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We used to think that if we knew one, we knew two, because one and 
one are two. We are finding that we must learn a great deal more 
about ‘and’. 

 
- Arthur Stanley Eddington



 

 

ABSTRACT 

Multiple sclerosis (MS) is a chronic neuro-inflammatory disease with 
anticipated complex etiology. Susceptibility to MS is conferred by numerous 
genes, with very low odds ratios that explain minute fractions of disease. This 
indicates that unknown factors are responsible for the remaining genetic 
contribution, termed the ‘missing heritability’.  

Due to the similarities to MS pathogenesis, we studied myelin 
oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune 
encephalomyelitis (EAE) in rats as a model for autoimmune 
neuroinflammation. Inbred rat strains show varying susceptibility to MOG-
EAE, which can be explored in different experimental populations to identify 
influences on disease, including constituents of the ‘missing heritability’. This 
thesis aims to identify components contributing to the heritability of 
autoimmune neuroinflammation. 

We established congenic strains, a backcross (BC) and an advanced 
intercross line (AIL) to genetically map influences on EAE. The polygenic 
nature of neuroinflammation was demonstrated in these populations (Papers 
I, II and III). The BC identified 16 quantitative trait loci (QTL) that regulate 
EAE (Paper III), while one AIL region was resolved to four QTLs (Paper I: 
Eae24-Eae27) and another was resolved to two QTLs (Paper II: Eae23a and 
Eae23b). This enabled identification of a candidate gene for Eae23b, ZEB1 
(Paper II), which is involved in interleukin 2 (IL2) regulation. In Paper I, we 
demonstrated that epistatic interactions influence EAE, and that allele 
combinations are more important than individual QTL effects. Additionally, we 
identified parent-of-origin effects, a likely component of the ‘missing 
heritability’, to significantly contribute to the inheritance of EAE (Paper III). 

These findings illustrate the genetic complexity involved in inheritance of 
autoimmune neuroinflammation, and prompted us to explore the use of a 
heterogeneous stock (HS) of rats to map EAE. In pilot studies (Paper IV), we 
determined that the HS can deliver high-resolution mapping, and influence from 
non-major histocompatibility complex (MHC) can be mapped, enabling the 
study of epistatic interactions involving the MHC. 

A mixed genetic and epigenetic model of inheritance for autoimmune 
neuroinflammation is beginning to emerge. This indicates that genes, 
environment and their interactions, mediated by epigenetic mechanisms, 
contribute to neuroinflammation. Identifying constituents of this inheritance 
model will help us understand autoimmune neuroinflammation, and by 
extrapolation MS. 
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1 GENETICS AND INHERITANCE 

1.1 MENDELIAN INHERITANCE 

Genetics is the science that studies variation of characteristics (traits) in 
organisms and the process of their inheritance from parents to offspring. 
Mendelian genetics, first published by Gregor Mendel in 1865-1866, presented 
a set of principle ideas that explain inheritance 1. Although Mendel did not know 
the physical source of heredity, he proposed that traits are transmitted through 
discrete units, which are now called genes. Genes correspond to regions within 
the deoxyribonucleic acid (DNA) molecule that provide instructions for 
molecules such as proteins (their structure and function), while the gene 
products actually carry out the work in the cell or organism. A change in the 
genetic code (polymorphism) can directly impact how well a protein or other 
molecules function. An individual has two copies of each gene (alleles, one 
inherited from each parent). If the alleles are identical, the individual is 
homozygous and if the alleles are different, the individual is said to be 
heterozygous. 

Mendel’s ideas were summarized into the principle of segregation and the 
principle of independent assortment. The principle of segregation proposes that 
the two alleles of a gene separate from each other (segregate) so that each 
gamete receives a single copy. The physical proof of segregation was later 
found when the process of meiosis became known, a reductional division to 
produce the gametes for reproduction, and it involves the separation of 
homologous pairs of chromosomes 2 (Figure 1). This means that a combination 
of alleles is randomly inherited from each parent. The principle of independent 
assortment states that genes for different traits assort independently of one 
another (this actually deals with chromosome assortment rather than genes in 
the strict Mendelian sense). However, this turns out to be true also for genes 
on the same chromosome when they are not linked, which means that 
recombinations have occurred that separate the genes from each other (as 
opposed to linked genes that are inherited together). These ideas were later 
integrated with Thomas Hunt Morgan’s’ chromosome theory of inheritance 
(also known as the Boveri-Sutton chromosome theory 3), which proposed that 
genes are carried on chromosomes that provide the mechanical basis of 
inheritance, to become the foundation of genetics. The same principles are 
used to discover genes that regulate a particular trait. 
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William Bateson and Reginald Punnett’s observation that some genes do not 
segregate independently during meiosis broke the principles of Mendelian 
inheritance and set forth the idea of genetic linkage. Genetic linkage describes 
the tendency of loci (genes or genetic regions) that are physically close on the 
same chromosome to be inherited together. Thomas Morgan observed that 
crossing-over events (recombinations) differed between linked genes, possibly 
reflecting the distance separating genes on the chromosome. His student, 
Alfred Sturtevant, proposed that the farther apart genes were the greater were 
the frequency of recombination between them. He developed genetic maps 
(linkage maps) with measures of distance, centimorgan (cM), determined by 
the number of recombinants between genetic markers. This provided a method 
to map traits to a location on the chromosome. Historically, phenotypic traits 
directly linked to genes (i.e. coat color) were used as markers, but today DNA 
sequences such as microsatellites and single nucleotide polymorphisms (SNP) 
are used instead. 

Figure 1. Transmission of genes 
(on chromosomes) from parent to 
offspring involves independent 
assortment and segregation. A) 
Genetic material is exchanged 
between homologous chromo-
somes by cross-overs: re-
combinations occur through 
introduction of breaks and 
exchange of DNA between 
chromatids at those breaks. 
Maternally (red, grand-maternal 
for the offspring) and paternally 
(blue, grand-paternal for the 
offspring) inherited chromo-
somes recombine to produce a 
chromosome with mixed parental 
DNA. B) The principle of 
independent assortment: homo-
logous chromosomes (depicted 
by X and x) separate 
independently during meiosis 
(metaphase I). There is equal 
chance for the daughter cells to 
inherit either the mother's or 
father's homologue for each 
chromosome. The principle of 
segregation: each chromosome 
of a homologous pair (depicted 
by blue and red) is separated 
from the other during meiosis 
(anaphase I) so that each 
gamete receives a single copy. 
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1.2 COMPLEX TRAITS AND DISEASES 

Mendelian genetics deals with monogenic traits and diseases, where a single 
gene is both necessary and sufficient to determine the trait. Single gene 
defects are responsible for many human disorders, however, the total 
frequency of susceptibility mutations for Mendelian diseases is usually below 
1% 4. Cystic fibrosis is the most common monogenic disorder and is caused by 
mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) 
gene. Genetic approaches have been successfully used to identify genes 
responsible for a range of monogenic diseases 5. However, most diseases 
depend on alleles at multiple genes that combine to confer susceptibility. 
Hallmark features of such complex diseases include etiological heterogeneity 
(where identical genes give different phenotypes), genetic heterogeneity 
(where different genes give the same phenotype), unknown mode of 
inheritance (dominance, incomplete dominance and codominance) and 
incomplete penetrance (where the risk allele has effect in only part of the 
individuals who carry it). Disease etiology is often largely unknown and many 
genes are involved, none of which is sufficient to cause disease on its own or 
that is essential for disease to develop 6. 

Many polygenic diseases, such as Crohn’s disease, type 1 diabetes 
rheumatoid arthritis (RA) and multiple sclerosis (MS), are complex in nature, 
which means that they arise from an interplay between genes, environment 
and unknown factors 4 7-9. Family, adoption and twin studies concur in 
identifying a significant heritable component of inflammatory diseases 10-12. 
Although genes have a critical role in this process, the combination with 
environmental and unknown factors determines the ultimate outcome. 

Polymorphisms within risk genes are hypothesized to ‘prime’ an individual for 
disease and may cause the individual to pass a susceptibility threshold to 
develop disease. The threshold liability model 13 can be extended to illustrate 
this hypothesis (Figure 2). An assumption is that the genetic liability for a 
complex disease is normally distributed (Gaussian) among individuals within a 
population. Additionally, a threshold value must exists where individuals with 
genetic liabilities exceeding it converts from healthy to affected, equal to the 
population disease prevalence 14. Accordingly, individuals who carry multiple 
susceptibility genes have a disease liability that is below, at or above threshold 
value. However, individuals may also carry disease resistance or modifier 
genes that alter the additive genetic liability 14. Further, exposure to 
environmental and unknown factors could shift an individual’s disease liability 
towards or away from the threshold. The advantage of this model is that it 
includes contributions of several factors to the onset of disease and can 
account for the genetic heterogeneity that exists within and between 
populations with complex diseases. Development of complex disorders can 
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thus be determined by genetic liability and environmental exposures together 
with yet unknown factors. 

 

Figure 2. Threshold models for complex diseases. A) The threshold liability model shows the 
assumed Gaussian distribution of genetic liability for complex disease in the population. 
According to the model, individuals to the left of the liability threshold are healthy while 
individuals to the right have developed disease. The proportion of individuals that exceed the 
liability threshold is equal to the disease prevalence in the population. Adapted from Haegert 
2004 15. B) An extended threshold model for susceptibility to complex disease. Susceptibility 
can be determined by an accumulation of genetic factors with weak to modest effects, 
environmental and unknown factors. Positive or negative interactions between the factors may 
alter individual effects. Factors: G = genetic, E = environmental and U = unknown. 

1.2.1 Genetic Architecture and Inheritance 

By ‘genetic architecture’, I refer to the number of genes that impact disease 
susceptibility and their spectrum of contribution (small to large effects), allelic 
effects at the given disease loci, penetrance of contributing genotype 
combinations and influence of gene-gene interactions. Hundreds of genetic 
variants have been identified by genome-wide association studies (GWAS) to 
be associated with complex diseases (http://www.genome.gov/26525384 16). 
These studies have identified risk loci in or near genes with no previous 
evidence for involvement in the etiology of the particular disease/trait, and have 
also identified loci that are shared among diseases without previously known 
common etiologic pathways. As expected, the identified genes demonstrated 
generally small effect sizes (odds ratios <1.5). Additionally, GWAS studies 
have demonstrated associations in many chromosomal regions that are 
currently annotated as gene poor 17 and the majority of associated variants fall 
outside of coding regions 16. 

A popular model for the genetic architecture of complex disease is the 
Common Disease-Common Variant hypothesis, which proposes that the 
majority of genetic contribution to common diseases is attributable to disease 
loci with common variants (alleles present in more than 1-5% of the population) 
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18 19. However, this theory is criticized because most common variants confer 
relatively small increments of risk (1.1-1.5-fold) and explain only a small 
proportion of heritability. For example, 32 loci identified for Crohn’s disease 
explain 20% of heritability 20 and six loci explain 15% of heritability in systemic 
lupus erythematosus (SLE) 21. Critics of the Common Disease–Common 
Variant model have offered the alternative Common Disease-Rare Variant 
hypothesis, which approaches Mendelian heritability. This model favors the 
existence of multiple rare variants that contribute to disease with moderate to 
large effects 22. Most of these variants will have low frequency (<5%) and low 
penetrance (<1.5-fold increased risk), although some may have moderate 
penetrance (1.5- to 5-fold risk) 23. Proponents of this model generally concede 
that common variants may be the most important from the perspective of the 
population, but argue that rare variants are more important for individual risk.  

There is evidence supporting both sides of the debate. Extreme examples of 
rare susceptibility variants with large effects manifest as rare Mendelian forms 
of complex disorders, such as maturity-onset diabetes in the young (MODY) 24. 
More relevant may be the familial form of breast cancer, in which hundreds of 
rare disease-causing variations with large contributions to heritability have 
been identified in the BRCA1 and BRCA2 genes 25-27. In inflammatory 
diseases, the common major risk factor is the human leukocyte antigen (HLA, 
MHC in rats), and rare variants have been indicated in inflammatory bowel 
disease (IBD) 28. To date, hundreds of GWAS have been completed that have 
unequivocally identified common genetic variants associated with common 
diseases 17. However, these may reflect rare variants with syntenic association 
to the identified SNP 29. The Common Disease-Common or Rare Variant 
debate can be seen as a debate about the degree to which common and rare 
variations contribute to a particular disease phenotype 30. Most complex 
diseases are likely to cover all parts of the spectrum between the extremes 
(Figure 3). Consistent with this, several genes that have been implicated in 
complex disease pathogenesis harbor multiple functionally significant rare and 
common variations 31). 

Ultimately, there is one concern at the heart of estimating heritability for 
complex disease. It may be the case that common diseases are not common at 
all. Because disease etiology is often largely not understood and biomarkers 
are often scarce, clinical symptoms are central to diagnosis. This means that a 
complex collection of symptoms can be grouped together to name a disease. 
However, if hundreds of genetic variants contribute to a single disease, and the 
genetic make-up that dictates susceptibility varies radically between 
individuals, the complex diseases we have today may actually be a collection 
of several different diseases. This could also explain the disparity in response 
to treatment among patients affected by complex diseases. The conundrum is 
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that without a more refined understanding of the genetic basis of disease and 
biomarkers thereof, more accurate categorization of the diseases is unrealistic. 

 

Figure 3. Complex Disease Variant Model. The Common Disease – Rare Variant (CD-RV) 
model fits the upper left side of the spectrum while the Common Disease – Common Variant 
hypothesis model fits the lower right. In contrast, complex diseases genes are hypothesized to 
span the spectrum between these models. Adapted from Manolino 2009 32. 

1.3 THE MISSING HERITABILITY 

Despite hundreds of identified variants for several dozen traits, they fail to 
explain most of the heritability involved. Identification of additional risk variants 
will explain some of the deficit, but is not likely to explain the majority of 
complex disease etiology.  This ultimately begs the question regarding the 
remaining genetic component that contribute to disease, termed the ‘missing 
heritability’ 33. Many explanations for this missing heritability have been 
suggested, including larger numbers of variants than anticipated with smaller 
effects (yet to be found), rarer variants (possibly with larger effects) and 
structural variants, complicated gene-gene interactions and inadequately 
accounting for environment that is shared among relatives. Additionally, 
complex disease heritability that is not accounted for by genetic variants could 
be accounted for by subtle gene-environment interactions and epigenetic 
phenomena. 

1.3.1 Numbers of Variants 

One emerging hypothesis is that a significant proportion of this ‘missing 
heritability’ will be explained by low-frequency variants with intermediate 
penetrance effects 34. There are relatively few examples of such variants 
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contributing to complex traits, possibly because they have largely escaped 
conventional gene-discovery approaches 32. Hypothetically, a risk variant with a 
minor allele frequency of 1%, an odds ratio of 3 and ~45% penetrance would 
have a stronger effect on familial risk than most known common susceptibility 
variants. Yet, given a disease prevalence of 5% in the population, this variant 
would have too low penetrance to be detected by traditional linkage 
approaches and would have too low risk-allele frequency to be reliably 
detected by GWAS 8 35 36. Familial risk is studied through linkage, which 
identifies genes inherited together with disease, while association studies 
compare allele distributions between affected and unaffected people. Possible 
contributors from these low frequency variants are so far included in the 
missing heritability component. 

