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Abstract 

Dendritic cells (DC) play a key role in the immune system. In this thesis, we have 

investigated and characterized pathways for the processing and presentation of exogenous 

OVA on MHC-I (“cross-presentation”) and how these were influenced by the purine 

nucleoside Adenosine (Ado), an immune regulator that accumulates to high 

concentrations at sites of inflammation and tumor growth. In addition, we established a 

method to detect the binding of glycolipids containing tumor-associated carbohydrate 

antigens (TACAs) to conserved CD1d molecules expressed on viable mouse cells, 

including DC. 

Immature (iDC) and activated (aDC), but to a lesser degree resting DC (rDC), were found 

to express a fully functional, highly efficient TAP-independent vesicular MHC-I 

processing pathway (VP). In this VP, OVA-derived SIINFEKL/Kb complexes were 

formed through peptide exchange in recycling Kb molecules. Such complexes were also 

formed at the cell surface by peptide regurgitation. This high efficient VP could be 

restored in rDC by cellular activation using TLR ligands, such as CpG (binding to TLR-

9) and LPS (binding to TLR-4) and also by the mere mechanical disruption of cells, the 

latter occurring without the development of an activated phenotype and the secretion of 

IL-12 in cells.   Reactivation of the high activity VP in rDC was not dependent on type I 

interferon or IL-12 but required the adaptor protein MyD88. We also confirmed that the 

cysteine protease Cathepsin S (Cat S) was required for the formation of the 

SIINFEKL/Kb complexes in the VP. In addition, we found that Ado had a strong 

inhibitory effect on the low degree VP seen in rDC and that this effect was mediated by 

the A1 Ado receptor and involved the retention of intracellular SIINFEKL/Kb complexes.  

Four newly synthesized TACA-containing glycolipids were studied for the binding to 

CD1d on viable cells by the use of specific anti-TACA mAbs and flow cytometry. By 

this procedure specific binding could be visualized and quantitated. A method like this 

might be useful for the controlled loading of glycolipid antigens into DC and the possible 

use of such cells for immunotherapy.   

Key words: DC, vesicular MHC-I processing, Adenosine, CD1d, TACA 
 
 



 6

TABLE OF CONTENTS 

 

INTRODUCTION 

1. The immune system 

1.1 Definition 

1.2 Anatomy of lymphoid organs and tissues 

1.3 The innate immune system 

1.3.1 Characteristics 

1.3.2 Recognition of microbes by the innate immune system 

1.3.3 Toll-like receptors (TLRs) 

1.4 The adaptive immune response 

1.4.1 Humoral and cellular immunity 

1.4.2 Antigen presenting cells (APC) 

2. Dendritic Cells (DC)  

2.1 DC history  

2.2 DC origins and subsets 

2.3 DC generation and differentiation in vitro 

2.4 DC migration 

2.4.1 Skin homing of Langerhans cell precursors 

2.4.2 Migration to lymphoid organs 

2.4.3 Migration of plasmacytoid DC 

2.4.4 CCR7 

2.5 DC functions 

2.5.1 T cell homeostasis 

2.5.2 Tolerance induction 

2.5.3 In T cell priming 

2.5.4 Interaction with innate lymphocytes 

3. Antigen processing and presentation  

3.1 Introduction 



 7

3.2 MHC class I processing and presentation   

                         3.2.1    Classical pathway 

                         3.2.2    Cross-presentation 

3.3  MHC-II processing and presentation pathway 

3.4  Mechanisms of exogenous antigen capture 

3.5 CD1 as an antigen presenting molecule 

3.5.1 Introduction  

3.5.2 CD1 assembly, trafficking and antigen sampling   

3.5.3 Carbohydrate antigen processing for CD1 presentation 

3.5.4 NKT cells 

4. Adenosine (Ado) effects on immunity and inflammation 

4.1 Introduction 

4.2 Formation of the endogenous Ado 

4.3 Ado receptors 

4.4 Immune regulation by Ado 

                            

 

AIMS OF THE THESIS  

RESULTS AND DISCUSSION 

CONCLUSIONS AND FUTURE PERSPECTIVES 

ACKNOWLEDGEMENTS 

REFERENCES 

 
 
 
 
 
 
 
 
 
 



 8

LIST OF ABBREVIATIONS 

Ado Adenosine  

APC Antigen presenting cells 

pAPC Professional antigen presenting cells 

Cat S Cathepsin S 

CTL Cytotoxic T lymphocyte 

DC Dendritic cells 

iDC Immature dendritic cells 

rDC Resting dendritic cells 

aDC Activated dendritic cells 

ER Endoplasmic reticulum 

GalCer -galactosylceramide 

GL Glycolipid 

GM-CSF Granulocyte-monocyte colony-stimulating factor 

IFN Interferon 

IL-4 Interleukin-4 

LC Langerhans cells 

LPS Lipopolysaccharide 

LN Lymph node 

MHC-I Major histocompatibility complex (MHC) class I 

2-m 2-microglobulin 

NKT Natural killer T cells 

OVA Ovalbumin 

PRR Pattern recognition receptor 

TACA Tumor-associated carbohydrate antigen 

TAP Transporter-associated with antigen processing 

TLR Toll-like receptor 

VP Vesicular MHC-I processing pathway 

  

  

  



 9

INTRODUCTION 
 
1. The immune system 
 

1.1 Definition  

Immune means resistance to a particular infectious disease as a consequence of an earlier 

infection with the same microbe or after a vaccination process using the corresponding 

antigen. The physiologic functions of the immune system are thus to prevent and 

eradicate infections. However, the impact of the immune system goes beyond infectious 

disease, in that it involves also non-infectious situations for instance, transplantation, 

autoimmunity, hypersensitivity diseases and tumor immunotherapy (1).  

 

1.2  Anatomy of lymphoid organs and tissues 

The lymphoid organs and tissues of the immune system are stationed throughout the body 

as illustrated in Figure 1.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Anatomy of lymphoid organs and tissues. 
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They include thymus, bone marrow, lymph nodes (LN), spleen, mucosal-associated 

lymphoid tissues (MALT) and cutaneous immune system. Lymphoid organs or tissues 

are classified as generative (primary or central) such as thymus and bone marrow, where 

T and B lymphocytes mature, respectively and peripheral (secondary) such as LN, spleen 

and MALT where adaptive immune responses are generated. The blood and lymphatic 

vessels that carry lymphocytes can also be considered as part of the lymphoid system. 

 

1.3 The innate immune system 

1.3.1 Characteristics 

Host defense mechanisms consist of innate immunity, mediating the initial protection and 

adaptive immunity, conducting a later and more specific immune responses. Innate 

immunity, also called natural or native immunity, is always present in healthy 

individuals, prepared to block the entry and rapidly eliminate microbes. It not only 

provides the early defense against infections but also instructs the adaptive immune 

system to effectively combat infections. The components of the innate immune system 

include epithelial barriers, natural antibiotics, circulating or tissue-resident phagocytes 

(neutrophils and monocytes/macrophages), NK cells, plasma proteins, including the 

proteins of the complement system, innate cytokines and others. 

  

1.3.2 Recognition of microbes by the innate immune system 

Receptors of the innate immune system recognize structures that are shared by various 

microbes, but not present on host cells. These structures are often essential for the 

survival and infectivity of these microbes. The receptors of the innate immune system are 

encoded in the germline and have a limited diversity in contrast to the high diversity of 

antigen specific receptors displayed on B and T cells generated through somatic gene 

rearrangements. The germline-encoded microbial pattern recognition receptors (PRRs) 

have evolved as a protective adaptation to potentially harmful microbes in the 

environment. Some innate receptors are expressed by phagocytes for stimulating the 

phagocytosis and killing of the microbes. The mannose receptor is a macrophage lectin 

that binds terminal mannose and fucose residues of glycoproteins or glycolipids 

expressed on microbial cell walls. The macrophage scavenger receptor binds a variety of 
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microbes. Antibodies and some complement components can opsonize microbes and thus 

promote the phagocytosis of these.   

 

1.3.3 Toll-like receptors (TLRs) 

Being part of the PRRs, TLRs recognize specific pathogen-associated molecular patterns 

(PAMPs) and also activate phagocytes including dendritic cells (DC) after recognition. 

To date, 10 in humans and 13 in mice TLRs are identified. TLR1/TLR2 and TLR2/TLR6 

recognize various bacterial components of Gram-positive bacteria and mycoplasma 

lipopeptide. TLR3 recognizes double-stranded RNA (dsRNA) produced during virus 

replication. TLR4 recognizes LPS of Gram-negative bacterial. TLR5 recognizes bacterial 

flagellin. TLR7/8 recognize single-stranded RNA (ssRNA). TLR9 recognizes bacterial 

and viral CpG DNA motifs (2-4). After recognition of microbial pathogens, TLRs trigger 

intracellular signalling pathways that result in the inductions of inflammatory cytokines, 

type I interferon and chemokines as shown in Figure 2, as well as up-regulation of co-

stimulatory molecules. 

  

TLRs contain extracellular leucine-rich repeats responsible for the recognition of 

pathogens, the trans-membrane and the cytoplasmic Toll/interleukin-1 receptor (TIR) 

domains required for initiating intracellular signalling. TLR-mediated intracellular 

signalling is initiated by the TIR-domain-dependent interaction with adaptor proteins 

MyD88 (myeloid differentiation factor 88), TIRAP/Mal (TIR domain-containing adaptor 

protein), Trif (TIR domain-containing adaptor inducing IFN ) and TRAM (Trif–related 

adaptor molecules). MyD88 is a central adapter protein shared by almost all TLRs. 

TIRAP/MAL is required for the activation of MyD88-dependent pathway, while TRAM 

is required for the Trif-dependent pathway. MyD88 recruits IRAK (interleukin-1 

receptor-associated kinase) proteins and TRAF6 (tumor necrosis factor receptor-

associated factor 6) upon ligand stimulation and further leads to NF-k  activation 

(MyD88-dependent pathway). TLR4 also recruits TRAM and Trif, which interacts with 

IRF3 (interferon regulatory factor 3). Phosphorylated IRF3 is then translocated into 

nucleus (Trif-dependent pathway). Manipulation of TLR system may contribute to the 

development of vaccine therapy (2, 5-8). 
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Figure 2 TLR-mediated immune responses (Adapted from Akira 2006) 

 

1.4 The adaptive immune response 

1.4.1 Humoral and cellular immunity 

Adaptive immunity, also called specific or acquired immunity is generated in response to 

microbes that invade tissues. Properties of the adaptive immunity are the expression of 

extremely diverse lymphocyte repertoires and the generation of memory. There are two 

types of adaptive immunity, called humoral immunity and cell-mediated immunity, 

designed to provide defense against extracellular and intracellular microbes, respectively. 

 

Humoral immune response is mediated by antibodies, secreted into the circulation and 

mucosal fluids by activated B lymphocytes. Antibodies function by neutralizing microbes 

and microbial toxins, as well as activating the complement system. B cells are able to 

respond to basically any form of antigens, including proteins, carbohydrates and lipids 

through their surface antigen receptors (BCR), whereas most T cells can only recognize 

processed protein antigens by their T cell antigen receptors (TCR). 
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Cell-mediated immune responses are accomplished by T lymphocytes which can be 

subdivided into CD4+ and CD8+ T cells according to their co-receptor expression on the 

cell surface. CD8+ T cells can be further differentiated into cytotoxic T lymphocytes 

(CTL) to kill the target cells, whereas CD4+ T cells can be further developed into either 

subsets of helper cells, including Th1, Th2 or even regulatory T cells (9. 10).  IFN- , 

produced by Th1 cells can activate macrophages to increase killing of phagocytosed 

microbes. Th2 cells can drive B cells towards antibody production, isotype-switching as 

well as affinity maturation. Regulatory T cells function to suppress excessive immune 

response and prevent autoimmunity. 

 

1.4.2 Antigen presenting cells (APC) 

The adaptive immune responses are initiated by the recognition of antigenic peptides 

displayed by MHC molecules on antigen presenting cells (APC). Basically, any cell types 

that express MHC can process antigens for the display of the complexes on the cell 

surface, but not all of them can initiate the effector functions of B and T cells in adaptive 

immune response. Professional antigen presenting cells (pAPC), including DC, 

macrophages and B cells are not only capable of processing antigens, but also capable of 

priming immune effector cells to different extents. 

 

There are two major cellular pathways for the processing and presentation of protein 

antigens on MHC-I or MHC-II molecules (see further in section 3). The classical MHC-I 

pathway present endogenous, cytosolic antigens, whereas the MHC-II pathway process 

exogenous antigens. However, MHC-I restricted T cell responses can also occur in 

response to exogenous antigens, in a process called “cross-priming”, by the use of 

alternative processing pathways. A major focus in the present thesis has been to study 

such alternative pathways in mouse DC. 
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2. Dendritic Cells (DC)  

 

2.1 DC history 

The name of dendritic cells originates from the Greek word dendron, meaning tree and 

appropriately describes the distinct morphology with many extensions. This cell type was 

first visualized in the skin in 1868 by Paul Langerhans (11) and was named Langerhans 

cell (LC) after his name. It was rediscovered by Steinman and colleagues (12) in 1973 in 

the course of observations on the cells of mouse spleen, realizing that these novel cells 

can assume a variety of branching forms, constantly extend and retract many fine cell 

processes. The term dendritic cells (DC) for this particular cell type was suggested. 

