affected individuals. More common 

conditions such as obesity, type II diabetes and atherosclerosis are becoming serious 

global health issues, and cholesterol also plays a role in these diseases. Here I will 

briefly discuss some of the specific conditions in which cholesterol or BAs are 

involved. 

 

1.9.1 Sitosterolemia 
 

The loss of a functional ABCG5/G8 protein complex results in a condition called 

sitosterolemia108. Patients with this condition have an accumulation of plant sterols and 

an increased risk of atherosclerosis. In mouse models the loss of ABCG5/G8 has little 

effect on cholesterol absorption. However, over-expression of these transporters 

decreases cholesterol absorption, most likely due to the increased removal of 

cholesterol from the enterocytes109. Activation ABCG5/G8 transcription by LXR 

results in an increased cholesterol excretion110,111. 

 

1.9.2 Defects in cholesterol synthesis 
 

Although very rare there are a number of conditions associated with a deficiency in one 

or more of the enzymatic steps involved in cholesterol biosynthesis. Cholesterol from 

the diet and compounds structurally related to cholesterol, such as desmosterol, are 

unable to compensate for a deficiency of cholesterol synthesis, especially in the brain 
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and nervous system. Table 1 introduces some of the syndromes resulting from impaired 

cholesterol synthesis. For a more thorough discussion of cholesterol synthesis disorders 

post squalene see review by Herman112. 

 

Table 1 Syndromes resulting from deficiencies in cholesterol biosynthesis 

Disorder Affected gene Clinical Symptoms Animal 

Model 

Phenotype 

Periodic Fever or 

Hyper IgD 

syndrome 

Mevalonate Kinase Reduced MVK activity, 

recurrent fever and other 

inflammatory symptoms 

None  

Mevalonic Aciduria Mevalonate Kinase Loss of MVK acitvity, 

developmental delay, failure 

to thrive, hypotonia, ataxia, 

myopathy, and cataracts 

None  

Smith-Lemli-Opitz 

syndrome (SLOS) 

7-dehydrocholesterol 

reductase gene 

(DHCR7) 

Mulitple malformations, 

distinctive facial features, 

small head size, mental 

retardation and behavioural 

problems 

Dhcr7 -/- Not viable 

after birth 

Congenital 

Hemidysplasia with 

Ichthyosis 

Erythroderma & 

Limb Defects 

(CHILD) 

NADH steroid 

dehydrogenase-like 

(NSDHL) encoding 

for 3β-hydroxysterol 

dehydrogenase 

Ichthyosiform skin lesions 

with strict midline 

demarcation, shortened or 

absent limbs on affected side, 

malformations of the brain, 

lungs, kidney and inner ear 

Bare patches 

(Bpa -/-) 

Striated  

(Str -/-)  

Embryonic 

lethality in 

males, 

females small 

with skin and 

skeletal 

abnormalities 

Lathosterolosis Lathosterol  

5-desaturase gene 

(SC5D) 

Increased lathosterol, 

decreased cholesterol, similar 

phenotype to SLOS 

Sc5d -/- Stillborn 

Desmosterolosis DHCR24, demosterol 

reductase 

Multiple malformations 

including dysmorphic facial 

features and limb 

abnormalities,  

accumulation of desmosterol 

Dhcr24 -/- Small 

infertile, with 

a shorter 

survival 
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1.9.3 Defects in bile acid synthesis 
 

Although very rare, cases have been reported involving loss or reduction in one of the 

steps of BA synthesis, see Table 2. Of note is the fact that to date there are no reported 

cases of humans with a deficiency of CYP8B1, possibly due to a lack of any adverse 

symptoms. 

 

Table 2 Deficiencies in bile acid biosynthesis 

Affected Gene Clinical symptoms Phenotype of knockout mice 

 

CYP7A1 

Increased susceptibility of 

gallstones, increased LDL-C 

levels113 

Decreased weight gain, BA pool size, 

cholesterol absorption, high mortality in 

pups, rescued by induction of Cyp7b1 after 

day 20-50.114,115 

 

CYP7B1 

Recurrent jaundice, acholic stools, 

hepatosplenomegaly, increased 

bleeding116 

Increased levels of 25- and 27-

hydroxycholesterol, increased cholesterol 

synthesis in kidneys of male mice117 

 

CYP27A1 

Accumulation of cholesterol in 

tendons and brain (CTX), early 

onset atherosclerosis, increased 

cholesterol synthesis118 

Increased BA synthesis, no development of 

CTX72 

*CTX – cerebrotendinous xanthomatosis 

 

 

1.9.4 Atherosclerosis 
 

Characterized by the formation of cholesterol-rich plaques on arterial walls, 

atherosclerosis is a progressive disease of unknown etiology showing a highly complex 

pathogenesis, which can begin at an early age and progress over decades. Fatty streaks, 

the first stage in atherosclerotic plaque formation, have be found in foetuses and new 

borns119. Over time these plaques grow, restricting the blood flow, or rupture, resulting 

in thombus and varying degrees of acute injury due to ischemia. Atherosclerosis is an 

inflammatory response to injury of the vessel wall120,121. Predisposing factors include 

hyperlipidemia, diabetes and the metabolic syndrome. Several dyslipidemias show 

Mendelian inheritance and result in monogenic alterations of the lipoprotein 

metabolism, such as familial hypercholesterolemia and Tangier Disease, as reviewed122-

124. Dyslipidemias can result from a loss or gain of the lipoproteins in circulation, or 
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alterations in the apolipoproteins they express, and often lead to premature 

atherosclerosis. In contrast, the highly prevalent dyslipidemias may be of polygenic 

origin or related to life style components125,126. According to current concepts, 

endothelial dysfunction of the arterial vessel wall results in an influx of monocyte 

derived macrophages and smooth muscle cells. The macrophages, expressing 

scavenger receptors, accumulate cholesterol from modified LDL particles127,128. LDL 

can become modified in a number of ways including oxidation and, in diabetes, 

glycation. Unlike other cell types, macrophages do not down regulate their scavenger 

receptors when cellular cholesterol levels are high, thus transforming into foam cells. 