1.3.2 Structural Variants 

Structural variations may also contribute to the ‘missing heritability’. They can 
contribute large to modest effects on disease, but can remain undetected by 
standard arrays. Copy number variants (CNVs), which are ~1 kb fragments 
present in variable numbers across individuals (insertions and deletions) and 
copy neutral variation (CNPs, inversions and translocations), can also arise de 
novo in an individual without any family history of the disease. This would not 
reflect an inherited variant per se and would not contribute to heritability, but 
may account for some of the genetic variability between individuals and could 
explain some of the variation that is presently attributed to environment. CNV 
analysis may also aid the identification of additional and more prevalent risk 
variants in genes and pathways involved in disease. This rapidly expanding 
area of research holds a promise to further elucidate the missing component of 
heritability. The contributions of structural variants will not be explored in this 
thesis. 

1.3.3 Technical Limitations 

Some shortcomings in experimental design and statistical analyses of genetic 
studies may also contribute to the paucity of explained variance. For example, 
genetic markers used in studies are selected to represent a portion of the 
genome. However, the selected marker may not accurately represent the 
actual risk variant. This may also be the case with tag-SNPs, which are 
selected to represent a block of several variants. Additionally, many arrays 
have to date been focused on genes, and have therefore excluded sequence 
coverage of regulatory regions. Structural variants may also been missed by 
available genotyping arrays. To understand all of the ‘missing heritability’, 
better and more varied models of the entire network of genes and regulatory 
sequences are needed. 
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1.3.4 Gene-Environment Interactions 

Complex diseases are influenced by environmental factors, which can either 
have a direct influence in the phenotype or act via gene-environment 
interactions. A role of environmental contribution is supported by geographic 
differences in disease incidence, variations in disease patterns in immigrant 
populations and variations in trends over time. Variable degrees of morbidity 
can be attributed to environmental exposures in some complex diseases 37-39. 
The spectrum of involved environmental exposures includes, but is not limited 
to, risk behavior and/or lifestyle, community factors (the physical environment) 
and social factors (the psychological environment). An attempt to explain these 
variations resulted in the ‘thrifty genotype hypothesis’, which proposes that 
genes that evolved under particular selective pressures, which is a slow 
process, have instead become risk factors in a rapidly changing environment 
40. In other words, a relatively constant genetic architecture can respond to a 
changing environment to give an unfavorable genetic variant - environmental 
exposure combination. 

The ‘hygiene hypothesis’ offers an alternative explanation to the development 
of ‘new’ diseases, as it proposes that the increased prevalence of inflammatory 
disease in the Western world is due to a decrease in exposure to 
microorganisms resulting from an increased emphasis on hygiene and the 
widespread use of antibiotics 41. This theory is supported by a decreased 
occurrence of inflammatory disease with increased exposure of infants and 
young children to microorganisms 42, daycare  and living with older siblings 43. 
Whatever the mechanism, true gene-environment interactions involve a 
difference in the direction and magnitude of a gene variant’s effect on disease 
depending on the environment.  

Equally important to identifying environmental exposures that contribute to the 
etiology of complex disease may be the critical timing of such exposures 7. For 
example, adverse intrauterine experiences have been shown to influence the 
occurrence of complex disease later in life 44. Factors that contribute to the 
intrauterine effect have been postulated to include exposure to high amounts of 
endogenous estrogen 45 and growth factors 46, birth order and parental age 47. 
Furthermore, cigarette smoking during pregnancy may exert its effect on future 
inflammatory disease through altered cytokine levels in offspring cord blood 48. 
Collection of reliable data for the perinatal period is one of the major challenges 
in assessing the effect of intrauterine factors on complex disease risk later in 
life. 

Measuring an individual’s exposure to environmental factors is often complex, 
imprecise and subject to bias, even when assessment tools exist 49. Further, 
teasing apart the contributions to heritability of environmental factors that are 
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shared among relatives is difficult. A positive family history captures a 
combination of genetic and environmental risk factors, both measured and 
unmeasured, that lead to disease expression. These influences may be 
attributed to inheritance, when they in fact originate in the environment. 
However, environmental factors that interact with genes to influence disease, 
and specifically with certain variants of genes, should accurately be included in 
heritability. This distinction will be difficult to tease apart. The availability of 
genome-wide markers can provide empirical estimates of identity-by-descent 
(IBD) allele sharing between pairs of relatives, and this may help to separate 
the components of heritability within families 50 51. Identifying and characterizing 
environmental influences on complex diseases will probably elucidate part of 
the missing heritability that is due to environment.  

1.3.5 Epistatic Interactions 

Understanding of the genetic basis underlying complex diseases is further 
complicated by the presence of gene-gene interactions. These interactions 
may be either additive or epistatic. Additive interactions depend on the sum of 
gene effects that drive a phenotype in the same direction, while epistatic 
interactions give a phenotype that is not predicted by the sum of its known 
single-locus effects. This means that the outcome of one locus is masked or 
altered by the presence of another locus. As illustrated in Figure 3, when genes 
work in concert, they can amplify (+, synergistic) or diminish (-, antagonistic) 
their individual contributions. Epistasis can occur at the genomic level, where 
one gene could code for a protein that either promotes transcription of the other 
gene (synergistic) or prevents it (antagonistic). It may also involve other protein 
complexes and receptor-ligand interactions. If more than two loci are involved, 
the complex multi-way interactions between several loci make it even more 
difficult to distinguish the effect of each 52. 

Although these effects have been considered to be of high importance in 
complex diseases, they have been largely unexplored until recently due to 
methodological and statistical limitations. One of the major challenges has 
been statistical power because the study of gene-gene interactions requires 
exponentially larger cohorts, something that is cost-prohibitive. Identifying 
effects originating from epistatic interactions has the potential to explain part of 
the missing heritability. Epistatic interactions may reduce the power to detect 
specific loci, if the effects of one variant cannot be found without the others. 
This would contribute to genuine disease loci remaining undetected; hence a 
proportion of heritability remains missing. Therefore, it is important to study 
epistatic interaction in order to accurately understand and recognize gene 
effects, so they can be properly accounted for. Additionally, these interactions 
may also explain some cases of incomplete penetrance. Variable penetrance 
of a gene can be caused by interactions with a modifier gene that masks or 
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diminish its effect, so that the gene’s phenotype expression is not present in all 
individuals who carry the variant. 

1.3.6 Parent-of-Origin Effects 

Another phenomenon that may contribute to unidentified genetic variation 
underlying complex diseases is parent-of-origin effect, whereby the phenotype 
expression depends on whether the transmission originated from mother or 
father. Parent-of-origin effects can be caused by genetic imprinting, intrauterine 
effects, maternally inherited mitochondrial genes, or paternally inherited Y 
chromosome. These effects can mask genetic variation underlying diseases by 
reducing power for detection, since only the proportion of the population who 
has inherited the risk variant from the ‘right’ parent will be informative. This may 
explain the incomplete penetrance and variable expressivity of complex 
diseases. 

Unequal transcription of parental alleles that results from epigenetic 
modification of the genome is called genomic imprinting. The resulting gene 
expression is dependent upon the sex of the parent from which the allele was 
inherited 53. A preference for mutations in the germ line of either the father or 
mother can also contribute. Base substitutions tend to have paternal origin, due 
to the greater number of cell divisions in spermatogenesis contributing to errors 
during replication 54. On the other hand, chromosomal abnormalities tend to be 
maternal in origin, likely due to the longer arrest in meiosis of oocytes 
contributing to nondisjunction events 55. 

1.3.6.1 Genomic Imprinting 

A broad definition for genomic imprinting is an epigenetic phenomenon that 
results in unequal expression of the maternally and paternally derived copies of 
a gene. This depends on epigenetic instructions (imprints) that mark the genes 
differently in egg and sperm, and inheritance of these epigenetic marks leads 
to parent-specific gene expression 56 57. Genomic imprinting is inherited via 
sequence elements called imprinting control regions (ICRs). ICRs generate 
differentially methylated regions that permit or silence expression of the 
imprinted genes 58. Several molecular mechanisms can generate similar 
patterns of uniparental gene expression, including methylation of DNA, 
acetylation and methylation of histones, modifications of local chromosomal 
structure and noncoding RNA 59. Aberrant imprinting disturbs development and 
is the cause of various disease syndromes. 

Beckwith-Wiedemann syndrome (BWS) 60 is an overgrowth syndrome involving 
locus 11p15.5 , which encompasses one of the most well-known imprinted 
regions, the H19- IGF2 (insulin-like growth factor 2) locus 61. H19 is maternally 
expressed (paternally imprinted). Further upstream is the IGF2 gene, which in 



 

  11 

contrast to H19, is expressed from the paternal allele 61. The non-methylated 
maternal allele alters the local chromosomal structure to insulate IGF2 from 
local enhancers that are required for expression 62 63. Imprinting failure leads to 
bi-allelic expression of IGF2, which is one cause of BWS 64.  

1.3.6.2 Intrauterine Effects 

Epigenetic regulation of gene promoters that is responsible for transcriptional 
expression and silencing in the adult is established during development. 
Experimental studies have shown that disturbances to this process during the 
intra-uterine period can change gene expression patterns later in life. 
Systematic effects from an exposure during this period are called intrauterine 
effect. This represents a molecular mechanism for inducing enduring 
modification in phenotype by the environment. For example, feeding dietary 
methyl donor supplementation to yellow agouti mice that carry non-agouti 
alleles (a/a) changes the methylation pattern of the Avy locus in offspring, 
which changes the coat color from yellow to brown (agouti) 65-67. This change is 
then inherited by the second generation offspring. Maternal behaviour after 
birth (during suckling) can also influence the epigenome. Poor nurturing by 
mothers induced hypermethylation of the GR gene, which lead to an increased 
stress response 68. 

1.3.6.3 Mitochondrial Genome 

Mitochondrial DNA (mtDNA) is a circular double-stranded molecule (16,569 bp 
long in humans), of which hundreds to thousands of copies are present in each 
cell. It codes for the oxidative phosphorylation system, rRNAs and tRNAs and 
is also involved in regulation of apoptosis 69. The mitochondrial genome is 
different from the nuclear genome in that it has uniparental inheritance 
(maternal), a high copy number, a lack of recombination, and a generally 
higher mutation rate. The multiple copies of mtDNA are not necessarily 
identical within an individual (heteroplasmy). 

The fact that mitochondrial genome is maternally inherited means that the 
female gamete contributes the functional mitochondrial genomes to the 
embryo. Mitochondrial genes that contribute to disease will therefore be 
detected as maternal parent-of-origin effect. Furthermore, risk variants in the 
genome that interacts with mitochondria to achieve its full effect will also be 
detected as dependant on maternally transmitted effect. 

1.4 EPIGENETIC INFLUENCES 

The incomplete penetrance and variable expressivity of complex disease may 
in part be explained by epigenetic differences 70. Epigenetic marks comprise 
stable changes in gene expression that do not require changes in the DNA 
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sequence of the gene. Such states are mediated by DNA methylation, histone 
modifications, noncoding RNAs and large nuclear-transcription factor 
complexes 71. Additionally, the molecular link between genes and 
environmental factors can be provided by the change in epigenetic marks 
induced by environmental exposures. 

DNA methylation involves the covalent addition of a methyl group to cytosine 
bases in CpG dinucleotides. This is an essential mechanism for normal 
regulation of gene expression and disruptions are implicated in many cancers 
72 73. Methylation of cytosines are, among other things, involved in the 
transcriptional silencing of transposons, imprinted genes, and genes on the 
inactive X chromosome 74. Transcriptional inhibition may occur by methylated 
CpG sites blocking the binding of transcription factors to promoters or indirectly 
by methyl-CpG-binding-domain-containing proteins that recruit histone 
deacytelase (HDAC) activity to methylated DNA, resulting in a deacetylated 
repressive chromatin structure 75 76.  

The DNA is packaged around histones into highly compacted chromatin, which 
constrains the availability of genes for transcription and other chromatin-based 
processes. The covalent modifications of histone tails have an important role in 
defining the chromatin structure. Different histone residues can be modified by 
acetilation, methylation, phosphorylation, sumoylation, citrulination etc. The 
effects of modifications depend on the specific change and the specific 
residues that are modified, resulting in either gene activation or repression. In 
general, histone acetylation opens the chromatin structure to make the DNA 
accessible to the transcriptional machinery. Methylation of lysines 4 and and 36 
in histone H3 correlates with transcriptional activation. Conversly, 
demethylation of lysine 4 and methylation of lysines 9 and 27 correlates with 
transcriptional repression 77. There is cross-talk between DNA methylation and 
histone modifications to shape the epigenome 78.  

Non-coding (nc)-RNAs can direct epigenetic change to loci that contain 
homology to their RNA sequence 79. Long non-coding RNAs (ncRNA) 
epigenetically regulate gene expression by modifying histone structure to alter 
RNA polymerase accessibility, by means of defining domains of differential 
histone methylation along the target genes 80. Long nc-RNA can also induce 
changes by associating with chromatin-modifying complexes, and are 
involved in genomic imprinting. Conversely, microRNAs (miRNAs) regulate 
gene expression post-transcriptionally 81. Sequence-specific recruitment of 
RNA-induced silencing complexes (RISCs) to messages with complementary 
sequences leads to translational inhibition, accelerated exonucleolytic mRNA 
decay, or endonucleolytic cleavage of miRNA–mRNA pairs (slicing). 
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Alterations of epigenetic states result in changes of gene expression and are 
instrumental for regulating phenotypes, in health and disease. Thus, while 
genes confer the primary information for gene expression, epigenetic 
mechanisms can decide when and where the genetic information is going to be 
expressed. For example, epigenetic differences that accumulate during the life 
time of monozygotic (MZ) twins lead to differences in expression of their genes 
82. 

1.5 THE CHALLENGE OF MAPPING COMPLEX TRAITS 

Genetic studies have been plagued by difficulties in replicating results. This is 
likely due to the previously described features of complex diseases in 
conjunction with the use of cohorts of insufficient size. The size was 
underastimated largely due to a historic over-estimation of effects size of 
contributing loci. Studies in several conditions have clearly demonstrated that 
the number of detected variants increases with increasing sample size 83. 
Sample sizes used for the initial identification of sequence variants have 
generally been modest. 

So, why do we study inheritance if it is so complicated? 