 

2.2 DC origins and subsets (mouse DC) 

DC derive from bone marrow hematopoietic progenitors. The DC system comprises a 

large collection of subpopulations with different functions. Functional diversity of DC 

population is related to their differentiation stage, as well as their specific location. 

However, question still remains whether the functional diversity of DC results from 

developmentally independent subpopulations (lineage model) or a common 

differentiation origin but acquiring specific functions in response to environmental 

signals (plasticity model) or a mixture of these two extreme models (13-15). 

 

A large variety of DC subsets have been described in lymphoid and non-lymphoid 

organs. Some subsets seem specific to defined tissue environments. Both phenotypic and 

functional criteria have allowed the classification of mouse DC into at least six main 

subpopulations in lymphoid organs, as described in Table 1, including the mature forms 

of the peripheral nonlymphoid tissue-resident DC. Three types of DC are consistently 

found in the spleen: CD8 DC, CD4 DC and double negative DC (DN DC) and two extra 

DC subtypes, not normally found in the spleen are in the lymph nodes (LN), which have 

apparently arrived in the LN through the lymphatic vessels. They are CD4+CD8- 

CD205moderate CD11b+ DC and CD4-CD8lowCD205hiLangerin+ CD11b+ DC, the mature 

forms of the tissue interstitial DC (including dermal DC) and Langerhans DC (LC), 

respectively (14-16) (Table1). 



 15

 

Table 1 Major lymphoid organ distribution of mouse DC subpopulations 

 Spleen Lymph 
node 

Thymus Blood 

CD4-CD8+CD205hiCD11b- DC (CD8 DC) + +  + - 

CD4+CD8-CD205-CD11b+ DC (CD4 DC) + + - - 

CD4-CD8-CD205-CD11b+ DC  (DN DC) + + - - 

CD4+CD8- CD205moderate CD11b+ DC 

(Mature form of interstitial/dermal DC) 

- + - - 

CD4-CD8lowCD205hiLangerin+ CD11b+ DC 

(Mature form of Langerhans DC) 

- + - - 

Plasmacytoid B220+ DC (pDC) + + + + 

 

CD8 DC accumulates in the T cell area of a given peripheral lymphoid tissue, while CD4 

and DN DC are located in the marginal zones. CD8 DC constitutively capture antigens 

from DC that migrate in the steady-state into the T cell area, whereas marginal DC may 

migrate to the T cell area upon stimulation with microbial products, which is also seen 

with CD8 DC in the T cell area. These three types of DC, found in the spleen and lymph 

nodes may derive from blood DC precursors that seed the spleen and LN directly from 

the bone marrow via blood. As spleen is only accessible via blood, these DC do not seem 

to immigrate from peripheral tissues before reaching the spleen. These cells are 

completely replaced within 2-5 days requiring a considerable input of DC precursors to 

maintain the homeostasis of DC in the spleen (16). 

 

Langerhans Cells (LC), derived from DC precursors from the blood, pick up, process 

the antigens captured in the periphery and bring this information to the draining lymph 

nodes for the communication with naïve T cells. In the steady-state DC present self-

antigens for the regulation of T cell homeostasis and T cell tolerance (17-21). 
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Thymic DC The CD8 DC is the dominant subtype in the thymus. Thymic DC were 

proposed to derive from an intrathymic precursor, develop and die within the thymus. 

Their function is to induce central tolerance of T cells by inducing the apoptotic death of 

potentially self-reactive T cells (14).  

 

pDC Plasmacytoid B220+ DC (pDC) precursors are found in all lymphoid organs and 

blood. pDC are able to produce large amount of type I interferon (IFN / ) when 

stimulated with bacterial CpG or by viral infection. pDC can be distinguished from the 

other DC by the expression of CD45RA and CD11c at intermediate levels. Although they 

resemble the normal CD8 DC in many respects, arguments still remain whether pDC are 

the precursors of CD8 DC in normal uninfected stage. The longer half-life (around 9 

days) and the requirement of an exogenous stimulus make it difficult to study this DC 

progeny in uninfected laboratory mice (14, 22). 

 

Human DC In contrast to mouse DC, human DC were mostly isolated from blood. Blood 

is a source of immature DC (iDC) and pDC. Human blood DC are heterogeneous in the 

expression of a range of markers, but many of these reflect differences in maturation or 

activation stages, rather than separate sublineages. Human DC lack the expression of 

CD8, so the counterpart of mouse CD8 DC remains elusive. In addition, human 

Langerhans cells are recognized as a separate DC subtype with distinct makers, including 

CD1a and langerin. In a few cases, DC were isolated from spleen and tonsillar, showing 

the herogeneity in the expression of CD4, CD11b and CD11c, indicating a complexity 

resembling mouse splenic DC. Most human thymic DC are CD11+CD11b-CD45RO and 

lack of myeloid markers, resembling the mouse thymic CD8 DC. A minority DC in the 

thymus, CD11chighCD11b+CD45ROhigh express myeloid markers, resembling mouse CD8- 

myeloid DC (14). 

 

2.3 DC generation and differentiation in vitro (mouse DC) 

DC constitute less than 0.1% of blood leukocytes (23) and are sparsely distributed all 

over the body. Moreover, they do not proliferate in peripheral tissues. Accordingly, 
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methods developed to generate bulk DC in vitro from precursors in the bone marrow, 

spleen or blood represent a major breakthrough in studies of DC biology. 

 

DC develop from hematopoietic precursor cells through successive steps of lineage 

commitment and differentiation. Different experimental approaches have been designed 

to study the development of murine DC in vitro, ranging from different hematopoietic 

precursors, diverse DC differentiation/maturation-inducing mediators to different culture 

protocols. Most methods developed for generating DC in vitro rely on two-step culture 

protocols, generating immature DC after first culture period involving cell proliferation, 

followed by a second incubation phase leading to mature DC, in which no expansion 

takes place (24). Main protocols (mouse DC) are shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Main in vitro differentiation pathway for mouse DC 
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The first protocol for the generation of bulk DC from mouse bone marrow was described 

by Inaba K et al in 1992 (25), using recombinant GM-CSF and IL-4 and further 

maturation of cells using tumor necrosis factor  (TNF- ). The generated DC population 

is phenotypically homogeneous and does not express CD8 . Maturation can also be 

induced by lipopolysaccharide (LPS) and CD40L. This method leads to the 

differentiation of DC with phenotypic and functional characteristics similar to those 

described for human monocyte-derived DC. Alternatively, DC can be produced using 

GM-CSF, together with TNF-  and two DC subsets with different phenotypes are 

generated as described in Figure 3. LC-like DCs can be differentiated in the presence of 

GM-CSF and TGF-  and further stimulated with TNF- . The FLt3 ligand has been 

shown to generate pDC-like DC after maturation with either LPS or IFN- . Both CD8  

and CD8 + DC are generated by this method (24).  

 

Cytokines in DC generation and differentiation in vitro 

GM-CSF Being one of the first cytokines identified to have effect on DC, GM-CSF is a 

central mediator for the generation of DC in vitro. GM-CSF is a 20-30 kDa glycoprotein 

synthesized by lymphocytes, monocytes, fibroblasts and endothelial cells. Its major 

function appears to prolong cellular survival. It promotes the differentiation of monocytes 

to large macrophage-like cells, increasing their metabolism and function as APC by 

enhancing MHC-II. GM-CSF is mainly used in generation of DC from bone marrow and 

blood in vitro (26, 27). 

 

IL-4 IL-4 is a 18-20-kDa glycoprotein that is produced primarily by activated T cells. It 

is the principal factor controlling the differentiation of monocytes into DC, as monocytes 

cultured in the presence of IL4 acquire a macrophage–like DC morphology. Upon 

exposure to IL-4, cells increase in size and develop extensive processes. In general, IL-4 

suppresses overgrowth by macrophages, allowing for the generation of human DC from 

peripheral blood. Specifically, IL-4 inhibits macrophage colony formation, whereas GM-

CSF alone induces the formation and survival of aggregates of DC progenitors (26, 27). 
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TNF  TNF  is a 17-kDa protein produced primarily by macrophages. It is mainly used 

in culturing CD34+ cells. Culturing CD34+ cells in the presence of TNF  results in 

adherent and non-adherent cells with DC features, whereas without, these cells 

differentiate to monocytes, macrophages and granulocytes. TNF  delivers critical signal 

to DC differentiation from monocytes (26, 27). 

 

Flt3-L FL is a member of a small family of growth factors, stimulating proliferation of 

hematopoietic cells and mobilizing stem and progenitor cells to peripheral blood. Flt3-L 

increases the absolute numbers of mature myeloid precursor-derived DC generated from 

CD34+ bone marrow progenitors (26, 27). 

 

TGF-  TGF-  is a suppressive cytokine totally blocking DC maturation from mouse 

bone marrow. DC generated in the presence of TGF-  are immature, but TGF-  did not 

inhibit the commitment of progenitor cells to the DC lineage (26, 27). 

 

Other cytokines have also been used in generation of DC in vitro with different 

characteristics, including IL-3, IL-1, IL-10, IL-7, IL-15 and CD40 ligand (26, 27). 

 

2.4 DC migration 

DC, in order to accomplish their multi-biologic functions need to undergo a complex 

pattern of migration. DC migration includes three steps: migration of circulating DC 

precursors which extra-vasate from the blood to the lymphoid and non-lymphoid tissues 

or organs, migration from local sites of inflammation to secondary lymphoid organs and 

lastly the positioning of DC for interacting with naïve and memory T cells in the T cell 

areas in lymphoid tissues or organs, as some of the steps shown in Figure 4.  
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Figure 4 DC migration in vivo. 

 

2.4.1 Skin homing of Langerhans cell (LC) precursors 

LC are bone marrow-derived DC that are typically localized in the epidermis and along 

mucosal surfaces. They represent a critical outpost of the immune system at the interface 

to the external environment. Langerin, the major constituent of Birbeck granules 

specialized in the phagosomes of LC is the unique marker for LC. LC replacement is 

slow under steady-state conditions, but entirely replaced from a local precursor pool, 

probably from dermal CD14+ cells in contrast to the inflammation-induced replacement 

of emigrated LC, largely through bone marrow-derived precursors (17, 28).  

 

During trauma and inflammation, immigration of LC precursors from the blood to the 

epidermis was proposed to depend on a cascade of events, including arrest of rolling 

monocytes on endothelial cells and transmigration across the endothelial barrier by 

interaction of adhesion molecules, as well as inflammatory chemokine gradients-guided 

migration from the dermal to epidermis. During the last step, some of the chemokines 

have to be activated by matrix metalloproteinases (MMP) and MMP is also involved in 

the proteolysis proteins in the extra-cellular matrix that has to be crossed by DC 

precursors to the epidermis (28). 

  

2.4.2 Migration to lymphoid organs  



 21

Peripheral DC has the ability to migrate from the tissues to T cell zone in the draining 

lymph nodes and such is accomplished partially by down-regulation of CCR1 and CCR5 

and up-regulation of CCR7 of DC. CCR7 targets DC to lymphatic vessels and lymph 

nodes via chemokines CCL19 and CCL21. CCR2 is important for DC to translocate into 

the T cell area, CCR5 may help recruit DC to inflammatory sites and CCR6 appears to be 

important for positioning DC at epithelial surfaces. CCR7 may increase entry to 

lymphatics and migration to the T cell area in the LN. Migration is enhanced by 

leukotriens, released by the DC themselves. Maturation also induces DC to release other 

chemokines to recruit more monocytes and DC to local sites. Incompletely matured DC 

induced by TNF-  also up-regulate CCR7 and carry self antigens to LN for the induction 

of tolerance during steady-state conditions (28-30). 

 

Transfer of antigen in the nodes and T cell priming 

After tissue-resident DC have internalized antigen and migrated to the LN, the antigen 

needs to be presented by MHC or CD1 presenting molecules to the responding T 

lymphocytes. Although it is not fully clear how DC accomplish T cell priming it has been 

proposed that there are different DC subsets which sequentially guide the progression of 

naïve T cells toward fully differentiated effector cells or that each DC subset participates 

uniquely in the priming of a particular T cell population (29). 

 

The T cell area of lymph nodes, the paracortex, is occupied by three subsets of DC that 

entered LN from the blood and three via lymph from the tissues. CD4 T cells do not need 

sustained interaction with one DC to be fully primed, thus priming of T cells in vivo may 

well require the interplay of a T cell with more than one DC (29). Lately, several lines of 

evidence have emerged for antigen-transfer between DC under both steady-state 

conditions and during immune activation. The occurrence of antigen transfer is evident 

from studies showing the ability of APC to acquire antigen by phagocytosis and then 

present this antigen by MHC-I, a process called “cross-presentation”. In the LN, a DC 

interacts with as many as 500 T cells/h, and stable and durable DC-T cell contacts are 

formed with one DC engaging more than 10 T cells at a time. This interaction contains 

three distinct phases: initial short encounters of T cells, followed by long-lasting T cell-
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DC interaction and leading to cytokine production and up-regulation of activation 

markers. Finally, T cells dissociate from DC, rapid migrate and proliferate before exiting 

through the efferent lymphatics (31). 