Therefore, the removal of cholesterol from macrophages by HDL is an obvious way of 

preventing atherosclerosis.  

 

While inflammation appears to be a candidate etiologic factor in developing 

atherosclerosis, most primary and secondary preventative pharmaceutical measures are 

directed against hyperlipidemia. Statins, competitive inhibitors of HMGCR, reduce 

VLDL synthesis and up regulate the expression of LDL-R, thereby lowering the 

circulating levels of LDL cholesterol. Statins have also been proposed to treat CVD in a 

non-cholesterol related manner by stabilising plaques, preventing thrombus formation 

and acting as an anti-inflammatory agent that improves endothelial function. Ezetimibe, 

a cholesterol absorption inhibitor, has been shown to effectively reduce serum LDL 

cholesterol levels with no alteration in the absorption of fat-soluble vitamins and 

nutrients129. Understanding the role CA and FXR play in cholesterol metabolism may 

uncover novel ways of treating atherosclerosis. By using a CA-free mouse model we 

have a unique opportunity to discover the regulatory role of CA on cholesterol 

synthesis, absorption, storage and transport. 

 

1.9.4.1 LDL:HDL and atherosclerosis 

 

Extrahepatic tissues are incapable of handling excess cholesterol; therefore it must be 

transported to the liver. A high LDL:HDL ratio is a known independent risk factor for 

the development of atherosclerosis and CVD, while high HDL levels are a negative risk 

factor. Studies have shown that for every 1mg/dL increase in HDL-C the risk of CVD 

is reduced by 2-3%130,131. The removal of cholesterol from macrophages is especially 

important to prevent the formation of foam cells. As well as its role in RCT, HDL is 

believed to have other protective roles including enhanced vasorelaxation, suppressed 
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induction of cell-adhesion molecules by tumor-necrosis factor, anti-inflammatory and 

antioxidative effects132. Therefore, HDL is an attractive potential target for the 

treatment of CVD.  

 

1.9.5 Obesity and type II diabetes 
 

Obesity is becoming a very serious global health problem for industrialised nations. It 

has been proposed that due to the increase in childhood obesity life expectancy in the 

United States may actually fall for the first time in recent history133. The American 

Heart Associations statistical sourcebook, “A Nation at Risk: Obesity in the United 

States” classifies obesity as a major, modifiable risk factor for CVD. Obesity also limits 

the beneficial effects of statin treatment134. However, reducing waist to hip ratio and 

moderate exercise for at least 30 minutes per day are effective in reducing the risk of 

CVD135.  

 

Along with the rise in obesity there is also an increase in non-insulin dependent type-II 

diabetes. These patients are able to produce insulin, however, they are resistant to its 

effects. Type-II diabetes usually affects overweight middle-aged people. Many of the 

mechanisms linking obesity and CVD are believed to be related to insulin resistance. 

Both obesity and type-II diabetes result in an altered distribution of lipoproteins with an 

increase in VLDL and small dense LDL particles and decreased HDL levels. In 

diabetes there is also a delayed removal of chylomicron remnants. In alloxan-induced 

diabetic mice the loss of CA was protective against large increases in VLDL and LDL 

with cholesterol treatment136. 

 

1.9.6 Alzheimer’s disease  

 
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. It is 

defined histopathologically by the presence of extracellular neuritic plaques and 

intracellular neurofibrillary tangles in the brain. The deposition of plaque gradually 

disturbs the neural activity resulting in disturbed awareness and memory loss and 

eventually death. Cholesterol is believed to play a role in AD. The apoE4 isoform of 

apoE, the major cholesterol transporter in the brain, is a known risk factor for the 

development of AD137. The plaques found in the brains of AD patients are rich in β-

amyloid protein, produced by abnormal cleavage of the amyloid precursor protein 
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(APP). There is some evidence from cell culture experiments that cholesterol may 

regulate the processing of ubiquitously expressed APP in favour of plaque generating 

β-amyloid formation over α-amyloid138. A C → A polymorphism at position -911 in 

the promoter of HMGCR has been identified as a risk factor for the development of AD 

in an Italian population139. 

 

 



 

22 

2 AIMS OF THE STUDY 
 

Paper I & II 

To investigate the regulatory roles of BAs and cholesterol in cholesterol metabolism 

using a CA free mouse model 

 

Paper III 

To investigate the cholesterol regulation of the mouse Sqle gene by cholesterol and 

the transcription factors: SREBP-2 and NF-Y. 

 

Paper IV 

To investigate the shared promoter of MVK and MMAB and determine their 

regulation by cholesterol, SREBP-2 and statins. 
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3  MATERIALS AND METHODS 
 

The following is a brief summary of the materials and methods used. Standard 

molecular techniques were used for RNA purification, PCR, Q-PCR, cloning, 

mutagensis, transcription start site mapping, gel shift assay, transfection and short 

interfering RNA (siRNA). A more detailed account is provided in the respective 

papers. 

 
3.1 EXPERIMENTAL ANIMALS 
A Cyp8b1 knockout mouse model was created on a mixed C57/Bl6;129 background140. 

While grossly phenotypically normal these mice are unable to synthesise CA and have 

an enlarged bile acid pool mainly containing muricholates and some CDCA. In this 

study male mice, 4-5 months old and 25-32g body weight were housed at 24°C with the 

light period over 0800-2000h. Male Cyp8b1 +/+ and -/- mice on a mixed C57/Bl6;129 

background and inbred C57/Bl6 and SV40 mice were used in our studies.  

 

3.2 DIETS AND TREATMENTS 
The mice were fed either a control diet of powdered food with peanut oil (10 or 20%) 

or the same diet supplemented with 0.1% or 0.5% (w/w) sodium cholate, or 0.5% or 

1% (w/w) cholesterol or 0.5% cholesterol and 0.25% sodium cholate for 6-7 days. Mice 

were given 1% methylcellulose containing, TO-901317 (LXR agonist) or GW4064 

(FXR agonist) by gavage for 5 days, 10 mg/kg/day or 50 mg/kg/day, respectively.  