The goal in genetic research of complex diseases is to better understand 
disease etiology, in order to achieve more effective means of diagnosis, 
treatment and prevention. We expect to accomplish this either through 
elucidating functional properties of known causative variants or identifying new 
variants in which true functionality lays. Identification of variants that contribute 
to disease risk, prognosis, or response to treatment should lead to the 
development of safe and effective diagnostic and interventional strategies. The 
ultimate objective, although very distant, is a complete inventory of the 
susceptibility architecture of disease and understanding of related functions 
and mechanisms with translation to the clinic. 
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2 PHENOTYPE IN FOCUS 

2.1 MULTIPLE SCLEROSIS 

MS, also known as encephalomyelitis disseminata, is a chronic 
neuroinflammatory disease that involves damage to myelin sheaths and nerve 
fibers 84. There are large individual differences in clinical symptoms, severity 
and disease course, and the symptoms that a person experiences depend on 
the anatomical location of the inflammatory lesions in the central nervous 
system (CNS). Common symptoms include cognitive dysfunction, fatigue, 
speech problems, emotional liability, sensory loss, optic neuritis, difficulties with 
coordination/balance (ataxia), and muscle weakness and spasms 84. Typically, 
disease onset occurs around 20-40 years of age and MS is more prevalent in 
women than men, with an approximate 1:2 ratio 85. The prevalence of MS in 
Sweden is 125-140 affected individuals per 100 000 individuals 86 87 making MS 
the most common non-traumatic cause of neurological disability in young 
adults, often leading to a marked reduction in quality of life for those affected 88 

89. The etiology of MS remains elusive, and there is no single test or biomarker 
that is sufficient for diagnosis. 

2.1.1 Clinical Features 

MS manifests with a range of symptoms that can be grouped into three clinical 
disease courses 90. Relapsing-remitting MS (RR-MS) involves bouts of 
inflammation interspersed with periods of recovery, and approximately 85% of 
cases have this diagnosis. Clinical exacerbation involves profound 
inflammation and blood-brain-barrier (BBB) breakdown, while remissions occur 
when inflammation is resolved 91. Conversely, progressive MS is characterized 
by a steady worsening of symptoms, be it primary (PP-MS) or secondary (SP-
MS) to the relapsing-remitting form. The absence of recovery in this phase may 
be due to repeated attacks of inflammatory demyelination of the same nerve, 
failed remyelination, and irreversible axonal damage 92 93. Approximately 15% 
of cases have PP-MS, while half of RR-MS patients have entered into a 
progressive phase after 10 years 94. 

2.1.2 Pathology and Immunology 

The CNS in individuals with MS is characterized by inflammatory lesions, 
demyelination, glial scarring, axonal degeneration and varying degrees of 
remyelination, with substantial heterogeneity in pathology 95. The inflammatory 
process involved in MS is hypothesized to be initiated by peripheral 
dysregulation of the immune response and activation of autoreactive myelin-
specific T-cells. Activation then leads to an upregulation of adhesion molecules 
that facilitate migration of T-cells across the BBB into the CNS 96. Once the 
autoreactive T-cells are on location, they recognize their antigen and become 
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reactivated through interaction with resident microglia 97 98. Reactivation leads 
to secretion of cytokines and chemokines with subsequent recruitment of more 
inflammatory cells. Macrophages and microglia release inflammatory mediators 
to elicit profound inflammation, demyelination and axonal damage. 

MS is sometimes referred to as autoimmune because of the immune cells and 
immune mediators present at the site of injury (described above). Autoimmune 
disorders develop when the physiological tolerance to ‘‘self’’ antigens is lost. 
Several features of MS are consistent with an autoimmune etiology. 1) The 
genetic association with HLA complex (described below) is coherent with other 
autoimmune diseases 99. 2) The presence of antibodies directed against myelin 
proteins in the CNS, and the presence of myelin-reactive T-cell and B-cells in 
the serum and cerebrospinal fluid (CSF) of individuals with MS indicates an 
attack of “self” antigens 100 101. 3) The infiltration of T-cells, B-cells, and 
macrophages into the CNS with associated CNS myelin destruction indicates a 
break in tolerance 102. 4) Similarities in histopathology and clinical disease with 
autoimmune experimental models. The significance of antibodies detected in 
MS is still debated, but histopathological evidence of a antibody-mediated 
demyelination is evident in >50% of MS patients and is consistently associated 
with active demyelination 103.  Autoreactive T cells occur in the blood of both 
patients with MS and healthy individuals. This must imply that regulatory 
mechanisms exist to prevent autoreactive T cells from causing immune 
disorders, otherwise MS would be more widespread than it is. Active 
suppression by regulatory T (Treg) cells is one such mechanism for control of 
self-antigen-reactive T cells, and while the frequency of Tregs in MS patients is 
normal compared to controls, their suppressive function is diminished 104. 

2.1.3 Genetic Contributions 

MS is a genetically complex disease that depends on interactions between 
genetic and environmental factors. Observations in twin cohorts and familial 
aggregation studies have demonstrated the genetic component of MS 
etiology 10-12. MZ twins, who theoretically share nearly 100% identical 
genomes, show a 25-30% concordance rate for MS compared to 2-5% 
concordance in dizygotic (DZ) twins, who share approximately 50% of the 
genome 105 106. Conversely, adoptees or non-biological family members do 
not have increased risk for MS if other members are affected 10.   

Many population based linkage and association studies have been conducted 
to identify MS risk genes. Until recently, the human leukocyte antigen (HLA) 
was the only region that unambiguously showed linkage and association to MS 
107 108. The HLA region contains over 200 genes, many of which are involved in 
immune development and function, and alleles at different loci are often 
inherited together in established haplotypes because of linkage disequilibrium 
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(LD) extending over large distances. The HLA class II haplotype DR15-
DQB1*0602 is the strongest genetic risk factor for MS, conferring a 3-fold 
increase in risk 99. A major advance in the search for MS genes came with the 
identification of the interleukin-7 receptor alpha (IL7R) and interleukin-2 
receptor alpha (IL2RA) genes, the first non-HLA genes to unambiguously be 
associated with MS 109-112. Since then, several other genes have been 
identified and confirmed, including CD58, RPL5, CLEC16A, KIF21B and 
TREM39A 112-116, with other candidates still to be confirmed (TNFRSF1A, IRF8, 
CD6, TYK2, CD226, CYB27B1, PRKCA, KIF1B 117-125). Efforts to elucidate the 
potential role of these genes in MS susceptibility and to identify additional risk 
genes are ongoing. 

Most of the genes implicated in MS code for proteins involved in adaptive 
immune functions, supporting a role for inflammatory pathogenesis. IL2RA is 
highly expressed on activated T helper (Th)1 cells and Treg. Expression of 
IL2RA is crucial for the delivery of IL-2 signals to Treg, which regulates the 
adaptive immune system and influence T-cell homeostasis 126. IL7R is 
involved in T-cell survival and proliferation, and may influence MS by 
differential splice-variant expression of its membrane-bound and soluble 
forms 109 127 128.  

2.1.4 Environmental Influences 

Various environmental exposures may influence MS etiology, with an apparent 
geographic heterogeneity 129. Individuals migrating from a low- to high-
prevalence area before adolescence acquire the higher risk, but not if they 
move later in life 130-132. There is also evidence for a seasonal effect, with most 
people affected by MS born in May (9.1% increase) and the fewest born in 
November (8.5% decrease) 133. The annual variation in sunlight exposure has 
been proposed as a key environmental factor for MS, particularly because of its 
role in generating active vitamin D 134. Vitamin D may influence HLA gene 
expression 135 136, and a lack of vitamin D in early life has been hypothesized to 
affect central deletion of self-reactive T-cells 137. This is an example of how a 
gene-environment interaction can influence disease. Other environmental risk 
factors include smoking, which increases risk and worsen prognosis of MS 138 

139, possibly due to chemical components other than nicotine 140 141 contributing 
to chronic cyanide intoxication, smoking-mediated infections and DNA 
methylation changes 141 142. Common childhood infections, such as morbilli, 
rubella and Epstein-Barr virus (EBV), have also been associated with 
increased MS risk 143. Although individuals who develop MS have an altered 
immune response to EBV antigen 144, extensive investigations have failed to 
confirm direct involvement of specific viral infections 145. 
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Despite sharing 50% of the genome, DZ co-twins have a higher concordance 
for MS (5.4%) compared to their non-twin siblings (2.9%) 146. Thus, 
environmental factors seem to act at a young age 133 147, either directly 
interacting with genes, as in the case of vitamin D and HLA, or indirectly by 
changing epigenetic marks and future gene expression. 

2.1.5 Epigenetics 

Recently, a number of studies have demonstrated that the inheritance of MS is 
much more complicated than initially anticipated. Epigenetic influences are 
consistent with the characteristics of MS and may provide a component in the 
missing heritability of chronic inflammatory disease. The maternal route is 
favored in disease transmission, with maternal half-siblings of MS-affected 
persons having a significantly higher risk for developing MS than paternal half-
siblings 148 149. The HLA haplotype itself show similar parent-of-origin effects 150 

151 with higher conferred risk in families with affected second-degree relatives, 
implicating gene–environment interactions 151. Sex-dependent multifactorial 
inheritance has been suggested in MS 152, while it is argued to reflect parental 
transmission by others 149 153. The parent-of-origin effects demonstrated in MS 
are likely to include inherited epigenetic changes induced by environmental 
triggers. The loss of genomic imprinting has influence in several disease 
phenotypes 154, but has not been directly studied in MS. The importance of 
epigenetic modifications in MS pathogenesis is also indicated by differential 
histone modifications and methylation status in the affected CNS 155. Thus, 
these previous findings indicate that multifactorial genetic, environmental and 
epigenetic mechanisms are involved in the inheritance of MS. 

2.1.6 Epistasis 

MS susceptibility is influenced by epistatic interactions. For example, complex 
interactions between HLA haplotypes alter an individual’s susceptibility to MS 
156. This means that the HLA association with MS is not straightforward, and 
understanding the epistatic interactions will be necessary to understand 
pathogenesis. 
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Figure 4. Risk factors for MS include genes (HLA 157 and non-HLA 114), epigenetic regulation, 
environmental factors, and gene-gene and gene-environment intractions. 

2.2 ANIMAL MODELS 

Understanding the inheritance of MS and identifying the factors contributing to 
transmission of the disease remains a challenge. An approach to circumvent 
some of the obstacles of gene identification in humans is to use a simplified 
system. Animal models of MS represent such a system, where heterogeneity 
can be minimized and environmental conditions controlled. The primary 
advantage is that the genetic architecture of inbred animals is vastly simpler 
than the genetic architecture in human populations. Other advantages of this 
approach include theoretically unlimited sample sizes, control over disease 
kinetic and access to tissues and cells. This becomes particularly important 
when modeling a disease that affects an organ than can rarely be sampled in 
the human population, such as the CNS. The early events of MS cannot be 
studied in humans, since disease mechanisms have been operating for a 
while before diagnosis. Thus, animal models offer a unique opportunity to 
study the early events of disease, at least the artificially induced version of it.  

The disease is genetically dissected in the model system, on the assumption 
that there are conserved mechanisms among species that lead to 
neuroinflammation. Several of the quantitative trait loci (QTL, regions that 
regulate quantitatively varying phenotypes) that have been identified in animal 
models are syntenic to human regions that have shown linkage or association 
in MS 158 159. We see this as evidence that the QTL may constitute a gene or 
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pathway of relevance for both the animal model and MS. This further 
motivates the employment of animal models, because even if not identical an 
identified disease-regulating gene could resolve pathogenic mechanisms and 
pathways of importance in MS.  

2.3 EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS (EAE) 

Experimental autoimmune encephalomyelitis (EAE) is an autoimmune 
neuroinflammatory disease with clinical and pathological similarities to MS 160. 
EAE can be obtained in several species and strains including mice, rats, and 
guinea pigs, although there is no single experimental model that mimics all 
aspects of MS. The mode of induction, the genetic constitution, and the 
myelin autoantigen used if actively immunized, shape the clinical course and 
the histopathological and immunological features of MS captured. Other 
factors such as age, weight, and gender also influence the outcome. There is 
a great need for more efficient and safe MS treatments, which requires a 
better understanding of disease mechanisms. Therefore, disease-appropriate 
animal models are indispensable for further progress. Indeed, the most recent 
treatments approved for MS have been developed in EAE, demonstrating its 
predictive value when appropriately applied 161. 

2.3.1 EAE Models and Symptoms 

Several models can be used to induce EAE. EAE actively induced with CNS 
autoantigen and adjuvant (mineral oil, Mycobacterium tuberculosis, and 
sometimes Bordetella pertussis) recruits an autoimmune T- and B-cell 
response causing either acute monophasic or chronic relapsing course 160. 
Active induction is usually achieved by subcutaneous immunization of the 
immunogen emulsified in an adjuvant. Commonly used immunogens include 
whole spinal cord homogenate (SCH), myelin basic protein (MBP), proteolipid 
protein (PLP) and myelin oligodendrocyte glycoprotein (MOG). M. 
tuberculosis can be added as a superantigen to boost the immune trigger and 
pertussis can be used to open the BBB, with the aim of achieving a more 
severe EAE induction. Rodents can display a monophasic bout of EAE, a 
relapsing-remitting form (mimicking RR-MS), or chronic EAE (mimicking PP-
MS or SP-MS) (Figure 5). For example, a MS-like relapsing–remitting disease 
with plaques of demyelination can be induced in DA rats by MOG, while MBP 
in LEW rats gives an acute monophasic inflammatory disease with little 
demyelination 160. 
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Figure 5. Clinical disease courses in EAE and corresponding MS disease course. 

Adoptive transfer of myelin antigen reactive T-cells cause, in most cases, 
widespread CNS inflammation with little demyelination giving acute 
monophasic EAE 160. This methodology is important for understanding central 
features of T-cell biology involved in neuroinflammation, but not for questions 
requiring a disease course and pathology closely mimicking MS. Cotransfer 
EAE, in which autoimmune T-cells are transferred together with myelin-
specific antibodies, does not induce clinical disease, but can demonstrate the 
role played by autoantibodies 160. Transgenic induction of EAE can be 
achieved in mice constructed to have high proportions of T-cells expressing 
human T-cell receptors for myelin autoantigens (or other manipulations), 
which lead to ‘spontaneous’ EAE 162. Although they are somewhat artificial, 
these mice models are used for mechanistic studies 163-166. 

The archetypical first clinical symptom is weakness of tail tonus that progresses 
to paralysis of the tail, followed by a progression up the body to affect the hind 
limbs and finally the forelimbs. However, similar to MS, the disease symptoms 
reflect the anatomical location of the inflammatory lesions, and may also 
include emotional liability, sensory loss, optic neuritis, difficulties with 
coordination/balance, and muscle weakness and spasms. 

2.3.2 Pathology and Immunology 

Just like MS, EAE is characterized by perivascular inflammation 160, primarily 
in the spinal cord. Most EAE models involve infiltration of the parenchyma by 
CD4+ α-β cells and activated macrophages, with some CD8+ α-β cells, natural 
killer (NK) cells, γ-δ T-cells, and B-cells present, and CNS resident cells 
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(especially microglia) are also activated 167. Some models also involve 
demyelination and a high frequency of relapsing disease. However, 
manipulation of the induction protocol can produce a wide spectrum of 
neuropathological patterns including demyelination, remyelination, gliosis and 
loss of axons. 