 

2.4.3 Migration of plasmacytoid DC 

pDC are a rare subset of cells present in circulation and in secondary lymphoid organs. 

They express MHC-II and have the ability to activate T lymphocytes and secret high 

levels of type I IFN following activation, which is crucial in anti-viral immune responses 

and in the activation of other leukocytes, such as B and NK cells (32, 33). pDC are 

normally absent from peripheral tissues and are believed to migrate constitutively from 

the blood into lymph nodes through high endothelial venules (HEV) (34). This migration 

is mediated by L-selectin and is increased by an E-selectin mechanism, when LN exposed 

to inflammatory conditions (35, 36). 

 

2.4.4 CCR7 

CCR7 was initially described as a potent chemotactic receptor expressed by migratory 

leukocytes, including DC. CCR7 has two ligands, CCL19 and CCL21, highly expressed 

in the stromal cells in the T cell area of lymph nodes. In addition, CCL19 is expressed by 

mature DC and is presented on the luminal side of the HEV cells. CCL21 is expressed 

only by afferent lymphatic endothelial cells and HEV. Recent reports have shown 

additional functions of CCR7, besides chemotaxis. First, CCR7 controls the cyto-

architecture (apparition of dendritic protrusions) probably by regulating the organization 

of the actin cytoskeleton. Reduction of the dendritic protrusions of the DC results in the 

damping of their antigen-presenting ability. Therefore CCR7-mediated induction of 

dendritic cytoplasmic extensions may contribute positively to the immune response. 

CCR7 positively regulates the rate of endocytosis of the mature DC and promotes the 

survival of DC by delay apoptosis, which would benefit the immune response. In 

addition, stimulation of CCR7 also increases the migratory speed (motility) of the DC in 

inducing an increase in the adhesion of these cells to the substrate. Therefore the increase 

in DC motility controlled by CCR7 may increase the magnitude of the immune response 

by increasing the number of DC that reach the nodes.  Finally, stimulation of CCR7 



 23

enhances the mature phenotype of DC leading to the secretion of inflammatory cytokines, 

increasing the expression of MHC and co-stimulatory molecules and the potential to 

active naive T cells (37). 

 

2.5 DC functions 

2.5.1 T cell homeostasis 

The size of the peripheral T cell pool is remarkable stable through life, reflecting precise 

regulation of cellular survival, proliferation and apoptosis. Independent homeostatic 

mechanisms regulate the overall size and composition of the naïve and memory T cell-

pool. Lymphopenia-induced proliferation (spontaneous proliferation or basal 

proliferation) describes space-driven expansion of T cells as a compensatory mechanism 

for restoration of their numbers under conditions of T cell loss. The survival of naïve T 

cells requires TCR signalling as well as IL-7. Memory T cells are also regulated by 

homeostatic mechanisms to maintain their overall size and composition. Memory CD8+ T 

cells can survive in the complete absence of specific antigens requiring IL-15 and CD40 

ligation. Lymphoid organ resident DC may play a role in maintaining the naïve T cell 

pool (38-40). 

 

2.5.2 Tolerance induction 

The immune system of vertebrates has evolved to protect against various incoming 

pathogens by developing an extremely diverse T cell repertoire. However, the generation 

of a diverse T cell repertoire increases the possibility of developing auto-reactive T cells. 

To limit self-tissue damage as well as maintaining T cell diversity at the same time, the 

immune system has therefore developed a number of different mechanisms for tolerance 

induction (41). 

 

Central tolerance The thymus gland provides a very important initial step in eliminating 

potentially dangerous T cells during the early T cell development. Positive and negative 

selection events are considered qualitatively distinct processes depending on thymic 

compartmentalization and on the cellular context of TCR/MHC interactions. Two cell 

types present in the thymus are sequentially involved, cortical epithelial cells has the 
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exclusive capacity to induce positive selection of thymocytes whereas bone marrow-

derived DC negatively select auto-reactive cells (41-44). 

 

Peripheral tolerance Peripheral tolerance induction mechanisms are important 

especially when many tissue proteins are not expressed in the thymus at sufficient levels 

to induce clonal deletion or tolerization. Several mechanisms of peripheral T cell 

tolerization involve anergy induction, abortive proliferation/deletion and the induction of 

immunosuppressive T regulatory cells (Treg). Immature or resting DC, cross-presenting 

self-antigens in the steady-state, in the absence of inflammation or infection, can induce 

unresponsiveness to systemic challenge with self-antigens (45-47). 

 

2.5.3 In T priming 

DC are critical in generating adaptive immune responses. When a microbe infects, tissue-

resident DC not only phenotypically matured by up-regulation of MHC molecules and 

costimulatory molecules but also functionally mature in priming the adaptive immune 

responses after migration to the draining LN and presenting the antigens acquired in the 

periphery. 

 

Reis e Sousa (48) recently argued that the degree of DC maturation largely depends on 

the quality of the danger signals and that these determine the functional outcome of the 

effector DC. Main DC effector functions are listed in Figure 5. DC can thus give rise to 

multiple types of effector DC that instruct distinct T cell fates, including immunity, 

tolerance and immune deviation. Functionally and phenotypically mature DC can induce 

Th1 and also Th2 responses, as well as to induce CD8+ cells to differentiate to cytotoxic 

T lymphocytes.  

 

 

 

 

 

 



 25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Dendritic cell effector functions (Adapted from Reis e Sousa 2006). 

 

2.5.4 Interaction with innate lymphocytes 

DC-NK interaction  

Natural killer cells (NK) are believed to limit viremia and tumor growth before the onset 

of adaptive T and B cell immune responses. NK cells increase in numbers in peripheral 

blood 3-5 days after infection but subsides at days 5-7. Human PBMC contains around 

10% of NK cells. The majority ( 95%) belongs to the cytolytic NK subset, carrying 
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homing markers for inflamed peripheral sites and perforin to rapidly mediate 

cytotoxicity. Hypothetically they are the terminally differentiated effectors that carry the 

whole panel of sophisticated activating and inhibiting receptors to detect allelic HLA loss 

and can readily lyse these cells (49). 

 

The minor NK subsets (NKT) in blood ( 5%) lack perforin but secrete large amounts of 

IFN-  and TNF-  upon activation. In addition, they display homing markers for 

secondary lymphoid organs, namely CCR7 and CD62L and might perform an immuno-

regulatory function in the secondary lymphoid tissues. There are 10 times more NK cells 

in LN as compared to that in the blood indicating a role for these cells in the LN. In fact, 

LN NK cells show impressive plasticity in which activation by IL-2 converts these into 

effector cells with cytolytic function and the expression of the set of activating/inhibiting 

receptors, similar to the cytolytic NK subsets (49). 

  

NK cell activation by DC Both immature and mature DC can activate and induce the 

expansion of resting NK cells. Soluble and cell-to-cell contacts have been described for 

NK cell activation by DC. IL-12, induced by myeloid DC migrated into the LN is mainly 

implicated in NK cell secretion of IFN- . The activated NK cells may provide an early 

source of IFN-  required for Th1 polarization. Type I IFN seems to be required for 

cytolytic activity of NK induced by murine DC. The membrane-bound form of IL-15 

expressed on mature DC appears involved in NK cell proliferation and prolonged 

survival of NK cells. In addition, IFN  is shown to up-regulate the NKG2D ligands 

MHC-I chain related proteins A/B (MICA/B) on monocyte-derived DC, and these 

molecules should activate NK cells in cell-cell contact fashion. Also, monocyte-derived 

DC are recognized and lysed via the NK activating receptor NKp30 through unknown 

ligands on DC (49-51). 

 

DC activation by NK cells Co-culture of NK and DC leads to DC maturation, 

production of TNF  and IL-12 and up-regulation of co-stimulatory molecules, such as 

CD86, relying on either cell contacts or soluble mediators, like TNF  and IFN- . In 

addition, IFN-  would act as a synergistic or regulatory factor for DC maturation (49-51). 
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Role for NK cells in DC editing NK cells are highly effective in targeting cells that have 

down-regulated HLA class I molecules and up-regulated ligands for activating NK 

receptors due to infection or neoplastic transformation. Immature DC are an exception. 

NK cells have been shown to sufficiently target autologous immature DC, while in turn 

DC potentiating NK activation. NK cells remove DC dependent on TRAIL, only when 

they are in their less-immunogenic immature stage of differentiation. Resistance to NK 

lysis is achieved by up-regulation of MHC-I, in particularly, HLA-E. Thus NK cells 

might play an important regulatory role by selectively editing DC during the course of 

immune responses (49).  

 

DC-NKT interaction NKT cells, unlike the conventional T cells whose receptors are 

generated via somatic DNA rearrangement, are semi-invariant, consisting of V 14-

J 18/V 8.2 chains in mouse and the homologous V 24-J 18/V 11 chains in human. 

Thus they are more like the conserved PRRs of the innate immune system.  NKT cells 

also express a variety of surface receptors that are characteristic of the NK cell lineage. 

They are activated very early in the immune response and are capable of activating other 

cell types, including DC (52, 53).  

 

DC presenting the synthetic glycolipid a-galactosylceramide ( GalCer), a marine-

sponge-derived glycosphingolipid with many immuno-modulatory activities, on CD1d 

can activate NKT cells to produce IFN-  and promotes the resistance to tumors. 

Activated NKT cells can rapidly induce the full maturation of DC in turn and enhance 

both CD4+ and CD8+ T cell responses by CD40 ligation (52, 53). 
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3. Antigen processing and presentation  

 

3.1 Introduction 

The conversion of exogenous and endogenous proteins into immunogenic peptides bound 

to MHC molecules is defined as antigen processing, which involves a series of 

proteolytic and other events. The cells responsible for antigen processing and 

presentation are richly diverse, reflecting the antigens and circumstances that the immune 

system is capable to deal with. Processing and presentation are affected by several 

factors, including the physical form of the antigens, the site and method of delivery, the 

nature of the antigen presenting cells (APC) (54). Understanding the cell biology and 

biochemistry of antigen processing and presentation will help to direct the immune 

response against various microbes by applying correctly designed vaccines. For instance, 

in case of CD8+ CTL responses antigens need to be presented in enough numbers on 

MHC class I molecules expressed on immunogenic APC and in case of antibody 

responses on MHC class II presenting molecules for the generation of CD4 helper T 

cells. 

 

The earlier dogma stated that only intracellular, cytoplasmic proteins could be processed 

for the presentation on MHC-I, whereas MHC-II only presented exogenous proteins 

internalized into APC. However, as will be further illustrated below, there is an 

extensively functional cross-over between these pathways with many exogenous antigens 

capable of generating strong, protective CTL responses. CTL induction by exogenous 

antigens occur by “cross-priming”, a process which, through a number of different 

mechanisms, is able to feed immunogenic peptides into MHC-I molecules. However, also 

non-classical, MHC-I like molecules such as CD1 can present diverse antigens, mostly 

glycolipids, to a subpopulation of T cells called NKT as they share cellular characteristics 

with NK cells (55). Glycolipid antigen loading onto CD1 molecules occurs in 

endolysosomes and most studies of this process have earlier been done in vitro using 

solid state isolated CD1 (56).   

 

3.2 MHC class I processing and presentation  
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3.2.1 Classical pathway 

Sources of antigens The endogenous source of proteasomal substrates is quite varied, 

including cytosolic viral products, defective ribosomal products (DRiP) and secretory or 

membrane proteins retrotranslocated from ER to the cytosol, as shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Sources of proteins presented on MHC-I molecules (Adapted from Mellman 

2005). 

 

A large proportion of newly synthesized proteins (up to 30%) are known to be 

ubiquitinated and degraded by the proteasomes shortly after synthesis. Most of these 

substrates are termed defective ribosomal products (DRiP) and are not functional due to 

the errors in the process of the protein synthesis.  DRiP can also be the result of post-

translational mistakes occurring during folding, assembly or intracellular sorting. DRiPs 

have been proposed to be the major source of self- or viral antigenic peptides for MHC-I 

presentation. Activated DC can accumulate DRiPs transiently as aggregates, namely DC 
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aggresome-like-induced structures (DALIS) in the cytosol and are believed to affect the 

repertoire of endogenous proteins available for proteasomal digestion (57-60). MHC-I 

ligands are also obtained from "stable" proteins, as evidenced by presentation of several 

species of post-translationally modified peptides (61-63). 