 
3.3 CHOLESTEROL ABSORPTION   
Cholesterol absorption was measured for individual mice using the dual faecal isotope 

method as described by Schwarz et al141.   

 

3.4 MEASUREMENT OF CHOLESTEROL AND LATHOSTEROL 

 
Lipid extracts were prepared from pieces of approximately 100mg frozen liver tissue in 

2ml Folch by stirring overnight at room temperature under argon gas. Concentrations of 

total and free cholesterol and lathosterol were assayed by isotope dilution-mass 

spectrometry with the use of deuterium-labeled cholesterol and lathosterol as internal 
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standards 142,143. To obtain a relative index of hepatic de novo cholesterologenesis in the 

liver the ratio of lathosterol to cholesterol concentration was calculated. 

 

3.5 IN VITRO MODELS 
 

HEK293 cells were used to analyse the promoter activity of murine Sqle and human 

HMGCR luciferase promoter constructs. 3T3-L1 cells were use to analyse intact 

murine chromatin response to SREBP-2 siRNA or over expression of SREBP-1c or –2. 

 

3.6 GENOTYPING OF ALZHEIMER’S DISEASE PATIENTS AND 
CONTROLS 

 
Aged matched AD patients and controls were genotyped for the C → A mutation at 

position –911 in the promoter of HMGCR by allelic discrimination with the Applied 

Biosystems SNP genotyping assay, assay number, C__27476930_10, as of 

manufacturers protocol, using the ABI Prism 7000 Sequence Detection System.  
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4 RESULTS 
 

4.1 REGULATORY IMPACT OF BILE ACIDS AND CHOLESTEROL ON 
CHOLESTEROL METABOLISM AS STUDIED IN THE CHOLIC ACID 

FREE MOUSE, PAPERS Ι AND ΙΙ 

 

4.1.1 Cholesterol absorption 
 

As seen in Papers Ι and ΙΙ, Cyp8b1 -/- mice, lacking CA, have a decreased absorption 

of cholesterol from the diet (Paper I Figure 5, Paper II Figure 3b). Treatment with CA 

to either Cyp8b1 +/+ or -/- mice increases the hydrophobic quality of the bile and 

cholesterol absorption. This shows that the loss of CA per se does not alter the ability to 

absorb cholesterol from the diet. This is analogous to Cyp7a1 and Cyp27 null mice, 

whose reduced cholesterol absorption is also restored with CA feeding144,145.  

 

While cholesterol feeding did not effect the BA composition of Cyp8b1 -/- mice, 

wildtype mice had a reduction in CA and an increase in muricholates. In mice 

cholesterol is known to inhibit the expression of Cyp8b1 and increase the expression of 

Cyp7a1, thereby driving BA synthesis towards the production of muricholates and a 

less efficient BA pool. While the percentage of cholesterol absorbed decreased with 

cholesterol treatment the overall amount of cholesterol absorbed most likely increased. 

When given CA or cholesterol alone, the CA-free mice consistently absorbed less 

cholesterol compared to the intact animals.  

 

Through binding to FXR, CA inhibits the expression of both Cyp7a1 and Cyp8b1 

genes in mice. Combining CA with cholesterol feeding resulted in an increase of CA 

and a decrease in muricholates in the bile of Cyp8b1 +/+ and -/- mice and further 

increased cholesterol absorption compared to cholesterol treatment alone (Paper II 

Figure 3b). Cyp8b1 -/- mice actively absorbed slightly more cholesterol then their 

Cyp8b1 +/+ littermates when given both CA and cholesterol. 
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4.1.2 Hepatic storage and cholesterol secretion into bile 
 

In Papers Ι and ΙΙ we show that CA treatment increases the hepatic levels of free and 

esterified cholesterol in Cyp8b1 intact mice (Cyp8b1+/+ and C57/Bl6 mice), while 

Cyp8b1 -/- mice showed an increase in free cholesterol only when given the 0.5% CA 

diet. It is only when CA is given in conjuncture with cholesterol that Cyp8b1 -/- mice 

show similar increases in hepatic free and esterified cholesterol as intact mice. Lack of 

CA therefore appears to protect the Cyp8b1 -/- mice from the large increases in free 

and esterified cholesterol seen in intact animals after cholesterol feeding. 

 

When fed the control diet the cholesterol saturation index (CSI) did not differ 

significantly between the Cyp8b1 +/+ and -/- mice (Paper II, Table 2). However, 

when fed cholesterol the Cyp8b1 +/+ mice had a CSI 2.5-fold greater than that of 

Cyp8b1-/- mice. Also cholesterol crystals were only found in the bile of Cyp8b1+/+ 

mice. When given CA in combination with cholesterol the CSI again did not differ 

significantly between the Cyp8b1 +/+ and -/- mice. 

 

4.1.3 Cholesterol synthesis 
 

Cyp8b1 -/- mice have a decreased absorption of cholesterol from the intestine. 

However, they have a compensatory increased expression of the genes involved in 

cholesterol synthesis and a higher rate of hepatic cholesterol synthesis, thereby 

maintaining overall cholesterol balance (Figure 5). The greatest alteration in expression 

was seen with the Sqle gene. Both CA and cholesterol treatment reduced the expression 

of cholesterol synthesizing genes and the overall rate of cholesterol synthesis, as 

determined by the lathosterol:cholesterol ratio.  