The environmental trigger (immunization) initiates EAE, which leads to 
activation of potentially autoaggressive T-cells that home to the CNS 168. 
Secretion of proinflammatory cytokines, such as tumor necrosis factor alpha 
(TNF-α) and interferon-gamma (IFN-γ) cause endothelial upregulation of 
adhesion molecules, such as vascular cell adhesion molecules (VCAM), 
which help the T-cells migrate across the BBB 169. Neuroantigen-specific 
CD4+ T-cells are then reactivated by myelin antigens presented on MHC 
class II molecules by local antigen-presenting cells (APC) including 
macrophages, microglia, and less efficiently by astrocytes 170. Subsequent 
release of proinflammatory cytokines cause an up-regulation of MHC 
molecules on a variety of resident APCs before the peak of EAE 171. This also 
activates the endothelium, which leads to a second wave of recruitment of T-
cells and macrophages that cause tissue damage. 

In recent years it has become clear that besides IL-12, the pro-inflammatory 
cytokine IL-23 has an important role in neuroinflamation in EAE 172, and that 
this is linked to involvement of Th17 T cells that primarily produce the cytokine 
IL-17 173. However, it is important to note that both IFN-γ and IL-17 have a dual 
role in the full spectrum of disease, with the respective Th1 and Th17 cells 
being associated with homing to different locations within the CNS 174. 

A simplistic description of the cytokine network involved in EAE is that 
proinflammatory cytokines, such as TNF, LT-α, IFN-γ, and IL-12, have a 
disease-promoting role, while anti-inflammatory cytokines, such as TGF-β 
and IL-10 may protect from disease 160. However, a more accurate 
description is more complicated, and involves the nature of the APC, the local 
cytokine micro-environment, selective engagement with co-stimulatory 
molecules and interaction with altered forms of the immunizing antigen. 

2.3.3 Genetic and Environmental Influence 

Similar to MS, both MHC and non-MHC genes control the development and 
severity of EAE 175. The model is also sensitive to environmental influences 
and gene-environment interactions. In fact, the induction of disease itself 
represents a potential point of interaction. M. tuberculosis, which is part of 
complete Freunds adjuvant frequently used to induce EAE, has been shown to 
significantly influence the genetic control of EAE 176, and can override the 
influence of genetic loci that regulate EAE. Additionally, interactions between 
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genes and age at immunization or season at induction have been shown in 
mice 177. 

2.3.4 MOG-EAE 

Due to the extreme similarities in pathogenesis, we study the genetic regulation 
of MOG-induced EAE in rats 160. Induction of the disease is achieved by 
immunization with MOG, which is a minor glycoprotein exposed on the surface 
of the myelin sheath. In addition to the pathology described above, this model 
involves demyelinating plaques with depositions of IgG and complement 
component 9, and glial scar formation (also apparent in MS)175 178-180. 
Immunologically, there are signs of activation of both cellular and humoral 
anti-MOG specific response, which is also remeniscant of MS, where both T- 
and B- cell responses to MOG and other myelin antigens are present 181 182.  

Inbred rat strains show varying susceptibility to MOG-EAE, demonstrating a 
difference dependent on genetic regulation. Consistent with MS, the MHC 
locus (HLA in human) is the strongest susceptibility locus in EAE 175. Indeed, 
when rats face the same MOG challenge, the MHC haplotypes determine the 
severity of subsequent disease 175. However, additional genes affect disease 
susceptibility and course 183 (Figure 6).  

 

Figure 6. Schematic illustration of genetic susceptibility to MOG-EAE in inbred rat strains used 
in our Unit. The overall susceptibility is given by MHC and non-MHC influence. 

With this model, several non-MHC genome regions have been identified that 
control either clinical susceptibility and severity, or that more specifically 
determine defined pathophysiological processes with regard to inflammation, 
demyelination or axonal loss. Loci that contribute to EAE with smaller effects 
have been present in several crosses 184-186, showing that the polygenic nature 
of MS is captured in the MOG-EAE model. 
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In this thesis, we use mainly EAE-susceptible DA and EAE-resistant 
PVG.1AV1 strains, or crosses thereof. To induce MOG-EAE in adult DA rats, 
inoculum containing incomplete adjuvant and MOG protein is immunized 
subcutaneously at the tail base 160. MOG-EAE induction in PVG.1AV1 rats 
requires M. tuberculosis and a higher concentration of MOG protein to elicit a 
similar immune reaction. Typically, the DA rat will debut with clinical symptoms 
around two weeks after immunization and present with a relapsing-remitting 
EAE 160 (Figure 7). The severity of symptoms is scored on a scale ranging from 
0 (healthy) to 5 (dead). Recovery from symptoms can be complete or partial 
and the relapse time varies with symptoms and disease severity. EAE 
phenotypes, such as incidence, disease onset, severity scores and duration of 
disease, can be evaluated for each strain or rat. Additionally, histopathological 
markers, risk gene expression, cytokine expression, cell populations and any 
feature of interest can be explored. 

 

Figure 7. MOG-EAE model in DA rats. Tails are depicted with different degree of paralysis to 
represent the over-all status of the rat. 

Identification of MOG-EAE-regulatory genes may improve the understanding of 
pathogenesis and resolve mechanisms of importance. Accordingly, this will 
clarify the inheritance of autoimmune neuroinflammation and, by extrapolation, 
of MS. 
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3 POPULATIONS UTILIZED 

3.1 ANIMAL POPULATIONS IN GENETIC RESEARCH 

Historically, experimental crosses provided increased heritability, flexibility and 
statistical power compared to human populations, and were used to identify 
genes to guide the search in the complex background of the human genome. 
The arrival of human GWAS and re-sequencing programs enabled screening 
of the human genome without a priori data, and therefore questioned the need 
for continued animal research. However, recent advances in human genetics 
research emphasize the necessity of multispecies platforms, as the plethora of 
susceptibility genes identified must be investigated for their roles and 
integrated into functional systems 187. Additionally, many of the identified 
variants are located in gene deserts (~80%) and identifying the contributing 
mechanisms that underlie these associations remains a barrier to progress.  

The use of animal models can complement human studies and help overcome 
these obstacles, since the genome can be manipulated to investigate the 
hypothesis in question. Animal strains that carry isolated genes (positionally 
cloned or disrupted) offer a unique opportunity to elucidate mechanisms 
underlying gene actions that contribute to disease. Reliable animal models that 
incorporate the genetic and environmental basis of disease can be used to 
predict drug responses in humans and potentially identify harmful or adverse 
effects. Additionally, environmental exposures can be investigated 
systematically under controlled conditions to chart their involvement in disease. 

3.2 THE RAT AS MODEL ORGANISM 

The aim of employing rat models is to better understand the complex systems 
involved in disease and translate that information back to humans. The 
laboratory rat (Rattus norvegicus) has for long been a favored organism for 
modeling physiology, pharmacology, toxicology, nutrition, behavior and 
immunology 188, where the size, ease of manipulation and breeding 
characteristics of the rat is advantageous. Conversely, the laboratory mouse 
(Mus musculus) became the species of choice for experimental genetics during 
the last century. However, the rat has become increasingly utilized in genetic 
research, as the characterization of the rat genome improved and resources 
developed 189.  

Similar to many other laboratory animals, the breeding history of rat strains 
includes many rounds of inbreeding and interbreeding and several unknown 
relationships 190. Due to several breeding stocks being initiated before 
inbreeding was completed, sub-strains are frequently not identical despite 
having the same strain designation, which can largely impact the phenotypic 



 

  25 

outcome and reproducibility of experimental results 191-193. To minimize this 
problem, we have established colonies at Karolinska Institutet that have been 
inbred for more than 20 generations (designation /Kini). 

Selective breeding of rats who exhibit a phenotype of interest can be used to 
capture natural variation that lead to common traits and disease phenotypes. 
Alternatively, the genome can be manipulated to create a particular variant or 
disruption in a gene of interest. Gene targeting has been a challenge in the rat 
compared to the mouse, partly because of the absence of germline-competent 
rat embryonic stem (ES) cells. To overcome these obstacles, several 
alternative strategies were used, including  N-ethyl-N-nitrosourea (ENU), 
transposon-mediated mutagenesis (reviewed in 194, 195-197). However, the major 
advance in gene-targeting in the rat came with the establishment of germline-
competent rat ES cells 198 199 and site-specific mutagenesis. By designing zinc-
finger nucleases (ZFNs) engineered to target specific genes, it is now possible 
to create site-directed, heritable mutations in the rat genome 200 201.  Hence, the 
era of the knockout rats has arrived.  

The current rat strain catalog contains more than 1000 strains, sub-strains and 
genetically modified rats (http://rgd.mcw.edu), including healthy inbred, 
transgenic, spontaneous mutant and complex trait model rats. It is often the 
case that a particular strain can be used to model several traits or diseases. 
Accordingly, the EURATools consortium has collected more than 100 
phenotypes for behavior, metabolism, hemodynamics, hematology, 
immunology (Paper IV), morphology, and gene expression in the 
heterogeneous stock of rats (HS) 202. Collecting multiple phenotypes in the 
same individual enables cross-comparisons and global characterization.  

The genetic variation of rats contains approximately 3 million known SNPs 191, 
of which 10% are expected to have functional effects. Compared to the mouse, 
rat haplotype blocks cover less of the genome (12% compared to 35%), has a 
smaller proportion of informative markers (21% versus 56%) and smaller LD 
blocks (388 kb versus 648 kb) 191. Pairwise correlations were observed among 
0.2% of inter-chromosomal SNP pairs, likely reflecting epistatic interactions and 
ancestral relationships (since they disappeared when randomizing alleles). 
Estimates of mutation consequences revealed 56 SNPs likely to change 
protein function, 324 SNPs predicted to disrupt gene splicing, 1019 SNPs 
located in transcription factor binding sites and 132 SNPs predicted to affect 
microRNA targets. To summarize, the genetic architecture of the rat is complex 
with potential for mapping complex disease including epistatic interactions and 
epigenetic changes. 

The rat genome was sequenced using the Brown Norway (BN) strain 
(BN/NHsdMcwi). BN is a founder strain for several important genetic 
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populations, including the HS 203. However, BN turns out to be the most 
diverged strain, which may have consequences when comparing other 
strains to the reference sequence 191 (Figure 8). In any case, obtaining the 
rat sequence enabled detailed comparisons between mouse, rat and 
human. A subset of 20,000 SNPs have been genotyped in over 300 inbred 
strains and hybrid animals to construct high density maps, providing well 
characterized SNPs for quantitative trait locus (QTL) and disease gene 
mapping. 

 

In the past 20 years, the capacity of rat model research has evolved from 
positionally cloning monogenic traits to identifying genes that underlie complex 
diseases, including neuroinflammation 159 204. The rate of discovery will 
continue to accelerate as genome resources and mapping strategies improve. 

3.3 INBRED RAT STRAINS 

Inbred strains are families of rats where all members are genetically identical, 
or very close to identical. This is achieved by breeding brother and sister pairs 
for a minimum of 20 generations, which should achieve more than 99% 
identical genome 205.  

The emphasis in studies of inbred strains is to identify a single, often extreme 
phenotype. The strain can then be exposed to different manipulations to study 
their effect. An example is traditional drug trials, where a group of individuals is 
exposed to a compound and compared to an unexposed group, to determine 
the efficacy of the treatment and potential hazards. It is also possible to extend 
this concept to two or more strains, in order to identify those who are sensitive 

Figure 8. Phylogenetic 
relationships of strains 
included in this thesis. The 
figure was generously 
provided by Dr. Kathrin 
Saar. 
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(susceptible) and those who are insensitive (resistant) to the same exposure, 
given that the strains are genetically different. This provides the building blocks 
for the more complex and diverse populations described below. 

At the Neuroimmunology Unit, we use several inbred strains to evaluate 
neuroinflammatory phenotypes. DA/Kini and PVG.1AV1/Kini were used for 
Papers I-III. The 1AV1 designation means that PVG has been bred to carry the 
DA MHC II haplotype (Rt1 av1), neutralizing the MHC effect to allow non-MHC 
genes to be investigated. 

3.4 CONGENIC STRAINS 

To study a locus or gene in isolation, congenic strains can be used. They are 
similar to inbred strains, with the exception that the genomic region of interest 
has been transferred from a donor strain (susceptible or resistant) onto a 
genetic background of different susceptibility (recipient strain).  

A congenic strain can be produced by intercrossing two strains to create F1 
hybrids, and then backcrossing the F1 to either parental strain (susceptible or 
resistant). The genetic recombinations will create unique animals and the aim 
is to select rats that carry the region of interest. They are backcrossed to the 
recipient strain for ten generations to ensure that the genomic background has 
minimum contamination with fragments of donor DNA (Figure 9). Alternatively, 
marker-assisted selection can be used (speed congenic), in which the 
background genome is screened to select the rat with least contaminating 
donor genome, to establish a homozygous congenic strain in 5-7 generations 
206.  

The purpose of studying congenic strains is to establish the function or effect of 
the gene/region that has been isolated. This is accomplished by comparing 
congenic rats to the parental strain, since the phenotypic differences reflect 
their genetic difference in the congenic region. This can thus be used to 
confirm the clinical relevance and biological impact of a QTL identified in a 
more complex population. Congenic rat strains can also be selectively bred to 
contain smaller overlapping portions of the original region, which is referred to 
as a panel of interval-specific recombinant (ISR) congenic strains 207. Such 
panels can be used to narrow down the region and to in the final step 
positionally clone the gene of relevance 204 208. 
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Figure 9. Schematic illustration of the conventional approach to construct congenic strains 
compared to the speed congenic approach 206. One pair of autosomes is represented by 
vertical lines and mitochondria is represented by circles. 

Congenic strains have been established for EAE-regulating QTLs on rat 
chromosome 4 (Paper I) and chromosome 17 (Paper II), with EAE-resistant 
PVG as donor strain and EAE-susceptible DA as recipient. The rats were 
exposed to MOG-EAE to study the effects on neuroinflammation exerted by the 
genes harbored in QTLs Eae23-Eae27. Additionally, a panel of ISR congenic 
strains containing overlapping portions of Eae24-Eae27 was used to elucidate 
epistatic interactions that influence autoimmune neuroinflammation (Paper I). 

3.5 INTERCROSS AND BACKCROSS  

N2 backcross (BC) populations are used to identify genomic regions that are 
responsible for a phenotype, i.e. map a trait. The population is created by 
backcrossing F1 hybrids to one of the parental inbred strains 209. The result is a 
population where each individual is genetically unique. However, the 
heterogeneity is reduced, because the uniqueness originates only with the F1 
hybrid parent (Figure 10).  

The aim of a cross population is to have phenotypic variation. Some individuals 
should exhibit a phenotype resembling the resistant parent and some should 
resemble the susceptible parent, while the majority of the population should 
continuously vary in phenotype. This kind of phenotype variation in a 
genetically heterogeneous population enables linkage studies 210, which 
identify genomic regions where a particular allele tends to be inherited together 
with the phenotype. 
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Figure 10. Schematic illustration of reciprocal BC design. This breeding set‐up was used in 
Paper III. One pair of autosomes is represented by vertical lines and mitochondria is 
represented by circles. 