 

The pathway The classical MHC-I presentation for endogenous proteins comprises 

several steps: ubiquitination and fragmentation of the proteins by proteasomes in the 

cytosol, translocation of the generated peptide into the ER via transporter-associated with 

antigen processing (TAP), formation of the complexes of MHC-I and peptide and display 

of the MHC-I/p complexes on the cell surface after transportation through the ER-Golgi 

network, as described in Figure 7.  

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 7 Classical MHC class I and MHC class II presentation pathways (Adapted from 

Crotzer 2005). 
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Protein degradation The dynamics of the formation of MHC-I ligands depends on three 

distinct proteolytic processes. The first step is degradation of proteins into oligopeptides 

by the 26S proteasomes with the correct size for presentation or extended on their amino-

termini. Secondly, aminopeptidases in the cytosol or ER trim the N-extended precursors 

into the optimal length (8-10aa) for binding to MHC-I molecules. The third process is the 

destruction of proteasomal products by endo- and exo-peptidases that eventually allow 

the recycling of amino acids back to protein synthesis. The third process is very rapid in 

vivo so peptides somehow must escape this fate to become available for MHC-I binding 

(64). 

 

The 26S proteasomes The immune system has not evolved its own specialized 

proteolytic mechanisms but utilizes the ancient catabolic pathways that turn over proteins 

in all cells. The 26S proteasome is an ATP-dependent proteolytic complex, found in the 

cytoplasm and nucleus (64-68). It is a major cell constituent composing up to 2% of 

cellular proteins and essential for cell survival. The 26S proteasome is a complex 

composed of a 20S core particle and one or two 19S regulatory particles. Proteins are 

degraded within the cylinder-like 20S particles. The three proteolytic sites inside the 20S 

protesomes function together in an ordered mechanism in degrading substrates, but differ 

in specificity for different amino acid sequences, referred to as (1) chemotrypsin-like site 

cleaves preferentially on the carboxylic side of hydrophobic amino acids, (2) trypsin-like 

site cleaves after basic residues and (3) peptidylglutamyl peptide hydrolase (PGPH) 

cleaves primarily after acidic residues (69-72). 

 

ER-associated protein degradation Incompletely assembled complexes of ER 

membrane proteins or misfolded integral membrane proteins in the ER are subject to 

degradation before they reach the cell surface. These abnormal secretory proteins are 

translocated into the cytoplasm from ER and degraded by the proteasome pathway. ER 

also contains signal peptidases and aminopeptidases but clearly lack carboxypeptidases 

activity, like the cytoplasm (72-75). 
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Transporter-associated with antigen processing (TAP) TAP is central component in 

the classical MHC-I dependent antigen presentation. TAP translocates peptides mainly 

derived from the proteasomal degradation from the cytosol into the lumen of ER, where 

these peptides are loaded onto MHC-I molecules.  TAP belongs to the family of ATP-

binding cassette (ABC) transporters, which translocates a large variety of substrates 

across the membranes driven by ATP hydrolysis. TAP forms a heterodimer consisting of 

TAP1 and TAP2, with 10 and 9 trans-membrane helices, respectively. Both subunits are 

essential and sufficient for peptide transport. TAP is localized in the ER and cis-Golgi. 

Each subunit contains a trans-membrane domain (TMD), followed by a cytosolic 

nucleotide-binding domain (NBD). The TMDs comprise the peptide binding pocket and 

the translocation pathway for the substrate. The core-domain in the TMD is essential for 

the peptide-binding and transport, whereas the N-terminal region (N-domain) is 

responsible for the tapasin binding and the assembly of the peptide-loading complex. The 

transport cycle is a multi-step process composed of ATP and peptide binding, ATP 

hydrolysis and peptide translocation. Peptide binding follows two steps reaction with a 

fast association, preceding a slow conformational rearrangement. TAP binds and 

transports efficiently most peptides with a length of 8-16 and 8-12 amino acids. Peptides 

transported by TAP into the ER are subsequently trimmed by amino exo-peptidases in the 

ER (76-78).  

 

MHC-I assembly and peptide loading (formation of MHC-I/p complex) in the ER 

The pathway by which MHC-I acquire MHC-I ligands does not only rely on the 

relatively inefficient mass transfer from the cytosol, but involves the interplay of the 

multiple ER-resident chaperones which facilitate the MHC-I loading following transfer of 

the peptides from cytosol to ER lumen (Figure 8). Initially, nascent MHC-I heavy chain 

(hc) is targeted to ER and stabilized by the interacting with the ER chaperones Grp78 and 

calnexin (membrane protein), which are involved in the insertion of the newly 

synthesized, translocated hc polypeptide into the lumen of ER and the stabilization of it. 

Once 2-m associates with the hc, calnexin is exchanged for calreticulin (soluble protein), 

another ER-resident chaperone because of the conformational changes. The association 

of MHC-I heterodimer (hc and 2-m) with calreticulin recruits other ER-resident 
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chaperones tapasin and ERp57 into the loading complex, which may help the 

stabilization and folding of MHC-I. ERp57 is involved in assuring the appropriate 

disulfide bond formation in the MHC-I molecules and prolonged association of this 

protein which may facilitate the peptide binding in the MHC-I binding cleft. Tapasin is a 

glycoprotein that bridges the peptide receptive MHC-I heterodimer to the transporter-

associated with antigen processing (TAP). Co-localization of these complexes facilities 

the peptide loading and also stabilizes the peptide receptive state, independent of the TAP 

association. The MHC-I assembly and MHC-I loading see Figure 8 (79-81). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 MHC class I assembly in the ER (Adapted from Purcell 2000). 

 

3.2.2 Cross-presentation. 

Most cell types in the body express MHC-I molecules and these molecules can be loaded 

with peptides generated in the cytosol from endogenous antigens. However, exogenous 

proteins can also be presented by MHC-I molecules, in a process that has been termed 

“cross-presentation”(82). The exogenous antigens can either be soluble, bound to serum 

Ig, cell-associated, heat shock proteins or exosomes with the functional consequence of 

their MHC-I presentation ranging from maintaining tolerance (cross-tolerance) to 
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inducing immune responses (cross-priming).  Cross-presentation probably also 

contributes to the maintenance of the peripheral naive T cell pool (40).   

 

Mechanisms in cross-presentation Cross presentation may occur by different 

mechanisms. Some proteins can traverse the membrane of uptake vesicles and access the 

cytosol, where they are processed as endogenous proteins in a “leakage pathway” (83-

86). Alternatively, endocytosed exogenous proteins can be processed within the 

endocytic compartment and the generated antigenic peptides either bind to membrane-

recycling MHC-I molecules or bind to the cell surface after peptide regurgitation (87-97). 

Finally, ER membrane, equipped with all the classical MHC-I processing machinery may 

contribute to the formation ER-phagosome and further enable to act as self-sufficient 

organelles for cross-presentation (Figure 9) (98-102). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Multiple routes of peptide antigen loading for MHC-I in APC (Adapted from 

Lizee 2005). 
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Leakage pathway By leakage pathway exogenous antigens can thus be transferred into 

the cytosol, where they are further degraded by the proteasomes and loaded onto MHC-I 

in a TAP-dependent manner. Direct evidence suggested the transport from the endosomes 

to the cytosol in cross-presentation was first reported using macrophages and then bone 

marrow-derived DC by tracking the translocation of horseradish peroxidase (HRP) from 

endosomes to the cytosol (83, 84). It was also demonstrated using immune-complexes, 

showing a selective membrane transfer mechanism (86). The putative channel that 

mediated endosome to cytosol transfer could accommodate molecules of a certain size 

(50-500kDa), as analyzed by using dextrans of variable size (86).  

 

ER-phagosome pathway Recently several groups have independently described that the 

ER membrane contributes to the formation of phagosomes. The ER-phagosomal 

compartment in macrophages and DC contains endocytosed antigens, newly synthesized 

MHC-I molecules, and the chaperone proteins necessarily for the formation of MHC-

I/peptide complexes, namely tapasin, ERp57 and TAP. The internalized proteins are 

translocated into the cytosol by the sec61 transporter for proteasomal degradation and the 

produced peptides are thereafter transported back into the phagosome by membrane-

bound TAP (Figure 9).  The Sec61 complex is a heterotrimer that forms the channel that 

allows newly synthesized secretory or membrane proteins to cross from the cytosol into 

the ER. This channel can also be used to transfer misfolded polypeptides from the ER to 

the cytosol for proteasomal degradation, a process termed "dislocation" or "retro-

translocation” (103, 104).   

 

Vesicular processing (VP) Endocytosed exogenous antigens can also be processed in the 

endolysosomal compartment. Evidence for this pathway includes using bacterial-

associated OVA (87-90), bead-OVA (91, 92), cell-associated viral antigens (93-95) or 

even soluble OVA (96). Features of this type of MHC-I processing are TAP-independent, 

BFA- and lactacystin-resistant, and the latter are the Golgi and proteasomal inhibitor, 

respectively. MHC-I presentation by this pathway is clearly different from the cytosolic 

pathway in which proteasome and Golgi are dispensable, suggesting an endolysosomal or 

an intravesicular compartment exists for this type of processing. The generated/resulted 
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peptide was shown to bind to MHC-I molecules either within the vesicular compartment 

(95) or regurgitated to the cell surface and subsequently binds to cell surface MHC-I 

molecules (87) or both (96), depending the system used (Figure 9). The next question is 

where the MHC-I molecules in the vesicles come from? In general, MHC-I molecules are 

not found in the endocytic vesicles of most cells, but it may enter this compartment in 

phagocytes in several different ways. Studies have indicated that phagocytes 

constitutively recycle MHC molecules between cell surface and the endocytic 

compartment (105), secondly MHC-I can also be targeted to the endocytic compartment 

by Li (106), an endogenous chaperon peptide used to target MHC-II to the same site, and 

thirdly cell surface newly synthesized MHC-I can be internalized into these vesicles 

(107) as the invagination of the plasma membrane during phagocytosis. 

 

Recently, It was demonstrated that cysteine protease Cathepsin S (Cat S) in the 

endolysosomes was involved in this type of processing by showing that purified Cat S 

could process OVA into SIINFEKL peptide in vitro and further demonstrating that Cat S 

played a role in generating CTL against two viral epitopes in vivo (91, 108, 109). 

Another study shows there are endolysosomal targeting motifs in the cytoplasmic tail of 

MHC-I and mutations in these impair CTL responses. This mechanism is independent of 

the TAP and the components of the MHC I peptide-loading complex, although for long-

term nascent MHC-I is needed for the refill of the MHC-I pool in the endocytic pathway 

(110, 111). 

 
Endosome to ER pathway This pathway is based on findings that some of the soluble 

exogenous proteins can be internalized, entered ER and subsequently transferred to the 

cytosol for degradation by ER-associated degradation (ERAD) This transport process 

may be inefficient, but in the case of toxins, the internalization and subsequently reaching 

the cytosol are sufficient to block the majority of the total TAP function (112, 113).  

 

Gap junction pathway Most tissue cells are electrically coupled with their neighbouring 

cells through gap junctions, the small channels that connect the cytosol of adjacent cells. 

DC and activated monocytes can establish gap junctions with other cells, including 
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infected cells and thereby may acquire antigenic fragments for cross-presentation. 

However, tumor cells usually close their gap junctions and rather live solitary lives, 

which may partially explain the poor CTL responses (114-116).  

 

Other minor important pathways include the extracellular MHC-I processing by secreted 

and membrane-associated proteases and peptide-penetration directly into the ER without 

the help of TAP. 

 

3.3 MHC-II processing and presentation pathway 

Formation of MHC-II/peptide complexes is an orchestration of multiple cellular 

processes, including protein-sorting mechanisms, proteolytic activities and the 

intervention of chaperones. Many of these mechanisms are regulated in DC in a manner 

distinct from other APC (54, 117, 118). Major steps in MHC-II processing and 

presentation are described in Figure 7. 

 

The endocytic pathway Describing the process of MHC-II antigen presentation requires 

first the description of the subcellular structures, where the formation of MHC-II/p 

complexes takes place, namely the endocytic pathway (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Organelles of the endocytic pathway (Adapted from Mellman 2005). 
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The endocytic pathway is a complex network spanning from the plasma membrane to the 

lysosomes. This road is intersected by secondary incoming and outgoing tracks. The 

incoming tracks represent vesicles originated mostly from the cell surface and the distal 

components of the Golgi complex, while the exit tracks and vesicles eventually will fuse 

with the plasma membrane. The contents of the endosomal compartments change 

gradually along the major track and therefore it is not possible to clarify the exact 

boundary defining the endocytic pathway. Three major regions are usually distinguished: 

the early endosomes (EEs), whose limiting membrane and lumen have a similar 

composition to the plasma membrane and the extra-cellular medium; the late endosomes 

(LEs) which contain many components found only in the endocytic route; lysosomes, 

which are considered as the final station of the endocytic pathway, acid and highly 

proteolytic (54, 117-120). 

 

Endocytosed materials move from predominantly along the EE-LE-lysosomes axis. As a 

rule, the number of entry and exit tracks along the major axis is most abundant in the EEs 

and least in the lysosomes. The sorting mechanisms, which decide how any given protein 

accesses and how it leaves the endocytic route are still poorly understood. For example, 

some receptor cycles continuously shuttle from plasma membrane to the EE and back. 