 

4.1.4 Bile acid synthesis 
 

As shown in Paper ΙΙ, Cyp8b1 -/- mice have an increased BA synthesis compared to 

Cyp8b1 +/+ mice, as demonstrated from an increased Cyp7a1 expression and fecal 

excretion of BAs (Paper II Figure 2a and b). As previously shown this leads to an 

expansion of the BA pool140. While cholesterol treatment increased the rate of BA 

synthesis in both genotypes, the Cyp8b1 -/- mice always maintained a higher rate of 

synthesis than their intact littermates. This increased removal of cholesterol in the form  
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Figure 5 Increased  

cholesterol synthesis 

A. Hepatic mRNA  

expression of Sqle in  

Cyp8b1 +/+ and -/- 

 mice fed either a  

control diet, 0.1% CA,  

0.5% CA or 1%  

cholesterol 

B.  Lathosterol:cholesterol  

ratio (ng/μg) was used  

as an indication of the  

relative level of  

de novo cholesterol  

synthesis in the livers  

of CYP8B1 +/+ and -/- 

mice fed control diet,  

0.1% CA, 0.5% CA  

or 1% cholesterol. 

*P<0.05, **P<0.001,  

***P<0.0001 

 

of BAs could provide one explanation as to why Cyp8b1 -/- mice accumulate much less 

hepatic cholesterol than intact mice. As Cyp8b1 +/+ and -/- mice have similar levels of 

Cyp27a1 expression, the increased rate of BA synthesis appears to be mainly via the 

classical pathway and activation of Cyp7a1. 

 

In mice, cholesterol and its derivatives such as oxysterols, promote cholesterol removal 

via the synthesis of new BAs through the LXR-mediated activation of Cyp7a1. 

Treatment with an LXR agonist resulted in the same increase in Cyp7a1 expression as 

seen with cholesterol treatment, and either treatment resulted in a greater increase of 

Cyp7a1 expression in the Cyp8b1 -/- mice (Paper II Figure 2b and 6a).  

 

In mice, CA is a natural ligand for FXR, which is known to regulate the expression of 

genes involved in BA synthesis through interaction with SHP. By interfering with LXR 
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activation, SHP downregulates the expression of Cyp7a1 and Cyp8b1 thereby 

decreasing BA synthesis. Logically, as removal of CA increased expression of Cyp7a1 

and the rate of BA synthesis, addition of CA resulted in a decreased expression of 

Cyp7a1 and a decreased rate of BA synthesis. We also show that in Cyp8b1 +/+ and -/- 

mice an FXR agonist mediated the same effects on Cyp7a1 expression and BA 

synthesis as CA treatment. It is therefore apparent that CA, through its interaction with 

FXR, is a key regulator of its own synthesis.  

 

4.1.5 Lipid profiles in serum 
 

Under control dietary conditions the lipid profile of Cyp8b1 +/+ and -/- mice is very 

similar, with the majority of cholesterol being located in the HDL fraction (Paper ΙΙ 

Figure 4b). Plasma cholesterol levels also remained very similar under all test 

conditions for both Cyp8b1 +/+ and -/- mice. However in man, the development of 

atherosclerosis is mainly dependent on whether cholesterol is confined to the LDL or 

HDL faction, rather than the overall cholesterol concentration130,131. In the Cyp8b1 -/- 

mice cholesterol treatment resulted in an increased expression of ABCA1 and higher 

levels of HDL cholesterol. However, the addition of CA to the cholesterol diet resulted 

in a shift towards VLDL and LDL particles. It would therefore appear that loss of CA 

in mice would generate increased HDL levels under certain circumstances, an effect 

that can be lost when the CA is replaced. 

 

4.2 MOLECULAR REGULATION OF CHOLESTEROL SYNTHESIS BY 

CHOLESTEROL, PAPERS ΙΙΙ AND ΙV 

 

4.2.1 Regulation of cholesterol synthesis: SREBP-2 
 

SREBP-2 has been shown to regulate the expression of a number of genes involved in 

cholesterol biosynthesis including MVK and SQLE43. As shown in Papers ΙΙΙ and ΙV, 

in mice the promoters of both these genes, as defined by transcription start site 

mapping, contain potential responsive elements for NF-Y and SREBP-2. Both genes 

were regulated by cholesterol feeding in mice, and by overexpression or removal of 

SREBP-2 by siRNA in the murine cell line 3T3-L1 (Figure 6). SREBP-2 appears to be 

the major regulator of murine Mvk expression in the whole animal43. However, the  
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Figure 6 A. Hepatic mRNA expression of Sqle and Mvk in C57/Bl6 mice fed either a 

control diet or 1% cholesterol. B. Expression of Sqle and Mvk in the murine cell line 

3T3-L1 either under control conditions or co-transfected with either SREBP-2 

overexpression plasmid or SREBP-2 siRNA. 

 

precise element(s) responsible for this regulation may lie outside of the promoter region 

as defined by our studies, as the Mvk luciferase promoter construct showed the greatest 

response to SREBP-1c (Paper IV Figure 3c).  

 

The promoter of the human SQLE gene had previously been shown to respond to 

SREBP-254. However, the precise elements to which SREBP-2 was binding had not 

been demonstrated. We created a murine Sqle luciferase promoter construct 

corresponding to -1944 to +215, relative to the major transcription site that we 

identified. This construct was activated by all three SREBPs, but was most highly 

responsive to SREBP-2. Truncation of this construct in both the 5’ and 3’ directions 

identified a 205 bp minimal responsive region responsible for regulation by SREBPs. 

This region did not contain the conserved SRE element believed to be responsible for 

SREBP regulation in the human SQLE promoter. In the first such demonstration, by gel 

shift assay we showed that SREBP-2 bound to three novel SREs in the promoter of 

Sqle (Figure 7). However, mutation of all three SREs did not abolish SREBP-2 

activation (Paper III Figure 4b). Therefore, it is likely that one or more SREs remain to 

be identified in this 205 bp region. 
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Figure 7 Competition gel shift assay of SRE elements using programmed rabbit 

reticulocyte lysate. 32P-labelled LDL-R SRE oligo was used as positive control and to 

compete for SREBP-2 binding cold LDL-R SRE oligo was used at 2000-fold excess. 