In Paper III, we tweaked this approach to identify genomic regions that 
influence neuroinflammation in a parent-of-origin dependant manner. By using 
an F1 hybrid as one parent and an inbred strain as the other, we could 
determine which parent heterozygous alleles were inherited from 211. Then, by 
using F1 hybrid mothers in half of the population and F1 hybrid fathers in the 
other half (a reciprocal cross), we could determine which parent the disease-
predisposing alleles needed to be inherited from to have an effect (maternal, 
paternal or shared). Additionally, by creating one reciprocal cross with the 
susceptible strain and another with the resistant strain, we obtained all 3 
possible genotypes to enable most allelic effects to occur. By manipulating 
which factors could be inherited from which parent in the separate crosses, we 
could create a comprehensive population where genetic and epigenetic 
influences on neuroinflammation could be ascertained. 

Alternatively, all three genotypes can be directly achieved in a population by 
mating two F1 hybrid parents. This is called an intercross and the most 
commonly used generation is the second (F2) 210. The mapping resolution can 
be slightly better compared to a BC, because both chromosomes in each pair 
are allowed to recombine. The drawback is that you have less information 
regarding which factors were inherited from whom. For example, it is no longer 
possible to identify which allele was inherited from a particular parent. An 
advantage for both types of crosses is that all genotypes can be obtained from 
the same set of parents, which means that the family structure of the 
population is known. This allows straight and accurate linkage mapping without 
adjustments to the data, and statistical methods can reliably calculate 
significance thresholds 212. 
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3.6 ADVANCED INTERCROSS LINE 

The advanced intercross line (AIL) is a population that enables phenotype 
mapping at a higher resolution, compared to a conventional BC and F2 
intercross 213. QTLs mapped to a broad chromosomal region in F2 tend to carry 
several hundred genes, which makes gene identification challenging. An AIL 
can provide a more precise QTL location and can reduce the interval it spans, 
giving a better candidate list for gene identification 213.  

The population is created much the same as F2 intercross populations, with the 
crucial difference that the breeding is continued in a pseudo-random fashion for 
several generations 213. Accordingly, an increased number of recombinations 
accumulates over several generations, which provides the increased mapping 
resolution (Figure 11). For example, using the 10th generation (G10) provides 
an approximate 3.5-to-5 fold increase in resolution compared to an F2 
intercross. 

 

Figure 11. Schematic illustration of advanced intercross line breeding design. One pair of 
autosomes is represented by vertical lines. 

The obvious advantage of the AIL is the increased resolution to accurately 
locate and define QTLs that influence neuroinflammation 162 214. Another 
advantage is that the scrambled (heterogeneous) genome can provide 
genotype combinations necessary for epistatic interactions. Since QTLs are 
allowed to interact with and be influenced by other loci, the AIL is likely to 
capture more realistic genetic effects in the complex setting. 

A disadvantage in using a more complex population is that it does not meet the 
assumptions of established statistical methods.  The statistical approach used 
to map linkage and establish significance thresholds and confidence intervals 
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must be adjusted for the underlying population stratification. Although this 
population is more complex than the BC/F2, it is important to emphasize that 
the heterogeneity is still vastly reduced by restricting the possible alleles for 
each gene to two. 

An AIL between DA and PVG.1AV1 strains has been established at the 
Neuroimmunology Unit. This experimental population was utilized to fine-map 
previously identified genomic regions known to regulate MOG-EAE (Paper I 
and II). To define Eae23-Eae27 and study the influence of these QTLs on 
neuroinflammation, the G10 rats were exposed to MOG-EAE and genotyped 
with densely spaced markers (approximately 1-5 Mb) in the defined regions. 
Interval-specific linkage analysis was used to refine the QTLs to several 
smaller regions, and the identified genetic effects were subsequently studied in 
congenic strains. 

3.7 HETEROGENEOUS STOCK 

The rat HS is a population that harbors recombinants derived from inbred 
strains that have accumulated over many generations of out-breeding to create 
a genetic mosaic. The HS can provide mapping resolution that is exponentially 
higher than an AIL, allowing fine-mapping of QTLs to intervals smaller than a 
cM 215. Theoretically, it is possible to perform a GWAS of complex traits in the 
HS, to identify and fine-map QTLs in the same population. Thus, this approach 
combines the gene identification step usually performed in BC/F2 populations 
with the fine-mapping step usually done in interval-specific recombinant 
congenic strains and advanced populations 216. 

The rat HS was established from eight inbred strains: ACI/N, BN/SsN, BUF/N, 
F344/N, M520/N, MR/N, WKY/N and WN/N (Figure 12) 203. The MR, WN and 
WKY strains trace their ancestry to the original Wistar stock, the ACI strain is a 
hybrid between the August and Copenhagen strains, the BN strain trace its 
ancestry to the Wistar Institute stock of wild rats, and the M520, F344 and BUF 
strains are of unknown origin 203. The European HS colony was established in 
2004 at the Autonomous University of Barcelona obtained from the 
Northwestern University colony. The stock has been bred according to a 
standard pseudo-random out-breeding schedule through its 62th generation, 
using forty breeding pairs for each generation. The breeding scheme is 
designed to minimize inbreeding and maximize recombination density to 
reduce the size of inherited haplotypes 217. 



 

32 

 

Figure 12. Schematic illustration of heterogeneous stock construction. One pair of autosomes 
is represented by vertical lines. 

Complex trait analyses in a mouse HS has demonstrated successful fine 
mapping of approximately 100 phenotypes 215 218. In total, 843 QTLs with an 
average 95% confidence interval of 2.8 Mb were identified. We therefore 
explored the rat HS to establish if this population could be used to investigate 
complex traits (Paper IV). The ‘mappability’ of the HS depends on its genetic 
constitution and on the quality of phenotypes it can deliver. Of 110 SNPs on 
two chromosomes, four were monomorphic, consistent with an expected rate 
of fixation of ~5% 215 and LD (measured as R2) decayed to nonsignificant within 
3 Mb. This is consistent with expectations that the rat HS can deliver high-
resolution mapping and in agreement with the data from previous mouse 
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experiments 215 219. Second, we needed to ascertain that the HS could deliver 
stable neuroinflammatory phenotypes equivalent to those we see in our inbred 
strains and crosses. It was also imperative to determine that there were no 
detrimental effects from serially collecting multiple phenotypes from each 
individual that could interact with the neuroinflammatory phenotypes of interest. 

One particular concern was whether the HS could be used for dissecting EAE, 
because it contains several MHC types. This could potentially reduce the 
power for detecting non-MHC QTLs. These QTLs are the primary target for the 
HS studies since the MHC complex, and in particular the class II genes, are 
well characterized and studied by other means. Based on our findings and 
those reported in literature regarding EAE in the founder strains, we expected 
the HS to show variation in EAE susceptibility (Figure 13, 162 175 178 185 220-224). 
However, it was important to perform pilot studies with the intended EAE model 
to establish if there was enough variation in disease outcome depending on 
non-MHC genes (Paper IV). 

  

A considerable advantage of the HS compared to the AIL is that smaller 
regions are linked to disease in a system that more closely resembles a natural 
population (8 strains instead of 2). Identified QTLs of less than a cM may allow 
gene identification for some regions 225. Another advantage is the capacity to 
elucidate small-effect QTLs, explaining even less than 2% of the variance 215 216 

226 227. A third advantage is that epistatic interactions and gene–environment 
interactions can be evaluated in a complex setting 215 228.  

This is the first experimental population used in this thesis that even attempts 
to mimic features of a human population.  The HS population is genetically 
much more diverse and complex than inbred crosses and has a wider range of 
phenotypes. 

Figure 13. Predicted 
EAE susceptibility in HS 
founder strains, based 
on known MHC and non-
MHC responses. The 
central circle show data 
for MOG-EAE while the 
peripherial circle shows 
data for other EAE 
models. 
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3.8 A COMBINED APPROACH 

Using a combined approach to incorporate the strengths and weaknesses of 
each population described above into the study of autoimmune 
neuroinflammation allows us to identify QTLs that influence disease and 
functionally investigate their contribution to the pathophysiology. Genetic 
contribution to disease can be statistically investigated and determined in 
large intercross experiments, while the resulting biological effect can be 
elucidated in congenic strains harboring targeted loci. We can also model 
different aspects of disease in populations with differing properties and 
heterogeneity (BC, AIL and HS). The combination of studying biological 
differences and linkage analysis will define smaller and smaller QTLs with 
clinical relevance for neuroinflammation. The final goal is to identify and 
define a set of candidate genes or variants and understand how they 
operate in disease. 

Overall, as genetic complexity increases to match complex phenotypes, 
experimental control and statistical simplicity decrease. The populations that 
offer the most control and statistical confidence are also the most genetically 
homogeneous populations (inbred and congenic strains), and therefore the 
most artificial models. On the other hand, populations that offer the highest 
probability of capturing the complexity involved in multifactorial traits are 
incredibly heterogeneous populations (HS) and are therefore more sensitive to 
the influence of family structure and confounders. To cope with this, rigorous 
statistical analyses using stringent criteria are necessary. This may partly 
explain why second generation crosses, which are in the middle of the complex 
genetics-statistical control continuum, are so widely used in genetic research. 
By incorporating all of these populations, we can identify genes and define their 
functions with high certainty (in the simpler populations), while also exploring 
their role in disease in combination with other genes, with less certainty but in a 
more relevant system (in complex populations). 
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4 AIMS OF THE THESIS 

The initial aim of this thesis was to identify the autoimmune neuroinflammation-
regulating genes responsible for the effects of previously identified QTLs and to 
define the mechanistic pathways involved. However, as the thesis work 
progressed, it became more evident that regulation of autoimmune 
neuroinflammation is much more complicated than initially anticipated and the 
genotype-phenotype relationships under study are influenced by a host of 
additional factors. It therefore became necessary to employ new strategies to 
discover such additional factors. The aim therefore progressed to include 
characterizing the inheritance of autoimmune neuroinflammation and 
identifying factors that contribute to the missing heritability.  

More specifically, the aims were: 

1) To fine-map EAE-susceptibility loci, primarily on rat chromosomes 4 
and 17, by using an AIL and congenic strains.  

2) To define mechanistic pathways and candidate genes by gene 
expression analysis, bioinformatics, and functional studies in relation 
to “disease genes”. 

3) To dissect the extent of parent-of-origin effects to the etiology of 
autoimmune neuroinflammation. 

4) To establish EAE in the heterogeneous stock of rats for GWAS study. 
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5 ANALYSIS OF GENOTYPE-PHENOTYPE 
RELATIONSHIPS 

5.1 PRINCIPLES OF LINKAGE MAPPING 

The search for genes that contribute to a disease often begins with a linkage 
study, with the aim of finding the locations of disease genes. Essentially, 
genetic linkage analysis is the statistical method of associating the phenotypic 
expression (or function) of genes to their location in the genome (Figure 14). 
The objective is to define markers that are linked to the phenotype in order to 
define QTLs where the disease genes are located. 

 

Figure 14. Schematic view of linkage analysis strategy.  

When the disease gene is adjacent to a genetic marker, the disease phenotype 
will differ depending on the allele, represented by genotype at the specific 
marker. The closer the marker is to the gene, the larger the difference between 
alleles will be, reaching a maximum when the marker is at the exact location of 
the disease gene. By this approach, the whole genome can be systematically 
tested for QTLs, given a genetically segregating population that is variable for 
the phenotype, and that the phenotype is  genetically regulated. The 
segregation of markers with the QTL and the association between QTL and 
phenotype are then modeled statistically to provide evidence for the QTL. 

5.2 GENETIC MARKERS 

Genome-wide screening became feasible with the advent of DNA markers (i.e. 
DNA sequences that vary in size or sequence), used with the polymerase 
chain reaction (PCR) amplification method. Microsatellites are highly 
heterozygous di-, tri-, or tetra-nucleotide repeats occurring relatively frequently 
in the genomic sequence (~10 kb), while SNPs are bi-allelic basepair 
substitutions that occur with high density (~800 bp). SNPs enable ultra high-
throughput genotyping and development of dense genetic maps.  



 

  37 

To be informative, a marker must be polymorphic between the parental strains 
of the population used for mapping (i.e. have different numbers of repeats or 
different nucleotide – A, T, C, G). The effect of the QTLs being mapped, 
together with the type and size of the population used, dictates the appropriate 
interval for marker spacing to achieve power to detect the QTLs. In general, 
marker intervals of 10-25 cM are appropriate for intercross and BC populations 
and approximately 1-2 cM marker intervals are appropriate for comparable 
power in the AIL. The HS requires 100 times more markers than a cross from 
inbred strains to allow haplotype reconstruction (see below) 227. In this thesis, 
microsatellite markers were used for Papers I, II and III, while SNPs were used 
for Paper IV.  

5.3 POPULATION CONSIDERATIONS 

Phenotypic differences between inbred strains exclusively reflect their genetic 
differences, since they are exposed to the same environmental conditions. 
Finding the locations of QTLs responsible for these differences is possible in a 
cross because they carry mixed parental genomes with new combinations 
(described previously). Second generation crosses provide high power to 
detect linkage due to one round of recombination and all individuals being 
informative. The precision of QTL mapping is determined by the recombinant 
rate, and the average recombination fraction between two loci is r = 1/2 per 
meiosis. The population size required to detect QTLs depends on the 
phenotypic variance, the number of QTLs present, and the QTL effect size. 
These parameters can be difficult to predict, but generally, larger population 
have a better probability to detect several QTLs, including QTLs with small 
effects. 

To estimate inheritance of autoimmune neuroinflammation, several genome 
wide linkage analyses in F2 intercrosses have been conducted in our 
laboratory 184-186 229 230. Additionally, several identified QTLs have been fine 
mapped in the AIL 159 162 214. In this thesis, the application of the G10 AIL to 
resolve two QTLs (Papers I and II) and the application of the BC to map parent-
of-origin QTLs are reported (Paper III).  

5.4 PHENOTYPE CONSIDERATIONS 

Once the population is established, all rats are phenotyped. Phenotype 
selection is crucial in determining ‘mappability’ of the genes/QTLs. To enable a 
relevant, high-quality linkage analysis, phenotypes should reflect the 
investigated disease (or aspects thereof), screening should be objective and 
easy to perform, and statistical methods suitable for the phenotypic nature and 
distribution should be used. Phenotypes fulfilling these criteria should allow 
maximal extraction of information. The laboriousness of phenotype collection 
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becomes especially important for linkage analyses that demand large 
populations (such as our BC with ~900 rats and our HS with ~2000 rats). 

Intermediate phenotypes, so called endo-phenotypes, usually have an 
improved signal-to-noise ratio due to fewer genetic factors influencing the trait, 
and are therefore likely to be detected with a higher significance and resolution 
231.  They also have the potential to teach us about the mechanisms involved in 
pathogenesis. For example, rats usually lose weight 1-2 days before onset of 
neuroinflammation. Weight loss is a truly quantitative phenotype with normally 
distributed data, which provides additional information and accuracy, compared 
to other phenotypes. Incidence of neuroinflammation is a typical binary 
phenotype, designated as 0 (unaffected) or 1 (affected). Severity phenotypes 
are based on an ordinal scale that is not linear, since each increase in score 
does not reflect equivalent steps of deficits. In addition, these phenotypes 
display a discordant distribution, because all unaffected rats have phenotype 
values of 0 while affected rats follow a normal distribution. To appropriately 
map these phenotypes and avoid false positives, a model based on non-
parametric statistics (that do not assume normal distribution) should be used. 