The DEC205 receptor transports antigens bound at the plasma membrane to LE and 

lysosomes releases them there and then returns back to the cell surface (121). Endosomal 

proteases are delivered to the endocytic rout directly from the Golgi and largely retained 

in the endocytic compartments (117, 122). 

 

Two features of the endocytic route are important in the context of antigen presentation. 

First, the sorting mechanisms allow for some degree of “leakiness” so that for example, 

the cathepsins can be both secreted and delivered to endosomal compartments (123, 124). 

Second, the pathway is not always linear; rather it is possible that some compartments 

branch off becoming distinct reservoirs for endocytosed materials or parallel subpathway 

with different dynamics and composition than those of the main EE-LE-lysosomes (117). 
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Antigen degradation Whatever mechanism is used for the internalization, antigens 

progress along the EEs-LEs-lysosomes axis, where they are exposed to an increasingly 

more acidic, reducing, and proteolytic environment (125, 126). The result is a gradual 

release of polypeptides along the entire endocytic pathway, a few of which will contain 

the correct amino acid sequence that permit them to fit into the binding cleft in MHC-II 

molecules for CD4+ T cell recognition (127, 128). 

  

Formation of MHC-II/p complexes Newly synthesized MHC-II  dimers are 

translocated into the endoplasmic reticulum (ER) and further transported to the 

endosomal compartments. 

 

Li processing MHC-II molecules are synthesized in an inactive form in which their 

peptide-binding cleft is occupied by the chaperone invariant chain Li. Li contains in its 

cytosolic portion a sorting motif that is recognized in the trans-Golgi network as a signal 

to haul the dimer-li complex out of the secretory pathway and deliver it into the EE/LE 

regions of the endocytic pathway.  Once the MHC-II-Li complexes reach the endocytic 

pathway, Li is eliminated by Cathepsin S (Cat S) after its cleaving Li into the final 

peptide fragment CLIP residing in the MHC-II cleft. Thereafter, CLIP has to be 

substituted for antigenic peptide, a reaction involved the chaperones H-2DM, which 

interacts transiently with MHC-II-CLIP, destabilizing the complex and facilitating the 

release of CLIP. H-2DM not only assists in the removal of CLIP, it also acts as a peptide 

editor, promoting the exchange of low affinity peptides for high-affinity peptides. The 

newly formed MHC-II/p complexes can then be sorted from the endocytic route toward 

the plasma membrane in transport vesicles (117). 

 

MHC-II/p complex formation A key question in the MH-II processing remains 

unsolved: are peptides generated first and then bind to MHC-II molecules as that of 

MHC-I pathway or peptides generated after the intact antigen bind to MHC-II (Figure 

11). The first model is likely presumed to be prevalent but it is problematic as 10-15aa 

peptides rarely accumulate in the terminal degradative environment of lysosomes. The 

alternative model proposes that epitopes could be protected from destruction by binding 



 40

to MHC-II molecules. Also the open binding groove in MHC-II allows the binding to 

whole or long polypeptides and the protruding ends could be trimmed by endo- and exo-

peptidases while the peptides in the binding groove are protected.   

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

 

Figure 11 Possible pathways for generation of MHC-II/p complexes (Adapted from 

Mellman 2005). 

 

Control of MHC-II processing pathway Evidence indicates the formation of MHC-II/p 

complexes by DC can be regulated under physiological conditions suggesting that 

lysosomal proteolysis could be potentially regulated independent of regulation of co-

stimulation, creating putative immature but active tolerogenic DC (47). 

  

Control of antigen degradation has been proposed as one mechanism used by DC to 

regulate MHC-II presentation. The increased proteolytic activity during maturation is not 

caused by an augmented protease expression, rather by the further acidification of the 

endolysosomal compartments. This is supported by the findings that the vacuolar H+-
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ATPase pump responsible for lysosomal acidification, was recruited from the cytosol to 

the endosomal compartments during cellular maturation. 

 

The acidification of the endolysosomal compartments can modulate antigen degradation 

and peptide loading in several ways including favouring the binding of peptides or large 

fragments to MHC-II, dissociation of Li and peptide editing by H-2DM.   

  

3.4 Mechanisms of exogenous antigen capture 

The simplest way of loading peptides on MHC molecules is by direct binding of extra-

cellular peptides to MHC molecules on the cell surface, mostly used in epitope-mapping 

studies and in clinical trials. APC can sometimes present peptides generated and released 

by neighbouring cells by peptide exchange. Formation of MHC/p complexes directly at 

the cell surface may lead to conformations and specificities different from those formed 

intracellularly. Conversion of internalized antigens into MHC/p complexes is more 

prevalent and efficient at intracellular sites. Ingestion of microbes is generally 

accompanied by inflammatory responses, whereas the opposite may occur after uptake of 

apoptotic or necrotic cells. In DC, endocytosis is upregulated shortly after the maturation 

process is induced but subsequently downregulated. Antigens can be endocytosed by a 

variety of mechanisms (Figure 12) (54, 117).  

 

Phagocytosis needs recruiting the actin cytoskeleton to mold the plasma membrane 

around the phagocytic particles (phagosomes). Macropinocytosis also requires actin to 

form vesicles (micropinosomes) for the large portion of extracellular medium engulfed.  

Micropinocytosis does not require actin polymerization for vesicle formation (pinosome) 

but requires the recruitment of the cytosolic protein clathrin to generate clathrin-coated 

pits. Finally, receptor-mediated endocytosis consists of the internalization of molecules 

by membrane–bound receptors, many of which also trigger the formation of clathrin-

coated pinosomes. Uptake of materials by macro- or micropinocytosis is often referred to 

as fluid-phase endocytosis to indicate that it is non-specific, rather than being triggered 

by particular molecular cues.  DC are highly efficient at all forms of endocytosis in their 

immature state (54, 117). 
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Figure 12 Types of endocytosis used for antigen accumulation (Adapted from mellman 

2005). 

 

One of the most common ways of studying antigen presentation ex vivo has been to 

expose APC to a large amount of soluble antigens such as OVA. Immature DC and 

macrophages internalize the bulk of soluble antigens via macropinocytosis. The impact of 

antigen uptake via macropinocytosis in vivo is not fully clear yet, although it may apply 

to those cells encountering antigens present in body fluids. Furthermore, pathogens 

release few soluble antigens, as most antigens are associated with membranes, cell walls, 

or cytoplasmic compartments (54, 117). 

 

The uptake of particulate antigens is a prevalent form of antigen uptake in vivo for both 

pathogen-derived, cell-associated antigens or artificial beads. Phagocytosis is probably 

the first pathway associated with the host defense. A number of surface receptors 

recognizing ligands on the surface of microbes contribute to the pathway, including FcRs, 

complement receptors and a variety of lectin receptors. Sometimes microbes can even 

actively promote their own entry into cells. The engulfment of apoptotic cells from 

infected cells provides antigenic materials that can be readily converted to MHC/p 
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complexes. Ingestion of apoptotic cells bearing self-antigen is also important for the 

maintenance of tolerance during steady-state conditions (54, 117). 

  

The immune system thus uses a broad range of cell surface receptors to capture extra-

cellular materials with two important consequences.  Firstly, the quantitative advantages 

make cells more efficient to present antigens at much lower concentrations. Secondly, 

qualitative aspects contribute to functional diversity among different APC. For example, 

DEC205, a lectin-like receptor preferentially expressed by DC that is internalized by 

clathrin-coated vesicles. Targeting antigens to DEC 205 by using monoclonal antibody 

against DCE205 results in 100-1000 fold more efficient in antigen capture and 

presentation than soluble antigen, subsequently inducing either tolerogenic responses  

(under non-inflammatory conditions) or strong immunity of CD4 or CD8 cells under 

activating conditions (simultaneous CD40L treatment) (54, 117). 

 

3.5 CD1 as an antigen presenting molecule. 

3.5.1 Introduction      

CD1 proteins are a third family of antigen presenting molecules that can bind bacterial 

and autologous lipid antigens for presentation to NKT cells. CD1 molecules are 

glycoproteins composed of a heavy chain non-covalently linked to -2m, similar to 

MHC-I molecules. Unlike MHC-I, CD1 molecules have evolved hydrophobic channels 

for the binding of alkyl chains and also have cytoplasmic tails that target them to distinct 

endocytic compartments (55, 129) (Figure 13). 

 

 

 

 

 

 

 

 

Figure 13 Display of MHC and CD1 molecules (Adapted from Van Kaer 2004). 
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CD1a, CD1b and CD1c (group 1) molecules present microbial fatty acids, glycolipids, 

phospholipids and lipopeptides by anchoring the alkyl chains of the ligand within their 

hydrophobic binding grooves, positioning the polar head group or hydrophilic cap of the 

bound ligand at, or near the opening of the groove for the recognization by NKT cell 

receptor. CD1d (group 2) molecules are believed to present self-lipid antigens, including 

sphingolipids and diacylglycerols, as well as an unusual sponge-derived ceramide 

( GalCer) with the similar mechanism (55, 129). CD1a, CD1b and CD1c-restricted 

TCRs are extensively germline-derived with marked junctional diversity, while CD1d-

restricted T cells include both with an invariant TCR (V 14-J 18 in mice, V 24-J 18 in 

humans) and those with extensive / TCR diversity (130, 131). 

 

3.5.2 CD1 assembly, trafficking and antigen sampling 

Following translocation into the endoplasmic reticulum (ER), CD1d forms a temporarily 

complex with calnexin and calreticulin. The temporary complex in turn recruits ERp57, 

which catalyzes disulfide bonds in the CD1d heavy chain.  Fully oxidized CD1d 

disassociates from the complex, associates with 2-m and enters the secretory pathway. 

CD1b strictly requires the association with 2-m in order to exit from the ER to the cell 

surface, while a portion of CD1d can exit without the light chain. Self-lipids such as GPI, 

PI or PtdIns may be loaded onto CD1 during assembly in ER and trafficing through the 

secretory pathway and endocytic pathways. These self-lipids are rarely antigenic and 

appear to act as chaperones that aid in the assembly of nascent CD1d molecules (Figure 

14). 

 

After synthesis and assembly in the ER, majority of CD1b and CD1d are transported to 

the plasma membrane and thereafter reinternalized. Each isoform differentially traffics 

through the endocytic pathway, where preloaded self-lipid can be exchanged for 

endosome-resided self- or microbe-derived lipids before transporting to the plasma 

membrane (130, 131). CD1b and CD1d are specifically targeted to the late endosomes 

and lysosomes through the interaction of a tyrosine-based motif in the cytoplasmic tails 

and the adaptor protein AP-3. Functionally AP-3-dependent trafficking is essential for 

mouse CD1d presentation of endosome-derived lipids to V 14-CD1d restricted NKT 
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cells, but is dispensable for human V 24 CD1d-restricted and mouse NKT with diverse 

TCRs (130, 131). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 CD1 assembly and traffic (Brenner 2005). 

 

Earlier methods described by Kronenberg (56) in measuring CD1d binding were 

conducted using plate-bound soluble CD1d molecules and these molecules were purified 

from insect tissues. As CD1 molecules are quite hydrophobic and easily get aggregated, 

they immobilized the purified CD1 molecules by attaching them to microplates and 

loaded the molecules with known ligands. Thereafter the complexes were determined by 

hybridomas. Indeed, glycolipids (GLs) are also hydrophobic and easily stuck to tissues, 

so it is difficult to deliver a vaccination just by introducing GLs. It is reasonable to think 

that GLs or lipids are loaded onto CD1-expressing DC in vivo before the induction of 

NKT function. However no data have shown the direct binding of GLs to CD1d 

molecules in living cells, especially DC. 
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Accessory molecules in CD1 presentation (quality control) 

MTP (microsomal triglyceride transfer protein) is an ER-resident protein able to transfer 

lipids between vesicles, especially in the loading of self-lipids onto the CD1d-binding 

groove in the ER. It is also involved in the assembly and secretion of apolipoprotein B 

(ApoB). Deletion of MTP alters CD1d trafficing, decreases surface expression of CD1d 

and abrogates CD1d presentation to both NKT and iNKT. 

  

SAPs (sphingolipid activator proteins) are small cystein-rich proteins that have an 

essential role in the degradation of glycosphingolipids in lysosomes and lipid-transfer to 

CD1. Four SAPs (saposins A-D) are derived from the common precursor pro-saposin, but 

differ in their mechanical action. SAP-deficiency results in lysosomal storage disorder 

and diminishment of lipid presentation. Thymocytes from the deficient mice fail to 

activate auto-reactive iNKT or even mice completely lack NKT cells, suggesting a role of 

saposins in loading lipids in the thymus for the generation of positive selection in mice 

(130, 131). 

 

Adapter proteins (AP) The AP family, AP-1, -2, -3 and -4 recognizes the tyrosine-based 

sorting motifs in the cytoplasmic tails and targets proteins to specific subcellular 

compartments. AP-2 is important for the internalization of proteins from the cell surface, 

such as hCD1d and mCD1d. AP-3 is important for late endosomes and lysosomes 

targeting, in the case of hCD1b and mCD1d (130, 131).  