Programmed lysate is present in all lanes except lane 1. Competition of specific 

SREBP-2 bands is visible in lanes 3, 5, 9, 11 and 13. No SREBP-2 binding is visible 

in lane 6. 

 

 

4.2.2 Regulation of cholesterol synthesis: NF-Y and Sp1 

 
The promoter of human MVK contains four potential NF-Y elements, while the mouse 

promoter contains five, three of which are conserved with the human promoter (Paper 

IV Figure 1b). These sites remain to be tested. Two potential NF-Y sites were identified 

in the promoter of the murine Sqle gene (Paper III Figure 1d), although only the 

proximal site was able to bind to NF-Y (Figure 8) and mutational loss of this site 

resulted in an abrogated response to SREBP-2 (Paper III Figure 5b). Intriguingly it was 

the most distal site in the human SQLE promoter that was believed to be responsible 

for NF-Y regulation, although binding to NF-Y was never demonstrated54. Co-

transfection with dominant negative NF-Y A subunit unable to bind DNA, resulted in 

an abrogated response to SREBP-2, demonstrating the requirement of SREBP-2 for 

functional NF-Y to activate the murine Sqle promoter (Paper III, Figure 5c). 

 

Sp1 elements are often found in the promoters of SREBP sensitive genes. The rat, 

mouse and human SQLE promoters contain numerous potential Sp1 sites, some of 

which were conserved between the species. The Mvk promoter has two potential Sp1 

sites, one of which is conserved between mouse and human. NF-Y is known to enhance 

 

SREBP-2

LDL-R + + +
SRE Repeat 1 + +
SRE Repeat 2 + +
SRE/A + +
SRE/B + +
SRE/C + +
Cold LDL-R + + + + + +
Lane 1 2 3 4 5 6 7 8 9 10 11 12 13
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and stabilise the binding of SREBP-2 to DNA; however, the precise manner in which 

NF-Y and Sp1 enhance SREBP-2 regulation remains unclear. 

 

 

Figure 8 Gel shift assay to assess  

the binding of NF-Y to the proximal  

and distal NF-Y sites in the murine  

Sqle promoter. Addition of  

NF-Y antibody produced a super  

shifted (SS) band visible in lane 4 

 

 

4.2.3 Regulation of cholesterol synthesis: FXR 
 

Our analysis of the murine Sqle promoter identified a potiental FXR regulatory element 

at position –1611 in the promoter (Paper III Figure 1c). This site found in the mouse 

Sqle promoter is highly homologous to the conserved FXR binding site in the rat and 

human SHP-1 promoter described by Goodwin et al146. While binding of FXR to this 

potential regulatory element remains to be tested, treatment with the FXR agonist 

GW4064 caused an increased expression of Sqle, Hmgcs and Hmgcr in Cyp8b1 +/+ 

mice, that appears to be SREBP-2 independent (Figure 9). Cyp8b1-/- mice given 

GW4064 had a reduced expression of these genes, approaching the levels seen in 

Cyp8b1+/+ control mice. While further analysis is required this opens up the possibility 

that BAs can directly regulate cholesterol biosynthesis through FXR. 
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Figure 9 Hepatic mRNA expression of HMG CoA synthease (HMGCS), Squalene 

epoxidase (Sqle), HMG CoA reductase (HMGCR) and SREBP-2 in Cyp8b1 +/+ and -/- 

mice treated with GW4064, a FXR agonist for one week. *P<0.05, **P<0.001 

 

 

4.3 REGULATION OF THE MMAB GENE, PAPER ΙV 

 

C57/Bl6 mice given 1% cholesterol showed a significant decrease in the mRNA levels 

of the Mmab gene, while SV40 mice treated with atorvastatin showed a significant 

increase in Mmab mRNA levels (Figure 10a).  Murine 3T3-L1 cells were used to 

determine the effects of SREBP-2 on Mmab expression with intact chromatin. 

Increased concentrations of SREBP-2 activated the transcription of Mmab in these 

cells, while the reduction of SREBP-2 by siRNA resulted in a decreased expression 

(Figure 10b). This demonstrates that the murine Mmab gene is under the control of 

SREBP-2. A luciferase promoter construct was created for the shared promoter of 

murine Mvk and Mmab. In either orientation the constructs showed a similar basal 

expression in 3T3-L1 cells, and similar activation by SREBP-1c and –2 (Paper IV 

Figure 3c). 
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Figure 10 A. Hepatic mRNA expression of Mmab in the livers of SV40 mice treated 

with atorvastatin or C57/Bl6 mice treated with 1% cholesterol for one week. B. 

Expression of Mmab mRNA in the murine cell line 3T3-L1 with transfection of either 

SREBP-2 overexpression plasmid or siRNA for SREBP-2. 

 

 

4.4 ALZHEIMER’S DISEASE AND CHOLESTEROL SYNTHESIS IN BRAIN 
 

Over 1 Kb of the human HMGCR promoter was cloned into the expression vector 

pGL-3 Basic, with or without the C → A polymorphism at –911 in the promoter, 

previously identified as an AD risk factor in an Italian population139. In HEK293 cells 

the luciferase expression was 50% less for the HMGCR promoter construct containing 

the polymorphism, however, this altered promoter was more responsive to activation by 

SREBP-2 (Figure 11).  

 

Figure 11 Expression of HMG CoA 

reductase promoter luciferase 

constructs without the C → A 

polymorphism (WT) or with the 

polymorphism (Mut), co-transfected 

with either empty pGL-3 Basic vector 

or SREBP-2 over expression plasmid. 

*P<0.05, **P<0.001 
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This is a substantial reduction in expression with only a single base change. A similar 

construct expressed in other cell lines showed no alteration in expression147 possibly 

resulting from differences between HEK293 cells, an embryonic cell line, and the cells 

used by other investigators. Screening of a Swedish population of age matched healthy 

controls and AD patients showed no significant increase of the C → A polymorphism 

in AD patients compared to healthy controls, Table 3.  