5.5 MODELS FOR QTL MAPPING 

Once the phenotype and genotype have been ascertained for all individuals in 
the population, the likelihood of existence, location and significance of QTLs 
are statistically determined by applying a model to the data. There is a 
difference in methods used to test single markers versus intervals, and in 
methods used to evaluate the existence of one QTL versus multiple QTLs. 
These different methods have advantages and disadvantages to consider 
when selecting the appropriate method to be used. It is important to remember 
that these models reduce a complex reality into a set of factors that can be 
tested. Therefore, model selection may never be perfect, but choosing an 
incorrect model can be detrimental.   

5.5.1 Single Marker Test 

The simplest method analyses single markers for differences in phenotype 
values between the marker genotype groups 232. The comparison is made 
using a simple t-test, analysis of variance, or a suitable non-parametric test and 
a significant difference between genotypes indicate that the marker is linked to 
a QTL. Advantages of this method is the simplicity, that it does not require a 
genetic map or specialized software, and that it can be extended to include 
multiple QTLs and covariates. Disadvantages are that the QTL location is 
imprecise, because it depends on the marker location. In this thesis, we used 
single marker test to confirm our findings (Papers I-III). 
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5.5.2 Interval Mapping 

The seminal article by Lander and Botstein introduced interval mapping, which 
tests a set of putative QTL locations along the genetic map 233. Maximum 
likelihood is obtained where parameters are estimated to give the highest 
probability for the observed data (highest odds for linkage). The maximum 
likelihood solution is found in a reiterative process, by testing phenotype-
genotype association based on a probability, and then re-evaluating the linkage 
based on the new parameters, until a QTL is detected. The strength of 
evidence for the presence of a QTL is given by a LOD score (logarithm (base 
10) of odds favoring linkage). The LOD score is the odds between the 
likelihood of obtaining the given data if there is linkage compared to the 
likelihood of obtaining the same data purely by chance.  

The advantage of interval mapping is that the QTL can be more precisely 
located, it gives a better estimation of the QTL effect, and accounts for missing 
genotypes and errors. Additionally, statistical stringency is used to correct for 
the multiple tests performed to screen an interval to decrease the risk of false 
positive QTLs. Haley and Knott developed a simple regression method for QTL 
mapping that approximates interval mapping very well, although it can be 
sensitive to strong epistasis and close linkage between QTLs 234.  This method 
can also be easily extended to mapping multiple QTLs and covariate analysis.  

5.5.3 Multiple QTL Model 

Both single marker and interval mapping methods model a single QTL. Multiple 
QTLs occurring simultaneously can be modeled instead, by using multiple 
regression methods. The simplest form is an extension of ANOVA and involves 
the same weaknesses as single marker tests. Multiple interval mapping 235 and 
composite interval mapping are extensions of interval mapping that account for 
the existence of multiple QTLs.  

Composite interval mapping was developed to address the problem of mapping 
multiple linked QTLs 236, by conditioning the test on the effects from other 
selected markers. These are included in the model as covariates and increase 
the power to detect QTLs by reducing the variance attributed to markers. A 
disadvantage with composite interval mapping is that it is sensitive to uneven 
marker distributions, leading to a test statistic in a marker-dense region not 
being comparable to that of a sparse region. Additionally, this method suffers 
from difficulties in estimating the joint contribution of multiple linked QTLs and it 
cannot be directly extended to include epistasis.  

To address the limitations of composite interval mapping, the multiple interval 
mapping model was developed, which facilitates multiple QTL identification, 
estimation of positions and effects, and discovery of epistatic interactions 235 
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237. Multiple putative QTLs with associated epistatic effects are fitted directly 
into a model in four steps. First, an evaluation determines the likelihood of the 
data. This is followed by a search to select the best genetic model and an 
estimation of the best parameters for that model. Finally, a prediction is made 
regarding the genotypic values of individuals and their offspring. 

An extension of the multiple interval mapping model uses stepwise regression  
with forward selection and backward elimination to construct the model in 
stages 238. Forward selection identifies the most significant QTL, then adds 
additional QTLs sequentially that works best with the existing ones. Reverse 
elimination then sequentially removes the least significant QTL. The 
significance of each parameter is then tested with multiple interval mapping, 
and non-significant QTLs are dropped stepwise from the model. An advantage 
of this procedure is a dramatic reduction in numerical analysis burden, without 
losing accuracy of the likelihood evaluation. A disadvantage is the challenge of 
defining an appropriate stopping rule (how many QTLs to select for). The risk is 
that the model becomes ‘overfit’, catering too much to the given data to be 
generalizable to another data set. To prevent this, the complexity of the model 
is regulated by penalties applied for every QTL that is added to the model. 

Multiple QTL models have several important advantages, with increased 
power, good positioning of QTLs, separation of linked QTLs, and the ability to 
map epistatic interactions, which are largely unpredictable and alters the 
genotype-phenotype relationship tested in single QTL analyses. 

5.5.4 Confounding Factors 

Confounders are factors that influence the phenotype, but that have not been 
considered and is therefore not accounted for in the model. They can be an 
important part of disease etiology with a true role in disease (unknown 
environmental factors, etc) or they can be extraneous factors that distort the 
result (experimenter differences, etc). To appropriately analyse a phenotype, it 
is important to identify confounding factors and either understand their role in 
disease or control them experimentally or statistically.  

For example, sex, age and weight of the rat are known to influence 
experimental neuroinflammation 239 240. Therefore, we strive to reduce the 
variation in these factors. However, it is not always possible to control 
confounding factors experimentally. Therefore, we aim to record any 
extraneous factor with potential to introduce noise in the genotype-phenotype 
relationship (season, experimenter, time of day, etc) and perform a thorough 
cofounder analysis to identify such influences. To neutralize the cofounding 
effects, the phenotypic values can be adjusted to remove the extraneous 
influence. We used this approach in Paper III to neutralize differences between 
experimental sets and between the sexes. Another approach is to statistically 
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account for the cofounders’ impact, by introducing these factors as covariates 
during the analyses. The genotype-phenotype relationship will then be 
conditioned on the covariate to analyze linkage using the selected model.  

5.5.5 Significance of Detected QTL 

The statistical analysis helps us evaluate the degree of confidence with which 
we can distinguish between a true genotype - phenotype association and the 
null hypothesis (there is no genotype-phenotype association). Significance, 
given by the p-value, is the probability of obtaining a different (greater) LOD 
score than the LOD given if there is no QTL in the population. A conventional 
p-value for significance is 0.05, indicating that there is 95% probability that the 
identified QTL is true. Corrections to this p-value must be made for testing a 
hypothesis on a number of locations. Another approach to setting significance 
thresholds is the permutation test 241. The phenotypes and genotypes in the 
given data is disconnected and scrambled to randomly rematch one individuals 
phenotypes with one individuals genotype. The maximum LOD score acquired 
from this data and the frequency with which it occurs (95%) in the population is 
used to estimate the significance LOD score. This provides a significance 
threshold that is explicit for the given data.  

To set significance thresholds in the AIL, we computed the mean for each 
family and the residual value for each individual from their family mean. This 
data transformation was applied to control for within family variance 
(inheritance of phenotype with the causing genotype, i.e what linkage is based 
on) and allow between family variance (representing random effects). The 
analysis was then repeated on this data to record the maximum LOD score 
acquired. To be stringent, we used the absolute max (100%) for each 
phenotype. We also knew the QTL was significant from the previous mapping 
studies.  

5.6 GENOME-WIDE ASSOCIATION IN HS 

The association studies in the HS involve a more specialized statistical 
approach, because of the population structure of individuals with different 
degrees of genetic relatedness 227. The multitude of methods developed for 
genome-wide analyses in classical intercrosses are not applicable to this 
population 242-244. A genome-wide analysis involves testing more loci than 
individuals, which makes fitting all markers simultaneously impossible.  

To properly analyse the HS experiment, we use novel analytical methods and 
statistical packages developed specifically for the equivalent population in 
mouse 215 216. To separate genotypes in the experimental population, parental 
haplotypes are reconstructed, using a hidden Markov-chain approach, to 
predict probabilities of inheritance from each of the 8 progenitor strains for each 
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SNP. A multiple QTL model is then fitted using a model averaging method to 
obtain a posterior probability that a QTL will be included in the model 215. This is 
accomplished by repeatedly re-sampling the data and in each resample test 
which set of markers best explains the variation in the phenotype. Hence, the 
association between phenotype and genotype at any one locus is corrected by 
the pattern of associations over the rest of the genome.  

The statistical packages that have been developed for analysis of the HS 
includes R/HAPPY and R/Bagphenotype. The haplotype reconstruction phase 
of analysis is carried out using the HAPPY software. The QTLs are then fitted 
using R/Bagphenotype. 

5.7 FROM QTL TO CANDIDATE GENE 

Our strategy has been to reduce QTL intervals to provide a candidate list for 
gene identification that can be screened. These genes can be assessed for 
coding sequence differences and expressional differences between susceptible 
and resistant strains. Further, functional aspects of candidate genes can be 
explored to indicate the functionally relevant candidates. 

For analysis of gene expression, we used previously collected exon array data 
245 to screen all genes in the region for differences between parental inbred 
strains. We then explored potential differences using the more sensitive 
quantitative real-time polymerase chain reaction (RT-PCR) method, in different 
organs collected from congenic and parental rats at an early and a late time-
point in disease. Quantification was performed with SYBR green method and 
standardization for the amount of starting material was performed using 
GAPDH and β-actin. SYBR Green is a commonly used fluorescent dye that 
binds double–stranded DNA. As the target is amplified in each PCR cycle, the 
increase in fluorescence intensity is measured that is proportional to the 
starting amount of mRNA in the sample. Each sample is then normalized to 
the amount of a reference gene to give a relative quantity of expression of the 
target gene. 

For investigation of the rat CNS, we compared histopathology between 
congenic and parental strains at day 35 p.i., when clinical EAE symptoms have 
been ongoing for approximately 3 weeks. Immunohistochemical analysis was 
performed on paraformaldehyde fixed paraffin embedded sections stained with 
hematoxylin-eosin and luxol fast blue to detect CNS inflammation and 
demyelination, respectively. The inflammatory index was determined from the 
number and size of inflammatory lesions on an average of twenty complete 
cross-sections of the spinal cord and the brain of each animal 246. To assess 
cell infiltration, sections were stained with antibodies against CD8, CD3 and 
Foxp3. 
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Anti-MOG antibody levels in sera at day 14 p.i. (the approximate time of 
disease onset) were measured by ELISA. This enabled linkage study of an 
immunological sub-phenotype of EAE. The IgG isotype profile reflects the 
underlying cytokine environment in EAE, and in rat, IgG1 levels reflect the Th2-
type immune response while IgG2b levels reflect the Th1-type immune 
response under specific circumstances 247 248. 
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6 RESULTS AND DISCUSSION 

The findings presented in this thesis illustrate the genetic complexity involved in 
inheritance of autoimmune neuroinflammation and in the mapping of complex 
traits, even when the focus is confined to a limited genomic region. EAE 
susceptibility and severity are clearly affected by multiple genes with a 
dissociation of effects on different aspects of disease, genes that interact with 
other genes and with environmental factors, and parent-of-origin effects likely 
to involve epigenetic regulation that mold how the genes contribute to the 
phenotypic expressivity. 

6.1 GENETIC REGULATION OF AUTOIMMUNE NEUROINFLAMMATION 

6.1.1 EAE is Polygenic (Papers I-III) 

The polygenic nature of EAE shown in other studies 249 was also found in our 
studies (Papers I-III). The aims of Papers I and II were to fine-map 
susceptibility loci that had been previously identified to regulate EAE. These 
studies involved the hallmark steps of our classical mapping approach, 
described above. We refined the large original QTLs into smaller linked loci, by 
mapping them in the AIL which provided higher resolution and better precision. 
Our data show that the 58Mb region on rat chromosome four is composed of 
four distinct QTLs (Eae24-Eae27) and the 68Mb region on rat chromosome 
seventeen is composed of two distinct QTLs (Eae23a and Eae23b) (Figure 15). 
Paper III investigated regulation of autoimmune neuroinflammation on a 
genome-wide level in a BC, and we identified 11-16 QTLs contributing to EAE 
susceptibility and/or severity, depending on phenotype and cross. Each of the 
identified QTLs is likely to contain at least one gene that regulates EAE. These 
findings demonstrate that many genes are involved in regulating autoimmune 
neuroinflammation, and that even genetic influences from one QTL/region can 
depend on several genes. An example of this is a QTL identified in rat for blood 
pressure that harbored two closely linked genes, which also regulated blood 
pressure in humans, where the genes were no longer clustered 250. These 
QTLs may reflect functionally related genes that are located in the vicinity of 
each other. Alternatively, it may be that the accumulated effect of genes was 
necessary to originally detect the QTL, and that these genes have similar 
effects in isolation to those that fall below detection/identification thresholds. 
The polygenic nature of MS is now well established in human genetic studies 
as well 112 116 119 120. 
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Figure 15. Linkage analysis and congenic strains support polygenic inheritance.  

6.1.2 Dissociation of Genetic Effects (Papers I and III) 

Although some QTLs regulate both susceptibility and severity of 
neuroinflammation (Eae23a and Eaea23b), one set of genes may primarily 
regulate susceptibility while another set of genes may modulate EAE once 
disease has arisen. In Paper I, we demonstrated that onset, severity and 
chronicity of disease are sometimes regulated by different genetic factors 
(Figure 15). The phenotypes capturing susceptibility in our statistical model are 
incidence and onset, while disease severity is captured by duration of disease 
and maximum and cumulative EAE scores. We demonstrated that Eae24-
Eae27 had a dissociation of genetic influence on different aspects of the 
disease in AIL and congenic rats (Table 1). Both Eae24 and Eae25 regulate 
susceptibility and severity. Eae26 regulates severity but does not influence 
susceptibility, while Eae27 regulates susceptibility only. Concordantly, Paper III 
also demonstrated several QTLs that regulated either EAE susceptibility or 
severity but not both. Additionally, other EAE-related phenotypes included in 
Paper I showed dissociation of genetic influence. Weight loss, which is often 
the first sign of EAE and may reflect subclinical disease 160, was regulated by 
Eae25 and Eae26. The immune response mounted to the MOG challenge, 
measured by serum levels of anti-MOG IgG isotypes, was regulated by Eae24 
(IgG1 and IgG2b) and Eae26 (IgG2b).  
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Table 1. QTLs regulate different aspects of disease in Paper I 

 QTLs Included  Phenotypes 

 Eae24 Eae25 Eae26 Eae27  Susceptibility Severity 

 Suc & Sev 

IgG 

Suc & Sev 

WL 

Sev  

WL & IgG 

Suc  INC & ONS MAX, DUR & 
CUM 

R3 X X X Partly  ns ns 

R2 X X    ns * 

R23  X    * *** 

R21  X X Partly  ns ** 

R11   X Partly  ns * 

R13   X Partly  ns ns 

The interval-specific recombinant congenic strains investigated in Paper I contain different QTL 
combinations that regulate different aspects of disease. Abbreviations: Suc=susceptibility, 
Sev=severity, WL=weight loss, INC=incidence, ONS=onset, MAX=maximum EAE score, 
DUR=disease duration, CUM=cumulative EAE score. 