 

It should be noted that most newly synthesized MHC-II move directly for the Golgi 

network to endosomes directed by Li, while CD1b and CD1d move rapidly to the cell 

surface after exit from the Golgi and recycle back to the endosomes. Secondly, MHC-II 

trafficking and presentation are not influenced by the absence of AP-3, indicating MHC-

II and CD1 employed different routes for the entry of the endosomal compartments. 

 

3.5.3 Carbohydrate antigen processing for CD1 presentation 

Proteolytic processing in the endocytic compartment is crucial for MHC-II presentation, 

for the degradation of Li and the processing of extracellular proteins. It is likely that there 
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are analogous processes of lysosomal carbohydrate processing for CD1 presentation.  -

galactosidase A, located in lysosomes removes the outer sugar to yield the 

monosaccharide from certain -GalCer analogues for the recognition of V 14i NKT 

cells. -GalCer is a glycolipid extracted from the marine sponge Agelas mauritianus. -

hexosaminidase, a lysosomal enzyme, removes -linked N-acetylgalactosamine 

(GalNAc) residues on glycosphingolipids, ganglio-, globo- and lacto-series to expose 

iGb3, an endogenous mammalian antigen, recognized by V 14i NKT. Mice deficient in 

this enzyme do not have V 14i NKT cells and also unable to stimulate the corresponding 

hybridoma, indicating iGb3 is likely required for the positive section of V 14iNKT cells 

in the thymus. 

 

3.5.4 NKT Cells 

NKT cells have the ability to rapidly secrete a variety of cytokines including IL-4, IFN-  

and TNF-  within a few hours after activation.  The activation of NKT cells can lead to 

either suppression or stimulation of immune events making them potential regulators of 

the immune responses against certain microbes, tumors, self-tolerance and autoimmune 

diseases. In addition, NKT cells can directly cytotoxic for infected and tumor cells (52, 

53). 

 

NKT cells represent a unique lymphocyte lineage and were originally characterized in 

mice as cells coexpressed a rearranged T cell antigen receptor (TCR), the CD3 complex 

as well as several receptors that were first identified on NK cells, such as NK1.1 (C type 

lectin) and various Ly49 molecules. However, sometimes NKT cells do not express 

NK1.1 and also conventional CD8+ T cells can acquire NK1.1 during activation. 

Invariant NKT cells express a V 14-J 18 rearrangement and respond to GalCer 

presented by CD1d molecules. Humans have a homologous population of T cells with an 

invariant V 24 rearrangement, namely (V 24-J 18 NKT cells). These cells are known 

by several names including type I NKT cells, invariant (i) NKT cells and V 14i NKT 

cells (52, 53).   
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V 14i NKT cells arise in the thymus and do not reach significant levels until three weeks 

after birth. V 14i NKT cell development requires the expression of NF-K 1 (p50) in a 

cell-autonomous manner and differentiation requires the transcription factor T-bet. 

Adaptor protein AP-3 and saponins are also required for the V 14i NKT cell 

development. In contrast to conventional thymocytes, most of the V 14i NKT cells in the 

thymus are part of a mature, immune competent population, capable of producing IL-4 

and INF-  immediately after TCR engagement (52, 53). 

 

Two models have been proposed regarding the V 14i NKT cell development. 

Instructional model proposes that V 14i NKT cells are developed from double-positive 

thymocytes and further instructed by endogenous lipids presented by CD1d. Pre-

commitment model suggests a subset of thymocyte is pre-committed to become V 14i 

NKT cells before antigen receptor rearrangement (52, 53). 

 

Positive selection is mediated by CD1d-expressing bone marrow-derived cells rather than 

by MHC-expressing cortical epithelial cells as for the selection of the conventional T 

cells. Autoreactive V 14i NKT ells also undergo negative selection in thymus (52, 53). 

IL-15 plays the dominant role in governing the homeostasis of these cells, including 

survival, turnover and lymphopenia-induced or homeostastic proliferation. Lymphopenia-

induced proliferation does not require CD1d expression. The requirement of IL-15 and 

independence of TCR engagement for their proliferation make these cells more similar to 

conventional memory T cells (52, 53).  

 

V 14i NKT cells are most prevalent in the thymus, spleen, liver and bone marrow, but 

less abundant in lymph nodes and rare in the intestinal mucosa. They express a set of 

chemokine receptors consistent with a tissue-seeking function of these, with relatively 

little expression of CCR7. Mouse V 14i NKT cells can migrate to the sites of 

inflammation in the lung, liver and spleen. Activated V 14i NKT cells have both 

perforin-dependent and FasL-dependent cytotoxic functions, which are dependent on 

TCR engagement. Activated NKT cells can show a strong anti-tumor effect in some 

systems and can also provide an adjuvant effect during a vaccination process.  
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Understanding the mechanisms behind these effects may guide therapeutic strategies 

based on NKT cell activation (52, 53). 
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4. Adenosine (Ado) effects on immunity and inflammation 

 

4.1 Introduction 

The purine nucleoside adenosine (Ado) is normally present in body fluids at low 

concentrations (20-300 nM), but these levels rise markedly during conditions such as   

hypoxia, inflammation and tissue damage (132-134). Ado is formed by breakdown of 

ATP and other adenine nucleotides intra- and extracellularly, acts on four, evolutionarily 

conserved and pharmacologically well-characterized G protein-linked receptors and 

regulates several physiological processes (132, 134, 135).   

 

4.2 Formation of endogenous Ado 

Under normal condition, Ado is continuously formed intra- as well as extracellularly. The 

intracellular production results from either the intracellular breakdown of AMP 

(Adenosine 5’-monophosphate) or the hydrolysis of S-adenosyl-homocysteine by a S-

adenosyl-homocysteine hydrolase. AMP is formed during energy production from ADP 

and ATP.  At physiological conditions, AMP is at low levels in cells and any AMP that 

accumulates diffuse out of the cell down its concentration gradient or is converted to 

ADP or ATP.  In addition, Ado is unstable and its half-life (1.5sec) is limited by 

deamination (Ado deaminase or ADA) or cellular reuptake (Figure 15) (132, 134, 135). 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Diagram shows the metabolism of adenosine (Adapted from Livingston 2004). 
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4.3 Adenosine receptors 

There are four established Ado receptors cloned, namely A1, A2A, A2B and A3 (Figure 16) 

(135). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Ado receptors and their effect on cAMP (Adapted from Sitkovsky 2004). 

 

The A1 receptor has a very high affinity for Ado and for some Ado analogues. A1 receptor 

is coupled to Gi proteins mediating the inhibition of adenylyl cyclase. A1 receptor is found 

in heart muscle, central nervous system and inflammatory cells. A1 receptor activation 

can also inhibit Ca2+ channels. As A1 and A3 receptors are coupled to Gi, G0 and Gq 

proteins, they not only mediate inhibition of adenylyl cyclase but also activation of 

phospholipase C. Phospholipase C cleaves phosphoinositide into diacylglycerol and 

inositol, the latter mobilizes Ca from intracellular stores. Activation of pertussis toxin-

sensitive Gi protein induces an intracellular Ca2+ transient and actin reorganization. 

 

The A2A receptor activates adenylate cyclase resulting in the elevation of intracellular 

cAMP. A2A receptors are more widely distributed than A1 receptors and are found in 

nerve terminals, mast cells, airways, smooth muscle tissue and circulating leukocytes. A2 
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receptors are subdivided into the A2A and A2B receptors, based on high and low affinity 

for Ado, respectively. 

 

A3 receptor activation leads to the inhibition of adenylyl cyclase, but directly stimulates 

phospholipases C and D and also influx of calcium and its release from intracellular 

stores. 

 

4.4 Immune regulation by Ado 

Ado receptors (ARs) are expressed on many cell types, including macrophages and DC 

and are important for both innate and adaptive immune responses. ARs expressed on 

these cells regulate events such as cellular trafficking, adhesion, chemotaxis, cytokine 

and chemokine synthesis, pinocytosis, membrane phenotypes and T helper cell functions. 

In human DC it has been shown that the AR expression profile is related to the 

differentiation of cells and that Ado has distinct biological effects in immature and 

mature DC (136-144). Extracellular Ado induces apoptosis of immature thymocytes or 

even deletion of T and B cells during Ado deaminase deficiency (ADA) (142). Under 

hypoxia conditions, Ado can also inhibit peripheral T cell proliferation and cytokine 

production through A2A activation. Ado inhibits the ability of activated NK cells to 

destroy tumor cells and this effect is rapid and induced at rather low concentrations. Both 

perforin- and FasL- pathways can be inhibited by Ado through cAMP-elevating A2A 

receptors (142). However, the effect of Ado on antigen cross-priming by DC at different 

stages of differentiation and activation had not been earlier investigated. 

 

The A2A receptor, acting through a Gs protein and cAMP, has been most extensively 

studied and was shown to downregulate activated immune cells and to limit the in vivo 

inflammatory response to LPS. The accumulated extracellular adenosine at sites of 

inflammation has thus been suggested to serve as “reporter” molecule and A2A receptors 

as “sensors” for the prevention of damage to surrounding normal tissues (144), although 

the role of other ARs is less well known. The two-danger-model (144) states that immune 

cells not only destroy pathogens but can also cause collateral injury to normal tissues if 

not tightly controlled. The surprisingly low incidence of postinflammation damage to 
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normal tissues indicates danger-sensing physiological mechanisms act by negative 

feedback inhibition. It has been suggested that a local decrease in the oxygen supply 

(such as occurring at sites of inflammation and in tumor tissues) results in an increased 

concentration of Ado which, by acting on Ado A2 receptors and downregulates immune 

and inflammatory responses. Activation of high-affinity A2A and low-affinity A2B 

receptors (Gs-coupled) causes the accumulation of intracellular cAMP, which has a strong 

immunosuppressive effect (144).   
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AIMS OF THE THESIS  

 

 

1. To investigate if tissue cultured mouse myeloid DC can process the exogenous 

OVA protein for MHC class I presentation in a vesicular pathway (VP) distinct 

from the classical, cytosolic MHC class I pathway. 

2. If so, to characterize the VP in terms of subcellular localization, its expression 

during DC activation by some TLR ligands and the mechanical disruption of the 

cells and its dependence on the protease Cathepsin S, cytokines including type I 

IFN and IL-12, as well as the adaptor protein MyD88. 

3. To investigate if and how, the purine nucleoside Adenosine influences the cross-

presentation of OVA by DC. 

4. To detect the loading of some exogenous and newly synthesized tumor-associated 

glycolipids onto mouse CD1d presenting molecules expressed on viable cells, 

including DC. 
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RESULTS AND DISCUSSION  

 

Vesicular MHC-I processing pathway (papers 1-3) 

Part of the present thesis work is an extension of earlier findings in our group which 

showed that T2-Kb/Db cells could present Sendai virus antigen in a BFA-resistant 

endolysomsome-like compartment (145, 146). T2 cells are defective in the expression of 

TAP, therefore impaired in the endogenous antigen processing for MHC-I presentation. 

We have here used in vitro grown DC and the model antigen OVA due to the availability 

of several established methods for the detection of the generated SIINFEKL peptide 

bound to Kb, namely mAb 25-D1 (147), T-hybridoma B3Z (148) and OT-1 transgenic 

mice (149). The T hybridoma assay is a more sensitive method to detect physiological 

levels of SIINFEKL/Kb complexes but disadvantages of this assay are the difficulties in 

directly quantifying the SIINFEKL/Kb complexes and the quantitative variations in the T 

hybridoma response.  For that reason the use of flow cytometry after staining with the 

mAb 25-D1 represents a complementary method.   

 

We generated DC from mouse bone marrow in vitro in the presence of rGM-CSF and 

rIL-4, according to the established protocol by Inaba K (25) with minor modifications 

(96). We named the day 5 proliferating/clustering DC immature DC (iDC), expressing an 

immature phenotype (low expression of MHC and co-stimulatory molecules) and sub-

cultured DC resting DC (rDC), with intermediate phenotype. Activated DC (aDC) were 

derived from resting DC treated with stimuli, such as different TLR ligands or 

mechanical cellular disruption.   

 

Paper 1 

We found that iDC express a TAP-independent, BFA-, lactacystin-resistant, but 

lysosomotropic amine-sensitive OVA processing pathway, distinct from the classical 

cytosolic MHC-I processing pathway. Further, Db and Kb-binding peptides were used to 

follow peptide binding, internalization, exchange in Kb and transport of MHC-I/p 

complexes to the cell surface.  We found that both iDC and rDC, and even the RMA-S 

(150) cell line could perform these functions, demonstrating that these events can 
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function independent from processing in the VP.  We conclude in Paper 1 that iDC 

express a fully functional endolysosomal vesicular MHC-I processing pathway (VP) 

guided by the chaperon function of MHC-I molecules. 