 

Table 3 Genotyping of a Swedish population for the HMGCR promoter C-911A 

polymorphism 

Genotype 

Status AA AC CC Total 

Controls 4 67 276 347 

AD cases 4 73 290 367 

Total 8 140 566 714 
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5 GENERAL CONCLUSIONS AND FUTURE 
PERSPECTIVES 

 

5.1 CHOLIC ACID FORMATION AND CHOLESTEROL ABSORPTION 
 

Cholesterol absorption is a multifactorial process involving a number of proteins, any 

of which is a potential target for reducing cholesterol absorption. A number of 

strategies are currently used to treat hypercholesterolemia by reducing the absorption of 

dietary cholesterol. ACAT2 has been proposed as one possible drug target for 

hypercholesterolemia and atherosclerosis treatment148. A group of African Green 

monkeys hyper-responsive to atherogenic diets showed an increased hepatic expression 

of ACAT2149, while in apoE -/- mice loss of ACAT2 protected against diet-induced 

hypercholesterolemia, through a decreased cholesterol absorption150. Another key 

factor is the potential cholesterol transporter NPC1L1. Ezetimibe, a cholesterol 

absorption inhibitor, binds to NPC1L1 and increases its expression in porcine liver and 

intestine151. Polymorphisms in NCP1L1 have been identified in people with low LDL 

levels and cholesterol absorption152. In mice NPC1L1 expression may be inhibited by 

cholesterol153, and in a human cell line by LXR152. In cell culture studies, NPC1L1 has 

been shown to be present in the cell membranes and intracellular compartments. When 

cholesterol levels drop, however, it is translocated to the cell surface in the apical 

domain154. 

 

The inactivation of the Cyp8b1 gene in mice results in a lack of CA, an altered BA 

pool, decreased cholesterol absorption, increased cholesterol and BA synthesis and a 

decreased storage of cholesterol in the liver. In mice the ability of cholesterol to drive 

the expression of Cyp7a1 offers these animals another possibility to actively remove 

excess cholesterol. Taken together this results in a decrease of the levels of atherogenic 

VLDL and LDL. Humans lack this LXR mediated regulation of CYP7A1 expression. 

Therefore there are some species differences between rodents and man that directly 

affect cholesterol and BA metabolism. A pharmaceutical that inhibits the activity of 

CYP8B1 may provide a novel way to treat hypercholesterolemia and reduce 

atherosclerosis by inhibiting the absorption of cholesterol from the diet. The 

combination with ezetimibe and BA sequesterants may further increase the efficiency 

of such a strategy.  
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Similar to rodents the addition of CA to the diet is reported to cause an enhanced 

cholesterol absorption in man15. Loss or reduction in CA content in human bile would 

probably result in a BA pool less efficient for cholesterol absorption. Whether or not 

this will also increase BA synthesis cannot yet be stated, as the percentage of CDCA 

may increase. In man CDCA is considered to be the natural ligand for FXR155,156, an 

inhibitor of BA synthesis. 

 

Understanding the precise mechanisms controlling the genes involved in BA and 

cholesterol metabolism in mouse models aids our understanding of the possible effects 

of drug treatment in man. An important focus of future studies is to delineate effects of 

CA mediated via micellar solubilisation on the one hand and FXR activation on the 

other. 

 

5.2 REGULATION OF CHOLESTEROL SYNTHESIS BY FXR 
 

FXR is known to regulate BA synthesis, however, the possibility that it can also 

regulate a previous step, namely de novo cholesterol biosynthesis, is a more novel 

concept. Cyp8b1 -/- mice treated with FXR agonist showed a decreased expression of 

the genes involved in cholesterol synthesis to a level approaching that of Cyp8b1 +/+ 

mice. This may indicate that under control conditions FXR, through BAs or other 

ligands, reduces cholesterol synthesis. However, intact mice given FXR agonist showed 

an increased expression of genes involved in cholesterol synthesis. Direct binding of 

FXR to the potential FXR element at position –1611 in the murine Sqle promoter 

remains to be proven. If FXR does bind to the Sqle promoter perhaps more potential 

FXR elements in other genes involved in cholesterol synthesis may be identified and 

tested. In the near future the possible effects of FXR on cholesterol synthesis, 

absorption and lipid profile will be examined using the unique CA-free mouse model. 

 

5.3 COMPLEX REGULATION OF SREBPS 
 

SREBPs have a complex and finely tuned regulation157. Much work has been done to 

understand the post-transcriptional regulation of SREBPs, although more is waiting to 

be uncovered. The complex interaction between SREBPs and the MED15 subunit of 

the mediator complex are beginning to come to light158. The important role of SREBP-
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1c and NF-Y in regulating the cell cycle demonstrates the importance of these 

transcription factors159-162. However, the precise mechanisms by which SREBP interact 

with other transcription factors such as NF-Y and Sp1 are still unclear. Once SREBP is 

cleaved, becoming mature SREBP protein, it binds to DNA with the aid of other 

transcription factors such as NF-Y and Sp1. It is only after binding to DNA that 

SREBPs are phosphorylated increasing both their activity and degradation33-35. 

Therefore the roles that NF-Y and Sp1 play in aiding SREBP binding to DNA are very 

important and require further investigation. 

 

5.4 ROLE OF HMG COA REDUCTASE IN ALZHEIMER’S DISEASE 

 
HMGCR is a highly regulated protein, with the majority of its regulation being post-

translational. Nevertheless, it is important to investigate whether this C → A 

polymorphism results in an altered rate of cholesterol synthesis. One simple way to test 

this is to measure the cholesterol:lathosterol ratio in the plasma of people with one or 

both alleles containing the polymorphism. If these patients show no alterations in their 

rate of cholesterol synthesis this polymorphism does not exert any overall effects on the 

body. However, this technique is not a direct indicator of the rate of cholesterol 

synthesis in the brain. Why such an alteration would predispose an Italian population 

and not a Swedish one would perhaps be multifactorial involving multiple unknown 

genes and lifestyle differences. 