The dissociation of genetic influence on different aspects of disease is 
important to acknowledge in order to uncover the molecular basis of 
autoimmune neuroinflammation. Hypothetically, polymorphisms within genes in 
these QTLs may cause an individual to pass the threshold to develop EAE, 
weaken resistance to the immune attack or shorten the time required to 
develop EAE, and thereby contribute to different aspects of disease. 
Furthermore, these genes could possibly regulate the severity of the EAE 
attack, chronic nature of the symptoms and disease course, and may also 
influence the recovery mechanisms either in the immune system or in the 
target organ 251. Alternatively, this could reflect an unknown factor, such as 
environmental or genetic interactions. Genetic linkage of certain QTLs has 
been shown in mice to be dependant on the sex of the rat, induction protocol 
used and on season 177 252. Although these factors may be altering the QTL 
effects in the AIL, the congenic experiments were all performed with female 
rats, and the same induction protocol. One advantage of the MOG-EAE model 
in DA rats is that disease can be induced without the use of M. tuberculosis or 
pertussis, alleviating the potential gene-environment interactions. The 
seasonal effects should be similar between strains, as we could not find 
significant differences between experiments for the same strain. It is therefore 
more likely that genetic interactions are contributing to the dissociation of 
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effects. This dissociation may complicate mapping efforts and contribute to 
inconsistent data when studies are compared. Careful analysis is required to 
establish which genes contribute to what aspect of disease, and how they 
operate in relation to one another.  

6.1.3 Gene-Gene Interactions (Paper I) 

Interactions of immunoregulatory genes have been suggested to play an 
important role in autoimmunity 253. In Paper I, we statistically demonstrated 
that gene-gene interactions influence autoimmune neuroinflammation. The 
fact that there were no differences between the full-length congenic (Eae24, 
Eae25, Eae26 and part of Eae27) and parental strains, while there were 
differences between both congenic strains that contained either the 
centromeric region (Eae24 and Eae25) or the telomeric region (Eae26 and 
part of Eae27) and the parental strain, further supported this finding. PVG 
alleles in the entire region weakened the protective effect of each QTL. 
Epistatic interaction, influencing susceptibility and severity, was detected 
between Eae24 and Eae25, as well as an additive interaction between Eae24 
and Eae27 which affected severity only (Figure 16). Additionally, the allele 
combinations in the region was a more important determinant for  disease 
outcome than were the effects of each individual QTLs. Eae25 alone 
influenced both susceptibility and severity and were protective during the late 
phase of EAE. Conversely, Eae25 together with Eae24 modulated severity 
and were protective during the acute phase of disease while Eae25 together 
with Eae26 and part of Eae27 were protective throughout the disease course.  

 

Figure 16. Gene-gene interaction model showing epistasis for Eae24-Eae25. Incidence is 
shown as a representative for all phenotypes. 
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These interactions can result from specific combinations of alleles at multiple 
loci that amplify or abrogate the independent gene effects. Such interactions 
have been demonstrated for the HLA and other autoimmune related systems. 
For example, the HLA DRB1*14 allele abrogates the MS risk associated with 
DRB1*15, so that the risk is reduced 3-fold in DRB1*14/*15 heterozygotes 254.  
No functional explanation has been proposed for this effect. Conversely, the 
DRB1*08 allele shows a modest increases in MS risk when in isolation, while 
it more than doubles the risk together with DRB1*15 254.  DQA1*0102 
increases MS risk in the presence of DRB1*1501 while protecting against MS 
in the absence of DRB1*1501 156. These examples illustrate how a risk 
variant with marginal effect when isolated, can exert a strong effect given the 
appropriate genetic background combinations. These epistatic effects within 
the HLA can explain an order of magnitude more of risk variance than the 
genetic effects confirmed to date with GWAS 112. Although the HLA has a 
distinct genetic architecture, the epistatic interactions operating in this region 
are unlikely to be unique. Indeed, there is also evidence for epistasis involving 
non-HLA genes, but these interactions are not as well-characterized and 
need further validation 255. Further, epistasis was demonstrated in a murine 
model for SLE, where the Lmb3 locus would accelerate autoantibody 
production, T-cell activation and other features of lupus, dependent on Fas 
locus genotype 256.  

Gene-gene interactions are important to consider when studying gene-disease 
relationships. For example, protective alleles can together with permissive 
interactive combinations partly abrogate each other to show a mild phenotype. 
On the other hand, protective alleles together with protective interactive 
combinations can amplify the independent effects of each other to drastically 
lower disease risk. This has implications both for gene identification and 
possibly for the treatment of disease. Genetic studies have been plagued by 
difficulties in corroborating results between studies. This may in part be due to 
interactions that modify the independent gene effects, which complicate the 
interpretation of results. If the contribution of a risk allele of gene A is only 
substantial in the presence of a certain allele of gene B, only part of the 
population harboring the “risk gene” A will be informative. Accounting for gene-
gene interactions involved may therefore improve gene identification and the 
understanding of autoimmune neuroinflammation. 

6.1.4 Implicated Candidate EAE Genes (Papers I and II) 

Resolution to a small number of candidate genes enables identification of EAE-
regulatory genes, which is a way to elucidate the underlying mechanism 
responsible for or contributing to autoimmune neuroinflammation. For Eae23b, 
fine-mapping produced a candidate list of 31 genes to be explored. Of these, 
the gene most likely to influence neuroinflammation is ZEB1 (Paper II), which is 
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foremost known as an interleukin 2 (IL2) repressor 257 258. This supports the 
involvement of the IL-2 pathway, which is already implicated in MS and EAE 
111. Interestingly, ZEB1 splice variants were differentially expressed in our 
model and their regulation changed over time. In early disease, the short-form 
Zfhep2 was up-regulated in the susceptible strain, but without subsequent 
dysregulation of downstream targets (ZEB1 and IL2). Conversely, later in 
disease, Zfhep2 up-regulation had led to lower levels of the full-length variant 
Zfhep1, and an up-regulation of both ZEB1 and IL2 in the susceptible strain. 
Although Zfhep2 seem to initiate dysregulation of the system, repression of IL2 
expression was dependant on Zfhep1 levels. This indicates that Zfhep1 is the 
functional isoform and Zfhep2 is the regulatory isoform in the setting of MOG-
EAE (Figure 17). This finding probably reflects that both zinc-finger domains 
carried by Zfhep1 are needed to be fully functional 259 260. 

 

Figure 17. Schematic illustration of ZEB1 gene regulation. A) Zfhep1 (yellow) represses IL-2. 
B) Zfhep1 can repress expression of its own gene, which allows IL-2 expression. C) Zfhep2 
(blue) competitively binds ZEB1 to allow Zfhep1 expression, which represses IL-2. 
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We therefore postulated that the mechanism by which Eae23b regulates EAE 
is through regulation of alternative splicing of ZEB1 which in turn regulates IL2. 
These findings indicate that expression and signaling delivered by specific 
splice variants may play a critical role in regulating autoimmune disease and 
also illustrates the importance of careful dissection of gene expression data.  

The other QTLs characterized in this thesis contained a higher number of 
genes, but include candidates that are functionally interesting because of their 
effects in EAE and MS. Studies of the T-cell receptor Vß (TCRBV) cluster, 
located in Eae24 (Paper I), have shown a possible involvment in MS and 
possible epistasis with the HLA 261-263, although conflicting data exist. 
Polymorphisms in these genes could be of importance in the T-cell receptor 
recognition of MOG peptides presented by the MHC. Conversely, the Src 
family associated phosphoprotein 2 (Skap2) mapped to Eae25 and is known 
to influence B-cell function in rat MOG-EAE 264, and dendritic cell function in 
mouse EAE 265. Furthermore, the known roles of TCRBV and Src family 
genes are consistent with the epistatic interaction between Eae24 and Eae25 
we observed, hypothetically involving the same pathway of lymphoid cell 
activation 266. Neuropeptide Y (NPY) is another potential candidate within 
Eae25, that has been shown to ameliorate MOG-EAE symptoms in mice 267. 
NPY potentially has a protective role during the induction phase by inhibiting 
a MOG specific Th1 response. In the case of Eae26, the genes that encode 
IL-12 receptor-beta 2 268 and IL-23 receptor 269 are interesting because of 
their role in the pathogenesis of neuroinflammation. Butyrophilin, of which 
subfamily 1 member A1 (Btn1a1) mapped to Eae23a, can ameliorate MOG74-

90-T-cell transferred EAE in DA rats270. The extracellular Ig-like domain of 
butyrophilin has been suggested to ‘molecularly mimic’ MOG, since 
butyrophillin can induce or suppress the ancephalitogenic T-cell response to 
MOG in these rats. Additionally, in mice butyrophilin can both prevent and 
suppress MOG-EAE, with subsequent suppression of IFN-γ, IL-2 and IL-12 
271. These candidate genes can be tested in association studies of large MS 
case-control cohorts in parallel with functional studies performed in the 
experimental setting to better understand their role in disease.  

6.1.5 Susceptibility and Resistance (Papers II and III) 

Hypothetically, susceptibility to complex genetic disorders can be determined 
by an accumulation of genetic factors with weak to modest effects. Although we 
consider our inbred rat strains susceptible or resistant to autoimmune 
neuroinflammation, each strain harbours alleles that are disease-promoting and 
those that are disease-protective. In Paper II, we identified Eae23a as a 
transgressive QTL, with alleles from the resistant PVG strain promoting higher 
incidence, earlier onset, longer duration of disease and higher maximum EAE 
score. Conversely, Eae23b showed heterosis, where heterozygous DA/PVG 
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alleles promoted EAE with higher susceptibility and more severe disease 
compared to homozygous DA or PVG alleles. When we investigated allelic 
effects genome-wide (Paper III), alleles from the susceptible DA strain 
predisposed for disease at more than half of the identified loci. However, we 
also detected 31-36% transgressive loci where alleles from the resistant PVG 
strain predisposed for EAE. This indicates that every individual possesses risk 
genes and these are kept in balance by protective genes in those individuals 
who are resistant to disease. An individuals’ genetic risk for developing disease 
(susceptibility threshold) is therefore determined in part by the combination or 
balance of alleles conferring risk and alleles protecting from disease, and the 
interactions between them.  Indeed, when considering the combined effect of 
all four QTLs in Paper I, the allele combinations in the region were more 
important than the individual effect of each QTL in determining disease 
susceptibility and severity.  

6.2 EPIGENETIC REGULATION (PAPER III) 

The aim of Paper III was to determine the extent of parent-of-origin effects that 
contribute to the etiology of autoimmune neuroinflammation. To achieve this, 
we used a BC strategy designed to unequivocally identify the parental origin of 
disease-predisposing alleles under controlled environmental conditions. The 
parent-of-origin effects we observed implicate genomic imprinting, Y-
chromosome and mitochondria in inheritance of EAE.  

We identified several QTLs with parent-of-origin effects, with 44-73% of all, and 
86% of the seven loci robustly identified in both backcrosses, displaying 
parental dependant transmission of risk alleles. Most of these loci were 
detected in offspring of F1 hybrid mothers and the majority of parent-of-origin 
QTLs were maternally inherited, 62-71%. Although the effect is larger, this is 
consistent with the maternal inheritance in MS 148-150. This finding is also in 
accordance with documented and predicted higher maternal transmission of 
imprinted genes 272. However, there were also QTLs with paternal transmission 
of disease predisposing alleles.  

Parent-of-origin effect might also reflect influence of sex chromosomes. Males 
that had inherited Y chromosome from the susceptible DA strain significantly 
differed from males that had inherited Y chromosome from the resistant PVG 
strain. A lack of difference between females, which have inherited the same X 
chromosome combinations as the reciprocal males, argues against X 
chromosome influence. This suggests a significant contribution from the Y 
chromosome that influence global phenotypic expression. An example of such 
contribution is the BXSB male mice model for SLE, which harbors the y-linked 
autoimmune accelerator (Yaa) locus on the Y chromosome 273. This locus 
interacts with other disease alleles to induce profound autoinflammation 274. 
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Although this represents a specific case of translocation of the Toll-like 
receptor 7 (Tlr7) from the X chromosome onto the Y chromosome 275, similar 
effects may contribute to EAE in the rat. Yaa has been demonstrated to 
suppress disease and the autoantigen-specific humoral and T cell responses 
in mouse models of EAE 276 and arthritis 277. An alternative explanation could 
be the intrauterine positional effect described in the previous mouse EAE 
study, where the Y chromosome influenced EAE outcome in both males and 
females 276. This effect was suggested to involve the influence of neighboring 
fetuses on the in utero hormonal environment. However, we could not detect 
an effect of the Y chromosome on females or a skewed female to male ratio 
at birth. This could reflect differences in species, cross types and disease 
induction. 

Unlike Y chromosome, mitochondrial genome is maternally inherited and can 
contribute to maternal transmission. Our data imply regulation of EAE by the 
mitochondrial genome, with 73% of loci displaying parent-of-origin effect in the 
cross where mitochondria was allowed to vary compared to 44% in the cross 
with fixed mitochondria. The strongest mitochondrial influence was seen for the 
locus on chromosome 10, which displayed linkage to all EAE phenotypes in 
crosses that share the DA mitochondria but not in animals with mitochondria 
from the PVG strain. This suggests that the QTL effect is modified by the 
mitochondrial genome. This may potentially involve mitochondrial oxidative 
stress, which has been shown to interact with autosomal genes to modify 
neurodegeneration in optic neuritis 278. Additionally, oxidative damage to 
mitochondrial DNA has been found in active MS plaques 279.  