 

Activated DC (iDC and aDC) differ from rDC as that they express a highly endocytic 

capacity and are able to capture large amounts of extracellular fluids and cell-associated 

proteins by micropinocytosis and other uptake mechanisms. Also the distribution and 

function of lysosomes are different in activated as compared to resting DC as these in 

resting cells withdraw from the endocytic compartment and are tightly clustered in the 

perinucleus and thus show a relatively low proteolytic activity.  How this is regulated 

remains to be established. 

 

Peptide exchange is a well-established mechanism especially in MHC-II pathway, in 

which the class II-associated Li peptide (CLIP) is exchanged for a newly generated 

MHC-II binding peptide in the endocytic compartment by the help of H-2DM, a MHC-II-

like molecule (151). Peptide exchange can also occur with MHC-I both in the ER and the 

endolysomsomes (151). MHC-I assembly and the formation of MHC-I/p complexes (in 

the case of endogenous antigens) are accomplished in the ER, by the competition with a 

TAP-derived endogenous peptide (152). Peptide exchange in the endosomes or in the 

post-Golgi compartment is important for the VP by providing this pathway with peptide 

receptive MHC-I (153).  Peptide exchange reactions are facilitated in the acid 

environment of the endocytic pathway where the pH ranges from pH6.5 to pH5 or even 

lower in lysosomes (154). The optimal pH for peptide exchange is usually in the range of 

pH4.5-5.5 (155). 

 

In our peptide exchange system, we first blocked the routes for the nascent MHC-I 

molecules using BFA which disrupts the Golgi function. Then we loaded a stabilizing 

peptide at 37°C to saturate surface and endosomal MHC-I by peptide exchange and also 

to allow the internalization of free peptides. After washing away the free unbound 

peptides in the presence of BFA, the second peptide was added at 37°C or 15°C (non-

internalizing conditions) to look for the potential peptide exchange intracellularly or at 
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the cell surface. Results showed that peptide exchange in MHC-I exist at 37°C, but not at 

15°C, suggesting that it only occurred in the intracellular compartment as peptide binding 

to membrane MHC-1 readily occurs at 15°C (data not shown). 

 

Paper 2 

We further explored the VP by using a T cell hybridoma (B3Z) recognizing the same 

structure as the 25D-1 mAb does. We reproduced the findings in paper 1 by showing that 

day 5 iDC transiently expressed an endolysosomal vesicular MHC-I processing pathway. 

In addition, we also found that this VP could be restored by CpG ODN activation of sub-

cultured rDC. Both iDC and CpG-activated DC could regurgitate antigenic materials to 

the cell surface for the binding to surface MHC-I molecules, consistent with earlier 

findings that activated macrophages can operate a TAP-independent MHC-I processing 

by peptide regurgitation (87). We also show in paper 2 that iDC secret soluble proteases 

which can process OVA at the extracellular phase. We conclude in this paper that iDC 

express multiple pathways for the processing of OVA for MHC-I presentation. 

 

A special non-cytosolic compartment for the processing of extracellular antigens for 

MHC-I presentation has been described by other groups using different forms of 

antigens, including bacterially fused OVA (87-90), bead-coupled OVA (91, 92) cell-

associated viral particles (93-95) as well as soluble OVA as used in paper 1 and this 

paper.  Phagocytes have two compartments for proteolysis, endolysosomes and cytosol. 

Endolysosomal MHC-I processing may produce quantitatively and qualitatively different 

peptides as compared to those formed in the classical, cytosolic pathway. It would thus be 

interesting to isolate MHC-I bound peptides from these two different processing 

compartments to establish the amount of over-lapping. Over-lapping peptides could be 

formed due to the presence of carboxypeptidases in endolysosomal compartment and the 

similar MHC-I chaperon function in both compartments. However, an immunogenic 

peptide formed only in endolysosomes after the internalization of a secreted tumor 

antigen has been recently demonstrated in a tumor system (109, 156). CTL with 

specificity for such peptides could thus kill target cells which can present them, like 
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certain types of tumors and possibly also DC and other phagocytic cells as part of an 

immunoregulatory function. 

 

The endocytic compartment contains cysteine proteases and other enzymes. A major 

breakthrough for the endocytic MHC-I processing is the finding that the VP requires the 

cysteine protease Cathepsin S (Cat S). OVA incubated with isolated phagosomes from wt 

DC resulted in the formation of SIINFEKL/Kb complexes but this did not occur with 

phagosomes isolated from the Cat S knockout DC. Moreover purified Cat S itself can 

process OVA into the SIINFEKL peptide. In one study, it was also found that the Cat S 

knockout mice mounted impaired CTL responses against two viral epitopes, 

demonstrating a critical role of this protease also in vivo (91).     

 

Where does the SIINFEKL peptide bind to Kb after its generation in the VP? In the 

endolysosomes or at the cell surface after regurgitation?  Regurgitation of peptides to the 

cell surface was demonstrated in some system using bacterially fused OVA and activated 

macrophages (87) and also in our own system, but was not always found reproducible 

(91), suggesting the possibility of intra-vesicular peptide binding. Most groups used fixed 

(paraformaldehyde) APC as the responder cells for the assessment of regurgitation. 

Fixation provides a high level of empty MHC-I molecules, by chemically cross-linking, a 

procedure which may not be representative for in vivo conditions. If the formation of 

MHC-I/p complexes happens within the VP, the next question would be how MHC-I 

molecules traffic to this compartment? Internalization by invagination from the plasma 

membrane could bring MHC-I molecules to the endosomal compartment. Supporting this 

possibility is that the VP was operated in the presence of BFA, which blocks transport of 

nascent MHC-I proteins from the ER, although long-term (6h) incubation with BFA may 

deplete MHC-I molecules in the post-Golgi pool. As an alternative route, MHC-I might 

be targeted into endosomes by the Li chain directly from the ER (106, 157) and lastly 

membrane MHC-I molecules could constitutively recycle between the cell membrane and 

the endosomes (105).  
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Of particular interest in paper 2 is the finding that an immunostimulatory CpG ODN 

could restore the vesicular MHC-I processing pathway (VP) in subcultured resting DC. 

CpG, a TLR-9 ligand has been shown important for cross-priming (158, 159) and also 

inducing the early upregulation of endocytosis (160). CpG has been used as an adjuvant 

in both tumor immunotherapy and also for the control of models of autoimmunity (8, 

161). DC activation by CpG may be accompanied by an alteration of the endocytic 

compartment and the trafficking of MHC-I molecules, in addition to the upregulation of 

the endocytosis. We thus considered it interesting to investigate if CpG is unique with 

regard to the restoration of the VP or if also other TLR ligands could have the same 

effect.    

 

Three steps are involved for the generation of MHC-I ligands, namely degradation by the 

proteasomal complexes, trimming in the downsteam of proteasomes and in the ER and 

the rapid destructions of the peptides if these are not chaperoned by MHC-I molecules. It 

has been estimated that non-proteasomal processing could contribute to one third of the 

all MHC-I bound peptides (162). Our finding that iDC can secrete proteases into the 

supernatant, which process OVA for presentation on H2-Kb, is similar to that described 

in a MHC class II processing system (163) using HEL and beta-casein proteins, 

Santanbrogio et al. reported that supernatants from iDC process these proteins for MHC 

class II presentation as they contained molecules required for peptide loading onto MHC 

class II at the cell membrane (163).  The processing by secreted proteases in our system 

is impressive, as the OVA protein has a quite complicated structure containing three 

domains, subdomains and a high number of disulfide bonds. The position of the 

SIINFEKL peptide (aa 257-264) in domain II and the flanking sequences may confer a 

special sensitivity to the involved proteases, explaining the immunodominant character of 

this CTL epitope (164). At present we have no clear idea which proteases are involved 

during extracellular processing, although preliminary experiments with inhibitors (data 

not shown) implicate serine proteases (inhibition by AEBSF) but not aspartic amino acid 

proteases (no inhibition by pepstatin). Interestingly, the cysteine protease inhibitor E64 

increased OVA processing markedly, demonstrating that the supernatants probably 

contain a mixture of proteases which can both favor and inhibit formation of the 
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particular H2-Kb binding SIINFEKL epitope in the present system. As supernatant 

processing is quite slow (requiring 48 h), it probably reflects only part of a more efficient 

in vivo processing system that includes both secreted and endolysosomal proteases. This 

supposition is supported by the faster and more efficient processing detected in the 

regurgitation assay (92). Nevertheless, our results with secreted proteases demonstrate a 

remarkable redundancy in MHC class I processing pathways and should be helpful in the 

further characterization of proteases involved in this type of processing.  

 

Paper 3 

We further characterize the VP by using Cathepsin S (Cat S) knockout mice and also by 

investigating other stimuli in terms of the capacity to restore VP in resting DC, namely 

LPS (TLR-4), Zymosan (TLR-2) and mechanical disruption. The vesicular MHC-I 

processing of OVA could be directly visualized in wt DC but not in the Cat S-/- cells and 

the latter cells also failed to process OVA in the VP by iDC and CpG-activated DC in the 

present system, consistent with the early findings by Shen et al (91). LPS and disruption 

can both active the VP, but not zymosan. We further show that the functioning of this 

pathway does not depend on type 1 interferon and IL-12, but requires the adaptor protein 

MyD88.  

 

Different TLRs, including TLR-2, 4, 3 and 9, have earlier been found to be important for 

the cross-presentation of exogenous antigens for MHC-I restricted T cell responses (8, 

161) and this is also true for the TLR-linked MyD88 adaptor protein in several 

independent in vivo systems (165, 166). However, which MHC-I processing pathways 

that DC employ to generate these in vivo responses is presently not clear although the in 

vivo importance of the VP has been clearly demonstrated in other model systems (91, 

110). DC activation through TLR receptor stimulation can lead to both the production of 

different inflammatory cytokines and type I IFN (2, 161). However, neither type I IFN 

nor the IL-12 cytokine (at least in the case of VP activation by cellular disruption) seems 

to be involved in the activation of the VP in the present system. Thus, other inflammatory 

cytokines might be involved. 
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Interestingly, a mere mechanical disruption of cells by repeated pipetting could also 

activate the VP in resting DC as earlier demonstrated by Delamarre et al. in a similar 

system (167). The disruption-induced VP was detectable at 4h, peaked at 24h and was 

further increased at this time point by the simultaneous CpG stimulation. VP activation 

by cellular disruption was found to be independent of IL-12 synthesis in the cultures and 

the development of an activated cellular phenotype. Cellular disruption of DC clusters 

has earlier been shown to induce the maturation of cells and to potently stimulate cross-

presentation by DC (167). Although cellular disruption can lead to the release of heat 

shock proteins (168), an event which might influence the endosomal compartment 

without altering the cellular phenotype of cells, the underlying MyD88 dependent 

mechanisms that explain VP activation by cellular disruption remains unclear. 

Mechanically stressed cells may use “mechanotransduction” for the activation of 

transcription factor and genes coding for, for instance, inflammatory cytokines (169).  

This can be further studied using expression arrays and proteomics. 

 

Zymosan did not induce VP expression in resting DC but rather favoured cytosolic 

processing. Zymosan is a substance derived from the yeast cell wall and composed of 

polysaccharide chains of various molecular weights.  It directly activates macrophages 

and induces strong inflammatory responses but it is not degradable (170). This property 

might facilitate the transport of OVA from the uptake vesicle to the cytosol by “leakage” 

and thus favours the expression of the classical cytosolic MHC-I pathway. 

 

Vesicular processing for MHC-I presentation is similar to the classical MHC class II 

processing and presentation pathway in depending on defined cellular events such as 

uptake of exogenous antigens, the intra-vesicular processing of these, loading of peptides 

onto MHC molecules and the transportation of these complexes to the cell surface (171). 

Which of these steps that are activated in resting DC to allow the expression of the VP 

and how this occurs in response to the different stimuli in the present system are unclear. 

There are several possibilities like the regulation of Cat S activity by the cystatin C (anti-

protease) (54, 172, 173) or the regulation of the vesicular trafficking, both to the 

processing compartment and to the cell surface (174). The presently generated knowledge 
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in terms of the expression of vesicular and cytosolic MHC-I processing pathways at 

different stages of DC maturation and activation could be clinically useful if extended to 

human cells. For instance, both active vaccination and cellular DC immunotherapy 

against cancer and infectious diseases might be optimized if multiple MHC-I processing 

pathways are exploited in a controlled way. 

 

DC have many functions, including the induction of self-tolerance, maintenance of the 

peripheral naïve T cell pool, induction of immunity against infectious diseases as well as 

the induction of regulatory T cells which can suppress the excessive immune responses 

and prevent autoimmune diseases. DC originate from hematopoietic progenitors in the 

bone marrow which seed into the spleen, the lymph nodes and other lymphoid tissues via 

the blood. “Blood-derived” DC constitute 100% in the spleen but 50% in LN as LN can 

also receive DC from the afferent lymph vessels (Figure 17). Monocytes in the blood can 

reside in tissues and further develop to iDC in mucosal, dermal or epidermal sites, as the 

Langerhans cells (LC). 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 DC development in vivo. 