 

5.5 POTENTIAL NEW TREATMENTS FOR METHYLMALONIC ACIDURIA 
TYPE B 

 

The discovery that Mmab expression, a gene encoding for Cob(I)alamin 

adenosyltransferase, was increased with statin treatment in mice was surprising. 

Cob(I)alamin adenosyltransferase catalyses the conversion of cobalamin to 

adenosylcobalamin, a cofactor required by methylmalonyl-CoA mutase for the 

synthesis of succinyl-CoA.  However, very little is currently known about Cob(I)alamin 

adenosyltransferase and its regulation. Treatment with statins will increase the 

expression of genes involved in cholesterol biosynthesis while the overall rate of 

biosynthesis decreases. It has previously been proposed by other researchers that 

Periodic Fever or Hyper IgD syndrome, resulting from a decreased MVK activity, be 

treated with statins163. The possibility that statin treatment may help patients with 
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methylmalonic aciduria type B demonstrating a residual adenosylating activity should 

be fully explored. The first way to do this is to investigate if statin treatment increases 

the activity of this enzyme in humans. Currently we are planning to perform 

experiments on isolated fibroblasts from healthy controls and patients with 

methylmalonic aciduria type B, with and without some residual Cob(I)alamin 

adenosyltransferase activity. If statin treatment can increase Cob(I)alamin 

adenosyltransferase activity in cell culture then the possibility of treating patients with 

statins becomes more favourable.  
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6 HISTORICAL ASPECTS 
 
The study of bile and its relationship to health is far older than that of cholesterol. The 

ancient Greeks and Romans believed that to be healthy a person had to have a balance 

between their four humors, blood, phlegm, black bile and yellow bile. This belief was 

still held true in medieval times when an imbalance in the humors was believed to 

cause personality changes. For example too much black bile would make you 

melancholy. As bile accounted for half of their understood humors it is easy to assume 

that it was a large component in their medicine. In 1943 Konrad Bloch first 

demonstrated that CA is synthesized from cholesterol164, thus cementing the 

relationship between cholesterol and bile. While bile acids have remained a focus of 

study since these ancient times, their central role in medicine has been lost. However, 

the importance of bile is making a come back and it has been shown that BAs, as 

natural ligands for FXR, are required for the normal regeneration of liver tissue84. 

Through a deeper understanding of nuclear receptors, such as FXR, the important roles 

BA play in health and disease, in addition to their detergent properties, is coming to 

light. 

 

In 1775 Conradi isolated cholesterol from gallstones and made observations about its 

solubility. The term cholesterine was first proposed by Chevreul in 1816, from the 

Greek chole meaning bile and steros meaning solid, while the name cholesterol was 

introduced into English and French literature around the 20th century. A connection 

between cholesterol and bile was established early in cholesterol research, with 

Chevreul identifying cholesterol in human and animal blood and bile in 1824. In 1843 

Vogel identified cholesterol in atherosclerotic plaques of arteries, thus establishing a 

link between CVD and cholesterol. In 1906 Pribram observed that there was an 

increase in blood cholesterol upon feeding of cholesterol, thus demonstrating that 

cholesterol can be absorbed from the diet. From his work with dogs Mueller showed 

that cholesterol was transported via the thoracic duct165 and that bile and pancreatic 

juice aided in the absorption of cholesterol166. The first demonstration that cholesterol 

could be synthesised in vivo was in 1914 and these findings were confirmed in human 

adults in 1921167. Therefore in 1915 J Howard Mueller was wrong to state that165: 
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“it is now a generally accepted fact that the cholesterol of the body has its origin in the 

food, and not, as has been held by some investigators, in an actual synthesis within the 

body” 

 

Windaus first proposed the structural formula of cholesterol in 1919, which was 

modified in 1932 to the current accepted formula. During the 1930’s Schoenheimer 

developed new a technique involving radio labeled molecules as a way of tracking 

them through the body. This technique is still used today. In 1937 along with 

Rittenburg, Schoenheimer used deuterium oxide to study cholesterol formation and 

suggested that in mammals cholesterol resulted from the coupling of a large number of 

smaller molecules168. After Schoenheimers death in 1941 his work was continued by 

Rittenburg and Bloch, who went on to study cholesterol synthesis using deuterium 

labeled acetic acid169. 

 

In the beginning of the 1970’s a group of Japanese researchers began looking for fungal 

metabolites that inhibited cholesterol metabolism by competitively binding with 

HMGCR, the rate limiting enzymatic step in cholesterol biosynthesis, and in 1976 they 

were successful170. This was the discovery of statins, one of the most common 

treatments for hypercholesterolemia used today. Continuing experiments from this 

group, and parallel experiments at Merck and Company, led to the discovery of 

lovastatin, the first commercially marketed statin, which was isolated from Aspergillus 

terrus171. 

 

Since these early studies into cholesterol and BA metabolism much progress has been 

made into understanding the synthesis, absorption, transport, functions, regulation of 

their metabolism and their involvement in health as well as disease. However, there is 

still much left to discover about these very important compounds. 
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7 POPULAR SCIENCE SUMMARY 
 

Most people are aware that too much cholesterol can be bad for your health, increasing 

the risk of developing such conditions as heart disease and stroke. Many 

pharmaceuticals are currently available to reduce cholesterol levels. One popular 

treatment is with a class of drugs called statins, which reduce cholesterol levels by 

inhibiting the body’s synthesis of cholesterol. Cholesterol, however, is a fundamental 

requirement for normal growth and development. While the body is capable of 

synthesizing all of the cholesterol it requires, it also absorbs cholesterol from the diet. 

Before cholesterol, a water insoluble compound, can be absorbed it must first be 

solubilised in the gut by detergents called bile acids (BA).  

 

Once made or absorbed by the body cholesterol cannot be broken down. Instead 

cholesterol is used to synthesize BAs, some of which are lost each day in the faeces. 