Additionally, loci on chromosomes 3, 4, 5, 6, 10, 14 and 18 displayed a pattern 
of inheritance resembling imprinting. The locus on chromosome 18 overlaps a 
mouse QTL that was previously identified to predispose for EAE in a genomic 
imprinting fashion 280. The paternal transmission of EAE risk in the QTL on 
chromosome 6 could potentially be explained by paternally expressed genes 
in the DLK1/DIO3 cluster 281. DLK1 is involved in B lymphocyte differentiation 
and function 282, and may influence proinflammatory cytokine expression 283. 
Additionally, a SNP in the DLK1 region associated to type-1 diabetes showed 
reduced paternal transmission of the protective allele 284. The imprinting 
pattern may potentially indicate loci that are susceptible to gene-environment 
interactions. As mentioned previously, studies in rodent models have illustrated 
that environmental signals can remodel epigenetic marks that lead to altered 
gene expression and thereby influences the phenotype 66-68. Many features of 
the immune response are under regulation of epigenetic mechanisms 285, that 
may be important in MS pathogenesis. The differentiation of naïve CD4+ T-cells 
into effector Th1 and Th2 cells and subsequent cytokine production involve 
epigenetic regulation 286 of IL4 287 288, IL2 289, and IFN-γ 290. Treg cells, which 
are fundamental in maintaining immunological self tolerance, are in part 
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directed by epigenetically regulated FOXP3 291 292.  Decreased expression of 
FOXP3 has been found in MS 293 and several other inflammatory diseases 294. 
By using an MS-like animal model, histone deacetylase inhibitors have been 
shown to reduce spinal cord inflammation, demyelination and loss of neurons 
and axons 295. Thus, failure to maintain epigenetic homeostasis can result in 
deviant gene expression that cause a loss of tolerance, which can lead to 
development of autoimmunity in individuals who are genetically predisposed for 
disease 296.  

In study III, we demonstrated that stratifying the data for parental origin 
increases the power to identify genetic factors that contribute to disease 
pathogenesis. We could also explain more of the phenotypic variance by 
modeling the parent-of-origin contribution to disease together with the genetic 
contribution identified (Figure 18). In fact, accounting for these effects defines 
risk factors that explain 2-4 fold more of disease variance compared to the 
factors identified in populations confounded by the parent-of-origin. This may 
be a large contribution to the previously unknown part of inheritance, 
suggesting that parent-of-origin can explain part of the missing heritability. This 
significant contribution of parental origin to inheritance of autoimmune 
inflammation implicates a role of epigenetic factors, mitochondria and sex 
chromosomes in pathogenesis of inflammation. Incorporating these effects into 
the model of inheritance does not only enable more powerful and precise 
identification of risk factors but can provide a better understanding of the 
pathogenesis of complex inflammatory diseases.  

 

Figure 18. A 

simplified model of 

predisposition to 

complex diseases 

involves environ-

mental factors, risk 

genes, epistasis, Y 

chromosome and 

mitochondria. 
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6.3 EAE CAN BE MAPPED IN COMPLEX POPULATIONS (PAPER IV) 

To better match the complexity involved in autoimmune disease, we explored 
the possibility of using HS rats to map EAE. The purpose is to complete a 
genome-wide genetic association study in a high-resolution outbred population. 
We set out to establish MOG-EAE as a model in the European colony of the 
HS. To establish that disease could be induced in the HS rats, we performed 
an experiment in 50 HS females to test the effects of induction severity 
(incomplete or complete Freunds adjuvant with 50μg MOG/rat). A stronger 
disease induction and larger phenotype variation led us to select the more 
aggressive induction protocol, including M. tuberculosis, for future 
immunizations (Table 2, Figure 19). The pilot also showed that EAE 
phenotypes have a wider distribution in the HS than in traditional two-strain 
crosses, which indicates that the HS population allows more nuances in 
genetic regulation of EAE.  

Table 2. Titration Experiment 

 INC ONS EAE Score MAX CUM Dis. Course 

   0 1 2 3 4 5   M RR C 

IFA 11/25 17 14 7 2 2 0 0 0.7 37 5 1 5 

CFA 18/25 15 7 3 4 3 0 8 2.4 68 2 5 3 

Abbreviations: INC=incidence, ONS=onset, MAX=maximum EAE score, CUM=cumulative EAE 
score, M=monophasic, RR=relapsing/remitting, C=chronic. 

 

We also investigated the influence of MHC haplotypes on disease outcome in 
this pilot cohort. Rats with MHC types that we have experience with were 

Figure 19. Rats were 

immunized with 50 μg 

MOG in Complete Freunds 

Adjuvant with 200 μg MT 

(CFA, N=25) or 50 μg 

MOG in Incomplete 

Freunds Adjuvant  

(IFA, N=25). 
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selected, AV1 and N (homozygotes and heterozygotes, respectively), and 
compared to rats with all other MHC types (B, L, LV1 and D). Although there 
were no significant differences between MHC groups (p=0.06), 72% of rats with 
the permissive AV1 type developed disease while only 1 of 4 rats with the 
highly permissive N type developed disease (Figure 20). The probable 
explanation for the lower disease incidence in the N group is that these rats 
were heterozygous for N and had only part of the susceptibility effect. The 
group that contained a mixture of MHC types developed disease in 40% of rats. 
This indicated that the expected MHC influence was present, but did not dictate 
disease outcome completely, suggesting that part of the influence comes from 
non-MHC factors. 

 

Assuming that part of the non-MHC influence was genetic, we performed a pilot 
study of 25 rats to determine the variance of phenotypes within MHC types. 
Two homozygous MHC groups could be identified, AV1 and L, while the other 
group contained MHC mosaics of varying kind. The large phenotype variations 
within the various MHC haplotype groups strongly suggest that influence from 
non-MHC genes can be mapped in the HS (Table 3). This prompted us to 
continue phenotyping EAE in a larger HS population (Table 4), with the result 
that we have now phenotyped more than 2000 HS rats. 

Figure 20. No 
differences in time 
to disease between 
MHC types. 
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Table 3. Range of EAE phenotypes within MHC types 

MHC Type EAE Phenotype 

 INC ONS MAX DUR CUM 

L (N=4) 50% 13-15 0-5 0-26 0-104 

AV1 (N=5) 100% 13-18 1-5 12-23 4-99 

Other (N=16) 69% 11-23 0-5 0-28 0-110 

INC = Incidence of EAE,  ONS = onset of EAE, MAX = maximum EAE score, DUR = duration 
of EAE, CUM = cumulative EAE score. 

 

Table 4. EAE phenotype distributions in HS rats 

Exp. MHC Type EAE Phenotype 

  INC ONS MAX DUR CUM 

1 Mixed (N=217) 41% 9-40 

(29+13) 

0-5 

(1.1+1.4) 

0-20 

(5+7) 

0-86 

(11+19) 

2 Mixed (N=270) 33% 11-40 

(32+12) 

0-5 

(0.7+1.2) 

0-18  

(3+5) 

0-87 
(5+11) 

3 Mixed (N=230) 29% 10-40 

(33+11) 

0-5 

(0.8+1.3) 

0-19 

(4+6) 

0-90 

(9+17) 

4 Mixed (N=270) 39% 9-40 

(30+12) 

0-5 

(0.9+1.2) 

0-19 

(5+7) 

0-78 

(10+15) 

5 Mixed (N=240) 21% 9-40 

(35+10) 

0-4 

(0.5+1) 

0-18 

(2+5) 

0-59 

(5+11) 

6 Mixed (N=240) 21% 11-40 

(36+9) 

0-3 

(0.5+1) 

0-18 

(2+5) 

0-49 

(4+11) 

7 Mixed (N=270) 19% 10-40 

(36+9) 

0-4 

(0.5+1) 

0-17 

(2+4) 

0-47 

(4+10) 

8 Mixed (N=270)  In Progress   

 Total N = 2007 29% 33+11 0.7+1.2 3+6 7+14 

The range of each phenotype is shown with mean and standard deviation in parenthesis. INC = 
Incidence of EAE,  ONS = onset of EAE, MAX = maximum EAE score, DUR = duration of EAE, 
CUM = cumulative EAE score. 
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The primary aim of this study will be to identify genes that regulate autoimmune 
neuroinflammation in a high-resolution mosaic population, with the expectation 
of achieving QTL intervals of at best 1-3 genes. Additionally, other phenotypes 
that have been collected in the same rats will be combined to investigate 
additional factors that contribute to EAE. For example, blood cell counts and 
naïve immune response to LPS may help us characterize how the rats base-
line constitution dictates its potential to respond to the MOG challenge. Further, 
the effects of stress on neuroinflammation, something that has been debated 
as a possible trigger of MS 297, can be assessed since we have obtained data 
on the propensity for stress and susceptibility to EAE in each animal. 
Additionally, tissues such as serum, spleen, spinal cord and adrenal glands 
have been collected for expression or other follow-up studies, which can add 
another dimension of investigation. We established that there is enough MHC-
independent variation in disease outcome to map non-MHC QTLs in the HS, in 
spite of several MHC being included. This can offer a great advantage 
compared to our previous studies, in that gene-gene interactions with a variety 
of MHC haplotypes can potentially be unraveled. Further, environmental factors 
that may influence the results, such as season, weather, temperature and 
humidity, are recorded to enable the study of gene-environment interactions. 

The results of our studies so far have indicated that the complexity of genetic 
regulation of autoimmune neuroinflammation is tremendous, even within QTLs. 
The HS population holds the potential to fine-map EAE in a mosaic population, 
which can provide the tools to tease out the complex relationships of 
contributing factors on a whole genome scale.  
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7 CONCLUSIONS 

The thesis work has allowed me to draw several important conclusions about 
the inheritance of autoimmune neuroinflammation in rats.  

First, autoimmune neuroinflammation is genetically regulated and is a 
polygenic trait (Papers I, II and III).  Hence, susceptibility to develop disease, 
and the disease symptoms and course once it manifests is partly inherited from 
parent to offspring.  

Second, it is possible to dissociate the genetic effects on different parts of the 
disease. Susceptibility, severity and chronicity of neuroinflammation are to 
some extent controlled by separate genetic loci (Papers I and III). That is 
important to acknowledge, in order to uncover the molecular basis of 
neuroinflammation and the different mechanisms contributing to different 
aspects of it.  

Third, epistatic interactions contribute to susceptibility and progression of 
neuroinflammation, and can also influence a particular aspect of the disease 
(Paper I). These interactions can alter the main effect exerted by a risk gene in 
isolation and may affect the genotype-phenotype relationship. It is essential to 
identify and understand any interaction a risk gene is involved in or affected by 
in order to draw accurate conclusions about the genes’ effect.  

Fourth, epigenetic mechanisms, particularly parent-of-origin effects, contribute 
to susceptibility for neuroinflammation and may modulate disease phenotypes 
after disease initiation (Paper III). This adds another level of complexity to 
consider when studying genotype-phenotype relationships. However, 
epigenetic influences can also help explain the intricate interplay between 
genetic and environmental factors that contribute to neuroinflammation (Figure 
21). This is likely to explain part of the missing heritability involved in 
neuroinflammation.  

Fifth, the heterogeneous stock population is suitable to use for genome-wide 
association studies of autoimmune neuroinflammation and other complex traits. 
This population holds the potential to provide identification of neuro-
inflammatory QTLs across the genome, each representing a small genetic 
interval that potentiates gene identification, resolution of closely linked QTLs, 
and identification of epistatic interactions genome-wide, including the MHC. 
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Figure 21. The proposed model of inheritance for autoimmune neuroinflammation. 
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8 FUTURE PERSPECTIVES 

The results presented here provide new information about neuroinflammatory 
processes, but also generate new questions that remain to be answered. 

We refined a region on chromosome four and demonstrated the existence of 
multiple QTLs within the region (Paper I). A number of smaller ISR congenic 
strains covering these QTLs, some carrying only a few genes (R23 = Eae25), 
are being functionally investigated. Smaller ISR still are under construction and 
candidate gene investigation in knockout mice is in progress. We also 
demonstrated the presence of complex interactions that amplified or abrogated 
the independent gene effects. One of the candidate genes located at the site 
for epistasis, T-cell receptor Vß, have previously shown contradictory data on 
the association with MS 298. Our results can guide future studies to account for 
the effect of this interaction on TCRBV’s influenced on autoimmune 
neuroinflammation. This may also help explain the conflicting associations in 
past studies.  

The exact role played by ZEB1 in neuroinflammation is still not defined (Paper 
II). Characterization of this molecule is vital to increase our knowledge about 
regulation of the IL2 pathway and its role in neuroinflammation. In vitro and in 
vivo functional experiments on parental and congenic rats will be used to 
elucidate the effect of ZEB1 splice variants on immune cells and EAE. 
Additionally, investigating the effects of ZEB1 splice variants on T-cell 
proliferation, cellular analysis including the numbers and frequencies of 
pathogenic and protective populations, and cytokine profiles could elucidate the 
downstream effects of altered Zfhep2 expression levels. Furthermore, 
histological analysis of CNS at earlier time-points could characterize the effects 
of ZEB1 expression on neuroinflammation and the pathologyphysiology 
involved.  

In addition to congenic studies, the rapidly developing strategies in gene 
targeting in rats, the establishment of germline-competent rat ES cells 198 199 
and ZFN-mediated site-specific mutagenesis200 201, will provide new powerful 
tools for functional studies of identified candidate genes. 

Our data demonstrated a significant contribution of parent-of-origin effects to 
inheritance of autoimmune neuro-inflammation (Paper III). The epigenetic 
mechanisms involved need to be investigated, particularly as this may identify 
locations in the genome that respond to changes in the environment by gene-
environment interactions. Several identified loci overlap with known clusters of 
imprinted genes that should be investigated in the setting of neuroinflammation. 
Comprehensive analysis of allele-specific expression, miRNA regulation, DNA 
methylation and histone modifications can be used to characterize the risk 
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genes and their epigenetic mechanisms, to better understand how they 
mediate neuro-inflammation. Incorporating these effects into future models of 
inheritance will not only enable more powerful and precise identification of risk 
factors, but will also provide a better understanding of the pathogenesis of 
complex inflammatory diseases. 

A study of neuroinflammation in the HS is underway. The primary aim of this 
study will be to identify genes that regulate autoimmune neuroinflammation in 
this high-resolution mosaic population. The advantage is that gene 
identification and fine-mapping can be combined in one step, and the resolution 
is expected to provide QTL intervals of at best 1-3 genes (compared to a few 
dozen in AIL). Another advantage is that other phenotypes have been collected 
in the same rats, and datasets can be combined to investigate additional 
factors that contribute to EAE, such as naïve immune response potential and 
stress. Additionally, tissues and organs will be used for follow-up studies, which 
can add information of correlation of candidate genes with their expression as 
well as expression of disease markers. We established that there is enough 
MHC-independent variation in disease outcome to map non-MHC QTLs in the 
HS, in spite of several MHC being included. This can offer a great advantage 
compared to our previous studies in that gene-gene interactions with a variety 
of MHC haplotypes can potentially be unraveled. Additionally, parent-of-origin 
effects and environmental factors, such as season, weather, temperature and 
humidity, that may influence the results are recorded to enable the study of 
gene-environment interactions. 

Technological advances in high throughput genotyping, improved statistical 
methods and large international efforts have enabled the identification of 
several genetic risk factors for common complex diseases. The rate of 
discovery will continue to accelerate as genome resources and mapping 
strategies improve. We are at the brink of deep sequencing of individual 
genomes on a large scale and increasingly larger GWAS studies in humans 
identifying a growing number of disease risk genes. An international GWAS of 
10000 MS cases and controls MS, which we are part of, is underway. Rapid 
identification of MS genes will guide, to some extent, the focus of genetic and 
functional animal studies to understand how genes operate in the disease 
setting. As more genes are identified and provide targets for therapy, the 
potential for drug development will also be a focus in animal research.  
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