 

Our in vitro DC system may be somewhat representative for the DC development in vivo 

with proliferating immature DC (our day 5 iDC) present in lymphoid tissues and rDC and 

aDC in peripheral tissues, representing steady-state and microbially activated cells, 
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respectively (Figure 17). Steady-state resting DC (our rDC) may be important for the 

sampling of tissue-derived antigens and the presentation of these in lymphoid tissues to 

maintain the peripheral self-tolerance and the size of the peripheral naive T cell pool.  

Immature DC in lymphoid tissues (our iDC) may have similar functions in relation to 

internalized, exogenous self-antigens.  Upon microbial infections (our aDC) these DC 

migrate to the draining LN for the presentation of the antigens to responsive T cells. The 

outcome of this interaction in terms of tolerance-induction, T cell priming or even 

regulatory T cell expansion differs according to the context of the activation step. 

Cytokines (signal 3) together with the co-stimulatory molecules (signal 2) and TCR-

MHC/p interaction (signal 1) cooperate and determine the end function of DC. 

 

Day 5 DC (iDC) in our culturing system may thus represent cells that are found in the 

lymphoid tissues entering from the blood. It has been shown that the turnover of DC is 

fast (2-5 days) requiring a considerable constant input of DC precursors to maintain the 

DC homeostasis.  In addition, in contrast to the in vivo situation our iDC are totally CD8 

negative which may be explained by differences in vivo and in vitro in terms of amounts 

and composition of the local cytokines during the formation of DC.  

 

The expression of the VP at different stages of DC maturation and activation might thus 

allow the processing and presentation of both self and microbial antigens for the 

fulfilment of several different DC functions,  

 
Cross-presentation regulation by Ado (Paper 4) 
 
Levels of the purine nucleoside adenosine (Ado) increase during hypoxic conditions such 

as inflammation, tumor growth and tissue damage. The amount of the increased extra-

cellular adenosine can range from 10 to 20 μM, with its physiological level being only 

20-300 nM (132, 134). Ado can exert a large variety of effects on many different tissues 

and organ system, including the immune system. For the past years, Ado has been shown 

to regulate some parameters in DC biology, including phenotypes, cytokine and 

chemokine secretion through one or more of the four known Ado receptors that are 

differently expressed in resting and activated cells. However, to our knowledge, there 
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were no earlier studies on the effect of Ado on the cross-presentation function in DC. 

This might be important to study as DC often are present and functional at sites which 

typically can contain elevated levels of Ado.  

 

In this paper we investigated how cross-presentation of exogenous OVA was affected by 

Ado. We used a stable form of Ado, 2-chloro-Ado and the already established cross-

presentation system, used in paper1-3 for this study. We found that cross-presentation 

was strongly and dose-dependently inhibited by Ado in resting DC but did not have this 

effect in iDC and aDC. This inhibition could be overcome by an Ado receptor antagonist 

(CGS15943) and by pertussis toxin, a Gi-protein antagonist, demonstrating that it was 

mediated by an Ado receptor (A1 or A3). By quantitative PCR, we found that the 

expression of the A1 receptor mRNA was increased in resting DC and, in addition, that 

the inhibition was not seen in resting DC derived from A1-/- mice. We concluded the 

inhibitory effect in the present system was mediated by the A1 receptor. 

 

We next asked which step in the cross-presentation process was inhibited by Ado. In 

paper 1-3 we suggested the rDC processed exogenous OVA by the “leakage pathway” in 

which internalized OVA somehow entered the cytosol and merged with the classical 

MHC-I processing pathway. In order to know if Ado blocked classical MHC-I processing 

we intentionally introduced OVA into the cytosol by electroporation in the presence of 

Ado, BFA and lactacystin, the latter two being the Golgi and proteasome inhibitor, 

respectively and measured the formed SIINFEKL/Kb complexes on the cell surface by 

flow cytometry. We found that Ado had no inhibitory effect on the processing of 

cytosolic OVA in contrast to BFA or lactacystin which inhibited this process. In addition, 

Ado did not inhibit the uptake of FITC-OVA into cells or the binding of exogenous 

peptide to Kb. Intracellular staining showed that the SIINFEKL/Kb complexes were 

retained intracellularly in the presence of Ado. We conclude from this study that 

adenosine suppresses cross-presentation in resting DC by acting on the A1 receptor and 

this inhibition is a consequence of the retention of intracellular MHC-I/p complexes.   
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This part of the study seems contradictory to our earlier findings (papers 1-3) that resting 

DC mainly process OVA through the classical cytosolic MHC-I pathway, compared to 

iDC and aDC using a vesicular MHC-I processing pathway (VP). The question is why 

BFA blocked OVA processing in resting DC, not iDC and aDC. Can BFA have other 

functions than blocking the Golgi apparatus? BFA is a fungal metabolite that has 

profound and dramatic effects on the secretory pathway. It not only inhibits secretion, but 

also causes massive morphological changes causing by the rapid loss of -COP, the latter 

is usually found throughout the Golgi stack. Typically BFA induces the Golgi apparatus 

to disintegrate so that many Golgi enzymes are redistributed to the ER. However, these 

changes are fully reversible when the drug is removed (175). Of particular interest is that 

BFA also has an effect on the endosomal system. -COP is not found in endosomes 

(175), instead the target for BFA here is the sec 7 domain (176, 177) which is present in 

guanine Arf nucleotide-exchange factors (Arf-GEFs) involved in the recruitment of coat 

proteins important for vesicular formation and trafficking both in the Golgi and in the 

endosomal systems (176, 177). It is thus possible that endosomal recycling in resting and 

activated DC is differently regulated in such way that the process becomes resistant to 

BFA in cells expressing an activated phenotype, possible by becoming independent of 

Arf-GEFs or on Arf-GEFs with a sec7 domain insensitive to the inhibitory effect of BFA 

such as CYT and EFA6 (176, 177). If so, the level of DC activation has to be considered 

when BFA alone is used to characterize MHC-I processing pathways. 

 

 A1 receptor signalling can influence membrane dynamics through effects on actin re-

organization. The cytoskeleton regulates many events including cell morphology, 

motility and possibly endosomal activities. Thus it is possible that Ado acting on the A1 

receptor in rDC inhibits a VP present in these cells which is qualitatively and possibly 

quantitatively different from a VP expressed in activated cells (iDC and aDC).  If so, as 

mentioned above, this has a bearing on the interpretation of the VP expression in rDC in 

papers 1-3 although it also might further indicate the wide expression and significance of 

the VP.     
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Loading CD1 with glycolipids in living cells (Paper 5) 

In this paper we shifted to exogenous glycolipid presentation by mouse CD1d molecules. 

CD1 molecules are MHC-I-like but non-polymorphic antigen presenting molecules often 

presenting lipids or glycolipids for NKT cell recognition. These can rapidly respond (2 h 

after antigen administration) producing large amount of cytokines, including IFN-  and 

IL-4, and have profound anti-tumor and immuno-regulatory effects. Administration of the 

well-known CD1d-binding ligand, GalCer, a marine derivative (178), has been shown 

to cause the regress of metastatic tumor disease in some systems (179, 180). There are 

five CD1 variants in humans and one in mice (CD1d) in mice. CD1 molecules are surface 

glycoproteins structurally similar to MHC-I molecules, in that they consist of a heavy 

chain non-covalently associated with a 2-m chain but different as they function 

independent of TAP, are non-polymorphic, traffic through endosomes and show a 

restricted tissue distribution. 

 

CD1 presentation of certain glycolipids, which carry tumor associated carbohydrate 

antigens (TACAs) may trigger anti-tumor effects. Due to the difficulties involved in 

vaccination with hydrophobic molecules like glycolipids we reasoned that such antigens 

might be loaded onto DC in vitro for the possible use in cellular immunotherapy against 

cancer. As most studies on glycolipid binding to CD1 had earlier been done using cellular 

assays or solid-phase bound CD1 we decided to develop a method to quantitatively 

estimate the binding of glycolipid ligands to CD1 expressed on living cells. 

 

Using four newly synthesized glycolipds, bearing TACAs, we loaded these onto mouse 

CD1d molecules in living cells, including DC and EL4 cells, a lymphoma cell line.  The 

binding assay was based on using mAb which specifically recognized the carbohydrate 

part of the glycolipid structures. We found that such TACAs could be detected by flow 

cytometry on wt EL4 cells but not on 2-m knockout EL4 cells (lacking CD1d 

expression) suggesting the loading was specific for CD1d molecules. To further establish 

the selectivity of the binding, we used the well-known CD1d ligand GalCer and found 

that loading was inhibited by the addition of aGalCer in a dose-dependent manner, 

indicating the glycolipid binds to CD1d in a way similar to GalCer. Lastly we found 
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that the loading was completely abolished in CD1d knockout cells. We thus successfully 

loaded, in a quantitative way, our newly synthesized glycolipids, bearing TACAs onto 

CD1d expressed living cells, including normal DC. 

 

Kronenberg and colleagues have shown that the orientation of the sugar is more 

important for TCR recognition of the glycolipid than for the CD1d contact as CD1d 

primarily binds to the hydrophobic acyl chains (56). With that in mind, our newly 

synthesized glycolipids can be tested for immunogenicity (or other effects) in mice 

challenged with tumors expressing the corresponding TACAs.  In addition, the possibility 

for cross-talk between the innate and adaptive immune systems and activation of one of 

the systems by MHC- or CD1-restricted T cell recognition is poorly understood. 

Interestingly, it was earlier found that immunization of mice with a class I MHC-binding 

peptide carrying a galabiose structure in a central position allowing TCR recognition 

generated a subpopulation of T cells which could lyse cells loaded with a galabiose 

containing glycolipid in a MHC-unrestricted manner (181, 182). A strategy based on 

immunizations with tumor-associated carbohydrate antigens bound to different carrier 

molecules, such as MHC-binding peptides, CD1-binding lipids, or proteins activating 

helper T cells, might thus allow the selective activation of different effector mechanisms 

in the immune system with distinct anti-tumor effects. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

 
 
1.  We have clearly identified a highly efficient vesicular MHC-I processing pathway 

(VP) expressed in activated in vitro cultured DC (iDC and aDC) which is distinct from 

the classical cytosolic MHC-I pathway.  

 

It is of obvious importance to identify this VP in DC isolated from in vivo, at different 

stages of differentiation and activation.   

 

Another important aspect is to further characterize the VP at the cellular and molecular 

levels in terms of the intracellular processing compartment, the involved proteases and 

mechanisms that direct vesicular trafficking in activated as compared to resting DC. 

These studies can be done with cellular, biochemical and genetical (gene expression in 

microarrays) methods.  

 

Another future direction would be to perform functional studies which aim at defining the 

biological importance of the VP in terms of generating immune responses and other DC 

functions such as the generation of tolerance to soluble self-antigens and the maintenance 

of the peripheral naïve T cell pool. To this end the present system can easily be extended 

to in vivo conditions by the use of the transgenic OT-1 mice strain which express the 

same TCR as our B3Z hybridoma, recognizing the SIINFEKL/Kb complex.   

 

 

2. We have demonstrated that the purine nucleoside Ado, through the A1 receptor, 

suppresses cross-presentation in resting DC, most probably by retaining MHC-I/peptide 

complexes in a BFA sensitive VP expressed in these cells.   

 

The VP in resting DC may be involved in the presentation of soluble self antigens in 

secondary lymphoid tissues. The outcome of such a presentation is presently not clear but 

could be studied in mice lacking the various Ado receptors. Genes for all four receptors 
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(A1, A2A, A2B and A3) have now been silenced (knockout mice) and will be available at 

the KI (Bertil Fredholm’s group). A finer characterization of possible immune aberrations 

(altered immune responses or tolerance mechanisms) in such mice might indicate 

biological functions for the respective receptors. Already, A2A KO mice have been found 

to be less capable of controlling inflammatory responses as compared to wt mice.  

 

We have also found that different Ado-R KO mice differ dramatically in response to a 

subcutaneously injected tumor (RMA lymphoma) (data not shown) and these studies 

need to be extended to include possible mechanisms such as the trafficking of 

inflammatory cells to the tumor site and the local immune functions that these perform 

there.  

 

There is now also a respectable number of Ado-R agonists and antagonists produced by 

the pharmacological industry. Possibly some of these could be used for therapeutic 

immune interventions. 

 

 

3. We have been able to visualize and quantitate the loading of newly synthesized 

glycolipids (GLs) containing TACAs onto CD1d molecules expressed on the surface of 

living cells, including EL4 and DC cells.  

 

It will be interesting to immunize mice with DC loaded CD1d molecules with glycolipids 

containing TACAs and investigate the effect on tumors expressing the corresponding 

TACAs. By using differently loaded DC, combined with or without specific adjuvants, 

different NKT cell responses might be generated which either promote or prevent tumor 

growth.  In the long-term, these types of studies might eventually define procedures 

which generate clear anti-tumor effects similar to what has been seen with DC loaded 

with tumor-derived MHC-I binding peptides. 
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