This represents the major way that the body removes excess cholesterol. As with 

cholesterol, BAs are required for health and a lack reduces the body’s ability to absorb 

cholesterol, and also fat-soluble vitamins and other lipids from the diet. 

 

The synthesis and metabolism of both cholesterol and BAs is tightly controlled. Both of 

these compounds can regulate their own synthesis and metabolism through the action 

of proteins called transcription factors. DNA contains genes, the blueprints for all of the 

proteins synthesized in the body. By controlling the activity of a gene the concentration 

of the protein it encodes for can also be controlled. Transcription factors bind to DNA 

and regulate the activity of the gene, and thereby the level of protein produced. 

Transcription factors are themselves regulated. BAs and cholesterol can regulate 

transcription factors involved in both their own metabolism and other metabolic 

processes. For example the transcription factor activated by BAs has been shown to 

have an important role in liver regeneration and controlling bacterial growth in the gut. 

 

By understanding precisely how BAs and cholesterol interact with different 

transcription factors, and how these transcription factors interact with other proteins 

and DNA, can allow for the discovery of novel drug targets. In addition, by 

understanding the complex interactions within the body the possible effects of new 

drugs can be better predicted. 
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During the course of this study we uncovered a gene involved in vitamin B metabolism 

that, in mice, was regulated by cholesterol and statin treatment. When given statins the 

activity of this gene increased, indicating a possible increase in the protein for which it 

encodes. People with mutations or alterations in this gene may produce dysfunctional 

protein and develop a condition called methylmalonic aciduria type B. This is a very 

rare yet serious condition with a high incidence of mortality in infants in the first few 

weeks of life. Some patients still have residual protein activity. Increasing the amount 

of protein may alleviate some of the symptoms of this condition in these patients. 

Treatment with statins, which increases the activity of this genes in mice, may be one 

way to do this. 

 

As time goes on we learn more and more about cholesterol and BAs and their 

importance in both health and disease. As the incidence of obesity increases in the 

industrialised world there is an increase in related health problems. By understanding 

the delicate balance within the body and how different processes affect one another 

more elegant and refined drugs to control disease may be developed. 

 

Populärvetenskaplig sammanfattning 

 

De flesta är medvetna om att för mycket kolesterol kan var skadligt för hälsan och öka 

risken för exempelvis hjärtsjukdomar och stroke. Det finns idag många läkemedel på 

marknaden som kan sänka kolesterolvärdet. En populär behandlingsmetod är en grupp 

av läkemedel som kallas statiner, vilka förhindrar kroppens förmåga att framställa 

kolesterol. Kolesterol spelar dock en viktig roll i kroppens utveckling och samtidigt 

som kroppen själv kan framställa allt kolesterol den behöver, kan den även ta upp 

kolesterol från kosten. Innan kolesterol, som är ett vattenolösligt änne, kan tas upp av 

kroppen måste det först lösas upp i tarmarna av ett ämne (lösningsmedel) som kallas 

gallsyra. 

 

När kolesterol väl har framställts eller tagits upp av kroppen kan det inte brytas ned. 

Istället används det till att framställa gallsyra, vilken delvis försvinner med avföringen. 

Detta utgör kroppens huvudsakliga sätt att göra sig av med överflödigt kolesterol. 

Gallsyror är på samma sätt som kolesterol nödvändiga för kroppen och ett underskott 
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reducerar förmågan att ta upp kolestorol samt fettlösliga vitaminer och andra lipider 

från dieten.  

 

Framställning och avsättning av kolesterol och gallsyra är hårt reglerad av kroppen. 

Båda dessa ämnen kan reglera sin egen framställning och omsättning genom proteiner 

(transkriptionsfaktorer) som binder till DNA. DNA innehåller gener vilka utgör mallen 

för alla protein som framställs av kroppen. Genom att kontrollera aktiviteten hos en gen 

kan även dess protein kontrolleras. Transkriptionsfaktorer fäster vid DNA och reglerar 

genens aktivitet vilket styr mängden protein som produceras. Även 

transkriptionsfaktorerna själva är reglerade av kroppen. Gallsyra och kolesterol kan 

genom transkriptionsfaktorer reglera såväl sin egen omsättning som andra processer i 

kroppen. Till exempel så har transkriptionsfaktorn som aktiveras av gallsyra visat sig 

spela en viktig roll i leverns återbildning och för att kontrollera bakterietillväxten i 

tarmsystemet. 

 

Genom att förstå hur gallsyra och kolesterol interagerar med olika 

transkriptionsfaktorer och hur dessa i sin tur interagerar med andra proteiner och DNA, 

kan möjliga effekter av nya läkemedel bättre förutsägas. 

 

Under studien upptäckte vi att kolesterol-och statinbehandling påverkar omsättingen av 

vitamin B. Vid behandling med statin ökar aktiviteten hos genen som aktiverar vitamin 

B vilket även indikerar en möjlig ökning av detta protein. Hos människor med 

mutationer eller förändringar i denna gen kan ett defekt protein produceras och ett 

tillstånd som kallas methylmalonsyra aciduri typ B utvecklas. Detta tillstånd är väldigt 

ovanligt men allvarligt då det medför en hög dödlighet hos spädbarn under deras första 

levnadsveckor. En del patienter har dock fortfarande en liten aktivitet i detta protein 

och hos dessa skulle en ökning av proteinet kunna avhjälpa några av symptomen för 

detta tillstånd. Behandling med statiner ökar denna gens aktivitet hos möss. Statin 

skulle därför kunna vara en möjlig behandlingsform för detta tillstånd. 

 

Vad tiden lider lär vi oss mer om kolesterol och gallsyror och deras betydelse för vår 

hälsa. När andelen överviktiga ökar i västvärlden ökar även hälsoproblemen relaterade 

till detta. Genom att förstå balansen mellan olika processer i kroppen och hur dessa 

påverkar varandra kan träffsäkrare läkemedel framställas för att behandla dessa 

hälsoproblem. 
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